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Abstract

The importance pfPade approximation has been increasingly recognized in '
recent years. The fiffst convergence result of Fade approximants valid for gene~f11
meromorphic functiL",p_swas obtained by de Montessus de Ballore in 1902. H.e
proved that when a fU~ytion f has precisely n poles in I z 1< R, then the (n+ 1)th
column in thePade ta~ie of f converges to f in I z J< R.

The first part of this report is devoted to the statement and proofs of exis-
tence and uniqueness of Pade approximants, as well as to the Pade table and its
structure.

de Montessus de Ballore proved his convergence theorem on Pade approxi-
mants by using' some results of Hadamard (1892) on the location of poles of a
function represented by 0, Taylor series. It was quit!')lengthy. In the second part,
a much shorter and more .~lygant proof is stated which is due to B.B.Saff (1972),
by employing Hermite's contour integral error formula and Hurwitz' theorem.

Now, the de Montessus de Ballore theorem has been extended to many kinds
of approximants. In the third part, we will extend the theorem to multipoint Pa.de
approximants and state many other extensions and analogues of the theorem.
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Chapber 1

Introduction to Pade

Approximation

\\

fiend' Eugene Pade was born in Abbeville, France on December 17, 1863. In 1886, he

obtained the highest teacher's degree in mathematics from the Ecole Normale Superieure. In

1892, he successfully defended his doctora.l thesis on approximation of functions by rational

fractions.

In his thesis, Pade arranged the approximants into a table and completely characterized

the structure of the table, giving a canonical decomposition of it into different blocks. He also

proved convergenceof the Pade approxlmants to exp(z). These two major achievements justify

the approximants being named after him.

Parle's progress in the academic world was quite rapid until his retiremeat in 1934, at the

age of seventy one. Parle died in 1953, at the age of eighty nine.

In this chapter, Pade approximants and the Pade table are defined; the existence and

uniqueness of Pade approxiuiants and the structure theorem of the Pade table are proved.

1.1 Definitionof Pade Approximants

Before proceeding to a formal definition of Parle approxlmants, let us recall a few notions
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from rational interpolation .

.Let m,.n 2::: 0 be integers, if
ii'

with at least one bj t= O,j ::::0,1, ... ,n, where ai,hj E C ,0 ~ i .~m, 0 ~ j ~n, then we call

R(x) a rationaiJunction 01 type (m,n). We let Rm,n denote the set of all rational functions of

type (m, n).

We know that if x,i, Yj E C , then there e~i~t~a unique polynomial P(x) of degree~ n such
'~"-\:' "

that

R( ) P(Xj)
Xj :::: Q(Xj) ::::Yj,

But if we don't fix the poles of R E Rm"n, R has em + 1) + (n + 1) coefficients. Eliminating

i= 1,2,,,.,n+ 1.

one for division, we ell",pect to be able to satisfy m + n + 1 conditions to determine R. Given

Xj, Vj E C ,j :::::1)2, ...,m + n + 1, all Xj are distinct, we say that the Corresponding Hermite

Interpolation Problem has a solution if there exists aRE Rm,n, such that

j;::: 1,2, ...,m+n + 1.

Given Xj,'Yj E e,j:::: 1,2, ...,m+ n+ 1, all Xj are distinct, the Corresponding Hermits

Problem doesn't always have a solution. Ifmore than maxjm,n] Vj are equal, but not all Yj are

equal, then there doesn't exist aRE Rm"n such that the Corresponding Hermite Interpolation

Problem has a solution R.

To avoid the above problem, we linearize the interpolation conditions: Let {Zj}i=in+1 E (jJ

(not necessarily distinct), and let 1:{zj}~in+1 ~ (jJ,R;::::P/Q E Rm,n' We say R. solves the
Modified Hermite Interpolation Problem associated with {Zj}~~in+1 and 11 if

(fQ - P)(Zj) ::::0, j ;::::1, .2, ..• ,m +n + 1. (1.1)

Here if some Zj is repeated, say Zj ::::Zj+l ::::.... ::::Zj+l+l t= 2:5+/+2, then Wereplacej Ll.) for.,
• '..L 1 . I + 1 b \\2,2, , ..·,2+ y
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k :::= 0,1,2, ...,i.

In this case, ~e are assuming f(k}(zj) exists.

We can prove that the Modified Hermite Interpolation Problem always has a unique solution

R ~ PjQ. If-in addition Q(Z,f) ::f. O,i::; l,i2, ...,m+n+l, then R also solves the Corresponding
I,.':

Hermite Interpolation Problem (see Cheney [3]).

....A formal power series is an expression

11

00 •

fez) ;:;;!i2:ajzji
3::::0

a.i E·I{;, j == U,1,2"",

We write foisome integer Z 2: 0,

,rye write fez) ;= 0 if aj = ()for aliI j ~ O.

Let E' denote the set of all forma.ti'power aeries, then it is clear that

(a)P is closed under "+" and usu;al power series "x", Furthermore,">;" is commutative.

(b}~If

00

fez) = Eajzj
j=Q

and ao ::f. 0, then there exists agE F, such that 9 = t:',i.e.] X 9 ::::1.
1/' " , ~ ~i

:tc) Ifj~}-:-~~, for some non-negative integer 1, and 9 E F, then f x 9 = O(zl).

'(d)~if:)1,? 0 are integers, k S 1 and fez) = O(zl), then fez) = O(zkY;

The Pade approximants are a particular type ofrational function approximant to the value

of a function. The idea is to match the Taylor series expansion as far as possible.

Definition 1.1. Let fez) be a formal power series, and rn, n be non-negative integers. The

m, n Ptule approximant to f( z) is a rational function
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\]

,.;\" pez)
(mr.J.~..' '= --_.'';( « : Q(z)

!~
I

of type (m, n), such that

(fQ ~ P)(z) = Q(zw,+n+l).
1,-

(1.2)

Note that if fez) is a convergent power series for z near 0, we can rewrite (1.2) as

k = 0,1,2, '''rm + f

So the Pade approximant [min] (z) is the solution to the Modified Hermite rn~'~rpolatiom
II

Problem forl~O}j=""'in+1and f.

1.2 Existence and Uniqueness of Pade Approximants

Theorem 1.2. Let fCz) be a formal power series, then for any integers m; n ~ 0, the Pade

apprtrximant to fez), [rnln](z) == P(z)/Q(z) exists and is unique. Further, ifafter"cancelling

common factors in P, Q, we obtain [mjrt] :;::PIQ, the.u (JeO) f; 0 and
'I\, . ,

fez) - [m/n](z) :;::O(zm+n+I-1), {1.3)

where

l := min{n -.,deg(Q), m - deg(P)}, (1.4)

and deg(Q), deg(p) are the degrees of P and Q respectively.

Proof: Let us write

00

fez):;:: L:ajZi,
j=O



m

F(z) = LPp/l,
j=O

11,

Q(Z) ::::.Eqjzj.
j=O

The condition

becomes

00 min{j,n} m
2:J{ L aj_kql<;}zi - "EPizi =o(zm+n+1 ).
5=0 },=o 5=0

Comparing coefficients of the same powers of s, yields

{

min{j,n}
2:k=.O a,'-lcqk - p'.' = 0,
",min{j,n} 0L,k=O aj-kgk = ,

i :;::0, I, 2, .,', ril,
= m + l,1m + 2, ... ,ra+ n. (1.5)

(1.5) is a system of simultaneous equations of m+n + It homogeneous linear equations in

the m + ti + 2 variables Po,p!, ,.. ,Pm, qO, qI1 •••, qn' As there are more variables than equations,

(1.5) has a non-trivial solution, i.e, with not all of PO,Pl, ... ,Pm, qo, q11 .... , qn equal to zero.

If Q == 0 in a solution, I.e. qo = ql =.: ••• :::: qn = 0, then the first eqation in (1.5) yields

Pi:::: O,j = 0,1,2, ... , m. i.e.P == 0, a contradiction. So Q f= 0 and [m/n](z) exists.

Suppose now that PdQ1 E Rm,n can also serve as [min]. Then recall (1.2):

(fQ .- P)(z) = o(zm+n+I ).

Also

(1.6)

(1.2»i~QI - (1.6) x Q :

5



But -PQl +PIQ is a polynomial of degree ~ ni + n. yv6 obtain
v ,

or

P _ Pi
Q = Q1'

so [m/nJ(z) is nmQlle.

Now, to prove (1.3), let us write

{
P(Z)::;:: Zl'S(z)~(z))
Q(z)::;:: zl'S(z)Q(z);

(1.7)

where 0::; r :S min{m, n}; S(z) is a polynomial of degree::; min{m, n} and S(O) # Uj P and

Q have no common factors. By (1.2),

As S(O) # 0, we tan multiply above equation by the formal power series 1/ S(z) to deduce that

so

(1.8)

We claim now Q(O) # O. For if QeD) = 07 as r ~ n, (1.8) shows P(O}, the constant coefficient
, I

of P is also zero, then P(z) and Q(z) has the common factor z, a contraditlon. So QCOj ¥ 0

and we can multipy (1.8) by the formal power series l/Q(z) to deduce

so

6



Finally from (1.h~

so

Similarly

tL:at is

fez) - [m/nJ(z) = j(z) _ z"S(z)~(z)
zrS(z)Q(z)

PCz)
= f(lf) - (J(z)

(1.9)

m 2 deg(P) = r + deg(B) + deg(p) 2.T + deg(P),

r Sm - deg(P).

r S n - deg(Q),

1'.5; i,

where 1 is defined by (1.4). Then

Hence from (1.9),

m+n+ 1"':' r 2 m+n+l-i.

fez) - [m/n](z) = O(zm+n+l.-l).

.D

One can prove the following: If f(z) = Ef=o aj zi is a formal power series, then for m 2 1,

7



{a}

Cb)

,,111.

[nt/O}(z) ;::::L (ljzjc:l
.i={l

(1.11)

l' '
(c) If)ao :f 0 and (mlnJ(z) is ther;tT'1' Pa~Mapproximant to fez), then 1/[m1nl(z))~ the

ti,m Pads" -1,ppr0:x1mantto 11J(z), that is, with an obyious notion,
\;~-'-

[n/mhlJ(z) ::::;1/[m/n]J(z).

(d) It is known from Baker [1] that if m, n ~ 0 and if

D(m/n) :;::::det(am-i+k)'],k=l

.::::det

i= 0,<

then we can solve the equatlpnsin (1.5) with qo ;::::1 to obtain

det

am+n-l
[m/n](z) ;::::------~~---~-,..-.-~~'"

';!.

det

1 z

8

(1.13)



This explicit formula can be used, together with other methods, to develop efficient compu-

tational algorithms for computing [m/n](z). Pad~ approxlmants are widely' used by physicists.

1.3 P1 !de Table: Its structure
, I

1llle are now ready to state the definition of the Pade table and its structure.

Definition 1.3. The Pade table of a formal power series .f(z) is the doubly-infinite array

[0/0] [0/1] [0/2) [0/3]

[1/0] [1/1] [1/2] [1/3}

[2/0] [2/1J [2/2] [2/3]

[3/0] [3/1] [3f~J [3/3]

The Pade table has a special structure:

Theorem 1.4. (Pade 1892) Let fez) be a formal power series. The Pade table of fez)
consists of square blocks of size l' (1 .$ r .$ (0) with the follwing properties:

(a) All elements in the square block are identical.

(b) No other entries in the Pade table off(z) are the same as the elements in this block.

(c) If [m/n]::;: filQ E Rm,n IS the top left hand corner of this block, then

deg(p) ::;:m, deg(Q) ::;:n, Q(O) :/= O.

Furthermore, if r < 00,

while if r::;: 00,

9



fez) - [mln](z) == 0

Proof: Let us pick any [min] in the Pade table of fez). By Theorem 1.2, after cancelling

common factors in numerator and denominator, we can write

[min] = PIQ,

where P and Q have no common factors, and

fez) - [rn/n](z) == fez) - ~~:~

where

l == min{m - deg(p), n - deg(Q)}.

Write

in.!= deg(P), n .;;:;::deg(Q).

Case 1. fez) - P(z)/Q(z)::;; o.
We consider two cases:

Then

(iQ - P)(z) == 0,

so given any integers j: k ~ 0, we have that trivially

and

10



il

so by uniqueness

Vj,k~O,

Thus we have an 00 X 00 block ir~ the table with top left hand corner [min} == P;'tJ.
For [ml/nll outside this block, we have

or

then PIQ == [min] cannot serve as [m:j./nl].

So we have (a),(b),(c) in this case,

Case 2.

Co f:. 0, (L15)

for some non-negative integer N.

By (1.3)~

N~m+n+l-1

== m + n + 1~ min{m- iii,n - n}

;:::m + n + 1+max{m - m, n - n}

as m ;::m,n ~ n.
Then we can assume that for some Integer r ;::1,

N==m+n+r.

Let 0 :::;i,k :f r -1 and s :=min{j, k},j, k are integers, we claim

11



[m+ j In + k](z) :::;~!(z) = !(z).
zSQ(z) Q(z)

(1.16)

For, ZS P(z) has degree 8 + in ~ j +m,
z$Q(z) has degree s + 11, S k + n,

j(z)(ZSQCz)) - (ZSP(z)) = O(zN-I-s)

,= O(zm+n+r-l-s),
(by(1.15))

where

r + s 2: 1+max{j,k} +~n{j, k} == 1+ j + h,

80

and by uniqueness, (1.16) follows.

Hence

[in + j/n + k] == [mIn], o '5. j, k S r - 1,

and

Co .i= 0,

and

deg(p) == in, deg(Q):::; n,

Then we have (a) and (c) in this case.

Now We p;'0ve (b). Firstly as before, we cannot have [mdnlJ :::;[min] if ml < in or nl < n.
If

and

then we can write

[ I' .]( )- ZBS(Z)P(z)ml nl z - ~ . ,
zSS(z)Q(z)

12



for some polynomial S(z) with S(O) '# 0, and

s + deg(S) + in :5 mli s + deg(S) + n ~ nl' (1.17)

Hence

Multiply.i~iff it by the formal power series 1/S(z) and then cancelling zS, we obtain

Multiplying it by the formal POt.Zl· series l/Q(z) as Q(O) '# 0, we have

'\

-..~~'~lz)?O{zm1+n1H-s).

By (1.15),

...... N=m+n+r,

so

by (1.17). Then

max{ml - in,nl - n} :s; r - 1,

i.e. ml- in:5 r -1,

then [mr/ nlJ is in the r X r block already.

o

We have completed the proof of Theorem 1.4. Now, we can deduce

13



Th~oX'ettl1.5. (Kronecker, 1880's) Let fez) be a formal po~~r series. the following are

equivalent:

(a) I( z) is t~'~eMaclaurin series of a rational function B( z) == P(z) / Q (.z), where deg(P) ::: 'In,
, ' . .,.'. '

deg(Q)~ n,QeO) i- 0, P and Q have no common factors.

(b) There is an. 00 X 00 block in the Pade table of fez) with top left hand corner [mln](z).

Proof: (a)=*(b).

From (a.) we have
_ P(z)

fez) = Q(z)'

then

/"For any integers i,k c 0,

f(z)Q(z) - P(z) == o(z(m+i)+(n+k)+1).

By uniqueness,

[m+j/n+kJ= P,Q Vj,k c O.

Since P,Q have no common factors, [min] must be the top left hand corner of a block for

it cannot serve as (m'ln'] with m' < m or n' < n.
(b)~(a).

From (b) and the (c) of Theorem (1.4),

so

fez) -. [mln](z) ;;: 0,

pez) _
fez) - Q(z) = 0,

then

R(z) == ~~:~ == fez).

o

14



1.4 Pade Table: Its Rows, Columns and Diagonals

A ro,wof the Padd table is a sequence {[m/n]}~o with m a fixed non-negative integer. A

column of the Pade table is a sequence {[m/n]}~=:o with n a fixed non-negative intege:v,jand

the diagonal of the PaM table is a sequence ([m!m]}:=o lying along the diagonal of the PaM

table.

It is natural to investigate convergenceof sequences of Pade approximants to the function

from which they are formed, but it is very complicated. One of the problems is that there is a
\\,

whole table, not only one sequence. Alth~ugh fron1!(1.12),

1
[n/mh!J(z) ::: [m/nJl;p

we have that every result for columns implies a result for rowe, the columns {[m/nU:=o 1 n::::::

0,1,2,···,

[D/n]

[l/n]

[2/nJ

and the diagonal ([m/m}~=o,

[0/0]
[1/1)

[2/2]

of the Pade table have radically different convergence properties. In Pade's 1892 thesis, he

proved that as m+ n -r 00, the (m, n) Pade approximants for eZ
j [m/nJ(z) say, converges to eZ

uniformly in compact subset of C. However,thereare older results for continued fractions that

imply convergenceof sequence of Pade approximants to eZ•

15



From (1.10), we know that the first column of the Pade table is

the sequence of partial sums of j, where f is a formal i:'dwer series or a Taylor series expansion

of a function analytic in the disk DR := {z : Izi < R} (0 < R ::; 00). So it converges to f
unifonhly in the largest circle in which f is analytic. For any n fixed and f analytic in the

disk DR = {z: Izi < R} (0 < R::; (0) except for exactly :n poles, then. the (n + l)th column

{(m/nn:::::o in the Pade .table of f converges to f uniformly in the compact subsets of DR

omitting the poles of f. This will be. studied in next chapter.

The main results on convergence of the diagonal sequence {[m/mn:::::o of the Pade approx-

imants is the Nuttall-Pommerenke theorem. Thill also applies for more general c;agonals, i.e.

for the sequences {[mk/nkJ}k:l satisfying

lim (mk +nk) ::::;00,
k-+oo

and all k ? 1,

where >. ~ 1 is independent of k. In 1970, J.Nuttall proved that these sequences converge in

planar-Lebesgue measure; In 1973, C.Pommerenke consldered more general numerator and de-

notinnator degrees, and replaced measure by capacity; In 1978, n.Wallin and A.Goncar replaced

Pade approximants by more general rational interpolants. The important results of H.Stalu. for

functions with branchpoints will be discussed in full in [15].
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Chapter 2

The Classical de Montessus de

Ballore Theorem

The first convergence result on the columns of the Pade table valid for general meromorphic

functions was obtained by de Montessus de Ballore in 1902. He proved that when a function

f has precisely n poles in Izi < R (0 < R S (0), then the (n + 1)th column in the Pade table

of f converges to f in Izi < R. He proved this theorem by applying Hadamard's asymtotics

for the determinants det (am+j--k)'l1: k=l ,m ----r 00, associated with a meromorphic function. It is
3. "

quite lengthy. A shorter modern approach, due to E.B.Saff (1972), employs Hermite's contour

integral error formula and Hurwitz' theorem.

In this chapter, we will state and prove the de Montessus de Ballore theorem, and discuss

some results on the poles.

2.1 de Montessus de Ballore 'I'heorem

Theorem 2.1. (de Montessus de Ballore, 1902,1905 ) Let f be analytic in the di~ltDR :=
'"

{z: Izl < R} (0 < R S (0), except for poles Zl,Z2, "',Zn (repeated according to muifiplicity j,
(0 s n < (0), none lying at z = O. Then for m large enough, the Pade approximant Im/nJ(z)

17



to f has poles of total multiplicity exactly n, and satisfies
;1

Ii[i fez) ~ [rn/nJ(z)::::; O(zm+n+1),

1/
Moreover, as m -+ 00, the poles of[m/n](z) converge to the poles of fez) in DR according to

as z -+ O. (2.1.)

multiplicity and

mliJl~[mln](z) = fez)

uniformly in compact subsets of DR omitting poles of f.
We prove this theorem by using Saff's method. We need two lemmas.

Lemma 2.2. e Hermite's Error Formula for Pade approximants] Let fez) be analytic in
c

]),. !::::; {z: Izi :5 r}, except for poles of total multiplicity peo s p < 00), none lying at O. Let

Bez) be the monic. polynomialof degree p such that (fB)(z) is analytic in Dr. Then for m ;;::0

and n 2: p, and if [mln1 := PIQ,

~. •. 1 [ (fS)(t) Q(t)(z) m+n+l
J,z) - [mln](z) = 27l"iJltl::::" t: ~ z (sQ)(z) t. at, 1.z:1 «: r. (2.2)

Proof Note first that as Q and P are polynomials, then (fQ - P)(z)/zm+n+1 is analytic

in Dr except possibly at the poles of f and at z::::;O. But fez) is analytic at 0 and by definition

of [m/n](z), at z = 0,

where co, Cll C2, ... are constant in It:. So

(fQ - P)(z)/zm+n+1

is bounded, and so analytic at O. Then

8(z)(fQ - P)(z)lzm+n+l

18



is analytic on Dr. Cauchy's integral formula yields for Izl < r,

S(z)(fQ - P)(.?:) == 2.. r S(t)CQ - P)(t) ~
zm+nH 21l"i Jltl=r tm+i1.+! t - z

1 f S(t)(fQ)(t) dt 1 [ (SP)(t) dt
== 21l"iJltl=r tn:+n+l t - z - 21l"i Jltl=r tm+n+1 t - z· (2.3)

Fix: 2 E Dr ;= {z ; [z[ < r}. Then (S P)(t)/(tm+n+1(t - z)) is a rational function of t with

poles GIlly at 0 and z, and so is analytic for ItI ;?:: r,

Since deg(SP) Sp +m S n+m,

and deg(tm+n+1(t - z» == m + n + 2,

there exists a c > 0 such that for all!tllarge enough,

I S(t)P(t)I < c Itr2 •
tm+n+1(t - z) -

,II
lhen if R > r is large enough, Cauchy's integral theorem yields ,

\\,'

i.

I~ f S(t)P(t) dtl· ==I~(\r __§(t)P(t) , d';[
27r2 AtI=r tm+n+ 1(t - z) 21r~ J,tl=R tm+n+ 1 (t - z) I '\\

< ~ ..21l"R·cR-2
- 211

C

R

-+ 0, as R -+ 00.

So
_!_ 1" S(t)P(t) dt == 0,
27ri Itl=-r tm+n+! (t - z)

and (2.3) becomes

S(z)(fQ - P)(z) == 2.. r S(t)f(t)Q(t) dt
zm+n+1 2ui Jltl=r tm+n+! (t - z) , Iz[ < r,

.'
(2.4)

By the structure of S(z) we know that S(O) :j: 0 and by Theorem 1.2 we can assume that

19



Q(O) =1= 0 then (SQ)(O) 1= 0 and we can multiply (2.4) by zm+n+l/(SQ)(z) and deduce

1 r (fS)(t) Q(t) (z)m+n+l
fez) ~ [m/nJ(z);::: 21ii l!tl=r t _ z ,(SQ)(z) t. dt,

o

Lemma 2.3. (Special case of Hurwitz' Theorem) Let {gn(z)}~l and g(z) be functions

analytic in IzJ < r such that

lim !In(z);::: g(z)
n-toq

uniformly in compact subsets of Izi < r; rqzol < rand Zo is a zero of multiplicity ?:: s of !In,

n large enough, then .to is a zero of multiplicity ~ s of 9 also.

Proof: Firstly

g(zo) == lim 9n(2'I») = O." n_oo

Next, choosing r to be a circle centre Zo contained in Izi <1', we have uniformly for t E r,

get) == lim !lnCt) ,n-+oo

so for each fixed k, k;::: 1,2,3, ... , s ......1, by Cauchy~s integral formula, forderivatives,
\';.

IJ(k)(ZO) :;::_.1 {__jf_.(!L_dt
.•.•..... 27l"i lt (t - zo)k+1

= lim .~ ( gn(t) dt
'1Hoo 2!l"i Jr (t - zo)k+l

;:::lim !I~k)(zo)
n~oo

=0,

i.e, Zois a zero of multiplicity ~ s of g.

o
Now, weare raedy to prove de Montessus de Ballore theorem.
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o
Proof of Theorem 2.1 : Write

()

Let us normalize Qm so that IIQmll == 1,m ~ 1, i.e .

.max IQm(t)1 == 1,
[tl=R

m~1. (2.5)

(If R == 00, we replace it by some large positive number R.)
.,"\

Let 0 < 5 < r < R be such that ali poles of fez) lie inside{z : Izi < 5} .Then by Lemma i't~~,

fez) - [mjn)(z) == ~" {'.. (fS)(t) Qm(t)(~)m+n+1 dt,
271"2 ljtl=T t - z (SQm)(z) t l.zl < T,

i.e,

(fSQm)(Z) - (SPm)(Z) == ./ . t ({S)(t)Qm(t) (~t)m+nHdt,
.~7r'Z lltj=,. - Z \

wher~p(z) is a monic polynomial of degree n such that (fS)(z) is analytic in DR.

Then

[zl < T,

max I(fSQm)(z) - (SPm)(z)f
1.zI:5e

1 max liSHt).f, \, mln+l... ~~,. . . ." ,5 ~
~ -. . 2n· . max IQm(t)I' [-)'
. 2;r r - s Itl::t V

((

~.z:max [fSI (t)(~lm+m+1,
r - s Itl:::;" ,r J

by (2.5) and the Maximum-Modulus Principle ana 0 < s < r. Then

(rmax I(fSQm)(Z) - (SPm)(z)1 ~ Cl .;:', ,
~~ .' r

where "'1

r
Cl == -- max IISI (t).r - s Itl=,. .

is independent of m, Since r may b~ made atbitariI:iclose to R, we deduce that
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[ J
11m

lim sup max t(fSQm) (z)- (S~n)(z)1 $R8
•

m-"oo Iziss -
(2.6)

Now, {Qm}~:::;l is a sequence of polynomials of degree$ n satisfying (2 ..5). so it is contained

in a closed bounded ( so is compact },subset ofthe set of pelynomialsof degree~ n, It follows that

given .my infinite subsequence N of the positive integers, it contains another in~,nitesubsequence

~o and there is a pOlynomial Q of degree$ rJ, with IIQ II :::::1 such that

(2.7)

Then we have for "Is ~,i'T(.,

max I(fSQ)(z) ~ (SPm)1
Izlss c

$max I(fS)(z)(Q(.~) - Qm(z)1 + max I(JSQm)(z) - (SPm)(z)i.
~~ ~~

Thus,

lim max .!(JSQ)(z) - (SPm)(z}1 == 0,
m->oo,mEl-lo Izl::;.~ (2.8)

by (2.6) and (2.7).

Now,if.to is a zero of S ofmultiplicizy i, then Zo is a zero ofSPm of multiplicity 2: I..By (2.8)

and lemma 2.3, the same is true for fSQ. But (fS)(zo) #- 0 (by cllbice of S), so Q(z) has a zero

at .::toof multiplicity 2: .e. Since this is tJ,'u'dor each Zj, 1 ::; i $ n , and dtag(Q) :::;n, HQII :::::1,
then we deduce that

Q;::: cS, for some c #- 0, c E C.

Thus, as m -+ 00, m; ~ No, the poles cf[m/n](z) ( the zeros of Qm(Z) ) approach the poles

of fez) ( the zeros of S(z)/ i.e, the zeros of Q(z) ) according 1,0 multiplicity,

Since N was arbitrary, it !'')l1owsthat for the full sequence. of positive integers, the poles of

[m/n](z) approach the poles of fez) as m -700 according to multiplicity.

Now, rewriting

tm/n](z)::::: ~m(Z),
Qm(z)
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where QmCz) is a monic polynomial, we then obtain as m -+ 00, the zeros of Qm apprcacl, ~,he

zeros of 8(z), according to multiplicity, Then

(2.9)

uniformly in compact subsets of C,

In particular, {tim}.oo is uniformly bounded in each compact subset of C. Then (2.6)
m:::::l

holds with Qm} Pm replaced by tim and Pm. That 1s for \:f 0 < 8 < R,

(2..10)

If now J( is a compact subset of Izi < s omitting poles of f, then there exists a constant

Ok > 0, depending only on I( and SCz), such that

From (~.g), for m large enough,

min IQm(;;)1 ~ -2
1
, min 18(z)1 ~ s, > O.

:!lEK. I zEI(

Then for m large enough,

min t~SQm)(z)1 ~ 28~.
zEI< 1((

u
I;

Dividing by IStim(Z)1 in (210) yields fori~11arge enough and s < t < R,
I, ;j

"( )m+n+l
max If(z),- [m/n](z)1 S; 2

C8\ ~
zEK Ie r

(
s)m+n+l

=: C2 - ,
r

where C2 := cl/(28n is independent of m. Hence

lim max If(z) ~ [m/n](z)1 = 0,
m->oo .rIEK
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i:e. lim (mjnJ(z) = fez)
711. .... 00

uniformly in compact subsets of DR omtting poles of f.
Since 0711.(0) =1= O for m large enough, then (2.1) follows.

o

2.2 Results on the poles

If n :::::0, de Montessus de Ballore theorem tell us that

m

lim (mjO](z) == lim "o,p:j = fez),
711. .... 00 m-+oo LJ

j=O
Izi < R,

i.e. the Maclaurin series of fez) converges in the largest circle centre °in which fez) is analytic.

So de Montessus de Ballore theorem generalizes the classical conergence theorem for Taylor

series. Even more, de Mentessus de Ballore theorem shows how to analytically continue a

,function fez) from its Maclaurin series into the largest circle centre 0, in which fez) has n poles.
=>.

\,.An essential feature of de Montessus de Ballore theorem is that the number of poles given

to the approximants matches exactly the number of the total multiplicity of poles of f. When

the approximants are allowed more poles than needed to mimic the behavior of t, these extra

poles may wander throughout the domain of meromorphy, preventing po\uSwise convergence.

Example 2.4~ (Perron, 1954 ) Let

co

fCz) = z=ajzj

i=O

be entire. Then {[mjOn:=o converges to fez) throughout C, But {[m/l]}:=o which has only

one pole, need not converge uniformly in any open subset of {; .

Recall from (1.11), if am ::j:. 0, aj E C ,j == 0,1,2,,,., m+ 1,

m:2: 1,
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which has a pole at z == am/am+lif am+l ¥ O. Choosing {am}::=o suitably, we may ensure that

every point Zo in CC is a limit point of poles of {[mlln~::;;ll so that no matter which .zoo E CC we

choose, {[m/l]}:::;;l is not hounded in any neighborhood of Zo and cannot converge uniformly in

any neighborhood of zoo To see this, let {Uj}~l C C \{O} be dense in C, and let each U.i, j 2:: 1
he repeated infinitely often in the sequence. We may assume that

j == 1,2,3,-.·.

Define
1

a2m:== (2m+l)!i

Then for m 2:: 1,

(J'2m+! :== (2m+ I)!'

la2ml $ (2m: 1)! :5 (2m~1)!'

1
la2m+!1 :5 (2m+ 1)"

So by comparison with
00 ~rn

z "'"e == L...J -"m=om.

fez) is entire.

Further, [2m/1](z) has a pole at

m== 1,2,3,···.

Thus every point in the plane is a limit point of poles of{[m/l]}:=l and the sequence

cannot converge at any Urn, m 2:: 1.
o

However, in 1968, Bearden showed that at least a subsequence of the {(m!l]}:::;;l to an

entire function converges locally uniformly throughout C. In 1977, Baker and Graves-Morris

conjectured that even when fez) has no < n poles in Izl < R, at least a, subsequence of

{[m/ n]J::=l should converge uniformly in compact subsets of Izi < R. In 1984, Buslaev, Gongar

and Suetin established the conjecture for R;:::; 00, and gave a counter example for R < 00. For
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the case R < 00) they showed that the conjecture was still true in some neighborhood of zero,

See Lubinsky and Saff [14] for certain related results.

If f has 'no > n poles in lzl < R, according to de Montessus de Ballore theorem, the

sequence {(m/nn::::::l converges in compact subsets inside the circle containing exactly n poles

of f omitting poles of t.but it diverges outside this circle.

Example 2.5 . Let
fez) :::;(1 ~ z2)-1.

Then inside Izi < 1, fez) is analytic and the [mIO] Pade approximants converge. Moreover

om
(mIO](z) = 2J ;t2j,

j::::O
[z] < 1.

In [zl ::; R with R > 1, the [m/2] Pade approximants converge. i.e,

lim [m/2](z):= fez)
m--+oo

uniformly in compact subsets ofjzl < R (R > 1) omitting z = 1 and z = ~1.

But in Izl ::; R with R > 1, the [mil] Pade approximants are Maclaurin polynomials if ill

is odd, and these diverge for Izl > 1.

o
The fact that the poles of (m/n] approach the poles of f geometrically fast, as m -+ 00, is

useful in numerical analysis for finding poles of functions from their Maclaurin series.
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Chapter 3

Extensions of de Montessus d.e

Ballore theorem

In the 1930's, R.Wilson succeeded in obtaining some difficult extensions of de Montessus

de Ballore theorem. After him, many extensions were obtained. The extensions to multipoint

Pade approximants were given firstly by Saff ( 1972 ), and then by Gon~ar ( 1975 ), Warner

(1976 ) and Wallin ( 1978 ) amongst others.

In this chapter, some extensions of de Montessus de Ballore theorem will be stated, mostly

without proof. We cannot hope in this short research report to discuss all of the extensions.

See [15] for others.

3.1 Multipoint Pade Approximants

Let
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denote a triangular system of ( not necessarily distinct) interpolation points.

Let

£ ~ I, (3.1)

and define the associated polynomials

£
VVe(z) :== II(z - :v.ej),

j==l
(3.2)

We have

Definition 3.1. If f is analytic in A(m+ n + I), the multipoint Pade approximant

P(z)
Rmn(f,A(m + n + 1); z) == Q(z)

is a rational function of type (m.n) such that

(f(z)Q(z) - P(z)jWm+n+1(z)

is analytic in A(m+ n+ 1), where A(m+ n+ 1) and Wm+n+1(z) are defined by (3.1) and (3.2).

In the special case that all interpolation points lie at 0, we have

Rmn(f,A(m + n + 1); z) == [mjn](z).

If fCz) is analytic in A(m+n+ 1), then there exists a unique multipoint Pade appr-oximant

to fez) on A(m + n + 1).

'1'0 describe the extension of de Montessus de Ballore theorem to multipoint Pade approzi-

manta, we need some preliminaries.

Let E be a compact set and M==M(E)be the set of all normalized measures on E. IfA(£) eE,
.e ~ 1, then the normalized counting measure in M(E) is

(3.3)
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i.e. ue places mass kIf, at each interpolation point. :tej which appears It; times in A( .e).
Let V be a non-negative unit Borel measure on a compact subset E of IV. Define the

associated potential function

z E C, (3.4)

and the sets

E(q)::::;:{ZEiC : U(z;v) >logt} I q > O. (3.5)

Note that U(Z;V) is continuous in IV\E with limit -OQ, as lzi -+ 00. Furthermore, U(Z;V) is

lower semi-continuous in IV , that is for all z E IV 1

lim inf uee; 11) 2': U(z; v).
e-+:z

It follows that the sets E(q) (q > 0) are open, and obviously also increase with q.

The logarithmic energy or the energy integral of u on E if;

f[v]::::;: f flog Iz - tl~l dv(t)dv(z)::::; f U(z; v)dv(z).JEJE JE (3.6)

Let

V(E)::::;: inf f[v],
VEM(E)

then there exists a unique fj E M(E), called equilibrium measure, such that

VeE) == f[O],

and the corresponding eqttilibrium potential is

U(z; v)::: k log Iz - tl-1 dv(t),

The logarithmic capacity of E is

cap(E):= exp( -VeE)). (3.7)
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If V(E)=oo, then. cap(E)=O.

If Q > 0 and E C IV, the a-dimensional Ha'usdorJf content ( or outer measure) of E is

00

m~(E)!= inf2.:(d(Bj)t,
j=1

(3.8)

where the inf is taken over all covers of E by open balls {Bj}~l with diameters {d(Bj)}~l .

Let v be a non-negative unit Borel measure sequence defined by (3.3), we say that. {Vm}:=1

is (v, E)- regular if

Iim inf V(z; vm) ;:::U(z; v),
771...... 00

zE(JJ, (3.9)

and

lim U(ZjVm) = U(Zjv),
771...... 00

z E (JJ\E. (3.10)

Now, we state ( without proof) some lemmas that will be needed in proof of the extension

of de Montessus de Ballore theorem to multipoint Pade approximants, some of the proofs can

be found in Hille [7], others in f.15].

Lemma 3.2. (Gongar's lemma) Let il c C be open, let {fm}~=l and I be functions

from it to C U {oc]. Assume that 1m -4 I in ml- measure as m -4 00, that is, 'Ve > 0,

ml {z E it: I/m(z) - f(z)1 > e} -4 0, as m --700.

(a) If {fm}:=l are analytic in 0, then after redefinition on a set of m1 measure 0, so is I,
and

lim fmCz)' :=.:; fez)
771.-400 •

(3.11)

uniformly in compact subsets of n.
(b) If {fm}:::l are meromorphic in il, with pules of total multiplicity at most n < 00, then

after redefinition on a set of ml measure 0, so is f.
(c) If {fm}:=1 are meromorphic in H! with poles of multiplicity at most n < 00, while I

is meromorphic in it, with poles of total multiplicity precisely n, then for m large enough, 1m
has precisely n poles, counting multiplicity. Further, as m -4 00, the poles of 1m converge to
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the poles of f, according to multiplicity, while ( 3.11 ) holds uniformly in compact subsets of

n omitting poles of f.
We remark that Lemma 3.2 (c1may be proved by applying Hurwitz' the~rem ( Lemma 2.3)

much as we did in proving the tld.ssical de Montessus de Ballore theorem.

Lemma 3.3. Let {/1m}:::::l and J.l be non-negative unit Borel measure on a compact set

E C <C, such that

*/1111. --r /1, m -+ 00.

(i.e.

r f dJ.tm --r r f d/1,is iE
for every continuous function f :E -+ R.)

(a) Let 1( be compact and suppose that for a E R (the set ofreal numbers),

m-+ 00,

U(Zi/1) > a, \I;: E 1(, (3.12)

Then there exists a mo such that

U(Z; /1111.)> a, 'ifz E K, \1m> mo. (3.13)

(b) Uniformly in compact subsets of C IE, we have

lim U(z; /1m} = U(Zi /1).111......00 (3.14)

In particular, {/1m}:==l is (/1, E)- regular.

Lemma 3.4. Let {/1m}:==l and J), be non-negative unit Borel measure on a compact set

E, such that {/J,m}:=l is (J)"E)- regular. Then the conclusions (a) and (b) of Lemma 3.3 are

valid.

Lemma 3.5. Let.r. c C be compact and containing the sets of interpolation points
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A(m),m ~ 1, let q>O be such that f is analytic in an open set containing E(q) l) E, ex-

cept for poles ZI,ZZ, ""zn in E(q), ( repeated according to multiplicity ), none of "l'?ich is ::-,u
interpolation point, let

n
S(z);= rr(z~Zj),

j=l
(3.15)

and let 0 < r < q be such that E(r) contains all of Z1,Z2, •••,Zn' Let 0 be an open set

containing E(r) UE in which j is analytic except for Zl, Z2, ... , Zn, and let r.be a closed contour

in O\(E(r) u E) with winding number 1 for each point in E(r) UE, and winding number n for

t point in C \0. Write

( A( ) ) Pmn(z)
Rmn f, .•..m+n+l iZ :=: Qmn(Z)'

and let Wm+n+l(Z) be defined by (3.2). Then for z inside T,

S(Z)j(Z)Qmn(Z) - S(z)Pmn(z)::: ~ 1 S(t)f(t)Qmn(t) Wm+n+1(z) dt.
21l"~Jr t - z W7n+nH (t)

(3.16)

Now, we are ready to state and prove the extension of de Montessus de Ballore theorem to

the multipoint Pade approximants due to Wallin (1981 ). It is also an extension of a result of

Warner (1976), and of Saff (1972 ).

Theorem 3.6. Let E c C be compact, and let

A(m) c ,?, (3.17)

be the sets of interpolation. Let v be a non-negative Borel m~~uTe on E duc'l that {vm}:=l

(defined by (3.3)) is (v,E)- regular. Let there exist s>u such that f is analytic in an open set

containing E(q) U E, except for poles Zl, Z2, ... tZn in E(q)!\ ~ated according to multiplicity),

none of which is an interpolation point. Let

n
Q(;;) ;:=: II(z - Zj),

j=:l
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... md

Rm7l.(z) := Rmn{f,A(m+ 71,+ l);z), m~L

Ca) Then for m large enough, Rmn(z) has exactly n poles, Zml,ZmZ"",Zmn C repeated.

according to multiplicity ). Suitably ordered, they satisfy
.. . (I

lim sup IZmj - zjl1/m < 1,
m-tOQ

j=1,2, ...,n.

Furthermore, define
n

Qmn(z) ;::::II(z - Zmj),
j==1

and

. l~ 1
11m

A(Z) :=hmsup Qmn(Z) ,
m"""'+CXJ

ZEC.

We have for 1 ::s; j ::s; 71"

Sj := inf {s : Zj E E(s)}.

where

(b) IT0 < s < q and J( is a compact subset of E(s) omitting poles of t,then

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Note that if none of the poles of j is a limit point of interpolarlon points; then for m large

enough, the poles of Rmn cannot coincide with any interpolation point, CLTldso Rmn solves the

Hermite interpolation problem for j in A(m + 71,+ 1).

Proof of 'I'heorem 3.6 : We split the proof into four steps.

Step 1. "Write
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Choose R>O suchthat the disk Izl.s R contains E(q) U E, and write

Qmn(Z) = II (z - Zmj) IT (1- zZ _),
l.zmil$2R IZmil>2R mJ

(3.23)

wherczm:h 1 ::;i'~ n are the poles of Rmn. Then {Qmn}::::;l is uniformly Btiunded in compact

subsets of"C. 0
("I

Choose' 0 < S < T < q and r as in Lemma 3.5. Then (3.16) shows tht1.t
"\_)

where Cl is independent of m,

Step 2. Let

j = 1,2, ...,m+ n+ 1.

Since {Vm}::::;l is (v,E)- regular, from (3.2) and (3.4), we have

~ '"'P C~\Og It - x;r' - "'~\OgIZ - x;I-')

zz: ekp [em + n + 1) (LIoglt - Xjl"l dVm+n+l(t) ~-k log Iz~' xjl-1 dVm+nH(:r:»)]

= exp [em + n + 1) (U(t; Tlm+n+1) - U(z; Tlm+n+1))]'

so

IYV (Z)ll/(m+n+l) .,
vi+n+1 (t) = exp (U(ti Vm+n+l) - U(Zj Vm+r..+I»'

71.+'11.+1

Now, by (3':5), the definition of E(s),

(3.25)

1
U(z; v) .;:log-,

.:~
Z E E(s},

and since r c <C\E(r),so
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1UCt; v) ::; log -, t E I'.r

Then since also I' t: (; \E, Lemma 3.3 shows that given Q < e < 1, tbeJte exists rna such that

for m 2: rno ,
1-.::U(z; Vr ) > log-·_· -,
8

z E E(s),

and
1+.::UCti Vm) ::;log ---, t E r.
r

Hence. for m ~ mo,

IWm+n+1(z)I < ((1+6)S)m+n+1
zE~~~Er IWm+~+l(t) ~ \(1- e)r

We 'n~y..assume that e is so small that

(3.26)

(1+ e)s
'Tl:= (1 -'e)r < 1. (3.27)

Step 3. Let 0 < (j < 1, and let Bmn he the union of the at most 2n hall\, of radius 4(;+1)

centred on the zeros of QQmn. Then

Since the choice of R ensures that

11- 2-12: 1:,
Zmj 2

then from (3.23), we have

(
8 )2n

IQ(z)Qmn(z)l2:: 8(n + 1) , (3.28)

Combining (3.24), (3.26), and (3.28) yields for m 2: mo,
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(3.29)

where C2 depends on 15 and n but not on m. Thus Rmn -t fin mr-measure in B(s) as m -+ 00.

Assuming, as we can, that,{zj}j':::::l c E(s), Lemma 3.2 implies that for m large enough,

Rmn has exactly n poles, counting multiplicity, and these poles converge to the poles of f as

m -+ oc, counting multiplicity.

If ]( is a, compact subset of E(s) omitting I>61esof t, then for m large enough,

J(nBmn::::: rjJ,

and so (3.29) holds uniformly for z E 1(. As we may choose r arbitrarily close to q, (3.29) and

(3.27) give

If(z) - R (~)ll/m < c1/m'rl _ c1/m ~1+ s)s
mn'" ~ 2 'I~ 2 (l-£)q'

Since £ > 0 is arbitrary and C2 is independent of m, then

z E](.

'II 11
1/m slim sup f - Rmn L (K) $ -.

m-too co q

This completes the proof of (b).

Step 4. We proceed to the proof of (3.20), which immediately implies (3.3.8).

Note first that for ra large enough, all zeros of Qmn (poles of Rmn ) lie in E(q), but Izl $ R

contains liJ(q)uE (by choice of R), then all zeros of Qmn lie in Izi $ 29. So our normalisation

(3.23) ensure that for ill large enough,

n
Qnm(z) :::::n (z - zm.i):::::Qmn(z).

j=1

Fix 1$ j $ n and choose 0 < s < r < q with Zj E E(s), then (fQ) (z) =I 0, for the order of

pole of f at Zj is exactly matched by the multiplicity of the zero of Q there. Setting z == Zj in

(3.24) and using (3.26) leads to the estimate
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where C2 is independent aim and 'fJ is given by (3.27). Then

where Ca is independent 0'[ m.

As we may choose s arbitrarily close to Sj, which is given by (3.21), r arbitrarily close to q,

and e arbitrarily small, WI~!obtain

=Iim sup IQmn(.:r:j)11/m
m-+oo

< 3j.
- q

Hence we have (3.20), then (3.18) follows"

o
As 3, special case of Theorem 3.6, we call. deduce the flrst de Montsssus de Ballore theorem

for multipoint Pade approximants, due to Saff ( 1972 ).

Corollary 3.7. Let E C C be compact with cap(E) > O.Assume further that C \E is

connected and possesses a classical Green's function G(z) with a pole at infinity, i.e,

G(Z):::;: VeE) ~ U(Zjv),

where U(z; 1/) is the corresponding equilibrium potential and V(E)::::;: inf l[vJ.
IlEM(E)

Let the interpolation points satisfy (3.17) and the polynomials fWm}::::l of (3.2) satisfy

lim IWm(zW1m == cap(E)exp(G(z)),m....oo z E C\E. (3.30)

Let
E(8) :=={E U {z E IG\E : G(z) < logs}, s » 1,

E, . 0 < 8:::; 1.
(3.31)
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Suppose that there exists q>l such that f is analytic in B(g), except for poles Z1,Z2,.", zn"

( repeated according to multiplicity ), none of which is an interpolation point. Let

Rmn(z) := Rmn(f,A(m+ n+l)jz), m~l.

Then the conclusions (a) and (b) of.Th~ }m 3.6 remain valid if we replace E(s) by lE(s)

there.

3.2 Walsh Ar1:ay

Now, let us recall best uniform rational approximation. Let E c C be a, compact set, fez)

be analytic on E, m,n be non-negative integers. Then for each pair (m,n), there exists a rational

fun~tion Wm,n(z) E Rm,nl which is of best uniform p,,?proximatlonto fez) Oll-; E in the sense~__...)
that for all rational function rm,n(z) of type (m,n) , we have

IIf(z) - Wm,n(z)lIr-oo(E) S IIf(z) - Tm,n(z)IILco(E) .

Definition 3.B. The Walsh array of a function fez) analytic on a compact set E C C is

the table
Wu,o(z) WO,l(Z) WO,2,(Z)

Wl,O(Z) Wl,f{Z) W1,Z(Z)

W;l,O(Z) W2,1(Z) W2,2(Z) (3.32)

J.L.Walsh extended the de Montessus de Ballore theorem to the Walsh array in 1965. It is a

close relative of Corollary 3.7 but for the Walsh array replacing multipoint Pade approximants,

Theorem 3.9. Let E c C be compact with cap(E»O. Assume further that C \E is

connected and possesses a Green's function G(z) with a pole at infinity. Let .fE(s) be defined
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by (3.31) for 5>1, i.e.

2(8):= E U{z E C \E: G(z) < logs},

Suppose tbat f :E -t C is analytic in E and for SOmeqc-I, is meromorphic In E(q), with

poles Zl, Z2, ''':,Zn ( repeated according to multiplicity ). Let {rm,n(z)}:=o be a sequence of

rational functions of respective types (m,n) which sa.tisfy

(3.33)

( In particular, this holds if {rm,n} :=0 is the (n+1)th row in the Walsh array for f on E. )

Then the conclusions (a) and (b) of Theorem 3.6 remain valid if we replace E(s) by E(8)

there.

3.3 Orthogonal Pade Approximants

I(

T~il:oughou,t this section, we assume that aCre) is a nondecreasing function on A = [-1,1],
such ~hat aleX) > 0 almost everywhere on .6.. We denote by {<Pi(X)}f=o a sequence of orthonor-

mal polynomials, that is, for j ~0, <Pi is a polynomial of degree exactly j and normalized to

have positive leading coefficient and

i,j:::::: 0,1,2, .. ·. (3.34)

For any p > I, we denote by Dp the interior of the ellipse with foci at the poin1\s ±1 and

the sum of the semiaxes equal to p, That is, Dp is the interior of rp :::::{z: Irp(z)1 = ~?},where
'PCz) ..': z + .jZ2 - 1, and the branch of the square root is chosen so that 1)O(z) I > 1 outslde 6.•.

The domain Dp, p E (1, +00), is said to be canonical ( with respect to A ).

Let fez) be an analytic function on A ( hence f is also analytic in a neighborhood of A).

For an arbitrary n ~ 0, We denote by Dn(f) the maximal canonical domain in which t can be

continued to a meromorphic function with at most n poles (counted according to multiplicity).

Then Do(f) is the ma...'<im{),l .canonica.l domain in which f can be continued as an analytic
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function and f can be expanded in a Fourier series with respect to the system {IPI} ~o ~

co
fez) == L;aj</Jj(z),

j::::O
(3.35)

where

2' = 0,1,2,··,. (3"36)

and the series (3.M) converges uniformly to f on compact subsets of Do(f).
I.,
i
I
II "

Definition 3•.to. Let ill, n be non-negative integers and ~(xj,be a' '\~
v •. \-

.,/:'lction on .6...

The linear ortho~l(mal Fade approximant of type (m,n) to f 1s a. ratkffl, ~function \'

Re P;"n R
mn := Q.l ES m,'nl

mn
I'

where Q~n (x) ;6 0 on s; and for x E A,

(Q~nf - p:nn) (a~) =,\ :t bk<P"(X),
k:=m+n+l

(3.37)

The non-linear orthogonal Pade approximant of type (m,n) to f is a rational function

s: P:;"n Rm'll. := Qn E m,n,
mn

where Qih'll.(x);6 0 Ion ~, and for x E .6..,

co
(f - R!;n) (x) ::::: L C"<Pk(X),

k=m+n+l
Clc E C. (3.3S)

Since (3.37) implies

k = n+ 1,n+2, ...,n+m, (3.39)

i.e,

k = n+ 1,n+ 2, ...,n+ m,
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we have obtained a linear homogeneous system of m equations in m-l-I unknowns for the

coefficients of Q;ml it always has a non-trivial solution, and F$nn is uniquely determined by

Qf: •
mn' n

P.!n(a;) :: L < Q~.nf, c/>k > c/>k(X).
k;:O

So linear orthogonal Fade approximants to fez) exist, but need not be unique.

From (3.38), we know that the non-linear orthogonal Pade approximants to fez) need not

(3.40)

exist, but if it exists, it is unique.

We have analogues of the de Montessus de Ballore theorem to series of linear and non-linear
~- ~••~I

\_ ..--~.. '

orthogonal Pade approximants ( Suetin (1978,1980)).

Th~orem, 3.11. Let f have n (O~ n < (0) poles in the maximal canonical domain Dn(f)t

amL~et {R~\).J::::o Be the sequence of linear orthogonal Pade approximants to f. Then the

fol1o~ing as~ertions are true;

Ca) For sufficiently large m, the rational functicus R'!nn have n finite poles (i.e. Q~n has

degree n ), the finite poles of Rkn ( the zeros of Qfnn ) tend to the poles of f in Dn(f) as

111 ......;.00; and each pole of f "attracts" a number of poles of Rfnn equal to its multiplicity.

(b) The sequence {R~n} :=0 converges to f uniformly in compact SUbsets of Dn(f) omitting

poles of f.

Theorem 3.12. Let f have n (0::; n < 00) poles in the maximal canonical domain Dn(f).

Then for each sufficiently large In, there exists a non-linear orthogonal Pade approximant R!:tn

oftype (m,n) to f. In addition

(a) The rational function R~m has n finite poles; the finite poles of R~m tend to the poles of

fin Dn(f) as m '....00, and each poles of f "attracts" as many poles of R:;n as its multiplicity.

(b) 'The sequence {R!:tn}:;:::o converges to f unifomly in compact subsets of Dn(f) omitting

poles of f.
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3.4 Smooth Coefficients

It is known hy Pade approximators that when the Maclaurin series coefficients {aj} ~o of

00

j(z) == I)ajzj
j:=O

are "smooth", the Pade approximants behave well. What constitutes smoothness? In Bakerjz],

some examples of smoothness conditions were treated. In Lubinsky [13], smoothness was quan-
'11'\

tified by using the ratio aj-laj+1A\;j, That is, if

00

fez) = I)ajzj
j==O

is a formal power series with aj f:. 0, j large enough, let

j 1arg e enough. (3.41)

We say that the coefficients {aj}~o of jCz) are smooth if there exists some q E ~ \{O}, such

that

(3.42)

Let () E (O,27f) be such that B/(27i) is irrational, and let q t:::; eiO• Define the partial theta

junctiun

00

hq(z) :== I)qj(j-l)/2zi,
j=O

Izi < 1. (3,43)

and we see that the partial theta function hq has smooth coefficients.
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Definition 3.13..Given q EC , define the nth Rogers-S2ego polyru:Jrnial

(3.44)

where
1S j S ti,

j == 0,
(3.45)

Nate that [j] is a polynomial in q, so is well defined even if q is a root of unity. In particular,

if q = 1, [j] == (j).
For n ~ 1 and q E C,we have ( see Lubinsky [13} )

(3.46)

and Gn(O) == 1.

Theorem 3.14. Let n be a positive integer. Let

00

fez) := 2.: ajz;
j=O

be a formal power series with smooth coefficients, i.e, for some q E ~ \{O}

Assume further that either the following conditions (A) or (B) is satisfied.

(A) The number q is not a jth root of unity for j < n, that is

;-/'1q I ,

(B) The number q is a [th. root of unity for j < ti, but if £ denote the smallest such i, for
some positive integer N with n S iN + 1 and {C3}~1 C IJJ \{O},

N

qm := am-lam+1/a-:n == q[l +2:cjm-i + o(m-N)].
;:::1
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~\". ....

Let Gn(z):::: G,lZjq) be the Rogers-Szego\polynomial defined by (3.44), and for m;::: 11let

Qm:n,(z) denote the denominator of [mjn)(z) normalized (If possible) by

Qmn(O):::: 1

Then, loc(}lly uniformly in C ,

(3.48)

Furthermore, if '11,1,'11,2,... ~Un denote the zeros of Gnf-u), and for n large enough, Zml, Zm2, ... , Zmn

denote-the zeros of Qmn(z), suitably ordered, we have

I, Zmj
nn == Uj

m-+oo am/am+l 1

(3.49)

(3.50)

then

m~~ [m/n](z) ::::fez), Izj < o-R. (3.51)

From this theorem, we have that for series with «smooth" coefficients, the asymptotic be-

havior of the Pade rows may be completely determined. In particular, for l:irge classes of entire
( ,

functions of zero, finite.and infinite order, all the rows of the Pade table converge, and the poles

of [m/n](z), n=l ,2,3, ... , approach oo with rate am/am+1 as m..--+ 00.

For the partial theta function hq defined by (3.43), if m > n -- 1 ~ 0 and qi #: 1, some

1 $ j ::;n, theu the Pade denominator Qmn(z) normalized by Qmn(O) ::= 1 satisfies

(3.52)

( See Lubinsky and Saff [14J. )

In this case, (3.48) is valid without the limit sign. So kg is really the model function for

smoothness in the sense (3.42),
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3.5 Intermediate Rows

Let f(z) be a meromorphic function in IC. Aseume that:

f(z)has 1 pole in Izi < 1,

j(~) has 1 pole on Izl = 1)
.'<\

fez) has 1 pole of order 3 on Izi = 2,

fez) has 2 poles in 2 < Izl < i}.

Then by de Montessus's theorem,

lim [mil} = f
m"+oo '_1

uniformly in compact subsets of lzl < 1omitting the pole of Ii

lim [~/2] =0 fm~oo

uniformly in compact subsets of Izi < 2,;:,1litting the 2 poles of I;

lim [m/5] ~ fm- ..oo

uniformly in compact subsets of Izi < 3 omitting the poles of f.
What can wtl 1 vabout the convergence of the sequences {[m/3]}:'=1 and {[m/4]}:=1?, .. \

Here we call, j{[mj3n:'=1 and the 5th column {[rnj4]}:''::1 of the Pade table for

this function") v' Jinterrkea~~te rows ( columns).

In general, if fez) has p. poles in E(q),q>O (defined by (3.5)) and is meromorphic with

poles of total order 1/ (1/ > 1) on the boundary of E(q), there are some known conver-

gence res / extensions of de Montessus de Ballore theorem ) for the intermediate rows

{Rm(JL+1)(f, A(m+ p,+ 2); z) }:::1 through {Rm(lL+lI)(f,A(m + p. + 1;' + 1); z) }:::1 for multi-

points Pade approximants. (See Liu [10], chapter 3 ).

Let E C ([! be a compact set and J( = C\E be cuimected and possess a classical Green's

function Gn(z) having a pole at infinity, Set
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\\rq := {z: G(z);:;: logq}, q>1,.

E(q):= interior (rg).

H( )• __ oG(z) ,..8C(z)
z '.- ax + '/, ay ,
A:= cap(E),

where cap(E) is defined by (3.7).

(3.53)
!,'~ (!<"
,:_;_J( 3.54)

(3.55)

Theorem 3.15. Let E be assumed as above. Let .f(z) be analytic on E, meromorphic with

precisely f.L (f.L ~ 0) poles in E( q) and analytic on rq except for a pole at Q! of order 1", HCa) =/: O.
Let the interpolation schemes be described as in (3.1) and A(£) C $, £ ;::: 1,2,3, .." and the

associated I)olynomials W.e(z) defin~d by (3.2) satisfy

and

IG(z) ;t-logA - £-llogIW~{z)ll}~ M£-l,
,/

(3.56)

set,

fO:I: z on each compact subset of K, Here M Js a constant independent of £ and of the compact
\:;

Suppose a is not a critical point of G(z) and 0 ::; v::; 1". Then.

Ca) for m large enough, there exists a unique multipoint Pade approximant

of type (md,/, + v), which interpolates to fez) on the set A(m + f.L + v + 1). Each Rm(f1.+v) has

precisely p+v finite poles and, as 'fTI, -+ 00, I~of which approach the f.L poles of f(z) respectively

in E(q), the other v poles tend to a ( counting multiplicity ).

(b)

lim Rm(I£+II)(!,A(m + 1,1, + v + I); z) = l{z)
,m-+DO ,I

Uniformly in compact subsets of E( q) omitting poles of fez).
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Now, applying this theorem to the question stated in the beginning of this section, we have

following results:

(1) For ill large enough, th~ Pade approximants [m/3} and. [m/4} to f are unique. [m/31
r. j

( respectively [m/4} ) has precjii~dy 3 (resp. 4) poles and, as m -+ 00,2 of the poles approach
\'rl

the 2 poles of f in lz[ < 2 respectively, and the other 1 pole ( resp. 2 poles) tends to the pO':~

of f on Izi = 2.

(2)

lim [m/3] = fm......oo

and

lim [m/4J = fm.....oo

uniformly in compact subsets of Izi < 2 omitting the 2 poles of f in Izi < 2.

In the case that f( z) has more than one pole on the boundary of E( q» the situation is much

more complicated than the case of one pule and I refer to Liu [10] for details.

3.6 Multivariate Pade Approximants

/'
There are'two types of multivariate PaM approximants, the homogeneous and no(;.thomogeneolis

Ii

Pa~e approximants. In this section, definitions are given in the sense of Cuyt [4]!~1,[6J.
, '- if

Let p 2:: 2, and let 1:. := (1'111'2, ••• , 1'p) be a p-tuple of positive numbers. Define'the polydisc

(3.58)

If.& := (kb k2' ''', kp) is a p-tuple of non-negative integers, then for ~ := (Zb Z2,"', zp) E (f! P,

we define

Zlc • - z···.zk2 zkp- ,- 1 2'" p ,

\\ ,
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and saythat the term e_k has degree k :::::hI + kz + ...+ kp•

Given an integer k, we denote by

the sum of terms

Blc~::::: 2: bklk2 ...kpzf1Z;2 ... Z;P.
kl +k2+ ... +kp=T;

Thejormal power series }(!J..) is

00

f(g_) == E 9k~'
j~:=:O

The degree of a polynomial P(!J..) is the highest degree amongst its lion-Zero tern1~. The

order of Q formal power series f(!J..~.1 denote by Goi(e) is the lowest degree amongst its nl~n-zero

terms.

Definition 3.16. Let f(!J..) be a formal power series, and m, n ?: 0 be integers, The (m,n)

multivariate homogeneous PaM approximant to f is the rational function

PC&:)
lm/n](.&) := Q(e_) (3.59)

with
mn+m

P(;;.):= L A.jel,
j:=:mn

and
mn+n"........ .Q(.g,):== s: Bp;!,
j:=:mn
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where G(e.) is not identically zero, such that

(Jo(fG - P)(e.) z mn +m+ n + 1. (3.60)

Cuyt has shown that [m/nJ(e.) exists and is unique and also proved the following analogue

of de Montessus de Ballore theorem for multivariate Pade approximants (see Cuyt [4J ):

Theorem 3.17. Suppose that f is analytic in the origin and is meromorphic in the polydisc

B(O,l:) with pole set

P :::.:{K E B(O,x.) : See.) = O},

where S is a polynomial of degree n. Let I denote the subsequence of positive integers m,

such that the irreducible form of [m/n](,[), say Pm(~)/Qm(~) has Qm(.Q.) i O.Assume that I is

infinite. Then

lint [m/n](e_) := f(~)
m.....oo,mEI ,!

(3.61)

uniformly in compact subsets of B(O,x.)\p) and after ~,~\u..itablenorn.ealzation, we have

(3.6f)
';

uniformly in compact subsets of B(O,l:).

Now, we discuss the non-homogeneous type of multivariate Pade approximants. In order to

avoid notational difficulties, Wewill restrict to the case of bivariate functions. The generalization

to more than two variables is strightforward.

Definition 3.18. Let ftx, y) be a formal power series, i.e.

00

f(x, y):::: L cija/yl,
i,j=O

(3.63)



1\

and let M,N be index sets in IN X IN ::::;IN2. Let us define m and n by

#M =m + 1, #N ::::n + 1, ui,»:» O. (3.64)

The (U,N) multivariate non-homoqeneous Pade approximant to j(x,y) is a rational function

'MIN' ( ) P(x, y)l JE x, Y :::::Q(x, y)

with polynomialslN

P(x,y):::: E aijxiyi,
(i,j)eM

Q(x,y)== I: bwxiyi,
(i,i)EN

and an interpolation set E such that

(fQ - P)( x, Y) :::: L dijxiyi,
(i.i}EJN z\E

(3.65)

with

#(E\M) ::;:#N -1::::n,

(3.66)

O~.j37)\;

MCE,

and E satisfies the inclusion property:

(i,j)EE~*(k,I)EE for D$k~i and «s is». (3.68)

Clearly the equation (3.65) can be rewritten as

a(i+i) (fQ. - P) Ia\ .{) .' (0 0) :::: 0,xt yJ '.
for (i,j) E E, (3.69)

and this clarifies the terminology of interpolation set.
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....._. ..""
Condition (3.66) enahie us to split the syst¢ttl as equations

dii == 0, (i,j) E E

in an inhomogeneous part defining the numerator coefficients

i j

L:L c/1oVCt-IL •.i-v = a~j, (i,j) E M,
/1o=OV=O

(3.10)

and a homogeneous part defining the denominator coefficients

ii,L:L C/1ovbi-JL,i-v == 0, (i,j) E E\M.
/1o=ov=o

(3.71)

By convention,

bi,i l::: 0 if (i,j) ~ N. (3.72)

Then condition (3.67) guarantees the existence of a nontrivial denominator Q(m, y) because the

homogeneous system has one equation less than the number of unknowns and so one unknown

coefficient can be chosen freely.

Condition(3.68) finally takes care of the Pade approximation property, namely ifQ(O, 0) :I 0:
then

(3.73)
p

(f - Q)(m,y) = E. eiix~yJ.
(i,i)EIN 2\E

Cuyt proved a multivariate non-homogeneous type analogue of the univariate de ".....'JJ.LV"Q"

de Ballore theorem in 1990 ( Cuyt [6}), fo£;;thecase of simple poles. Before stating the theorem,
i\

we introduce some notation. By the set M * N we denote the index set that results from the

multiplication of a polynomial indexed by M with a polynomial indexed by N,

M * N = {(·t + k,j + l) : (i,j) E M, (k,.l) E N}. _(3.74)

Since the set E satisfies the inclusion property, we can inscribe isosceles triangles in E, with

top at (0,0) and base along the antidlagonals ( see graphs below). Let -r be the largest of these

inscribed triangles and let Tr be the "length" of the two equal sides. We call rr the range of the
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tr·ia.ngle r, On the other hand, because·JvI * N is a finite subset of W x IN , we can circumscribe

it with such triangles, Let T be the smallest of these circumscrihing triangles and let 7'T be the

"length" of the two equal sides. We call TT the range of the triangle T.

Fig. 1 Fig. 2

Theorem 3.19. Let f(x,y) be a function which is metamorphic in the polydisc

meaning that there exists a polynomial

n
RN(X,y) == E 7'deXd'l/ =:: ETdi~.xd;yei,

(d,e)EN!;IN::l i==:O

(3.75)11
"IiII
II

such that (fRN )(z, y) is analytic in the polydisc above. Further, we assume that RN(O,O) f= 0 \\

so that necessarily (O,O)E N. Let there also exist n zeros (ZIt! Yk) E B(Q; Rll R2), (1 ::; h ::; n) 1\

of RN(X, y) satisfying
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and .

<let (3.76)

Then the Pade approximants [M/N]E(X,y) = (P/Q)(x,y) with N fixed as given above, and M

and E growing, converges to f( x, y) uniformly on compact subsets ·0'1

and its denominator
10

Q(x,y) =EbdieiXdiye;
i=O

converges tp RN( x, y J under the following conditions for M and E: the range of the largest

inscribed triangle T-r in E and the range of the smallest triangle circumscribing M * N, rr
should both tend to infinity as 11. -+ 00.

!\
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