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Abstract 

Background: Population-based knowledge of human biological growth and development 

processes is fundamental for assessing the health status of a community. This requires an 

understanding of the growth pattern for the children as well as the environmental stresses that 

disrupt or impede their growth. These stresses are usually easy to identify, but data on normal 

development and growth variation in most populations is surprisingly lacking. Instead, 

researchers typically compare growth in the population of interest to references formulated for 

European or US children. The problems associated with using non-population specific references 

are complex, and their application can lead to misrepresentations of the health status. In addition, 

the influence of environmental factors on dental development is still debated and the relationship 

of dental development with life history events, such as sexual maturity, is unclear. 

Aim: The aim of this study is to develop population-specific reference for permanent tooth 

formation and emergence among Black Southern Africans, to compare this reference with other 

population references, and to investigate the influence of sex and nutritional status on dental 

development. 

Method:  

Study design and population  

This is a cross sectional study. A total of 642 children comprising of 270 males and 372 females 

from primary and secondary schools were recruited over one and half years. Only participants 

whose parents and grandparents are indigenous Southern Africans were included. Participants 

were screened in a mobile dental truck fitted with digital panoramic x ray.  
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Systematic Review  

A literature search of PubMed, Scopus, Ovid, Database of Open Access Journals and Google 

Scholar was undertaken. All eligible studies published before December 28, 2016 were reviewed 

and analyzed. Meta-analysis was performed on 28 published articles using the Demirjian and/or 

Willems methods to estimate chronological age. The weighted mean difference at 95% 

confidence interval was used to assess accuracies of the two methods in predicting the 

chronological age of children.  

Tooth formation in Southern Africa 

To investigate tooth formation, all the 642 Black Southern African children comprising of 270 

males and 372 females were recruited. The panoramic radiograph of each child was analysed and 

the dental maturity score of the left mandibular permanent teeth was obtained according to the 

Demirjian et al. (1973) method. The dental maturity score of each child was converted to dental 

age using standard tables and percentiles curves for both sexes by Demirjian et al. (1973). The 

ages of attainment of specific maturity stages were calculated with pr obit analysis and compared 

by sex and population. 

Comparisons of age estimation methods 

For comparison of the common methods used in estimation of age, 540 children (233 males and 

307 females out of the 642 children were recruited. This is because all the children aged 16 years 

and above have reached 100% maturity and hence excluded from the study. Panoramic 

radiographs of the children were analyzed and the dental maturity scores of the left mandibular 

permanent teeth were calculated according to the Demirjian et al. (1973), Demirjian and 

Goldstein (1976) and Willems et al (2001) methods. The dental maturity scores were converted 

to dental ages using standard tables and percentiles curves for males and females (Demirjian et 
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al. 1973; Demirjian and Goldstein 1976; Willems et al. 2001). The dental ages obtained were 

compared to the chronological ages of the children and the mean differences obtained by the 

three methods compared. 

Nutrition and tooth formation 

Effect of nutrition on tooth formation was investigated on all the 642 Black Southern African 

children comprising of 270 males and 372 females were recruited. The Panoramic radiograph of 

each child was analysed using the Demirjian et al. (1973) method. The dental maturity score of 

each child was converted to dental age using standard tables and percentiles curves for both 

males and females by Demirjian et al. (1973). In addition, measures of nutritional status such as, 

height, weight, mid upper arm circumference and head circumference were obtained from the 

children. 

The timing, sequence of emergence and the effect of nutrition on tooth emergence 

To investigate tooth emergence and the influence of nutritional status on emergence, information 

on type of teeth and number of teeth emerged were collected from 639 (266 males and 373 

females) Black Southern African children aged 5-20 years out of the total 642 children because 

the emergence data for 3 children were found to be incomplete. An emerged tooth was defined as 

a tooth with any part of its crown penetrating the gingiva and visible in the oral cavity. Height, 

weight, mid upper arm circumference and head circumference of the participants were measured. 

Children with any form of tooth impaction and agenesis were excluded from the study. 

Life history events and dental development 

To determine the association between tooth development and life history variables, mean ages of 

attainment of sexual maturity stages were adapted from Lundeen et al. (2015) and Norris and 

Richter (2005) to identify if any stage of dental development co-occured with life history events. 



6 
 

Southern Africa specific reference values 

The WITS Atlas was developed using the tooth formation stage with the highest frequency for 

each tooth. This stage was considered the developmental reference for an age cohort. Southern 

African tables of conversion of maturity scores were generated separately for males and females 

using polynomial regression functions (3rd degree). Maturity curves were plotted to determine 

the dental maturity curves for each sex.  The Southern African specific tables of conversion of 

maturity score were tested on 540 participants aged 5 to 15.99 years and the results compared to 

the Willems and Demirjian methods of age estimation. 

Data were analysed with Stata 12 for Windows. The analysis included frequencies and cross-

tabulations. Associations between categorical variables were tested with chi square while those 

between continuous variables were tested with Student’s t-tests. The mean ages of emergence 

and standard deviation were computed using probit analysis. Sex and population comparisons 

were done using Student’s t-tests. The height and BMI were converted to z-scores using WHO z-

scores for age tables (WHO 1995). A cut-off z-score of ≤−2 for BMI/height was used to place 

children into underweight/short for age, ≥-2 to 2.0 for normal, and ≥2 for overweight/obese/tall 

for age categories. Mean age of emergence and mean age of attainment of maturity stages were 

calculated for each tooth using these BMI subdivisions. Analysis of variance (ANOVA) and 

Games-Howell were used to determine the differences between the BMI/height subdivisions. A 

Student’s t-test was used to compare any two means whenever one of the three subdivisions of 

BMI did not yield a mean age of emergence. Spearman’s rho correlations between total number 

of teeth, dental maturity scores and anthropometric variables were done. A Shapiro-Wilk W test 

showed that the dependent variables (total number of teeth emerged and dental maturity) and the 

predictor variables were not normally distributed. Therefore, a generalized linear model 
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(negative binomial) was used with the number of emerged teeth/dental maturity modelled as the 

dependent variable and anthropometric variables and age as predictors. Adequacy of fit was 

checked using the deviance residuals as recommended by McCullagh and Nelder (1989). The 

deviance residuals showed that it was normally distributed and the plot of the residuals against 

each of the covariates also showed model fit. As expected, the collinearity test showed that BMI, 

height and weight were significantly collinear. When these variables were excluded from the 

model, there was no difference in the values of the output. Hence, the variables were included in 

the final model for generalized linear regression analysis. The model was built using forward 

selection. Statistical significance was inferred at p<0.05.  

 
Results:  

Systematic review  

Meta-analysis revealed that the Willems method has better accuracy globally compared with the 

Demirjian method. 

Dental maturity in Black Southern Africans 

The females show advanced dental maturity and dental ages compared to males (p<0.05). Cross-

population comparison shows the Southern African females are advanced in dental maturity 

compared to European and Asian children.  

Comparison of methods for estimating dental age 

The Original Demirjian method significantly overestimated the age of the males by 0.85 years 

and the females by 1.0 years (p<0.05) with the same mean absolute error of 1.1 years for both 

sexes. Similarly, the Modified Demirjian method significantly overestimated chronological ages 

of males (0.90 years) and females (1.21 years) with the highest mean absolute error of 1.1 years 
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and 1.4 years for males and females respectively. The Willems method had the lowest, but still 

significant mean differences (0.2 years for males and 0.3 years for females) between the dental 

age and chronological age. It also demonstrated the least mean absolute errors for males (0.70 

years) and females (0.68 years).  

Nutrition and tooth formation 

Significant advancements were found in the age of attainment of H stage for all the permanent 

teeth in the overweight group compared to the underweight group (p<0.05).  Negative binomial 

regression analysis indicates that age, height, and BMI are significant predictors of the dental 

maturity score for males (p<0.05), while age, height, weight, BMI and head circumference are 

significant predictors of the dental maturity score for females. 

Tooth emergence 

Females have all the permanent teeth emerged earlier than males except for the third molars 

(p<0.05). Generally, Black Southern African children have similar ages and sequence of 

emergence as children from other sub-Saharan Africa countries. Black Southern African children 

have earlier mean ages of emergence of permanent teeth compared to children from the USA, 

Europe, Australia and Asia.  Sexual dimorphism was noted in the sequence of emergence of 

I1/M1 in the mandible with the females having the M1I1 sequence as opposed to I1MI in males. 

The sequence of emergence of Southern African males is similar in both jaws to males from the 

USA and Europe but differs from Iranians and Pakistanis. Females show similar patterns of 

sequence with sub-Saharan African, Australian and US females in the maxilla. They display 

MI/I1 variation in the mandible.  
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Nutrition and tooth emergence 

Overweight/obese children generally show significantly earlier emergence times compared to 

normal weight/severely underweight children (p<0.05). Females and tall children have more 

emerged teeth than shorter children when corrected for age and sex (p<0.05). The generalized 

linear regression model (negative binomial) shows that height, weight and BMI have significant 

associations with the number of emerged teeth (p<0.05). 

Dental development and life history variables 

The number of teeth emerged in males correlate strongly with chronological age (r=0.91, p=0.00) 

and height (r=0.89, p=0.00), moderately with mid-upper arm circumference (r=0.61, p=0.00) and 

weakly with head circumference (r=0.16, p=0.00). In females, the number of teeth emerged 

correlates strongly with chronological age (r=0.88, p=0.00) and height (r=0.83, p=0.00), 

moderately with mid-upper arm circumference (r=0.59, p=0.00), and weakly with head 

circumference (r=0.38, p=0.00). Similar patterns of correlation are found for dental maturity.  

The emergence of the maxillary and mandibular M2s co-occurs with the G2 stage of gonad 

development and the PH2 stage of pubic hair development in males. The M2s emerge coincident 

with the attainment of Tanner’s B2 breast stage and the PH2 pubic hair stage in females. The age 

of menarche does not coincide with any of the determined ages for emergence of teeth. 

Attainment of the H stage of development in the C1 co-occurs with the G2 stage of gonad 

development and shortly after the pubic hair stage PH2 in the males. In females, the attainment 

of the H stage of C1 formation occurs shortly before the attainment of the B2 stage of breast 

development. Furthermore, the H stage of P1 formation coincides with the PH2 stage of pubic 

hair development, shortly after the attainment of the stage B2 of breast development. The 
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attainment of the H stage in P2 formation coincides with the age of menarche at approximately 

13 years.  

Southern African specific reference 

A new dental atlas (WITS Atlas) was developed due to the significantly earlier ages of 

emergence and formation among Black Southern Africans. When compared to the London atlas, 

the canines, premolars and second molars are at least a year ahead in the WITS Atlas.  Third 

molar formation and emergence occurs three years earlier in the WITS Atlas. Polynomial 

regression formulae were generated and Southern African specific conversion tables were 

generated for the males and females. The new tables of maturity scores show no overestimation 

of the chronological ages of males (0.045, p>0.05) and females (0.08, p>0.05). Compared to the 

Willems and Demirjian methods, the Southern African specific maturity tables showed the least 

mean absolute error for both sexes. 

Conclusion: There is sexual dimorphism in the timing of tooth emergence with females having 

earlier emergence times. Black Southern Africans show similarities in the ages and sequence of 

emergence of the permanent teeth with children from other sub-Saharan African countries but, 

they are advanced relative to children from the USA, Europe, Australia and Asia. Similarly, the 

Black Southern African children show advanced tooth formation compared to children from 

Europe, Asia and Australia. 

The Willems method is more accurate at estimating chronological age for forensic and 

anthropological purposes compared to the Demirjian methods that significantly overestimate the 

chronological age of children. Of the three methods tested on Black Southern African children, 

the Willems method is the most accurate in estimating chronological age. However; it 

significantly overestimated the chronological age of Black Southern African children. Hence, 
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there is a need for population-specific reference values for use in the age estimation of Black 

Southern African children 

The WITS Atlas and new population-specific maturity tables for Black Southern African males 

and females were developed. The WITS Atlas differs significantly from the London atlas with 

earlier ages of tooth formation and emergence. The Southern African specific age estimation 

method shows good accuracy in the estimation of dental ages. By inference, this method could 

be used in other sub-Saharan African countries because of similarities in tooth formation and 

emergence times. 

Contrary to some studies, nutrition was found to have a significant influence on the number of 

teeth emerged and the timing of emergence. Obese/overweight/tall children tend to have earlier 

timing of emergence and more emerged teeth compared to their underweight peers. Similarly, 

obese/overweight/tall individuals attained the H stage of tooth formation of most teeth earlier 

than their underweight and normal weight age-mates. 

Emergence of second molars and the H stage of canine and first premolar formation co-occur 

with the onset of puberty in males and females. Menarche appears to coincide with the 

attainment of H stage of the mandibular second premolar. 
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Chapter 1 
 

1.1 General introduction 
 

Population-based knowledge of human biological growth and development processes is 

fundamental for assessing the health status of a community. This requires an understanding of 

the growth pattern for the children as well as the environmental stresses that disrupt or impede 

their growth. These stresses are usually easy to identify, but data on normal development and 

growth variation in most populations is surprisingly lacking. Instead, researchers typically 

compare growth in the population of interest to references formulated for European or US 

children. The problems associated with using non-population-specific references are complex, 

and their application can lead to misrepresentations of the health status with consequences for 

policy formation and basic research. 

 

The importance of population-specific growth references extends beyond their utility in 

biological anthropology and health research. For many populations in rural Africa, including 

South Africa, birth registry and eliciting the date of birth is still a challenge. Features such as 

occlusal tooth wear and non-metric variation details can be very useful for identification and 

aging (Kim et al. 2000; Yun et al. 2007). Data on the timing of tooth formation, emergence and 

morphometrics are also needed for forensic purposes, especially with the increasing global 

incidences of mass deaths and disasters (Kieser et al. 2005; Perrier et al. 2006). Tables of 

emergence chronology are useful when birth records are unreliable or lost, where people seek 

asylum or where individuals seek favourable outcomes in civil or criminal cases, where specific 

aging is needed to prevent cheating in age-graded sports competitions (Schulze et al. 2006; 

Schmeling et al. 2007; Meijerman et al. 2007; Ríos et al. 2008; Baumann et al. 2009; Ríos and 

Cardoso 2009).  The age at death is usually the only biological parameter that can be 
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determined for unidentified juvenile remains with any degree of accuracy (Scheuer and Black 

2000). Beyond this, information from dental development (tooth formation and emergence) 

may play a major role in determining many clinical decisions, including choices about 

treatment options and sequence (Suri et al. 2004). In the absence of population-specific data, 

information from other regions and populations are the only available reference. 

 

With increasing globalization, there have been observable changes in the demographic features 

of many human populations as well as changes in their biological profiles (Kearney 1995). 

Dental features are also evolving. This may be in response to observable alterations in 

nutritional status, the assumption of “Western diets”, socioeconomic status and gene flow. 

Trends of tooth size reduction, agenesis and malocclusion are thought to be increasing globally, 

although the pattern of change is not uniform across populations (Esan and Schepartz 2017). 

With these transformations, it is expected that dental growth and development references will 

also modify with time. New studies need to be conducted to keep up with the expected 

evolution.  

 

There are currently few or no reference values for many groups and populations in Africa. 

Where these exist, the data are often limited to tooth emergence or morphometrics; there are 

fewer studies on tooth formation. This gap in information on the timing of dental maturation in 

Africa, as well as other regions, is of specific anthropological importance as the information 

contributes to the elucidation of historical lineages of human groups and also helps to identify 

environmental factors that have effects on tooth development. With increasing interest in 

genomic research, these kinds of data would provide baseline information on the biological 

characteristics that can inform the design and implementation of genomic studies. 
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Dental development encompasses two distinct processes of calcification and emergence (Garn 

et al. 1958; Smith 1991; Liversidge 2003). Tooth formation is specifically the formation of an 

organic matrix and its subsequent mineralization (Smith 1991). It consists of a regular sequence 

of stages from crown formation to the completion of root formation   Eruption has been defined 

as the tooth piercing through the alveolar bone and oral mucosa until it reaches an opposing 

tooth (El-Nofely and İşcan 1989). Mani et al. (2008) believed that this term is vague since 

eruption is a continuous process including the period in life when no tooth erupts into the oral 

cavity. Moreover, the broad nature of the concept of eruption makes comparisons between 

different studies difficult. As a result, Demirjian (1986) posited that the term ‘clinical/gingival’ 

emergence should refer to the appearance in the oral cavity of any part of the crown during the 

course of eruption. 

Tooth formation and emergence have long been considered to show the least variability with 

chronological age when compared with other growth events such as skeletal, somatic and 

sexual maturity (Lewis and Garn 1960; Demirjian 1986; Liversidge et al. 2006). In particular, 

tooth formation is considered to be less variable and produce better accuracy when used to 

estimate chronological age compared to tooth emergence. Dental diseases, inadequate oral 

health care facilities and early loss of deciduous teeth have considerable influence on the timing 

of emergence of the permanent dentition. 

The interrelationship between dental development and other growth events such as skeletal and 

sexual development has been well researched. While it is generally agreed that a strong 

relationship exists between skeletal and dental development, there are varying results regarding 

the relationship between dental and sexual maturity. Lewis and Garn (1960) and Nanda (1960) 

reported high correlations between dental and sexual maturity; while Demirjian et al. (1985) 

concluded that there is no relationship between them and thus inferred that the two growth 

processes are under different controlling influences.  The inconsistency of results may be due to 
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the different methods of data collection and analysis (Demirjian et al. 1985). Hence this study 

further examines the interrelationship between dental development and sexual maturity.   

 
Variations in dental development within and among different populations have been reported in 

the literature (Pahkala et al. 1991; Liversidge 2003; Liversidge et al. 2006) and it is not clear to 

what extent they are influenced by genetic and/or environmental factors such as nutrition. Many 

studies have attempted to look at the relationship between nutrition and dental development.  

Jellife and Jellife (1973) concluded that moderate undernutrition does not delay dental 

development but severe undernutrition does. More recent work also shows that nutritional stress 

significantly affects dental development (Hilgers et al. 2006; Mani et al. 2008). However, other 

studies did not find a significant influence of nutrition on dental development (Eid et al. 2002; 

Cameriere et al. 2007; Elamin and Liversidge 2013). 

While it is generally agreed that genetic factors influence the timing of tooth emergence and 

formation, the extent and nature of the genetic control is not well understood. Saleemi et al. 

(1993) inferred that delayed deciduous tooth emergence in Pakistani children is due solely to 

genetic factors. Similarly, Holman and Jones (1998) reported large differences in timing of 

deciduous tooth emergence in different populations and concluded that the variation is due to 

genetic diversity. It is not clear, however, that Holman and Jones (1998) considered 

environmental factors. Similar controversies over the roles of genetics and the environment 

have been raised with regards to tooth formation. To further examine these issues, this study 

explored the influence of nutrition on intra-population variation in dental development by 

examining both tooth formation and tooth emergence. 

 
Age estimation methods based on tooth formation have been developed for several populations. 

The most popular method was developed by Demirjian et al. (1973). The Demirjian method is 

based on the panoramic radiograph records of 21328 French-Canadian children. Stages of 
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development (A to H) of the seven left mandibular teeth were identified and weighted scores 

assigned to each stage. The summed scores of all seven teeth correspond to the maturity score, 

which can be converted to dental age using separate tables of conversions for males and 

females. (Demirjian et al. 1973).  

 
Population variation in the pattern of dental maturation is documented in modern humans. For 

example, French, Finnish, and Swedish children were found to be advanced in dental maturity 

compared to the French-Canadian reference population used by Demirjian et al. (1973) 

(NyströmNyström et al. 1986; Mörnstad et al. 1995; Willems et al. 2001).  This led many 

authors to advocate for population-specific reference values. Willems et al. (2001) modified the 

Demirjian method and found that they estimated age more accurately in a Belgium population. 

Similarly, other researchers found better accuracy with the Willems method (Djukic et al. 2013; 

Altalie et al. 2014; Kumaresan et al. 2016) while others did not (Zhai et al. 2016). A systematic 

review of published studies is needed to evaluate the accuracies of the different methods. 

Furthermore, the accuracies of the Demirjian Original and revised (Modified) methods and the 

Willems methods have not been tested on Southern African children. Therefore, this study 

investigates the validity and accuracies of all these age estimation methods in a Black South 

African population.  

 
1.1 Aim of the study 

Despite the growing number of studies in other world regions, there are no known reference 

values for age estimation based on tooth development and emergence in African children. The 

aim of this study is to develop a population-specific reference for permanent tooth formation 

and emergence among black Southern Africans, to compare this reference with other population 

references, and to investigate the influence of sex and nutritional status on the dental 

development of the children. 
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The study hypotheses are as follows: 

a. The pattern and tempo of tooth formation and emergence in Black Southern African 

children is not significantly different from other populations. 

b. There are no differences in dental development between males and females of Black 

Southern African origin.  

c. Nutritional status does not influence tooth formation and emergence in Southern African 

Black children.  

d. There is no relationship between tooth formation and emergence and measures of skeletal 

and sexual maturity in Black Southern African children. 

e. There is no need for population-specific reference values for tooth formation and 

emergence.  

1.2 Study objectives 

The following objectives are designed to address the development of dental aging reference 

values for Black Southern Africa populations: 

1. Conduct a meta-analysis of published articles to determine the accuracies of the Demirjian 

and Willems methods of age estimation. (Chapter 2) 

2. Develop dental maturity scores for Southern African Black children using Demirjian’s 

method and compare the findings with other populations. (Chapter 3) 

3. Investigate the accuracy of the Original Demirjian, Modified Demirjian and Willems 

methods of age estimation in Southern African Black children. (Chapter 4) 

4. Determine the influence of nutrition (as measured by height, weight, mid-upper arm 

circumference and head circumference) on tooth formation. (Chapter 5) 

5. Determine the reference values for tooth emergence in Black Southern African children and 

compare the results with other populations. (Chapter 6)  
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6. Determine the influence of sex and nutrition (measured by the anthropometric variables 

height, weight, mid-upper arm circumference and head circumference) on tooth emergence. 

(Chapter 7) 

7. Examine the association among life history variables (sexual maturity, skeletal growth, 

brain development) and dental development (tooth formation and emergence). (Chapter 8) 

8. Develop a population-specific reference for tooth formation and emergence (the WITS 

Atlas). (Chapter 9) 

 

1.3 Methodology 

The methods used in this study are presented in each of the research chapters.  
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Abstract 
 
Background: The accuracy of radiographic methods for dental age estimation is important 

for biological growth research and forensic applications. Accuracy of the two most 

commonly used systems (Demirjian and Willems) has been evaluated with conflicting results. 

This study investigates the accuracies of these methods for dental age estimation in different 

populations. 

 
Methods: A search of PubMed, Scopus, Ovid, Database of Open Access Journals and 

Google Scholar was undertaken. Eligible studies published before December 28, 2016 were 

reviewed and analyzed. Meta-analysis was performed on 28 published articles using the 

Demirjian and/or Willems methods to estimate chronological age in 14,109 children (6,581 

males, 7,528 females) age 3-18 years in studies using Demirjian’s method and 10,832 

children (5,176 males, 5,656 females) age 4-18 years in studies using Willems’ method. The 

weighted mean difference at 95% confidence interval was used to assess accuracies of the 

two methods in predicting the chronological age. 

 
Results: The Demirjian method significantly overestimated chronological age (p<0.05) in 

males age 3-15 and females age 4-16 when studies were pooled by age cohorts and sex. The 

majority of studies using Willems’ method did not report significant overestimation of ages 

in either sex. Overall, Demirjian’s method significantly overestimated chronological age 

compared to the Willems method (p<0.05). The weighted mean difference for the Demirjian 

method was 0.62 for males and 0.72 for females, while that of the Willems method was 0.26 

for males and 0.29 for females. 

 
Conclusion: The Willems method provides more accurate estimation of chronological age in 

different populations, while Demirjian’s method has a broad application in terms of 

determining maturity scores. However, accuracy of Demirjian age estimations is confounded 
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by population variation when converting maturity scores to dental ages. For highest 

accuracy of age estimation, population-specific standards, rather than a universal standard 

or methods developed on other populations, need to be employed. 

 
Systematic review protocol registration number is: CRD42016029995 
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CHAPTER 2: SYSTEMATIC LITERATURE REVIEW OF DENTAL AGE 
ESTIMATION USING THE DEMIRIJIAN AND WILLEMS METHODS 

 

Systematic Review Title: The Demirjian versus the Willems methods for dental age 
estimation in different populations: A meta-analysis of published studies 

 
Research Question: Does the Demirjian method for dental age estimation provide a more 
accurate estimate of chronological age when compared to the Willems method in dental age 
estimation of different populations? 

 

2.1 Introduction and Context 

It is believed that the higher up the hierarchy a study design is situated, the more stringent the 

method and hence the higher the probability that the study design can reduce the effect of 

bias on the study outcomes (Hoffman et al. 2013) (Figure 2.1).  Well-designed systematic 

reviews and meta-analyses are usually at the top of the pyramid of evidence hierarchies, 

while laboratory studies, expert opinion and reviews are at the bottom. A systematic review 

synthesizes the results from all published studies on a specific topic, and provides a 

comprehensive analysis on the strengths, weaknesses and the research outcomes of the 

collected studies (Cook 1997).  Systematic review is well regarded as the principal and 

foremost source of evidence to guide clinical and policy decisions regarding the effectiveness 

of therapies and methods for improved health (Yengopal and Mickenautsch 2009). 

Systematic reviews and meta-analyses provide the best evidence for all research question 

types because their outcomes are based on the findings of many researches that were 

identified by thorough methodical literature searches.   
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Figure 2.1. Hierarchy of evidence guiding clinical decision making (adapted from the 

NHMRC, 2009) 

 

 

Systematic reviews are of great value if they include meta-analyses of clinical and 

methodologically homogeneous studies that are combined to provide a cumulative weight of 

evidence for or against a particular therapy or method. The advantages of meta-analysis over 

narrative or qualitative syntheses of the literature are that meta-analysis provides the 

opportunity to detect a treatment effect or outcome as statistically significant and to improve 

estimation of the effect by quantifying its outcome; thus making its estimation more precise 

(Higgins and Green 2011). Since the research question for the present study was highly 

focused, a systematic review of the evidence was undertaken rather than a traditional review 

because it provided the opportunity to employ a rigorous methodology to minimise the effect 

of bias when synthesizing the current information on the topic. Traditional narrative reviews 

Unfiltered Information 

Filtered Information 
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(often called “Reviews”; in the case of Masters or PhD dissertations these are the “Literature 

review”) are based on individual opinions with selective references from the literature.  They 

do not provide adequate evidence to answer research questions such as the question examined 

here. They only provide a synopsis of the research on a particular topic rather than answering 

a specific research question, may only be useful for background information, and are usually 

not publishable. Traditional reviews generally lack systematic search protocols or 

unambiguous criteria for selection of published studies and evaluating evidence and are 

therefore very prone to bias (Cook et al. 1997) (Table 2.1). 

Table 2.1. Differences between systematic reviews and narrative reviews (adapted from 
Cook et al. 1997) 
 
Feature Systematic Review Narrative Review 
Question A focused research question Usually broad in scope 
Sources and search Comprehensive sources and explicit search 

strategy 
Not usually specified, 
potentially biased 

Selection Criterion-based selection uniformly applied Not usually specified, 
potentially biased 

Appraisal Rigorous critical appraisal Variable 
Synthesis Qualitative summary that often includes 

statistical synthesis (meta-analysis) 
Often a qualitative summary 

Inferences Evidence-based Sometimes evidence-based 
 

Based on the above considerations, it was felt that a systematic review would be a more 

rigorous exploration of the literature pertaining to the research question under investigation in 

this study. 
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2.2 Background 

Population-based data on human biological growth and development processes are 

fundamental for assessing the health status of a community. This includes an understanding 

of the growth pattern for the children as well as the environmental stresses that disrupt or 

impede their growth. These stresses are often easy to identify, but data on uncompromised 

development and growth variation in most populations are surprisingly lacking. Instead, 

researchers typically compare growth in the population of interest to references formulated 

for European or US children. The problems associated with using non-population-specific 

references are complex, and their application can lead to misrepresentations of health status. 

 

The importance of population-specific growth references extends beyond their utility in 

biological anthropology and health research. For many populations in rural Africa birth 

registry and eliciting date of birth is still a challenge. Occlusal tooth wear and anthropological 

details can be very useful for identification and aging (Kim et al. 2000; Yun et al. 2007). Data 

on timing of tooth formation, tooth emergence and dental morphometrics are also needed for 

forensic purposes, especially with the increasing global incidences of mass deaths and 

disasters (Kieser et al. 2005; Perrier et al. 2006). Additionally, tables of tooth emergence 

chronology are useful when birth records are unreliable or lost, where people seek asylum 

(Schmeling et al. 2007), where specific aging is needed to prevent cheating in age-graded 

sports competitions, or where individuals seek favourable outcomes in civil or criminal cases 

(Schulze et al. 2006; Meijerman et al. 2007; Ríos et al. 2008; Baumann et al. 2009; Ríos and 

Cardoso 2009).  The age at death is usually the only biological parameter that can be 

estimated for unidentified juvenile remains with any degree of accuracy (Scheuer and Black 

2000). Beyond this, information from dental development may play a major role in 
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determining many clinical decisions, including choices about treatment options and sequence 

(Suri et al. 2004). In the absence of population-specific reference values, data from other 

regions and populations are used as reference, often without considering whether they are 

appropriate for comparison. 

 

Variation in dental development among populations is reported in the literature (Pahkala et al. 

1991; Willems et al. 2001; Liversidge 2003; Liversidge et al. 2006; Tunc and Koyuturk 

2008). The reason for the variation among groups is not fully understood, although several 

explanations involving the interplay of genetic and environmental factors have been proposed 

(Chaillet et al. 2005). With increasing globalisation, there have been observable changes in 

the demographic features of many populations as well as changes in their physical profiles 

(Kearney 1995). Dental parameters are also evolving, and may be related to observable 

alterations in nutritional status, socioeconomic status, and genetic admixture. With these 

transformations, it is expected that dental growth and development reference of populations 

will modify with time. 

 
Another source of variation in the timing of dental development is biological sex. 

Universally, females in any given population are more advanced in tooth formation than their 

male counterparts (Demirjian 1973; Demirjian and Levesque 1976: Demirjian 1980; Oziegbe 

et al. 2014). Furthermore, Kochhar and Richardson (1998), Eskeli et al. (1999) and Moslemi 

(2004) found that girls are also ahead of boys in permanent tooth emergence in Northern 

Irish, Finnish and Iranian children respectively, and similar differences are found for most 

populations.  

 
The effect of malnutrition on dental development remains controversial, with conflicting 

results from different studies. Malnutrition is thought to have a greater negative impact on 
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skeletal development than on the forming dentition. A recent study by Elamin and Liversidge 

(2014) on severely undernourished children in South Sudan reported no significant impact of 

nutrition on tooth formation. However, studies of African Americans and European 

Americans (Garn et al. 1973; Clemens et al. 2009) found that children from high 

socioeconomic backgrounds had earlier tooth emergence, which was attributed to better 

nutritional status. 

Age estimation 

Different methods have been proposed to estimate dental age using permanent tooth 

formation. Among these is Demirjian's method of age assessment formulated on a sample of 

French Canadian children, which involves the assessment of eight specific stages of tooth 

formation of the seven left mandibular teeth. Biologic weights, which are numerical, and 

derived using the method described in research on skeletal maturity (Tanner and Whitehouse 

1962) are assigned to each tooth stage. The weights are added together to give the dental 

maturity score. Separate tables of dental maturity for males and females are used to convert 

the maturity scores to dental age (Demirjian et al. 1973). The advantage of the Demirjian 

method is the objective criteria for describing the stages of tooth development. The 

methodology gained worldwide acceptability and became the most commonly used method 

for estimation of dental age (Demirjian et al. 1973; Demirjian and Goldstein 1976).  Studies 

using the method on other populations documented patterns of comparatively advanced or 

delayed tooth formation (Haavikko 1974; Hägg and Matson 1985; Davis and Hägg 1994; 

Mörnstad et al. 1994; Liversidge et al. 1999; Chaillet et al. 2005; Baghdadi and Pani 2011). 

This led several authors to question the cross-populational validity of Demirjian’s method 

and to argue for population-specific references for age estimation (Chaillet et al. 2004; 

Chaillet et al. 2005; Baghdadi and Pani 2011; Lee et al. 2011) 
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Willems et al. (2001) modified the Demirjian technique by creating new tables from which a 

maturity score could be directly expressed in years. The cumbersome step of converting the 

maturity score to a dental age was omitted, making the new method simpler to use while 

retaining the advantages of Demirjian's method. There was also a reduction in the 

overestimation of dental age, which was not statistically different from zero in a Belgian 

population (Willems et al. 2001). This modification was evaluated for several populations 

and reported to be more accurate than Demirjian’s method (Maber et al. 2006; Mani et al. 

2008; El Bakary et al. 2009; Liversidge et al. 2010; Pinchi et al. 2012; Ramadan et al. 2012).  

 

No systematic review has compared the accuracy of the Demirjian and Williams methods for 

dental age estimation versus chronological age in different populations. This review therefore 

posed the following research question: Does the Demirjian method for dental age estimation 

provide a more accurate estimate of chronological age when compared to the Willems 

method in dental age estimation of different populations? The null hypothesis tested was 

that there was no difference in the accuracy of the two methods for dental age estimation 

against chronological age.  

2.3 Methodology 

2.3.1 Systematic Literature Search  

The literature search was designed to find both published and unpublished studies on the 

research question. A three-step search strategy was utilized. An initial limited search of 

MEDLINE and CINAHL was undertaken, followed by an analysis of the text words 

contained in the title and abstract, and of the index terms used to describe articles. A second 

search using all identified keywords and index terms was then conducted across all the 

included databases. Thirdly, the reference lists of all identified reports and articles were 

searched for additional studies. Studies published in English and only those published from 
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1973 onward were considered for inclusion. This systematic review is registered with 

PROSPERO International prospective register of systematic reviews with registration number 

CRD42016029995. The protocol can be accessed via the following website. 

http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42016029995 

The databases searched included: 

MEDLINE, accessed via PubMed: SCOPUS: OVID: Biomed Central: Database of Open 

Access Journals (DOAJ): Ended: OpenSIGLE and Google Scholar 

The search for unpublished studies included: 

Hand search: reports: Thesis  

Search terms included the following adjusted for the search engine/database used: 

• (“Age estimation”) AND (Demirjian OR Willems) 

• (“Dental age”) AND (Demirjian OR Willems) 

• (“Tooth formation” AND Demirjian)  

•  Willems AND (“Tooth formation”) 

The search was limited up to 28 December 2016. 

Studies were eligible for inclusion if they met the following criteria: 

• Cross-sectional studies 

• Non-cross-sectionalstudies 

• Comparative studies of either method or both methods, 

• Study focus relevant to the research question, 

• Full reports (abstracts without full reports not included), 

• Study participants ranging in age from 0-18 years. 

Articles were further excluded according to the following criteria: 

• No computable data reported 
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• For comparative studies, test and control groups not evaluated the same way 

• Studies conducted on subjects who were physically or medically compromised 

and those with developmental anomalies 

• Studies conducted exclusively on third molars 

• Studies published in any language other than English. 

Titles and abstracts of identified citations from data sources were scanned by two reviewers 

(Temitope Esan (TE) and Veerasamy Yengopal (VY)) in duplication, for possible inclusion 

according to the above criteria. Articles with a suitable title but without a listed abstract were 

retrieved in full copy. All included articles were judged separately by the authors for possible 

exclusion with reason or for acceptance, in line with the exclusion/inclusion criteria. 

Disagreements between authors were solved through discussion and consensus with the third 

reviewer (Lynne Schepartz (LS)). 

2.3.2 Data collection from accepted trials and analysis 

Two reviewers (TE, VY) extracted data from accepted studies independently without being 

blinded to authors, institutions, journal name or study results. Disagreements between authors 

concerning data extracted were solved through discussion and consensus. All data were 

entered in specifically designed data sheets and are reported in the Table of included studies 

(Table 2.2). The following data were extracted:  

(i) General important information: First author; year of publication and full article 

reference; place of trial; age; trial participant characteristics; type of study design  

(ii) Information per test and control group: details of method used, age of participants 

(dental and chronological age), sex, numbers included 

There were three outcome measures assessed: 

(1) The difference in the dental age versus chronological age for the Demirjian method 
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(2) The difference in the dental age versus chronological age for the Willems method 

(3) The mean age difference using the Demirjian method versus the Willems method 

The above outcomes were compared independently for age and sex in different populations 

as per the included studies.  

 
Datasets were created to facilitate pooling of similar outcomes into a meta-analysis. A dataset 

was defined as any extracted set of N, mean and standard deviation (SD) for test and control 

groups. For comparisons of continuous variables (dental age and chronological age), the 

mean with the SD was used. If the mean was reported without an SD, then attempts were 

made to obtain an SD from either the standard error of the mean or the 95% confidence 

intervals. If the standard error (SE) was reported instead of the SD, then the following 

formula was used:  

 SD = SE ×√N (Higgins and Green 2011) 

When making this transformation, the standard errors were from means calculated from 

within a group and not standard errors of the difference in means computed between the 

groups. 

If studies reported the 95% confidence intervals, then the following formula was used to 

calculate the SD: 

SD =√N× (upper limit-lower limit)/3.92 

The above formula applies to larger sample sizes (>60).  If the sample size was small or less 

than 60 in each group then the denominator (3.92) in the formula above was replaced by 

4.128. Again, when making this transformation, the confidence intervals were from means 

calculated from within a group and not standard errors of the difference in means computed 

between groups (Higgins and Green 2011). 
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For each dataset, the Mean Difference (MD) for continuous data with 95% Confidence 

Intervals (CI) and p-values were computed using a fixed effects model that used the inverse 

variance for continuous data to include studies directly proportionate to their sample size. 

Statistical significance was set at p<0.05. For computation of all point estimates, the 

statistical software program Cochrane RevMan version 5.3 was used.  

In order to fulfill the criteria of clinical and methodological homogeneity, which allow for 

pooling of data for meta-analyses, datasets from the accepted publications did not differ in 

the following minimum set of characteristics: similar characteristics of children, assessment 

criteria similar in both groups, data collection and measurements similar in both groups. 

2.3.3 Pooling of datasets  

The I2 test with 95% CI was used to establish whether any statistical heterogeneity existed 

between datasets that were assumed to be methodologically homogenous.  The thresholds for 

I2 point estimates (in %) and upper confidence values were used in order to interpret the test 

results (Higgins and Green 2011): 0-40% = might not be important; 30-60% = may represent 

moderate heterogeneity; 50-90% = may represent substantial heterogeneity; 75-100% = 

considerable heterogeneity. Identified (clinically/methodologically/statistically) homogenous 

datasets were pooled using a fixed effects meta-analysis with the Cochrane RevMan 5.3 

software.  

2.3.4 Assessment of methodological quality 

Quantitative papers selected for this study were assessed by two independent reviewers for 

methodological validity prior to inclusion in the review using a revised standardized critical 

appraisal instrument from the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) Statement (da Costa et al. 2011). This is a 40-item checklist used 

for observational studies (cross-sectional, cohort, case-control). Included studies were 
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assessed according to the checklist and papers that achieved a score of at least 28 out of 40 

were regarded as having high methodological quality (Yan et al. 2013). 

 
2.3.5 Assessment of publication bias risk 

Funnel plots were derived from pooled datasets using the Cochrane RevMan 5.3 software. 

Symmetrical funnel plots indicate no publication bias and asymmetrical plots are an 

indication of publication bias.  

2.3.6 Statistical Analysis 

All statistical analyses were done using the Cochrane RevMan 5.3 software.  Analysis was 

done separately for the two methods under review (Demirjian and Willems) with separate 

analyses of male and female data. The two methods were compared to determine their 

accuracy. The weighted mean difference (WMD) was used to assess accuracy of the methods 

in predicting the chronological age of the children.  Heterogeneity and between study 

variability was assessed using the Tau and I2 tests. A significant value of Tau (p<0.05) 

indicates significant heterogeneity.  A value greater than 50% for the I2 tests (with values 

ranging from 0 to 100%) is assumed to be significant. The effect sizes of the Demirjian 

method for different age groups were compared with those from the Willems method using a 

Student’s t-test. Statistical significant was inferred at p<0.05. 

2.4 Results 

2.4.1 Literature Search 

Figure 2.2 provides the flow diagram with details of how the identified studies were 

evaluated for final inclusion in this review. The Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) is an evidence-based minimum set of items for 

reporting in systematic reviews and meta-analyses (Moher et al. 2009). PRISMA focuses on 

the reporting of reviews evaluating randomized trials, but it can also be used as a basis for 
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reporting systematic reviews of other types of research, particularly evaluations of 

interventions (Moher et al. 2009). The common reasons for exclusion were that studies used a 

different age range (greater than 12 months cohort range, or different age cohort ranges, such 

as 3.5-4.5), absence of standard deviations, or lack of information regarding the methods for 

estimating the dental age.  
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Figure 2.2. PRISMA 2009 Flow Diagram for Systematic Review with Meta-
analysis 
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All the cross-sectional studies met the inclusion criteria and were further analysed in this 

review. Information on these studies is provided in Table 2.2. Meta-analysis was performed 

on 28 published articles using the Demirjian and/or Willems methods to estimate 

chronological age in 14,109 children (6,581 males and 7,528 females) age 3-18 years in 

studies using the Demirjian method and 10,832 children (5176 males and 5656 females) age 

4-18 years in studies using the Willems method. Most papers reported that the Demirjian 

method significantly overestimated the chronological age and was therefore not applicable 

for use in that specific population. This was observed in studies that used only the Demirjian 

method and in studies that compared the Demirjian method to other methods such as the 

Willems method. The Willems method was found to be a more accurate tool to estimate 

chronological age (Table 2.2).  
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Table 2.2. Table of Included Studies  
 
Article Type of study: Brief details Details of participants and methods used Main findings 
Amberkova et al. 2014 Cross-sectional comparative: OPG of 7 left 

mandibular teeth. Study setting: Macedonia 
966 children aged 6-13 analyzed using Willems 
and Demirjian methods 

Willems method most accurate; Demirjian 
method overestimated chronological age 

Asab et al. 2011 Cross-sectional: OPG of 7 left mandibular teeth. 
Study setting: Malaysia 

905 children aged 6-16 analyzed using 
Demirjian method 

Demirjian method less accurate by 
overestimating chronological age 

Bagherpour et al. 2010 Cross-sectional. Study setting: Iran 311 boys and girls analyzed using Demirjian 
method 

Demirjian method appropriate only for children 
9-13 years 

Caneiro et al. 2015 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Portugal 

564 children analyzed using Demirjian method Demirjian method not useful in predicting 
chronological age. Overestimation of dental age 

Cavric et al. 2016 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Botswana 

1760 children aged 6-23 analyzed using 
Demirjian method 

Demirjian method not useful in predicting 
chronological age. 

Djukic et al. 2013 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Serbia 

686 children aged 4-15 analyzed using 
Demirjian and Willems methods 

Demirjian method overestimated chronological 
age. Willems method provided better accuracy 

El Bakary et al. 2010 Cross-sectional: OPG of 7 left mandibular teeth. 
Study setting: India 

286 children aged 5-16 analyzed using Willems 
and Cameriere methods  

Willems method predicts better than Cameriere 
method. Hence could be used in Egyptian 
population 

Erdem et al. 2013 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: NW Turkey 

425 children aged 7-13 analyzed using 
Demirjian method 

Demirjian method overestimated chronological 
age and hence not suitable for estimating age 

Feijoo et al. 2012 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Spain 

1010 children 2-16 analyzed using Demirjian 
method 

Demirjian method overestimated chronological 
age 

Flood et al. 2013 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth used. Study setting: Australia 

504 children analyzed using the 4 Demirjian 
methods 

All methods not accurate in predicting 
chronological age. 

Galic et al. 2011 Cross-sectional comparative: Setting: Bosnia-
Herzegovina 

1089 children analyzed using Cameriere. 
Haavikko and Willems methods 
 

Willems method overestimated chronological 
age hence not accurate 

Hegde et al. 2016 Cross-sectional observational: OPG of 7 left 
mandibular teeth. Study setting: India 

1200 children aged 5-15 analyzed using Willems 
I and Willems 2 methods 

Willems 1method predicted age of boys more 
accurately 

Ifesanya et al. 2012 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth used. Study setting: Nigeria 

124 children aged 4-16 analyzed using 
Demirjian method 

Demirjian method overestimated chronological 
age 

Javadinejad et al. 2013  Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Iran 

537 children aged 3.9-14 analyzed using 
Demirjian, Willems, Cameriere and Smith 
methods 

Demirjian and Willems methods overestimated 
chronological age and hence less accurate 

Khoja Fida and Shaikh 
2015 

Cross-sectional retrospective: OPG of 7 left 
mandibular teeth used. Study setting: Pakistan 

403 children analyzed using Demirjian, Willems 
and Nolla methods 

Willems method better predicts chronological 
age 

Kirzioglu and Ceyhan 
2012 

Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Turkey 

425 children aged 7-13 analyzed using 
Demirjian, Nolla and Haavikko methods 

All three methods not suitable for Turkish 
children 
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OPG = Panoramic Radiographs

Koshy and Tandon  
1998 

Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Southern India 

184 children assessed using Demirjian method Demirjian method overestimated chronological 
age hence not useful 

Kumaresan et al. 2016 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Malaysia 

426 children aged 5-15 analyzed using 
Demirjian, Willems and Nolla methods  

Demirjian method least precise, overestimated 
chronological age 

Leurs et al. 2005 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: Holland 

451 children aged 3-17 analyzed using 
Demirjian method 

Demirjian method overestimated chronological 
age hence not useful 

Mani et al. 2008 Cross-sectional observational: Study setting: 
Malaysia 

214 boys and 214 girls, selected by simple 
stratified random sampling. OPGs analyzed 
using Demirjian and Willems methods 

Both overestimated chronological age but 
Willems had better accuracy 

Mohammed et al. 2014  Cross-sectional comparative: OPG of 7 left 
mandibular teeth. Study setting: South India 

660 children aged 6-13 analyzed using Willems, 
Demirjian, Nolla and Haavikko methods 

All methods are reliable in estimating age 

Mohammed et al. 2015 Cross-sectional comparative: OPG of 7 left 
mandibular teeth. Study setting: India 

332 children aged 6-15.99 analyzed using 
Demirjian and Willems methods 

Willems method is the best predictor of 
chronological age 

Nik-Hussein and Kee 
Gan 2011 

Cross-sectional study: OPG of 7 left mandibular 
teeth. Study setting: Malaysia 

991 children aged 5-15; Willems and Demirjian 
methods compared for accuracy 

Willems method more applicable for estimating 
dental age. Demirjian method overestimated 
chronological age 

Patel et al. 2016 Cross-sectional comparative: OPG of 7 left 
mandibular teeth. Study setting: India 

160 children aged 6-16 analyzed using 
Demirjian, Willem and Greulich and Pyle 
methods 

Willems method can be accurately used in 
Southern India 

Urzel and Bruzek 2015 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: France 

743 children aged 4-15 analyzed using 
Demirjian, Willems I, II and Chaillet methods 

Willems I method the most suitable when sex 
and ethnicity are known 

Uys et al. 2014  Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: South Africa 

833 children aged 6-16 analyzed using 
Demirjian method 

Demirjian method overestimated chronological 
age 

Ye et al.  2014 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: China 

941 children aged 7-14 analyzed using 
Demirjian and Willems methods 

Willems method more applicable for estimating 
dental age. Demirjian method overestimated 
chronological age 

Zhai et al. 2016 Cross-sectional retrospective: OPG of 7 left 
mandibular teeth. Study setting: China 

1004 children aged 11-18 analyzed using 
Demirjian and Willems methods 

Demirjian method overestimated chronological 
age but better accuracy with Demirjian method 
than with Willems method  
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Table 2.3 provides the scores obtained when assessing the included studies using the 

STROBE checklist. The item scores are not intended to be a reflection of the quality of the 

included papers (von Elm et al. 2007), but are used to provide some insights on the 

methodological rigor of the individual papers. Most papers achieved scores of around 28, 

which has been used in previously published studies as an indication of high methodological 

quality (Yan et al. 2013). 

 
Table 2.3 STROBE 40 Item Checklist Scores for Included Cross-sectional Studies 
 
Amberkova et al. 2014 Cross-sectional comparative  27 
Asab et al. 2011 Cross-sectional  27 
Bagherpour et al. 2010 Cross-sectional  28 
Caneiro et al. 2015 Retrospective 27 
Cavric et al. 2016 Retrospective  28 
Djukic et al, 2013 Retrospective   27 
El Bakary et al. 2010 Cross-sectional  29 
Erdem et al. 2013 Retrospective 26 
Feijoo et al. 2012 Retrospective  26 
Flood et al. 2013 Retrospective  28 
Galic et al. 2011 Cross-sectional comparative  26 
Hegde et al. 2016 Observational  26 
Ifesanya et al. 2012 Retrospective  26 
Javadinejad et al. 2013  Retrospective  26 
Khoja and Shaikh 2015 Retrospective  27 
Kirzioglu and Ceyhan 2012 Retrospective  26 
Koshy and Tandon 1998 Cross-sectional  27 
Kumaresan et al. 2016 Cross-sectional  25 
Leurs et al. 2005 Retrospective   25 
Mani et al. 2008 Cross-sectional   28 
Mohammed et al. 2014  Cross-sectional comparative  26 
Mohammed et al. 2015 Cross-sectional comparative  25 
Nik-Hussein and Kee Gan 2011 Cross-sectional  26 
Patel et al. 2016 Cross-sectional comparative  25 
Urzel and Bruzek 2015 Retrospective  26 
Uys et al. 2014  Retrospective  26 
Ye et al. 2014 Retrospective   27 
Zhai et al. 2016 Retrospective  27 
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2.4.2  Pooled meta-analysis of studies using the Demirjian method to determine difference in 
the dental age versus chronological age in males and females 

The pooled effect estimates for ages 3-18 years in all the included studies were analyzed for 

males and females and a summary of the results obtained is presented in Figures 2.3 and 2.4. 

Considerable heterogeneity (I2= 97% in males and 98% in females) was found in the pooled 

analyses for age groups 3-18 years. This can be explained by the pooling together of the ages 

and studies from different populations that have been found to grow at different rates (Cohen 

2003). Overall, the meta-analysis showed a significant weighted mean difference (WMD) 

between the dental age and the chronological age in males (WMD=0.62 years, 95% CI (0.56, 

0.66)) and in females (WMD=0.72 years, 95% CI (0.69, 0.75)). For males (Figure 2.3), the 

majority of the studies reported significant overestimation by the Demirjian method. The 

exception is that of Zhai et al. (2016), who reported a significant under-estimation of 

chronological age in males (WMD=-0.63 years, 95% CI (-0.85, -0.41). Three studies 

(Bagherpouret et al. 2010; Erdem et al. 2013; Mohammed et al. 2015) reported no significant 

difference between dental age estimation and chronological age for males. Similarly, for 

females most studies reported overestimation of the chronological age while only two studies 

(Erdem et al. 2015; Zhai et al. 2016) reported underestimation of the chronological age 

(Figure 2.4).   

 
Meta-analysis of each age cohort in males and females demonstrated that the majority of the 

age cohorts had considerable heterogeneity (75-100%) with the exception of age cohorts 4 

and 16 years in females. The heterogeneity may be due to the pooling of different studies into 

the meta-analyses. In males, significant overestimation of the chronological age by the 

Demirjian method was observed in the 3-15 year age cohorts.  On the contrary, significant 

underestimation of the chronological ages was observed in the 16-18 year age cohorts (Table 

2.4). Significant overestimation of the chronological ages of females was observed in all the 
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age cohorts except 3 and 16-18 years where significant underestimation of chronological ages 

was observed (Table 2.4).  

2.4.3 Pooled meta-analysis of studies using the Willems method to determine difference in 
the dental age versus chronological age in males and females 

The pooled effect estimates of the Willems method for ages 4-18 in all the included studies 

were analyzed for males and females (Figures 2.5 and 2.6). Considerable heterogeneity (I2 

=85% in males and 93% in females) was detected in the pooled analyses for age groups 4-18 

years. Again, this can be explained by the pooling together of the ages and studies from 

different populations, as mentioned above. The meta-analysis showed significant difference 

between the dental age and the chronological age in males (WMD=0.26 years, 95% CI (0.20, 

0.32)) and in females (WMD=0.29, 95% CI (0.24, 0.35)). Six studies reported significant 

overestimation in males while only four studies reported significant overestimation in 

females. Furthermore, three studies reported significant underestimation in males, while only 

Zhai et al. (2016) reported significant underestimation in females.  Seven studies of males 

and 11 of females did not report significant differences (Figures 2.5 and 2.6).  

 
Variation in heterogeneity of the included studies was observed for both males and females 

when the studies were pooled by sex and age cohorts. The I2 values ranged from “might not 

be important” (0-40%) to “considerable heterogeneity” (75-100%) in both males and females. 

Again, this can be attributed to the pooling together of different ages and populations. Meta-

analysis of the age cohorts in males showed significant overestimation in age cohorts 5-14 

years, while significant underestimation was found in age cohorts 16-18 years (Table 2.5). No 

significant differences were found between the dental ages and chronological ages of children 

in the age cohorts 4 and 15 years. In females, overestimation of the chronological age was 

observed in the age cohorts 5-8 and 11-13 years, while significant underestimation was found 

in the age cohorts 15-18 years (Table 2.5). 
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Figure 2.3: Comparison of dental age and chronological age pooled for sex (males) using the Demirjian method 
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Figure 2.4: Comparison of dental age and chronological age pooled for sex (females) using the Demirjian method 
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Table 2.4: Pooled effect estimates (dental age versus chronological age) for ages 3-18 and sex (males and females) using the Demirjian 
method 

Age  
cohort 

Male Female 
Number 

of 
studies 

n I2 (%) Effect estimate  
(95% CI) SD 

Number 
of 

studies 
n I2 (%) Effect estimate 

(95% CI) SD 

3 1 26 NA 0.57 [0.03, 1.11] 1.32 1 14 NA -0.19 [-0.60, 0.22] 0.74 
4 4 106 71 0.61 [0.42, 0.81] 1.25 4 100 44 0.28 [0.08, 0.48] 1.24 
5 8 270 93 1.39 [1.26, 1.51] 1.28 8 244 82 1.16 [1.02, 1.30] 1.36 
6 15 614 82 1.11 [1.04, 1.17] 1.00 15 608 83 0.88 [0.81, 0.95] 1.07 
7 19 968 96 0.76 [0.71, 0.82] 1.06 19 1084 76 0.52 [0.46, 0.57] 1.12 
8 20 1360 87 0.53 [0.46, 0.60] 1.60 20 1400 76 0.49 [0.42, 0.55] 1.51 
9 20 1366 82 0.49 [0.41, 0.58] 1.95 20 1412 83 0.57 [0.48, 0.66] 2.10 
10 20 1348 89 0.75 [0.65, 0.84] 2.17 20 1367 86 0.64 [0.55, 0.72] 1.95 
11 21 1556 97 0.84 [0.77, 0.92] 1.84 20 1564 91 0.90 [0.82, 0.97] 1.84 
12 21 1354 95 0.88 [0.79, 0.96] 1.94 20 1679 95 0.87 [0.82, 0.93] 1.40 
13 20 1146 96 1.08 [1.00, 1.17] 1.79 19 1420 98 1.14 [1.08, 1.21] 1.52 
14 17 784 95 1.06 [0.99,1.14] 1.30 16 1108 97 0.60 [0.55, 0.65] 1.03 
15 13 544 95 0.11 [0.04, 0.18] 1.01 12 658 96 -0.20 [-0.27, -0.13] 1.12 
16 4 112 NA -1.48 [-1.79, -1.17] 2.04 5 224 56 -0.81 [-0.96, -0.66] 1.39 
17 1 76 NA -1.95 [-2.17, -1.73] 1.19 1 148 NA -1.52 [-1.67, -1.37] 1.13 
18 1 36 NA -2.67 [-2.92, -2.42] 0.72 1 176 NA -2.52 [-2.65, -2.39] 1.07 

      Significant values in bold 
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Figure 2.5: Comparison of dental age and chronological age pooled for sex (males), using Willems method 
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Figure 2.6: Comparison of dental age and chronological age pooled for sex (females) using Willems method 
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Table 2.5: Pooled effect estimates (dental age versus chronological age) for ages 4-18 and sex (males and females) using Willems method 

Age 
cohort 

Male Female 
Number 

of 
studies 

N  
I2 (%) 

Effect estimate  
(95% CI) SD 

Number 
of 

Studies 
N  

I2 (%) 
Effect estimate 

(95% CI) SD 

4 2 18 0 -0.05 [-0.39, 0.30] 0.91 2 20 0 0.02 [-0.35, 0.40] 0.80 
5 4 140 0 0.31 [0.12, 0.50] 1.40 4 134 65 0.45 [0.28, 0.62] 1.22 
6 6 348 73 0.54 [0.42, 0.65] 1.33 6 326 83 0.17 [0.07, 0.26] 1.07 
7 8 510 91 0.55[0.47, 0.63] 1.12 8 558 70 0.18 [0.09, 0.27] 1.32 
8 9 654 89 0.24 [0.15, 0.33] 1.43 9 738 55 0.16 [0.08, 0.25] 1.43 
9 9 764 0 0.23 [0.15, 0.30] 1.29 9 694 28 0.07 [-0.03, 0.17] 1.64 
10 9 788 53 0.36 [0.26, 0.46] 1.74 9 696 55 0.09 [-0.02, 0.19] 1.72 
11 10 976 78 0.30 [0.21, 0.38] 1.65 10 924 70 0.19 [0.09, 0.29] 1.89 
12 10 916 97 0.76 [0.67, 0.85] 1.69 10 1048 36 0.13 [0.03, 0.22] 1.91 
13 10 874 97 0.58 [0.50, 0.65] 1.38 10 874 99 0.36 [0.27, 0.45] 1.65 
14 9 574 85 0.20 [0.08, 0.33] 1.86 9 764 91 -0.06 [-0.19, 0.06] 2.15 
15 8 438 91 0.00 [-0.10, 0.11] 1.36 8 494 79 -0.21 [-0.33, -0.09] 1.66 
16 2 98 NA -1.63 [-2.01, -1.25] 2.34 3 196 0 -0.94 [-1.13, -0.74] 1.70 
17 1 76 NA -2.15 [-2.46, -1.84] 1.68 1 148 NA -1.64 [-1.77, -1.51] 0.98 
18 1 36 NA -2.72 [-3.10, -2.34] 1.42 1 176 NA -2.66 [-2.78, -2.54] 0.99 

Significant values in bold. 
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2.4.4 Pooled meta-analysis of studies comparing the Willems and Demirjian methods in 
males 

At age 4 years there was no significant difference (p>0.05) in the effect size between the 

Willems and the Demirjian methods in age estimation. From age cohorts 5-14 years there 

were significant differences in the effect estimate between the two methods (p<0.001), with 

the magnitude of deviation of the dental age from the chronological age significantly greater 

with the Demirjian method compared to the Willems method (Table 2.6).  It should be noted 

that the two methods overestimated the chronological ages for these age groups. The Willems 

method estimated age group 13 accurately, judging from the WMD of 0.00 found in this 

review. From ages 14-18 years, no significant difference (p>0.05) exists between the effect 

sizes of Demirjian’s method and the Willems method (Table 2.6). Overall, the Demirjian 

method significantly overestimated chronological age compared to the Willems method in 

males (p=0.000). 

2.4.5 Pooled meta-analysis of studies comparing the Willems and Demirjian methods in 
females 

There was no significant difference (p>0.05) in the effect estimate of the Demirjian and the 

Willems methods at age 4 years. However, significant differences were noted in the effect 

sizes of the two methods from ages 5-14 years (p<0.001), while no significant differences 

were noted for ages 15-18 years (p>0.05). Demirjian’s method overestimated chronological 

age from 4-14 years and thereafter underestimated ages for 15-18 years. The Willems method 

overestimated dental age from 4-13 years and thereafter underestimated the chronological age 

from 15-18 years (Table 2.7). Overall, the Demirjian method significantly overestimated the 

chronological age of the females compared to the Willems method (p=0.000).  
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Table 2.6: Comparison of the effect estimate (pooled for age cohorts) of the Demirjian and Willems methods in males 

Demirjian method Willems method t p 

Age cohort N Effect 
estimate  SD Age cohort n Effect 

estimate  SD 

3 26 0.57 1.32 
 

 
  

  
4 106 0.61 1.25 4 18 -0.05 0.91 2.14 0.03 
5 270 1.39 1.28 5 140 0.31 1.40 7.92 0.00 
6 614 1.11 1.00 6 348 0.54 1.33 7.51 0.00 
7 968 0.76 1.06 7 510 0.55 1.12 3.55 0.00 
8 1360 0.53 1.60 8 654 0.24 1.43 3.80 0.00 
9 1366 0.49 1.95 9 764 0.23 1.29 3.30 0.00 
10 1348 0.75 2.17 10 788 0.36 1.74 4.30 0.00 
11 1556 0.84 1.84 11 976 0.30 1.65 7.48 0.00 
12 1354 0.88 1.94 12 916 0.76 1.69 1.70 0.09 
13 1146 1.08 1.79 13 874 0.58 1.38 6.85 0.00 
14 784 1.06 1.30 14 574 0.20 1.86 9.65 0.00 
15 544 0.11 1.01 15 438 0.00 1.36 1.45 0.15 
16 112 -1.48 2.04 16 98 -1.63 2.34 0.50 0.62 
17 76 -1.95 1.19 17 76 -2.15 1.68 0.85 0.40 
18 36 -2.67 0.72 18 36 -2.72 1.42 0.19 0.85 

OVERALL 6581 0.62 1.47 OVERALL 5176 0.26 1.51 13.02 0.00 
Significant values in bold. 
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Table 2.7: Comparison of the effect estimate (pooled for age cohorts) of the Demirjian and Willems methods in females 
 

Demirjian method Willems method t p Age cohort N Effect estimate  SD Age cohort n Effect estimate  SD 
3 14 -0.19  0.74 

 
 

  
  

4 100 0.28  1.24 4 20 0.02 0.80 0.90 0.37 
5 244 1.16  1.36 5 134 0.45  1.22 5.03 0.00 
6 608 0.88  1.07 6 326 0.17  1.07 9.67 0.00 
7 1084 0.52  1.12 7 558 0.18  1.32 5.48 0.00 
8 1400 0.49  1.51 8 738 0.16  1.43 4.89 0.00 
9 1412 0.57  2.10 9 694 0.07  1.64 5.50 0.00 
10 1367 0.64 1.95 10 696 0.09  1.72 6.30 0.00 
11 1564 0.90  1.84 11 924 0.19  1.89 9.21 0.00 
12 1679 0.87  1.40 12 1048 0.13 1.91 11.64 0.00 
13 1420 1.14  1.52 13 874 0.36  1.65 11.55 0.00 
14 1108 0.60  1.03 14 764 -0.06  2.15 8.86 0.00 
15 658 -0.20  1.12 15 494 -0.21  1.66 0.12 0.90 
16 224 -0.81  1.39 16 196 -0.94  1.70 0.86 0.39 
17 148 -1.52  1.13 17 148 -1.64  0.98 0.98 0.33 
18 176 -2.52  1.07 18 176 -2.66  0.99 1.27 0.20 

OVERALL 7528 0.72 1.35 OVERALL 5656 0.29 1.48 17.36 0.00 
 Significant values  
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2.4.6 Evaluation of heterogeneity and publication bias 

No significant difference was noted in the sensitivity test done to determine the influence of 

individual studies on the overall effect size by omitting each study in turn. Funnel plots were 

generated to determine the publication bias of the included studies. Visual analysis of the funnel 

plots does not indicate any evidence of asymmetry as points are distributed across the baseline 

(Figures 2.6 and 2.7). 

 

Figure 2.7a Funnel plot for males, Demirjian method 
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Figure 2.7b Funnel plot for females, Demirjian method 
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Figure 2.8a:  Funnel plot for males, Willems method 

 

 

Figure 2.8b:  Funnel plot for females, Willems method 
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2.5 Discussion 

Standards for growth and development are desirable for forensic, anthropological and clinical 

purposes (Scheuer and Black 2000).  Most methods for assessing growth and development, 

especially those based on the skeleton, are not highly reliable for estimating age due to the 

influence of genetic and environmental factors. Dental development is viewed as a more reliable 

gauge for assessing the age of children and juveniles in forensic and anthropological contexts 

(Demirjian et al. 1973; Liversidge 2012), although population variability in dental development 

has been reported (Pahkala et al. 1991; Willem et al. 2001; Liversidge 2003; Liversidge et al. 

2006; Tunc and Koyuturk 2008). The accuracies of the methods derived from dental maturity, 

such as the Demirjian and Willems methods, for estimating chronological age across populations 

is still a subject of debate.  Hence this systematic review focused on studies investigating the 

Demirjian and Willems methods in different populations with the aim of determining the method 

with a better accuracy. 

A limitation of this review is the considerable heterogeneity observed in our results when the 

results were pooled and also stratified by age and sex. The reason could be due to differences 

in population characteristic in terms of differences in growth patterns. Furthermore, Demirjian 

and colleagues stated that their method is based entirely on a French- Canadian population 

and that variation may occur when it is used in other populations. They therefore cautioned 

that although the stages of the dental maturity scoring system may be universal in 

application, population differences may affect the accuracy levels when maturity scores are 

converted to dental ages (Demirjian et al. 1973). This observation highlights the need for 

population-specific standards for age estimation, especially for forensic and anthropological 

applications where there are demands for high levels of accuracy. 
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2.5.1 Comparison between chronological age and dental age using Demirjian’s method  

This review found the Demirjian method significantly overestimates the ages of males and 

females aged up to 16 years by 0.62 and 0.74 years respectively. The level of overestimation 

from the Demirjian method makes it unsuitable for forensic purposes in other populations. Other 

systematic reviews found similar results of age overestimation with Demirjian’s method (Yan et 

al, 2013; Jayaraman et al, 2013).  The overestimation was greater in females than in males. The 

reason for this difference is not clear, but it may be due to varying levels of  sexual dimorphism 

or sex based differences in environmental stresses.  

The underestimation of the chronological age by the Demirjian method in age cohorts 16-18 

years in both males and females is due to the non-availability of values for ages 16 years and 

above in the Demirjian conversion tables of maturity scores to dental age. By that age, all 

individuals have attained full maturity of the seven tooth (I1-M2) dental sequence. Hence, all 

ages above 16 years are underestimated.  

2.5.2 Comparison between chronological age and dental age using Willems method  

This review found no significant mean difference between dental age estimated by the Willems 

method and chronological age. Overall the Willems method overestimated the chronological age 

of males by 0.26 years, while it overestimated females by only 0.29 years. This pattern is similar 

to the result for Demirjian’s method where the ages of females were overestimated more than the 

males. Similar to the Demirjian method, the Willems method cannot be used to estimate 

chronological age above 16 years because the upper limit of the total maturity score, which is the 

dental age of 15.77 years. Therefore, anyone above 16 years of age is underestimated.   
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2.5.3 Comparison between the Willems and Demirjian methods  

This is the first systematic review and meta-analysis comparing the Willems and Demirjian 

methods. Significant differences between dental ages estimated by the two methods were found. 

The wide gap between the estimates of the two methods is due to Demirjian’s method 

significantly overestimating the dental age in all age groups (except for older children aged 15-

18 years, primarily due to the contraints of the method, as described above).  

Based on our results, the Willems method may be used for age estimation for anthropological or 

forensic purposes in populations where specific reference values are unknown and the levels of 

accuracy reported here are deemed acceptable. Nevertheless, it is important to emphasize that 

both methods significantly overestimated chronological age. Hence, our results illustrate that 

there is a need for population-specific standards for age estimation when the highest levels of 

accuracy is required. 

2.5.4 Variation in dental development in human populations: Implications for age estimation 

The debate is still ongoing whether tooth development is influenced by factors such as nutrition, 

climate and chronic or infectious diseases. Studies of fluctuating dental asymmetry, thought to be 

caused by response to stresses, are inconclusive (Perzigian 1977: Smith et al. 1982). Although 

tooth size and basic morphology are generally perceived to be relatively immune to major 

disruptions compared to other growth indicators, the widespread presence of enamel hypoplasias 

in human populations attests to some level of disruption affecting dental morphology one counter 

example among many. The investigation of differences in the timing of dental maturation is 

challenging. The relationship between malnutrition and tooth formation is difficult to evaluate, 

with some researchers reporting no effect of malnutrition on tooth formation (Eid et al. 2002 

Cameriere et al. 2007, Elamin and Liversidge 2014), while others observed a delay in formation  



73 
 

(Hilgers et al. 2006, Mani et al 2008). Such studies are based on selected proxies of nutritional 

status such as height, weight and body mass index (BMI). Well-designed studies on severely 

malnourished children are lacking and constrained by ethical considerations. Recent research on 

Southern African Black children documents significant differences in the timing of tooth 

formation in children of different BMI statuses (Esan and Schepartz, n.d.).  

 Fewer researchers have considered whether the timing of tooth formation varies significantly 

among human populations. The consistent pattern of variability in overestimation of ages 

documented by the published studies considered here suggests that variation in the timing of 

tooth formation may be influenced by genetic as well as environmental factors. Tables of tooth 

formation and age of attainment of specific developmental stages from one region of the world 

may not apply in a different setting, as is clearly demonstrated by our analysis. The 

documentation of significant variation in dental maturation among human populations, which is 

growing with expanded research that includes a broader range of populations, needs to be 

recognized and accounted for in the same way that skeletal and other aspects of growth variation 

are considered. When the highest levels of accuracy in age estimation are required, population-

specific standards need be developed, rather than working toward a global standard.  

In conclusion, the Willems method of dental age estimation provides a better and more accurate 

estimation of chronological age in different populations than the Demirjian method. The 

Demirjian scoring system has broad application in terms of determining maturity scores, but the 

accuracies of Demirjian age estimates are confounded by population variation when converting 

maturity scores to dental ages. Both of the methods reviewed here, when applied to other 

populations, do not yield a level of accuracy comparable to estimates from population-specific 

reference data, which should be employed when the highest accuracy is needed. 
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Chapter 3 
Tooth formation: Assessment of maturity scores and dental age estimation of Black 

Southern African children using Demirjian’s method 
Abstract 

Background: Tooth formation is an important aspect of growth and development due to its 

relative immunity from environmental influences. Other aspects of growth have been extensively 

documented for Black Southern African children, yet their timing oftooth formation has not been 

comprehensively investigated. 

Aim: The present study was designed to provide information on the process of tooth formation 

in a similar sample of Black Southern African children. 

Method: This was a quantitative cross-sectional study of 642 Southern African Black children 

comprising of 270 males and 372 females. Panoramic radiographs of the children were obtained 

and the stages of tooth formation of the left seven mandibular teeth were analysed according to 

the Demirjian et al. (1973) method. Dental ages obtained by the method were compared to the 

chronological ages. Probit regression analysis was employed to calculate the mean age of 

attainment of stages of tooth formation. Maturity scores and age of attainment were compared by 

sex and with published data on other populations.  

Results: Females show significantly advanced dental maturity and dental ages, as well as earlier 

attainment of all the stages of formation (p<0.05). The Demirjian method generally 

overestimated dental age in both males and females. For males, there was an overestimation of 

the mean age by 0.8 years, while it is about 1.0 years in females.  Cross-population comparisons 

illustrate that the Southern African children are generally advanced in dental maturity compared 

to children from Europe and Asia.  
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Conclusion: The Demirjian method overestimated the chronological ages of Black Southern 

African males and females. Similarly, the age of attainment of specific developmental stages 

shows that the Southern Africans attain maturity earlier than South Korean, Canadian and 

Belgian children.  Females were more advanced in dental maturity than males.  These differences 

in dental maturity clearly illustrate the need for population-specific, rather than global, dental 

maturity standard. 
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3.1 Introduction 

The timing of tooth formation for any given population is important, as this aspect of dental 

development serves as an index for evaluating dental maturation and estimating the age of 

children and young adults (Haavikko 1974; Demirjian and Goldstein 1976; Lewis and Rutty 

2003; Teivens and Mörnstad 2001; Cattaneo et al. 2009). The data are relevant for archaeological 

and forensic applications (Scheuer and Black 2007), particularly when the assessment of growth 

changes are part of the biological profile (Scheuer and Black 2006). The timing of tooth 

formation is also used for comparison of growth between populations or species when 

evolutionary trends are under investigation (Liversidge 2003). 

 
Major advances in developing growth and anthropometric reference values for South African 

children resulted from the “Birth to Twenty” (BTT) projects that were initiated around the time 

that the apartheid system was ending (Richter et al. 1995; Cameron 2003; Vidulich et al. 2006; 

Richter et al. 2007). A massive longitudinal study, the BTT research focuses on a wide array of 

biological parameters, but dental development was not investigated. The present study was 

designed to provide information on the process of tooth formation in a similar sample of Black 

Southern African children. 

 
Age estimation using dental maturity is the most reliable aging method because teeth are 

relatively indestructible and exhibit the least amount of turnover (remodelling) of their natural 

structure (Carvalho et al. 2009; Masthan 2009). Another advantage is that the timing of tooth 

formation displays less variability than other major developmental indicators, including tooth 

emergence (Demirjian et al. 1985; Demirjian 1986). Furthermore, stronger associations are found 
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between chronological age and dental age than between skeletal age and dental age (Lewis and 

Garn 1960; Demirjian et al. 1985; Demirjian 1986).   

 
3.1.1 Method of estimating dental age 

Dental age is assessed by matching the dental maturity status of an individual of unknown 

chronological age with population references. Most of the methods developed for dental age 

estimation are based on a comparison of the development of teeth with standard charts based on 

large samples drawn from a well-defined geographic region.  

The most widely used of these age estimation procedures is commonly known as the Demirjian 

method (Demirjian et al. 1973; Demirjian and Goldstein 1976). The work was based on a large, 

random sample of French Canadian children.  The changes from initial calcium deposition to 

complete apex formation are divided into eight observable stages (A through H). The seven left 

mandibular teeth, I1-M2, are evaluated and the individual "score" from each tooth is totaled. The 

resulting sum is then referenced on a corresponding conversion chart with ages ranging from 3 to 

17 years in increments of one-tenth year. The underlying basis of the conversion chart 

incorporates information on skeletal aging derived from the work of Tanner et al. (1962).  

Although the Demirjian method worked well for the original French-Canadian sample, 

subsequent studies have questioned its effectiveness when applied to other populations (Davis 

and Hagg 1993; Willems et al. 2001; Chen et al. 2010; Cruz-Landeira et al. 2010; Ogodescu et 

al. 2011; Baghdadi and Pani 2012; Erdem et al. 2013). A study of Belgian children (Willems et 

al. 2001) confirmed that the Demirjian method has a tendency to overestimate age. Similarly, 

Tunc and Koyuturk (2008) found that the method was less accurate with Turkish children, who 

displayed advanced dental maturity compared to the French-Canadian population. However, 
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after an extensive review, Liversidge et al. (2012) concluded that the Demirjian technique 

remains a valuable forensic tool for estimating age in developing children. 

3.1.2 Variation in tooth maturation 

Dental development is widely regarded as relatively immune from environmental factors 

(Elamin and Liversidge 2013), but there is evidence that tooth formation varies by sex and 

population (Willems et al. 2001; McKenna et al. 2002; Tunc and Koyuturk 2008; Qudeimat and 

Behbehani 2009). Sexual dimorphism of dental development is present in all populations. 

Universally, it appears that females in any given population are more advanced in tooth 

formation than their male counterparts (Fanning 1961; Demirjian et al. 1973; Demirjian and 

Levesque 1980; Hägg and Matsson 1985; Liversidge et al. 1999; Nykänen et al. 1998; Uys et al. 

2014). This pattern is similar to other growth indicators, where females are always ahead of 

males in growth and development until they reach adulthood. This has been attributed to the 

earlier fetal development seen in females (Almonaitiene et al. 2010) as well as the greater 

vulnerability of males to environmental stresses (Stinson 1985). 

 
The patterns of advanced or delayed dental maturity obtained from using the Demirjian method 

on other populations can be interpreted as documentation of cross-populational variation 

(Haavikko 1974; Hägg and Matsson 1985; Davis and Hägg 1993; Mörnstad et al. 1994; 

Liversidge et al. 1999; Chaillet et al. 2005; Baghdadi and Pani 2012). As a result, several authors 

questioned the validity of a “one fits all” method for estimating dental maturity and argued for 

population-specific databases that can more accurately describe variation in tooth formation 

(Baghdadi and Pani 2012; Chaillet and Willems 2004; Chaillet et al. 2005; Lee et al. 2011).  
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The reason for the observed variation in dental maturation among human populations is not fully 

understood, although several explanations involving genetic or environmental factors have been 

adduced (Chaillet et al. 2005).  Eveleth (1966) found that groups living in tropical regions are 

dentally advanced, suggesting that the climate had an accelerating effect on maturation. 

Similarly, Cantekin et al. (2014), comparing dental maturity of Turkish children living in cold 

high altitudes with children from the lower altitude and warmer regions, found that the latter 

group was more dentally advanced.  

 
There is no general agreement that the degree of variation in tooth formation among populations 

is significant, or that it is of a magnitude that necessitates individual population references. This 

is also the case for sexual dimorphism in developmental timing. Liversidge et al. (2006) did an 

extensive systematic review of European, South Korean and Australian studies and concluded 

that there were no significant differences in the age of attainment of tooth developmental stages. 

Therefore, they formulated a combined table of mean age of attainment for males and females 

from several populations (Liversidge et al. 2006). No data from Africa were included. In general, 

comparative data on maturity scores for African children are lacking; where they do exist, they 

are only expressed as dental age (Uys et al. 2014) or they are not sex specific (Phillips and van 

Wyk Kotze 2009).  

 
In sum, there are few maturity references for populations in Africa. Therefore, the aim of this 

study is to provide the baseline data on the timing of maturation stages of tooth formation and 

dental age estimation using the Demirjian tables and to compare this information with published 

data on other populations. 
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3.2 Materials and Methods 

3.2.1 Study design 

This was a quantitative cross-sectional study of Southern African Black children. The sample 

population was drawn from children whose parents and grandparents are indigenous Southern 

Africans.  

3.2.2 Study population 

The sample population was randomly selected from primary schools and secondary schools in 

the Johannesburg Municipality, South Africa. Children who were screened for dental diseases by 

the Community Oral Health Outreach Program (COHOP) of the Department of Community 

Dentistry of the School of Oral Health Sciences, University of the Witwatersrand and who met 

the inclusion criteria were selected. Ethical approval (NO. M141001) was obtained from the 

Human Research Ethics Committee (Medical) of the University of the Witwatersrand. 

Permission to carry out the study on the school children was obtained from the local education 

authority and respective school heads. Consent was obtained from the parents while assent was 

obtained from the children. 

3.2.3 Inclusion and exclusion criteria 

The selected age range was 5-20 years. Studies from other populations showed that at age 16 

years, all the children would have reached the highest maturity score of 100. However, age 

children aged 17-20 years were included to determine if there are variation in dental maturity of 

Black Southern African children beyond age 16 years. Children with systemic diseases, 

mandibular hypodontia (except third molars), and those who had lost their teeth on both sides of 

the mandible were excluded.  
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3.2.4 Data collection 

Panoramic radiographs of children screened for treatment during visits of the Community Oral 

Health Outreach Program were collected and analyzed.  

3.2.5 Sample  

A total of 642 children comprising of 270 males and 372 females were sampled (Table 1). The 

sample size formula used to determine the minimum sample for statistical significance testing is 

N = 4zα
2S2 ÷ W2, where S = standard deviation, W = desired total width and Zα is the standard 

normal deviate for the 95% confidence level. In a similar study, Cameriere et al. (2008) found a 

mean of 1.076 and a standard deviation of 0.824 derived from a standard error of 0.030. Using a 

width of 0.2, the minimum sample size required for the 14 cohorts (children aged 18-20 were 

placed in one cohort) was 280. However, to improve the power of the study, 642 children were 

recruited. 

3.2.6 Pilot test 

Prior to data collection, a reliability study to assess the magnitude of the intra-observer error of 

interpretation and detection was conducted. Firstly, two trained (calibrated) examiners assessed 

the maturation stage of the 7-left mandibular permanent teeth without the knowledge of 

chronological age or sex. To evaluate reproducibility, twenty-five radiographs (with 175 tooth 

ratings) were randomly selected and assessed by both examiners at day one and day three. The 

investigator was the only rater for the developmental stages of the teeth. Intra-examiner 

reliability of dental age assessment for the Demirjian method was calculated using Cohen’s 

Kappa (Landis and Koch 1977) and found to be acceptable at 0.97.   
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3.2.7 Dental maturity score and age assessment 

Dental age assessment was performed according to the original version of Demirjian’s method 

(Demirjian et al. 1973). The investigator did not have access to the chronological age of the 

participants. The digital radiographs of each child were enhanced using Microsoft Office Picture 

Manager, properly labeled with a unique identity number, and digitally archived. Each 

radiograph was assessed for the development of the seven-left permanent mandibular teeth and 

was rated on the 8-stage scale from A to H, with stage 0 for non-appearance. Each stage of the 

teeth was allocated a sex-specific biologically weighted score and the sum of the scores for each 

participant was used to determine the dental maturity measured on a scale of 0 to 100. The dental 

maturity score of each child was converted to dental age using the standard tables and percentile 

curves for males and females (Demirjian et al. 1973; Demirjian and Goldstein 1976).   

3.2.8 Data analysis 

The data were analyzed using IBM SPSS (version 22) software for Windows and STATA 12. 

Analyses were done for the entire group as well as for each sex and age cohort. The maturity 

scores were computed and sex differences were calculated using independent sample t-tests. 

Dental age (DA), as calculated from the reference tables (Demirjian et al. 1973), was compared 

to chronological age (CA) for males and females separately. The difference between the DA and 

CA was tested using paired t-tests at a significance level of p<0.05. The absolute mean 

difference between the DA and CA was calculated to express accuracy independent of bias. To 

calculate the mean age of attainment of the developmental stages, the data for the developmental 

stages were recoded as present or absent. Probit regression analysis was used to analyze and 

calculate the probable age of attainment of the specific developmental stage for each tooth. 

Statistically significant values were inferred at p≤0.05.   
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3.3 Results 

The age group and sex distributions of the study participants are presented in Table 3.1. There 

are significantly more females in the sample (p<0.05). The mean age is 10.69±3.08 for males and 

11.15±2.89 for females (Table 3.2). There is no significant difference in the mean age of the 

males and females (p=0.053).  

3.3.1 Dental age estimation using Demirjian’s method 

Females show advanced dental maturity and dental ages compared to males (Table 3.2). There is 

general overestimation by the Demirjian method of the dental age in both sexes. For males, there 

is an overestimation of the mean age by 0.8 years, while it is about 1.0 years in females (Table 

3.2).  

Table 3.1. Distribution of participants by chronological age cohorts and sex 

Age cohort 
(Years) 

Number of participants  
Total (%) Males (%) Females (%) 

5 – 5.99 10 (3.7) 13 (3.5) 23 (3.6) 
6 – 6.99 27 (10.0) 28 (7.5) 55 (8.6) 
7 – 7.99 6 (2.2) 9 (2.4) 15 (2.3) 
8 – 8.99 33 (12.2) 27 (7.3) 60 (9.3) 
9 – 9.99 36 (13.3) 30 (8.1) 67 (10.4) 

10 – 10.99 16 (5.9) 22 (5.9) 38 (5.9) 
11 – 11.99 17 (6.3) 36 (9.7) 53 (8.3) 
12 – 12.99 21 (7.8) 44 (11.8) 64 (10.0) 
13 – 13.99 15 (5.6) 39 (10.5) 54 (8.4) 
14 – 14.99 28 (10.4) 32 (8.6) 60 (9.3) 
15 – 15.99 25 (9.3) 27 (7.3) 52 (8.1) 
16 – 16.99 11 (4.1) 28 (7.5) 39 (6.1) 
17 – 17.99 20 (7.4) 25 (6.7) 45 (7.0) 
18 – 20.00 5 (1.9) 12 (3.2) 17 (2.6) 

Total 270 372 642 (100.0) 
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Table 3.2. Mean values for dental age measures and chronological age1 

 

Variable 
Males (N=233) Females (N=307) 

t p 
Mean SD Mean SD 

Maturity score 85.98 16.50 90.81 14.63 -3.54 0.00 
Dental age 11.50 2.99 12.18 2.90 -2.64 0.01 

Chronological age 10.69 3.08 11.15 2.89 -1.77 0.08 
Mean overestimation 0.82 1.02 1.03 0.98 -2.41 0.02 

1Age cohorts above 16 years were removed from this analysis because Demirjian’s table ends at 
16 years.  

Significant differences are in bold. 

 
Among the males, the estimated dental age is significantly higher than the chronological age 

(p<0.05) in all the age groups except for age 12 (Tables 3.3). For females, the estimated dental 

age is significantly higher than the chronological age in all the age groups (p<0.05) (Tables 3.3 

and 3.4). Overestimation of age is particularly pronounced (over one year) in the younger age 

groups (5 to 8.99 years), but the gap between the chronological age and the estimate begins to 

decrease at age 9 in males and age 10 in females. The smallest gap between chronological age 

and dental age is seen in the age cohort 16 years in both males and females (Tables 3.3 and 3.4). 
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Table 3.3. Comparison of mean dental and chronological ages in males 
 

Age cohort 
(years) 

Chronological age 
(CA) 

Dental age 
 (DA) 

Mean diff  
(CA-DA) t p 

Mean SD Mean SD Mean SD 
5 – 5.99 5.71 0.15 7.03 0.23 -1.32 0.31 13.58 0.000 
6 – 6.99 6.57 1.98 7.64 1.74 -1.07 0.52 10.76 0.000 
7 – 7.99 7.63 0.34 8.85 1.04 -1.23 0.92 3.26 0.022 
8 – 8.99 8.54 0.28 9.75 1.11 -1.21 1.05 6.64 0.000 
9 – 9.99 9.38 0.31 10.31 1.44 -0.93 1.34 4.21 0.000 

10 – 10.99 10.29 0.29 10.82 0.72 -0.53 0.76 2.76 0.014 
11 – 11.99 11.47 0.29 12.04 0.91 -0.57 0.88 2.67 0.017 
12 – 12.99 12.27 0.24 12.42 0.91 -0.13 0.86 0.66 0.519 
13 – 13.99 13.31 0.25 14.73 1.20 -1.42 1.14 4.81 0.000 
14 – 14.99 14.45 0.32 15.01 1.14 -0.56 1.12 2.67 0.013 
15 – 15.99 15.47 0.26 15.86 0.48 -0.39 0.56 3.47 0.000 
16 – 16.99 16.52 0.29 16.00 0.00 0.52 0.29 - - 
17 – 17.99 17.43 0.24 16.00 0.00 1.43 0.24 - - 
18 – 20.00 19.65 0.77 16.00 0.00 3.65 0.77 - - 
Cannot compute t & p values for the last three rows because SD = 0.00 
Significant differences in bold.
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Table 3.4. Comparison of mean dental and chronological ages by age cohort in females 
 

Age cohort 
(years) 

Chronological age 
(CA) 

Dental age 
(DA) 

Mean diff 
(DA-CA) t 

 
p 
 Mean SD Mean SD Mean SD 

5 – 5.99 5.77 0.17 7.03 0.28 -1.26 0.32 13.95 0.000 
6 – 6.99 6.31 0.24 7.37 0.61 -1.05 0.67 8.38 0.000 
7 – 7.99 7.64 0.35 8.69 1.25 -1.05 1.11 2.85 0.021 
8 – 8.99 8.54 0.28 9.85 0.99 -1.31 0.98 6.95 0.000 
9 – 9.99 9.46 0.26 10.83 1.02 -1.37 0.95 7.88 0.000 

10 – 10.99 10.42 0.33 11.35 1.16 -0.93 1.09 4.01 0.001 
11 – 11.99 11.41 0.28 12.33 0.93 -0.92 0.94 5.80 0.000 
12 – 12.99 12.46 0.26 13.49 1.08 -1.03 1.13 6.02 0.000 
13 – 13.99 13.41 0.28 14.76 1.30 -1.35 1.30 6.49 0.000 
14 – 14.99 14.40 0.20 14.99 0.87 -0.59 0.79 4.26 0.000 
15 – 15.99 15.41 0.30 15.95 0.27 -0.54 0.35 7.97 0.000 
16 – 16.99 16.48 0.33 16.00 0.00 0.48 0.33 - - 
17 – 17.99 17.42 0.28 16.00 0.00 1.42 0.28 - - 
 18 – 20.00 18.77 0.50 16.00 0.00 2.77 0.50 - - 

Cannot compute t & p values for the last three rows because SD = 0.00 
Significant differences in bold. 

 

3.3.2 Sex variation in dental maturity 

Females are significantly more advanced in dental maturity than their male counterparts in all 

age groups except age 6 years. This demonstrates that the females attain specific maturity stages 

in tooth formation earlier than their male agemates (Table 3.5). In addition, both males and 

females complete the maturation stages of all seven teeth by age 16 years (Table 3.5). Further 

analysis to ascertain the proportion of males and females who complete the dental maturation 

stages illustrates that only 18% of the males and 38% of the females attain a maturity score of 

100 at age 14. However, at age 15 years, the majority of males (76%) and females (96%) attain 

maturity scores of 100 (Table 3.6).  
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Table 3.5. Mean maturity scores in males and females by age cohort 
 

Age cohort 
(years) 

Males Females 
 
t 

 
p 

 
95% CI 

Maturity score Maturity score 
N Mean SD n Mean SD 

5 – 5.99 10 46.85 4.00 13 51.81 5.73 -2.32 0.03 -9.39, -0.53 
6 – 6.99 27 54.85 12.88 28 59.78 11.07 -1.52 0.13 -11.52, 1.56 
7 – 7.99 6 77.63 11.13 9 79.27 14.39 -0.23 0.82 -16.70, 13.44 
8 – 8.99 33 85.98 5.88 27 90.03 4.69 -2.89 0.01 -6.84, -1.25 
9 – 9.99 36 87.79 6.58 30 93.36 3.43 -4.46 0.00 -8.08,  -3.07 

10 – 10.99 16 91.16 2.16 22 94.52 2.83 -3.99 0.00 -5.08, -1.65 
11 – 11.99 17 93.87 1.49 36 96.51 1.06 -7.38 0.00 -3.36, -1.92 
12 – 12.99 21 94.52 1.28 44 97.78 1.05 -10.73 0.00 -3.87, -2.65 
13 – 13.99 15 97.28 1.20 39 98.93 1.17 -4.62 0.00 -2.37, -0.94 
14 – 14.99 28 97.83 1.56 32 99.19 0.72 -4.14 0.00 -2.01, -0.69 
15 – 15.99 25 99.52 0.97 27 99.96 0.21 -2.19 0.04 -0.84, -0.03 
16 – 16.99 11 100.00 0.00 28 100.00 0.00 - - - 
17 – 17.99 20 100.00 0.00 25 100.00 0.00 - - - 
18 – 20.00 5 100.00 0.00 12 100.00 0.00 - - - 

Cannot compute t & p values for the last three rows because SD=0.00 
Significant differences in bold. 
 
  



100 
 

Table 3.6. Proportion of participants to have attained maturity score of 100 at cohorts 14 
and 15 years 

 
Age cohort 14 years 

Males Females 
Maturity score n % Maturity score n % 

93.10 1 3.6 - - - 
95.40 1 3.6 - - - 
96.20 2 7.1 - - - 
97.00 8 28.6 97.40 1 3.1 
98.20 8 28.6 98.10 3 9.4 
98.80 1 3.6 98.60 1 3.1 
99.10 1 3.6 98.90 14 43.8 
99.10 1 3.6 99.10 1 3.1 
100.00 5 17.9 100.00 12 37.5 
Total 28 100.0 Total 32 100.0 

 
Age cohort 15 years 

Males Females 
Maturity score n % Maturity score n % 

96.20 1 4.0 - - - 
98.20 4 16.0 - - - 
99.10 1 4.0 98.90 1 3.7 
100.00 19 76.0 100.00 26 96.3 
Total 25 100.0 Total 27 100.0 

 

 

3.3.3 Sex comparison of the age of attainment of tooth developmental stages 

Table 3.7 provides the age of attainment of the maturation stages. Females show significantly 

earlier age of attainment in all of the maturation stages than their male counterparts (p<0.05) 

except for the G stage of the central incisor and the E stage of the lateral incisor. It is noteworthy 

that the biggest difference between males and females occurs at the G stage of canine 

development, followed by the F stage of the first premolar. Figure 3.1 show the mean age of 

attainment of the H stage of the seven mandibular teeth in males and females.  
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Table 3.7. Age of attainment of permanent tooth maturational stages in males and females 
 

Tooth Stage 
Male Female Mean 

diff  t p Mean 
age 

SD n Mean 
age 

SD n 

 
I1 

E 3.55 0.71 4 - -     
F 5.09 0.17 24 4.69 0.28 22 0.4 5.91 0.00 
G 6.44 0.05 24 6.50 0.11 19 -0.06 -2.38 0.99 
H 7.89 0.19 217 7.57 0.11 325 0.32 24.78 0.00 

I2 

E 5.55 0.71 20 5.30 0.08 17 0.25 1.44 0.08 
F 6.19 0.10 14 6.04 0.13 18 0.15 3.57 0.00 
G 7.12 0.10 34 6.87 0.08 28 0.25 10.70 0.00 
H 8.60 0.15 201 8.38 0.14 307 0.22 16.83 0.00 

C1 

D 3.17 0.47 33 - - - - - - 
E 7.01 0.10 24 6.52 0.11 11 0.49 13.05 0.00 
F 8.16 0.15 77 7.17 0.12 59 0.99 41.52 0.00 
G 11.34 0.12 27 9.72 0.09 59 1.62 69.55 0.00 
H 12.75 0.07 108 11.62 0.10 372 1.13 109.84 0.00 

P1 

D 3.17 0.47 39 - - - - - - 
E 7.54 0.09 42 7.17 0.10 41 0.37 17.73 0.00 
F 9.11 0.09 50 7.81 0.12 64 1.30 63.83 0.00 
G 11.18 0.11 34 10.30 0.10 62 0.88 38.35 0.00 
H 12.97 0.10 104 12.15 0.10 194 0.82 64.47 0.00 

P2 

D 4.74 0.27 44 - - - - - - 
E 7.96 0.12 37 7.86 0.14 12 0.1 2.41 0.01 
F 9.28 0.11 56 8.35 0.15 69 0.93 38.70 0.00 
G 11.75 0.12 41 10.88 0.10 75 0.87 41.69 0.00 
H 13.84 0.09 86 12.95 0.08 164 0.89 74.99 0.00 

M1 
F 5.69 0.09 27 4.56 0.31 31 1.13 18.26 0.00 
G 7.26 0.12 32 6.90 0.10 20 0.36 11.19 0.00 
H 8.65 0.12 201 8.05 0.15 315 0.6 47.78 0.00 

M2 

C 5.06 0.09 18 - -  - - - 
D 6.09 0.16 42 5.29 0.19 51 0.8 21.68 0.00 
E 8.28 0.17 68 8.15 0.15 60 0.13 4.56 0.00 
F 11.01 0.13 38 10.48 0.06 69 0.53 28.82 0.00 
G 12.98 0.07 39 12.49 0.07 59 0.49 33.92 0.00 
H 14.90 0.05 64 14.01 0.08 124 0.89 81.14 0.00 

Significant differences in bold. 
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Figure 3.1. Age of attainment of H stages in the seven left mandibular teeth for males and 
females 

Age of attainment of H stage in males and females respectively: I1, 7.89 and 7.57 years; I2, 8.60 

and 8.38 years; C1, 12.75 and 11.62 years; P1, 12.92 and 12.15 years, P2, 13.89 and 12.95 years; 

M1, 8.68 and 8.05 years; M2, 14.90 and 14.01 years. 

3.3.4 Comparisons of population dental maturity scores 

One advantage of the maturity score is that it allows easy comparison among populations using 

the same instrument. When the mean maturity scores obtained from this study are matched with 

the maturity scores in the Demirjian table, the Southern African males have significantly higher 

maturity scores (p<0.05) than the French-Canadian sample from which the reference values were 

derived except at ages 10, 11 and 12 (Table 3.8). The Southern African females have 
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significantly higher (p<0.05) maturity scores in all the age cohorts compared to the French 

Canadians (Table 3.9). 

Table 3.8. Comparison of the mean maturity score obtained in the present study with the 
mean score for the Demirjian reference population in the same age cohort in males  
 

Age cohort Group Mean n SD Mean 
diff t p 

5 - 5.99 SA study 46.85 10 4.00 15.42 10.89 0.00 Demirjian 31.43 10 1.14 

6 - 6.99 SA study 53.11 26 9.37 17.31 10.29 0.00 Demirjian 35.80 26 2.17 

7 - 7.99 SA study 77.63 6 11.13 16.45 3.80 0.01 Demirjian 61.18 6 8.68 

8 - 8.99 SA study 85.98 33 5.88 6.7 6.11 0.00 Demirjian 79.24 33 3.20 

9 - 9.99 SA study 87.79 37 6.58 2.07 2.06 0.04 Demirjian 85.72 37 2.49 

10 - 10.99 SA study 91.16 16 2.16 1,14 1.95 0.07 Demirjian 90.01 16 1.00 

11- 11.99 SA study 93.87 17 1.50 7.18 2.02 0.06 Demirjian 93.15 17 0.79 

12 - 12.99 SA study 94.52 20 1.28 0.03 0.09 0.93 Demirjian 94.50 20 0.36 

13 - 13.99 SA study 97.28 15 1.20 1.35 4.64 0.00 
 Demirjian 95.93 15 0.27 

14 - 14.99 SA study 97.84 28 1.59 0.72 2.72 0.01 Demirjian 97.06 28 0.31 

15 - 15.99 SA study 99.52 25 0.97 1.54 7.72 0.00 Demirjian 97.99 25 0.21 

16 - 16.99 SA study 100.00 12 - - - - Demirjian 100.00 12 - 

17 - 17.99 SA study 100.00 20 - - - - Demirjian 100.00 20 - 

18 - 20.00 SA study 100.00 5 - 
- - - 

Demirjian 100.00 5 - 
Significant differences in bold.  
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Table 3.9. Comparison of the mean maturity score obtained in the present study with the 
mean score for the Demirjian reference population in the same age cohort in females 
 

Age group Study Mean n SD 
Mean 
diff t P 

5 - 5.99 
SA study 51.81 13 5.73 

15.33 7.42 0.000 
Demirjian 36.48 13 3.47 

6 - 6.99 
SA study 59.78 28 11.07 

16.68 7.02 0.000 
Demirjian 43.11 28 7.90 

7 - 7.99 
SA study 79.27 9 14.40 

9.52 3.86 0.005 
Demirjian 69.74 9 10.19 

8 - 8.99 
SA study 90.03 27 4.70 

5.96 6.42 0.000 
Demirjian 84.07 27 2.22 

9 - 9.99 
SA study 93.36 30 3.43 

3.86 6.79 0.000 
Demirjian 89.51 30 1.20 

10 - 10.99 
SA study 94.53 22 2.83 

1.55 2.73 0.013 
Demirjian 92.97 22 0.96 

11- 11.99 
SA study 96.52 36 1.06 

1,42 4.10 0.000 
Demirjian 95.09 36 1.89 

12 - 12.99 
SA study 97.78 44 1.05 

0.97 5.63 0.000 
Demirjian 96.82 44 0.40 

13 - 13.99 
SA study 98.93 39 1.17 

1.21 6.33 0.000 
Demirjian 97.72 39 0.33 

14 - 14.99 
SA study 99.19 32 0.72 

0.50 4.34 0.000 
Demirjian 98.69 32 0.21 

15 - 15.99 
SA study 99.96 27 0.21 

0.44 8.67 0.000 
Demirjian 99.51 27 0.21 

16 - 16.99 
SA study 100.00 28 - 

- - - 
Demirjian 100.00 28 .- 

17 - 17.99 
SA study 100.00 25 - 

- - - 
Demirjian 100.00 25 - 

18 - 20.00 
SA study 100.00 12 - 

- - - 
Demirjian 100.00 12 - 

Significant differences in bold. 
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3.3.5 Population comparisons of age of attainment of developmental stages 

A broader cross-population comparison is presented in Tables 3.10 and 3.11. Here it is clear that 

among the females, the Southern African children show advanced dental maturity compared to 

Belgian, South Korean and Canadian children while the Australian females have advanced dental 

maturity in the canines and both premolars compared to Southern African females. Additionally, 

the age of attainment of any stage in the central incisor and first molar is earlier for Southern 

Africans than for children from South Korea, Canada, Australia and Belgium (Table 3.11).  

The Black Southern African males generally have an earlier age of attainment of the tooth 

developmental stages than their male counterparts from South Korea, Canada, Australia, and 

Belgium. However, they show delayed age of attainment in the second molar compared to males 

from Australia and Belgium. 
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Table 3.10. Mean age of attainment of dental maturity of Black Southern African males in 
comparison with males from other continents  

Tooth Stage Belgium1 Canada2 South Korea3 Australia4 Present study 
Mean SE Mean SE Mean SE Mean SE Mean SE 

I1 

E 4.61 0.08 - - 4.56 0.24 - - 3.55 0.20 
F 6.17 0.08 4.75 0.63 6.25 0.14 - - 5.09 0.02 
G 7.22 0.08 7.05 0.10 7.01 0.15 6.72 0.11 6.44 0.01 
H 8.52 0.08 8.79 0.08 8.54 0.26 7.75 0.13 7.89 0.01 

I2 

E 5.27 0.08 - - 5.33 0.17 - - 5.55 0.09 
F 6.83 0.08 6.37 0.15 6.49 0.16 6.07 0.29 6.19 0.02 
G 8.11 0.09 7.97 0.08 7.70 0.22 7.92 0.13 7.12 0.01 
H 9.76 0.09 9.70 0.08 9.94 0.20 8.75 0.11 8.60 0.01 

C1 

E 6.94 0.09 - - 6.25 0.13 6.66 0.10 7.01 0.01 
F 8.38 0.08 8.30 0.08 9.39 0.24 8.74 0.10 8.16 0.01 
G 11.68 0.09 10.49 0.08 11.60 0.20 11.50 0.16 11.34 0.01 
H 13.39 0.09 13.10 0.09 13.54 0.20 13.18 0.12 12.75 0.01 

P1 

C 3.60 0.11 - - - - - - - - 
D 5.81 0.08 - - 4.80 0.16 - - 3.17 0.01 
E 7.82 0.08 6.87 0.13 6.94 0.16 7.36 0.13 7.54 0.04 
F 9.14 0.08 9.34 0.08 9.38 0.22 9.42 0.09 9.11 0.01 
G 11.91 0.09 11.40 0.08 11.75 0.22 11.55 0.14 11.18 0.01 
H 13,02 0.09 13.17 0.09 13.26 0.23 12.85 0.19 12.97 0.01 

 
P2 

B 3.81 0.12 - - 4.16 0.19 - - - - 
C 5.00 0.08 - - 4.29 0.15 - - - - 
D 6.61 0.09 - - 5.86 0.16 5.88 0.42 4.74 0.02 
E 8.43 0.09 7.69 0.12 7.48 0.18 8.52 0.12 7.96 0.01 
F 9.75 0.09 10.10 0.09 10.02 0.24 10.18 0.13 9.28 0.01 
G 12.63 0.10 12.32 0.09 12.77 0.16 12.75 0.19 11.75 0.01 
H 13.99 0.09 14.10 0.10 14.33 0.23 13.88 0.21 13.84 0.01 

M1 

E 3.93 0.06 - - 3.89 0.26 - - - - 
F 5.14 0.07 - - 5.79 0.10 6.09 0.24 5.69 0.01 
G 7.17 0.09 5.83 0.34 7.34 0.18 7.02 0.12 7.26 0.01 
H 9.68 0.10 10.72 0.07 9.45 0.19 9.43 0.13 8.65 0.00 

M2 

B 3.77 0.12 - - 4.18 0.17 - - - - 
C 4.95 0.09 - - 5.14 0.15 - - 5.06 0.01 
D 6.80 0.09 5.53 0.35 6.58 0.15 6.90 0.17 6.09 0.01 
E 8.73 0.08 8.57 0.10 9.05 0.20 8.77 0.19 8.28 0.01 
F 10.40 0.08 10.69 0.14 11.21 0.20 11.04 0.14 11.01 0.01 
G 12.42 0.09 11.80 0.08 13.10 0.17 12.74 0.19 12.98 0.01 
H 14.86 0.10 15.51 0.14 15.41 0.17 14.62 0.20 14.9 0.01 

1 Willems et al. 2001 
2 Chaillet and Demirjian 2004 
3 Teivens and Mörnstad 2001 
4 McKenna et al. 2002 
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Table 3.11. Mean age of attainment of dental maturity of Black Southern African females 
in comparison with females from other continents 

Tooth Stage Belgium1 Canada2 South Korea3 Australia4 Present study 
Mean SE Mean SE Mean SE Mean SE Mean SE 

I1 

E 4.49 0.11 - - 4.45 0.03 - - - - 
F 5.38 0.08 5.38 0.42 6.40 0.18 5.63 0.28 4.69 0.03 
G 6.75 0.08 6.66 0.14 6.86 0.15 6.22 0.13 6.50 0.01 
H 7.92 0.08 8.40 0.09 8.38 0.26 7.31 0.14 7.57 0.00 

I2 

E 5.00 0.1 - - 5.03 0.24 - - 5.30 0.01 
F 6.39 0.08 5.92 0.20 6.56 0.02 6.21 0.14 6.04 0.02 
G 7.53 0.07 7.48 0.09 7.86 0.25 7.31 0.13 6.87 0.01 
H 8.94 0.08 9.17 0.08 9.12 0.20 8.30 0.11 8.38 0.01 

C1 

E 6.39 0.08 - - 5.91 0.19 6.03 0.22 6.52 0.02 
F 7.64 0.07 7.51 0.1 8.47 0.24 7.23 0.16 7.17 0.01 
G 10.22 0.07 9.66 0.08 10.30 0.27 10.17 0.11 9.72 0.01 
H 11.96 0.1 11.75 0.09 12.19 0.16 11.23 0.12 11.62 0.01 

P1 

C 3.09 0.21 - - - - - - - - 
D 5.35 0.09 - - 4.63 0.25 - - - - 
E 7.20 0.07 6.48 0.14 6.72 0.01 6.57 0.19 7.17 0.01 
F 8.67 0.06 8.99 0.08 9.09 0.01 9.17 0.1 7.81 0.01 
G 10.89 0.08 10.88 0.08 11.31 0.20 10.76 0.12 10.30 0.01 
H 12.32 0.08 12.52 0.09 12.56 0.22 12.01 0.15 12.15 0.01 

 
P2 

B 3.63 0.16 - - 4.31 0.29 - - - - 
C 4.70 0.1 - - 4.69 0.32 - - - - 
D 6.32 0.1 - - 5.65 0.22 5.64 0.44 - - 
E 8.09 0.08 7.50 0.11 7.42 0.19 7.60 0.19 7.86 0.02 
F 9.18 0.08 9.71 0.08 9.36 0.20 9.70 0.1 8.35 0.01 
G 11.80 0.08 11.87 0.09 12.19 0.21 11.75 0.15 10.88 0.01 
H 13.47 0.09 13.31 0.09 13.93 0.25 12.93 0.17 12.95 0.01 

M1 

E 3.71 0.1 - - 4.01 0.31 - - - - 
F 4.87 0.08 - - 5.51 0.15 5.63 0.35 4.56 0.03 
G 6.62 0.08 6.19 0.18 6.62 0.22 8.83 0.21 6.90 0.01 
H 9.05 0.08 10.10 0.09 9.04 0.27 9.26 0.15 8.05 0.01 

M2 

B 3.42 0.18 - - 4.01 0.31 - - - - 
C 4.83 0.1 - - 5.09 0.13 - - - - 
D 6.36 0.09 6.04 0.18 6.45 0.20 5.55 0.49 5.29 0.02 
E 8.38 0.07 8.49 0.08 9.11 0.21 8.56 0.13 8.15 0.01 
F 9.83 0.1 10.16 0.07 10.92 0.28 10.56 0.12 10.48 0.01 
G 11.66 0.08 11.34 0.08 12.57 0.20 12.03 0.14 12.49 0.01 
H 14.41 0.10 15.06 0.16 15.11 0.18 14.17 0.18 14.01 0.01 

1 Willems et al. 2001 
2 Chaillet and Demirjian 2004 
3 Teivens and Mörnstad 2001 
4 McKenna et al. 2002 
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3.4 Discussion 

A well-defined scale for measuring and quantifying tooth formation is a very reliable method for 

the assessment of growth patterns. It may also serve as a reference for inter- and intra-population 

comparisons from anthropological, forensic and clinical dentistry perspectives (Scheuer and 

Black 2000a; Scheuer and Black 2000b; Scott and Turner 2000; Scheuer and Black 2007a; 

Cunha et al. 2009). In developing such a scale for Black Southern Africans, this study 

documented advanced dental maturity compared to the French Canadian, South Korean and 

Belgian populations.  

 
Few published studies on dental maturity exist from Africa. Two studies on Southern African 

Black children focused on predicting chronological age from dental maturity (Phillips and van 

Wyk Kotze 2009; Uys et al. 2014). Tompkins (1996) compared maturity scores of Black 

Southern African children with French Canadians and prehistoric Native Americans. He used 

modified Demirjian maturation stages that are not directly comparable to this study, but he 

documented that Black Southern African children had advanced tooth formation compared to the 

French Canadians and Native Americans. Uys et al. (2014), in another study on Black South 

Africans showed that the Demirjian method overestimated males by 0.8 years and females by 0.5 

years. Uys et al. (2014) did not find a consistent pattern among the males, but their results 

documented the greatest range of difference in the early age groups, as was the case in the 

present study. Furthermore, the dental age estimates in the present study are quite similar to the 

results of Uys et al. (2014) for ages 10-12 years in males. Similar results were also found for the 

females, except for age groups 8 and 9 years.  
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A major limitation of the present study is the small sample sizes in age groups 6 and 18-20. 

Additional data from these age groups could have strengthened our findings. Ethical issues and 

health regulations on exposure of children to x-rays in the younger age groups, along with the 

small number of pupils in the age group 18-20 years due to low number of this age group in 

secondary schools contributed to the low sample sizes in these age groups. 

 

3.4.1 Population variations in dental maturity 

There is general consensus that the Demirjian method overestimates dental age in many 

populations. Several studies (Willems et al. 2001; Maber et al. 2006; Chen et al. 2010; Lee et al. 

2011; Nik-Hussein et al. 2011; Ogodescu et al. 2011; Ifesanya and Adeyemi 2012; Uys et al. 

2014; Cavrić et al. 2016) and two systematic reviews (Jayaraman et al. 2013; Yan et al. 2013) 

found different levels of overestimation using the Demirjian method. Some authors suggest that 

this could be due to population differences in growth and maturity (Tunc and Koyuturk 2008; 

Willems et al. 2001). However, Liversidge et al. (1999) proposed that this overestimation in 

dental age could be due to positive secular trends in growth and development during the last 

three decades.  

 
Black Southern African children show advanced dental maturity in the age of attainment of 

specific developmental stages in most teeth compared to Asian and European ancestry 

populations (Chaillet and Demirjian 2004; Liversidge et al. 1999; McKenna et al. 2002; Nykänen 

et al. 1998; Teivens and Mörnstad 2001; Willems et al. 2001). However, the Australians have 

earlier ages of attainment of the root formation stages for central incisors, first premolars and 

second molars. Interestingly, Cavrić et al. (2016) found slightly earlier ages of attainment of 

tooth maturation stages in Botswana children compared to children from Southern Africa. One 
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would have expected similar results from these countries because they border each other and 

have general populational affinities. A study conducted among people of similar genetic origin 

within Turkey (Cantekin et al. 2014) found variation in the dental maturity, with children living 

in a warmer climate and low altitude attaining dental maturity earlier. Hence climatic differences 

could account for the differences between these two Southern African countries. Genetic and 

environmental factors have also been implicated as the reason for population variability 

(Townsend et al. 2009). Pertaining to that, changes in population dynamics resulting from 

political developments over the last centuries may have contributed to the observed differences. 

Other possible sources of population variation in tooth formation include methodological 

differences among researchers. The present study used probit regression analysis after converting 

the data to a dichotomous variable based on whether or not a developmental stage is achieved. 

The methodology used by Cavrić et al. (2016) to derive the mean age of attainment is not clear. 

Also, the age structure of the sample and the precision of measurement could account for 

differences. A major implication of our findings is that population-specific dental maturity 

reference values should be developed for all populations especially for the accuracy of age 

estimation for forensic and anthropological purposes.  

3.4.2 Sex variation in dental maturity 

The present study found females to be more advanced in dental maturation than their male 

counterparts. This is in keeping with previous studies on dental maturity (Demirjian et al. 1973; 

Demirjian and Levesque 1980; Fanning 1961; Mörnstad et al. 1999; Liversidge et al. 1999; Uys 

et al. 2014; Cavrić et al. 2016). There is substantial evidence to show that females are 

correspondingly ahead of males in other developmental indicators including sexual maturity and 

skeletal development (Stang and Story 2005), but catch-up by males occurs after puberty. The 
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onset of puberty signals the commencement of biological growth and development during 

adolescence and this begins earlier in females than in males (Giedd et al. 1999). These biological 

changes associated with puberty include not only sexual maturation, but also increases in height 

and weight, completion of skeletal growth accompanied by a marked increase in skeletal mass, 

changes in body composition and brain development (Bogin 1999). The earlier maturation of 

teeth in females and later catch-up by males mirrors the pattern seen for other growth events 

surrounding puberty. 

3.5 Conclusions 

The standards of dental maturation developed by Demirjian et al. (1973) overestimate the 

chronological ages of Southern African Black males and females, who are significantly advanced 

in dental maturity compared to Demirjian’s French Canadian sample. Similarly, the age of 

attainment of specific developmental stages shows that the Southern Africans attain maturity 

earlier than South Korean, Canadian and Belgian children.  As found in other studies, females 

were more advanced in dental maturity than males.  These differences in dental maturity on the 

populational level, and in terms of sexual dimorphism, are statistically significant and thus 

clearly illustrate the need for population-specific reference values, rather than global, dental 

maturity standards. 
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Chapter 4 
Tooth Formation: Accuracy of the Willems method and Demirjian’s seven tooth 

methods in a Black Southern African population 
Abstract 

Background: The accuracy of methods of age estimation is important in forensic and 

anthropological applications. The validity and accuracies of most methods used in estimating 

dental age have not been validated in Southern Africa. 

Aim: The aim of this paper is to determine the accuracy of the Original Demirjian method, the 

Modified Demirjian method and the Willems method in a Black Southern African population to 

determine their usefulness for forensic and anthropological purposes.  

Method: This was a cross-sectional study involving 540 (233 males and 307 females) school 

children aged 5 to 15.99 years. Panoramic radiographs from these children with the seven left 

mandibular teeth were scored using the Original Demirjian, Modified Demirjian and Willems 

methods. Estimated ages obtained using these methods were compared to the chronological ages. 

The differences in the estimated ages produced by the three methods and chronological ages 

were compared. Mean absolute errors were also calculated for each method. Statistical 

significance was inferred at p<0.05. 

Results: The Original Demirjian method overestimated the age of the males by 0.85 years and 

the females by 1.0 years. A one sample t-test showed significant difference in the mean 

difference of the dental age and chronological age with the test value of zero. The mean absolute 

error was 1.1 years for both males and females. The Modified Demirjian method similarly shows 

significant overestimation, with 0.90 years for males and 1.21 years for females. The Modified 

Demirjian method has the highest mean absolute error for both males (1.1 years) and females 

(1.4 years). The Willems method showed the lowest, but still a significant mean difference (0.2 

years for males and 0.3 years for females) between the dental age and chronological age. It also 
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shows the least mean absolute errors (for males 0.70 years and 0.68 years for females) compared 

to the Original Demirjian and Modified Demirjian methods. 

Conclusion: The Willems method produced significantly less overestimation compared to the 

two Demirjian methods. The Original Demirjian method produces better accuracy than the 

Modified Demirjian method for Black Southern African children. 

  



122 
 

4.1 Introduction 

Knowledge of the accuracy of methods used in the assessment of growth and developmental age 

is very important in biological anthropology and health research. It is also critical for forensic 

purposes, especially with the increasing global incidences of mass deaths and disasters (Kieser et 

al. 2006; Perrier et al. 2006). Estimation of age with certainty is necessary where birth records 

are unreliable or lost, where people seek asylum (Schmeling et al. 2007), where specific aging is 

needed to prevent cheating in age-graded sports competitions, or where individuals seek 

favorable outcomes in civil or criminal cases (Schulze et al. 2006; Meijerman et al. 2007; Ríos et 

al. 2008; Baumann et al. 2009; Rios and Cardoso 2009). The age at death is usually the only 

biological parameter that can be determined for unidentified juvenile remains with any degree of 

accuracy (Scheuer and Black 2000).  

4.1.1 Age estimation 

Methods developed for estimating physiological age utilize one or combinations of the four main 

indices of growth and development: stature, secondary sex characteristics, bone growth and 

dental development (Moorrees et al. 1963; Schulze et al. 2006; Rios et al. 2008: Rios and 

Cardoso 2009; Bauman et al. 2009). Tooth formation is less variable when compared to other 

growth defining events such as the appearance of bone ossification centers, tooth emergence and 

root apical closure (Lewis and Garn 1960; Kurita et al. 2007). Additionally, a stronger 

correlation was found between chronological age and dental age than between skeletal age and 

dental age (Green 1961). Hence, many authors agree that dental development, especially tooth 

formation, is the most reliable method of estimating age (Kurita et al. 2007; Roberts et al. 2008) 

and that it should be adopted as the standard of estimating biological age (Kurita et al. 2007). 
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4.1.2 Methods of estimating dental age   

Several methods are available for estimation of dental age in children and adults. Morphological 

techniques are based on cementum apposition and root resorption (Liversidge et al. 1998), 

occlusal wear (Kim et al. 2000; Yun et al. 2007), periodontosis, or translucency of the apical 

zone (Gustafson and Koch 1974; Nowell 1978). Other methods include the evaluation of aspartic 

acid racemization in the dentin (Helfman and Bada 1975, 1976), telomere shortening in the DNA 

of the dental pulp (Takasaki et al. 2003), the amount of radiocarbon in the enamel (Cook et al. 

2006), attrition levels, secondary dentin formation and periodontal attachment (Jain 2012). All 

these methods necessitate extraction and require preparation of microscopic sections of at least 

one tooth per each individual. These methods cannot be used in living individuals for ethical 

reasons. Another method involves visual identification of the type and number of teeth emerged 

in an individual and extrapolating the age based on the known age range for the appearance of 

such teeth (tooth emergence). This method may not estimate age accurately, but it may be a 

useful guide in age estimation where facilities such as radiography do not exist. Radiological 

assessment of tooth development has gained worldwide acceptance because of its accuracy and 

use in clinical practice. It is non-destructive and other clinical information can be obtained. 

4.1.3 Radiological methods of age estimation 

There is a lack of consensus on the accuracy and applicability of the existing radiographic 

methods used in estimating age. The most widely used method, presented by Demirjian et al. 

(1973), produces significant overestimation for many populations. However, a newer method 

that refines the Demirjian method (Willems et al. 2001) is reported to have better accuracy for 

many populations. A previous study on Black South African children found Demirjian’s original 

method overestimated the chronological age (Uys et al. 2014). The accuracy and validity of other 
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methods, such the revised Demirjian method (Demirjian and Goldstein 1976) and the Willems 

method (Willems et al. 2001), have never been tested on a Southern African population.  

4.1.4 Demirjian’s method 

Demirjian and colleagues developed an age estimation methodology based on eight (A-H) 

developmental stages of the seven left mandibular teeth (Demirjian et al. 1973). The reference 

population was French-Canadian children. This method has gained wide acceptance and is 

globally utilized (Nik-Hussein et al. 2011). Biological weights, which are numerical scores 

derived using the same method for measuring skeletal maturity (Tanner et al. 1962), are assigned 

to the developmental stages for each of the seven teeth. The weights are added together to 

provide the total maturity score, which is converted to dental age using tables and percentile 

charts. The Demirjian method is described as simple, easy and highly reproducible (Litsas and 

Lucchese 2016). A study applying it to German children concluded that the Demirjian method 

yielded appropriate age estimates (Wolf et al. 2016). However, numerous studies (Willems et al. 

2001; Tunc and Koyuturk 2008; Chen et al. 2010; Baghdadi and Pani 2012; Ifesanya and 

Adeyemi 2012; Uys et al. 2014), including two systematic reviews using different populations 

(Jayaraman et al. 2013; Yan et al. 2013), found overestimation of age by Demirjian’s method. 

Hence some authors have questioned its applicability in forensic science where highly 

predictable and accurate results are required (Amberkove et al. 2014; Carneiro et al. 2015). 

4.1.5 Modifications of the Demirjian method 

Demirjian revised his original method because of two shortcomings (Demirjian and Goldstein 

1976). Firstly, all teeth may not be present in the mouth and it may not be possible to use 

corresponding antimeres. So he devised two modifications using only four teeth. The first 

evaluated the molars and premolars (M2 M1 PM2 and PM1), while the second considered the 
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second molar, the premolars, and the central incisors (M2 PM2 PM1 and I1) (Demirjian and 

Goldstein 1976). Secondly, there was a lack of sufficient numbers of very young and the oldest 

children in the first sample (Demirjian and Goldstein 1976). The inclusion of more children led 

to a change in the biological weighted score in the Modified Demirjian method. The Modified 

method was tested in many populations, with overestimation being reported for most groups (Lee 

et al. 2011; Akkaya et al. 2015; Ambarkova et al. 2014). 

4.1.6 Willems method 

Willems et al. (2001) adapted the maturity score format of Demirjian et al. (1973), but discarded 

the use of the biological weights for each stage. Instead, new biological weights were generated 

so that when the weights are summed the estimated age is given. This eliminates the 

cumbersome step of converting the maturity scores to dental age. The use of this method on a 

Belgian reference population found no significant difference between the mean dental age and 

the chronological age of the population (Willems et al. 2001).  

 
Studies utilizing the Willems method in Egypt (El-Bakary et al. 2010), Malaysia (Mani et al. 

2008; Nik-Hussein et al. 2011), Serbia (Djukic et al. 2013), France (Urzel and Bruzek 2013), 

China (Ye et al. 2014), Macedonia (Ambarkova et al. 2014) and India (Hegde et al. 2016) 

reported considerable accuracy in the estimation of chronological age of individuals in their 

populations. Akkaya et al. (2015), in a study of Turkish children, concluded that Willems’ 

method can be recommended for dental age estimation for forensic purposes. However, another 

study from China (Zhai et al. 2016) found the Demirjian method to more accurate than the 

Willems method. 
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Studies utilizing the Willems method have not been conducted in sub-Saharan Africa. It is 

important to determine the accuracy of this method, in view of the overestimation of dental age 

by the Original Demirjian method previously reported for a Black South African population (Uys 

et al. 2014). Therefore, the aim of this paper is to determine the accuracy of the Original 

Demirjian method, the Modified Demirjian method and the Willems method in a Black Southern 

African population to determine their usefulness for forensic and anthropological purposes.  

  

4.2 Materials and Methods 

4.2.1 Study design 

This was a quantitative cross-sectional study of 540 Southern African children comprising of 233 

(43.1%) males and 307 (56.85%) females. The sample population was drawn from Black 

children whose parents and grandparents are indigenous Southern Africans.  

4.2.2 Study population 

The sample population was randomly selected from primary and secondary schools in 

Johannesburg Municipality, South Africa. Children screened for dental diseases by the 

Community Oral Health Outreach Program (COHOP) of the Department of Community 

Dentistry of the School of Oral Health Sciences, University of the Witwatersrand were evaluated 

for participation in the study. Permission to carry out the study was obtained from the local 

education authority and respective school heads. Written consent was obtained from the 

parent/guardian and assent from the child was required before participation. Ethical clearance 

(NO M141001) was obtained from the Human Research Ethics Committee (Medical) of the 

University of the Witwatersrand. 
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4.2.3 Data collection 

Panoramic radiographs of children screened for treatment during visits of the Community Oral 

Health Outreach Program were collected and analyzed.  

4.2.4 Inclusion and exclusion criteria 

Radiographs showing gross pathology or low image quality were excluded. Children with 

systemic diseases that can affect the development of teeth, mandibular hypodontia (except third 

molars), and those who had lost their teeth on both sides of the mandible were excluded. Also, 

children from age 16 years and above were also excluded because the Demirjian maturity scores 

do not include children over 16 years.  

4.2.5 Sample size 

A total of 11 age cohorts were sampled from ages 5 to 15.99 years. The sample size formula is N 

= 4zα
2S2 ÷ W2, where the S= standard deviation, W= desired total width and Zα is the standard 

normal deviate for the 95% confidence level. Cameriere et al. (2008), in a study of the 

reproducibility and accuracy of Demirjian’s method, found a mean of 1.076 and a standard 

deviation of 0.824 derived from a standard error of 0.030. Using a width of 0.2, the minimum 

sample size total required for the 11 cohorts is 280. However, to improve the power of the study, 

a total of 540 children were recruited. The chronological age (CA) was calculated by subtracting 

the date of the radiograph from the date of birth obtained from the school register and was 

recorded as decimal years.  

4.2.6 Pilot test 

Prior to data collection, a reliability study was conducted to determine the magnitude of the intra-

observer error of interpretation and detection. The investigator assessed the maturation stage of 
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the seven-left mandibular permanent teeth without knowledge of chronological age or sex. To 

evaluate reproducibility, 25 radiographs (with 175 individual-tooth ratings) were randomly 

selected and scored by the investigator at day one and day three. The investigator was the only 

rater for the developmental stages of the teeth. Intra-examiner reliability of rating the 

development stages was calculated using Cohen’s Kappa (Landis & Koch 1977) and was found 

to be 0.97.   

4.2.7 Dental age assessment using the Demirjian seven tooth methods 

The digital panoramic radiographs of each child were enhanced using Microsoft Office Picture 

Manager, properly labeled with a unique identity number and digitally archived. Each radiograph 

was assessed for the development of the left 7 permanent mandibular teeth and was rated on an 

8-stage scale from A to H, based on the stages of tooth formation identified by Demirjian et al. 

(1973) with stage 0 for non-appearance. Each stage of the teeth was allocated a sex-specific 

biologically weighted score for the two Demirjian methods and the sum of the scores for each 

participant was used to determine the dental maturity on a scale of 0 to 100. The dental maturity 

score of each child was converted to dental age (DA) using standard tables and percentile curves 

for both sexes (Demirjian et al. 1973; Demirjian and Goldstein 1976).  

4.2.8 Dental age assessment by the Willems method 

Tooth development was divided into eight stages (A-H), as proposed by Demirjian et al. (1973), 

and a score for the developmental stage of each tooth was obtained from the score chart given by 

Willems et al. (2001). The sum of scores for the seven teeth provided the estimated dental age 

(DA) of the individual. When a tooth on the left side was missing, the corresponding tooth on the 

right side was substituted and scored. The scoring was done by the investigator. 
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4.2.9 Data analysis 

The data were analyzed using IBM SPSS (version 22) software for Windows. Analyses were 

done for the entire group as well as for each sex and age cohort. Dental age (DA) was compared 

to chronological age (CA) for males and females separately. The difference between the DA and 

CA was tested using paired Student’s t-tests at a significance level of p<0.05.  The absolute mean 

difference between the DA and CA was calculated to express accuracy independent of bias.  

A Bland Altman procedure was used to determine the agreement between dental age (DA) 

estimated by the different age estimation methods and the chronological age (CA) of the 

children. The presence of fixed bias is indicated when the mean of the mean difference differs 

significantly from zero, based on a one-sample t-test. In that case, there is an assumption that no 

agreement exists between the measurements and no Bland Altman plot is produced.  However, 

when the one-sample t-test is not significant, the Bland Altman plot is generated and a linear 

regression analysis is done with the mean difference being the outcome variable and the average 

of the chronological age and the estimated dental age being the predictor variable. Statistical 

significance shows that there is a proportional bias between the chronological age and the 

estimated age. Statistical significance was inferred at the level of p≤0.05. 

4.3 Results 

The distribution of the participants (233 males and 307 females) by age cohorts is shown in 

Tables 4.1 and 4.2. The mean ages are 10.69 ± 3.08 years and 11.15± 2.89 years for males and 

females, respectively. There is no significant difference between the mean ages of males and 

females (p=0.078).  

 



130 
 

4.3.1 Original Demirjian method 

The mean differences between chronological age (CA) and estimated dental age (DA) using the 

Original Demirjian method are tabulated in Tables 4.1 and 4.2. The average mean difference 

(overestimation) for males is 0.85 years (p=0.00), while the average mean difference 

(overestimation) for the females is 1.0 years (p=0.00). The one sample t-test shows a significant 

difference between the mean of the mean differences and the test value of zero (Table 4.3). 

Therefore no Bland Altman plot was produced. The mean absolute error is 1.1 years for both 

males and females.  Also, the mean absolute errors obtained for individual age cohorts are 

consistently close to 1.0 years in both males and females except for the lower error found for age 

cohort 15 years (Tables 4.1 and 4.2).  
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Table 4.1. Mean differences in dental and chronological ages in males using the Original Demirjian method 

 

Age cohort 
(years) 

 
N 

Dental age 
(DA) 

Chronological 
age (CA) DA-CA t P 95% CI Mean 

Absolute 
Error (MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 10 7.03 0.23 5.71 0.15 1.32 0.31 13.58 0.00 1.10 1.54 1.19 
6 – 6.99 26 7.32 0.49 6.19 0.19 1.13 0.43 13.33 0.00 0.96 1.31 1.20 
7 – 7.99 6 8.85 1.04 7.63 0.34 1.23 0.92 3.26 0.02 0.26 2.19 1.51 
8 – 8.99 33 9.75 1.11 8.54 0.28 1.21 1.05 6.64 0.00 0.84 1.58 1.54 
9 – 9.99 36 10.26 1.44 9.38 0.31 0.89 1.33 3.98 0.00 0.43 1.34 1.49 

10 – 10.99 16 10.82 0.72 10.29 0.29 0.53 0.76 2.76 0.01 0.12 0.93 0.68 
11 – 11.99 17 12.04 0.91 11.47 0.29 0.57 0.88 2.69 0.02 0.12 1.02 0.63 
12 – 12.99 21 12.39 0.91 12.27 0.24 0.11 0.84 0.63 0.53 -0.27 0.50 0.73 
13 – 13.99 15 14.73 1.20 13.31 0.25 1.42 1.14 4.81 0.00 0.79 2.06 1.73 
14 – 14.99 28 15.01 1.14 14.45 0.32 0.56 1.12 2.67 0.01 0.13 1.10 1.01 
15 – 15.99 25 15.86 0.48 15.47 0.26 0.39 0.56 3.47 0.00 0.16 0.62 0.36 

Significant differences in bold. 
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Table 4.2. Mean differences in dental and chronological ages in females using the Original Demirjian method 
 

Age cohort 
(years) 

 
N 

Dental age 
(DA) 

Chronological 
age  (CA) DA-CA t P 95% CI Mean 

Absolute 
Error (MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 13 7.03 0.28 5.77 0.17 1.26 0.32 13.95 0.00 1.06 1.45 1.25 
6 – 6.99 28 7.37 0.61 6.31 0.24 1.05 0.67 8.38 0.00 0.80 1.31 0.86 
7 – 7.99 9 8.69 1.25 7.64 0.35 1.05 1.11 2.85 0.02 0.20 1.90 0.96 
8 – 8.99 27 9.85 0.99 8.54 0.28 1.31 0.98 6.95 0.00 0.92 1.70 1.46 
9 – 9.99 30 10.83 1.02 9.46 0.26 1.37 0.95 7.88 0.00 1.01 1.72 1.50 

10 – 10.99 22 11.35 1.16 10.42 0.33 0.93 1.09 4.01 0.00 0.45 1.41 1.24 
11 – 11.99 36 12.33 0.93 11.41 0.28 0.92 0.94 5.80 0.00 0.60 1.24 0.86 
12 – 12.99 44 13.49 1.08 12.46 0.26 1.03 1.13 6.02 0.00 0.69 1.37 1.01 
13 – 13.99 39 14.76 1.30 13.41 0.28 1.35 1.30 6.49 0.00 0.93 1.77 1.55 
14 – 14.99 32 14.99 0.87 14.40 0.20 0.59 0.79 4.26 0.00 0.31 0.88 0.97 
15 – 15.99 27 15.95 0.27 15.41 0.29 0.54 0.35 7.97 0.00 0.40 0.68 0.34 
Significant differences in bold. 
 
 
 
Table 4.3. One-sample t-test for the Original Demirjian method 
 

Sex 
Test Value = 0 

T Df p 
Mean 

difference 
95% CI of the difference 

Lower Upper 
Male 12.35 232 0.00 0.85 0.69 0.95 

Female 18.41 306 0.00 1.04 0.92 1.14 
Significant differences in bold.  
 
  



133 
 

4.3.2 Modified Demirjian method 

Tables 4.4 and 4.5 compare dental age estimates using the Modified Demirjian method with the 

chronological age. The average mean difference (overestimation) for males is 0.9 years (p=0.00), 

while it is 1.21 years for females (p=0.00). The one-sample t-test shows a significant difference 

between the mean of the mean differences and the test value of zero (Table 4.6). Therefore a 

Bland Altman plot was not generated. The mean absolute error for males is 1.1 years, while it is 

1.4 years for females.  An absolute error of above 1 year is seen for age cohorts 7-14 years in 

males while high values above 2.0 years are shown for the age cohorts 10-13 years in females. 

Lower values are found at the extremes of the age cohort ranges in both males and females.  
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Table 4.4. Differences between mean dental age and chronological age in males using the Modified Demirjian method  
 

Age group 
(years) 

 
n 

 

Dental 
Age (DA) 

Chronological 
Age (CA) DA – CA T P 95% CI Mean 

Absolute 
Error (MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 10 6.63 0.23 5.71 0.15 0.92 0.31 9.46 0.00 0.70 1.14 0.78 
6 – 6.99 26 6.78 1.88 6.19 0.19 0.69 0.73 4.46 0.00 0.35 0.95 0.89 
7 – 7.99 6 9.08 1.28 7.63 0.34 1.46 1.13 3.16 0.00 0.27 2.64 1.75 
8 – 8.99 33 9.92 1.07 8.54 0.27 1.38 1.03 7.66 0.00 7.01 1.74 1.47 
9 – 9.99 36 10.11 1.32 9.38 0.31 0.73 1.22 3.59 0.01 0.32 1.15 1.28 

10 – 10.99 16 11.30 0.86 10.29 0.29 1.01 0.89 4.54 0.00 0.53 1.48 1.06 
11 – 11.99 17 12.65 0.78 11.47 0.29 1.18 0.76 6.39 0.00 0.79 1.57 1.08 
12 – 12.99 21 13.15 0.81 12.27 0.24 0.87 0.73 5,52 0.00 0.54 1.20 1.02 
13 – 13.99 15 14.67 1.03 13.31 0.25 1.36 0.95 8.53 0.00 0.83 1.88 1.56 
14 – 14.99 28 14.99 0.92 14.45 0.32 0.54 0.91 3.18 0.04 0.19 0.90 0.70 
15 – 15.99 25 15.65 0.38 15.47 0.26 0.18 0.46 1.95 0.06 -0.01 0.37 0.21 

Significant differences in bold.  
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Table 4.5. Differences between mean chronological and dental ages in females using the Modified Demirjian method 
 

Age cohort 
(years) 

 
n  

 

Dental age 
(CA) 

Chronological 
Age (DA) DA – CA  

T 
 

P 95% CI Mean 
Absolute 

Error (MAE) Mean SD Mean SD Mean SD Lower Upper 
5 – 5.99 13 6.18 0.45 5.77 0.17 0.40 0.48 3.02 0.01 0.11 0.69 0.33 
6 – 6.99 28 6.78 0.85 6.31 0.24 0.47 0.89 2.76 0.01 0.12 0.82 0.63 
7 – 7.99 9 8.45 1.24 7.64 0.35 -0.81 1.05 2.32 0.04 0.01 1.61 0.76 
8 – 8.99 27 10.05 1.15 8.54 0.28 1.50 1.15 6.78 0.00 1.05 1.96 1.43 
9 – 9.99 30 11.26 1.35 9.46 0.26 1.79 1.29 7.66 0.00 1.32 2.28 1.94 

10 – 10.99 22 12.26 1.83 10.42 0.33 1.84 1.69 5.09 0.00 1.09 2.60 2.46 
11 – 11.99 36 13.88 1.27 11.41 0.28 2.48 1.26 11.78 0.00 2.05 2.90 2.47 
12 – 12.99 44 14.71 0.89 12.46 0.26 2.25 0.94 15.83 0.00 1.97 2.54 2.00 
13 – 13.99 39 15.34 0.62 13.41 0.28 1.93 0.65 18.59 0.00 1.72 2.14 1.81 
14 – 14.99 32 15.54 0.33 14.39 0.20 1.11 0.28 22.22 0.00 1.01 1,21 1.08 
15 – 15.99 27 15.79 0.56 15.41 0.29 0.38 0.29 6.89 0.00 0.27 0.50 0.22 

Significant differences in bold.  
 
 

 
Table 4.6. One-sample t-test of the mean difference between chronological age and estimated dental age using the Modified 
Demirjian method 
 

Sex 
Test Value = 0 

T df p Mean 
difference 

95% CI of the difference 
Lower Upper 

Male 13.91 232 0.00 0.94 0.75 0.99 
Female 22.10 306 0.00 1.21 1.40 1.67 

Significant differences in bold.  
 
 



136 
 

4.3.3 Willems’ method 

The estimated dental age and chronological age of the males and females are compared in Tables 

4.7 and 4.8. The mean difference between dental age estimated by Willems’ method and 

chronological age (overestimation) for males is 0.2 years, while it is 0.3 years for females (Table 

4.9). The one-sample t-test shows that the mean of the difference between the Willems method 

estimate and the chronological age is significant hence the Bland-Altman plot was not done. The 

mean absolute error is 0.70 years for males and 0.68 years for females. Only the age cohort 14 

years in males and the age cohorts 13 and 14 years in females have mean absolute errors above 

1.0 years (Tables 4.7 and 4.8).  

4.3.4 Comparison between the Willems method and the Demirjian methods 

The estimated dental age using Willems’ method is closer to the chronological age in all age 

groups. Similarly, the Willems method has the least mean absolute error value compared to the 

two Demirjian methods. All the three methods overestimate the chronological age in the early 

age cohorts; however at age 9 years the Willems’ method shows both positive and negative 

distribution patterns along the chronological age. In contrast, the two Demirjian methods 

consistently overestimate the chronological age for all age groups. The Modified Demirjian 

method overestimates the chronological age more than the Original Demirjian method in both 

males and females (Figures 4.1 and 4.2). 
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Table 4.7. Differences between mean dental and chronological age in males using the Willems method 
 

Age cohort 
(years) 

 
 

N 

Dental age 
(DA) 

Chronological 
age (CA) DA-CA 

t p 
95% CI Mean 

Absolute 
Error 
(MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 10  6.05 0.35 5.71 0.15 0.34 0.41 2.60 0.03 0.04 0.64 0.38 
6 – 6.99 26  6.95 1.88 6.19 0.19 0.76 1.83 2.14 0.04 0.03 1.47 0.90 
7 – 7.99 6  8.44 1.11 7.63 0.34 0.82 0.98 2.05 0.09 -0.21 1.84 0.99 
8 – 8.99 33  9.34 0.84 8.54 0.28 0.81 0.77 6.04 0.00 0.54 1.09 0.91 
9 – 9.99 36  9.70 1.07 9.38 0.31 0.32 0.97 2.01 0.05 -0.00 0.66 0.83  

10 – 10.99 16  10.14 0.52 10.29 0.29 -0.15 0.57 -1.05 0.31 -0.45 0.15 0.57 
11 – 11.99 17  11.32 0.84 11.47 0.29 -0.15 0.83 -0.74 0.47 -0.57 0.27 0.56 
12 – 12.99 21  11.96 0.81 12.27 0.24 -0.31 0.72 -1.98 0.06 -0.64 0.02 0.47 
13 – 13.99 15  13.55 0.87 13.31 0.25 0.24 0.81 1.13 0.28 -0.21 0.68 0.65 
14 – 14.99 28  13.99 1.15 14.45 0.32 -0.45 1.09 -2.23 0.03 -0.88 -0.09 1.06 
15 – 15.99 25  15.32 0.85 15.47 0.26 -0.15 0.87 -0.86 0.39 -0.51 0.21 0.41 

Significant differences in bold.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



138 
 

 
    
Table 4.8. Differences between mean dental and chronological age in females using the Willems method 

 

Age 
cohorts 
(years) 

 
 

N 

Dental age (DA) Chronological 
age (CA) DA-CA 

T p 
95% CI Mean 

Absolute 
Error 

(MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 13 5.94 0.52 5.77 0.17 0.17 0.53 1.15 0.27 -0.15 0.49 0.44 
6 – 6.99 28 6.63 0.85 6.31 0.24 0.32 0.92 1.83 0.08 -0.04 0.68 0.64 
7 – 7.99 9 7.97 0.97 7.64 0.35 0.34 0.76 1.32 0.22 -0.25 0.92 0.34 
8 – 8.99 27 9.19 0.65 8.54 0.28 0.65 0.65 5.22 0.00 0.39 0.90 0.64 
9 – 9.99 30 9.79 0.86 9.46 0.26 0.34 0.78 2.36 0.03 0.04 0.63 0.61 

10 – 10.99 22 10.37 0.89 10.42 0.33 -0.05 0.76 -0.32 0.75 -0.39 0.28 0.65 
11 – 11.99 36 11.38 0.85 11.41 0.28 -0.02 0.85 -0.16 0.88 -0.31 0.26 0.67 
12 – 12.99 44 12.65 1.26 12.46 0.26 0.19 1.29 0.96 0.34 -0.21 0.58 0.98 
13 – 13.99 39 14.20 1.59 13.41 0.28 0.79 1.58 3.12 0.00 0.28 1.30 1.28 
14 – 14.99 32 14.37 1.20 14.39 0.20 -0.03 1.10 -0.13 0.89 -0.42 0.37 1.00 
15 – 15.99 27 15.72 0.38 15.41 0.29 0.31 0.42 3.81 0.00 0.14 0.48 0.22 

Significant differences in bold.  
 
Table 4.9. One-sample t-test of the mean difference between chronological age and estimated dental age for males and females 
using the Willems method 
 

Sex 
Test Value = 0 

T df p Mean 
difference 

95% CI of the difference 
Lower Upper 

Male 2.38 232 0.02 0.19 0.02 0.26 
Female 4.75 306 0.00 0.27 0.16 0.40 

Significant differences in bold.  
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Figure 4.1. Comparison between the Willems, Original Demirjian and Modified Demirjian 
methods in males 
 

 
 
 
Figure 4.2. Comparison between the Willems, Original Demirjian and Modified Demirjian 
methods in females 
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4.4 Discussion 

The reliability and reproducibility of the Demirjian methods of dental age estimation are not in 

doubt, but their accuracy for all populations is highly variable, especially for forensic purposes. 

Other radiographic methods such as the Willems method have been developed and studies are 

being conducted to ascertain their accuracies in different populations. The present study assessed 

the accuracy of the two Demirjian seven tooth methods and the Willems method in a Southern 

African Black population. Willems’ method was found to have better accuracy than the two 

Demirjian methods. Both Demirjian methods significantly overestimated the chronological age 

of Southern African children.  

4.4.1 Original Demirjian method 

Numerous studies using this method had overestimation of chronological age (Willems et al. 

2001; Hegde and Sood 2002; Baghdadi and Pani 2012; Ifesanya and Adeyemi 2012; Jayaraman 

et al. 2013; Uys et al. 2014; Carneiro et al. 2015; Cavrić et al. 2016). Like many other studies, 

the present study found overestimation of the chronological ages in both males and females when 

using the Original Demirjian method. The mean difference found in males and females was 0.85 

and 1.04 years, respectively. The reason for the higher overestimation for females may be due to 

the advanced dental maturity in the females compared to males. The higher rate of stunting found 

in Black South African males compared to females (Kruger et al. 2014) may have also accounted 

for the difference. However, the mean absolute error was 1.1 years for both males and females. 

An earlier study conducted on the Black Southern African population found lower 

overestimations of 0.8 and 0.5 years for males and females respectively (Uys et al. 2014). No 

reason was given for their findings and the mean absolute errors were not provided.  The reason 

for the difference between their study and ours could be the nature of the sample populations. 
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The present study was a cross-sectional study of healthy children and not a retrospective study of 

radiographs archived in a hospital.  

Several reasons have been adduced for the overestimation seen with the Original Demirjian 

method. Liversidge (2012) argued that the method was devised to measure biological maturity 

where chronological age and dental maturity were expressed as a sigmoid curve. This curve 

excludes very young children and it also applies to individual teeth and not the sequence of 

development. Furthermore, Demirjian’s work was based on a mixed longitudinal sample. It is 

likely that an individual in a longitudinal sample is seen to enter a developmental stage earlier 

than what is observed in a cross-sectional sample (Carneiro et al. 2015). Apart from these 

reasons, other sources of discrepancy may be due to population differences in terms of genetics, 

geography and climatic, sample size and methods of analysis (Wolf et al. 2016).  Demirjian et al. 

(1973)cautioned although the maturity scoring system is probably universal in application, the 

conversation to dental age or the location of centiles for maturity at given ages depends on the 

population. This illustrates their recognition that the conversion to dental age is less accurate 

when applied to different population.is Despite these shortcomings, the Original Demirjian 

method remains one of the most widely used method for assessment of dental maturity (Koshy 

and Tandon 1998; Bagherpour et al. 2010).  In general, the overestimation found in most studies 

using the Original Demirjian method led several authors to argue for population-specific 

maturity curves (Willems et al. 2001; Tunc and Koyuturk 2008; Chen et al. 2010; Baghdadi and 

Pani 2012; Erdem et al. 2013; Uys et al. 2014).   

4.4.2 Modified Demirjian method 

The Modified method uses a different scoring system, based on an extended age range of 

participants. Additional formation stages were included, namely stage A of the first premolar and 



142 
 

stage C of the central incisor. The present study found statistically significant overestimation of 

the chronological age in both males and females when applying the Modified Demirjian method. 

On average, an overestimation of 0.9 years and 1.2 years was found in males and females 

respectfully. However, the mean absolute error was 1.1 years for males and 1.4 years for 

females. The reason for the overestimation for Black Southern African children may be due to 

advanced dental maturity in those children compared to the French-Canadian sample used to 

develop the dental maturity score. Several studies have shown African children to be dentally 

advanced compared to their European and Asian counterparts. The greater overestimation of 

chronological age of females compared to males may be due to advanced dental maturity found 

in the females. Our results confirm those of other studies that used the Modified Demirjian 

method (Willems et al. 2001; Lee et al. 2011; Flood et al. 2013; Akkaya et al. 2015) and found 

overestimation of the chronological age. Prior to this study the Modified Demirjian method has 

not been validated in a Southern African population. The present study found that the method is 

unsuitable for age estimation and for forensic investigations involving Black Southern African 

children. 

4.3.3 The Willems method 

Willems et al. (2001) proposed a new age estimation method after observing overestimation with 

the Original Demirjian method in a Belgium sample. The method is simple and does not use 

maturity tables, so no conversions of scores into age estimates need to be performed. The 

adapted method was validated and resulted in more accurate dental age estimations in the 

Belgian population (Willems et al. 2001). Other researchers confirmed the accuracy of this 

method in their respective populations from Asia, Europe and North Africa (Mani et al. 2008; El-



143 
 

Bakary et al. 2010; Nik-Hussein et al. 2011; Urzel and Bruzek 2013; Djukic et al. 2013; Ye et al. 

2014; Ambarkova et al. 2014; Hegde et al. 2016).  

The present study found no significant overestimation or underestimation for Black South 

African children in seven of the age cohorts in males and another seven of the age cohorts in 

females. This reflects the accuracy of this method in estimating dental age and hence it may be 

used for clinical and forensic purposes among Black South African children. 

The present study is in agreement with the studies listed above. Although a significant difference 

was found with a one sample t-test, a reduction was seen in overestimation of the chronological 

age of males and females compared to the two Demirjian methods.  The mean overestimation 

found in this study was 0.2 and 0.3 years for males and females respectively. Again, the similar 

pattern of higher overestimation of the chronological age in the females compared to the males 

as with other methods may be due to advanced dental maturity in females. Most of the mean 

differences were lower than 0.5 years in the age cohorts investigated except for the earlier years 

in males. This is similar to the findings of a study conducted with Bangladeshi and British 

children  (Maber et al. 2006). The accuracy expressed as mean absolute error for the Willems 

method was 0.7 years and 0.68 for males and females respectively. Akkaya et al. (2015) found a 

good accuracy of the Willem method and proposed that it could be used for forensic purposes 

among Turkish children.  However, a study conducted in China by Zhai et al. (2016) found 

Willems to have high absolute mean errors and overestimation of age by over 1.0 years.  

The better accuracy of Willems’ method may be due to temporal differences.  Willems’ method 

was published more than twenty-five years after Demirjian's method and secular trends in dental 
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maturation due to food, immobility, and exposure to sunlight ( Liversidge et al. 2006; Altan et al. 

2016) may be factors to consider. Further studies are needed to test this assertion.  

4.4.4 Comparison between the three methods 

For a measurement to be considered accurate in forensic anthropology, the mean difference 

between the predicted and actual measures should be within ±1 year (Chaillet et al. 2004) 

although others specify the acceptable value as ±0.5 years (McKenna et al. 2002; Flood et al. 

2011). This study found that the Willems method has better accuracy than either of the Demirjian 

seven tooth methods. The mean difference was about 1 month for males and 3 months for 

females. This is very low compared to the results from the Demirjian methods. Our finding is 

supported by a systematic review comparing the methods (Chapter three of this thesis) and other 

studies on different populations (Willems et al. 2001; El-Bakary et al. 2010; Flood et al. 2013; 

Urzel and Bruzek 2013; Ambarkova et al. 2014; Akkaya et al. 2015; Ye et al. 2014). Although 

the Willems method was derived from a sample of Belgian children, it provides better accuracy 

and is better at age estimation than the Demirjian methods. Willems’ method can be used in age 

estimation for males and females from Southern Africa due to the low mean absolute error 

obtained in the present study.  

 
4.5 Conclusion 

Willems’ method could be used for anthropological and forensic purposes in Black Southern 

African children.  Although significant overestimation of chronological age was observed with 

this method in only four age groups out of eleven in males and another 4 age groups in the 

females, the level of overestimation is within the acceptable limit for forensic purposes. The two 

Demirjian methods significantly overestimate chronological age in addition to very high mean 
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absolute errors. Hence the two methods should not be used for age estimation in Black Southern 

African populations.  
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Chapter 5 

Effect of nutrition on tooth formation  

Abstract 

Background: There is abundant evidence that systemic stresses during the period of tooth 

formation lead to enamel hypoplasia and molar incisor hypomineralization. However, the role of 

nutritional status in delaying or accelerating tooth formation is not well understood.   

Aim: This study investigated the effect of nutrition (measured as BMI, height, weight, mid-upper 

arm circumference and head circumference) on permanent tooth formation in a sample of Black 

Southern African children.  

Method: The study design was a cross-sectional investigation involving 642 (270 males, 372 

females) healthy children aged 5-20 years. The height and BMI were converted to z-scores using 

the WHO z-scores for age tables (WHO 1995). A cut-off z-score of <−2 for both BMI and 

Height for age (HAZ) was used to place children into the categories of underweight/short for 

age, normal weight/height, and overweight/obese/tall for age. Panoramic radiographs were 

analysed using eight (A-H) stages of tooth formation and the dental maturity score of the 

mandibular left permanent teeth was obtained according to the Demirjian et al. (1973) method. 

The dental maturity score of each child was converted to dental age using standard tables and 

percentiles curves for both boys and girls (Demirjian et al. 1973). The mean age of attainment of 

the H stage of tooth formation was calculated using probit regression analysis. Analysis of 

variance (ANOVA) and Student’s t-tests were used where appropriate to determine if any 

differences exist between the subdivisions of the data.  

Results: Games-Howell multiple comparisons of means showed significant advancement in the 

age of attainment of the H stage for all the permanent teeth in the overweight group compared to 
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the underweight group (p<0.05).   Negative binomial regression analysis indicated that age, 

height, and BMI were significant predictors of the dental maturity score for males (p<0.05), 

while age, height, weight, BMI and also HC were significant predictors of the dental maturity 

score for females. 

Conclusion: This study demonstrates that nutritional status does have a significant effect on the 

timing of tooth formation in males and females. The effect was mainly noticeable for children in 

the extremes of the spectrum of the BMI z-scores. 
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5.1 Introduction  

Tooth formation is regarded as highly heritable and immune from environmental stresses relative 

to other aspects of growth and development (Demirjian 1986; Demirjian et al. 1985). The timing 

of tooth formation and emergence were found to be highly correlated within monozygotic twins 

compared to dizygotic twins, suggesting a heritability of 0.85-0.90 (Garn et al. 1960). Tooth size 

and morphology are also considered to be largely determined by the genome. This assumption is 

the primary basis for modern dental anthropological research that uses dental metrics and non-

metric trait distributions to assess population relationships (Hillson 2014). In a study of 

Australian Aboriginal tooth dimensions, Townsend and Brown (1978) found a heritability of 

64%, with a further 6% attributed to common environment. Furthermore, some authors 

(Krogman 1967; Towne et al. 2006) suggested molar cusp number and fissure patterns are under 

genetic control, although Biggerstaff (1975) argued for only a small component of hereditary 

variability for those same features. Garn and Bailey (1978) showed that environmental factors 

such as socioeconomic status may be partly responsible for variation in tooth morphology. 

Although genetic effects are undoubtedly important throughout dental development, 

environmental factors cannot be neglected, and the extent of their influence is still under 

discussion.  

 
There is abundant evidence that systemic stresses during the period of tooth formation lead to 

enamel hypoplasia and molar incisor hypomineralization (Goodman et al. 1980). The severity of 

enamel hypoplasia is dose and time dependent. Populations that are exposed to a high degree of 

undernutrition and disease, from prehistoric to contemporary times, have higher rates of linear 

enamel hypoplasia (Goodman et al. 1980; Goodman and Rose 1990).  Thus, it could be argued 

that if an extreme stressor leads to a complete disruption of the secretory phase of ameloblasts 
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and results in a quantitative tooth defect, then lower stressors should limit the secretory ability of 

ameloblasts leading to a delay in the attainment of a phase. However, the specific relationship of 

these stressors to changes in the process of tooth formation is not known.   

 
Malnutrition is a common stressor affecting growth and development. It can result in stunting 

and delayed maturity in situations of nutritional shortages, or advanced sexual and skeletal 

maturity in cases of obesity. The effect of nutrition on tooth formation remains controversial, 

with some studies finding no effect (Eid et al. 2002; Cameriere et al. 2007; Elamin and 

Liversidge 2013) while others observed a delay in formation (Hilgers et al. 2006; Mani et al. 

2008). Well-designed studies on severely malnourished children are lacking and may be difficult 

to undertake because of ethical reasons. Previous studies focused on selected proxies of 

nutritional status (height, weight and body mass index (BMI) and tooth formation, but none 

investigated head circumference and mid-upper arm circumference as proxies of nutritional 

status. Hence, this study investigates the influence of nutritional status on tooth formation using 

these measures that are documented to correlate with nutritional stress. 

5.1.1 Effect of body mass index (BMI) on tooth formation 

There is no consensus on the effect of BMI on tooth formation. Studies utilizing BMI as a proxy 

for nutritional status from Peru, Brazil and Southern Sudan found no significant influence of 

BMI on tooth formation (Eid et al. 2002; Cameriere et al. 2007; Bagherian and Sadeghi 2011; 

Elamin and Liversidge 2013). In contrast, other studies (Hilgers et al. 2006; Zangouei-Booshehri 

et al. 2011; Mack et al. 2013; DuPlessis et al. 2016) showed that the timing of tooth formation 

was significantly accelerated with higher BMI, even after adjusting for age and sex. This 

developmental advancement was attributed to accelerated linear growth and early sexual 

maturation, which is usually associated with obesity (Slyper 1998; Sánchez-Pérez et al. 2010)).  
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One reason for the controversy over BMI may be the imprecision of the measures of nutritional 

status (Frisancho 1990; Myatt et al. 2009). For example, standardized BMI in children varies 

with body shape (Garn et al. 1986) and ethnicity (Lear et al. 2007), and may overestimate the 

prevalence of acute malnutrition in some populations (Garn et al. 1986; Frisancho 1990; Lin et 

al. 2004). BMI is poor in sensitivity and specificity, and does not necessarily reflect the changes 

that occur with age (Rothman 2008). Additionally, the relationship between BMI and percentage 

of body fat is not linear and differs for males and females (Rothman 2008).  

 
Although the BMI cutoff point for malnourished children is still being debated, it is suggested 

that to be able to identify high-risk malnourished children, the cut-off point of standardized BMI 

should not be less than –3 (Briend et al. 2012). Frisancho (1990) reported that the assessment of 

nutritional status based only on BMI, especially when the degree of undernutrition or overweight 

is moderate, is unlikely to be effective in distinguishing the truly wasted or truly overweight 

individual from a normal or low weight child. This may have influenced the outcome of previous 

studies that used the cutoff point of -2 to categorize the study population into two groups without 

exploring the extremes of the BMI z-scores.   

 
The method of analysis might also be responsible for conflicting results regarding the role of 

BMI in tooth formation variation. Eid et al. (2002), utilizing the extremes of BMI z-scores, 

generated mean ages of attainment and used correlational analysis to determine the relationship 

between timing of tooth formation  and nutritional status. Growth curves are not always linear 

since acceleration, deceleration and stunting occur at different stages resulting in great variation 

in growth velocity (Pinhasi and Mays 2008),  Thus, conclusions should not be solely derived 

from a linear perspective. In addition, the use of bivariate analysis may not account for potential 
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confounders, especially in growth studies. One of the limitations of bivariate analysis is that it 

does not factor in how variables influence each other. Bivariate analysis therefore cannot give an 

explanation for the relationship between two variables; it only provides a description. 

Explanatory analysis is needed to infer cause (Spicer 2005). In summary, tooth formation studies 

utilizing at least one or both extremes of BMI classification and, in addition, employing robust 

and explanatory statistics, are needed.  

5.1.2 Influence of height and weight on tooth formation 

The relationship of height and weight with permanent tooth formation is complex. Short height 

for age reflects a failure of linear growth due to diseases or malnutrition (WHO 1997). Studies 

on permanent tooth emergence found a relationship with the height of an individual (Filipsson 

and Hall 1975; Green 1961; Kutesa et al. 2013). Vallejo-Bolanos and Espana-Lopez (1997) 

found a delay in tooth emergence in familial short stature children, while Keller et al. (1970) 

found similar results among children with metabolic and endocrine disorders. All these findings 

point to a relationship between growth hormones and tooth formation and emergence. 

Malnutrition is a known cause of growth hormone deficiency. Interestingly, Sarnat et al. (1988) 

did not find accelerated tooth emergence, but only enhanced bone development, in children 

being treated with growth hormones. Similarly, Takano et al. (1986) found an insignificant delay 

in the dental age but a significant delay in the skeletal age of children with growth hormone 

deficiency compared to normal children.  

Body weight is also one of the most important variables for nutritional assessment. It is very 

useful in predicting macronutrient and fluid requirements and also acute malnutrition (ADSA 

2009). Its limitation is that it is poor for distinguishing between fat, protein, bone and water 

levels. It can also be influenced by fluid status, organomegaly and tumor growth. Currently, there 
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is no information on the relationship between weight and permanent tooth formation, although 

some studies on tooth emergence found a positive relationship (Garn et al. 1965; Billewicz and 

McGregor 1975), and others found weight and emergence to be uncorrelated (Khan et al. 2006; 

Kutesa et al. 2013).  

5.1.3 Mid-upper arm circumference (MUAC) and tooth development 

MUAC is a better index of nutritional status or malnutrition than BMI in children and 

adolescents (Jelliffe and Jelliffe 1969; Shakir 1975; Velzeboer et al. 1983; WHO 1986; Briend et 

al. 1986; Fernandez et al. 2010). It is less affected by the localized accumulation of excess fluid 

(pedal edema, periorbital edema, ascites) commonly seen in famine. MUAC is likely to be a 

more sensitive index of tissue atrophy than low body weight and it is relatively independent of 

height (Olukoya, 1990).  MUAC correlates well with BMI in adult populations, yet a globally 

recognized cut-off point has not been established to classify malnutrition among adolescents and 

adults (Chakraborty et al. 2009; Mazıcıoğlu et al. 2010). Though many countries have 

established cut-off points for their populations, there is no evidence to support using any 

particular value. There is no study on the relationship between MUAC and tooth formation, 

hence there is a need to investigate the efficacy of MUAC versus BMI when comparing somatic 

growth with tooth formation 

5.1.4 Head circumference (HC) and tooth formation 

Is there a link between tooth formation and brain development? In a study carried out by Godfrey 

et al. (2001) on a large range of living primates, it was found that brain development was a better 

predictor of dental development than somatic development.  The correspondence of head 

circumference and the emergence of deciduous teeth has been investigated in humans.  Vejdani 

et al. (2015) found a relationship between primary tooth emergence and head circumference. An 
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earlier study also demonstrated significant associations between the number of primary teeth 

present and head circumference in males but not in females (Infante and Owen 1973). These 

studies demonstrate that a relationship exists between brain development and primary tooth 

development in the very young. Head circumference is a proven surrogate for brain development 

and it is proportional to brain weight and volume in infants and children. Hence, head 

circumference helps to monitor cognitive function in post-natal brain growth (Thureen 2012). Its 

usefulness as a measure of nutrition is however limited. It is poorly sensitive to malnutrition 

since the brain is spared at marginal calorie intakes that do not support skeletal growth and 

weight gain. Therefore, it is important to investigate if a relationship exists between head 

circumference and permanent tooth formation, particularly in the early years of tooth formation.  

5.2 Methods 

This is a cross-sectional study of 642 clinically healthy Black Southern African children aged 5-

20 years, whose parents and grandparents are indigenous Southern Africans. The participants 

were selected randomly from primary and secondary schools in Johannesburg during the 

operation of the Community Oral Health Outreach Program (COHOP) of the Department of 

Community Dentistry of the School of Oral Health Sciences, University of the Witwatersrand. 

Children with systemic diseases, mandibular hypodontia (except third molars), and those who 

had lost teeth on both sides of the mandible were excluded. Ethical approval (NO. M141001) 

was obtained from the Human Research Ethics Committee (Medical) of the University of the 

Witwatersrand. Permission to carry out the study was obtained from the local education authority 

and respective school heads. Consent was obtained from parents while assent was obtained from 

the children. 
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5.2.1 Sample size 

A total of 14 one-year age cohorts (except for a combined 18-20year cohort) were sampled from 

ages 5-20 years. The sample size formula is N = 4zα
2S2-W2, where S= standard deviation, W= 

desired total width and zα is the standard normal deviate for the 95% confidence level. Cameriere 

et al. (2008), in a similar radiographic study, found a mean of 1.076 and a standard deviation of 

0.824 derived from a standard error of 0.030. Using a width of 0.2, the minimum total sample 

size required for the 14 cohorts is 280. However, to improve the power of the study, a total of 

642 children were recruited. 

 
Information collected from the school records included the date of birth and sex. All selected 

participants were examined on a dental chair in a mobile dental van. The intraoral examination 

was done with a sterile wooden spatula. Teeth present in the mouth were recorded using 

Fédération Dentaire Internationale (FDI) notation. Panoramic radiographs were taken and those 

showing gross pathology or poor image quality were excluded.  

 
Participants were weighed in the standing position on a platform scale (Hana Power), calibrated 

to a precision of 100g. Height was measured with an anthropometric stadiometer (Weylux model 

424). The height was recorded to the nearest 0.1 cm. Mid-upper arm circumference (MUAC) of 

the left upper arm was obtained with a tape measure at the midpoint between the tip of the 

shoulder and the tip of the elbow and recorded (to the nearest 0.1 cm).  The head circumference 

(HC) was measured by placing a tape measure (in cm) across the forehead and the greatest 

circumference was recorded. The study was pilot tested on 40 randomly selected students. Intra-

examiner reliability of measurement was calculated using Lin’s Concordance Correlation 

Coefficient (height = 0.99, HC= 0.92, MUAC= 0.96). 
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5.2.2 Pilot test 

Prior to data collection, a reliability study was conducted to assess the magnitude of the intra-

observer error. Firstly, two trained examiners assessed the maturation stage of the 7 left 

mandibular permanent teeth without the knowledge of chronological age or sex. To evaluate 

reproducibility, 25 radiographs (with 175 individual tooth ratings) were randomly selected and 

assessed by both examiners at day one and day three. The investigator was the only rater for the 

developmental stages of the teeth. Intra-examiner reliability of dental age assessment for the 

Demirjian et al. (1973) method was calculated using Cohen’s Kappa (Landis and Koch 1977) 

and was found to be 0.97.   

5.2.3 Dental maturity score and age assessment 

Dental age assessment was performed according to the original version of Demirjian’s method 

(Demirjian et al. 1973). The investigator did not have access to the chronological age of the 

participants. The panoramic radiographs of each child were enhanced using Microsoft Office 

Picture Manager, labeled with a unique identity number and digitally archived. Each radiograph 

was assessed for the development of the left 7 permanent mandibular teeth rated on an 8-stage 

scale from A to H, based on the stages of tooth formation proposed by Demirjian et al. (1973) 

with stage 0 for non-appearance. Each stage was allocated a sex-specific biologically weighted 

score and the sum of the scores for each participant was used to determine the dental maturity 

measured on a scale of 0 to 100. The dental maturity score of each child was converted to dental 

age using standard tables and percentiles curves for both sexes (Demirjian et al. 1973). The mean 

age of attainment of the H stage of tooth formation was calculated using probit regression 

analysis (Hayes and Mantel 1958).  
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5.2.4 Data analysis 

The data were analyzed with Stata 12 for Windows. The analyses included frequencies and 

cross-tabulations. Association between categorical variables was tested with chi-square while 

those between continuous variables were tested with the Student’s t-test.  Non-parametric 

equivalents were used as appropriate. Body mass index (BMI) was calculated from the height in 

meters and weight in kilograms. The height and BMI were converted to z-scores using the WHO 

z-scores for age tables (WHO 1995). A cut-off z-score of <−2 for both BMI and Height for age 

(HAZ) was used to place children into the categories of <-2 underweight/short for age, ≥-2 to 2.0 

for normal weight/height, and ≥2 for overweight/obese/tall for age.  

The mean age at the time of attainment of tooth formation stages and standard deviations were 

computed using probit analysis after Liversidge (2003). Analysis of variance (ANOVA) was 

used to determine if any variation exists between the subdivisions of the data. Games-Howell 

multiple comparisons of means were used to compare the mean age of attainment of H status for 

the nutritional status subgroups with one another.  Student’s t-tests were used where necessary to 

compare the mean age of attainment of the H stage.  

 
Since there are no WHO standard categories of mid-upper arm circumference or head 

circumference for older child age cohorts, they were modeled with other predictor variables in a 

regression analysis. A Shapiro-Wilk test showed that the dependent variable (maturity score) and 

the predictor variables were not normally distributed. Therefore, a negative binomial regression 

model was used with the maturity scores modeled as the dependent variable and the 

anthropometric variables as predictors. Adequacy of fit was checked using the deviance residuals 

as recommended by McCullagh and Nelder (1989). The deviance residuals showed normal 

distribution and the plot of the residuals against each of the covariates also showed model fit. As 
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expected, the collinearity test showed that BMI, height, and weight were significantly collinear. 

When these variables were excluded from the model, there was no difference in the values of the 

output. Hence, the variables were included in the final model for generalized linear regression 

analysis. The model was built using forward selection. Statistical significance was inferred at 

p<0.05. 

5.3 Results 

5.3.1 Comparison of mean values of anthropometric variables and nutritional status  

The age and sex distribution of the sample are shown in Tables 5.1 and 5.2. Only two females 

(0.006%) are categorized as underweight while 22 (8.1%) of males fall in the underweight 

category.   

Table 5.1.  BMI and height distribution of males  
 

Age cohort 

BMI z-scores category 
Total 
100% 

Height z-scores category 
Total 
100% 

Under 
weight 
n(%) 

Normal 
n(%) 

Over 
Weight 
n(%) 

Short 
for age 
n(%) 

Normal 
n(%) 

Tall 
n(%) 

5 – 5.99 0(0.0) 10 (100.0) 0(0.0) 10 0(0.0) 10(100.0) 0(0.0) 10 
6 – 6.99 0(0.0) 24 (92.3) 2(7.7) 26 1(3.8) 25(96.2) 0(0.0) 26 
7 – 7.99 0(0.0) 6 (100) 0(0.0) 6 1(26.7) 5(83.3) 0(0.0) 6 
8 – 8.99 2(6.1) 25 (75.8) 6(18.1) 33 1(3.0) 32(97.0) 0(0.0) 33 
9 – 9.99 1(2.8) 30 (83.3) 5(13.9) 36 0(0.0) 35(97.2) 1(0.8) 36 
10 – 10.99 0(0.0) 16 (100.0) 0(0.0) 16 2(13.5) 14(87.5) 0(0.0) 16 
11 – 11.99 0(0.0) 16 (94.1) 1(5.9) 17 2(11.8) 15(88.2) 0(0.0) 17 
12 – 12.99 1(4.8) 19 (90.4) 1(4.8) 21 5(23.8) 16(76.2) 0(0.0) 21 
13 – 13.99 2(13.3) 12 (80.0) 1(6.7) 15 4(26.7) 11(73.3) 0(0.0) 15 
14 – 14.99 6(21.4) 18(64.3) 4(14.3) 28 6(21.4) 22(78.6) 0(0.0) 28 
15 – 15.99 4(16.0)) 20(80.0) 1(4.0) 25 4(16.0) 21(84.0) 0(0.0) 25 
16 – 16.99 2(16.7) 9(75.0) 1(8.3) 12 1(8.3) 11(91.7) 0(0.0) 12 
17 – 17.99 3(15.0) 16(80.0) 1(5.0) 20 3(15.0) 17(85) 0(0.0) 20 
18 – 20.00 1(20.0) 4(80.0) 0(0.0) 5 2(40.0) 3(60.0) 0(0.0) 5 

Total 22((8.1) 225(83.3) 23(8.6) 270 32(11.9) 237(87.8) 1(0.3) 270 
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Table 5.2. BMI and height distribution of females  
 

Age 
cohort 

BMI z-scores category 
Total 
100% 

Height z-scores category 
Total 
100% 

Under 
weight 
n(%) 

Normal 
n(%) 

Over 
Weight 

n(%) 

Short 
for age 
n(%) 

Normal 
n(%) 

Tall 
n(%) 

5 – 5.99 0 (0.0) 13(100.0) 0(0.0) 13 0(0.0) 13(100.0 0(0.0) 13 
6 – 6.99 0(0.0) 26(92.9) 2(7.1) 28 1(3.6) 27(96.4) 0(0.0) 28 
7 – 7.99 0(0.0) 8(88.9) 1(11,1) 9 1(11.1) 7(77.8) 1(11.1 9 
8 – 8.99 0(0.0) 26(96.3) 1(3.7) 27 1(3.7) 24(88.9) 2(7.4) 27 
9 – 9.99 0(0.0) 27(90.0) 3(10.0) 30 2(6.7) 28(93.3) 0(0.0) 30 

10 – 10.99 0(0.0) 21(95.4) 1(4.6) 22 3(13.6) 19(86.4) 0(0.0) 22 
11 – 11.99 192.8) 32(88.9) 3(8.3) 36 1(2.8) 35(97.2) 0(0.0) 36 
12 – 12.99 0(0.0) 36(81.8) 8(18.2) 44 2(4.5) 42(95.5) 0(0.0) 44 
13 – 13.99 0(0.0) 36(92.3) 3(7.7) 39 0(0.0) 39(100.0) 0(0.0) 39 
14 – 14.99 0(0.0) 30(93.8) 2(6.2) 32 1(3.1) 31(96.9) 0(0.0) 32 
15 – 15.99 0(0.0) 20(74.1) 7(25.9) 27 0(0.0) 27(100) 0(0.0) 27 
16 – 16.99 0(0.0) 22(78.6) 6(21.4) 28 1(5.6) 27(96.4) 0(0.0) 28 
17 – 17.99 1(4.0) 18(72.0) 6(24.0) 25 3(22.0) 22(88.0) 0(0.0) 25 
18 – 20.00 0(0.0) 10(83.3) 2(16.7) 12 3(25.0) 9(75.0) 0(0.0) 12 

Total 2(0.5) 325(87.4) 45(12.1) 372 19(5.1) 350(94.1) 3(0.8) 372 
 

Table 5.3 provides the mean values for the anthropometric variables. The mean age and height of 

the underweight group are significantly greater than the normal and overweight groups for both 

males and females (p=0.000). In contrast, weight, BMI and MUAC values increase from the 

underweight children to the overweight (p<0.05). Similarly, the z-scores for height and BMI 

significantly increase from the underweight to the overweight children (p<0.05). In contrast, 

there is no significant increase in the mean head circumference from the underweight children to 

the overweight children (p>0.05).  
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Table 5.3. Anthropometric variables by BMI z-score categories in males and females 

Non-significant values in red. 
 

 
  

 MALES (N=270) FEMALES (N=372) 

Variable 

Underweight 
(N=22) 

Normal 
(N=225) 

Overweight 
(N=23) 

p 

Underweight 
(N=2) 

Normal 
(N=325) 

Overweight 
(N=45) 

p 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Age 14.40 2.79 11.40 3.70 11.03 3.45 0.00 14.92 4.24 11.99 3.52 13.75 3.17 0.00 
Height 153.63 15.70 140.68 19.33 139.47 16.98 0.01 153.25 25.81 143.26 16.36 149.89 12.86 0.03 
Weight 34.90 9.72 35.14 13.66 46.24 18.46 0.00 27.00 19.80 38.44 13.41 63.93 16.16 0.00 

BMI 14.41 1.50 17.02 2.43 22.90 3.45 0.00 10.54 4.81 18.03 3.18 27.94 4.15 0.00 
MUAC 18.11 1.96 18.60 1.86 20.59 3.04 0.00 19.35 0.92 19.14 1.81 23.29 4.07 0.00 

HC 50.11 2.15 50.67 2.46 51.30 3.22 0.28 51.40 1.27 50.28 2.58 50.77 2.07 0.48 
Height z-score  1.72 0.46 1.90 0.31 1.87 0.34 0.05 -2.39 0.29 -0.39 0.83 2.52 0.15 0.00 

BMI z-score  -2.48 0.30 -0.31 0.95 3.12 1.03 0.00 -3.47 1.10 -0.04 0.92 3.43 1.18 0.00 
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5.3.2 Age of attainment of H stage by nutritional status 

In males, age of attainment of the H developmental stage was calculated for each of the BMI z-

score (underweight, normal, and overweight) categories using probit analysis after dichotomizing 

the appearance of the H developmental stage as present or absent. Other developmental stages 

were not considered because of the small sample size of the underweight group (Table 5.4). 

Analysis of variance (ANOVA) shows significant variations in the means of the BMI z-score 

categories for all the teeth except the lateral incisors among males (Table 5.4). Further analysis 

using Games-Howell multiple comparisons of means reveals significant advancement in the age 

of attainment of H stage for all the permanent teeth in the overweight group compared to the 

underweight group (p<0.05) (Table 5.4). 

Table 5.4. Analysis of variance comparison of age of attainment of H stage by BMI z-score 
category in males 
 

Tooth type 

BMI z-score 

F p 
Underweight 

(N=22) 
Normal 

(N=225) 
Overweight 

(N=23) 
Mean 
age 

SD 
Mean 
age 

SD 
Mean 
age 

SD 

I2 9.05 0.66 8.65 1.33 8.38 0.85 1.69 0.196 
C1 13.06 0.48 12.64 0.77 12.54 1.08 3.22 0.042 
P1 14.17 1.69 12.86 0.91 11.17 0.89 52.34 0.000 
P2 14.87 0.81 13.63 1.11 13.37 1.37 13.59 0.000 
M1 9.05 0.66 8.73 1.06 8.16 0.17 4.90 0.008 
M2 15.39 0.62 14.83 0.79 14.77 0.41 5.76 0.004 

 
 Significant values in bold. 
 
 
For females, probit analysis was used to calculate the mean age of attainment of the H 

developmental stage in the normal and overweight groups only, due to very few participants in 

the underweight subgroup. The mean ages of attainment of H stage of all the teeth, except for the 
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canine, were significantly advanced in the overweight group compared to the normal BMI group 

(p<0.05) (Table 5.5). 

Table 5.5. Comparison of age of attainment of the dental H stage by BMI z-score groups in 
females* 
 

Tooth type 

BMI z score 

t p 
Normal 
(N=325) 

Overweight 
(N=45) 

Mean 
age 

SD 
Mean 
age 

SD 

I2 8.44 1.14 6.58 1.16 10.24 0.00 
C1 11.59 1.23 11.46 0.82 0.69 0.49 
P1 12.21 1.30 11.75 1.72 2.13 0.03 
P2 12.58 1.09 11.99 0.50 3.58 0.00 
M1 8.12 1.26     6.58 1.27 7.68 0.00 
M2 14.11 1.14 13.07 0.53 6.02 0.00 

*The 2 females categorized as underweight were removed from the analysis. 
Significant values in bold. 
 
 
5.3.3 Age of attainment of the H stage by height for age (HAZ) 

The height for age (z-scores for height or HAZ) was dichotomized into “short for age” and 

“normal” groups in the males. The only male in the tall category was removed from the analysis. 

The age of attainment of the H developmental stage was calculated using probit regression 

analysis and the mean ages of attainment of H stage were compared using Student’s t-tests. 

Significant differences (p<0.05) are found for the canine and the second molar in males (Table 

5.6). In comparison, a significant difference (p<0.05) is only found between the mean ages of 

attainment of H stage of the first molars in females (Table 5.7).  
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Table 5.6. Comparison of age of attainment by height for age (HAZ) groups in males* 
 

Tooth type 

HAZ 

t p 
Short for age 

(N=22) 
Normal 
(N=237) 

Mean 
age 

SD 
Mean 
age 

SD 

I2 - - - - - - 
C1 13.30 1.10 12.89 0.84 1.88 0.03 
P1 13.27 1.96 12.90 1.06 1.64 0.15 
P2 14.08 0.81 13.89 1.19 0.88 0.19 
M1 8.17 0.66 8.06 1.06 0.48 0.63 
M2 15.17 0.24 14.84 0.84 2.21 0.01 

*The only male in the tall category was not included in the analysis. 
Significant values are in bold.  
 
 
Table 5.7. Comparison of age of attainment by height for age (HAZ) groups in females* 
 

Tooth type 

HAZ 

t p 
Short for age 

(N=19) 
Normal 
(N=350) 

Mean 
age SD 

Mean 
age SD 

I2 8.75 0.95 8.37 1.16 1.40 0.16 
C1 11.95 0.44 11.63 1.23 1.13 0.26 
P1 - - 12.17 1.28 - - 
P2 - - 12.91 1.05 - - 
M1 8.75 1.00 8.01 1.27 2.50 0.01 
M2 14.17 - 14.05 1.11 - - 

*The three females in the tall category were not included in the analysis. 
 Probit analysis did not return values for the empty cells  
 

5.3.4 Correlation analysis between maturity score and anthropometric variables 

Spearman rho’s correlational analysis was done to determine if linear relationships exist between 

the predictor variables and the maturity score. A significant strong correlation is observed 

between maturity score and height (r=0.92) and weight (r=0.88) in males and height (r=0.86) and 

weight (r=0.83) in females. A significant moderate correlation is found between maturity score 
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and MUAC and BMI in both males (MUAC r=0.63, BMI r=0.49) and females (MUAC r=0.60, 

BMI r=0.65). A significant but weak correlation is found between HC and the maturity score in 

males and females (Table 5.8).  

Table 5.8. Spearman’s rho correlation between maturity score and anthropometric 
variables  
 

 
Variable 

Male (N=270) Female (N=372) 
Maturity score Maturity score 

r p r p 
Age 0.96 0.00 0.94 0.00 

Height 0.92 0.00 0.86 0.00 
Weight 0.88 0.00 0.83 0.00 

HC 0.19 0.00 0.34 0.00 
MUAC 0.63 0.00 0.60 0.00 

BMI 0.49 0.00 0.65 0.00 
 

5.3.5 Relationship between maturity score and anthropometric variables 

Multivariate analysis was done to determine the relationship between the predictor variables 

(age, height, weight, BMI, HC and MUAC) and the outcome variable (maturity score). Negative 

binomial regression analysis was the preferred model because it had the best fit compared to 

Poisson or generalized linear models. Modeling was done separately for males and females. As 

expected, the collinearity test showed that BMI, height and weight were significantly collinear. 

When these variables were excluded from the model, there was no difference in the values of the 

output and model did not fit. Hence, the variables were included in the final model for 

generalized linear regression analysis. The model was built using forward selection. The results 

show that age, height, and BMI are significant predictors of the dental maturity for males 

(p<0.05) (Table 5.9). Age, height, weight, BMI and also HC are significant predictors of the 

dental maturity score for females (p<0.05) (Table 5.10). 
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Table 5.9. Negative binomial regression model of predictors of dental maturity in males 
 

Maturity score Odds 
ratio Std. err z p [95% CI] 

Age 1.49 0.04 16.94 0.000 1.42,  1.56 
Height (cm) 1.03 0.01 4.24 0.000 1.02.  1.05 
Weight (kg) 0.97 0.01 -1.87 0.062 0.94,  1.00 

HC (cm) 1.01 0.01 1.32 0.188 0.99,  1.03 
MUAC (cm) 0.99 0.02 -0.21 0.834 0.96,  1.03 

BMI 1.06 0.03 2.17 0.030 1.01,   0.12 
_cons 0.00 0.00 -7.30 0.000 0.00,  0.01 

Significant values in bold. 
 
 
Table 5.10. Negative binomial regression model of predictors of dental maturity in females 
 

Maturity score Odds 
ratio Std. err z p [95% CI] 

Age 1.65 0.04 20.77 0.000 1.58,    1.73 
Height (cm) 1.04 0.01 5.29 0.000 1.03,    1.06 
Weight (kg) 0.96 0.01 -2.67 0.008 0.93,    0.99 

HC (cm) 0.98 0.01 -2.21 0.027 0.97,    0.99 
MUAC (cm) 0.98 0.02 -1.13 0.257 0.94,    1.02 

BMI 1.08 0.03 2.65 0.008 1.02,    1.15 
_cons 0.00 0.00 -7.00 0.000 0.00,    0.01 

Significant values in bold. 
 

5.3.6 Sexual dimorphism and dental maturity 

Sexual dimorphism is seen in the dental maturity of the participants, with the females showing 

advanced dental maturity scores compared to males when controlled for age. The male-female 

difference in the dental maturity score increases at around age 9 until age 16, when the males 

catch up with the females (Figure 5.1). Similarly, females have higher maturity scores than males 

after controlling for height and weight (Figures 5.2 and 5.3). However, a gradual narrowing of 

the gap occurs as the weight of the children increases (Figure 5.3).  
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Figure 5.1. Maturity score of males and females while controlling for age 
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Figure 5.2. Maturity score by sex while controlling for height 
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Figure 5.3. Maturity score by sex while controlling for the weight 
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Figure 5.4. Maturity score by sex while controlling for the BMI  
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Figure 5.5. Maturity score by sex while controlling for head circumference 
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Figure 5.6. Maturity score by sex while controlling for the mid-upper arm 
circumference 
 

 
 
 
5.4 Discussion 

The investigation of the assumed relative immunity of dental development (especially tooth 

formation) to environmental perturbations is very important for anthropological and forensic 

purposes. Wide variation between skeletal age and chronological age makes the use of references 

based on somatic growth very unreliable. If the immunity of tooth formation is verified, timing 

of tooth formation could be used as a global standard for the assessment of growth and 

development.  

The major environmental stressors that can potentially alter tooth formation are childhood 

diseases/infections and malnutrition. These factors have synergistic effects as diseases and 

R² = 0.3328 

R² = 0.3047 

30

40

50

60

70

80

90

100

110

10 15 20 25 30 35

M
at

ur
ity

 sc
or

e 

Mid-upper arm circumference in cm 

Maturity score male

Maturity score female

Poly. (Maturity score male)

Poly. (Maturity score
female)



178 
 

infections often suppress appetite or reduce absorption of nutrients—creating or augmenting 

existing malnutrition. Thus, by studying proxies for nutritional status in this study, the two major 

sources of potential dental developmental perturbations can be evaluated. 

 
5.4.1 Relationship between BMI and tooth formation 

The results of this study confirm significant influence of nutritional status on tooth formation. In 

both males and females, lower BMI is associated with delay in the age of attainment of the H 

tooth formation stage. This is in agreement with previous studies that found a significant 

influence of nutrition on tooth formation in children from the United States (Hilgers et al. 2006; 

Mack et al. 2013) and Iranians (Zangouei-Booshehri et al. 2011).  

 
The findings of the present study are at variance with three previous reports that found no 

significant difference in the timing of tooth formation of underweight or overweight children 

(Eid et al. 2002; Bagherian and Sadeghi 2011; Elamin and Liversidge 2013). Careful 

consideration of these studies raises some methodological questions that may impact upon their 

conclusions. Although Elamin and Liversidge (2013) interpreted their results as showing no 

difference between underweight and normal weight groups, their results document a uniform and 

consistent trend of advancement in all stages of tooth formation in the normal children compared 

to the malnourished children. Aside from using a combined sex sample that might obscure 

detection of the magnitude of the variation (as would have been the case for the Black Southern 

African children in this study), a more important reason for the lack of significant difference may 

be that they did not investigate the extremes of the BMI z-scores. Pertaining to this point, Garn et 

al. (1965) found nutritional status was only slightly related to tooth formation timing in the Fels 

Growth Study, but they concluded that the relationship was expected to be more marked if the 
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nutritional range was broader and in situations where protein deficits were the key underlying 

nutritional difference. Bagherian and Sadeghi (2011) also reported a trend of advancing dental 

maturity from the underweight group to the overweight group in their study, but the correlational 

analysis results were not statistically significant. Correlation analysis usually shows a linear 

relationship even though growth patterns are not always linear (Scheuer and Black 2004). Any 

patterns should be further explored with a robust multivariate analysis. Eid et al. (2002) used 

Demirjian’s age estimation method but the age of entry into the developmental stages was not 

calculated and the BMI scores were not standardized for age. Therefore the individual ages of the 

participants might have skewed their final outcome. 

 
A limitation of this study was the small number of participants, especially in females, in the 

underweight (low BMI) category. The government of South Africa started providing free meals 

in all public schools in 1994 (Rendall-Mkosi et al. 2013), and this practice might account for the 

low numbers of underweight participants. The sexual dimorphism found in this study pertaining 

to BMI may be explained by the theory that females are better buffered from environmental 

stresses than males (Stini 1975, 1982; Stinson 1985). Additionally, school attendance is higher 

for females in this study and the access to school meals may vary considerably as a consequence. 

5.4.2 Influence of height and weight on tooth formation 

This study found that height has an influence on tooth formation, similar to what is seen for 

BMI.  Unfortunately the relationship with height could not be fully explored because of limited 

sample sizes at the extremes of height (tall for age and short for age) for both sexes. However, 

regression and correlational analyses showed that height significantly influenced the dental 

maturity scores in both males and females.  This is similar to the findings of Green (1961) and 

Dermirjian et al. (1985), who found a strong correlation between height and dental maturity.   
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There are very few studies on the relationship between height and tooth formation, but previous 

studies on tooth emergence did identify a positive relationship (Oziegbe et al. 2009; Kutesa et al. 

2013). It is expected that height and tooth formation are correlated because they are both 

measures of growth. In Black Southern African children, there is a significant difference in the 

timing of canine and second molar formation in males that are short-for-age and of normal 

height. For females, the significant differences are seen in the lateral incisors and first molars.  

 
This study found no relationship between weight and tooth formation in the males whereas a 

significant relationship was found in females. This may be due to the different pattern of weight 

gain in the two sexes (Geer and Shen 2009). The weight gain in females occurs earlier and 

continues till puberty while that of males occurs much later. These differences in the pattern of 

weight gain characterises the Black Southern African children. Although our study found a 

strong correlation between weight and maturity scores in males and females, it is possible that 

the correlation may be due to weight gain as age increases. Green (1961) found a moderate 

correlation between weight and dental age although he did not correct for sex. While there is 

presently no study to directly compare with the result of our multivariate analysis, previous 

studies on tooth emergence found no relationship with weight (Oziegbe et al. 2009; Kutesa et al. 

2013). Weight has poor sensitivity and specificity to malnutrition. Furthermore, to determine its 

effect, it should not be a “once off” measurement as done in this study. A well-designed 

longitudinal study may validate our findings. 

5.4.3 Association between mid-upper arm circumference and tooth formation 

The relationship between MUAC and tooth formation has not been studied prior to this study.  

No significant relationship was found between MUAC and dental maturity. This may be due to 



181 
 

the fact that most of the children are within the normal range of MUAC. MUAC is good at 

detecting children at risk of mortality as extremely low values indicate muscular and adipose 

tissue loss (Chen et al. 1980; Vella et al. 1994). Another consideration is that the distribution of 

adipose tissue differs from one population to another (Gasperino 1996). Other measures of body 

composition, such as waist-to-hip ratios, may be more informative about nutritional status in 

Southern Africa. Furthermore, MUAC is affected by exercise, type of work or household chores 

and this may make the use of it solely for nutritional assessment unpredictable. Future studies are 

needed to explore this research area. 

5.4.4 Influence of head circumference on dental maturity 

This study found a significant relationship between head circumference and tooth formation in 

females but not in males. Although the correlation was low to moderate, the relationship among 

females was significant for the multivariate analysis. The reason for the difference could be 

explained by a pattern of increase in the head circumference over a longer period of time in 

females compared to males. The males had increased head circumference from age 5 to 9 years 

while it was from age 5 to 12 years in females. The findings may be an indicator of a relationship 

between permanent tooth formation and brain growth. Presently there are no other studies that 

investigated the correspondence of head circumference with permanent tooth development. 

However, a study on primary teeth showed that the number of erupted teeth has a relationship 

with head circumference (Vejdani et al. 2015). During perinatal and postnatal development, there 

is mobilization of resources to the brain at the expense of other tissues (known as the Expensive 

Tissue Hypothesis) (Aiello and Wheeler 1995). It is during this same period that the 

development of the primary and permanent dentition commences, with the e   mergence of all 

primary dentition occurring by approximately 30 months. The first phase of permanent tooth 
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development continues until the emergence of the incisors and first molars at approximately 6 

years, by which time brain size increase is almost completed. The second phase of permanent 

tooth development is associated with the pubertal growth spurt. Further studies should be done to 

unravel the precise relationship between tooth development and brain development to validate 

this assertion. 

5.5 Conclusion 

This study demonstrates that height, weight and BMI have a significant effect on the timing of 

tooth formation in males and females. The effect was mainly noticeable for children in the 

extremes of the spectrum of the BMI z-scores.  A well-designed longitudinal study is needed to 

verify this finding.  
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Chapter 6 

  Permanent tooth emergence: Timing and sequence in Black Southern African 

children 

Abstract  

Background: Data on timing of tooth emergence are essential for gaining an understanding of 

morphological variation in children and can be very useful for identification and aging. 

Currently, there are no comprehensive data on permanent tooth emergence of Black Southern 

African children.  

Aim: The study investigated the mean age of emergence and sequence of emergence of 

permanent teeth in Black Southern African children and compared the findings with other 

populations. The study also considered temporal trends in mean ages of emergence by comparing 

the present results with a limited study. 

Methods: The cross-sectional study involved 639 (266 males and 373 females) black Southern 

African children aged 5-20 years. The teeth emerged and the number of permanent teeth present 

in the mouth was recorded. Probit analysis was used to derive the mean age at emergence of the 

permanent teeth. Sex and cross population comparisons were done to determine differences in 

timing of emergence. Statistical significance was inferred at p<0.05.   

Results: Females emerged all the permanent teeth earlier than males except for the third molars 

(p<0.05). Children from other sub-Saharan African countries and Black Southern African 

children have similar ages of emergence of the permanent teeth. In general, Black Southern 

African children have earlier mean ages of emergence of permanent teeth compared to children 

from the USA, Europe, Australia and Asia. Sexual dimorphism was noted in the sequence of 

emergence of I1/M1 in the mandible with females having the M1I1 sequence as opposed to I1MI 



192 
 

in males. The sequence of emergence of Southern African males is similar in both jaws to males 

from other sub-Saharan African countries, the USA and Europe but differs from Iranians and 

Pakistanis who have similar sequences with P1and P2 emerging before C1. Females show similar 

pattern of sequence with other sub Saharan Africans, Australians and US females in the maxilla. 

Southern African display MI/I1 variation in the mandible with MI I1 being the commonest 

sequence of emergence among the Southern African females. No temporal changes were noted in 

the timing of emergence of permanent teeth of Black Southern African children 

Conclusion: The mean age of tooth emergence of Black Southern African children is similar to 

children from most other sub-Saharan African populations and earlier mean ages of emergence 

than children from Europe and Asia. There is variation in the M1/I1 sequence between males and 

females and between South African females and populations of European ancestry.  

Despite major socioeconomic and political changes in South Africa over the past two decades, 

no temporal change was noted in the mean age of emergence for the Black Southern African 

children when compared to an earlier report on the same population. This suggests that earlier 

emergence of the permanent dentition in Black Southern Africans is part of a general sub-

Saharan pattern of dental emergence that is distinct from European and Asian populations 
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6.1 Introduction 

Comparative data on growth and development, such as timing of tooth emergence, are essential 

for gaining an understanding of morphological variation in children. The importance of 

population-specific growth references extends beyond their utility in biological anthropology and 

health research.  For many populations in Africa, including South Africa, where birth registry 

and eliciting the date of birth are still a challenge, developmental information can be very useful 

for identification and aging (Kim et al. 2000; Yun et al. 2007).  

 
Initial data on timing of tooth emergence in Black Southern Africans were published twenty-

seven years ago (Blankenstein et al. 1990a). It is expected that there would be changes in the 

timing of tooth emergence since that time due to alterations in nutritional status, socioeconomic 

status, and possibly greater levels of intermarriages stemming from increasing urbanization. 

Therefore, new studies are needed to keep up with the expected evolution and to assess temporal 

changes in timing of tooth emergence. Furthermore, the previous study did not include timing of 

emergence for all the teeth (Blankenstein et al. 1990b). This study provides tables of emergence 

for all tooth classes of Black Southern African children, with a view to determine any temporal 

changes in the timing of emergence of permanent teeth and to also compare the findings with 

other populations.  

 
Dental development and other developmental indicators such as stature, secondary sex 

characteristics and bone growth have been used in estimating physiological age (Moorrees et al. 

1963). Dental development shows less variation in general and also low variability in relation to 

chronological age (Demirjian et al. 1985; Demirjian 1986) when compared to other growth 

defining events (Lewis and Garn 1960). Tooth emergence and formation are frequently used to 
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assess dental development. Tooth emergence is the more variable of the two measures because it 

is affected by retention or early loss of primary teeth and odontogenic infections (Holt et al. 

2001). However, it is a very simple, quick and reliable method to assess growth and development 

when there are no available radiographs.  

6.1.1 Population variation in tooth emergence 

Variation in tooth emergence within and among populations is reported in the literature (Akpata 

1971; Billewicz and McGregor 1975; Hassanali and Odhiambo 1981; Triratana et al. 1990; 

Pahkala et al. 1991; Kutesa et al. 2013). The reason for the variation among different populations 

is unknown, although several explanations involving genetic or environmental factors have been 

proposed (Garn et al. 1960, 1965; Pahkala et al. 1991; Liversidge 2003; Chaillet et al. 2005). A 

number of studies highlighted genetic differences. For example, the study by Blankenstein et al. 

(1990a, 1990b) on children in Johannesburg showed that Black South African children had 

earlier times of emergence compared to their Indian counterparts. Similarly, Hassanali and 

Odhiambo (1981) showed that the teeth of African Kenyans emerged earlier than the Asian 

Kenyans. West African children (Richardson et al. 1975) and African American children were 

found to have a pattern of early emergence compared to their European ancestry counterparts 

(Garn et al. 1973a; Stewart et al. 1982; Harris and McKee 1990; Koch and Poulsen 2001). This 

study aims to compare age of tooth emergence in Black Southern African children with other 

populations to see if the early timing of emergence pattern is fully characteristic of the sub-

Saharan populations. 

 
Environmental factors such as temperature and humidity can influence growth through adaptive 

responses (Smithers and Smith 1997). Eveleth (1966) suggested that tropical climate has an 

accelerating effect on maturation. Her study showed that White American children living in 
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Brazil, who were brought up under similar conditions to those living in the United States, had 

earlier permanent tooth emergence times. Similarly, Friedlander and Bailit (1969) found that 

populations living in tropical climates tend to be more dentally advanced than those living in 

temperate regions. Another factor that has received great attention is nutrition and its influence 

on tooth emergence. The view of some authors is that dental development is immune to 

malnutrition (Demirjian et al. 1985; Demirjian 1986; Elamin and Liversidge 2013). In contrast, 

more recent researchers have found a significant influence of nutritional status on tooth 

emergence (Psoter et al. 2007; Sanchez-Pérez et al. 2010; Must et al. 2012).  

6.1.2 Sex variation in tooth emergence 

Universally, it appears that females in any given population are more advanced in tooth 

emergence than males (Kochhar and Richardson 1998; Eskeli et al. 1999; Moslemi 2004; 

Oziegbe et al. 2014). Kochhar and Richardson (1998) found significant differences for maxillary 

lateral incisor and canine emergence with the mandibular canine showing the largest sexual 

dimorphism in timing of emergence.  Blankenstein et al. (1990a) found that Black South African 

females were ahead of males in the maxillary central and lateral incisors and the mandibular 

lateral incisors. However, Oziegbe et al. (2014) found that Nigerian girls had all permanent teeth 

emerged earlier than boys, with the greatest difference observed in the mandibular canine. 

Earlier emergence of permanent teeth in girls has been ascribed to an earlier commencement of 

maturation in general (Almonaitiene et al. 2010). 

6.1.3 Variation in sequence of tooth emergence 

The sequence of emergence of permanent teeth is of great importance in orthodontics, pediatric 

dentistry, anthropology, comparative odontology, and evolution of the dentition. The common 
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sequence of emergence is said to be M1 I1 I2 P1 C1 P2 M2 in the maxilla and M1 I1 I2 C1 P1 P2 M2 

in the mandible and any other sequence is regarded as a variant.  

 
A comprehensive study of Black and White American children showed polymorphic sequences 

occur within, and not between, teeth in eruption Phase I (Ml, 11, 12) and Phase II (C, P1, P2, and 

M2) (Smith and Garn 1987). More sequence variations are found in the mandible than in the 

maxilla, and mostly occur between C1 and P1. CI usually precedes P1 in the mandible (Smith and 

Garn 1987). Conversely, P1 precedes CI in the maxilla in both males and females. Sexual 

dimorphism appears in canine sequences (Whites only) with P2 preceding C1 in the maxilla, and 

also in the sequence M1I1/I1MI in the mandible with males having the I1MI sequence more 

frequently in both Blacks and Whites (Smith and Garn 1987). Other studies conducted in the 

USA, Australia, Finland, Iran and Nigeria found variation in the sequence of tooth emergence by 

sex, jaw (mandible vs maxilla) and population (Savara and Stein 1978; Diamanti and Townsend 

2003: Leroy et al. 2003; Moslemi 2004; Oziegbe et al. 2014), with the same variants described 

by Smith and Garn (1987).  

 
Polymorphisms in the sequence of tooth emergence may be linked to general ancestry or more 

specific population-level genetic variation (Garn et al. 1973b). Furthermore, the variants of 

emergence sequence may result in crowding and even non- emergence. For example, the 

emergence of M2 ahead of P1 and P2 may lead to the premolars being blocked out of the arch. 

Similarly, emergence of C1 at about the same time as the P1 may result in labial displacement of 

C1 (Profit 2007). The sequence of emergence is said to be affected by endocrine factors, chronic 

childhood illnesses, rickets, acute infection and even the mental status of the child in the first six 
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months of life. Other factors are the thickness of the oral mucosa, density of the bone, tooth 

ankyloses, dental caries and dental abscesses (Gordon and Kuskin 1935).  

6.1.4 Temporal changes in permanent tooth emergence 

In several human populations, temporal changes have been described for impaction and agenesis 

of the third molars as well as decreases in mandibular arcade dimensions (Garn et al. 1968; 

Kieser and Cameron 1987; Chorn and Hennenberg 1994; Quek et al. 2003). The results of 

studies comparing temporal changes in tooth emergence are not as straightforward. Rousset et al. 

(2003) found later emergence of the maxillary premolars and earlier emergence of permanent 

second molars in a French population compared to a similar study done over 40 years earlier.  

Similarly, Höuffding et al. (1984) found earlier emergence of teeth in a contemporary Japanese 

population when compared to data obtained in 1934. These changes were attributed to 

evolutionary reduction in the size of the maxilla, a progressive decrease in genetic control of 

permanent canines and premolars, or advances in preventive measures to preserve primary 

molars. Conversely, a study from Britain found delayed tooth emergence in recent populations 

compared to earlier populations (Elmes et al. 2010). However, in studies done in Uganda (Kutesa 

et al. 2013) and Nigeria (Oziegbe et al. 2014), no difference was found in the timing of tooth 

emergence in the recent populations compared to data from earlier studies.  

The recent and rapid sociopolitical changes in South Africa due to the fall of apartheid rule 

provide an ideal setting to explore changes in the timing of tooth emergence and dental variation 

in a context of demographic, nutritional and economic changes. 
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6.2 Materials and methods   

This is a cross-sectional study of clinically healthy Black Southern African children aged 5-20 

years, whose parents and grandparents are indigenous Southern Africans. A total of 639 children 

(373 females, 266 males) out of 642 children who met the inclusion criteria were randomly 

selected from those pupils being screened for dental treatment by the Community Oral Health 

Outreach Program (COHOP), Department of Community Dentistry, University of the 

Witwatersrand. Ethical approval (NO. M141001) was obtained from the Human Research Ethics 

Committee (Medical) of the University of the Witwatersrand. Permission to carry out the study 

was obtained from the local education authority and respective school heads. Consent was 

obtained from parents while assent was obtained from the children. 

 
Information collected from the dental records of the children included date of birth and sex. All 

selected students were examined in a mobile dental van equipped with a panoramic radiograph 

machine. Intra oral examination was done with sterile dental mirror and probe under a light 

source. Teeth present were recorded using Fédération Dentaire Internationale (FDI) notation. 

An emerged tooth was defined as a tooth with any part of its crown penetrating the gingiva and 

visible in the oral cavity (Al-Jasser and Bello 2003). In general oral surgery, some children have 

their emerged teeth extracted due to consequences of untreated dental caries, trauma or for 

orthodontic purposes. Extracted teeth were considered to have emerged for this study. After 

examination, panoramic radiographs were taken and children having agenesis of lateral incisors 

and third molar were excluded from the study. Three children were excluded because of 

incomplete data on tooth emergence.  
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The data were analyzed with Stata 12 for Windows. The analysis included frequencies and cross-

tabulations. The mean age at the time of emergence and standard deviations for each tooth were 

computed separately for males and females using probit analysis (Hayes and Mantel 1958). 

Various methods have been used to determine ages of emergence including graphical methods 

that require no assumption regarding the underlying distribution of age at emergence. To 

calculate mean age of attainment of emergence, which is assessed as a discrete event, it is best to 

use the principles of cumulative frequency curves, which is best done with probit regression 

(Healy 1986). This allows for adequate sampling of age range from early to late developers 

(Smith 1991). Probit regression helps to derive the mean age and range most probable for 50% of 

the population to have emerged a tooth, a measure equal to the median. Differences between the 

mean age of emergence of males and females were tested using Student’s t-tests, after Liversidge 

(2003). Statistical significance was inferred at p < 0.05. 

6.3 Results 

6.3.1 Variation in emergence times  

Among the males, there is no significant difference in the mean emergence times between the 

left and right maxillary teeth or the right and left mandibular teeth (Table 6.1). There are no 

statistically significant differences in the mean ages at emergence of the right and left maxillary 

teeth in females, although there is a tendency for earlier emergence times for the maxillary left 

teeth with the exception of the second premolar and first molar (Table 6.2).  
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Table 6.1. Mean emergence age (years) of permanent teeth in males 
 

Maxilla 
Tooth 
type 

Upper right Upper left Combined 
Mean SD Mean SD Mean SD 

I1 6.94 0.93 6.93 0.80 6.93 0.87 
I2 7.78 1.06 7.78 1.08 7.78 1.07 
C1 11.15 1.81 11.04 1.58 11.09 1.69 
P1 10.27 1.84 10.34 1.59 10.31 1.72 
P2 11.18 1.70 11.14 1.79 11.16 1.74 
M1 6.27 0.29 6.26 0.29 6.27 0.29 
M2 12.69 1.80 12.81 1.75 12.75 1.78 
M3 18.93 1.39 18.71 1.50 18.82 1.45 

Mandible 
Tooth 
type 

Lower right Lower left Combined 
Mean SD Mean SD Mean SD 

I1 6.07 0.34 6.09 0.34 6.08 0.34 
I2 7.06 0.95 7.06 0.95 7.06 0.95 
C1 10.17 1.67 10.17 1.67 10.17 1.67 
P1 10.76 1.76 10.76 1.76 10.76 1.76 
P2 11.67 2.42 11.67 2.42 11.67 2.42 
M1 6.09 0.31 6.12 0.25 6.11 0.28 
M2 12.64 2.07 12.64 2.07 12.64 2.07 
M3 18.45 1.97 18.45 1.97 18.45 1.97 

Note: No significant difference in the emergence times between the right and left teeth  
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Table 6.2. Mean emergence age (years) of permanent teeth in females 
 

Maxilla 
Tooth 
type 

Upper right Upper left Combined 
Mean SD Mean SD Mean SD 

I1 6.44 0.61 6.41 0.71 6.43 0.66 
I2 7.47 0.76 7.38 1.08 7.42 0.92 
C1    10.51 1.39    10.44 1.53     10.47 1.46 
P1 9.90 1.31 9.79 1.38 9.84 1.34 
P2    10.59 1.88    10.67 1.42     10.63 1.65 
M1 6.01 0.94 6.08 0.86 6.04 0.89 
M2    12.14 1.28    11.99 1.32     12.07 1.30 
M3    19.67 2.99    19.45 2.79     19.56 2.89 

Mandible 
Tooth 
type 

Lower right Lower left Combined 
Mean SD Mean SD Mean SD 

I1 5.44 0.93 5.49 0.96 5.46 0.94 
I2 6.70 1.71 6.79 1.65 6.74 1.68 
C1 9.47 1.63 9.46 1.11 9.47 1.37 
P1 9.94 1.32    10.07 1.24     10.01 1.28 
P2     10.66 1.26    10.66 1.32     10.66 1.29 
M1 5.33 1.17 5.41 1.09 5.37 1.13 
M2     11.70 1.43    11.68 1.59     11.69 1.51 
M3     18.36 2.37    18.80 2.61     18.58 2.49 

Note: No significant difference in the emergence times between the right and left teeth 
 
 
 
 

The females have a significantly earlier mean age of emergence of all the permanent teeth in the 

maxilla compared to the males (p=0.00), except for the maxillary third molar that emerges 

significantly earlier in males (p=0.00) (Table 6.3 and Figure 6.2). A similar pattern was observed 

in the mandible except that the mandibular third molars of males have an earlier, but not 

significantly earlier, mean age of emergence (p=0.48) (Table 6.3 and Figure 6.2). The greatest 

difference in the timing of emergence between males and females is in the mandibular second 

premolar (Table 6.3).  
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Table 6.3. Comparison of mean age (years) of permanent tooth emergence between males 
and females  
 

Maxilla 

Tooth type 
Males=266 Females=373 

t p 
Mean SD Mean SD 

I1 6.93 0.87 6.43 0.66 8.26 0.000 
I2 7.78 1.07 7.42 0.92 4.44 0.000 
C1 11.09 1.69 10.47 1.46 4.95 0.000 
P1 10.31 1.72 9.84 1.34 3.88 0.000 
P2 11.16 1.74 10.63 1.65 3.91 0.000 
M1 6.27 0.29 6.04 0.89 4.06 0.000 
M2 12.75 1.78 12.07 1.30 5.58 0.000 
M3 18.82 1.45 19.56 2.89 3.84 0.000 

Mandible 

Tooth type 
Males Females 

t p Mean SD Mean SD 
I1 6.08 0.34 5.46 0.94 10.29 0.000 
I2 7.06 0.95 6.74 1.68 2.80 0.005 
C1 10.17 1.67 9.47 1.37 5.81 0.000 
P1 10.76 1.76 10.01 1.28 6.24 0.000 
P2 11.67 2.42 10.66 1.29 6.82 0.000 
M1 6.11 0.28 5.37 1.13 10.45 0.000 
M2 12.64 2.07 11.69 1.51 6.71 0.000 
M3 18.45 1.97 18.58 2.49 0.71 0.479 
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Figure 6.1. Mean emergence times of maxillary teeth by sex in Black Southern Africans 
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Figure 6.2. Mean emergence times of mandibular teeth by sex in Black Southern Africans 
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Comparative analysis of emergence times between the maxilla and the mandible shows that all 

mandibular teeth emerge significantly earlier, except for the first premolar (p=0.058) and the 

second premolar (p=0.568) (Table 6.4).    

Table 6.4. Comparison of mean emergence age (years) of permanent tooth in the mandible 
and maxilla (males and females combined) 
 

Maxilla Mandible 

t p Tooth 
type Mean SD Tooth 

type Mean SD 

I1 6.68 0.85 I1 5.88 0.60 13.95 0.000 
I2 7.61 1.03 I2 6.88 1.36 7.37 0.000 
C1 10.71 1.56 C1 9.78 1.54 7.48 0.000 
P1 10.02 1.51 P1 10.25 1.51 1.90 0.058 
P2 10.84 1.68 P2 10.92 1.79 0.57 0.568 
M1 6.22 0.63 M1 5.89 0.63 6.53 0.000 
M2 12.29 1.55 M2 12.03 1.83 1.88 0.060 
M3 19.42 2.50 M3 18.73 2.37 3.55 0.000 

 
 
 

6.3.2 Sexual dimorphism in the sequence of emergence  

M1 and I1 variation in the sequence of emergence was noted. The sequence is M1I1 in both jaws 

in females, whereas in males it is I1M1 in the mandible and M1I1 in the maxilla. Other teeth 

emerged in the same sequence for both sexes (Tables 6.1 and 6.2). The overall emergence 

sequence for the whole population is similar to the pattern for the males (I1M1 M1I1I2 I2 C1P1 P1 

C1P2P2M2 M2 M3 M3) (Table 6.5). However, the two teeth (I1M1) appear to emerge in close 

succession in the combined male and female data (Table 6.6).  
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Table 6.5. Sequence of tooth emergence in the mandibular* and maxillary teeth 
 

Males Females Combined 
Tooth 
type 

Dental 
age Sequence Tooth 

type 
Dental 

age Sequence Tooth 
type 

Dental 
age Sequence 

I1 6.08 1 M1 5.37 1 I1 5.88 1 
M1 6.11 2 I1 5.46 2 M1 5.89 2 
M1 6.27 3 M1 6.04 3 M1 6.22 3 
I1 6.93 4 I1 6.43 4 I1 6.68 4 
I2 7.06 5 I2 6.74 5 I2 6.88 5 
I2 7.78 6 I2 7.42 6 I2 7.61 6 
C1 10.17 7 C1 9.47 7 C1 9.78 7 
P1 10.31 8 P1 9.84 8 P1 10.02 8 
P1 10.76 9 P1 10.01 9 P1 10.25 9 
C1 11.09 10 C1 10.47 10 C1 10.71 10 
P2 11.16 11 P2 10.63 11 P2 10.84 11 
P2 11.67 12 P2 10.66 12 P2 10.92 12 
M2 12.64 13 M2 11.69 13 M2 12.03 13 
M2 12.75 14 M2 12.07 14 M2 12.29 14 
M3 18.45 15 M3 18.58 15 M3 18.73 15 
M3 18.82 16 M3 19.56 16 M3 19.42 16 

*Mandibular teeth in subscripts and italics 
 
 

6.3.3 Sequence of emergence:  Sub-Saharan African population comparisons  

Maxilla C1/P1 polymorphism 

Males from sub-Saharan African countries have similar sequences of maxillary tooth emergence 

with the exception of the C1/P1 polymorphism. For males from these countries, except those from 

Zambia, the P1 precedes the C1. In general, females from sub-Saharan African countries have a 

P1C1 sequence of tooth emergence in the maxilla. The exception to this pattern is the Baka 

females from Cameroon, who have simultaneous emergence of the P1 and C1 (Table 6.6).    
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Mandibular M1/I1 polymorphism 

In the mandible, the I1M1 polymorphism is evidently widespread in sub-Saharan populations. 

The I1 emerges earlier than the M1 (I1M1) in Black Southern African males. This is similar to the 

pattern in males from Kenya and Nigeria, but contrary to the finding of the previous Southern 

African study where males are characterized by the M1I1 pattern. Males from other sub-Saharan 

countries have the M1I1 sequence, demonstrating that this is a very common polymorphism 

(Table 6.7). 

 
Variations in the I1/M1 sequence of emergence are noted in the mandible among the sub-Saharan 

African females. Females from Southern Africa, Ghana, Gambia and Cameroon have M1 emerge 

before the I1, whereas other females emerge their I1 first.  

 
Mandibular C1/P1 polymorphism 

Zambia females show C1/P1 variation with the P1 preceding the C1 whereas females from the 

other sub-Saharan countries have the C1P1 sequence (Tables 6.6 and 6.7). Variations in the 

mandibular C1/P1 sequence of emergence characterize the sub-Saharan African males. Males 

from Southern Africa, Kenya and Cameroon have similar tooth emergence sequences with the C1 

preceding the P1. In contrast, males from Nigeria and Zambia emerged their P1 before the C1. 

Ghanaian and Ugandan males seem to have their C1 and P1 emerge simultaneously. 
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Table 6.6. Mean age of emergence of maxillary permanent teeth in different sub-Saharan 
African populations*  
 

Country Sex I1 I2 C1 P1 P2 M1 M2 M3 
Southern Africa (Black) 

(Present Study) 
M 6.93 7.78 11.09 10.31 11.16 6.27 12.75 18.82 
F 6.43 7.72 10.47 9.84 10.63 6.04 12.07 19.56 

South Africa (Black) 
(Blankenstein et al. 1990) 

M 6.94 8.00    6.09   
F 6.79 7.72    6.02   

Zambia (Gillett 1997) 
M 6.63 7.89 10.06 10.42 10.94 5.77 11.46 

 F 6.47 7.32 9.81 9.30 10.45 5.06 11.18 
 Uganda (Krumholt 1971) 

 
M 6.60 7.80 10.50 9.60 11.00 5.60 11.00 

 F 6.60 7.40 9.70 9.30 10.10 6.00 10.30 
 Kenya 

(Hassanali & Odhiambo 1989) 
M 6.91 7.99 10.93 9.87 10.74 6.32 11.54  
F 6.55 7.71 10.26 9.40 10.15 6.13 11.40  

Nigeria (Oziegbe et al. 2013) 
 

M 6.89 8.05 10.96 10.25 11.08 6.15 12.01 
 F 6.45 7.68 10.45 9.76 10.75 5.95 11.61 
 Ghana (Houpt et al. 1967)  

 
M 6.80 8.00 10.90 10.00 11.00 5.50 11.40 

 F 6.50 7.80 10.00 9.50 10.50 5.50 11.40 
 Gambia 

 (Billewicz & McGregor 1975) 
M 7.38 8.60 11.29 10.26 11.23 6.00 11.96  
F 7.13 8.10 10.56 9.78 10.60 5.80 11.19  

Baka, Cameroon 
 (Ramirez Rozzi 2016) 

M 6.47 7.77 9.55 9.27 10.09 5.33 10.97 19.63 
F 6.14 7.43 8.93 8.94 9.57 5.15 9.98 16.66 

 *Table arranged by geographical proximity of countries to South Africa 
 
  



209 
 

Table 6.7.  Mean age of emergence of mandibular permanent teeth in different sub-
Saharan African populations by sex* 
 

Country Sex I1 I2 C1 P1 P2 M1 M2 M3 
Southern Africa 
(Present Study) 

M 6.08 7.06 10.17 10.76 11.67 6.11 12.64 18.45 
F 5.46 6.74 9.47 10.01 10.66 5.37 11.69 18.58 

South Africa Black  
(Blankenstein et al. 1990) 

M 5.83 6.79    5.78   
F 5.79 6.73    5.68   

Zambia  
(Gillett 1997) 

M 5.79 6.62 9.95 9.90 11.23 5.19 11.30  
F 5.31 6.55 9.51 8.87 10.59 5.35 10.74  

Uganda  
(Krumholt 1971) 

M 6,00 6.70 10.10 10.10 11.00 5.80 10.60 
 F 5.80 6.40 8.50 9.50 10.30 5.80 10.10 
 Kenya 

(Hassanali & Odhiambo 1989) 
M 5.83 6.86 9.96 10.05 10.90 6.03 11.39 

 F 5.62 6.56 9.20 9.62 10.23 5.70 11.07 
 Nigeria  

(Oziegbe et al. 2013) 
M 5.52 7.01 10.33 10.29 10.85 5.78 11.58  
F 5.43 6.58 9.65 9.80 10.56 5.59 11.25  

Ghana 
 (Houpt et al. 1967)  

M 5.80 6.60 10.50 10.50 11.10 5.40 11.30 
 F 5.60 7.00 9.40 9.70 10.80 5.00 11.00 
 Gambia  

(Billewicz & McGregor 1975) 
M 6.22 7.46 10.55 10.70 11.44 5.67 11.56  
F 6.08 7.07 9.64 9.96 10.69 5.46 10.91  

Baka, Cameroon 
 (Rameriz Rozzi 2016) 

M 5.62 6.62 9.40 9.73 10.47 5.18 10.76 18.33 
F 5.58 6.46 8.46 8.97 9.60 4.95 9.88 16.13 

*Table arranged by proximity of countries to South Africa 
 
 
 

6.3.4 Sequence of emergence: comparison with European ancestry populations  

The sequence of emergence of maxillary permanent teeth in Black Southern African males and 

females is similar to the sequence of European ancestry males and females from Australia, 

Belgium and the USA with the P1 preceding the C1 (Table 6.8). In contrast, the males from Iran 

and Pakistan show a different emergence sequence with the P1 and P2 preceding the C1.  

 
In the mandible, the males from Southern Africa and other populations have similar sequence of 

emergence of mandibular teeth (Table 6.8). The sequence of tooth emergence among Black 

Southern African females is different from females from other continents (Table 6.8). The 



210 
 

Southern African females show variation in the I1/M1 polymorphism with the mandibular M1 

emerging before the mandibular I1 (M1I1I2CP1M2P2), whereas the mandibular I1 emerged earlier 

than the mandibular M1 in other populations (I1M1I2CP1M2P2) except for females from Pakistan 

(Table 6.8).  

 
Southern African males have a shorter interval between the first tooth to emerge and the last 

tooth to emerge (6.67 years) compared with females (6.70 years), even though tooth emergence 

commenced earlier in females (Table 6.8). The third molar was not considered in this 

comparison because of its high variability. 

 

6.3.5 Comparisons of mean emergence times 

The results of this study are in agreement with the emergence times reported by an earlier study 

of Black Southern Africans (Blankenstein et al. 1990) (Tables 6.6 and 6.7). Similar patterns in 

the timing of tooth emergence occur among the males and females from sub-Saharan African 

populations, except for the variations in the mean emergence times of canines and first premolars 

that characterise both males and females (Figures 6.3-6.6). Southern Africans have later M2 

emergence in both males and females compared to other sub-Saharan African countries. Notably, 

the Baka females of the Cameroon have the lowest mean age of emergence for most of the teeth 

compared to other sub-Saharan African samples (Figures 6.3-6.6). 

 
Black Southern African children have earlier emergence times for all the permanent teeth, except 

the second molars, compared to European ancestry children from the USA (Savara and Steen 

1978), Belgium (Leroy et al. 2003) and Australia (Diamanti and Townsend 2003).  Children 

from Iran have all of their teeth emerging later than the Black Southern African children 

(Moslemi 2004) (Table 6.8). Compared to the Pakistani males, South Africans have earlier 
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emergence of all the mandibular teeth and the central and lateral incisors and the first molars in 

the maxilla (Table 6.8). The Southern African females have earlier emergence times of all the 

teeth compared to Pakistani females (Table 6.8).  

 
Table 6.8. Comparative table of emergence times of Southern African children with 
children from other continents 
 

Tooth     
type 

Southern 
Africa 

(Present study) 

IRAN 
(Moslemi 

2004) 

PAKISTAN 
(Khan 2011) 

AUSTRALIA* 
(Diamanti & 

Townsend 2003) 

USA*  
(Savara & Steen 

1978) 

BELGIUM* 
(Leroy et al. 

2003) 

M F M F M F M F M F M F 
Maxilla 

I1 6.93 6.43 8.04 7.54 7.50 7.50 7.40 7.20 7.20 7.00 7.10 6.89 
I2 7.78 7.42 9.26 8.79 8.45 8.35 8.60 8.20 8.30 8.00 8.25 7.88 
C1 11.09 10.47 12.86 12.12 10.95 10.70 11.80 11.20 11.50 11.00 11.50 10.99 
P1 10.31 9.84 11.41 11.08 10.10 10.10 11.30 10.80 11.10 10.50 10.70 10.37 
P2 11.16 10.63 12.38 12.58 10.10 10.75 12.10 11.70 11.70 11.20 11.60 11.35 
M1 6.27 6.04 6.83 6.71 6.65 6.65 6.70 6.60 6.50 6.40 6.30 6.17 
M2 12.75 12.07 12.96 12.58 11.65 12.00 12.70 12.30 12.20 12.10 12.25 11.98 

Mandible 
I1 6.08 5.46 6.75 6.50 6.70 7.05 6.60 6.40 6.20 6.10 6.30 6.14 
I2 7.06 6.74 8.42 7.91 8.40 7.85 7.80 7.50 7.50 7.20 7.40 7.13 
C1 10.17 9.47 11.75 10.25 11.80 9.95 11.00 10.10 10.70 9.90 10.60 9.74 
P1 10.76 10.01 11.92 11.08 12.20 10.35 11.20 10.60 10.90 10.40 10.70 10.25 
P2 11.67 10.66 12.96 12.63 12.80 10.75 12.10 11.70 11.60 11.10 11.70 11.37 
M1 6.11 5.37 6.83 6.67 6.80 6.45 6.60 6.40 6.50 6.30 6.30 6.17 
M2 12.64 11.69 12.67 12.42 12.90 11.35 12.20 11.80 12.00 11.80 11.80 11.55 
*Samples include children of European ancestry. 
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Figure 6.3.  Mean emergence times in males for different African groups (Maxilla) 
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Figure 6.4. Mean emergence times in females for different African groups (Maxilla) 
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Figure 6.5. Mean emergence times in males for different African groups (Mandible) 
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Figure 6.6. Mean emergence times in females for different African groups (Mandible) 
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6.4 Discussion 

This is the first comprehensive study of tooth emergence in permanent teeth of Black Southern 

African children. An earlier study did not evaluate the full dentition and was conducted more 

than 25 years ago. The mean emergence ages for permanent teeth in Black Southern African 

children determined in this study are similar, in some respects, to a previous study of the same 

population (Blankenstein et al. 1990). Methodological differences could have accounted for the 

small differences between this study and the earlier study. 

6.4.1 Right/left asymmetry in emergence 

The question of asymmetrical timing of tooth emergence has generated some interest among 

researchers, but no clear patterns are documented. There is no specific pattern of asymmetry 

observed for mandibular or maxillary teeth in the Southern African children.  This result is the 

same as previous reports (Billewicz and McGregor 1975; Leroy et al. 2003; Hernandez et al. 

2008) where no propensity towards earlier emergence on one side was detected in Gambian, 

Flemish or Spanish children respectively.  However, Kaur et al. (2010) noted that maxillary teeth 

emerged earlier on the right while mandibular teeth emerged earlier on the left in a study of 

Indian children. The differences were not significant. A Nigerian study (Oziegbe et al. 2014) 

found a propensity for earlier emergence of the permanent maxillary canine on the right in 

females but this was not statistically significant. No reason was adduced for this variation in their 

study.   

Asymmetry in the timing of emergence therefore seems to be random and may reflect the effects 

of several confounding variables, such as tooth loss, tooth decay and occlusion variation, that are 

difficult to document in cross-sectional studies. 
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6.4.2 Maxillary versus mandibular emergence times 

The present study found that the mandibular incisors, canines and first and second molars 

emerged before their maxillary counterparts while the two premolars emerged earlier in the 

maxilla. This is similar to studies done in the Gambia (Billewicz and McGregor, 1975), Ghana 

(Houpt et al. 1967), Kenya (Hassanali and Odhiambo 1989) and Congo (Rameriz Rozzi 2016). 

This may represent the general pattern for sub-Saharan Africa. However, in Nigerian females 

only the P1 emerged earlier in the maxilla (Oziegbe et al. 2014) so some variation is present.  

Other variants characterise the non-African populations. In the Iranian females, only the second 

premolar emerged earlier in the maxilla (Moslemi 2004). Data from the USA (Savara and Steen 

1978) and Australia (Diamanti and Townsend 2003) European ancestry children show earlier or 

similar emergence times for the mandibular premolars compared with the maxilla. The reason for 

this variation might be due to higher decay and missing components of the DMFT in those 

populations (WHO 2000). Earlier loss of deciduous precursors of the premolars is more 

frequently due to dental caries in the mandible compared to the maxilla (Ahamed et al. 2012).  

6.4.3 Sex variation in teeth emergence 

Black Southern African females have all their teeth emerged earlier than males except for the 

third molars. The reason for this could be due to the variability of third molars because of 

impaction and agenesis. Although a similar trend was found in studies of other populations, 

(Kochhar and Richardson 1998; Eskeli et al. 1999; Moslemi 2004; Oziegbe et al. 2014), the 

difference was not always significant for all the teeth. The significantly earlier emergence times 

found in females could be due to the earlier maturation of females in general compared to males. 

The influence of environmental factors may also contribute to the difference. Females are more 

buffered from environmental influences compared to males and these is seen in the slightly 
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higher incidence of stunting (Kruger et al. 2014) and delay in the emergence of permanent teeth 

seen in Black Southern African males than females.  

 
We found that the largest difference in the timing of emergence between males and females is in 

the mandibular second premolar. In contrast, Kochhar and Richardson (1998) and Oziegbe et al. 

(2014) observed the greatest difference in the mandibular canine in the Northern Irish and 

Nigerian populations. Earlier emergence of permanent teeth in females is ascribed to an earlier 

commencement of maturation in general (Almonaitiene et al. 2010). 

6.4.4 Temporal changes in the mean age of tooth emergence 

The mean age of emergence from the present study is very similar to that obtained by 

Blankenstein et al. (1990a) for the same population.  During the nearly 30-year interval between 

the two studies, South Africa underwent tremendous nutritional, socioeconomic and 

sociopolitical transformations that would presumably affect development. The lack of temporal 

changes in the timing of tooth emergence may be due to the relatively short time between the 

two studies.  Similarly, Kutesa et al. (2013) and Oziegbe et al. (2014) did not find any secular 

trend in the mean age of permanent tooth emergence in Uganda and Nigerian populations. Others 

found secular trends in the mean age of tooth emergence in Japanese (Höuffding et al. 1984) and 

French (Rousset et al. 2003) populations. The differential prevalence of dental caries of primary 

teeth, and the quality of health care services between the generations (especially the generations 

before the advent of water fluoridation and fluoride containing dentifrices) could account for the 

secular trends reported.  
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6.4.5 Sequence of emergence times 

The I1/ MI mandibular polymorphism between males and females in South Africa is in agreement 

with the findings by Smith and Garn (1987) for Black and White populations in the USA. They 

noted that the occurrence of the I1MI sequence in the mandible is more frequently encountered in 

males. This is contrary to the findings of this study, which shows the variation to be present 

among females. No reason can be readily adduced for this variation.  A limitation of this study is 

the cross-sectional design, where individual sequence of emergence and types of polymorphism 

in sequence of emergence cannot be calculated. Notwithstanding, the commonest sequence of 

emergence is reported in this study.  

 
The C1/P1 variation detected in the present study is consistent with the known variation in 

emergence of the canine teeth in the maxilla and mandible (Savara and Steen 1978; Diamanti 

and Townsend 2003: Khan 2011; Leroy et al. 2003). However, these classes of teeth (P1 and C1; 

P2 and C1) emerge in close succession in Southern African males and the females. This further 

supports the observation that variation in this aspect of the sequence is common both within and 

among populations. The reason for this is not clear; Harila-Kaera et al. (2003) suggest that the 

timing of tooth emergence is determined more by genetics than by the environment.  Apart from 

this, children whose P1 precede their C1 in emergence are more likely to develop malocclusions 

related to tooth size arch size discrepancy (TSALD) later on (Moshkelgosha et al. 2014). The 

influence of the sequence of emergence on malocclusion in Southern African children is beyond 

the scope of this study. Therefore, more studies are needed to elaborate on this aspect of dental 

development. 
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The sequence of emergence in Southern African males is similar to that of the other sub-Saharan 

African countries compared here except Zambia. More research is needed to confirm whether the 

similarity is due to common ancestry of Bantu language speaking peoples. However, M1/I1 

variation was seen in the Southern African females. The reason for the difference may be due to 

sample size and the method of analysis.  

 
The sequence of emergence for the maxilla and mandible in males from Southern Africa is very 

similar to the sequence of emergence found in males of European ancestry in the USA (Savara 

and Steen 1978), Australia (Diamanti and Townsend 2003) and Belgium (Leroy et al. 2003) but 

differs from the Iranian and Pakistani males who have their maxillary P1 and P2 preceding the C1. 

It is not clear why the same pattern appears in Southern Africans and the European ancestry 

populations. However, the reason for the similar sequence between European ancestry 

populations, as well as the similarity between Iran and Pakistan could be attributed to genetic, 

common ancestry and population affinity. Southern African, Australian and US females have 

similar sequences of emergence in the maxilla. Southern Africans display MI/I1 variation in the 

mandible with MI I1 being the commonest sequence of emergence among the Southern African 

females.  

6.4.6 Population comparison of emergence times  

Several reasons have been suggested for the variations in the timing of tooth emergence between 

and within populations, including genetic variation (Houpt et al. 1967; Garn et al. 1972, 1973a; 

Hassanali and Odhiambo 1981), socio-economic factors with their implicit connection to 

nutritional and health statuses (Lee et al. 1965; Kaul et al. 1975), fluoride use (Short 1944) and 

climate adaptation (Friedlaender and Bailit 1969). The general consensus is that genetic diversity 

is the main determinant of emergence age. When the mean emergence ages by tooth in Southern 
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Africa are compared with those of other populations, the mean emergence times in Southern 

Africa Black children are similar to the Nigerians (Oziegbe et al. 2014), the Gambians (Billewicz 

and McGregor 1975), Ghanaians (Houpt et al. 1967), Kenyans (Hassanali and Odhiambo 1989) 

and Ugandans (Krumholt 1971). The reason for the close emergence times is likely be due to 

genetic similarity because African populations experience diverse environments yet the timing is 

similar. Previous studies among populations of African ancestry have shown earlier timing of 

permanent tooth emergence compared to their European ancestry and Asian counterparts in the 

USA (Garn et al. 1972, 1973a) and England (Lavelle 1976; Stewart et al. 1982; Harris and 

McKee 1990; Koch and Poulsen 2001). This suggests genetic influence on variations in 

odontogenesis and eruption. Black Southern African children show earlier emergence ages for all 

permanent teeth than European ancestry children in the USA (Savara and Steen 1978), Iran 

(Moslemi 2004), Belgium (Leroy et al. 2003), and Australia (Diamanti and Townsend 2003). 

Southern African children are also advanced in the emergence of most permanent teeth 

compared to children from Pakistan (Khan 2011).  

 
The permanent tooth emergence times in both Southern African males and females are later 

compared with the Baka population from Cameroon. Similarly, Baka people have earlier 

emergence times in most of their permanent teeth compared to other sub-Saharan African 

countries cited in the results although close emergence times in some teeth are found among 

these countries and the Baka people. The reason for the difference may be due to genetic 

divergence of the Bantu language speaking people from the Baka who are the descendants of the 

Late Stone Age hunter-gatherer peoples of the central African rainforest (Diamond and Bellwood 

2003). They are the second most genetically diverse and tremendously divergent African 

population after the Khoisan peoples (Tishkoff et al. 2009). The initial divergence between 
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ancestors of pygmies and non-pygmies occurred around 59,000 years ago (Verdu et al.2009). 

The closeness in the timing of emergence could be explained by genetic admixture between these 

hunter-gatherers and Bantu language speaking peoples. More research is needed to confirm this 

supposition.  

6.5 Conclusion  

The mean age of tooth emergence of Southern African children is similar to children from most 

other sub-Saharan African populations. Black Southern African children of both sexes show 

earlier mean ages of emergence than children from Europe and Asia. There is variation in the 

M1/I1 sequence between males and females and between South African females and populations 

of European ancestry.  

Despite major socioeconomic and political changes in South Africa over the past two decades, 

no temporal change is seen in the mean age of emergence for Southern African Black children 

when compared to an earlier report on the same population. This suggests that earlier emergence 

of the permanent dentition in Black Southern Africans is part of a general sub-Saharan pattern of 

dental emergence, a pattern that is distinct from European and Asian populations. 
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Chapter 7 

Influence of nutrition on permanent tooth emergence 

Abstract 

Background: The relative immunity of tooth development from the effects of the environment, 

in comparison to skeletal development, is debated.  While evidence shows that systemic stresses 

during the period of tooth formation lead to enamel hypoplasia and molar incisor 

hypomineralization, the effect of malnutrition in not clear.   

Aim: This study investigated the effect of nutritional status (as measured by BMI, height, 

weight, mid-upper arm circumference and head circumference) on the timing of permanent tooth 

emergence and the number of emerged teeth in a sample of Black Southern African children.  

Method: This was a cross-sectional study involving 639 (266 males, 373 females) healthy 

children aged 5-20 years. The height and BMI were converted to z-scores using the WHO z-

scores for age tables (WHO 1995). A cut-off z-score of <−2 for both BMI and Height for age 

(HAZ) was used to place children into the categories of underweight/short for age, normal 

weight/height for age and overweight/obese/tall for age. ANOVA and a Games Howell 

procedure were used to determine the differences between the categories. Multivariate analysis 

was performed to determine the effect of the anthropometric variables on the number of teeth 

emerged. Statistical significance was inferred at p<0.05. 

Results: Males who are overweight/obese generally show significantly earlier tooth emergence 

times than those who are severely underweight (p<0.05). Overweight/obese females generally 

show significantly earlier tooth emergence times than normal weight/ height females (p<0.05). 

Females have significantly more emerged teeth than males (p<0.05) and taller children have 

more emerged teeth than shorter children when corrected for age and sex (p<0.05). The 
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generalized linear regression model (negative binomial) shows that height, weight and BMI have 

significant associations (p<0.05) with the number of emerged teeth. 

Conclusion: Height, weight and BMI significantly influence the timing of tooth emergence and 

the number of emerged permanent teeth in Southern African Black children. Obese and 

overweight children are more advanced in the timing of emergence and had more emerged teeth 

than underweight individuals. No relationship was found between head circumference or mid-

upper arm circumference and the number of emerged teeth. These results challenge the notion 

that dental development is relatively immune to environmental stresses. 
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7.1 Introduction 

Tooth emergence and tooth maturation are fundamental components of a child’s growth pattern 

that are frequently used to assess dental development and physiological age (Al-Jasser and Bello 

2003; Helm and Seidler 1974; Holman and Jones 2003). Of the two dental measures, tooth 

emergence is more variable because it is affected by retention or early loss of primary teeth as 

well as odontogenic infections (Holt et al. 2001). Furthermore, there is substantial evidence that 

dental development shows less variability and also low variability in relation to calendric age 

(Demirjian et al. 1985; Demirjian 1986; Green 1961; Holt et al. 2001) and relative to other 

growth events such as the appearance of bone ossification centers (Lewis and Garn 1960).  

 
The relative immunity of dental development from the effects of the environment, in comparison 

to skeletal development, is debated. While some studies have shown that tooth formation is a 

very reliable measure of chronological age (Elamin and Liversidge 2013; Poureslami et al. 

2015), there is overwhelming evidence for variability in the relationship between tooth 

emergence and age even within the same population (Clements et al. 1957; Garn et al. 1965; 

Garn et al. 1973). Researchers explain this plasticity in the timing of tooth emergence as due to 

an array of factors, including genetic-based population variation, hormonal influence, 

geographical location (Adler 1963; Lee et al. 1965; Tanguay et al. 1984), economic status 

(Enwonwu 1973), and gross malnutrition (Holman and Yamaguchi 2005). Previous studies 

investigating the relationship between tooth emergence and malnutrition used height, weight, 

Body Mass Index (BMI) and head circumference (HC) as proxies of nutritional status. None 

investigated whether another important indicator of malnutrition, mid-upper arm circumference 

(MUAC), correlates with tooth emergence. This study focuses on nutritional correlates (weight, 
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height, BMI, head circumference (HC), and mid-upper arm circumference (MUAC)) and their 

relationship with tooth emergence.  

7.1.1 Sex and tooth emergence 

Sex-based variations have been observed in permanent tooth emergence, with most studies 

(Nanda 1960; Akpata 1971; Eskeli et al. 1999; Moslemi 2004) reporting female advancement. 

This variation has been credited to earlier onset of development in females (Boas 1927; 

Magnússon 1982; Demirjian 1986; Holman and Jones 2003). Pertaining specifically to sub-

Saharan African children, Kutesa et al. (2013) found Ugandan females to be ahead of their male 

counterparts. In a Nigerian study, females were found to precede males in the emergence of all 

teeth with one notable exception the mandibular central incisor (Oziegbe et al. 2014). A previous 

study from South Africa showed females to be ahead in emergence (Blankeinstein et al. 1990), 

but not all of the permanent teeth were investigated. This study investigates sexual dimorphism 

in the timimg of emergence of all permanent teeth in Black Southern Africans. 

7.1.2 Body Mass Index (BMI) and tooth emergence 

Obesity has been shown to accelerate growth and it affects almost every system involved in 

growth (Must et al. 2006). For example, obese children attain puberty earlier than underweight 

children (Aksglaede et al. 2009) and are significantly taller than their underweight counterparts 

(He and Karlberg 2001). The data on BMI and tooth emergence generally follow this pattern. 

Earlier studies of African Americans and European Americans (Clements et al. 1957; Garn et al. 

1965; Garn et al. 1973) showed that children from high socioeconomic backgrounds had earlier 

tooth emergence, which was attributed to differences in health care and nutrition. Furthermore, 

obesity and being overweight are significantly and positively associated with the number of 

emerged teeth (Sánchez-Pérez et al. 2010; Must et al. 2012). Sánchez-Pérez et al. (2010) found 
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this association to have occurred specifically during the mixed dentition period before puberty; 

however, there was catch-up by the non-obese after reaching puberty. Yet these findings cannot 

be generalized to all populations. For example, Oziegbe et al. (2009) did not find a consistent 

difference in the timing of primary tooth emergence among three Nigerian socioeconomic 

classes.  

7.1.3 Weight, height and tooth emergence 

Height and weight are the physical manifestations of growth and development that are utilized 

most frequently in diagnostic procedures and in growth assessment. It is expected that any delay 

or disruption to these components of growth should have a similar effect on tooth emergence. 

Even so, the relationship between weight or height and tooth emergence remains unclear.  

 
Overweight and obese children, in comparison to normal weight peers, have accelerated growth 

affecting the timing of puberty (Aksglaede et al. 2009) and their height curves (He and Karlberg 

2001). Hence, it is expected that increased weight should lead to earlier timing of tooth 

emergence (and associated increased stature). A few studies describe a relationship between 

emergence times and the weight and height of children (Green 1961; Almonaitiene et al. 2010), 

while others found no such effects (Robinow et al. 1942; Lysell et al. 1962; Kutesa et al. 2013). 

 
Considerable delay in dental age and bone age, as compared to chronological age, was reported 

in underweight children (Green 1961; Garn 1965; Keller et al. 1970; Infante and Owen 1973; 

Takano et al. 1986; Sarnat et al. 1988; Vallejo-Bolaños et al. 1999; Haddad and Pires Correa 

2005; Kumar et al. 2013). Some studies found children with below average weight and height 

have later emergence times than those who are within the normal range (Billewicz and 

McGregor 1975; Triratana and Kiatiparjuk 1989). Khan (2011) reported that tall children 
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exhibited delayed tooth emergence irrespective of their weight while heavy and short children 

had early emergence. Haddad and Pires Correa (2005) and Oziegbe et al. (2009), in studies of 

Brazilians and Nigerians respectively, found that height and age correlated with the number of 

erupted teeth.   

7.1.4 Mid-upper arm circumference (MUAC) and tooth emergence 

Adult MUAC is known to reflect changes in body weight (Ohlson et al. 1956), and the major 

contributors to MUAC variation, namely muscle and sub-cutaneous fat, are both important 

determinants of survival in starvation (Leiter and Marliss 1982; Leiter and Marliss 1983). 

MUAC is also useful for the assessment of nutritional status in children (Briend et al. 1986; 

Jelliffe and Jelliffe 1969; Shakir 1975; Velzeboer et al. 1983; WHO 1986). It is good at 

predicting mortality and in some studies MUAC alone (Alam et al. 1989; Briend and Zimicki 

1986; Vella et al. 1994), or MUAC for age (Chen et al. 1980), predicted death in children better 

than any other anthropometric indicator.  

As MUAC is less affected than BMI by the localized accumulation of the excess fluid (pedal 

edema, periorbital edema, ascites) commonly seen in famine conditions, it is likely to be a more 

sensitive index of tissue atrophy than low body weight. It is also relatively independent of height 

(Olukoya 1990). The influence of MUAC on tooth emergence has not been evaluated in 

Southern African children. 

7.1.5 Head circumference (HC) and tooth emergence 

Head circumference is a proven proxy for brain development and it is proportional to brain 

weight and volume in infants. Vejdani et al. (2015) found a relationship between primary tooth 

emergence and head circumference. Infante and Owen (1973) also demonstrated significant 

associations between the total number of primary teeth and head circumference in males but not 
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in females. A study by Godfrey et al. (2001) on a large range of primates found brain 

development to be a better predictor of tooth emergence than somatic development. However, 

the relationship of HC with permanent tooth emergence in humans has not been evaluated. While 

brain size increase is greatest during the early years of development, there is continued growth 

throughout childhood. It is unknown how brain growth correlates with permanent tooth 

emergence during the formative years when children are learning new skills.   

 
In view of the controversies surrounding the effect of the above factors on tooth emergence, 

there is a need to investigate the influence of these anthropometric measures in African children. 

Most of the literature on tooth formation and emergence is essentially from outside Africa, which 

may not be directly applicable to African populations due to environmental differences.  

7.2 Materials and Methods 

This is a cross-sectional study of 639 clinically healthy black Southern African children aged 5-

20 years, whose parents and grandparents are indigenous Southern Africans. Children who met 

these inclusion criteria were randomly selected from those being treated by the Community Oral 

Health Outreach Program (COHOP) of the Department of Community Dentistry, University of 

the Witwatersrand. Ethical approval (NO.M141001) was obtained from the Human Research 

Ethics Committee (Medical) of the University of the Witwatersrand. Permission to carry out the 

study was obtained from the local education authority and respective school heads. Consent was 

obtained from the parents and assent was obtained from the children. 

 
Date of birth and sex were collected from the dental records of the children. All selected 

participants were examined on a dental chair in a mobile dental van. Intra oral examination was 

done with a sterile wooden spatula. Teeth present in the mouth were recorded by the principal 
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investigator using Fédération Dentaire Internationale (FDI) notation. An emerged tooth was 

defined as a tooth with any part of its crown penetrating the gingiva and visible in the oral cavity 

(Al-Jasser and Bello 2003). Extracted teeth were considered to have emerged. Panoramic 

radiographs of all participants were taken with a Carestream CS8100 Access digital x-ray fitted 

into the dental van. After viewing of the images, children with agenesis of lateral incisors or third 

molars were excluded from the study. 

7.2.1 Data collection 

Participants were weighed in the standing position on a Hana Power platform scale, calibrated to 

a precision of 100g. Height was measured with an anthropometric standiometer (Weylux model 

424) with the horizontal headboard making contact with the uppermost point of the head. The 

height was recorded to the nearest 0.1 cm. Mid-upper arm circumference (MUAC) of the left 

upper arm was measured with a tape measure at the mid-point between the tip of the shoulder 

and the tip of the elbow (the acromion and olecranon process) and recorded to the nearest 0.1 

cm. Head circumference was measured by placing the tape across the forehead and measuring 

around the fullest circumference of the head.  

The study was pilot tested on 40 randomly selected students. Intra-examiner test and retest 

reliability of measurements were calculated using Lin’s Concordance Correlation Coefficient 

(height= 0.99, head circumference= 0.92, mid-upper arm circumference= 0.96). 

7.2.2 Statistical Analyses 

Data were analyzed with Stata 12 for Windows. The analysis included frequencies and cross-

tabulations. Associations between categorical variables were tested with chi square while those 

between continuous variables were tested with Student’s t-tests. Non-parametric equivalents 

were used as appropriate. The mean age at the time of emergence and the standard deviation 
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were computed using probit analysis and compared using Student’s t-tests, after Liversidge 

(2003). Body mass index (BMI) was calculated from the height in meters and weight in 

kilograms. The height and BMI were converted to z-scores using the WHO z-scores for age 

tables (WHO 1995). A cut-off z-score of ≤−2 for BMI was used to place children into 

underweight/short for age, ≥-2 to 2.0 for normal weight, and ≥2 for overweight/obese and tall for 

age. Mean age of emergence was calculated for each tooth using these BMI subdivisions. 

Analysis of variance (ANOVA) was used to determine if any variation exists between the 

subdivisions. Post hoc analysis was done using Games-Howell multiple comparison of means. A 

Student’s t-test was used to compare any two means whenever one of the three subdivisions of 

BMI did not yield a mean age of emergence. A Spearman’s rho correlation analysis between 

total number of teeth emerged and the anthropometric variables was done. A Shapiro-Wilk W 

test showed that the dependent variable (total number of teeth emerged) and the predictor 

variables were not normally distributed. Therefore, a generalized linear model (negative 

binomial) was used with the number of emerged teeth modelled as the dependent variable and 

anthropometric variables and age as predictors. Adequacy of fit was checked using the deviance 

residuals as recommended by McCullagh and Nelder (1989). The deviance residuals showed that 

it was normally distributed and the plot of the residuals against each of the covariates also 

showed model fit. As expected, the collinearity test showed that BMI, height and weight were 

significantly collinear. When these variables were excluded from the model, there was no 

difference in the values of the output. Hence, the variables were included in the final model for 

generalized linear regression analysis. The model was built using forward selection. Statistical 

significance was inferred at p<0.05.  
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7.3 Results 

There are more females than males in the study population (p=0.037) (Table 7.1).  The overall 

mean age was 11.88±3.57 years. The mean age for males is 11.52±3.66 years and for females, 

12.4±3.48 years. There is a significant difference between the mean ages of males and females 

(p=0.022).  

 
The mean weight of the children is 39.29±15.57 kg while the mean height is 143.12±17.52 cm. 

There were significant sex differences in the mean weight, MUAC and BMI with females having 

higher values than males (p<0.05) (Table 7.2). Conversely, the mean height and HC do not differ 

significantly between males and females. 

 
Table 7.1. Age and sex distribution of participants 
 

Age group 
(years) 

Sex 
Total Male Female 

n % n % N % 
5.00-5.99 10 1.6 13 2.0 23 3.6 
6.00-6.99 27 4.2 28 4.4 55 8.6 
7.00-7.99 6 0.9 9 1.4 15 2.3 
8.00-8.99 32 5.0 27 4.2 59 9.2 
9.00.9.99 34 5.3 30 4.7 64 10.0 

10.00.10.99 15 2.3 22 3.4 37 5.8 
 11.00-11.99 17 2.7 36 5.6 53 8.3 
12.00-12.99 20 3.1 44 6.9 64 10.0 
13.00-13.00 15 2.3 39 6.1 54 8.5 
14.00-14.00 29 4.5 33 5.2 62 9.7 
15.00-15.99 25 3.9 27 4.2 52 8.1 
16.00-16.99 11 1.7 28 4.4 39 6.1 
17.00-17.00 20 3.1 25 3.9 45 7.0 
18.00-20.00 5 0.8 12 1.9 17 2.7 

Total 266 41.6% 373 58.4% 639 100.0% 
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Table 7.2.  Mean anthropometric values for males and females 
 

Variable 
Male n=266 Female n=373 Total N=639 

Min Max Mean SD Min Max Mean SD Mean SD 
Age* 5.00 22.00 11.52 3.6 5.00 22.00 12.14 3.47 11.88 3.57 
Height 104.00 190.40 141.77 19.28 103.50 173.50 144.08 16.11 143.12 17.52 
Weight* 14.00 90.00 36.21 14.21 13.00 99.00 41.49 16.13 39.29 15.57 
HC 40.70 64.00 50.71 2.51 40.60 63.50 50.36 2.53 50.51 2.53 
 MUAC* 13.00 30.00 18.72 2.08 14.00 30.50 19.66 2.60 19.27 2.44 
BMI* 12.02 32.50 17.30 3.09 7.13 36.81 19.20 4.69 18.41 4.21 
# teeth emerged* 0.00 32.00 19.05 9.31 0.00 32.00 22.02 8.40 20.78 8.90 
 
*Significant difference between males and females (p<0.05) 
 

7.3.1 Influence of BMI on emergence  

More males are in the underweight category compared to the females; only two females can be 

classified as underweight (Tables 7.3 and 7.4). Males who are overweight/obese generally show 

significantly earlier emergence times than those who are severely underweight (p<0.05). 

Furthermore, males of normal weight have significantly earlier emergence of most teeth 

compared to the underweight males. Males who are overweight displayed advanced timing of 

emergence of all teeth compared to normal weight children (Table 7.3). 

 
In the females, timing of emergence was not calculated for the underweight cohort because of the 

limited sample. However, the Student’s t-test showed that the overweight children have 

advanced dental emergence compared to normal weight children for the second premolar and 

second molar in the maxilla, and the canine, first premolar and second molar in the mandible 

(p<0.05) (Table 7.4). 
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Table 7.3. Mean age of emergence of teeth by BMI z-score category (Males) 
 

Significant values are in bold. 
The Games-Howell test for post ANOVA pair-wise comparison of means is significant between overweight and underweight group 
for all teeth (p<0.05). 
Student’s t-tests calculated where two means are available for comparison. 
Probit analysis did not return values for the empty cells.   

Maxilla Mandible 

Tooth BMI 
Category n Age SD F/t p Tooth BMI 

Category n Age SD F/t p 

I1 
Underweight 22 - - 

t=4.88 0.00 I1 
Underweight 22 - - 

- - Normal 223 6.97 0.85 Normal 223 6.06 0.33 
Overweight 21 6.03 0.78 Overweight 21 - - 

I2 
Underweight 22 8.33 1.04 

t=1.61 0.11 I2 
Underweight 22 - - 

t=2.74 0.01 Normal 223 7.95 1.06 Normal 223 6.96 0.79 
Overweight 21 - - Overweight 21 6.40 1.67 

C1 
Underweight 22 11.73 1.69 

F=4.80 0.01 C1 
Underweight 22 - - 

t=2.36 0.01 Normal 223 11.20 1.69 Normal 223 10.38 1.69 
Overweight 21 10.22 0.99 Overweight 21 9.49 1.14 

P1 
Underweight 22 11.73 1.69 

F=12.71 0.00 P1 
Underweight 22 12.88* 1.11 

F=22.63 0.00 Normal 223 10.29 1.20 Normal 223 10.77* 1.45 
Overweight 21 10.18 1.75 Overweight 21 10.53* 1.52 

P2 
Underweight 22 12.98 1.52 

F=21.26 0.00 P2 
Underweight 22 13.70 0.97 

F=28.91 0.00 Normal 223 11.08 1.35 Normal 223 11.05 1.64 
Overweight 21 10.59 1.52 Overweight 21 10.85 1.41 

M1 
Underweight 22 - - 

t=2.71 0.01 M1 
Underweight 22 - - 

- - Normal 223 6.27 0.33 Normal 223 6.16 0.24 
Overweight 21 6.03 0.78 Overweight 21 - - 

M2 
Underweight 22 14.40 0.41 

F=34.42 0.00 M2 
Underweight 22 14.05 2.27 

F=14.96 0.00 Normal 223 12.68 1.33 Normal 223 12.57 1.67 
Overweight 21 11.17 1.32 Overweight 21 11.17 1.70 
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Table 7.4, Mean age of emergence of teeth by BMI category (Females)  
 
Maxilla Mandible 
Tooth BMI Category n Age SD T p Tooth BMI Category n Age SD t p 

I1 
Underweight 2 - - 

- - I1 
Underweight 2 - - 

- - Normal 324 6.46 0.73 Normal 324 5.48 1.00 
Overweight 47 - - Overweight 47 - - 

I2 
Underweight 2 - - 

- - I2 
Underweight 2 - - 

- - Normal 324 7.52 - Normal 324 6.83 1.67 
Overweight 47 - - Overweight 47 - - 

C1 
Underweight 2 - -   

C1 
Underweight 2 - -   

Normal 324 10.42 1.44 
0.77 0.44 

Normal 324 9.46 1.14 
5.89 0.00 Overweight 47 10.23 2.33 Overweight 47 8.00 3.33 

P1 
Underweight 2 - -   

P1 
Underweight 2 - -   

Normal 324 9.73 1.41 
0.00 1.00 

Normal 324 10.17 1.34 
9.29 0.00 Overweight 47 9.73 0.42 Overweight 47 8.25 1.21 

P2 
Underweight 2 - -   

P2 
Underweight 2 - -   

Normal 324 10.78 1.49 
2.17 0.03 

Normal 324 10.47 1.34 
1.30 0.19 Overweight 47 10.30 0.69 Overweight 47 10.20 1.21 

M1 
Underweight 2 - - 

- - M1 
Underweight 2 - - 

- - Normal 324 6.13 0.89 Normal 324 5.44 1.12 
Overweight 47 - - Overweight 47 - - 

M2 
Underweight 2 - -   

M2 
Underweight 2 - -   

Normal 324 12.12 1.37 
2.27 0.02 

Normal 324 11.77 1.61 
4.53 0.00 Overweight 47 11.65 0.94 Overweight 47 10.68 0.94 

Significant values are in bold. 
Probit analysis did not return values for the empty cells. 
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7.3.2 Number of emerged teeth by sex 

The mean number of emerged teeth in females is significantly greater than males (p<0.05) (Table 

7.5). After correcting for age, females have more emerged teeth than males from age 5 to 15 

years, after which no specific pattern occurs. Statistically significant differences were noted for 

ages 5, 10, 12 and 14 years (p<0.05) (Table 7.5). None of the male participants had any of their 

permanent teeth before the age of 5 years, whereas some of the females did (Table 7.5). A 

graphic representation of the number of emerged teeth by sex shows that females start emergence 

far earlier than their male counterparts. The males soon catch up at age 6 years, but the females 

are again ahead between ages 7 to 13 years, after which the males again catch up (Figure 7.1).  
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Table 7.5. Mean number of emerged teeth by sex and age  
 

Age 
cohort 
(years) 

Sex n 
Mean # 

teeth 
emerged 

SD p  95% CI 

5 - 5.99 
M 10 0.00 0.00 0.00 [-5.95, -2.02] F 13 4.00 2.94 

6 - 6.99 
M 27 5.26 5.66 0.63 [-3.11, 1.91] F 28 5.86 3.36 

7 -7.99 
M 6 11.33 3.08 1.00 [-2.81, 2.81] F 9 11.33 2.00 

8 - 8.99 
M 32 11.94 2.55 0.06 [-2.40, 0.06] F 27 13.11 2.08 

9 - 9.99 
M 34 14.71 3.64 0.06 [-3.93, 0.08] F 30 16.63 4.37 

10 -10.99 
M 15 15.13 3.52 0.03 [-6.42, -0.40] F 22 18.55 4.94 

11 - 11.99 
M 17 21.53 5.41 0.15 [-4.66, 0.72] F 36 23.50 4.11 

12 -12.99 
M 20 23.90 4.01 0.02 [-4.15, -0.32] F 44 26.14 3.33 

13 - 13.99 
M 15 27.33 1.29 0.60 [-1.34, 0.78] F 39 27.62 1.87 

14 - 14.99 
M 29 26.00 3.11 0.01 [-2.78, -0.43] F 33 27.61 1.22 

15 - 15.99 
M 25 27.92 0.57 0.11 [-1.01, 0.11] F 27 28.37 1.28 

16 -15.99 
M 11 28.64 1.43 0.64 [-0.69, 1.11] F 28 28.43 1.17 

17 -17.99 
M 20 28.80 1.61 0.41 [-1.50, 0.62] F 25 29.24 1.85 

18 -18.99 
M 5 30.20 2.05 0.64 [-1.56, 2.46] F 12 29.75 1.66 

Significant values in bold.  
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Figure 7.1. Mean number of emerged teeth by age and sex 

  

7.3.3 Height and number of emerged teeth 

Table 7.6 provides the comparative analysis of the mean height between the males and females 

in different age cohorts. There is no consistent pattern of variation in the mean height of males 

and females until the age of 14 years, after which males are taller. Statistically significant 

differences occur between males and females in the age cohorts 12, 15, 16, and 17 years, with 

the males being taller than their female counterparts at all ages except age 12 (p<0.05). The 

number of emerged teeth has a significant relationship with height in both males and females 

(R2=0.89 for each) (Table 7.7). The trend line in Figure 7.2 shows that females had more 

emerged teeth than their male counterparts of the same height.  
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Table 7.6. Comparison of height by sex, controlling for chronological age 
 

Age (years) Sex n Mean height 
(cm) SD p 95% CI 

5 - 5.99 M 10 109.72 2.99 0.06 [-7.14, 0.15] 
F 13 113.22 4.87 [-6.93, -0.06] 

6 - 6.99 M 27 116.04 11.38 0.35 [-2.44, 6.73] 
F 28 113.90 4.02 [-2.58, 6.86] 

7 -7.99 M 6 120.73 8.43 0.50 [-12.83, 6.54] 
F 9 123.88 8.55 [-12.99, 6.70] 

8 - 8.99 M 32 127.44 5.35 0.41 [-4.58, 1.88] 
F 27 128.79 7.04 [-4.67, 1.97] 

9 - 9.99 M 34 131.74 5.32 0.96 
 

[-2.83, 2.99] 
F 30 131.66 6.33 [-2.87, 3.03] 

10 -10.99 M 15 134.30 6.19 0.18 [-7.71, 1.63] 
F 22 137.34 7.28 [-7.57, 1.49] 

11 - 11.99 M 17 141.16 5.66 0.09 [-6.24, 0.41] 
F 36 144.08 5.62 [-6.31, 0.47] 

12 -12.99 M 20 145.19 8.72 0.01 [-9.37, -1.59] 
F 44 150.67 6.45 [-9.93, 1.02] 

13 - 13.99 M 15 149.77 8.78 0.07 [-9.10, 10.30] 
F 39 154.47 6.54 [-9.90, 0.51] 

14 - 14.99 M 29 157.70 9.65 0.56 [-2.93, 5.38] 
F 33 156.48 6.61 [-3.05, 5.50] 

15 - 15.99 M 25 162.12 7.99 0.01 [1.42, 8.87] 
F 27 156.97 5.18 [1.34, 8.95] 

16 -15.99 M 11 166.41 5.78 0.00 [3.56, 12.39] 
F 28 158.43 6.25 [3.58, 12.37] 

17 -17.99 M 20 167.27 8.28 0.00 [4.66, 13.93] 
F 25 157.97 7.13 [4.56, 14.03] 

18 -18.99 M 5 166.50 8.54 0.09 [-0.87, 18.77] 
F 12 157.55 8.70 [-1.66, 19.56] 

Significant values in bold. 
 
  



247 
 

Table 7.7. Correlation between anthropometric variables and number of emerged teeth 
 

Variable 
Males N=266 Females N=373 
# emerged teeth # emerged teeth 
r p r P 

Height 0.89** 0.00 0.89** 0.00 
Weight 0.79** 0.00 0.75** 0.00 
HC 0.12* 0.05 0.38** 0.00 
MUAC 0.57** 0.00 0.51** 0.00 
BMI 0.44** 0.00 0.53** 0.00 

 
**Significant difference at p<0.001 
*Significant difference at p<0.05 
 
Figure 7.2. Number of emerged teeth by height in males and females
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7.3.4 Weight and number of emerged teeth 

Generally, South African females weigh significantly more than males (Tables 7.2 and 7.8). 

Figure 7.3 shows that females have a greater number of emerged teeth than males of the same 

weight before they reach weights of 50 kg. Above 50 kg, catch up by males is seen. This weight 

of approximately 50 kg roughly corresponds to the age at which males also catch-up with the 

females in terms of their number of emerged teeth (Table 7.5). It is important to note that 

females show more variability in the number of teeth emerged by weight compared to males 

(Figure 7.3). 

Figure 7.3. Number of emerged teeth by weight in males and females 
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Table 7.8. Comparison of weight by sex, controlling for chronological age 
 

Age 
(years) Sex n Mean 

weight (kg) SD p 95% CI 

5 - 5.99 
M 10 18.10 2.08 0.26 [-3.66, 1.06] 
F 13 19.40 3.07 

6 - 6.99 M 27 21.15 5.55 0.24 [-1.01, 3.96] F 28 19.68 3.43 

7 -7.99 M 6 23.08 3.14 0.54 [-8.13, 4.49] F 9 24.90 6.61 

8 - 8.99 M 32 26.31 4.90 0.76 [-2.24, 3.06] F 27 25.91 5.26 

9 - 9.99 M 34 28.38 5.46 0.87 [-3.13, 2.67] F 30 28.61 6.14 

10 -10.99 M 15 28.33 4.29 0.05 [-8.27, 0.03] F 22 32.45 7.06 

11 - 11.99 M 17 34.48 3.43 0.10 [-7.30, 0.66] F 36 37.81 10.77 

12 -12.99 M 20 36.63 7.04 0.00 [-15.52, -5.24] F 44 47.01 10.45 

13 - 13.99 M 15 38.47 11.06 0.01 [-14.03, -2.43] F 39 46.70 8.88 

14 - 14.99 M 29 47.44 12.58 0.28 [-8.73, 2.54] F 33 50.54 9.56 

15 - 15.99 M 25 49.99 8.77 0.04 [-14.19, -0.46] F 27 57.31 14.85 

16 -15.99 M 11 55.36 7.78 0.71 [-9.11, 6.24] F 28 56.80 11.52 

17 -17.99 M 20 55.00 11.14 0.71 [-8.61, 5.91] F 25 56.35 12.64 

18 -18.99 M 5 56.00 9.77 0.61 [-16.53, 10.03] F 12 59.25 12.33 
Significant values in bold. 

 
7.3.5 Mid-upper arm circumference and number of emerged teeth 

There is a weak relationship between MUAC and number of emerged teeth when controlling for 

sex (Figure 7.4). The coefficients of variability are low for both males (R2=0.33) and females 

(R2=0.27). Females matched with males of similar MUAC values have a greater number of teeth 



250 
 

(Figure 7.4). In most cases, females have higher MUAC values than males with significant 

differences found at ages 5, 12 and 13 years (p<0.05) (Table 7.9).  

 
Figure 7.4. Number of emerged teeth by mid-upper circumference in males and females 
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Table 7.9. Comparison of mid-upper arm circumference by sex, controlling for 
chronological age  

Age (years) Sex n 
Mean 

MUAC 
(cm) 

SD p 95% CI 

5 - 5.99 M 10.00 15.90 0.74 0.04 [-2.06, 0.18] 
F 13.00 16.97 1.36 

6 - 6.99 M 27.00 16.78 1.67 0.66 [-1.00, 0.64] F 28.00 16.96 1.35 

7 -7.99 M 6.00 17.97 0.93 0.96 [-1.41, 1.48] F 9.00 17.93 1.44 

8 - 8.99 M 32.00 17.70 1.34 0.87 [-0.87, 0.74] F 27.00 17.77 1.75 

9 - 9.99 M 34.00 18.04 1.64 0.18 [-1.43, 0.28] F 30.00 18.62 1.79 

10 -10.99 M 15.00 18.71 2.47 0.41 [-1.75, 0.72] F 22.00 19.22 1.20 

11 - 11.99 M 17.00 19.36 0.84 0.48 [-1.14, 0.54] F 36.00 19.66 1.63 

12 -12.99 M 20.00 18.84 2.47 0.02 [-3.23, -0.23] F 44.00 20.57 2.91 

13 - 13.99 M 15.00 18.84 1.99 0.04 [-3.20, -0.09] F 39.00 20.48 2.73 

14 - 14.99 M 29.00 20.08 2.75 0.64 [-1.51, 0.93] F 33.00 20.36 2.04 

15 - 15.99 M 25.00 19.93 0.88 0.06 [-2.67, 0.06] F 27.00 21.23 3.29 

16 -15.99 M 11.00 20.27 0.50 0.42 [-2.27, 0.96] F 28.00 20.93 2.61 

17 -17.99 M 20.00 20.28 0.38 0.19 [-2.07, 0.43] F 25.00 21.10 2.75 

18 -18.99 M 5.00 20.44 0.36 0.80 [-0.29, 0.37] F 12.00 20.40 0.27 
Significant values in bold. 
 

7.3.6 Head circumference and the number of emerged teeth 

HC increases from ages 5 to 9 years in males and thereafter no further increase is seen. In 

females, HC growth occurs between ages 5 to 12 years. Males generally have larger, but mostly 

insignificantly larger, HCs compared to their female age counterparts (Table 7.10). No 
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relationship exists between number of emerged teeth and head circumference when controlling 

for sex. The coefficient of variability of the number of emerged teeth and HC when controlling 

for sex is very low (R2=0.04 and R2=0.16 for males and females, respectively) (Figure 7.5).    

 
 
Table 7.10. Comparison of head circumference by sex, controlling for chronological age 
 

Age (years) Sex n Mean 
HC (cm) SD p 95% CI 

5 - 5.99 M 10 49.15 2.93 0.27 [-1.55, 5.27] 
F 13 47.29 4.49 

6 - 6.99 M 27 49.58 2.55 0.19 [-0.56, 2.82] F 28 48.45 3.60 

7 -7.99 M 6 50.68 1.14 0.28 [-1.41, 4.44] F 9 49.17 3.15 

8 - 8.99 M 32 51.08 3.45 0.06 [-0.04, 3.41] F 27 49.39 3.10 

9 - 9.99 M 34 51.68 2.54 0.03 [0.18, 2.91] F 30 50.13 2.93 

10 -10.99 M 15 50.00 4.05 0.87 [-1.93, 1.64] F 22 50.15 0.73 

11 - 11.99 M 17 51.07 1.32 0.94 [-1.22, 1.32] F 36 51.02 2.44 

12 -12.99 M 20 50.78 2.91 0.12 [-2.55, 0.28] F 44 51.91 2.49 

13 - 13.99 M 15 50.69 0.81 0.44 [-1.64, 0.73] F 39 51.14 2.21 

14 - 14.99 M 29 51.14 2.70 0.22 [-0.38, 1.69] F 33 50.53 0.82 

15 - 15.99 M 25 50.45 0.17 0.59 [-0.08, 0.14] F 27 50.42 0.21 

16 -15.99 M 11 50.45 0.17 0.33 [-0.07, 0.19] F 28 50.38 0.18 

17 -17.99 M 20 50.93 2.14 0.86 [-1.14, 0.37] F 25 50.81 2.03 

18 -18.99 
M 5 50.48 0.13 

0.14 [-0.05, 0.33] F 12 50.34 0.18 
Significant values in bold. 
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Figure 7.5. Number of emerged teeth by head circumference in males and females 

 

7.3.7 Correlation analysis of the anthropometric variables and number of teeth emerged 

Height and weight correlate significantly and strongly with the number of emerged teeth in both 

males (r=0.9, p=0.00 and r=0.8, p=0.00) and females (r=0.9, p=0.00 and r=0.8, p=0.00). MUAC 

and BMI show only moderate but significant correlations with the number of emerged teeth in 

males (r=0.6, p=0.00 and r=0.4, p=0.00) and females (r=0.5, p=0.00 and r=0.5, p=0.00). A 

moderately significant correlation is found between the number of emerged teeth and HC in 

females, (r=0.4, p=0.00), while it is weak but significant in males (r=0.1, p=0.00) (Table 7.7). 

 
Correlational analysis was done for each age cohort to explore if the number of emerged teeth 

correlates with the anthropometric variables. No consistent pattern is seen across the age cohorts. 

However, height is significantly correlated with the number of the emerged teeth at ages 6, 8, 13 

and 17 for males and ages 10 and 18 for females. Weight is only significantly correlated with 

tooth emergence at ages 6, 13, 17 and 18 for males. There is no such relationship for females at 

any age. HC correlates with number of teeth emerged for ages 7, 11, 12, 16 and 17 years for 
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males. MUAC significantly correlates with number of teeth emerged at age 6 for males and 12 

years for females. Moderate correlations are found between the number of emerged teeth and 

BMI in males and females (Table 7.11). 

Table 7.11. Spearman’s rho correlation between anthropometric variables and # teeth 
emerged, controlling for chronological age 
 

Age 
(years) Sex n Height Weight HC MUAC BMI 

5 - 5.99 M 10 - - - - - 
F 13 0.10 0.36 0.10 0.86 0.92 

6 - 6.99 M 27 0.75* 0.75* 0.15 0.43* 0.11 
F 28 0.20 0.32 0.17 0.07 0.25 

7 -7.99 M 6 -0.20 -0.01 -0.88* -0.56 0.17 
F 9 0.51 0.34 -0.12 0.07 .122 

8 - 8.99 M 32 0.46* 0.16 0.25 -0.16 0.06 
F 27 0.01 -0.17 0.26 -0.22 0.24 

9 - 9.99 M 34 0.30 0.23 -0.02 0.10 0.13 
F 30 0.16 0.33 0.07 0.27 0.30 

10 -10.99 M 15 -0.13 -0.07 -0.30 -0.20 -0.02 
F 22 0.43* 0.35 0.32 0.25 0.18 

11 - 11.99 M 17 0.46 -0.42 -0.51* -0.36 -0.73 
F 36 0.22 0.09 0.12 -0.02 0.02 

12 -12.99 M 20 0.12 0.19 0.45* 0.03 0.18 
F 44 0.25 0.25 0.26 0.35* 0.21 

13 - 13.99 M 29 0.50* 0.37* 0.17 0.27 0.20 
F 33 0.23 -0.16 0.05 0.06 -0.28 

14 - 14.99 M 25 -0.19 0.13 0.00 -0.01 0.28 
F 27 0.17 -0.15 0.29 -0.27 -0.21 

15 - 15.99 M 25 -0.19 0.13 0.00 -0.01 0.28 
F 27 0.17 -0.15 0.29 -0.27 -0.21 

16 -15.99 M 11 0.09 0.43 0.78** 0.52 0.36 
F 28 -0.30 -0.15 -0.14 -0.09 -0.02 

17 -17.99 M 20 0.50* 0.70* 0.48* 0.37 0.54* 

F 25 0.17 0.24 0.23 -0.01 0.13 

18 -18.99 M 5 0.17 0.94* 0.49 0.81 0.79 
F 12 0.68* 0.33 0.56 0.23 -0.25 

*Significant difference at p<0.05 
**Significant difference at p<0.001 
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7.3.8 Regression analysis of anthropometric variables (predictors) and number of emerged teeth 

(outcome) 

The fact that a variable correlate significantly with another variable may not necessarily mean 

that there is a significant association or relationship. In a similar way, a significant relationship in 

a bivariate analysis neEds to be further tested with a multivariate analysis where confounders are 

controlled. Several variables in this study are correlated, therefore regression analysis was 

conducted to determine the relationships. In this model BMI, height and weight were 

significantly collinear. These variables were excluded from the model but no significant 

difference was noted in the output values. Therefore, the variables were included in the final 

model for generalized linear regression analysis. The model was built using forward selection.  

The  regression model (negative binomial) shows that height, weight and BMI have significant 

associations with the number of emerged teeth in this study population (p<0.05) (Table 7.12). In 

these models, variables fitted were age, height, weight, HC, MUAC, BMI and the number of 

emerged teeth for males and females separately. The number of emerged teeth has a variance that 

is significantly greater than the mean and therefore does not correspond to a Poisson distribution. 

The goodness of fit test confirmed this. The generalized linear model (negative binomial) 

produced the best fit, judging by the normality of the deviance residuals.  
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Table 7.12. Generalized linear model (negative binomial) regression of predictors of 
emerged teeth                 

 
   MALES   
Variable Coef SE Z p 95% CI 
Age 0.09 0.04 2.08 0.037 0.01 0.17 
BMI 0.20 0.09 2.31 0.021 0.03 0.38 
Height 0.06 0.02 3.04 0.002 0.02 0.10 
Weight -0.09 0.04 -2.70 0.007 -0.16 -0.03 
HC 0.01 0.03 0.45 0.651 -0.04 0.06 
MUAC 0.01 0.05 0.14 0.888 -0.09 0.10 
_cons -7.73 2.86 -2.70 0.007 -13.33 -2.12 
Goodness of fit Chi square (p = 0.102) 

FEMALES 
Variable Coef SE Z p 95% CI 
Age 0.04 0.01 6.92 0.000 0.03 0.06 
BMI 0.15 0.07 2.29 0.022 0.02 0.28 
Height 0.06 0.01 4.07 0.000 0.03 0.09 
Weight -0.06 0.03 -2.27 0.023 -0.12 -0.01 
HC 0.02 0.02 0.97 0.332 -0.02 0.07 
MUAC 0.01 0.03 0.30 0.761 -0.07 0.05 
_cons -6.67 2.20 -2.03 0.002 -10.98 -2.36 
Goodness of fit Chi square (p = 0.498) 
Significant values in bold. 
 
 

7.4 Discussion 

Dental development is thought to be a stable and reliable measure of growth and development 

because of its perceived relative immunity from environmental factors such as malnutrition, 

compared to the skeleton and other body systems. Well-designed studies specifically targeted at 

the timing of tooth emergence of children with severe malnutrition are lacking and difficult to 

undertake. This study considered dental emergence in a population of Black Southern African 

children with variable nutritional statuses, and found relationships between sex, height, weight, 

BMI, and the number of teeth emerged and the timing of emergence of individual teeth-- thus 

demonstrating that nutritional factors affect the timing of tooth emergence. 
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7.4.1 Influence of nutritional factors on the timing of emergence and number of emerged teeth  

Socioeconomic or environmental factors are known to directly influence nutrition, with a 

resulting impact on child development including tooth emergence (Adler 1963; Lee et al. 1965). 

However, Friedlaender and Bailit (1969) argued that the environmental influence on emergence 

times of permanent teeth was relatively unimportant. More recently, Elamin and Liversidge 

(2013) suggested that there was no significant impact of malnutrition on tooth formation in their 

study of severely undernourished children in South Sudan. Their study did not consider the 

effects of nutritional deficiency on tooth emergence. 

 
The present study did find a significant relationship between BMI and number of teeth emerged, 

with obese and overweight children having more teeth emerged. We also found that overweight 

children are significantly advanced in the timing of tooth emergence compared to the 

underweight children. This is similar to previous studies (Sánchez-Pérez et al. 2010; Must et al. 

2012). Elevated BMI has been related to accelerated linear growth and early sexual maturation 

(Aksglaede et al. 2009; Sánchez-Pérez et al. 2010) and height (He and Karlberg 2001).  Obesity 

is considered to be the most common cause of accelerated growth (Slyper 1998). There is 

evidence suggesting that over-nutrition during childhood causes hyperinsulinemia and may also 

increase insulin-like growth factor-1 (IGF-1) secretion and growth hormone receptors (Sinha et 

al. 2002). It is likely that the metabolic changes caused by obesity that are known to have an 

impact on bone growth also affect tooth emergence. However, more studies are required to 

identify a specific mechanism involved in tooth emergence timing that is affected by high body 

fat content in children and adolescents. 
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Another factor to consider in the relationship between BMI and tooth emergence is that 

emergence is affected by primary tooth loss (Smith 1991). If obese or overweight children lose 

more primary teeth to decay from higher consumption of carbohydrates, this might contribute to 

the differences in emergence timing among BMI groups observed in this study. 

 
In the present study, bivariate analyses show significant differences in the mean ages of 

emergence by BMI categories in many instances. One of the limitations of bivariate analysis is 

that it is merely descriptive and does not take into account the influence of confounders. It does 

not factor in how one variable could influence another and therefore it cannot give an 

explanation for the relationship between two variables. Therefore, explanatory analysis is needed 

to infer cause and effect (Spicer 2005). The multiple regression analysis (negative binomial 

model) used in the study documents that proxies of nutrition, such as height, weight and BMI, 

have significant effects on the number of teeth emerged. Children who are obese or overweight 

have a greater number of emerged teeth than the normal and underweight children. 

A limitation of our study is the small sample of participants in the underweight category. Very 

few of the Southern African females were classified as underweight compared to the males. This 

could be viewed as lending support to the hypothesis that females are more buffered from 

environmental stressors. This hypothesis is based on evidence for sex differences in pre- and 

postnatal mortality and morbidity (McMillen 1979; Waldron 1983), differential responses to 

prenatal stress (Frisancho 1977), and climate (Haas et al. 1980). Greater investment in 

reproduction by females and the need to support pregnancy and lactation might have increased 

selection for better buffering from environmental stresses (Stini 1975, 1982; Stinson 1985). 
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The global burden of undernutrition and stunting is largely borne by developing nations 

including South Africa. A national school feeding program was started in all public primary and 

secondary schools in 1994 (Rendall-Mkosi et al. 2013). This might account for the low 

percentage of undernutrition recorded for the children in this study.  

7.4.2 Relationship between height, weight and tooth emergence 

There is a relationship between number of emerged teeth and height in Southern African Black 

children. This is similar to a study of Japanese children that determined height and weight had 

direct influences on tooth emergence (Niswander and Sujaku 1960). Oziegbe et al. (2009) found 

similar results for primary tooth emergence in Nigeria. Hence it is expected that any increase in 

height should lead to a corresponding acceleration in the timing of tooth emergence.  

 
This study found a significant relationship between number of emerged teeth and weight of the 

children. A few other studies found a relationship between the number of emerged teeth and 

weight (Haddad and Pires Correa 2005; Hilgers, et al. 2006;); Sánchez-Pérez et al. 2010; Must et 

al. 2012). Children who have lower than average weight and height have been shown to have 

later emergence times than those who are within the normal range (Adler 1963; Billewicz and 

McGregor 1975; Lee et al. 1965; Triratana and Kiatiparjuk 1989).   

 
Not all studies have found that height or weight relate to dental emergence. Kutesa et al. (2013) 

did not find any significant relationship with weight in Ugandan children. However, their 

conclusion was only based on correlational analysis, which is not robust enough to determine 

any relationship other than a linear relationship. Furthermore, Khan (2011), in a study conducted 

among Pakistani children, observed that heavy and short children had early tooth emergence 
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while tall children showed delayed emergence regardless of their weight. No reason was given 

for those findings. 

7.4.3 Mid-upper arm circumference and tooth emergence 

To the best of our knowledge, the use of MUAC has not been evaluated as a prognostic indicator 

for tooth emergence. The present study did not find any association between the numbers of teeth 

emerged and MUAC. Craig et al. (2014) found poor accuracy for MUAC in classifying the 

nutritional status of Black South African males aged 5-9 years. This appears to be the case for 

our sample as well. MUAC is described as a very good measure for identifying those who are at 

risk for severe malnutrition. Although the MUACs of the children in our study were generally 

low, there were not many children who were severely malnourished according to the other 

nutritional proxies.  

7.4.4 Relationship between head circumference and tooth emergence 

HC has been shown to be a good measure of brain development but a poor predictor of 

nutritional status because brain growth is ‘favored’ over other growth processes. We found no 

significant relationship between head circumference and number of permanent teeth emerged, 

although the head circumference of the males increases from ages 5 to 9 in males and ages 5 to 

12 in females. This later pattern of brain growth is much less dramatic than what is observed at 

earlier ages. There is evidence that brain development continues into adolescence (Kipke 1999). 

However, the influence of this form of development on the cranial capacity of Southern African 

children neEds to be further investigated to understand the protracted period of growth 

documented for the females in our study.  

7.4.5 Influence of sex on tooth emergence 
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South African females are more advanced in tooth emergence than males. This occurs from the 

early years up to age 16, when there is catch-up with the females. The difference between males 

and females is most pronounced at age 9-10 years, which is around the time of the prepubertal 

growth spurt in females (Norris and Richter 2005). The prepubertal growth spurt occurs earlier in 

females than males. This might account for the spike in the difference in the number of teeth 

emerged between males and females around this age. There is an agreement from studies on 

tooth emergence that permanent teeth emerge earlier in females than males (Eskeli et al. 1999; 

Nyström et al. 2001; Ekstrand et al. 2003). Only one study (Kochar and Richardson 1998) of 

Irish children showed earlier emergence of second molars in boys. This was also viewed as a 

catch-up development because of the later onset of puberty in the males.  

7.5 Conclusion 

In the present study, height, weight and BMI were found to significantly influence the timing of 

emergence and the number of emerged permanent teeth in Southern African Black children. 

Obese and overweight children are more advanced in the timing of emergence and have more 

emerged teeth than underweight individuals in the same age cohort. No relationship was found 

between head circumference or mid-upper arm circumference and the number of emerged teeth”. 

These findings should be verified by longitudinal data. 
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Chapter 8 
Dental development and life history variables of Black Southern African children 

Abstract 

Background: Strong correlations have been found between measures of skeletal, somatic and 

sexual development. It is not clear what relationship exists between sexual maturity and dental 

development in humans. Although earlier studies reported there is little or no relationship, newer 

work is challenging that view. 

Aim: This study investigates the association between the timing of tooth emergence, age of 

attainment of specific tooth formation stages and life history events (age of sexual maturity, 

tempo of brain size increase) in a Black Southern African population. 

Method: This is a cross-sectional study of 642 Black Southern African school children. Data for 

dental development, height, mid-upper arm circumference (MUAC) and head circumference 

(HC) were compared with mean age of tooth emergence and formation stages (following 

Demirjian et al. 1973) and mean age of attainment of sexual maturity stages and menarche (from 

Lundeen et al. (2015) and Norris and Richter (2005)) to identify if any developmental events co-

occur. Correlation analysis was used to determine associations between HC, MUAC and dental 

maturity.  Statistical significance was inferred at p>0.05. 

Results: The overall pattern of correlations is the same for both sexes, although the strength of 

the correlation with HC is somewhat stronger in females. The number of teeth emerged in males 

correlates strongly with chronological age (r=0.91, p=0.00) and height (r=0.89, p=0.00), with 

weaker correlations with MUAC (r=0.61, p=0.00) and HC (r=0.16, p=0.00). In females, the 

number of teeth emerged correlates with chronological age (r=0.88, p=0.00) more than height 

(r=0.83, p=0.00), MUAC (r=0.59, p=0.00) or HC (r=0.38, p=0.00). Similar patterns of 

correlation are found for dental maturity.  
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The emergence of the maxillary and mandibular M2s co-occurs at approximately 12.6 years with 

the G2 stage of gonad development and the PH2 stage of pubic hair development in males. The 

M2s emerge around seven months earlier in females, coincident with the attainment of Tanner’s 

B2 breast stage and the PH2 pubic hair stage. Notably, age of menarche does not coincide with 

any of the determined ages for emergence of teeth. 

The timing of tooth formation also coincides with specific sexual maturity stages. Attainment of 

the final (H) stage of development for the C1 co-occurs with the G2 stage of gonad development 

and shortly after the pubic hair stage PH2 in the males. In females, the attainment of the H stage 

of C1 formation occurs shortly before the attainment of the B2 stage of breast development. 

Furthermore, the H stage of P1 formation coincides with the PH2 stage of pubic hair 

development, shortly after the attainment of the stage B2 of breast development. The attainment 

of the H stage in P2 formation coincides with the age of menarche at approximately 13 years.  

Conclusion: Dental development correlates more strongly with chronological age than it does 

with the measures of skeletal or somatic development in Black Southern African children. The 

onset of puberty is concurrent with the emergence of the mandibular and maxillary M2s and the 

final (H) stage of mandibular canine and first premolar formation in both males and females. 

Menarche appears to coincide with the attainment of the H stage for the mandibular P2s. The 

pattern of life history events in Black Southern Africans is not different from what is observed 

for other modern human populations, but the timing of the life history events is notably 

advanced, which should be factored into future forensic and anthropological research in Southern 

Africa.  

  



273 
 

8.1 Introduction 

Life history is concerned with the strategy an organism uses to achieve growth, development, 

reproduction, and survival (Smith 1989; Smith and Tompkins 1995).  A life history perspective 

employs an evolutionary comparative framework to consider how reproductive development, 

post-reproductive behavior and life span are shaped by natural selection (Stearns 2000). 

Variables or events that are typically considered in life history research include the pattern and 

tempo of juvenile development, age of sexual maturity and first reproduction, number of 

offspring, interbirth interval, level of parental investment, senescence and death.   

 
The onset of puberty is accompanied by rapid biological changes characterised by sexual 

maturation, increases in height and weight, completion of skeletal growth with increase in 

skeletal mass, and changes in body composition commonly referred to as the adolescent growth 

spurt (Bogin 2010). The sequence of these events is consistent among adolescents during 

pubertal growth, although variation in the timing, duration, and tempo of pubertal changes is 

considerable within and between populations (Strang and Story 2005). These variations are due 

to genetic and environmental influences (Bogin 1998). Hence, sexual development may be used 

to gauge the magnitude and pattern of growth and developmental disruption in response to 

environmental stresses.  

 
Indices of growth and development such as skeletal, dental and sexual maturity have been 

correlated with life history variables for many primates, and strong relationships between life 

history variables and tooth emergence characterise extant and fossil species (Harvey and Clutton-

Brock 1985; Smith 1989; Smith 1991; Smith 1992; Smith and Tompkins 1995; Bogin and Smith 

1996; Bogin 1997; Bogin 2010; Thompson and Nelson 2011; Kelley and Schwartz 2012; Lee 
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2012). A strong correlation was found between age at weaning, age at sexual maturity, interbirth 

interval, age at first breeding and first molar emergence across primate species (Smith et al. 

1989). Nonetheless, modern humans have a unique life history. We have relatively short birth 

intervals, helpless newborns, a high rate of postnatal brain growth, an extended period of 

offspring dependency, intense levels of maternal and paternal care, a prolonged period of 

maturation, a typically marked adolescent growth spurt and delayed reproduction cycles (De 

Castro et al. 2003).  

 
The life history perspective is also used to explore biological and behavioral diversity among 

human populations. A recent study of the Baka population from the Republic of the Cameroon 

attempted to correlate earlier timing of tooth emergence with life history events (Ramirez Rozzi 

2016). The Baka (one of the groups formerly referred to as ‘African pygmies’) are characterized 

by short adult stature due to a slow rate of growth early in their development (Ramirez Rozzi et 

al. 2015; 2016). As the Baka are advanced in their tooth emergence relative to other populations, 

the possible precocity of other life history events was investigated. The life history of the Baka 

was found to be similar to that of other human populations, leading Ramirez Rozzi (2016) to 

suggest that the relationship between life history events and tooth emergence is disrupted in 

humans compared to other primates. This would allow adaptive variations in tooth emergence in 

response to different environmental controls while at the same time maintaining the unique 

human life cycle.  

This study investigates the association between dental development (the timing of tooth 

emergence and the attainment of specific tooth formation stages) and the life history events (age 

of development of secondary sexual characteristics, menarche, tempo of brain size increase) in a 

Black Southern African population.  
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8.1.1 First molar (M1) emergence and life history events 

Relationships between the timing of first molar emergence and life history events in primates are 

well documented (Smith 1989; Smith et al. 1994). Mandibular M1 emergence was found to 

strongly correlate (r>0.9) with the age at weaning, age at sexual maturity, and somatic 

measurements (adult brain mass, neonatal body mass and brain mass) (Smith 1989).  Similarly, 

the age at M1 emergence is highly correlated with the ages of emergence of all other tooth types 

and the duration of tooth eruption among primates (Smith 1992; Smith et al. 1994).  It was 

therefore argued that the strong relationship between tooth emergence and life history events 

makes it possible to use dental development for drawing conclusions about life history events in 

humans (Harvey and Clutton-Brock 1985; Smith 1991; Smith and Tompkins 1995; Bogin 2010; 

Thompson and Nelson 2011; Kelley and Schwartz 2012; Lee 2012). For example, the earlier age 

of M1 emergence in hominin (human ancestral) fossil species, compared to wild great apes, was 

interpreted as an indication that hominins have more rapid life histories dating to the beginning 

of their evolutionary history (Kelley and Schwartz 2012). However, the extension of life history 

patterns seen in certain species to other species is questioned because exceptions were identified 

when closely related great apes were compared (Dirks and Bowman 2007; Robson and Wood 

2008; Guatelli-Steinberg 2009; Humphrey 2010).  

 
Orangutan, gorilla, and chimpanzee M1s emerge prior to their weaning (Robson and Wood 

2008). M1 emerges through the gingiva in humans at around six years of age (Hillson 2014) 

compared to shortly after three years of age in wild chimpanzees (Smith 2013). Humans are 

typically weaned long before the emergence of M1, while chimpanzees continue to breastfeed 

(Robson and Wood 2008; Smith 2013). Thus, in contrast to the situation for great apes, humans 

are weaned early relative to their permanent dental development (Humphrey 2010; Robson and 



276 
 

Wood 2008). Therefore, Humphrey (2010) concluded that there is no correspondence between 

weaning age and M1 eruption in humans. This is not unexpected, given that weaning in modern 

humans is highly variable and culturally determined.  

8.1.2 Dental development and brain development  

Brain development is an essential component of life history patterns. Brain metabolism and 

energy processing comprise the pacemaker of vertebrate growth and aging (Sacher and Staffeldt 

1974). Unlike brain growth and development, which can be greatly influenced by environmental 

factors (as seen in the recent impact of the Zika virus), dental development has a very low 

variance and  is viewed as very resistant to environmental perturbations (Lewis and Garn 1960). 

Therefore, brain weight and the pattern of tooth formation and emergence contribute two 

potentially different aspects to defining the life history of a primate species. Brain size is highly 

correlated with dental development in primates (Smith 1994; Allman and Hasenstaub 1999; 

Kelley and Schwartz 2010). Strong correlations were found between age at M1 emergence and 

age at completion of tooth emergence and brain size in hominids (brain weight for neonates (0.99 

in both cases) and adults (0.98 and 0.97, respectively) (De Castro et al. 2003).  

8.1.3 Dental development and sexual maturity 

It is not clear what relationship exists between sexual maturity and dental development in 

humans. Earlier studies reported low to moderate correlations. Lewis and Garn (1960) found a 

moderate correlation (0.61) between the age of attainment of the occlusal level for the M2 and 

the onset of menarche. Nanda (1960) had a similar correlation (0.59) between the age of 

completion of permanent tooth emergence and menarche; furthermore, M3 emergence was also 

found to be strongly correlated with life history and somatic variables, especially age of sexual 

maturity. Conversely, Björk and Helm (1967) found a low correlation between age at menarche 
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and tooth emergence. Similarly Filipsson and Hall (1975) found a low correlation between dental 

maturity and different measures of sexual development (age at menarche, breast and pubic hair 

development) and the age of peak height velocity. Hägg and Taranger (1982), in a longitudinal 

study of Swedish children, found that the dental emergence stages were not useful as indicators 

of the pubertal growth spurt. Demirjian et al.’s (1985) study of French Canadian girls who had 

attained 90% of their dental development found no significant relationships with the other 

maturity indicators such as sexual maturity and peak height velocity. Therefore, Demirjian et al. 

(1985) argued that the mechanisms controlling dental development are independent of somatic 

and/or sexual maturity. This perspective has contributed to the view that dental development 

does not vary in the same way as other aspect of development, 

 
Substantial variability in the results concerning the relationship between dental development and 

life history events, especially sexual maturity, in humans is a justification for further research. 

The different methods used in ascertaining age of attainment of specific tooth developmental 

stages, as well as the type of tooth and the stages of dental development studied, may contribute 

to the variation that has been documented to date. For this study, age of tooth emergence and 

dental maturity scores were examined in relation to sexual maturity data (age of menarche, breast 

developmental stage, male genital developmental stage, and pubic hair developmental stage) and 

measures of somatic development (height, head circumference and mid-upper arm 

circumference). 

8.2 Materials and methods 

This is a cross-sectional study of 642 clinically healthy Black Southern African children aged 5-

20 years whose parents and grandparents are indigenous Southern Africans. Children who met 
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the demographic inclusion criteria were randomly selected from those being treated during dental 

outreach to schools in the Johannesburg municipality.  

 
Ethical approval (NO. M141001) was obtained from the Human Research Ethics Committee 

(Medical) of the University of the Witwatersrand, Johannesburg. Permission to carry out the 

study was obtained from the local education authority and respective school heads. Consent was 

obtained from the parents while assent was obtained from the children participating in the study. 

 
All selected students were examined on a dental chair in a mobile dental van installed with a 

panoramic radiograph machine. Intra oral examination was done with a dental mirror and probe 

under a light source. Teeth present were recorded using the Fédération Dentaire Internationale 

(FDI) notation. After examination, panoramic radiographs were taken and those children 

diagnosed as having agenesis of lateral incisors and third molars were excluded from the study.  

 
An emerged tooth was defined as a tooth with any part of its crown penetrating the gingiva and 

visible in the oral cavity (Al-Jasser and Bello 2003). In general oral surgery some children have 

their emerged teeth extracted due to consequences of untreated dental caries, trauma or for 

orthodontic purposes. Extracted teeth were considered to have emerged.  

 
Height was measured with an anthropometric stadiometer (Weylux model 424) and recorded to 

the nearest 0.1 cm. The mid-upper arm circumference (MUAC) of the left upper arm was 

measured with a tape measure at the mid-point between the tip of the shoulder and the tip of the 

elbow (olecranon process and the acromion) and recorded to the nearest 0.1 cm. The head 

circumference (HC) was measured to the nearest 0.1 cm by placing a tape measure across the 

forehead and around the greatest circumference of the head.  
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Panoramic x-rays of 642 children comprising of 270 males and 372 females were reviewed and 

assessed for tooth formation. Dental age assessment was performed according to the original 

version of Demirjian’s method (Demirjian et al. 1973). Each radiograph was evaluated for the 

development of the seven left permanent mandibular teeth, and rated on an 8-stage scale from A 

to H, based on the stages of crown and root formation with stage 0 for non-appearance. Each 

stage of the tooth was allocated a sex-specific biologically weighted score and the sum of the 

scores for each subject was used to determine the dental maturity measured on a scale from 0 to 

100. Each stage of development was dichotomized into presence or absence to allow for 

calculation of age of attainment using probit regression analysis (Hayes and Mantel 1958).   

 
The study was pilot tested on 40 randomly selected students. Intra-examiner test and retest 

reliability of measurements were calculated using Lin’s Concordance Coefficient (height r=0.99, 

head circumference r=0.92, and mid-upper arm circumference r=0.96). The investigator was the 

only rater for the developmental stages of the teeth. Intra-examiner reliability of dental age 

assessment for the Demirjian method was calculated using Cohen’s Kappa (κ=0.97) (Landis and 

Koch 1977).  All of these acceptable values attest to the precision of the data collection process. 

 
The estimated mean age for each of the pubertal stages and age of menarche are from Lundeen et 

al. (2015) and Norris and Richter (2005). Both of these studies are part of the “Birth to Twenty” 

longitudinal data set for children from Soweto who are demographically very similar to our study 

population. Sexual maturity stages were based on Tanner stages of sexual development 

(Marshall and Tanner 1969; 1970). Breast development was subdivided into four stages: B2, B3, 

B4 and B5. The pubic hair development was characterised by four stages: PH2, PH3, PH4 and 
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PH5. The stage of gonad development, measured by the volume of the testicles, was also 

subdivided into four groups: GH2, GH3, GH4 and GH5. 

 
The data were analyzed with Stata 12 for Windows. The analysis included frequencies and cross-

tabulations. The mean age at the time of emergence and standard deviations were computed for 

each tooth using probit analysis and compared using Student’s t-tests, after Liversidge (2003). 

Association between categorical variables was tested with chi square, while associations between 

continuous variables were tested with a Student’s t-test. The mean ages of the pubertal 

developmental stages of males and females were compared to the mean age of tooth 

development to identify the events that co-occur. Correlation analysis was used to determine 

association between head circumference, mid-upper arm circumference and dental maturity. 

Statistical significance was inferred at p>0.05.  

8.3 Results 

8.3.1 Tooth emergence 

The age of emergence of maxillary (12.75±1.78 years) and mandibular (12.64±2.07 years) M2s 

appears to co-occur with the G2 stage of gonad development (12.6±1.6 years) and the PH2 stage 

of pubic hair development (12.4±1.5 years) in males (Table 8.1 and Figure 8.1). In females, 

maxillary and mandibular M2s emerge earlier (maxilla 12.07±1.30; mandible 11.69±1.51), and 

coincident with the age of attainment of the B2 breast stage (11.9±1.2 years) and the PH2 pubic 

hair stage (12.2±1.5 years) (Table 8.2 and Figure 8.2). Notably, age of menarche does not 

coincide with any of the determined ages for emergence of teeth. 
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Table 8.1. Mean age (years) of permanent tooth emergence and sexual maturity stages in Southern African males 

Maxilla Mandible Sexual development (Lundeen et al. 2015) 
Tooth 
type 

Combined Tooth 
type 

Combined 
Mean SD Mean SD Genital 

stage 
Mean 
age  

SD Pubic 
hair stage 

Mean 
age 

SD 

I1 6.93 0.87 I1 6.08 0.34       
I2 7.78 1.07 I2 7.06 0.95       
C1 11.09 1.69 C1 10.17 1.67       
P1 10.31 1.72 P1 10.76 1.76 G2 12.6* 1.6 PH2 12.4* 1.5 
P2 11.16 1.74 P2 11.67 2.42 G3 14.2 1.4 PH3 14.2 1.2 
M1 6.27 0.29 M1 6.11 0.28 G4 15.4 1.3 PH4 15.4 1.2 
M2 12.75* 1.78 M2 12.64* 2.07 G5 16.6 1.3 PH5 16.7 1.2 
M3 18.82 1.45 M3 18.45 1.97       

*Similar timing of appearance 
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Figure 8.1. Point plot of co-occurrence of timing of permanent tooth emergence and sexual 
maturity stages in Southern African males 
 

 
    Simultaneous events are located on the bold line. 



283 
 

Table 8.2. Mean age (years) of permanent tooth emergence and sexual maturity stages in Southern African females 

Maxilla Mandible Sexual development (Lundeen et al. 2015) 
Tooth 
type 

Combined Tooth 
type 

Combined 
Mean SD Mean SD Breast 

stage 
Mean 
age  

SD Pubic 
hair stage 

Mean 
age 

SD Menarche^ 
Mean SD 

I1 6.43 0.66 I1 5.46 0.94         
I2 7.42 0.92 I2 6.74 1.68         
C1 10.47 1.46 C1 9.47 1.37         
P1 9.84 1.34 P1 10.01 1.28 B2 11.9* 1.2 PH2 12.2* 1.5   
P2 10.63 1.65 P2 10.66 1.29 B3 13.8 1.4 PH3 14.0 1.3   
M1 6.04 0.89 M1 5.37 1.13 B4 14.9 1.4 PH4 15.1 1.4   
M2  12.07* 1.30 M2 11.69* 1.51 B5 16.0 1.5 PH5 16.3 1.4 13.0 1.3 
M3 19.56 2.89 M3 18.58 2.49         

*Similar timing of occurrence 
^ Norris and Richter (2015) 
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Figure 8.2.  Point plot of co-occurrence of timing of permanent tooth emergence and sexual 
maturity stages in Southern African females 
 
 

 
Simultaneous events are located on the bold line. 
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8.3.2 Correlations between the number of emerged teeth and anthropometric variables 

The Spearman’s rho correlations (Table 8.3) show that the number of emerged teeth correlates 

strongly and significantly with the chronological age (r=0.91, p=0.00), while the correlation for 

height is slightly lower (r=0.89) as is the correlation for MUAC (r=0.61, p=0.00) in males. 

However, the number of emerged teeth is poorly correlated with HC in males even though the 

relationship is significant (r=0.16, p=0.007). In females, the number of emerged teeth correlates 

strongly and significantly with the chronological age (r=0.88, p=0.00) compared to height 

(r=0.83, p=0.00), There is a moderate correlation with MUAC (r=0.59, p=0.00), and even less 

with HC (r=0.38, p=0.00) (Table 8.3). The overall pattern of correlations is the same for both 

sexes, although the strength of the correlation with HC is somewhat stronger in females. 

 

Table 8.3. Spearman’s rho correlations between numbers of teeth emerged, age and 
anthropometric variables 

 

Variable 
# teeth emerged 
Males (N=266) 

# teeth emerged 
Females (N=373) 

r p r p 
Age 0.91 0.00 0.88 0.00 

Height 0.89 0.00 0.83 0.00 
MUAC 0.61 0.00 0.59 0.00 

HC 0.16 0.01 0.38 0.00 
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8.3.3 Tooth formation 

Females are advanced in the age of attainment of the final (H) stage of development in all the 

teeth compared to the males. The greatest difference in timing is seen in the canines (Tables 8.4 

and 8.5). 

The mean age of attainment of the H stage of canine (C1) development (12.75±0.07 years) co-

occurs with the G2 stage of gonad development (12.6±1.6 years) and shortly after pubic hair 

stage PH2 (12.4±1.5 years) in the males (Table 8.4 and Figure 8.3). The age of attainment of the 

H stage of first premolar (P1) formation (12.97±0.10) occurs shortly after the G2 stage of gonad 

development (12.6±1.6 years) and the PH2 stage of pubic hair development in males (12.4±1.5 

years) (Table 8.4 and Figure 8.3).  

 

In females, the age of attainment of the H stage during C1 formation (11.62±0.1 years) occurs 

shortly before the attainment of Tanner’s stage B2 of breast development (11.9±1.2 years) (Table 

8.5 and Figure 8.4). Furthermore, the attainment of the H stage of P1 formation (12.15±0.10 

years) coincides with the PH2 stage of pubic hair development (12.2±1.5 years) and shortly after 

the age attainment of the Tanner’s stage B2 of breast development (11.9±1.2 years). The mean 

age of attainment of the H stage in P2 formation (12.95±0.08 years) coincides with the age of 

menarche (13.0±1.3 years) (Table 8.5 and Figure 8.4). 
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Table 8.4. Comparison of mean age of attainment of dental and sexual maturity stages in 
males 

 

Stage 

Dental maturity Sexual maturity+ 

Mean 
age SD n Genital 

stages 
Mean 
age SD 

Pubic 
hair 
stage 

Mean 
age SD 

Canine formation 
D 3.17 0.47 33       
E 7.01 0.10 24 G2 12.6* 1.6 PH2 12.4* 1.5 
F 8.16 0.15 77 G3 14.2 1.4 PH3 14.2 1.2 
G 11.34 0.12 27 G4 15.4 1.3 PH4 15.4 1.2 
H 12.75* 0.07 108 G5 16.6 1.3 PH5 16.7 1.2 

First premolar formation 
D 3.17 0.47 39       
E 7.54 0.09 42 G2 12.6* 1.6 PH2 12.4* 1.5 
F 9.11 0.09 50 G3 14.2 1.4 PH3 14.2 1.2 
G 11.18 0.11 34 G4 15.4 1.3 PH4 15.4 1.2 
H 12.97* 0.10 104 G5 16.6 1.3 PH5 16.7 1.2 

Second premolar formation 
D 4.74 0.27 44       
E 7.96 0.12 37 G2 12.6 1.6 PH2 12.4 1.5 
F 9.28 0.11 56 G3 14.2 1.4 PH3 14.2 1.2 
G 11.75 0.12 41 G4 15.4 1.3 PH4 15.4 1.2 
H 13.84 0.09 86 G5 16.6 1.3 PH5 16.7 1.2 

Second molar formation 
C 5.06 0.09 18       
D 6.09 0.16 42       
E 8.28 0.17 68 G2 12.6 1.6 PH2 12.4 1.5 
F 11.01 0.13 38 G3 14.2 1.4 PH3 14.2 1.2 
G 12.98 0.07 39 G4 15.4 1.3 PH4 15.4 1.2 
H 14.90 0.05 64 G5 16.6 1.3 PH5 16.7 1.2 

*Close values 
+ Data from Birth to Twenty Study (Lundeen et al. 2015)  
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Figure 8.3. Point plot of co-occurrence of stages of permanent tooth formation and sexual 
maturity stages in Black Southern African males 

  
  Simultaneous events are located on the bold line. 
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Table 8.5. Comparison of mean age of attainment of dental and sexual maturity stages in 
females  

 

Stage 

Dental maturity Sexual maturity+ 

Mean 
age SD n Breast 

stage 
Mean 
age SD 

Pubic 
hair 
stage 

Mean 
age SD 

Canine formation 
E 6.52 0.11 11 B2 11.9* 1.2 PH2 12.2 1.5 
F 7.17 0.12 59 B3 13.8 1.4 PH3 14.0 1.3 
G 9.72 0.09 59 B4 14.9 1.4 PH4 15.1 1.4 
H 11.62* 0.10 372 B5 16.0 1.5 PH5 16.3 1.4 

First premolar formation 
E 7.17 0.10 41 B2 11.9* 1.2 PH2 12.2* 1.5 
F 7.81 0.12 64 B3 13.8 1.4 PH3 14.0 1.3 
G 10.30 0.10 62 B4 14.9 1.4 PH4 15.1 1.4 
H 12.15* 0.10 194 B5 16.0 1.5 PH5 16.3 1.4 

Second premolar formation 
E 7.86 0.14 12 B2 11.9 1.2 PH2 12.2 1.5 
F 8.35 0.15 69 B3 13.8 1.4 PH3 14.0 1.3 
G 10.88 0.10 75 B4 14.9 1.4 PH4 15.1 1.4 
H 12.95** 0.08 164 B5 16.0 1.5 PH5 16.3 1.4 

Second molar formation 
D 5.29 0.19 51 B2 11.9 1.2 PH2 12.2 1.5 
E 8.15 0.15 60 B3 13.8 1.4 PH3 14.0 1.3 
F 10.48 0.06 69 B4 14.9 1.4 PH4 15.1 1.4 
G 12.49 0.07 59 B5 16.0 1.5 PH5 16.3 1.4 
H 14.01 0.08 124       

**Age of menarche =13.0 ±1.3 years (Norris and Richter 2005) is close to age of attainment of 
stage H of second premolar 

*Close values 
+ Data from Birth to Twenty (Lundeen et al. 2015) 
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Figure 8.4. Point plot of co-occurrence of timing of stages of permanent tooth formation 
and sexual maturity stages in Black Southern African females 

 

 

                   Simultaneous events are located on the bold line. 
 

8.3.4 Correlations between dental maturity and anthropometric variables 

The Spearman’s rho correlations in Table 8.6 show that the dental maturity score correlates 

strongly and significantly with chronological age (r=0.96, p=0.00) compared to height (r=0.92. 

p=0.00) and MUAC (r=0.64, p=0.00) in males. However, dental maturity is poorly correlated 

with HC in males even though the relationship is significant (r=0.18, p=0.007). In females, the 

dental maturity score correlates strongly and significantly with chronological age (r=0.94, 

p=0.00) compared to height (r=0.86, p=0.00) and MUAC (r=0.60, p=0.00), while it is weakly 

correlated with HC (r=0.34, p=0.00). Again, the correlation with head circumference is stronger 

in females. These results follow an identical pattern to what is observed for tooth emergence 

(Table 8.3). 
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Table 8.6. Correlation between dental maturity score, age and anthropometric 
variables  

 

 Variable 
Maturity score 
Male (N=270) 

Maturity Score 
Female (N=372) 

R p r P 
Age 0.96 0.00 0.94 0.00 

Height 0.92 0.00 0.86 0.00 
HC 0.18 0.00 0.34 0.00 

MUAC 0.64 0.00 0.60 0.00 
 

8.3.5 Correlation between height and stages of individual tooth formation 

There are significant correlations between height and the stages of formation of all the teeth. P1s 

show the strongest correlation with height (r=0.89, p=0.00) followed by M2s (r=0.88, p=0.00) 

and C1s (r=0.87, p=0.00) in males. In the females P1s strongly correlates with height (r=0.88, 

p=0.00), followed by C1s (r=0.86, p=0.00) and then M2s (r=0.79, p=0.00). All the other teeth 

moderately correlate with height in both males and females (Table 8.7).  

 

Table 8.7. Correlation between height and individual tooth formation  

Tooth 
Height  

Male (270) 
Height  

Female (372) 
r P r p 

11 0.57 0.00 0.45 0.00 
I2 0.68 0.00 0.49 0.00 
C1 0.87 0.00 0.86 0.00 
P1 0.89 0.00 0.88 0.00 
P2 0.81 0.00 0.78 0.00 
M1 0.65 0.00 0.69 0.00 
M2 0.88 0.00 0.79 0.00 
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8.3.6 Correlation between chronological age, MUAC, HC and stages of individual tooth 

formation 

In males, the stages of formation of the C1s and P1s have similarly strong and significant 

correlations with the chronological age (r=0.9, p=0.00) followed by the M2s (r= 0.89, p=0.00) 

and the P2s (r=0.83, p=0.00). All the other teeth (I1s, I2s and M1s) moderately correlate with 

chronological age. In females, the M2s strongly and significantly correlate with chronological 

age (0.89, p=0.00) followed by the P1s (r=0.87, p=0.00), P2s (r=0.85, p=0.00) and C1s (r=0.84, 

p=0.00) (Table 8.8).  

MUAC is moderately and significantly correlated with the stages of tooth formation of all the 

permanent teeth in males. In females, low correlations were found with the I1s, I2s and M1s 

while moderate and significant correlations were found with the C1s, P1s, P2s and M2s. Weak 

but significant correlations were found between the I1s, I2s, M1s and HC in males. However, in 

the females, all the teeth showed significant but weak correlations with HC (Table 8.8).  
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Table 8.8. Correlation between age, HC, MUAC and individual tooth formation 

Tooth 

 

HC MUAC Age 
M F M F M F 

I1 r 0.19** 0.21** 0.43** 0.28** 0.56** 0.41** 
p 0.00 0.00 0.00 0.00 0.00 0.00 

I2 r 0.17** 0.25** 0.52** 0.26** 0.66** 0.45** 
p 0.01 0.00 0.00 0.00 0.00 0.00 

C1 r 0.07 0.34** 0.55** 0.49** 0.90** 0.84** 
p 0.27 0.00 0.00 0.00 0.00 0.00 

P1 r 0.09 0.33** 0.57** 0.51** 0.90** 0.87** 
p 0.15 0.00 0.00 0.00 0.00 0.00 

P2 r 0.05 0.20** 0.47** 0.44** 0.83** 0.85** 
p 0.41 0.00 0.00 0.00 0.00 0.00 

M1 r 0.22** 0.28** 0.47** 0.37** 0.63** 0.62** 
p 0.00 0.00 0.00 0.00 0.00 0.00 

M2 r 0.03 0.19** 0.53** 0.47** 0.89** 0.89** 
p 0.63 0.00 0.00 0.00 0.00 0.00 

**Significant at p<0.01  

8.4 Discussion 

The life history of modern humans is unique among primates, mainly for our long lifespan and 

the growth spurt at adolescence, coupled with early weaning, an extended period of offspring 

dependency, late onset of reproduction, relatively short interbirth intervals and menopause 

(Bogin 2001). While the relationship between dental development and life history variables has 

been widely studied in primates with high correlations found across species, very few studies 

have been done on Homo sapiens.  

8.4.1 Relationships between dental age, chronological age and measures of somatic development 

This study found that dental emergence and tooth formation more strongly correlate with 

chronological age in Black Southern African males and females than with somatic development. 

These findings are similar to earlier studies that found dental development to be less variable in 

relation to calendric age than skeletal maturity (Lewis and Garn 1960; Green 1961; Demirjian 
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1986; Demirjian et al. 1985). The reason for this is that dental developments are less affected by 

environmental influences such as diseases and chronic malnutrition compared to skeletal 

maturation. 

 
The interrelationship of dental and skeletal development is often assumed to be strong, but the 

nature of their relationship is obscured because they are both highly dependent on the 

chronological age. Our results suggest that dental development and skeletal growth are highly 

correlated and not independent. We found that individuals who are dentally advanced relative to 

their peers tend to be skeletally advanced although a significant relationship was not found for all 

teeth (Chapter 5 of this thesis). Šešelj (2013) found a moderate correlation between skeletal 

development and dental development in a study of skeletal samples collected in the USA and 

Europe, while Demirjian et al. (1985) found a very low correlation in his study of French 

Canadian children. The reason for the differences may be due to different methodological 

approaches and developmental variables.  

 
Previous studies found strong and significant correlations between stages of canine formation 

and skeletal development (Coutinho et al. 1993; Sierra 1987). Our study found strong and 

significant correlations between height and stages of the C1 and P1 formation in males while the 

M2, followed by the P1, strongly correlates with height in females. This suggests that dental and 

skeletal development may be under similar controlling influences. Contrary to our results, many 

studies show low correlation between stages of tooth formation and skeletal development (Garn 

et al. 1965; Steel 1965; Demirjian et al. 1985). Again, the reason for the differences may be due 

to methodological differences as varying methods of developmental assessment and use of only 

selected teeth characterise these earlier analyses.  
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Correlations between tooth formation and other parameters of physical development are 

generally low (Björk and Helm 1967; Filipsson and Hall 1976; Ekström 1982; Demirjian et al. 

1985), however a slight covariation between tooth emergence and the adolescent growth spurt 

was noted by Chertkow (1980) in his study of White and Black South African clinical patients. 

Our study also found moderate to low correlations between dental development and MUAC and 

HC. The reason for the low variability has been attributed the lower level of environmental 

influence on tooth development compared to these parameters (Demirjian et al. 1985). The 

moderate correlation between tooth formation and emergence and MUAC compared to the 

strong correlation between tooth formation and emergence and chronological age shows that 

MUAC is highly variable and are more affected by environmental influence than is dental 

development.   

A low correlation was found between dental development and HC in both sexes although the 

females show a stronger correlation compared to the males. The difference can be explained by 

the longer span of cranial growth in females. We found that HC increases in females from age 5 

to 12 years while it only increased between 5 and 9 years in males (Chapters 5 and 7 of this 

thesis). This differing pattern of brain growth in males and females could be explained by the 

available fat reserves. Fat reserves are necessary for brain growth and development and children 

with higher fat reserve levels have better cognitive abilities compared to those with low fat levels 

(Innis 2007).  In our study, the BMI of the females increases dramatically above the values for 

males from age 9 onward. This period coincided with the continued increase of the head 

circumference in females.  

In a study of non-human primates, Godfrey et al. (2001) concluded that brain size is a better 

predictor of dental development than body size.  However, this study found other measures of 
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somatic maturity (height, MUAC) to be better predictors of dental development than brain 

development after age 5 years. 

8.4.2 Timing of tooth emergence and sexual maturity 

This study is the first to study the Tanner stages of sexual maturity in relation to dental 

development. Previous work only looked at the relationship between dental development and the 

onset of menarche and did not consider the different stages of sexual development (Chertkow 

1980; Demirjian et al. 1985). The age of menarche is much easier to ascertain than the timing of 

the stages of sexual development, which requires a longitudinal study design. In addition, 

longitudinal data on tooth emergence would have been more informative; however there are 

difficulties in detecting the exact timing of tooth emergence under such a study design. Attempts 

to correlate the age of menarche with tooth development reported low correlations (Björk and 

Helm 1967; Filipsson and Hall 1976; Ekström 1982; Demirjian et al. 1985). A correlational 

approach to evaluating the association between life history variables can be misleading because 

tooth emergence and tooth formation may not have a linear relationship with events that are only 

measured by appearance, such as menarche. For this reason, the co-occurrence of these events 

would have been more reasonable to investigate. Thus, the present study investigated whether 

life history events such as sexual maturity occur at similar time periods as the attainment of 

dental maturity (measured by tooth emergence and calcification), rather than using a 

correlational approach.  

 
Emergence of the maxillary and mandibular M2s occurs during the same time as the onset of 

sexual development (age of attainment of G2 of genital and PH2 stage of pubic hair 

development) in males. Similarly, emergence of mandibular M2s and the maxillary molars 

occurs around the same time as the age of attainment of the B2 stage of breast development and 
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PH2 stage of pubic hair development in females. The reason for the co-occurrence between M2 

emergence and onset of sexual maturity is not known however, the similarity of the co-

occurrence in both sexes is noteworthy and merits further investigation. 

Age of attainment of menarche in Southern African Black females appears not to have any 

relationship with the timing of tooth emergence. This is in agreement with previous studies that 

demonstrated low correlations between the emergence of premolars, molars and menarche (Garn 

et al. 1965).  

8.4.3 Age of attainment of tooth formation stages and sexual maturity  

The attainment of the final (H) stage of mandibular canine formation appears to co-occur with 

the age of attainment of Tanners G2 stage of genital development and shortly after the PH2 stage 

of pubic hair development in males while it occurs shortly before the B2 stage of breast 

development in females. The relationship found in the present study between the H stage of 

mandibular canine formation and the onset of puberty may be a reflection of the circumpubertal 

increase in stature and acceleration in the growth of the craniofacial structures reported in other 

studies (Hunter 1966; Brown et al. 1971).    

A previous clinical study in South Africa found that mandibular canine root completion prior to 

apical closure (comparable to stage H) occurs around the onset of puberty in Whites but later in 

Blacks (Chertkow 1980). It was then suggested that this relationship may be used clinically as a 

maturity indicator for White South Africans (Chertkow 1980). No similar association was found 

in this study. 

The present study also found the H stage of P2 calcification occurs around the same age as the 

attainment of menarche in females. Contrary to Demirjian et al.’s (1985) assertion that tooth 

formation and sexual development are not under same controlling influence, these findings 
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suggest that certain teeth and sexual maturity may be under the same controlling influence, 

presumably linked to specifically timed hormonal effects that impact upon growth trajectories.  

8.4.4 Comparison of life history events and dental development in Black and White Southern 

Africans 

Earlier tooth formation has been documented for Black Southern Africans compared to their 

White counterparts (Phillips, and van Wyk Kotze 2009,). It is worth noting that other aspects of 

development, such as age at menarche, are also slightly advanced in Black Southern Africans 

(Jones et al. 2008). Similarly, African Americans are advanced in age of menarche and skeletal 

development compared to Americans of European ancestry and Hispanics (Freedman et al. 2002; 

Wu et al. 2002; Karapanou and Papadimitriou 2010). The earlier occurrence of these life history 

events and developmental processes among Black Southern African children strongly suggests 

that somatic development and dental development are under the same genetic influences, 

contrary to the views of others such as Demirjian et al. (1985). The life history pattern of the 

Black Southern African population corresponds with findings that other sub-Saharan Africans 

and African Americans are advanced in tooth development and have earlier sexual maturation 

compared to European ancestry populations (Freedman et al. 2002; Karapanou and 

Papadimitriou 2010; Wu et al. 2002).  

8.5 Conclusion 

In this sample of Black Southern African children, dental development correlates strongly with 

chronological age more than it does with the measure of skeletal or somatic developments such 

as height and mid-upper arm circumference. Dental development shows low correlation with 

brain development. Age of emergence of mandibular and maxillary second molars appears to 

occur concurrently with the onset of puberty in both males and females. Similarly, age of 
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attainment of the H stage of mandibular canine and first premolar formation coincides with the 

onset of puberty in males and females. Age at menarche appears to coincide with the age of 

attainment of the H stage of second mandibular premolar formation. The pattern of life history 

events in Black Southern Africans is not different from what is observed for other modern 

human populations, but the timing of their life history events is advanced. 
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Chapter 9 
Dental development references for Southern African Black children 

Abstract 

Background: Dental maturity charts and tables of conversion of maturity scores previously 

developed did not take into consideration the advanced tooth emergence and formation pattern 

observed in children of African ancestry.  

Aim: To develop a population-specific dental maturity scores, and an atlas of tooth emergence 

and formation for age estimation of Black Southern Africans aged 5-20 years. 

Method: This was a cross-sectional study of 642 Black Southern African children. Panoramic 

radiographs of the children were collected and analysed using the Demirjian et al. (1973) 

method. The WITS Atlas was developed using the tooth formation stage with the highest 

frequency for each tooth. This stage was considered the developmental standard for tooth for an 

age cohort.  To develop population-specific maturity scores, panoramic radiographs from 540 

participants aged 5-15.99 years were assessed. Southern African tables of conversion of maturity 

scores were generated separately for males and females using polynomial regression function 

(third degree). Maturity curves for boys and girls were plotted to determine the dental maturity 

curves for Southern African children.  The dental age, calculated from the population-specific 

tables of conversion of maturity scores, was compared to the Willems and Demirjian methods of 

age estimation. 

Results: At age 9.5 years, the canines, premolars and second molars are at least a year ahead in 

the WITS Atlas compared to London Atlas. The third molar formation and emergence occur 

three years earlier in the WITS Atlas compared to the London Atlas. The tables of population-

specific maturity scores show there is no significant overestimation of the chronological age of 

the males (p>0.05) and in females (p>0.05). Compared to the Willems and Demirjian methods, 
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the Southern African specific maturity tables showed the least overestimation and the least mean 

absolute error for males and females. 

Conclusion: This study provides a new dental atlas (WITS Atlas), age prediction models and 

tables of conversion of maturity scores for Black Southern African children. The tables of 

conversion of Southern African specific maturity score to dental age show the highest accuracy 

in the Southern African population when compared with the Demirjian and Willems methods. 

Our findings suggest that these new tables of conversion can be used for age estimation for 

forensic, anthropological and clinical purposes in Southern Africa. Furthermore, similarities in 

dental development across sub-Saharan African populations suggest that the WITS Atlas and the 

new age prediction model and conversion tables can be used for those populations as well. 
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9.1 Introduction 

Quantifying developmental milestones through the use of the dentition is proven to be the most 

reliable and accurate method for estimating age and development compared to other indices such 

as sexual maturity and skeletal maturation (Flood et al. 2013; Cavrić et al. 2016, Feijoo et al. 

2012). Accurate age estimation methods are important for assessing chronological age as well as 

growth and development in children and adolescents for forensics and clinical purposes. 

Methods such as dental atlases and age specific maturity stages from radiographs of developing 

dentition are used for such purposes (Elamin and Liversidge 2014). However, existing methods 

are known to overestimate age for most non-European populations, so researchers are 

increasingly moving toward the development of population-specific reference values. Those 

values are not available for sub-Saharan African populations. Instead, researchers rely on growth 

and development references formulated for European or US children to interpret norms for 

Africans. The outcome of such practice and their application can lead to misrepresentations of 

the health status of a population and inaccurate decisions in clinical practice and forensic 

anthropology. Therefore, this study presents a dental atlas for tooth emergence and formation in 

Black Southern Africans, and a new population-specific table for conversion of maturity scores 

to dental age. 

9.1.1 Dental maturity charts 

There are numerous dental maturity charts with tooth-specific crown and root formation stages. 

None of these charts take into consideration the advanced tooth emergence and formation 

patterns observed in Southern African Black children.  
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The atlas developed by Schour and Massler (1941) is one of the earliest dental aging charts. It is 

a sequence of 21 drawings describing stages of dental development from in-utero to adulthood. 

The drawings show developing teeth and their eruption status in relation to an undefined line 

(possibly the gingival line) and a corresponding age (AlQahtani et al. 2014). The age categories 

are arranged in consecutive years to the age of 12 years, after which the next age group is 15 

years. The last two drawings show fully emerged and formed teeth at 21 and 35 years. This atlas 

has been criticized because of its many inherent ambiguities. AlQahtani and co-workers (2014) 

emphasized that very few details of the sample from which the chart was derived are known. The 

chart appears to have been based on dental development of terminally ill American children, 

although it probably incorporated other anatomical and radiographic sources, including the work 

of Logan and Kronfeld (1933). Furthermore, there is no information on the subjects and how 

they were analyzed, the tooth stages and eruption level are undefined, and the age range of the 

subjects is limited. Smith (1991) pointed out that 19 of the possible total of 29 subjects were 

younger than 2 years of age. Other limitations of the chart are the observed poor correlation with 

measures of skeletal age, and the lumping of boys and girls together in the tooth development 

charts.  

 
Ubelaker’s (1978) chart has improvements over the Schour and Massler atlas (Smith, 2005). He 

adjusted the error ranges and the original graphical descriptions of the rates of eruption and tooth 

formation, most especially the development of the canine from the age of 18 months to 2 years. 

He included published results on dental development of Native American Indians and other non-

European populations. Ubelaker’s chart was modified by Blenkins and Taylor (2012) to include 

separate schemes for females and males by adjusting the age of each drawing.  
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There are many other dental charts: Nanda and Chawla (1966), Gustafson and Koch (1974), 

Brown (1985) and Kahl and Schwarze (1988). The latter two were based on Schour and 

Massler’s (1941) atlas.  However, all these aging systems have serious limitations that hamper 

their use as the tooth developmental stages are not well-defined. 

 
The London atlas is arguably the most widely used chart for forensic and anthropological 

purposes. It was developed to overcome some of the limitations of previous systems (AlQahtani 

et al. 2014). The London atlas is based on skeletal samples from Portugal, The Netherlands, 

Canada and France, with additional data from panoramic radiographs of living children of 

Bangladeshi and British origin. AlQahtani et al. (2014) showed that the London atlas is better at 

estimating dental age compared to the Schour and Massler (1941) and Ubelaker (1978) charts. 

The atlas is tooth-specific and illustrates tooth development and eruption for 31 age categories.  

Tooth stages and eruption levels are both described and illustrated. Another advantage of the 

London atlas is that the teeth are spaced such that each tooth is clearly visible (AlQahtani et al. 

2010). A limitation is the combining of data on children from different populations despite the 

established pattern of population variation in tooth formation (Koshy and Tandon 1998; Willems 

et al. 2001; Flood et al. 2013; Khorate et al. 2014; Zhai et al. 2016).  For example, Black children 

from Africa are well advanced in dental emergence and formation compared to European and 

Asian populations (Oziegbe et al. 2014; Cavrić et al. 2016). Therefore, the London atlas could 

potentially yield biased age estimations for many populations.  

9.1.2 Dental maturity methods 

The most widely used dental maturity method is that described by Demirjian et al. (1973) and 

Demirjian and Goldstein (1976). It is based on a large reference sample of French Canadian 

children and adolescents. This method involves the assessment of eight stages of tooth formation 
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for the seven left mandibular teeth. The dental maturity is calculated by adding together the 

specific biologic weight assigned to each tooth stage. The basis of the biological weights is the 

skeletal development research of Tanner et al. (1962). Tables of 50th percentile dental maturity 

values for males and females, developed from the reference sample, are used to convert the 

maturity scores to dental age (Demirjian et al. 1973).  

 
Numerous studies reported advanced dental development in their study populations compared to 

the reference sample of French Canadians used in the Demirjian method (Willems et al. 2001; 

Nik-Hussein et al. 2011; Feijoo et al. 2012; Flood et al. 2013; Djukic et al. 2013; Amberkova et 

al. 2014; Ye et al. 2014; Cavrić et al. 2016). This has been attributed to real population 

differences rather than methodological problems. Therefore, the tables proposed by Demirjian 

and colleagues cannot be generalized to other populations, justifying the need for population-

specific reference data (Koshy and Tandon 1998; Willems et al. 2001; Khorate et al. 2014; Zhai 

et al. 2016).  

 

9.2 Methods 

This study is a cross-sectional study of the panoramic radiographs of 642 healthy Southern 

African Black school children. Permission to carry out the study was obtained from the local 

education authority and respective school heads. Written consent was obtained from the 

parent/guardian and assent from the child was required before participation. Ethical clearance 

(N0. M141001) was obtained from the Human Research Ethics (Medical) Committee of the 

University of the Witwatersrand. 
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9.2.1 Sample size 

The sample size formula is N = 4zα
2S2 ÷ W2, where S=standard deviation, W=desired total width 

and Zα is the standard normal deviate for the 95% the confidence level. Cameriere et al. (2008) 

found a mean of 1.076 and a standard deviation of 0.824 derived from a standard error of 0.030. 

Using a width of 0.2, the minimum sample size total required for the 14 cohorts was 280. For the 

development of the population-specific atlas, a total of 642 children aged 5-20 years while 540 

children aged 5-15.99 years were included for the development of Southern Africa specific 

maturity scores.  

 

9.2.2 Data collection 

Panoramic radiographs of children screened during visits of the Community Oral Health 

Outreach Program (Department of Community Dentistry, University of the Witwatersrand) to 

primary and secondary schools in the Johannesburg metropolis were collected and analyzed. 

Radiographs that showed gross pathology or low-quality resolution were excluded. Children with 

systemic diseases that can affect development of teeth, mandibular hypodontia, children with any 

form of tooth impaction and agenesis and those who had lost their teeth on both sides of the 

mandible were excluded.  

9.2.3 Assessment of tooth emergence  

All selected participants were examined by the author in a mobile dental van equipped with a 

panoramic radiograph machine. Intra oral examination was done with a sterile dental mirror and 

probe under a light source. Teeth present including third molars were recorded using Fédération 

Dentaire Internationale (FDI) notation. An emerged tooth was defined as a tooth with any part of 

its crown penetrating the gingiva and visible in the oral cavity (Al-Jasser and Bello 2003). 
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Extracted teeth were considered to have emerged and the occlusal relationship of mandibular 

third molars to the maxillary third molars was checked and recorded.  

  

9.2.4 Reliability test 

The magnitude of inter and intra-examiner error of interpretation and detection was conducted 

prior to the commencement of the study. For the development of the WITS Atlas, the author and 

two assisting dentists were calibrated by assessing the stages of dental development of 10 

radiographs. The Cohen’s Kappa for inter-examiner reliability was found to be 0.87. For the 

development of the Southern African specific conversion tables of maturity score to dental age, 

the investigator assessed the maturation stage of the seven left mandibular permanent teeth, 

without knowledge of the chronological age or sex, using the Original and Modified Demirjian 

methods. Twenty-five radiographs (with 175 individual tooth ratings) were randomly selected 

and assessed by the investigator at day one and day three. Intra-examiner reliability of dental age 

assessment for the Demirjian method was calculated using Cohen’s Kappa (Landis and Koch, 

1977) and was found to be 0.97. 

 

9.2.5 Southern African specific dental maturity prediction model 

For this aspect of the study, panoramic radiographs from 540 of the 642 participants aged 5-

15.99 years were assessed. Children over 16.00 years were excluded because the Demirjian 

conversion tables do not extend beyond that age. The panoramic radiographs of each child were 

enhanced using Microsoft Office Picture Manager, properly labeled with a unique identity 

number and digitally archived. Dental age assessment was performed by the author according to 

the Original and revised (Modified) versions of the Demirjian method (Demirjian et al. 1973; 
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Demirjian and Goldstein 1976) and the Willems method (Willems et al. 2001). Each radiograph 

was assessed for the development of the permanent teeth on the left side of the mandible. Every 

tooth was rated using the 8-stage scale (A-H) based on the stages of tooth formation identified by 

Demirjian et al. (1973). Stage 0 was assigned for non-appearance of a tooth. 

9.2.6 Population-specific maturity scores 

Population-specific tables for conversion of maturity scores to dental age were generated 

separately for males and females. This was accomplished using a polynomial regression function 

by modelling the maturity score calculated from the Demirjian et al. (1973) Original method 

against the chronological age. Model fitting analysis indicated that the polynomial function (3rd 

degree) had the best fit (for males R2=0.914, for females R2=0.897). The maturity scores were 

then plotted to determine the dental maturity curves for Southern African children.   

 
The dental ages calculated from the population-specific tables for conversion of maturity scores 

were compared to chronological ages of the540 participants (aged 5-15.99 years).  The results 

(overestimation or underestimation) were compared to the overestimation or underestimation of 

dental ages obtained from the Willems, Original Demirjian and Modified Demirjian age 

estimation methods.  

 

9.2.7 Development of the WITS Atlas of dental development  

For the development of Wits Atlas, the stages of formation of all the teeth including third molars 

was done according to the Demirjian method. Following the above analyses, an atlas of tooth 

formation and tooth emergence for Black Southern African children was developed. This is 

modeled after the London atlas, with one key difference. AlQahtani et al. (2010) used the 

Moorrees method to determine the tooth development phases. The WITS Atlas uses the 
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Demirjian stages of dental development as most researchers are familiar with that system, and it 

further subdivides stages that would have been merged if AlQathani (2010) method was used 

thus, preventing overestimation of age in general. Also, the teeth in the atlas are drawn according 

to the Demirjian stages whereas the drawing in London atlas merged many of the developmental 

stages  

 
A-H stages of tooth formation 
 
The tooth formation stages proposed by Demirjian et al. (1973) can be described as follows: 

A. Beginning of calcification at the most superior level of the crypt in the form of cones or 

inverted cones. These calcified points are not yet fused. 

B.  Fusion of the calcified points to form the occlusal surface. 

C.  -Complete formation of the occlusal enamel with initial projection and convergence towards   

the cervical region. 

-Formation of the dentine begins. 

-Curved outline of the pulp chamber is seen at the occlusal level. 

D.  -Crown formation is complete to the level of the cemento-enamel junction. 

-Upper border of the pulp is well delineated and concave towards the cervical region. Pulp 

horns appear umbrella-shaped if present; in molars the pulp chamber is trapezoidal. 

-Root formation starts and can be seen as a spicule. 

E.   Uniradicular teeth: 

-Pulp horns are larger than in the previous stage. The wall of the pulp cavity appears straight 

except where the profile is broken by the pulp horn.  

-Length of the root is less than the crown height. 

  Molars: 
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-Radicular bifurcation begins, seen as a calcified point or semilunar in shape.  

       -Length of the root is still less than the crown height. 

F.  Uniradicular teeth: 

-Pulp chamber wall resembles an isosceles triangle with a funnel-shaped apex. 

-Crown height is less or equal to the root length. 

  Molars: 

-Calcification of the radicular bifurcation extends further down the root. Ends of the roots 

are funnel-shaped in outline. 

-Crown height may be less or equal to the root length. 

G.  Walls of the root canals are parallel, but the apex is yet to close. 

H.  -Root apex is closed. 

-Around the root apex, the periodontal ligament has a uniform width.  

To construct the atlas, the following steps were taken: 

1. Assessment of the right maxillary and mandibular teeth was done using the Demirjian 

et al. (1973) stages of tooth formation. This is usually done on the left side, but for 

comparative purposes the right side was used as this is what appears in most atlases. 

2. Tables of frequencies for the stages of tooth development for each tooth were 

generated separately for each age cohort and by sex. The most frequently occurring 

(modal) stage of tooth formation was considered the signature or standard 

developmental stage. Where a tooth had two developmental stages with equal 

frequencies, the more advanced stage was taken as the standard stage for that tooth if 

they were contiguous stages. Following the procedure of AlQahtani et al. (2010), if 
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the greatest difference in the age of attainment of specific tooth formation stages was 

not more than one developmental stage, the use of combined data is justified.  

3. The relationship of the occlusal surfaces of the third molars with occlusal tables on 

the radiographs were checked and compared with the intraoral findings. 

4. The diagram for the reference stage was drawn, following the sketches in the 

Demirjian diagram for stages of tooth development (Fig. 1, Demirjian et al. 1973). 

5. The panoramic radiographs were sorted by age cohorts and enhanced using Microsoft 

Picture Manager. One author (TAE), along with a specialist paediatric dentist and a 

general dentist, jointly reviewed each radiograph and sorted them according to their 

patterned similarities in overall dental development. The commonest occurring 

(modal) pattern was chosen as the standard of dental development for that age cohort.  

6. To validate the selected radiograph patterns, they were compared with the calculated 

frequency tables for each age cohort. Where they did not match, the radiograph 

sorting process was repeated. If the same situation of non-agreement occurred, the 

more advanced stage of tooth development of the two variants was considered as the 

standard pattern. Data for males and females were combined for the atlas. Although 

there are significant differences in the timing of formation and emergence between 

males and females, the greatest difference in the age of attainment of specific tooth 

formation stages was not more than one developmental stage; thus the use of 

combined sex data is justified.  

7. The age cohort reference patterns were drawn using CorelDraw Graphic Suite X8. 

The age cohorts represent the midyear development beginning at 5.5 years and ending 
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at 17.5 years. Data on occlusion status is incorporated into the altas by showing the 

true spatial relationship between opposing teeth. 

The WITS Atlas was visually compared with the London atlas by age cohorts and any   

differences are presented in the results. 

9.2.8 Data analysis 

For the development of the Black Southern African population-specific maturity score, the data 

were analyzed using IBM SPSS (version 22) software for Windows. The level of analysis was 

the entire group as well as each sex and age cohort. The Black Southern African dental age 

(SADA), generated from the Southern African specific tables of conversion, was compared to 

the chronological age (CA) for males and females separately. The difference between the SADA 

and the CA was tested using paired t-tests at a significance level of p<0.05. A Bland Altman 

procedure was done to determine the accuracy of the SADA derived from the Black Southern 

African specific maturity scores with the chronological ages.  

 
The mean difference between the chronological age and the predicted age (SADA) using the 

Black Southern African table of conversions was compared to the mean differences calculated by 

the two Demirjian methods and the Willems method. The mean absolute error (MAE) between 

the SADA and the CA was calculated to express accuracy independent of bias. This was then 

compared to the MAE obtained for the Demirjian and Willems methods. Statistical significance 

was inferred at p<0.05.  

  



319 
 

9.3 Results 

Table 9.1 provides the frequency of the developmental stages of each age cohort for males and 

females combined. The developmental stages with the highest frequency (modes) were chosen as 

the standard developmental stage for that tooth in that age cohort. The standard stage for each 

age cohort appears in bold. 

 
The WITS Atlas for dental development for ages 5.5 to 17.5 years is presented in Figure 9.1. The 

drawings are modified for clarity, but they are close approximations of the Demirjian stages 

(Demirjian et al. 1973). In contrast with the London atlas (Figure 9.2), the sequence of formation 

and the tooth position relative to the occlusal plane and the maxillary and mandibular alveolar 

ridges during the process of emergence are clearly illustrated.  
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Table 9.1. Tooth developmental stages (combined for sex): Age cohorts 5, 6 and 7 years. Standard stages are in bold. 
 

 Maxilla Total Mandible Total 
5-5.99 A B C D E F G H  A B C D E F G H  

I1     8 18 0 0 26     8 14 4 0 26 
I2     24 2 0 0 26    4 14 8 0 0 26 
C1    26 0 0 0 0 26    22 4 0 0 0 26 
P1    26 0 0 0 0 26    26 0 0 0 0 26 
P2   1 25 0 0 0 0 26    26 0 0 0 0 26 
M1     13 13 0 0 26     6 18 2 0 26 
M2   14 9 0 0 0 0 26   8 18 0 0 0 0 26 

6-6.99                   
I1    1 3 36 8 6 54     4 26 22 2 54 
I2    7 22 22 2 1 54     20 28 4 2 54 
C1   2 42 8 2 0 0 54   1 32 14 7 0 0 54 
P1   2 52 0 0 0 0 54    48 3 3 0 0 54 
P2   12 42 0 0 0 0 54   7 46 0 1 0 0 54 
M1     10 36 8 0 54     6 40 7 1 54 
M2   22 30 2 0 0 0 54   8 42 4 0 0 0 54 

7-7.99                   
I1      0 3 12 15      3 4 8 15 
I2      3 7 5 15      3 7 5 15 
C1    3 9 3 0 0 15    1 1 13 0 0 15 
P1    5 7 3 0 0 15    4 8 3 0 0 15 
P2    12 2 1 0 0 15    10 3 2 0 0 15 
M1      4 9 2 15      2 10 3 15 
M2    10 5 0 0 0 15    11 4 0 0 0 15 
M3 4 0 0 0 0 0 0 0 15 4 0 0 0 0 0 0 0 15 
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Table 9.1 continued. Age cohorts 8, 9 and 10 years. Standard stages are in bold. 
 

 Maxilla Total Mandible Total 
8-8.99 A B C D E F G H  A B C D E F G H  

I1       10 50 60        18 42 60 
I2       25 35 60       28 32 60 
C1    6 9 41 4 0 60     4 47 9 0 60 
P1    8 34 18 0 0 60    2 4 50 4 0 60 
P2    10 35 15 0 0 60    6 7 47 0 0 60 
M1       27 33 60       18 42 60 
M2   3 17 32 8 0 0 60    24 36 0 0 0 60 
M3 40 6 0 1 0 0 0 0 60 47 3 0 0 0 0 0 0 60 

9-9.99                   
I1       10 56 66       3 63 66 
I2      8 13 45 66       6 60 66 
C1     18 37 11 0 66     3 32 28 3 66 
P1    5 25 27 9 0 66     12 41 12 1 66 
P2    5 27 29 5 0 66    7 10 40 9 0 66 
M1      7 11 48 66       5 61 66 
M2    19 33 14 0 0 66    15 36 15 0 0 66 
M3 54 7 5 0 0 0 0 0 66 57 6 3 0 0 0 0 0 66 

10-10.99                   
I1       3 35 38        38 38 
I2       4 34 38       2 36 38 
C1      31 7 0 38      14 14 10 38 
P1     8 20 10 0 38      25 11 2 38 
P2    3 9 21 5 0 38   1 1 1 25 10 0 38 
M1       1 37 38        38 38 
M2    8 28 2 0 0 38    1 28 9 0 0 38 
M3 24 6 5 3 0 0 0 0 38 11 16 9 2 0 0 0 0 38 
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Table 9.1 continued. Age cohorts 11, 12 and 13 years. Standard stages are in bold. 
 

  Maxilla Total Mandible Total 
11-11.99 A B C D E F G H A B C D E F G H 

I1        53 53        53 53 
I2        53 53        53 53 
C1      20 30 3 53      7 33 13 53 
P1      26 26 1 53      9 34 10 53 
P2      29 22 2 53      19 24 10 53 
M1        53 53        53 53 
M2     23 23 7 0 53     8 36 9 0 53 
M3 6 16 16 15 0 0 0 0 53 3 13 19 14 3 0 1 0 53 

12-12.99                   
I1        65 65        65 65 
I2        65 65        65 65 
C1      21 29 15 65      0 20 45 65 
P1      8 33 24 65      2 23 40 65 
P2      18 42 5 65      5 37 23 65 
M1        65 65        65 65 
M2     13 34 14 4 65      29 23 13 65 
M3   4 50 6 5 0 0 65  2 3 33 15 7 5 0 65 

13-13.99                   
I1        65 65        65 65 
I2        65 65        65 65 
C1       7 58 65       4 61 65 
P1       10 55 65       7 58 65 
P2      7 21 37 65       15 50 65 
M1        65 65        65 65 
M2      21 35 9 65      12 32 21 65 
M3   7 27 29 2 0 0 65   3 22 35 3 2 0 65 
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Table 9.1 continued.  Age cohorts 14, 15 and 16 years. Standard stages are in bold. 
 

 Maxilla Total Mandible Total 
14-14.99 D E F G H  D E F G H  

I1     28 28     32 32 
I2     28 28     32 32 
C1   1 1 26 28    1 31 32 
P1   1 3 24 28    1 31 32 
P2   2 11 15 28    4 28 32 
M1     28 28     32 32 
M2   2 19 7 28   2 18 12 32 
M3 8 17 3 0 0 28 10 15 7 0 0 32 

15-15.99             
I1     25 25     27 27 
I2     25 25     27 27 
C1     25 25     27 27 
P1    1 24 25     27 27 
P2    1 24 25     27 27 
M1     25 25     27 27 
M2    6 19 25    1 26 27 
M3 4 13 7 1 0 25 2 13 10 1 1 27 

16-16.99             
I1     12 12     28 28 
I2     12 12     28 28 
C1     12 12     28 28 
P1     12 12     28 28 
P2     12 12     28 28 
M1     12 12     28 28 
M2     12 12     28 28 
M3  3 2 5 2 12  6 6 14 2 28 
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   Table 9.1 continued. Age cohorts 17 and 18-20 years. Standard stages are in bold. 
 

 Maxilla Total Mandible Total 
17-17.99 E F G H  E F G H  

I1    45 45    45 45 
I2    45 45    45 45 
C1    45 45    45 45 
P1    45 45    45 45 
P2    45 45    45 45 
M1    45 45    45 45 
M2    45 45    45 45 
M3  7 9 29 45  9 11 25 45 

18-20.00           
I1    5 17    12 17 
I2    5 17    12 17 
C1    5 17    12 17 
P1    5 17    12 17 
P2    5 17    12 17 
M1    5 17    12 17 
M2    5 17    12 17 
M3  4 2 11 17  4 3 10 17 

 
 
9.3.1 Comparison of the WITS Atlas (Figure 1) to the London Atlas (Figure 2) 

The key differences between the two atlases are described in Table 9.2. In general, the Southern 

African children are considerably advanced in their dental development compared to the children 

represented in the London atlas. The WITS Atlas illustrates considerable differences in both the 

timing of emergence and the stages of tooth formation when compared to the London atlas. 

There is advanced development of the mandibular central incisors at ages 5.5 and 6.5. The 

maxillary lateral incisors are in occlusion at age 7.5 with the root stages almost completed, 

whereas in the London atlas these teeth are yet to emerge. Another important difference is that 

the canines and premolars emerge at least one year earlier. The timing of third molar 

development is the most striking difference between the two atlases. Third molars emerge at age 
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15.5 years and are in occlusion at 17.5 years. In contrast, third molars emerge four years later in 

the London atlas and are not in occlusion until 21.5 years, which is six years later than the Wits 

Atlas.  

Table 9.2. Comparison of the WITS and London atlases 
 
Age 
cohort 

WITS Atlas London atlas 

5.5 Resorption of primary I1s is more 
advanced 
Crown completion of MI and root stages 
more than crown length  

Resorption of primary I1 yet to 
commence 
Crown completion of M1s. Root stage 
commencement 

6.5 Advanced root development of 
mandibular I1 
More resorption of the mandible 
primary I2 and close to emergence 

Not as advanced as WITS Atlas 

7.5 All incisors are emerged and in 
occlusion 
The roots of M1 are more advanced 
Beginning of root formation of M2 

Maxillary I2 yet to emerge. 
The roots of MI are less advanced 
Crown completion of M2 

8.5 Developing mandibular C1 roots are 
more advanced 
Significant root resorption of premolars 
Furcation calcification appears in M2 

Primary canine roots not resorbed 
Crown calcification completed in M2 

9.5 Mandibular P1 emerging 
M2 root development advanced 
M3 crown formation completed 
Maxillary canines moving more 
medially 

Mandibular P1 yet to emerge 
M2 root development not as advanced 
 

10.5 Maxillary and mandibular P1 emerged 
and in occlusion 
M3 furcation calcification 

P1s  yet to emerged 
M3 crown formation not completed 
 

11.5  Maxillary P2 emerged, mandibular P2 
emerging 
M3 root development is advanced 

P2s are yet to emerge 
 
This M3 stage occurs at 14.5 

12.5 M3 crown advanced   
13.5 M2 root development almost completed 

M2s are in occlusion 
M3 root development more than length 
of the crown 

 

14.4 M3 half formed roots M3 half formed roots at 16.5 
15.5 M3 emerged M3 emerged at 18.5 
16.5 M3 in occlusion M3 in occlusion at 21.5 
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Figure 9.1. WITS Atlas of tooth development 
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Figure 9.2 London Atlas  
 
 

 
 
Figure reproduced with kind permission from Dr Sakher AlQahtani
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9.3.2 Southern African specific age prediction models 

Polynomial function equations (third order) were generated for males and females. For males, 

the formula is y= 0.14343 - 5.4219x2 + 68.775x - 197.34 (R²=0.9137) and for females it is  

y= 0.1358x3 - 5.2085x2 + 66.593x - 185.74 (R²=0.8971).  

Where y=maturity score and x=chronological age.  The maturity score graphs for Black Southern 

Africans are presented in Figures 9.3 and 9.4 separately for males and females. 

 
Figure 9.3. Regression of male chronological age versus maturity scores   
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Figure 9.4. Regression of female chronological age versus maturity scores   
  

  
 

 

9.3.3 The new Southern African specific maturity score 

Southern Africa specific conversion tables of maturity to dental age were generated separately 

for males and females (Tables 9.3 and 9.4).  
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Table 9.3.  Conversion of dental age scores in Southern African males 
 

Age Predicted 
Maturity score Age Predicted 

Maturity score Age Predicted Maturity 
score 

5.4 38.98 9.1 87.47 12.6 95.25 
5.5 40.75 9.2 87.98 12.7 95.29 
5.6 42.52 9.3 88.41 12.8 95.35 
5.7 44.45 9.4 89.27 12.9 95.40 
5.8 46.12 9.5 89.64 13.0 95.44 
5.9 49.54 9.6 90.00 13.1 95.48 
6.0 51.10 9.7 90.39 13.2 95.53 
6.1 52.61 9.8 91.02 13.3 95.58 
6.2 54.28 9.9 91.34 13.4 95.65 
6.3 57.13 10.0 91.62 13.5 95.74 
6.4 58.67 10.1 91.88 13.6 95.80 
6.5 59.99 10.2 92.16 13.7 95.87 
6.6 61.30 10.3 92.61 13.8 95.94 
6.7 62.73 10.4 92.98 13.9 96.02 
6.8 64.90 10.5 93.10 14.0 96.15 
6.9 66.15 10.6 93.22 14.1 96.31 
7.0 67.60 10.7 93.41 14.2 96.41 
7.1 68.98 10.8 93.57 14.3 96.54 
7.2 70.40 10.9 93.80 14.4 96.67 
7.3 71.78 11.0 94.00 14.6 96.96 
7.4 72.98 11.1 94.10 14.7 97.14 
7.5 74.00 11.2 94.24 14.8 97.28 
7.6 74.91 11.3 94.44 14.9 97.48 
7.7 76.15 11.4 94.54 15.0 97.67 
7.8 76.76 11.5 94.62 15.1 98.11 
7.9 78.50 11.6 94.69 15.2 98.32 
8.0 79.50 11.7 94.77 15.3 98.57 
8.1 80.03 11.8 94.83 15.4 98.86 
8.2 80.85 11.9 94.95 15.5 99.41 
8.3 82.22 12.0 95.00 15.6 99.75 
8.4 82.95 12.1 95.05 15.7 100.00 
8.5 83.58 12.2 95.10 15.8 100.00 
8.6 84.18 12.3 95.14 15.9 100.00 
8.7 84.84 12.4 95.22   
8.8 85.39 12.5 95.25   
8.9 86.51     
9.0 87.00     
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Table 9.4.  Conversion of dental age scores in Southern African females 
 

Age Predicted 
Maturity score Age Predicted 

Maturity score Age Predicted 
Maturity score 

5.3 39.96 9.1 91.16 12.7 98.08 
5.4 43.00 9.2 91.66 12.8 98.08 
5.5 45.45 9.3 92.47 12.9 98.08 
5.6 47.51 9.4 92.90 13.0 98.09 
5.7 49.15 9.5 93.26 13.1 98.09 
5.8 50.78 9.6 93.60 13.2 98.09 
5.9 54.13 9.7 93.97 13.3 98.11 
6.0 55.64 9.8 94.57 13.4 98.12 
6.1 57.13 9.9 94.78 13.5 98.14 
6.2 58.75 10.0 95.14 13.6 98.15 
6.3 61.54 10.1 95.39 13.7 98.18 
6.4 63.05 10.2 95.65 13.8 98.21 
6.5 64.35 10.3 95.86 13.9 98.29 
6.6 65.62 10.4 96.20 14.0 98.33 
6.7 67.32 10.5 96.43 14.1 98.38 
6.8 68.22 10.6 96.62 14.2 98.45 
6.9 70.61 10.7 96.79 14.3 98.59 
7.0 71.77 10.8 96.93 14.4 98.68 
7.1 72.85 10.9 97.20 14.5 98.77 
7.2 74.52 11.0 97.30 14.6 98.88 
7.3 75.81 11.1 97.40 14.7 99.00 
7.4 76.92 11.2 97.51 14.8 99.25 
7.5 78.90 11.3 97.59 14.9 99.41 
7.6 79.10 11.4 97.73 15.0 99.57 
7.7 79.89 11.5 97.79 15.1 99.73 
7.8 81.55 11.6 97.84 15.2 99.93 
7.9 82.43 11.7 97.89 15.3 100.00 
8.0 83.00 11.8 97.96 15.4 100.00 
8.1 83.92 11.9 97.99 15.5 100.00 
8.2 84.72 12.0 98.01 15.6 100.00 
8.3 85.40 12.1 98.30 15.7 100.00 
8.4 86.77 12.2 98.05 15.8 100.00 
8.5 87.38 12.3 98.06 15.9 100.00 
8.6 87.97 12.4 98.07 15.9 100.00 
8.7 88.80 12.5 98.08   
8.8 89.67 12.6 98.08   
8.9 90.23     
9.0 90.71     
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The age cohorts and the number of the participants (233 males and 307 females) are shown in 

Tables 9.5 and 9.6.  The mean ages are 10.69±3.08 years and 11.15±2.89 years for males and 

females respectively. There is no significant difference between the mean ages of males and 

females (p=0.078). The estimated dental age and chronological age of the children are compared 

in Tables 9.5 and 9.6. Significant overestimation is only found for the age cohort 10 years in 

males (p<0.05), while it characterises the age cohort 8 years in females. No significant 

underestimation is found in males at any age, although it is found for females in the 10, 11 and 

15-year age cohorts (Tables 9.7 and 9.8). 

 
The mean difference (overestimation) between the dental ages (SADA) estimated by the 

Southern African specific maturity score method and the chronological ages (CA) for males is 

0.06 years; for females, it is 0.08 years (Table 9.7). The one sample t-test does not show any 

significant difference between the estimated SADA and CA in both males and females indicating 

that there are no fixed biases (p<0.05) (Table 9.7). The presence of proportional bias was 

investigated by linear regression analysis of the mean difference between the estimated SADA 

and the CA against the average of the estimated SADA and the CA. A significant slope of the 

regression line (Males p=0.02; Females p=0.02) documents the presence of proportional bias in 

the measurements. This result indicates that the test values (SADA) do not agree equally with the 

CA throughout the range of age cohorts (Table 9.8). The Bland Altman plots illustrate the 

presence of proportional bias in the distribution of the plotted points. The male plot (Figure 9.5) 

has many scatter points above the upper limit of agreement (green line) and below the lower 

limit (yellow line). In the female plot (Figure 9.6), the greatly disproportionate distribution of the 

scatter points below the lower limit of agreement (yellow line) clearly illustrates a different 

patterning of the proportional bias.  
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Figure 9.5. Bland Altman plot between the mean difference of SADA and CA 
and the average of SADA and CA in males 
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Figure 9.6. Bland Altman plot between the mean difference of SADA and CA 
and the average of SADA and CA in females 
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Table 9.5. Mean differences between Southern African specific dental age and chronological ages by age cohort in males  
 

Age cohort 
(years) 

 
 

N 

Southern 
African dental 

age (SADA) 

Chronological 
age (CA) SADA-CA T p 95% CI 

Mean 
Absolute 

Error 
(MAE) Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 10 5.79 0.21 5.71 0.15 0.08 0.28 0.91 0.39 -0.12 0.28 0.24 
6 – 6.99 26 6.16 0.55 6.19 0.19 -0.03 0.49 -0.40 0.70 -0.24 0.16 0.34 
7 – 7.99 6 7.73 0.76 7.63 0.34 0.10 0.60 0.40 0.71 -0.54 0.74 0.47 
8 – 8.99 33 8.70 0.68 8.54 0.26 0.16 0.59 1.55 0.13 -0.05 0.37 0.51 
9 – 9.99 36 9.48 0.74 9.38 0.31 0.10 0.64 0.83 0.41 -0.13 0.31 0.52 

10 – 10.99 16 10.03 0.43 10.29 0.30 -0.27 0.44 -2.52 0.02 -0.52 -0.04 0.38 
11 – 11.99 17 11.26 0.63 11.47 0.29 -0.21 0.57 -1.58 0.13 -0.51 0.08 0.47 
12 – 12.99 21 12.26 0.54 12.27 0.23 -0.01 0.07 -0.20 0.85 -0.33 0.28 0.53 
13 – 13.99 15 13.71 0.85 13.31 0.25 0.40 0.84 1.81 0.09 -0.07 0.86 0.63 
14 – 14.99 28 14.53 1.03 14.45 0.31 0.07 0.92 0.33 0.75 -0.30 0.41 0.56 
15 – 15.99 25 15.69 0.45 15.47 0.26 0.22 0.52 2.01 0.06 -0.01 0.42 0.34 

  Significant values in bold. 
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  Table 9.6. Mean differences between mean South African specific dental and chronological ages by age cohort in females 
  

                     
Age cohort 

(years) 

 
 

N 

Southern Africa 
dental age 
(SADA) 

Chronological 
age (CA) SADA-CA t p 95% CI 

Mean 
Absolute 

Error 
(MAE Mean SD Mean SD Mean SD Lower Upper 

5 – 5.99 13 5.81 0.32 5.77 0.17 0.04 0.33 0.42 0.68 -0.16 0.24 0.24 
6 – 6.99 28 6.28 0.78 6.31 0.24 -0.03 0.81 -0.16 0.87 -0.34 0.29 0.53 
7 – 7.99 9 7.94 1.34 7.64 0.35 0.30 1.10 0.82 0.44 -0.55 1.15 0.88 
8 – 8.99 27 9.03 0.73 8.54 0.28 0.49 0.73 3.48 0.00 0.20 0.78 0.75 
9 – 9.99 30 9.67 0.71 9.46 0.26 0.21 0.64 1.78 0.09 -0.03 0.44 0.52 

10 – 10.99 22 9.95 0.66 10.42 0.33 -0.47 0.59 -3.71 0.00 -0.73 -0.21 0.52 
11 – 11.99 36 11.24 0.95 11.41 0.28 -0.17 0.88 -3.86 0.24 -0.47 0.12 0.64 
12 – 12.99 44 12.73 0.73 12.46 0.26 0.27 0.56 -0.48 0.03 0.09 0.43 0.56 
13 – 13.99 39 13.51 1.33 13.41 0.28 0.10 1.30 2.47 0.66 -0.33 0.51 1.01 
14 – 14.99 32 14.67 0.87 14.39 0.20 0.28 0.83 1.88 0.07 -0.02 0.57 0.66 
15 – 15.99 27 15.28 0.12 15.41 0.29 -0.13 0.29 -2.42 0.02 -0.25 -0.02 0.27 
 Significant values in bold.   
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Table 9.7. One sample t-test of the mean difference between Southern African dental age 
and chronological age 
 

Sex 
 Test Value = 0 

N Mean Difference SD t p 
95% CI of the difference 

Lower Upper 
Male 233 0.06 0.54 1.30 0.20 -0.03 0.14 

Female 307 0.08 0.73 1.78 0.08 -0.00 0.18 

 
 
 
Table 9.8. Regression analysis between the overall mean difference and the average of 
SADA and CA in males and females to determine the presence of proportional bias 
 

 Coefficients 
t Sig. 

95% CI 
Male B Std. Error Lower Upper 

Constant -0.30 0.15 -1.97 0.05 -0.59 0.00 
Average 0.03 0.01 2.43 0.02 0.01 0.06 

Female 
Constant -0.33 0.19 -1.75 0.08 -0.69 0.04 
Average 0.04 0.02 2.27 0.02 0.01 0.07 

Significant values in bold. 
 
 

9.3.4 Comparison of age estimation using South African specific maturity scores with other 

methods 

 
The mean difference between the estimated Southern African dental ages (SADA) and the 

chronological ages is less than 0.5 in all age cohorts for both males and females (Tables 9.9 and 

9.10). The total mean difference between the estimated SADA and the CA is the lowest when 

compared to the total mean differences from the other methods (Original Demirjian, Modified 

Demirjian and Willems) in both males and females (Tables 9.9 and 9.10).  
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The mean absolute error for the estimated SADA values is 0.45 for males and 0.59 for females. 

None of the age cohorts in males and females have mean absolute errors of over one year. The 

mean absolute errors detected for the estimated SADA values are the lowest compared to the 

other methods (Table 9.11). 

 
 

Table 9.9. Mean differences of the methods for age estimation in males 
 

Age cohort 
(years) 

 
n 

Original 
Demirjian 

Modified 
Demirjian Willems Southern African 

specific method 
Mean SD Mean SD Mean SD Mean SD 

5 – 5.99 10 1.32 0.31 0.92 0.31 0.34 0.41 0.08 0.28 
6 – 6.99 26 1.13 0.43 0.69 0.73 0.76 1.83 -0.03 0.49 
7 – 7.99 6 1.23 0.92 1.46 1.13 0.82 0.98 0.10 0.60 
8 – 8.99 33 1.21 1.05 1.38 1.03 0.81 0.77 0.16 0.59 
9 – 9.99 36 0.89 1.33 0.73 1.22 0.32 0.97 0.10 0.64 

10 – 10.99 16 0.53 0.76 1.01 0.89 -0.15 0.57 -0.27 0.44 
11 – 11.99 17 0.57 0.88 1.18 0.76 -0.15 0.83 -0.21 0.57 
12 – 12.99 21 0.11 0.84 0.87 0.73 -0.31 0.72 -0.01 0.07 
13 – 13.99 15 1.42 1.14 1.36 0.95 0.24 0.81 0.40 0.84 
14 – 14.99 28 0.56 1.12 0.54 0.91 -0.45 1.09 0.07 0.92 
15 – 15.99 25 0.39 0.56 0.18 0.46 -0.15 0.87 0.22 0.52 

Total mean diff 233 0.85 0.85 0.94 0.83 0.19 0.90 0.06 0.54 
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Table 9.10. Mean differences of the methods for age estimation in females 
 

 
Age cohort 

(years) 

 
n 

Original 
Demirjian 

Modified 
Demirjian Willems Southern African 

specific method 
Mean 
diff SD Mean 

diff SD Mean 
diff SD Mean diff SD 

5 – 5.99 13 1.26 0.32 0.40 0.48 0.17 0.53 0.04 0.33 
6 – 6.99 28 1.05 0.67 0.47 0.89 0.32 0.92 -0.03 0.81 
7 – 7.99 9 1.05 1.11 -0.81 1.05 0.34 0.76 0.30 1.10 
8 – 8.99 27 1.31 0.98 1.50 1.15 0.65 0.65 0.49 0.73 
9 – 9.99 30 1.37 0.95 1.79 1.29 0.34 0.78 0.21 0.64 

10 – 10.99 22 0.93 1.09 1.84 1.69 -0.05 0.76 -0.47 0.59 
11 – 11.99 36 0.92 0.94 2.48 1.26 -0.02 0.85 -0.17 0.88 
12 – 12.99 44 1.03 1.13 2.25 0.94 0.19 1.29 0.27 0.56 
13 – 13.99 39 1.35 1.30 1.93 0.65 0.79 1.58 0.10 1.30 
14 – 14.99 32 0.59 0.79 1.11 0.28 -0.03 1.10 0.28 0.83 
15 – 15.99 27 0.54 0.35 0.38 0.29 0.31 0.42 -0.13 0.29 

Total mean diff 307 1.04 0.88 1.21 0.91 0.27 0.88 0.08 0.73 
 
  



340 
 

Table 9.11. Mean absolute error by age cohorts 
 

Age 
cohorts 

SA specific maturity 
score method 

Willems  
method 

Original 
Demirjian 

method 

Modified 
Demirjian 

method 
Male Female Male Female Male Female Male Female 

5 – 5.99 0.24 0.24 0.38 0.44 1.19 1.25 0.78 0.33 
6 – 6.99 0.34 0.53 0.90 0.64 1.20 0.86 0.89 0.63 
7 – 7.99 0.47 0.88 0.99 0.34 1.51 0.96 1.75 0.76 
8 – 8.99 0.51 0.75 0.91 0.64 1.54 1.46 1.47 1.43 
9 – 9.99 0.52 0.52 0.83 0.61 1.49 1.50 1.28 1.94 

10 – 10.99 0.38 0.52 0.57 0.65 0.68 1.24 1.06 2.46 
11 – 11.99 0.47 0.64 0.56 0.67 0.63 0.86 1.08 2.47 
12 – 12.99 0.53 0.56 0.47 0.98 0.73 1.01 1.02 2.00 
13 – 13.99 0.63 1.01 0.65 1.28 1.73 1.55 1.56 1.81 
14 – 14.99 0.56 0.66 1.06 1.00 1.01 0.97 0.70 1.08 
15 – 15.99 0.34 0.27 0.41 0.22 0.36 0.34 0.21 0.22 

Mean 0.45 0.60 0.70 0.68 1.10 1.09 1.07 1.38 
 
 

9.4 Discussion 

Variation in dental development among human populations is well documented. All previous 

research, as well as the present study, establishes that Black Southern African children are 

significantly advanced in dental emergence and tooth formation compared to European ancestry 

populations. Even so, dental reference developed from US and European populations are still 

used to estimate age in Africa due to a lack of population-specific reference data. This study 

introduces a new dental atlas (WITS Atlas) and new dental age predictive equations for age 

estimation for forensic, anthropological and clinical purposes in Southern Africa. 
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9.4.1 WITS Atlas 

Dental atlases are quick and easy tools for assessment of dental development in children and 

adolescents. They require less specialized dental knowledge and obviate the use of sophisticated 

or destructive methods of age estimation in forensics and clinical applications (AlQahtani et al. 

2010). The first dental atlas (Schour and Massler 1941) was broadly criticized for the obscured 

nature of the sample population, method of analysis and undefined tooth stages (Smith 1991; 

AlQahtani et al. 2014). This necessitated revisions and led to the development of new atlases 

such as Uberlaker (1978), Nander and Chawla (1966) and the most recently developed London 

atlas (AlQahtani et al. 2010). These atlases are based on populations from the US, Europe and 

Asia. None of the existing atlases take into consideration the significantly advanced tooth 

emergence and maturity found in African populations. 

 
The number and magnitude of differences in the timing and stages of permanent tooth emergence 

and formation between the WITS and the London atlases demonstrates that the London atlas is 

not suitable for age estimation of Black Southern Africans. This is particularly true for forensic 

applications where the level of accuracy neEds to be within 6 months or at most one year 

(McKenna et al. 2002; Flood et al. 2011). For example, a Southern African Black child with 

emerged mandibular first premolars at age 9.5 would be aged as 11.5 using the London atlas. If 

the third molar is considered, the age discrepancy can be over 4 years. Hence there is a need to 

factor in the advanced dental development for anthropological, clinical and forensic purposes 

when estimating age for the Black Southern African population. This study further validates the 

population-based variability in dental development that has been reported by other authors 

(Davis and Hagg 1993; Willems et al. 2001; Chen et al. 2010; Cruz-Landeira et al 2010; 

Ogodescu et al. 2011; Baghdadi and Pani 2012; Erdem et al. 2013). Maturity score tables and 
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atlases of tooth development based on data combined from diverse populations may not be useful 

where accuracy and specificity of age determination are required.  

There were very few situations (3 out of 112 occurrences) where a tooth had two developmental 

stages with equal frequencies. It should be stressed that these 3 cases occurred between 

successive developmental stages. AlQahtani et al. (2010), when merging male and female data in 

their study, posited that there is no significant difference between the developmental stages of a 

tooth if they are contiguous. Hence, the more advanced stage chosen in these very few occasions 

would not result in overestimation of age in the WITS Atlas.   

 
The similarity of tooth emergence times of Southern Africans and other sub-Saharan populations 

(c.f. Chapter 6 of this thesis as well as studies from Nigeria (Oziegbe et al. 2014) and Kenya 

(Hassanali and Odhiambo 1989)) suggests that the WITS Atlas may be used for clinical and 

forensic applications for sub-Saharan African children.  

A limitation of this study is the absence of the younger age categories in the sample and the 

small sample size in age 18 and above. This is partly due to the study design, which is based on 

data collected during visits to schools and not the usual retrospective use of x-rays archived in 

hospitals, and the need to comply with the health regulations and ethics of South Africa that do 

not permit x-rays of very young children except when there is an absolute medical or dental 

condition that dictates their use. Furthermore, exclusion of participants with third molar 

impaction and agenesis from the study, and the limited number of participants above age 18 

years in secondary schools, also contributed to the small sample size for age group 18-20 years. 

The available paediatric cadaver collections in South Africa are comprised of children of 

unknown ages and so their inclusion in this study was not possible. Future efforts to verify the 
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ages of children in those collections will facilitate the expansion of the WITS Atlas to the 

younger age cohorts. 

9.4.2 Age prediction equations for Southern African children 

The Demirjian and Willems methods have become the most commonly applied procedures for 

dental age estimation using radiological data (Willems et al. 2001; Maber et al. 2006; Mani et al. 

2008; Nik-Hussein et al. 2011; Urzel et al. 2013, Uys et al. 2014; Zhai et al. 2016). These 

methods are based on clearly defined and identifiable tooth developmental stages. Moreover, 

these methods have very good reproducibility for both intra- and inter-observer assessments 

(Willems 2001; Baghdadi 2014). However, the current study showed that these methods 

significantly overestimate the chronological age of Black Southern Africans. This warranted the 

development of population-specific maturity scores for dental age estimation in our population. 

 

Our results demonstrate that the Southern African specific prediction models and tables of 

conversion provide a more accurate method for age estimation in males and females. This is 

evidenced by a mean difference value for the dental and the chronological ages that is nearest to 

zero compared to the Demirjian and Willems methods. Even so, we did find proportional bias 

with the application of our method, which indicates that the estimation of dental age by the 

Southern African specific maturity scores does not agree consistently with the chronological age 

across the age cohorts. This result is expected given the influence of environmental factors on 

tooth development. Children with higher nutritional status in our sample have advanced dental 

development compared with children of similar age with lower nutritional statuses (Chapters 5 

and 7 of this thesis). Despite this shortcoming, the coefficients of the regression models for both 

males and females are very close to zero, indicating a high degree of accuracy and thus may be 
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used for clinical, anthropological and forensic applications.  Furthermore, the low mean absolute 

error value reported in this study for the dental age is further proof that the population-specific 

values developed here can be used for reliable age estimation of Black Southern African 

children. However, further studies are needed to validate this method in Black Southern African 

children.  

 
The mean absolute error found for the dental age of Black Southern Africans is very low 

compared to the errors of the Demirjian and Willem methods. This means that the Southern 

African specific age estimation method is more accurate than any of the Demirjian or Willems 

methods. Therefore, the new age prediction model in this study may be used with a high degree 

of accuracy for both males and females. Our findings are consistent with those of previous 

studies, in that estimating the chronological age using a population-specific approach produces 

accurate results in their populations (Willems et al. 2001; Duangto et al. 2016). 

9.5 Conclusion 

This study provides new dental references in the form of the WITS Atlas, age prediction models 

and tables for conversion of maturity scores to dental age for Black Southern African males and 

females. The use of the tables in our reference population provides the highest accuracy for a 

Southern African population when compared with the Demirjian and the Willems methods of 

age estimation. The magnitude of over- or underestimation error for the specific method is 

negligible and within the acceptable limits for forensic purposes (McKenna et al. 2002, Flood et 

al. 2011). Even so, we did find proportional bias with the application of our method, which 

indicates that the estimation of dental age by the Southern African specific maturity scores does 

not agree consistently with the chronological age across the age cohorts.  Further studies are 

needed to validate the use of these new tables of conversion for Southern Africa. Furthermore, 
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similarities in dental development across sub-Saharan African populations suggest that the WITS 

Atlas and the new age prediction model and conversion tables can be used for those populations 

as well. 

  



346 
 

9.6 References 

Al-Jasser, N.M., & Bello, L.L. (2003). Time of eruption of primary dentition in Saudi children. J 

Contemp Dent Pract, 4(3), 65-75. 

AlQahtani, S.J., Hector, M.P., & Liversidge, H.M. (2010). Brief communication: The London 

Atlas of human tooth development and eruption. Am J Phys Anthropol, 142, 481-490.  

AlQahtani, S.J., Hector, M.P., & Liversidge, H.M. (2014). Accuracy of dental age estimation 

charts: Schour and Massler, Ubelaker, and the London Atlas. Am J Phys Anthropol, 

154(1), 70-78. 

Ambarkova, V., Galić, I., Vodanović, M., Biočina-Lukenda, D., & Brkić, H. (2014). Dental age 

estimation using Demirjian and Willems methods: cross sectional study on children 

from the Former Yugoslav Republic of Macedonia. Forensic Sci Int, 234, 187-e1 

Asab, S. A., Noor, S. N. F. M., & Khamis, M. F. (2011). The accuracy of Demirjian method in 

dental age estimation of Malay children. Sing Dent J, 32(1), 19-27. 

Baghdadi, Z.D. (2013) Dental maturity in Saudi children using the Demirjian method: a 

comparative study and new prediction models ISRN Dent, 1–9. 

Baghdadi, Z.D. & Pain, S.C. (2012). Accuracy of population-specific Demirjian curves in the 

estimation of dental age of Saudi children. Int J Paediatr Dent, 22(2),125-131. 

Baghdadi, Z.D., & Pani, S.C. (2012). Accuracy of population-specific Demirjian curves in the 

estimation of dental age of Saudi children. Int J Paediatr Dent, 22(2), 125-131. 

Bagherpour, A. Imanimoghaddam, M. Bagherpour, M.R. Einolghozati M. (2010). Dental age 

assessment among Iranian children aged 6−13 years using the Demirjian method 

Forensic Sci. Int, 197(1), 121.e1-e4 

Blenkin, M., & Taylor, J. (2012). Age estimation charts for a modern Australian population. 

Forensic Sci Int, 221(1), 106-112. 

Brown, W.A.B. (1985). Identification of Human teeth. Bull Inst.Arch 21/22: 1-30 

Cameriere, R., Ferrante, L., Liversidge, H. M., Prieto, J. L., & Brkic, H. (2008). Accuracy of age 

estimation in children using radiograph of developing teeth. Forensic Sci Int, 176(2-3), 

173-177.  

Cavrić, J., Vodanović, M., Marušić, A., & Galić, I. (2016). Time of mineralization of permanent 

teeth in children and adolescents in Gaborone, Botswana. Ann Anat, 203, 24-32. 



347 
 

Celikoglu, M., Cantekin, K., & Ceylan, I. (2011). Dental age assessment: the applicability of 

Demirjian method in eastern Turkish children. J Forensic Sci, 56(s1), s220-s222. 

Chaillet, N., & Willems, G. (2004). Dental maturity in Belgian children using Demirjian's 

method and polynomial functions: new standard curves for forensic and clinical use. J. 

Forensic Odontostomatol, 22(2), 18-27. 

Chaillet, N., Nyström, M., & Demirjian, A. (2005). Comparison of dental maturity in children of 

different ethnic origins: international maturity curves for clinicians. J Forensic Sci, 

50(5), 1164-1174. 

Chen, J. W., Guo, J., Zhou, J., Liu, R. K., Chen, T. T., & Zou, S. J. (2010). Assessment of dental 

maturity of western Chinese children using Demirjian's method. Forensic Sci Int, 

197(1-3), 119 e111-114 

Cruz-Landeira, A., Linares-Argote, J., Martínez-Rodríguez, M., Rodríguez-Calvo, M. S., Otero, 

X. L., & Concheiro, L. (2010). Dental age estimation in Spanish and Venezuelan 

children. Comparison of Demirjian and Chaillet’s scores. Int J Legal Med, 124(2), 

105-112.  

Davis, P.J., & Hagg, U. (1993). The accuracy and precision of the “Demirjian system” when 

used for age determination in Chinese children. Swed Dent J, 18,113–116. 

Demirjian, A. (1986). Dentition. In Falkner, F., & Tanner J.M. (Eds.). Human Growth: A 

Comprehensive Treatise. Vol. 2, Postnatal Growth and Neurobiology, 2nd ed., New 

York. Plenum Press, pp. 269-298.  

Demirjian, A., & Goldstein, H. (1976). New systems for dental maturity based on seven and four 

teeth. Ann Hum Biol, 3, 411–421. 

Demirjian, A., & Levesque, G.Y. (1980). Sexual differences in dental development and 

prediction of emergence. J Dent Res, 59(7), 1110-1122.  

Demirjian, A., &Goldstein, H. (1976). New systems for dental maturity based on seven and four 

teeth. Ann Hum Biol, 3, 411–421. 

Demirjian, A., Goldstein, H., & Tanner, J.M. (1973). A new system of dental age assessment. 

Hum Bio, 45, 211–227. 

Djukic, K., Zelic, K., Milenkovic, P., Nedeljkovic, N., Djuric M. (2013). Dental age assessment 

validity of radiographic methods on Serbian children population. Forensic Sci. Int, 

231, 398.e1–398.e5.  



348 
 

Duangto, P., Janhom, A., Prasitwattanaseree, S., Mahakkanukrauh, P., & Iamaroon, A. (2016). 

New prediction models for dental age estimation in Thai children and adolescents. 

Forensic Sci Int, 266, 583.e1–583.e5. 

EL Bakary, A.A., Hammad, S.M., Ibrahim, F.M. (2009). Comparison between two methods of 

dental age estimation among Egyptian children.  J Forensic Med ClinToxicol, 17, 75–

86. 

Elamin, F., & Liversidge, H.M. (2014). Malnutrition has no effect on the timing of human tooth 

formation. PLoS One, 8(8), e72274.  

Erdem, A.P., Yamac, E., Erdem, M.A., Sepet, E., & Aytepe, Z. (2013). A new method to 

estimate dental age. Acta Odontol Scand, 71(3-4), 590-598.  

Eskeli, R., Laine-Alava, M.T., Hausen, H., & Pahkala, R. (1999). Standards for permanent tooth 

emergence in Finnish children. Angle Ortho, 69, 529–533. 

Feijóo, G., Barbería, E., De Nova, J., & Prieto, J. L. (2012). Dental age estimation in Spanish 

children. Forensic Sci Int, 223(1), 371.e1–371.e5. 

Flood, S. J., Franklin, D., Turlach, B. A., & McGeachie, J. (2013). A comparison of Demirjian's 

four dental development methods for forensic age estimation in South Australian sub-

adults. J Forensic Legal Med, 20(7), 875-883. 

Flood, S. J., Mitchell, W. J., Oxnard, C. E., Turlach, B. A., & McGeachie, J. (2011). A 

comparison of Demirjian’s four dental development methods for forensic age assessment. 

J Forensic Sci, 56(6), 1610-1615. 

Galić, I., Vodanović, M., Cameriere, R., Nakaš, E., Galić, E., Selimović, E., & Brkić, H. (2011). 

Accuracy of Cameriere, Haavikko, and Willems radiographic methods on age 

estimation on Bosnian–Herzegovian children age groups 6–13. Int J Legal Med, 

125(2), 315-321. 

Gustafson, G., Koch, G. (1974). Age estimation up to 16 years of age based on dental 

development. Odontol Revy, 25, 297–306. 

Hassanali, J., & Odhiambo, J. W. (1981). Ages of eruption of the permanent teeth in Kenyan 

African and Asian children. Ann Hum Bio, 8(5), 425-434. 

Hegde, S., Patodia, A., & Dixit, U. (2016). Willems I VS Willems II: A comparative study of 

accuracy in 5–15 year old Indian children. Forensic Sci Int, 266, 117-122. 



349 
 

Jayaraman, J., King, N.M., Roberts, G.J., Wong H.M.  (2011). Dental age assessment: are 

Demirjian's standards appropriate for southern Chinese children? J Forensic 

Odontostomatol, 29, 22–28 

Kahl, B. & Scwarze, C.W. (1988) Updating of the dentition tables of I. Schour and M. Massler 

of 1941. Fortschr kieferorthop 49: 432-443 

Khoja, A., Fida, M., & Shaikh, A. (2015). Validity of different dental age estimation methods in 

Pakistani orthodontic patients.  Aus J Forensic Sci, 47(3), 283-292. 

Khorate, M.M. Dinkar, A.D & Ahmed, J. (2014). Accuracy of age estimation methods from 

orthopantomograph in forensic odontology: a comparative study. Forensic Sci Int, 

184-e1 

Koshy, S., & Tandon, S. (1998). Dental age assessment: the applicability of Demirjian's method 

in south Indian children. Forensic Sci Int, 94(1), 73-85. 

Lee, S.S. Kim, D. Lee, S. Lee, U.Y. Seo, J.S. Ahn, Y.W. Han S.H.  (2011) Validity of 

Demirjian's and modified Demirjian's methods in age estimation for Korean juveniles 

and adolescents. Forensic Sci Int, 211, 41–46 

Liversidge HM, Smith BH, Maber M. (2010). Bias and accuracy of age estimation using 

developing teeth in 946 children. Am J Phys Anthropol,143, 545–54 

Liversidge, H. M. (1994). Accuracy of age estimation from developing teeth of a population of 

known age (0–5.4 years). Int J Osteoarchaeol, 4(1), 37-45.  

Liversidge, H. M. (2012). The assessment and interpretation of Demirjian, Goldstein and 

Tanner's dental maturity. Ann Hum Biol, 39(5), 412-431. 

Liversidge, H. M., Chaillet, N., Mörnstad, H., Nyström, M., Rowlings, K., Taylor, J., & Willems, 

G. (2006). Timing of Demirjian's tooth formation stages. Ann Hum Biol, 33(4), 454-

470. 

Liversidge, H., Speechly, T., & Hector, M. (1999). Dental maturation in British children: are 

Demirjian's standards applicable? Int J Paediatr Dent, 9(4), 263-269.  

Liversidge, H.M. (1999). Dental maturation of 18th and 19th century British children using 

Demirjian's method. Int J Paediatr Dent, 9(2), 111-115. 

Liversidge, H.M. (2003). Variation in modern human dental development. In Thompson, J.L., 

Krovitz, G., Nelson, A. (Eds.), Patterns of growth and development in the genus 

Homo. Cambridge: Cambridge University Press, pp. 73-113. 

http://www.ncbi.nlm.nih.gov/pubmed/10530220
http://www.ncbi.nlm.nih.gov/pubmed/10530220


350 
 

Logan, W.H.G., & Kronfeld, R. (1933). Development of the human jaws and surrounding 

structures from birth to age fifteen. J Am Dent Assoc, 20, 379–427. 

Maber, M., Liversidge, H.M., & Hector, M.P. (2006). Accuracy of age estimation of 

radiographic methods using developing teeth. Forensic Sci Int, 159, Suppl 1, S68-73.  

Maia, M.C. Martins Mda, G. Germano, F.A. BrandaoNeto, J. da Silva C.A. (2010) Demirjian's 

system for estimating the dental age of northeastern Brazillian children. Forensic Sci 

Int, 200, 77.e1-e4 

Mani, S.A., Naing, L., John, J., & Samsudin, A.R. (2008). Comparison of two methods of dental 

age estimation in 7–15-year-old Malays. Int J Paediatr Dent, 18(5),380-388.  

McKenna, C. J., James, H., Taylor, J. A., & Townsend, G. C. (2002). Tooth development 

standards for South Australia. Aus Dent J, 47(3), 223-227 

Nanda, R.S. (1960). Eruption of human teeth. Am J Orthod, 46, 363.  

Nanda, R.S., & Chawla, T.N. (1966). Growth and development of dentition in Indian children. I. 

Development of permanent teeth. Am J Orthod, 52, 837–853. 

Nik-Hussein, N. N., Kee, K. M., & Gan, P. (2011). Validity of Demirjian and Willems methods 

for dental age estimation for Malaysian children aged 5–15 years old. Forensic Sci Int, 

204(1), 208-e1-6. 

Ogodescu, A.E. Ogodescu, A. Szabo, K. Tudor, A. Bratu E. (2011) Dental maturity- a biological 

indicator of chronological age: digital radiographic study to assess dental age in 

Romanian children. Int J Biol Biomed Eng, 5, 32–40 

Oziegbe, E.O., Esan, T.A., & Oyedele, T.A. (2014). Brief communication: Emergence 

chronology of permanent teeth in Nigerian children. Am J Phys Anthropol, 153, 506–

511. 

Scheuer, L., & Black, S. (2000). Developmental juvenile osteology. New York: Elsevier.  

Scheuer, L., & Black, S. (2006). Osteology. In: Thompson, T., & Black, S. (Eds.). Forensic 

human identification: An introduction. New York, CRC press, pp 207-219.  

Schour, L., & Massler, M. (1941). The development of the human dentition. J Am Dent Assoc, 

28, 1153–1160. 

Schulze, D., Rother, U., Fuhrmann, A., Richel, S., Faulmann, G., & Heiland, M. (2006). 

Correlation of age and ossification of the medial clavicular epiphysis using computed 

tomography. Forensic Sci Int, 158, 184–189. 



351 
 

Smith, B.H. (1991). Standards of human tooth formation and dental age assessment. In Kelly, 

M.A., & Larsen, C.S. (Eds.), Advances in Dental Anthropology. New York: Wiley-

Liss, pp. 143–168. 

Smith. E.L. (2005). A test of Ubelaker’s method of estimating subadult age from the dentition. 

Master’s thesis, University of Indianapolis. 

http//archlab.unidy.edu/documents/thesis/SmithELThesis.pdf 

Sukhia, R.H. Fida, M. Azam S.I. (2012) Dental age table for a sample of Pakistani children.  Eur. 

J. Orthodont, 34, 77–82 

Tunc, E.S., & Koyuturk, A.E. (2008). Dental age assessment using Demirjian's method on 

northern Turkish children. Forensic Sci Int, 175(1), 23-26.  

Ubelaker, D.H. (1978). Human Skeletal Remains: Excavation, Analysis, Interpretation. Chicago, 

Aldine. 

Urzel, V., & Bruzek, J. (2013). Dental age assessment in children: a comparison of four methods 

in a recent French population. J Forensic Sci, 58(5), 1341-1347. 

Uys, A., Fabris-Rotelli, I. N., & Bernitz, H. (2014). Estimating age in black South African 

children. SADA, 69 (2), 54-61 

Willems, G., Thevissen, P.W., Belmans, A., & Liversidge, H.M. (2010). Non-gender-specific 

dental maturity scores. Forensic Sci Int, 201(1-3), 84-85.  

Willems, G., Van Olmen, A., Spiessens, B., & Carels, C. (2001). Dental age estimation in 

Belgian children: Demirjian's technique revisited. J Forensic Sci, 46(4), 893-895. 

Yan, J., Lou, X., Xie, L., Yu, D., Shen, G., & Wang, Y. (2013). Assessment of dental age of 

children aged 3.5 to 16.9 years using Demirjian’s method: a meta-analysis based on 26 

studies. PloS one. 8(12), e84672. 

Ye, X., Jiang, F., Sheng, X., Huang, H., & Shen, X. (2014). Dental age assessment in 7–14-year-

old Chinese children: Comparison of Demirjian and Willems methods. Forensic Sci 

Int, 244, 36-41. 

Zhai, Y., Park, H., Han, J., Wang, H., Ji, F., & Tao, J. (2016). Dental age assessment in a 

northern Chinese population. J Forensic Legal Med, 38, 43-49. 

  



352 
 

Contents 
Chapter 10 ....................................................................................................................... 353 

General discussion....................................................................................................... 353 

10.1 The Demirjian versus the Willems methods for dental age estimation in different 
populations: A meta-analysis of published studies.................................................. 354 

10.2 Tooth Formation: Assessment of maturity scores and dental age estimation of Southern 
African children using Demirjian’s method ............................................................ 355 

10.3 Tooth Formation: Accuracy of the Willems method and Demirjian’s seven tooth 
methods .................................................................................................................... 356 

10.4 Effect of nutrition on tooth formation ............................................................. 357 

10.5 Permanent tooth emergence: Timing and sequence in black Southern African children
 ................................................................................................................................. 359 

10.6 Influence of nutrition on permanent tooth emergence ..................................... 361 

10.7 Dental development (tooth formation and emergence) and life history variables in 
Southern African children ....................................................................................... 363 

10.8 Tooth formation and emergence references for Southern African Black children364 

10.9 Conclusions ..................................................................................................... 366 

10.10 References ..................................................................................................... 368 

 

  



353 
 

Chapter 10 
General discussion 

References for dental development currently used in most clinical, forensic and academic 

settings in Southern Africa are based on references derived from other populations despite 

substantial evidence that population variation exists. The problems with using non-specific 

reference are complex, and their application may lead to misrepresentation of growth status in 

clinical, forensic and anthropological settings.   

Reference for skeletal, somatic and sexual growth and development have been developed for 

Southern African children (Norris & Richter 2005; Vidulich et al 2006; Griffiths et al. 2008; 

Sheppard et al. 2009) through a large longitudinal investigation into child and adolescent health 

and development in the Johannesburg-Soweto metropolis, otherwise known as “birth to twenty” 

study (Richter et al. 2007). This thesis adds to that body of knowledge with a thorough 

investigation of dental development in a similar population from Johannesburg.  

This is the first comprehensive study (comprised of eight separate investigations) that documents 

the timing of emergence for all permanent teeth and the age of attainment of specific maturity 

stages of tooth formation for Black Southern African children and further investigates the 

observed variation in terms of sexual dimorphism and responses to environmental stress. The 

results clearly indicate the need for population specific references for dental development. Based 

on our findings, two references, an atlas of tooth formation and emergence, and tables of 

population-specific maturity scores were developed for the Black Southern African population. 

The similarity of our results with other studies on dental development from other sub-Saharan 

African countries suggests that our reference can be used for the entire sub-Saharan African 

region.  
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There are three major conclusions that can be drawn from our series of studies on dental 

development. First, Black Southern African children, like other sub-Saharan African children 

and children of African ancestry world-wide, achieve dental maturity earlier than children of 

European and Asian ancestry. This is true even though they are more frequently subjected to 

greater environmental stresses. At the same time our study demonstrated significant effects of 

nutritional status on dental development contrary to prevailing opinions that dental development 

is largely resistant to such stresses. We also found that life history events co-occur with dental 

emergence and some specific stages of tooth formation in Black Southern African children 

suggesting that dental development and sexual development are under similar controlling 

influences that may involve hormonal regulation of general growth processes.   

This study provides evidence on the accuracies of the common methods used in estimating dental 

age globally through a meta-analysis and also tests the validity of the methods in Black Southern 

African Children.  

10.1 The Demirjian versus the Willems methods for dental age estimation in different 

populations: A meta-analysis of published studies 

A systematic review and meta-analysis of published studies on the Original Demirjian 

(Demirjian et al. 1973) and Willems (Willems et al. 2001) age estimation methods was 

undertaken to determine their accuracies. This is the first systematic review to provide scientific 

evidence on the accuracy of the two most widely employed methods of age estimation.  

This study posed the research question “Does the Demirjian method for dental age estimation 

provide a more accurate estimate of chronological age when compared to the Willems method of 

dental age estimation in different populations?” We found that the Willems method is more 
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accurate than the Demirjian method in estimating chronological age of children and adolescents 

globally. The Demirjian method significantly overestimated chronological age (p<0.05) in males 

and females when the studies were pooled by age cohorts and sex. The majority of studies using 

the Willems method did not report significant overestimation of ages in males or females, but 

when all the studies were pooled, significant overestimation was found. The weighted mean 

difference for the Demirjian method was 0.62 for males and 0.72 for females compared to 0.26 

and 0.29 for males and females with the Willems method. Previous systematic reviews have 

reported overestimation for Demirjian methods in most populations (Jayaraman et al. 2013; Yan 

et al 2013). The overestimation seen in both methods may be due to population level genetic 

diversity and environmental influence. In summary, the Willems method significantly 

overestimates chronological age, yet it has significantly better accuracy than the Demirjian 

method.  

10.2 Tooth Formation: Assessment of maturity scores and dental age estimation of Southern 

African children using Demirjian’s method 

Our study documented sexual dimorphism in dental maturity with females showing significantly 

advanced maturity scores compared to males. These are similar to those of other studies 

(Fanning 1961; Demirjian et al. 1973; Demirjian and Levesque 1980; Liversidge et al. 1999; 

Cavrić et al. 2016). This pattern of female advancement is also observed for many developmental 

indicators such as sexual maturity and skeletal development (Stang and Story 2005). Males are 

more affected by environmental stresses than females, particularly during the prenatal period 

(Tobias 1972; Wolanski and Kasprzak 1976; Stinson 1985), and this could be expressed as 

sexual dimorphism in dental development.   
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Black Southern African children are more advanced in dental maturity compared to Asian and 

European ancestry children. This finding is similar to the result of a previous study (Tompkins 

1996) that found black Southern African children to have an earlier age of attainment of 

maturation of the enamel and dentine in incisors and molars compared to a Native American and 

French-Canadian child. This suggests a genetic basis for population variation in tooth formation.  

 

10.3 Tooth Formation: Accuracy of the Willems method and Demirjian’s seven tooth methods 

This study investigated the accuracies and validity of three common methods estimating age 

(Original Demirjian, Modified Demirjian and Willems methods) in a Black Southern African 

population. We found significant overestimation of chronological age of Black Southern African 

children by these methods highlighting the need for population-specific reference 

 
The Original Demirjian method significantly overestimated the chronological age in all the age 

cohorts studied. Our result is similar to other studies from European, Asian and African 

populations using Demirjian’s method (Willems et al. 2001; Hegde and Sood 2002; Baghdadi 

and Pani 2012; Ifesanya and Adeyemi 2012; Jayaraman et al. 2013; Uys et al. 2014; Carneiro et 

al. 2015; Cavrić et al. 2016). Overall the Demirjian’s method overestimated the age of males by 

0.85 years and the ages of females by 1.0 years with a high mean absolute error of 1.1 years for 

both males and females. The reason for the overestimation may be due to advance dental 

maturity in the Southern African children compared to the Demirjian's reference sample of 

French Canadian children. In addition, genetic differences and environmental influences 

contribute to the inaccuracy of the method for age estimation in Black Southern Africans.  

 
Similarly, the Modified Demirjian method overestimated chronological age by 0.9 years and 1.2 

years in males and females with a high mean absolute error of 1.4 for females, the highest error 
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of any method. Again, the overestimation may be due to genetic and environmental influences on 

tooth formation. Other studies also found significant overestimation with this method (Willems 

et al. 2001; Lee, et al. 2011; Flood et al. 2013; Akkaya et al. 2015).  

 
The Willems method has significantly better accuracy at estimating chronological age of black 

Southern African children compared to the Demirjian methods. This is in agreement with other 

studies (Mani et al. 2008; El-Bakary et al. 2010; Nik-Hussein et al. 2011; Djukic et al. 2013; 

Urzel and Bruzek 2013; Ambarkova et al. 2014; Ye et al. 2014; Akkaya et al. 2015; Hegde et al. 

2016). Although the Willems method significantly overestimates the chronological age, the low 

mean absolute error value of 0.70 and 0.68 years in males and females makes it a suitable tool 

for estimating chronological age in Black Southern Africa children. The reason for the better 

accuracy with the Willems method in many populations compared to Demirjian’s method is not 

known. However, the removal of the cumbersome step of using a table of conversion to obtain 

the dental age might account for the better accuracy.  

10.4 Effect of nutrition on tooth formation 

Is the timing permanent tooth formation immune from environmental influences such as 

nutritional stress? Some authors believe that dental development is regulated strictly by genetic 

factors while others contend that factors such as nutrition play significant roles in the age of 

attainment of specific dental maturity stages.  
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Influence of nutrition and tooth formation 

We used several anthropometric variables to provide information on the general nutritional status 

(height, weight, BMI, mid-upper arm circumference (MUAC) and head circumference (HC)). 

Our study used a combination of univariate and multivariate analyses to obtain our results. We 

found a significant influence of nutritional status on tooth formation in males and females, with a 

significant delay in age of attainment of H stages in children with low BMI values. This is in 

agreement with previous studies that found a significant influence of nutrition on tooth formation 

among children from Iran and the United States (Hilgers et al. 2006; Mack et al. 2013; Zangouei-

Booshehri et al. 2011).  

 
Our findings are at variance with previous reports that found no significant difference between 

underweight and overweight children (Bagherian and Sadeghi 2011; Eid et al. 2002; Elamin and 

Liversidge 2013). A reason for the lack of significant difference may be methodological 

differences in the use of BMI values.   

Height, weight and tooth formation 

Regression and correlational analysis showed that height significantly influenced maturity scores 

in both males and females.  The result of this study is similar to the findings of Green (1961) and 

Demirjian et al. (1985).  This study found no relationship between weight and tooth formation in 

the males, whereas a significant relationship was found in females. This may be due to the 

different pattern of weight gain in the two sexes (Geer and Shen 2009). The weight gain in 

females occurs earlier and continues till puberty while that of males occurs much later. These 

differences in the pattern of weight gain characterized the Black Southern African children. 
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Although our study found a strong correlation between weight and maturity scores in males and 

females, it is possible that the correlation may be due to weight gain as age increases.   

MUAC and tooth formation 

There was no significant relationship between the mid-upper circumference and tooth formation 

in this study. This is unexpected as MUAC is widely regarded as a good predictor of nutritional 

status. One reason for our result may be due to variation in the distribution of adipose tissue from 

one population to another (Gasperino 1996). Other measures of body composition, such as waist-

to-hip ratios, may be more informative about nutritional status in Southern Africa. Furthermore, 

MUAC is affected by exercise, type of work or household chores and this may make the use of it 

solely for nutritional assessment unpredictable. Future studies are needed to explore this research 

area. 

HC and tooth formation 

A significant relationship was found between HC and tooth formation in females but not in 

males. This might be due to the longer period of increase in head circumference observed in the 

females. The HC measurement increased from age 5 to age 12 years in females and thereafter 

stabilized, whereas it only increased from age 5 to 9 years in males. This differing pattern of 

brain growth in males and females could be explained by the available fat reserves, which we 

found to be significantly greater in the females of our study population.   

  

10.5 Permanent tooth emergence: Timing and sequence in black Southern African children 

The present study documents the timing of emergence of all permanent teeth in a black southern 

African population. Females are significantly advanced in the timing of tooth emergence 

compared to males. This finding is in agreement with the pattern of female advancement in other 
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populations (Savara and Stein 1978; Kochhar and Richardson 1998; Eskeli et al. 1999; Oziegbe 

et al. 2014; Leroy et al. 2003; Moslemi 2004; Khan 2011). Females also show advancement over 

males in most maturity indices (Almonaitiene et al. 2010) as they are more buffered from 

environmental insults (Stini 1982; Stinson 1985).  

 
Sexual dimorphism was also noted in the sequence of tooth emergence. Females have the M1 

emerging before the I1, as opposed to the I1M1 sequence in males. Black Southern African males 

have a similar sequence of emergence to children from sub-Saharan African, Europe and the US 

but differed from Asian populations. Southern African females and some females from sub-

Saharan Africa and Pakistan show similar MII1 polymorphism that differs from other 

populations.  This may be attributed mainly to genetic influences on the timing and sequence of 

emergence of the permanent teeth.  

 
Black Southern African children are advanced in the timing of emergence of permanent teeth 

compared to American, Asian and European children. Our finding is in conformity with other 

studies that reported the earlier timing of tooth emergence in African ancestry children compared 

to those of European descent (Garn et al. 1973; Lavelle 1976; Stewart et al. 1982; Blankenstein 

et al. 1990; Harris and McKee 1990; Koch and Poulsen 2001; Oziegbe et al. 2014). This may 

indicate that genetics play a strong role in the determination of permanent tooth development.  

 
Similar emergence times of the permanent teeth were found in Southern African children and 

children from other sub-Saharan African populations from Nigeria (Oziegbe et al. 2014), the 

Gambia (Billewicz and McGregor 1975), Ghana (Houpt et al. 1967), Kenya (Hassanali and 

Odhiambo 1989) and Uganda (Krumholt 1971). Genetic affinity may be responsible for these 
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similarities among Black sub-Saharan African populations as the majority are Bantu language 

speakers.  

 
No temporal changes were found in the timing of emergence of incisors and first molars in this 

study and the Blankenstein et al. (1990) study, although some changes in the timing of 

emergence were expected due to the rapid demographic and socio-political changes and 

increasing gene flow in Southern Africans that occurred shortly after the Blankenstein et al. 

(1990) study was published. The short interval of time between the two studies may be 

responsible for our findings.  

10.6 Influence of nutrition on permanent tooth emergence  

Influence of BMI on tooth emergence 

BMI is a well-regarded proxy of nutrition and it is frequently used to assess the nutritional status 

of children (WHO 1997). The present study found a significant relationship between BMI and 

number of teeth emerged. This is similar to the reports of previous authors from the USA and 

Mexico (Sánchez-Pérez et al. 2010; Must et al. 2012). High BMI enhances linear growth and 

early sexual maturation (Slyper 1998; Sánchez-Pérez et al. 2010). More studies are required to 

identify the specific mechanism involved in tooth emergence timing that is affected by high body 

fat content in children and adolescents. 

Association between height, weight and tooth emergence 

Our findings show a relationship between the number and the timing of permanent tooth 

emergence and height. This is similar to the findings of Niswander and Sujaku (1960) in a study 

of Japanese children. However, Kutesa et al. (2013) in a study on Ugandan children found mean 

tooth emergence times to directly correlate with height and not the weight of the children. On the 
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contrary, Khan (2011) in a study conducted among Pakistani children observed that heavy and 

short children had early tooth emergence while tall children showed delayed emergence 

regardless of their weight.  

 
No significant relationship was found between weight and the number of emerged teeth in this 

study. Weight is not an accurate measure of growth. It is affected by other confounding variables 

such as lifestyle and eating habits. Contrary to the findings of this study, a few studies (Haddad 

and Pires Correa 2005; Hilgers et al. 2006; Sánchez-Pérez et al. 2010; Must et al. 2012) found a 

relationship between the number of emerged teeth and weight in Mexican and USA populations. 

Those children with greater weight had higher mean number of emerged teeth. Furthermore, 

children who have lower than average weight and height have been shown to have later 

emergence times than those who are within the normal range (Adler 1963; Billewicz and 

McGregor 1975; Lee et al. 1965; Triratana and Kiatiparjuk 1989). The reason for the conflicting 

results is not clear but may be due to the difference in the sample population and method of 

analysis.  

MUAC and number of emerged teeth 

The present study did not find any relationship between the numbers of teeth emerged and 

MUAC. This could be due to population variation in the distribution of adipose tissue hence 

making the use of MUAC infective in distinguishing malnutrition. In addition, the present study 

did not include children who were severely malnourished or highly variable in their nutritional 

statuses. Craig et al. (2014) found poor accuracy for MUAC in classifying the nutritional status 

of black Southern African males aged 5-9 years. This appears to be the case for our sample as 

well. Further studies are needed to explore this relationship.  
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HC and number of emerged teeth 

The study by Godfrey et al. (2001) on a large range of primates found brain development to be a 

better predictor of dental development than general somatic development. Similarly, a positive 

correlation between primary teeth and HC had been established in younger children (Vejdani et 

al. 2015). However, no significant relationship was found between the number of teeth emerged 

and head circumference in the present study. A relationship was expected because the head 

circumference increased gradually from age 5 to 9 years in males and 5 to 12 years in females.  

There is no similar study on permanent teeth to compare with the result of this study. 

10.7 Dental development (tooth formation and emergence) and life history variables in Southern 

African children 

Conflicting results have been published regarding the relationship between sexual development 

and tooth formation with most authors reporting low correlations. Methods of analysis could 

have been responsible for this because previous authors looked at correlations without examining 

similarities in the timing of occurrence of stages of tooth formation and Tanner stages of sexual 

maturity.   

 
Tooth emergence and formation strongly correlate with chronological age more than height and 

other somatic measures. This finding is similar to earlier reports which show that dental 

development is less variable and also has low variability in relation to calendric age (Lewis and 

Garn 1960; Green 1961; Demirjian et al. 1985; Demirjian 1986), and a stronger association 

between chronological age and dental age than between skeletal age and dental age.  
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This is the first study comparing the Tanner stages of sexual development with dental 

development. Previous studies only considered how dental development relates to menarche. We 

found that the M2 emerges approximately simultaneously with the onset of sexual development 

(age of attainment of G2 of genital development and the PH2 stage of pubic hair development) in 

males. In females, the M2 emergence coincides with the attainment of B2 stage of breast 

development and PH2 stage of pubic hair development. Similarly, the attainment of the final (H) 

stage of mandibular canine development appears to occur at the same time period as the age of 

attainment of Tanner’s G2 stage of genital development, and PH2 stage of pubic hair 

development in males, while it is only concurrent with the B2 stage of breast development in 

females. The relationship found in the present study between the mandibular canine and the 

onset of puberty may be a reflection of the circumpubertal increase in stature and acceleration in 

the growth of the craniofacial structures reported in many studies (Hunter 1966; Brown et al. 

1971).   

Age of attainment of menarche in Southern African females does not have any relationship with 

tooth emergence, yet the final (H) stage of the P2 calcification is concurrent with the onset of 

menarche. Previous studies demonstrated low correlations between the emergence of premolars, 

molars, and menarche (Garn et al. 1965; Demirjian et al. 1985), with Demirjian et al. (1985) 

concluding that sexual and dental development may be under different controlling influences. 

The associations found in this study, in contrast, indicate similar controlling influences for some 

teeth and sexual development.  

10.8 Tooth formation and emergence references for Southern African Black children 

The significant overestimation of age by the Demirjian methods and the slight overestimation by 

the Willems method make it imperative to develop Black Southern African specific maturity 
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scores. Polynomial function equations (3rd degree) were used to derive tables of maturity scores 

separately for males and females. The mean differences between dental age and chronological 

age for both males and females were not statistically significant. The mean differences and the 

mean absolute errors calculated for the Southern African specific methods were significantly 

lower compared to those derived from the Willems and Demirjian methods enabling the accurate 

estimation of age to less than one week of the chronological age. This demonstrates that tables of 

maturity scores based on data combined from diverse populations may not be useful where 

accuracy and specificity of age determination are required. 

 
Researchers and clinicians typically compare growth in the population of interest to references 

formulated for other populations. The problems associated with using non-population specific 

references are numerous. Their application can lead to misrepresentation of the health status and 

inaccuracies of the age estimation. For these reasons, a new atlas of tooth emergence and 

formation called “the WITS Atlas” was derived from the panoramic radiographs of the Black 

Southern African children using the patterns of tooth formation and emergence that occurred 

most commonly in each age cohort.   The number and magnitude of differences in the timing and 

stages of permanent tooth emergence and formation between the WITS and the London atlases 

demonstrates that the London atlas is not suitable for age estimation of Black Southern Africans. 

This is particularly true for forensic applications where the level of accuracy needs to be within 6 

months or at most one year (McKenna et al. 2002; Flood et al. 2011). For example, a Southern 

African Black child with emerged mandibular first premolars at age 9.5 would be aged as 11.5 

using the London atlas. If the third molar is considered, the age discrepancy can be over 4 years. 
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Our findings suggest that these new tables of conversion of maturity scores can be used for age 

estimation for forensic, anthropological and clinical purposes in Black Southern Africans. 

Furthermore, similarities in advanced dental development across sub-Saharan African 

populations suggest that the WITS Atlas and the new age prediction model and conversion tables 

can be used for those populations as well. 

 

10.9 Conclusions 
1. There is sex dimorphism in age of emergence with the females emerging their permanent 

teeth earlier. The Black Southern Africans show similarities in the ages and sequence of 

emergence of the permanent teeth with children from sub-Saharan African countries. 

However, they are advanced compared to children from the USA, Europe, Australia and 

Asia. 

2. Globally, the Willems method is more accurate at predicting chronological age compared 

to the widely used Original Demirjian method. 

3. Tooth formation in the Black Southern African children is more advanced compared to 

children of European and Asian ancestry. 

4. The Willems method is more accurate at estimating chronological age of the Black 

Southern African children compared to the Original and Modified Demirjian methods. 

5. Contrary to some studies, malnutrition has significant influence on the number of teeth 

emerged and the timing of emergence of permanent teeth. Obese/overweight/tall children 

tend to have more emerged teeth and earlier age of emergence than underweight/short 

children of the same age. 

6. Similarly, obese/ overweight individuals attained H stage of dental development earlier 

than the underweight children. 
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7. Tooth emergence and formation are under similar controlling influence during growth 

and development.  Emergence of second molars and the H stage of canine and first 

premolar formation co-occur with onset of puberty in males and females. Menarche 

appears to coincide with the attainment of the H stage of mandibular second premolar. 

8. WITS Atlas and new population specific maturity tables for Black Southern Africans 

were developed. The WITS atlas differs significantly from the London atlas in earlier age 

of tooth formation and emergence. The population specific age estimation method 

showed good accuracy in the estimation of dental age. We conclude that this method 

could be used in other sub-Saharan African countries because of similarities in tooth 

formation and emergence 
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Appendix 1 
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Appendix 2 
DATA COLLECTION FORM 1 

1. NAME OF SCHOOL 

2. YEAR/CLASS 

3. SUBJECT ID NO 

4. AGE                          Date of Birth:.  dd/mm/yy……… 

5. SEX 

6. NATIONALITY 

7. ETHNICITY 

8. WHO IS RESPONSIBLE FOR YOUR UPKEEP? 

9. IF FATHER, STATE  FATHER’S OCCUPATION 

10. IF MOTHER, STATE MOTHER’S OCCUPATION. 

11. IF SOMEONE ELSE, STATE THE RELATIONSHIP 

12. STATE THE OCCUPATION OF THE PERSON 

13. BEEN TO THE DENTIST BEFORE?     YES                       NO 

14. HOW MANY TIMES DO YOU CLEAN YOUR TEETH? 

15. TEETH PRESENT (Put X on teeth not erupted) 

 

16. TOOTH/TEETH EXTRACTED 

17. TEETH FILLED 

18.       DECAYED TEETH 

19. ORAL HYGIENE STATUS.     (1. GOOD)      (2.    FAIR,)      (3. POOR) 
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DATA COLLECTION FORM 2 

Scoring of tooth development 

1. SUBJECT ID                                        2. NAME OF SCHOOL 
3. SCHOOL YEAR                                  4.  DATE                                      5. SEX 
Demirjian’s Method 

Tooth Type Demirjian Stage Biological Weight Maturity Score 
UPPER LEFT    
I1    
I2    
C1    
P1    
P2    
M1    
M2    
LOWER LEFT    
I1    
I2    
C1    
P1    
P2    
M1    
M2    
TOTAL SCORE    
 

Modified Demirjian’s method 

Tooth Type Demirjian Stage Biological Weight Maturity Score 
UPPER LEFT    
I1    
I2    
C1    
P1    
P2    
M1    
M2    
LOWER LEFT    
I1    
I2    
C1    
P1    
P2    
M1    
M2    
TOTAL SCORE    
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Appendix 3: Self-Weighted Scores for Dental Stages of 7 Teeth (Mandibular Left Side) 

    Boys      
 Stage         
Tooth      0 A B C D E F G  H 

M2                                                          0 2.1 3.5 5.9 10.1 12.5 13.2 13.6 15.4 

M1                                                0 8 9.6 12.3 17 19.3 

PM2                           0 1.7 3.1 5.4 9.7 12 12.8 13.2 14.4 

PM1                                                                             0 3.4 7 11 12.3 12.7 13.5 

C    0 3.5 7.9 10 11 11.9 

I2    0 3.2 5.2 7.8 11.7 13.7 

I1     0 1 4.1 8.2 11.6 

NB: Stage 0 Is no calcification 

 

  Girls   

 Score         
Tooth           0 A B C D E F G  H 

M2                                                          0 2.7 3.9 6.9 11.1 13.5 14.2 14.5 15.6 

M1                                                0 4.5 6.2 9 14 16.2 

PM2                           0 1.8 3.4 6.5 10 12.7 13.5 13.8 14.6 

PM1                                                                             0 3.7 7.5 11.8 13.1 13.4 14.1 

C    0 3.8 7.3 10.3 11.6 12.4 

I2    0 3.2 5.6 8 12.2 14.2 

I1     0 2.4 5.1 9.3 12.9 

NB: Stage 0 Is no calcification       
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Appendix 4: Turn-it-in Report 
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