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ABSTRACT

A deficiency of the enzyme NADP dependent xylitol dehydrogenase 

(L-xylulose reductase) has previously been found to be the cause 

of chronic essential pentosuria. Essential pentosuria is a 

recessively inherited condition which is marked by the continual 

excretion of relatively large amounts of the enzymes substrate, 

L-xylulose. The major objective of the study described was to find 

a simple method for the identification of individuals who are 

heterozygous for the "pentosuria" and normal alleles. The pentosuria 

allele could then be used as a gene marker in linkage studies aimed 

at mapping the L-xylulose reductase locus. A L-xylulose reductase 

assay suitable for the identification of carriers of essential 

pentosuria was developed and tested on members of a South African 

Lebanese family in which the inheritance of pentosuria had 

previously been suggested to be dominant. It was found that family 

members could, on the basis of their L-xylulose reductase activities, 

be classified as either normal, heterozygous or homozygous for the 

pentosuria allele. Measurements of serum L-xylulose concentrations 

revealed that pentosuria is, contrary to the previous report, . 

recessively inherited in this family.

A sample of the local Ashkenazi Jewish population was screened 

for pentosuria carriers. Six out of the 237 individuals screened 

were found (on the basis of their L-xylulose reductase activities 

and from the results of a loading test), to carry the pentosuria 

allele. The frequency of the pentosuria allele in this population 

was estimated from the apparent heterozygote frequency to be 0.0127. 

Linkage analyses were carried out on the families of the identified 

heterozygotes and on members of the Lebanese family mentioned above.



V

No evidence of tight linkage was found between the pentosuria 

allele's locus and those coding for various red cell antigens, 

red cell enzymes and serum proteins.

Kinetic, chromatographic and electrophoretic studies 

revealed that the red cells of normal individuals contain two 

distinct L-xylulose reductases, a minor and a major isozyme. 

Pentosurics lack the major isozyme but appear to have approximately 

normal amounts of the minor isozyme. The minor isozyme is 

e1ectrophoretica 1 1 y distinct from the major isozyme, has markedly 

higher Michael is constants for the substrates L-xylulose and 

xylitol and shows a lower pH optimum when catalysing the oxidation 

of xylitol. Electrophoresis also revealed that liver tissue 

contains two L-xylulose reductases which occur in similar proportions 

to those of red cells but which migrate at slightly different rates.
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Note on the nomenclature used for the enzymes and the reactions catalysed 
by them

Since the reaction catalysed by NADP-dependent xylitol dehydrogenase 

(L-xylulose reductase), L-xylulose + NADP+H+ ^ xylitol + NADP+ , is 

reversible, the enzyme, when catalysing what is called the forward 

reaction: L-xylulose + NADPH+H+ -*■ xylitol + NADP+, has been referred to 

as L-xylulose reductase. When catalysing the reverse reaction: 

xylitol + NADP+ -> L-xylulose + NADPH+H+, the enzyme has been referred 

to as xylitol dehydrogenase or NADP-1inked xylitol dehydrogenase to 

prevent confusion with NAD-1 inked xylitol dehydrogenase which is not 

the subject of this study.
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1.  INTRODUCTION

1.1. General introduction

Chronic essential pentosuria in man is an inherited condition 

which is brought about by a deficiency of L-xylulose reductase 

(EC.1.1.1.10) (Wang and van Eys, 1970). In normal individuals, 

L-xylulose reductase catalyses the conversion of L-xylulose to 

xylitol at rates which prevent the accumulation of L-xylulose 

(Freedberg et al. , 1959)- Individuals with a deficiency of 

L-xylulose reductase are unable to carry out this conversion 

rapidly enough and L-xylulose consequently reaches abnormally high 

concentrations in their urine and plasma (Bozian and Touster, 1959; 

Freedberg et al., 1959). Although pentosurics apparently enjoy 

perfect health (Janeway, 1906; Lasker, 1955), their relatively 

large and constant urinary L-xylulose output aroused interest, and 

research carried out as a result, led ultimately to the uncovering 

of the glucuronic acid pathway. In addition, these studies shed 

light on the biosynthesis of L-ascorbic acid. Garrod (1908a) made 

a profound statement while speaking about metabolic processes 

during his first Croonian lecture when he said:

"Such knowledge as we have of these steps is derived from
casual glimpses afforded when as the outcome of one of
Nature's experiments, some particular line is interfered
with and intermediate products are excreted incompletely
burnt." „page 2

In this introduction an attempt will be made to illustrate how one 

such 'glimpse' led to the elucidation of the glucuronic acid 

pathway and, further, to summarise what is known about essential 

pentosuria and mammalian L-xylulose reductase.
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The first reported case of essential pentosuria was that of 

Salkowski and Jastrowitz (1892). Many more cases were described in 

the following decade and when Garrod delivered his famous Croonian 

lectures in 1908 he could refer to 30 reported cases (Garrod, 1908b)- 

Garrod dealt with essential pentosuria in his fourth lecture and 

correctly categorised it with albinism, alcaptonuria and cystinuria 

as an 'inborn error of metabolism1. At this time the excreted sugar 

had not been identified, although Salkowski and Jastrowitz (1892) 

had found that it was not fermented by yeast and that it yielded an 

osazone with a melting point of 159°C, a characteristic which 

suggested that it might be a pentose. Neuberg (1900) suggested that 

the excreted sugar was arabinose, but Zerner and Waltuch (1913) showed 

that this was not so, and Levine and La Forge (191^) and Zerner and 

Waltuch (191M independently identified it as L-xylulose. L-xylulose 

is like glucose, a reducing sugar, and it is this property which led 

to the discovery of most pentosurics, as tests aimed at identifying a 

diabetic through the detection of reducing substances in urine will, 

of course, yield a positive result in an individual with pentosuria 

(Larson et at. , 19^1; Wright, 1961).

Another way in which pentosurics came to light was as a result of 

the abuse of drugs like morphine. The attention of Salkowski and 

Jastrowitz (1892) was drawn to the first case because he was a 

morphine addict whose urine, on being tested for reducing substances, 

gave a positive result. Soon after this, the urine of four other 

morphine users was also found to yield positive results (Reale, 189^; 

Caporali, 1896), and Caporali (I896) claimed that pentosuria could 

be induced by injecting morphine into healthy dogs. After the 

morphine injections were stopped, the urine of these four morphine
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addicts as well as the urine of the dogs returned to normal. 

Salkowski and Jastrowitz reported that their patient continued to 

excrete the pentose after the morphine injections had ended.

The effects of another drug on pentosuria led to a further 

advance in this field. Margolis (1929) noted, as have others 

since (Enklewitz and Lasker, 1935; Larson et al., 19^1; Touster 

et al., 1955), that the amount of L-xylulose excreted by 

pentosurics tends to remain relatively constant. One of his 

pentosuric patients, who happened to suffer from migraine, was 

noticed to excrete more L-xylulose on days following migraine 

attacks. The drug amidopyrine had been taken by the subject for 

the migraine headaches and Margolis demonstrated that administration 

of the drug on 'non-headache days' dramatically increased the 

patient's L-xylulose excretion. Since then a variety of drugs with 

diverse structures have been found to. increase L-xylulose excretion 

by pentosurics (Enklewitz and Lasker, 1933, 1935).

A possible explanation for this phenomenon was provided by 

Enklewitz and Lasker (1933), who were aware that many drugs form 

complexes with D-glucuronic acid before being excreted. They 

suggested that D-glucuronic acid production could be stimulated as 

a result of its excretion with these drugs and further, that 

D-glucuronic acid was a precursor of L-xylulose. Enklewitz and 

Lasker (1935) gained hard evidence in support of their hypothesis 

by showing that L-xylulose output in a pentosuric subject could be 

greatly increased by the administration of D-glucuronic acid. It 

is now firmly established that D-glucuronic acid is a precursor of 

L-xylulose, but the way, or ways, in which various drugs increase 

its rate of formation are still not fully understood. Barbital,



for instance, stimulates D-glucuronic acid formation but is not 

excreted as a glucuronic acid conjugate (Burns ct al . , 1957). Some 

but not all of the drugs which stimulate D-glucuronic acid production 

increase levels of liver uridine disphosphate glucose dehydrogenase 

(Hollman and Touster, 1962), an enzyme involved in D-glucuronic acid 

synthes i s .

When D-glucuronic acid was found to be a precursor of L-ascorbic 

acid, as well as of L-xylulose (isherwood et al., 1953), the main 

thrust of research became aimed at finding out how L-ascorbic acid is 

formed. As intermediates in L-ascorbic acid biosynthesis were 

identified, it became obvious that L-ascorbic acid and 

L-xylulose are indeed formed along the same biochemical pathway 

(in animals and plants capable of synthesizing L-ascorbic acid 

that is).

The steps in L-ascorbic acid and L-xylulose biosynthesis were 

worked out as follows: Longenecker and his collaborators (Musalin 

et al. , 1939; Longenecker et al., 19^0) found that a number of 

substances which were known to be detoxified through D-glucuronic 

acid conjugation, increased the urinary excretion of L-ascorbic acid 

in rats. Mosbach and King (1950) and Eisenberg and Gurin (1952) 

established by means of radioactive tracer studies that the carbon 

skeleton of D-g1ucurono1actone can be derived in vivo from D-glucose 

without rearrangement of the carbon atoms. The following scheme 

summarises what was known at this stage:

L-ascorbic acid

D-glucose------ > D-glucuronic acid ^ ̂
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Isherwood et at. (1953) attempted to work out the mechanism 

of L-ascorbic acid biosynthesis from glucose and galactose 

by administering a variety of possible intermediates to cress 

seedlings and rats, and then noting which of these stimulated 

L-ascorbic production. They found that D-glucuronolactone, 

D-galacturonolactone, L-gulonolactone and L-ga1actonolactone would 

do this and accordingly postulated the following pathway (and a 

homologous pathway starting with D-ga1actose):

0-glucose -*• D-glucuronic acid -*■ L-gulonic acid L-ascorbic acid. 

Lactones rather than the corresponding acids which they spontaneously 

give rise to on hydrolysis, have been used in this type of 

work because they are more readily taken up by cells (Pacham and

Butler, 1954; Touster et at., 1955). The acids and not their 

lactones, however, appear to be the true intermediates (Touster,

1959), with the exception of L-gulunolactorie rather than L-gulonic 

acid which is a precursor of L-ascorbic acid (Burns and Evans,

1956).

Horowitz and King (1953) were able to recover labelled D-glucuronic 

and L-ascorbic acids from the urine of chlorotone stimulated rats 

after labelled D-glucose had been injected into them. In addition, 

they found that injection of labelled D-glucuronolactone in place of 

labelled D-glucose resulted in four to six times more labelled ascorbic 

acid being excreted which was additional evidence that D-glucuronic 

acid is an intermediate in L-ascorbic acid formation and, further, 

that it is a more immediate precursor than D-glucose.

Burns and Evans (1956) confirmed the findings of Isherwood et at. 

(1953) that L-glucuronolactone can be converted to L-ascorbic acid 

in both unstimulated and chlorotone stimulated rats, and obtained
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evidence that L-gulonic acid is an intermediate in the process. Finally, 

Hassan and Lehninger (1956) detected an enzyme in liver extracts which 

could convert D-glucuronic acid to L-gulonic acid in the presence of 

NADPH. The following scheme depicts what was known by 1956:

NADPH
D-glucose --*• D-glucuronic acid x L-gulonic acid -*■ L-ascorbic acid.

VNADP

The formation of L-gulonic acid from D-glucuronic acid involves 

a so-called inversion which is brought about as follows: When the 

aldehyde group at Cl of D-glucuronic acid is reduced, the carboxyl 

group at C6 becomes the most highly oxidised end carbon, and is 

therefore numbered Cl by convention (Figure 1.1). The arrangement 

of H atoms and OH groups at the 'new' C5 of gulonic acid 

corresponds to the arrangement at C2 of L-g1ycera1dehyde and so 

what was formerly a D-sugar derivative now becomes an L-series sugar 

derivative. Horowitz et al. (1952) presented evidence for this 

inversion when they found that D-glucose labelled at the Cl 

position was converted to L-ascorbate labelled at the C6 position 

in rats. Touster et al. (1955) suggested that such an inversion 

also takes place in the formation of L-xylulose and that this is 

followed by the loss of the carbonyl bearing carbon. Touster 

et al. (1957) provided experimental evidence for this when they 

found that 6-13C-D-g1ucurono1actone fed to a pentosuric subject 

increased the production of unlabelled L-xylulose, whereas when 

1 -13C-D-g1ucuronolactone was fed it was converted to 

5“13C-L-xy1u1ose. Burns and Kanfer (1957) showed that rat kidney 

preparations could convert L-gulonic acid (.or its lactone) to 

L-xylulose and that the C02 produced in the process contained the 

original carboxyl carbon (C6) of L-gulonic acid. The scheme given
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Figure 1.1. The transformation of D-glucurorlic acid to L-gulonic 

acid through the reduction of the (Cl) aldehyde group 

of D-glucuronic acid.
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below outlines what was known at this stage,

NADPH
D-glucose -* D-glucuronic acid / V L-gulonic

NADP

.e. in 1957:

L-ascorbic acid 

acid--*- L-xylulose
' V

C0;;

In summary, it was known by 1957 that the formation of both L-ascorbic 

acid and L-xylulose had the following in common: They shared the 

precursors D-glucose, D-glucuronic acid and L-gulonic acid, and in 

the process of their formation, an inversion of the original carbon 

skeleton of D-glucuronic acid occurred. From L-gulonic acid, the 

pathway leading to L-ascorbic acid (L-gulonic acid ->■ 2-keto-L- 

gulonolactone -* L-ascorbic acid) (Kanfer et al.t 1959) branches 

away from that leading to the formation of L-xylulose. The next 

step in the formation of L-xylulose from D-gulonic acid is the 

oxidation of L-gulonic acid to 3‘keto-L-guIonic acid by a 6-L-hydroxy 

acid dehydrogenase which was discovered and partially purified by 

Ashwell et al. (I960). Winkelman and Ashwell (1961) then demonstrated 

that L-xylulose could be made from 3-keto-L-gulonic acid (with the 

simultaneous release of C02) by an enzyme from guinea pig liver. The 

following scheme summarises what was known at this stage:

D-glucose-->-
NADPH

D-glucuronic acid/ L-gulonic
NADH

NAD^
ac i d /

NADH
3-keto-L-gulonic acid

1 K  C°2
L-xylulose

A mechanism for the formation of L-xylulose from D-glucuronic acid 

had been found, but this did not explain what happened to L-xylulose in 

normal individuals. Hiatt (1958a), using radioactive tracers and a 

1ribose-trapping' technique, showed that L-xylulose can be an intermediate 

in the production of ribose and that this pathway is blocked in 

pentosurics. An alternative explanation for essential pentosuria had
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previously been put forward by Knox (1958), who suggested that pentosurics 

may be unable to reabsorb L-xylulose from the fluid in their kidney 

tubules. This latter explanation was shown to be incorrect by Bozian 

and Touster (1959) and Freedberg et at. (1959)> w^° f°unc* that plasma as 

well as urinary L-xylulose levels were raised in pentosuric subjects.

Guinea pig liver slices and homogenates are capable of removing 

L-xylulose from solution and guinea pig liver mitochondria are able to 

convert L-xylulose to xylitol (Touster et at., 195**1 *955, 1956).

Hollmann and Touster (1956) found that NADPH serves as the hydrogen 

donor for this L-xylulose reductase (NADP-1inked xylitol dehydrogenase) 

catalysed reaction and that guinea pig liver mitochrondria also 

contain an NAD dependent xylitol dehydrogenase which has properties 

in common with the cytosol enzyme described by Blackley (1951) and 

McCorkindale and Edson (195**). The NADP- and NAD-1 inked enzymes 

constitute a system for the transformation of L-xylulose to D-xylulose 

(Hollman and Touster, 1956), as diagrammed in Figure 1.2.

The last step in the glucuronic acid pathway results in the 

formation of D-xy1ulose-5-phosphate which is also a pentose phosphate 

shunt intermediate. Hickman and Ashwell (1958) purified a kinase 

capable of catalysing the reaction:

D-xylulose + ATP -»■ D-xylulose-5-ph°sP*iate + »

and Dayton et al. (1958), Hiatt (1958b, 1958a) and Eisenburg et al.

(1959) used radioactive tracers to obtain evidence that the two 

pathways merge in vivo.

D-glucuronic acid may be produced by either of two routes. The 

first is through the oxidation of uridine diphosphate glucose to 

uridine diphosphate glucuronic acid (Strominger et at., 195**),
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H.C-OH H C-OH H C-OH H C-OH2| 21 21 ?,
c=o ± .| HO-C-H 2- HO-C-H ^ C=0

H-C-OH ,NADP H-C-OH NAD . H-C-OH ') HO-C-H
HO-C-H NADPH' HO-C-H 'NADH 0=C ---7 H-C-OH
h 2c-oh h 2c-oh H2C-OH h 2c-oh

L-xylulose xylitol D-xylulose

_1_. NADP-linked xylitol idehydrogenase.

2 . NAD-linked xylitol dehydrogenase.

Figure 1.2. The system for the interconversion of D- and 

L-xylulose discovered by Hollmann and Touster 

(1956).



followed by the release of D-glucuronic acid-1-phosphate by a 

pyrophosphatase (Kornberg, 1955). D-glucuronic acid-1-phosphate is 

finally converted to D-glucuronic acid by the removal of phosphate 

(Ginsberg et al. , 1958). The other source of D-glucuronic acid is 

from myo-inositol . Charalampous and Lyras (1957) have shown that 

rat kidney extracts are able to convert myo-inositol to D-glucuronic 

acid and Charalampous (1960) subsequently purified the enzyme which 

catalyses this oxidative cleavage. Hankes et al. (1969) found that 

pentosurics, as a result of the block in the glucuronic acid pathway 

are able to catabolise myo-inosito 1 at less than one-tenth the normal 

rate. Figure 1.3 outlines the whole glucuronic acid pathway.

Although the glucuronic acid pathway had been elucidated by 1960 

and the site of the block resulting in pentosuria known (Hiatt,

1958a; Eisenberg et al. , 1959; Touster, 1959), no one actually 

demonstrated a deficiency of NADP-1inked xylitol dehydrogenase in 

individuals with pentosuria until 1970. In that year, Wang and van Eys 

(1970) were able to show that red blood cells from pentosurics have 

abnormally low NADP-1 inked xylitol dehydrogenase and by implication, 

low L-xylulose reductase activities. The reason for this delay is 

that the enzyme occurs mainly in liver and kidney and the removal of 

tissue from an otherwise healthy pentosuric would not have been 

justified.

1.2. Incidence and inheritance of pentosuria

Pentosuria occurs mainly in Ashkenazi Jews (Garrod, 1908b; Margolis, 

1329; Lasker, 1952; Mizrahi and Ser, 1963). Touster (1959), for 

example, noted that of the 200 or so cases described prior to 1959,
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only two were non-Jewish. The last mentioned pentosurics (sisters) 

were South Africans of Lebanese descent (Barnes and Bloomberg,

1953). Khachadurian (1962) has since reported twelve additional 

cases (members of three families) from Lebanon. Since 

pentosuria has only been recorded in Ashkenazi-Jews and Lebanese, 

the likelihood exists that the pentosuria alleles in these two 

groups are the same. Two considerations bear on this idea:

1. Doubts have been raised about whether the forefathers of the 

Ashkenazim originally came from Palestine (Koestler, 1976).

2. Pentosuria has not been recorded in any other group of Jews 

apart from the Ashkenazim (Mizrahi and Ser, 1963).

The Ashkenazim, as opposed to the Sephardic Jews who live or 

lived until recent times along the shores of the Mediterranean 

sea, are the Yiddish-speaking Jews from Eastern Europe. It is 

generally believed that the Ashkenazim are descended from Jews who 

originated in Palestine, resided in Germany and France during 

medieval times and then moved eastwards into Lithuania, Latvia,

Poland and Russia. Unfortunately, the historical evidence for this 

is meagre and Koestler (1976) has advanced the idea that members of a 

Turkish tribe, the Kazars?who once lived in the area between the 

Black and Caspian seas and whose rulers embraced Judaism in about 

7^0 AD moved westwards and northwards and founded the Ashkenazim.

Mourant et al. (1978) after comparing blood group frequencies in 

various Sephardic and Ashkenazi populations state the following:

"When however we compare Ashkenazim with Sephardim we find 
that there are indeed systematic differences between them.
But these are so small that we can hardly avoid the 
conclusion that the two populations have a common oriqin."

page 91
As there is no doubt that the ancestors of the Sephardim carne from
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Palestine, Mourant et al's findings strengthen the evidence that the 

ancestors of the Ashkenazim came from there as well.

With regard to the second point, that pentosuria does not occur 

in any other group of Jews, one may note that neither does Type 1 

Gaucher^ nor Niemann-Pick disease Type A. Tay-Sachs disease is 

another inherited condition which occurs mainly in Ashkenazi Jews, 

although Goodman (1979) states that there have been a few cases in 

Sephardic Jews. Although natural selection has been suggested as being 

the reason for the increased frequency of the Tay-Sachs allele in 

Ashkenazi Jews (Myrianthopoules and Aronson, 1966), it has been pointed 

out by Wagener et at. (1978) that the populations who surrounded the 

Ashkenazim in Eastern Europe and who lived under similar conditions, 

showed no such increase. If natural selection on its own was not 

responsible for the high Tay-Sachs allele frequency in the Ashkenazim, 

then genetic drift, alone (Wagener et at,, 1978) or in conjunction 

with natural selection (Chakravarti and Chakraborty, 1978), or founder 

effect (Chase and McKusick, 1972), would appear to be the most 

likely alternatives. The same process or processes could have also 

brought about the increase in the frequency of the pentosuria allele 

in the Ashkenazim.

The familial occurrence of essential pentosuria has been 

underscored by a number of authors, for example, Garrod (1908b), 

Margolis (1929) and Lasker et at., (1936). Margolis stated 

that about one-third (twenty-four) of all pentosurices (seventy-eight) 

reported by 1929 belonged to oniy nine families. Attention has 

also been drawn to the fact that pentosuric offspring result more 

frequently from consanguineous matings than from matings of unrelated
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individuals (Garrod, 1908 b ; Lasker et al. , 1936; Khachadurian,

1962). The fact that the parents of pentosurics are usually not 

affected themselves (Lasker et al., 1936), added to the above, 

is evidence that the allele for pentosuria is recessive in effect.

Schultz (1938), however, found the condition in two generations of the 

same family and on the strength of this, suggested that pentosuria 

could be inherited as an autosomal dominant with incomplete penetrance. 

Evidence against Schultz's suggestion was provided by Lasker et al.

(1936) who noted that none of the ten normal sibs of pentosurics known 

to them had given rise to any pentosuric offspring. The family described 

by Schultz is probably an instance of so-called pseudominanance: an 

affected individual fortuitously married an individual heterozygous for 

the same allele and the couple were thus able to produce homozygous 

offspring. This is a phenomenon likely to appear for recessive traits 

when the particular allele has a high frequency in the population.

On the other hand, results published by Politzer and Fleischmann 

(1962) during an investigation of the South African Lebanese family 

in which essential pentosuria occurred, could best be interpreted in 

terms of a dominant mode with incomplete penetrance. It is possible 

that the 'Lebanese pentosuria allele' differs from the 'Ashkenazi- 

Jewish allele1 and causes a more severe deficiency of L-xylulose 

reductase and hence pentosuria in heterozygotes. However, the 

criterion used for classifying individuals in the study of Politzer 

and Fleischmann, viz. whether urinary L-xylulose could be 

consistently detected (no quantitative data are given), makes the 

validity of the classification doubtful since Touster et al. (195^,

1955) have found that heterozygotes tend to have urinary levels of 

L-xylulose which are slightly raised relative to the traces present
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in the urines of normal individuals. Furthermore, inheritance of

pentosuria in the other Lebanese families was recessive (Khachadurian,

1 9 6 2 ).

A more accurate way of distinguishing between pentosurics, 

carriers of a single pentosuria allele and normal individuals is that 

used by Freedberg et at. (1959) and Kumahara et at. (1961). Their 

method was to obtain urine and serum from fasting pentosurics and 

their close relatives as well as from presumably normal individuals 

before giving these subjects a quantity of the L-xylulose precursor, 

D-g1ucurono1actone. The L-xylulose concentrations in serum and urine 

samples obtained at intervals over the following three hour period 

were then measured. The D-g1ucuronolactone brought about large 

increases in the serum and urine L-xylulose concentrations of 

pentosurics compared with those observed in the controls, while 

heterozygotes showed intermediate increases. The drawbacks of the 

method are firstly, it is difficult to persuade individuals to 

subject themselves to a test of this sort since swallowing 

the D-glucuronolactone is unpleasant not to mention the repeated 

blood and urine samples required and the considerable diarrhoea which 

may result (personal experience). Secondly, measuring L-xylulose 

in the serum and urine samples is time consuming, and the 

potential for variation, independent of that due to variation in 

the amount of L-xylulose reductase present in each subject, must 

be great when one considers the many physiological and metabolic 

steps required for the uptake and transport of D-glucuronolactone 

from the gut and its transformation into the L-xylulose which 

finally appears in the plasma and urine.
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1.3. Mammalian xylitol dehydrogenases

Hollmann and Touster (1956) detected two enzymes capable of 

catalysing the conversion of xylitol to xylulose in guinea pig liver 

mitochondria. One of the enzymes required NADP to act as coenzyme 

and appeared to have an absolute specificity for xylitol (L-xylulose 

and NADPH were the products), while the other enzyme required NAD 

as coenzyme and could act on ribitol as well as xylitol (the 

products being either D-ribulose or D-xylulose and NADH). Hollmann 

(i960) described a method for separating and partially purifying 

these two mitochondrial enzymes and reported that the NADP-dependent 

enzyme had a Km for xylitol of 2,5*+ x 10'2 M and that p-mercuribenzoate 

was a strong inhibitor. Further, he found that the equilibrium 

constant of the catalysed reaction:

xylitol + NADP+ ----- * I-xylulose + NADPH + H+

was 2,97 x 10 11 which meant that equilibrium at physiological pH 

values would strongly favour the formation of xylitol. This, together 

with the enzyme's specificity for L-xylulose suggested that it could 

be used to measure L-xylulose concentrations. The second (NAD-1 inked) 

xylitol dehydrogenase resembles the cytosolic sorbitol dehydrogenase 

described by Blackley (1951) and McCorkindale and Edson (195*0, but 

differs in that it is mitochondrial and does not appear to act on 

D-fructose and L-sorbose.

Ironically, most of the NADP-dependent xylitol dehydrogenase 

(L-xylulose reductase) of guinea pig liver is non-mitochondria 1 and 

was overlooked by Touster's group until 1969 (Arsenis and Touster, 

1969). In the meantime, Hickman and Ashwell (1959) obtained a crude 

preparation of NADP-linked xylitol dehydrogenase from acetone powders
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of guinea pig liver which almost certainly included the cytoplasmic 

enzyme. Arsenis and Touster (1969) later discovered the cytosolic 

enzyme when they observed that acetone powders prepared from whole 

liver homogenates contained far more activity than could be 

attributed to the mitochondria alone. The cytosol enzyme identified 

by Arsenis and Touster appeared to behave differently from that 

obtained by Hickman and Ashwel1, in that their enzyme required the 

presence of MgCl2 for full activity, while the enzyme in the 

preparation of Hickman and Ashwel1 did not. Another difference was 

that the enzyme of Arsenis and Touster could be almost completely 

inhibited by iodoacetate, while the enzyme of Hickman and Ashwel1 

could not be inhibited at all.

L-xylulose reductase occurs mainly in liver and kidney tissue 

(Hollmann and Touster, 1956; Kumahara et at., 1961). Kumahara 

et at. (1961) found activity in normal human liver (and also in rat 

and guinea pig liver and kidney tissue), but failed to detect 

activity 'in leukocytes, erythrocytes, saliva, semen or adipose 

tissue of normal human subjects'. Bassler and Reimond (1965) 

discovered, however, that red blood cells are able to metabolise 

xylitol, which suggested that they might possess some of the 

enzymes necessary for the formation of its precursors. Wang and 

van Eys (1970) subsequently detected both NAD and NADP-1inked 

xylitol dehydrogenases in human red blood cells and found that red 

cells from pentosurics show the expected deficiency of the NADP- 

1 inked enzyme. Wang and van Eys (1970) reported a mean activity 

level of 23,8 ± 9,7 nmoles/minute/g haemoglobin for normals and a 

mean level of 5,2 units for pentosurics, which is approximately 

eighteen per cent of the normal mean. Only one presumed heterozygote
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was investigated and his level of activity (19,0 units) was 

approximately sixty-six per cent of the normal mean. Judging from 

these data, the prospects for accurate heterozygote identification 

at population level did not appear promising. If for instance two 

standard deviations are subtracted from the normal mean, a value 

of 3,k units is arrived at which is approximately one-third of the 

normal mean and much lower than the level found in the heterozygote.

Wang and van Eys (1970) also estimated the variant enzyme's Michael is 

constants for NADP and xylitol and came to the following conclusions:

"The Michael is constant for xylitol on the NADP-1inked 
dehydrogenase in pentosuric blood appeared normal. Therefore 
the decreased NADP affinity of the enzyme is apparently 
the molecular abnormality that causes the enzymatic disorder 
in pentosuria."

1.b. Aims of the present study

1. To gather basic biochemical information about the red cell 

L-xylulose reductases (NADP-1 inked xylitol dehydrogenases) of 

normal and pentosuric individuals.

2. To devise a technique which would discriminate between normals, 

pentosuria carriers and pentosurics on the basis of their red 

cell L-xylulose reductase activities.

3. To determine the frequency of pentosuria carriers in the local 

Ashkenazi-Jewish population.

^. To search for linkage between the L-xylulose reductase locus and 

an array of other gene loci.

5. To reinvestigate the South African Lebanese family studied by 

Politzer and Fleischmann (1962) in order to establish whether 

the apparent dominant mode of inheritance found by them is also 

manifest at the enzyme level.



CHAPTER 2
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2. SUBJECTS, MATERIALS AND METHODS

2.1. Subjects studied

2.1.1. Pentosuric subjects and relatives

The author was fortunate to have the co-operation of two known 

pentosuric subjects. The first of these, RB, is an Ashkenazi 

Jewish man who was born in Breslau (now Wroclaw), Poland, in 1908, 

to apparently unrelated parents. At six years of age his urine 

was investigated because of (as far as he can remember) an attack 

of influenza, and found to contain abnormal amounts of a reducing 

substance which was subsequently found to be pentose. At thirty- 

eight years of age, RB underwent a medical examination in order to 

obtain life insurance cover. Once again his urine was found to contain 

an abnormal amount of some reducing substance (Benedict's test) from 

which a pheny1osazone could be prepared, indicating that it was a 

sugar (Bloomberg e t  a t . ,  19^6). The sugar was not fermented by 

yeast which showed that it was neither glucose nor fructose but it 

gave rise to a 'heavy bluish-green precipitate1 when subjected to 

Bial's Orcein test, suggesting that it was a pentose. Further 

investigations by Barnes and Bloomberg (1953) made the diagnosis even 

more certain. These workers cocrysta1ised phenylhydrazone prepared 

from the patient's urinary sugar with a phenylhydrazone prepared 

from D-xylulose and observed the different (from either single osazone) 

form of the crystals. The melting point of the cocrysta1ised 

pheny 1 osazones was found to be ± i40°C higher than either of the 

unmixed pheny1osazones, a finding which suggested that the urinary 

sugar was L-xylulose. Finally, the subject's urinary sugar was
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found to migrate at the same rate as pure xylulose when 

chromatographed on paper. Unfortunately this subject has no 

children and none of his immediate relatives were available for 

study.

The second pentosuric subject studied, HK, (formerly HS) , was 

the elder of two Lebanese sisters encountered by Barnes and Bloomberg 

(1953). HK's two grandmothers were sisters who, together with their 

husbands, emigrated from Lebanon to South Africa in 1902 (Politzer 

and Fleischmann, 1962). HK's younger sister was originally examined 

because of her susceptibility to epileptiform attacks. Abnormal 

amounts of a reducing substance at first thought to be glucose were 

detected in her urine, but this was later shown to be L-xylulose.

Urine from HK, who in contrast to her sister appeared to be quite 

healthy, was then tested and found also to contain large amounts of 

L-xylulose. Politzer and Fleischmann (1962) reinvestigated the Lebanese 

sisters and tested urine specimens from a further 126 members of 

their family. HK was also one of the pentosurics used by Hankes 

ct- a l . (1969) to demonstrate that nvjo-i nos i to 1 is almost completely 

catabolised via the glucuronic acid pathway.

HK and a number of her relatives were again investigated as part 

of the present study.

2.1.2. Ashkenazi-Jewish subjects

The South African Ashkenazi-Jewish population is mainly descended 

from immigrants from Lithuania, Latvia, Poland and Russia, who 

settled in South Africa between 1880 and 1937 (Saron, 1965)- The 

subjects of the present study were medical students at the local
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university and some of the students' close relatives. The students 

(237), after being lectured on inherited metabolic disorders, 

availed themselves of an opportunity to be tested for Tay-Sachs allele 

heterozygosity and for the presence of other gene markers including 

the essential pentosuria allele.

2.1.3. Non-Jewish subjects

Of the seventy-four non-Jewish subjects studied, fifty-eight were a 

random sample of Afrikaans speaking South Africans who are descended 

from mainly Dutch, French and German immigrants who came to South 

Africa in the second half of the 17th Century. The remaining sixteen 

subjects comprised nine Caucasians of English extraction, three 

Indians (Caucasians), two individuals of mixed Negro and Caucasian 

descent and two South African Negroes.

2.2. Materia 1s

Deionised, distilled water was used throughout and all purchased 

chemicals were reagent grade.

2.2.1. The L-xylulose used in this study

The production of L-xylulose was undertaken because this substrate was 

not commercially available. The method described by Touster (1962) 

for its preparation was followed with one modification: the 

chromatography solvent used was ethyl acetate-pyridine-water (6 :3:2 v/v) 

instead of 1-butanol-pyridine-water (10:3:3 v/v).

Procedure: Fifteen g of L-xylose (Sigma) was refluxed for

4,5 hours in 150 m£ dry pyridine (Merck product No. 7463). The
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pyridine was then removed by evaporation under reduced pressure 

in a rotary evaporator (temperature ± 70°C) and the resulting 

syrup mixed with 50 m€ water. The water, together with a small 

amount of pyridine still present, was removed by evaporation on a 

rotary evaporator as before, but on this occasion and during all 

subsequent evaporation steps, the temperature was kept at 44°C.

The remaining dark brown syrup was dissolved in 45 m-C of warm water 

and then mixed with 2,5 g of activated charcoal. The mixture was 

stirred until the charcoal had been wet, after which the charcoal 

was separated from the L-xylulose containing solution by Buchner 

filtration. The charcoal was washed twice, each time with a 

volume of water equal to the original filtrate and all the filtrates 

finally combined. The volume of the combined filtrates was 

reduced by means of a rotary evaporator and the preparation then 

dried further under a stream of nitrogen. The resulting viscous 

syrup was dissolved in 25 m£ of 36% ethanol and placed in a 

refrigerator to facilitate the crystallisation of L-xylose. After 

several hours, 3 m£ of diethyl ether were added to aid further 

crystallisation of L-xylose. Similar additions of ether, totalling 

25 m£, were made during the next 48 hours. The mixture was then 

placed in a -20°C freezer for 4 days before the L-xylose crystals 

were separated from the L-xylulose solution by Buchner filtration.

The L-xylose crystals were washed several times with cold absolute 

ethanol and the washings combined with the original filtrate. The 

ethanol was evaporated in a stream of nitrogen and the remaining oily- 

syrup dissolved in 15 m£ of 36% ethanol. Approximately 0,625 m£ 

quantities of resulting sugar solution were applied as bands, 7,5 cm from 

the top edges of 18,5 x 22 inch sheets of Whatman 3 MM filter paper.
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Descending chromatography with ethyl acetate-pyridine-water (6:3:2 v/v) 

as solvent was then carried out for approximately k ,5 hours. L-xylulose 

was located on the chromatograms with the aid of guide strips, each 

approximately 0,5 cm wide, which had been cut longitudinally from 

the chromatograms and stained. Staining of the strips was done by 

spraying them with napthoresorcinol reagent and then heating at 105°C

for 10 minutes. Napthoresorcinol reagent was made by dissolving 0,1 g 

napthoresorcinol in 50 mi ethanol and mixing this with 50 mi 0,25 N 
HC1 and 5 mi of orthophosphoric acid (specific gravity 1,85). L- 

xylulose containing portions of the chromatograms were cut into 

pieces of approximately 0,5 x k cm, saturated with water and then 
pulped by vigorous stirring with a glass rod. The L-xylulose 

solution was removed by Buchner filtration and the pulp washed with 

a volume of water equal to the filtrate. After vigorous stirring, 

the eluate was removed by Buchner filtration and the procedure 

repeated once more. The filtrates were combined and dried, firstly 

in a rotary evaporator and then under a stream of nitrogen.

2.3. Basic methodology

2.3-1- Red blood cell preservation and recovery

Whole blood containing ACD as anticoagulant was centrifuged at 

1 000 x g for 5 minutes and the plasma removed by aspiration. The 

volume of packed red cells was estimated and, using a vortex mixer 

to facilitate rapid mixing, an equal volume of preserving fluid was 

added dropwise to the cells. The preserving fluid/red cell mixture 

was then stored at -20°C until required.

The preserving fluid contained the following substances dissolved
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in a I inal volume of one lilre:

iW-potass i um citrate (monohydrate) 19, g,

Sodium dihydrogen orthophosphate (dihydrate) 3,10 g,

Disodium hydrogen orthophosphate (dihydrate) 3,50 g,

Glycerol A00 m£.

When required, the red ce11/g1ycero1 mixtures were thawed and then 

dialysed against 0,3% (w/v) NaCl for at least 3 hours at 0 - A°C. 

After this, the cells were washed by the method described in 2.3-2.

2.3-2. Haemolysate preparation

Whole blood containing citrate-phosphate-dextrose (CPD) or acid 

citrate-dextrose (ACD) anticoagulant was mixed with approximately 2 

volumes of saline (0,9^ NaCl) and the cells then pelleted by 

centrifugation at 1 000 x £ for k minutes. The supernatant and the 

buffy coat were aspirated and the cells then washed 3 times by 

suspending them in approximately 9 volumes of saline, pelleting them 

by centrifugation and aspirating the supernatant. The packed cells 

were then chilled in an ice-water bath for at least 5 minutes 

before being disrupted in a MSE Soniprep 150 sonicator fitted with 

a microprobe.

2.3-3- Haemoglobin estimation

The method described by Beutler (1975) was followed with the 

modification that a Zk Coulter counter standard was used in place 

of a cyanmethaemog1obin standard. A ferricyanide-cyanide reagent 

(Drabkin's solution) was prepared by dissolving 200 mg K3Fe(CN)e, 

50 mg KCN and 1 g of NaHC03 in one litre of water. Aliquots of 

haemolysate or haemolysate containing assay mixture (usually 10 to
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50 microlitres) were diluted with Drabkin's solution to a final 

volume of 3 m£. After mixing and standing at room temperature for 

15 minutes, the extinction at 5^0 nm of each sample was measured 

against Drabkin's solution in a double beam spectrophotometer. The 

extinction readings were then converted to milligrams of haemoglobin 

by means of a standard curve. Measurements for the standard curve 

were obtained by diluting (in triplicate) a commercially available 

C4 Coulter counter standard and treating aliquots of this in the way 

described for haemo1ysates.

2.3.^. Measurement of NADP and NADPH

In instances where the NADP concentrations had to be known with 

precision, the method described in the Boehringer Mannheim publication 

entitled 'Biochemica information 1 (1973)' was used with the modification 

that a Tris buffer was substituted for the triethanolamine buffer 

spec i f i ed.

Two batches of the following mixture were made up in 3 m£ 

cuvettes :

2,69 m£ of 0,1 M Tris-HCl buffer pH 7,6,

0,1 mC of 0,1 M MgC12,

0,1 m£ of 1k mM D,L-isocitric acid,
0,1 m£ of the NADP solution (test solution ± 1,3 ymoles/m£).

The solutions were used to zero a double beam spectrophotometer set at 

3^0 nm and a trace made on the recorder chart. Ten microlitres (± 0,1 U) 

of isocitrate dehydrogenase (Boehringer) were added to the experimental 

cuvette and the change in extinction due to the formation of NADPH, 

followed on the recorder. When the reaction had gone to completion, a 

further 10 u6 of isocitrate dehydrogenase solution were added to the
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experimental solution and the additional change in extinction if any, 

recorded. The determination was repeated and the mean change in 

extinction due to the formation of NADPH,substituted in the following 

equat ion:

Concentration of NADP in the test solution (pmoles/mf!)
3 x AE3h0

0,622
nm

NADPH concentrations were measured according to the method described 

in Beutler (1975): One-hundred p£ of IM Tris-HCl buffer, pH 8,0, contain­

ing EDTA (5 mM) were added to 850 p£ of water in a one m£ cuvette. The 

extinction at 3^0 nm was measured against a water blank and then 50 p-6 

of the NADPH solution (approximately 2 mg/m£) were added to the 

buffered solution and the extinction again measured. The difference 

between the first and second extinction values was then divided by 

3,11 to yield the NADPH concentration of the original solution in 

pmoles/f. The procedure was repeated and the mean of the two estimates 

taken.

2.3-5* L-xylulose quantitation

The method described by Hickman and Ashwell (1959) for quantitating L-xylulose 

was followed without modification except that pigeon liver L-xylulose

reductase (Sigma) was used instead of guinea pig liver L-xylulose 

reductase. The assay contained the following substances in a final 

volume of 1 m€:

Tris-HCl buffer pH 7,0 pmoles (Tris),

Cyste i n 1 pmo1e ,

NADPH 100 pmoles,

MgC 1 2 5 pmoles,

L-xylulose ± 0,05 pmoles.
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The blank solution contained water in place of L-xylulose. Blank and 

sample solutions were equilibrated to 30°C and a recorder trace of the 

extinction reading at 3^0 nm then made. Three microlitres of L-xylulose 

reductase suspension (approximately 0,133 U) were added to both the 

blank and sample solutions and the resulting change in extinction 

followed on the recorder. When the reaction and gone to completion, 

(when approximately all the L-xylulose present had been reduced to 

xylitol), the difference between the initial and final extinction 

values was used to calculate how much NADPH had been oxidised and 

hence how many pmoles of L-xylulose were originally present.

2.3-6. The glutathione method for assaying xylitol 
dehydrogenase activity

The glutathione method (Wang and van Eys, 1970) involved coupling the 

xylitol dehydrogenase catalysed reaction to the reduction of 

oxidised glutathione (catalysed by glutathione reductase) as 

d i agrammed:

(xylitol dehydrogenase)
xylitol + NADP+ ■ -------- - L-xylulose + NADPH + H+

L-xylulose reductase

2 GSH g l u t-athione reductase GSSG

measured

The reduced glutathione (GSH) produced was then measured by a 

modification of the method of Beutler e t  a l . (1963)-

2.3.6.1. Reagents

1. Precipitation solution: 1,67 g glacial metaphosphoric acid, 0,2 g 

Na2 EDTA and 30 g NaCl dissolved in water and made up to 100 m£.

2. Phosphate solution: 0,6 M Na2HP0i*.
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3. DTNB reagent: kO mg 5,5'dithiobis-(2-nitrobenzoic acid) per 
100 mi of 1% (w/v) sodium citrate.

A. Standard reduced glutathione solution: 0,1 mM GSH in 

precipitation solution.

5. Tris buffer: 86,53 g Tris dissolved in approximately 800 mi 
of water and then adjusted to pH 7,0 with concentrated HC1 

before being made up to one litre.

6. Magnesium chloride solution: 7,26 g MgCl2.6H20/£.

7. Nicotinamide solution: 8,72 mg/10 mi water.
8. Oxidised glutathione solution: ^3,7 mg/10 mi water.
9. NADP solution: 7,87 mg NADP (disodium salt)/10 mi water.
10. Xylitol solution: 1,597 g/10 mi water.

2.3.6.2. Procedure

A separate incubation solution for each haemolysate assayed, was 

constituted by mixing:

Tris buffer 0,35

Magnesium chloride 
solution 0,35

Nicotinamide solution 0,35

Oxidised glutathione 
solution 0,35

NADP solution 0,35

Xylitol solution 1 ,00

Haemolysate (neat) 0,25

Water 0,50

mi (250 ymoles/assay),

m£ (12,5 ymoles/assay), 

m£ (2,5 ymoles/assay),

mi (2,5 ymoles/assay), 

mi (0,35 ymoles/assay), 

mi (1,05 mmoles/assay), 

m<?, 

mi.

Blanks contained water in place of xylitol. One mi aliquots of 
incubation solution (and corresponding blank solution) were incubated 

for various times before stopping the enzyme catalysed reactions by
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mixtures were stood for 3 minutes and then centrifuged for 5 

minutes at 2 000 x £. One mZ of the cleared supernatant was 
taken from each tube and mixed with 2 mZ phosphate solution and 
0,5 mZ DTNB colour reagent. Extinction values at ^12 nm were 

then read on a double beam spectrophotometer (one cm light path) 

against water. One mZ aliquots of GSH standard solution, 
freshly made up, were treated in the same way as the assay 

solutions and read against a blank solution containing water in 

place of GSH. The amount of haemoglobin present in each assay 

was measured by taking 50 uZ aliquots of the complete 
reaction mixture and treating these as described under haemoglobi 

estimation.

Wang and van Eys (1970) do not provide many details, but 

the method was modified as follows: The stopped reaction 

mixtures were cleared of precipitated protein by centrifugation 

instead of filtration. The amount of GSH produced per assay 

was increased by using a neat haemo1ysate in place of a once 

diluted haemolysate. The intensity of colour due to the GSH 

formed was increased by halving the amount of precipitation 

solution added and by mixing the deproteinated supernatant with 

half the prescribed volume of double the prescribed strength 

phosphate solution.

2.3.7. The pyruvate method for assaying 
L-xylulose reductase

The pyruvate method involved coupling the L-xylulose reductase 

catalysed reaction to two other enzyme-catalysed reactions:
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L-xylulose reductase
L-xy 1 u lose + NADPH + H+ v~ — :-....  = =  xylitol + NADP+

measured

I C D = isocitrate dehydrogenase.

+GPT = glutamate-pyruvate transaminase.

Pyruvate formed as a result of the L-xylulose reductase catalysed 

reaction was measured by the method described by Chen e t  a t . ,  
(1972).

2.3-7.1. Reagents

1. Colour reagent: 0,1 g 2,^-dinitronheny1hydrazinc/1OOmC of 20% 
concentrated HC1.

2. The following components were mixed together and made up to a final 

volume of 5 mf' with water:

A6,8 mg L-alanine (reaction mixture concentration = 50 mM),

26,7 mg D,L-isocitric ( " " " = 1,5 mM),
ac i d

2,0 mC of 146,85 mM
MgC 1 2
solution ( "

1 ,88 m€ of 1 M Tr i s- 
HC1 buffer at 
pH 7,0 ( "

2,7 mM),

0,1 mM),
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6,0 U i soc i trate
dehydrogenase
(Boehringer) (reaction mixture concentration = 0,6A U/mf) ,

12,0 U glutamate-pyru­
vate transaminase
(Boehr i nge r) ( " M M = 1,28 U/m£),

3. NADPH (tetrasodium 
salt), 2 mg/mi) ( " M II - 0,2 A mM) .

A. L-xylulose, 7A mM ( " N II = 7,A mM) .

5. Alcohol ic KOH: 2,5 g KOH dissolved in 2,5 m£ water and then

made up to 100 mZ with absolute ethanol.

6. Pyruvate standard: 0,A mM sodium pyruvate in water.

2.3.7*2. Procedure

A 1 ,2 mi aliquot of solution 2 was mixed with 0,6 mi of neat 
haemolysate. Four 1*00 p£ aliquots of this mixture were pipetted into 

separate tubes and 50 \ii of NADPH solution added to each. One of the 

four tubes was placed in a 30°C waterbath for 5 minutes and then 

50 of L-xylulose solution added to start the reaction. Reactions 

in the three remaining tubes were started at 20 minute intervals in 

the same way. Eighty minutes after the reaction in the first tube 

had begun, all four tubes were removed from the waterbath and their 

enzyme catalysed reactions stopped by the addition of 0,5 mi of 
colour reagent. The resulting mixtures were allowed to stand at 

room temperature for 5 minutes before one mi of toluene was added 
to each and the mixtures vortexed for approximately 20 seconds.

The tubes were sealed with Parafilm 'M' and centrifuged at 1 500 x £ 

for 5 minutes. After centrifugation, 0,5 mi of the upper phase from 
each tube was mixed with one mi of alcoholic KOH and the extinction 
at 490 nm read 15 minutes later. A factor for the conversion of
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extinction readings to moles of pyruvate formed was obtained with 

every batch of haemolysates assayed by treating 0,5 m£ aliquots of 

standard pyruvate solution as well as 0,5 m£ aliquots of water in the 

same way as the solutions taken from the waterbath. Ten aliquots 

of the solution 2-haemolysate mixture were added to 3 m£ volumes 

of Drabkin's solution for haemaglobin estimation.

2.k . Kinetic, chromatographic and 
electrophoretic studies

2.^.1. Preparation of enzyme for 
kinetic studies

Kinetic studies were carried out on enzyme preparations which had 

been freed of haemoglobin by ion-exchange chromatography.

2.k . 1.1. Ion-exchanger preparation

Before use, the ion-exchanger (Whatman CM 52) was precycled according 

to the manufacturer's instructions. Equilibration was achieved by 

suspending the ion-exchanger in approximately 15 volumes of 

equilibration buffer and then adjusting the pH to that required by 

the addition of either the acidic or basic component of the buffer. 

When the required pH had been reached, the ion-exchanger was washed 

(on a Buchner funnel) with approximately 10 times its volume of 

equilibration buffer. In cases where the exchanger was required 

for reuse, it was poured into a Buchner funnel and 10 to 20 volumes 

of 2 M NaCl allowed to percolate through it. This was followed by 

20 volumes of deionised water and finally by sufficient equilibration 

buffer to bring the pH of the effluent to that of the equilibration

buffer.
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Following equilibration, the ion-exchanger was mixed with 

enough equilibration buffer to make pouring easy. The slurry was 

then poured into a measuring cylinder and allowed to settle at 

(4°C) for at least 12 hours. The volume of the settled ion-exchanger 

as well as the total volume (supernatant + ion-exchanger) was then 

noted so that the volume of resuspended slurry necessary for any 

required bed volume could be calculated by simple proportion.

2.4.1.2. Separation of L-xylulose reductase 
from haemoglobin

Washed red cells were disrupted by sonication and the resulting 

haemolysate diluted with an equal volume of cold 10 mM sodium 

phosphate buffer at pH 6,5. The diluted haemolysate was then 

mixed with 5 times its volume of settled CMC which had been 

equilibrated with 10 mM sodium phosphate at pH 6,5 and freed of 

excess moisture by Buchner filtration. The haemolysate-CMC mixture, 

which had the consistency of fairly stiff porridge, was stirred 

occasionally over a period of 10 minutes before the enzyme 

containing solution was separated from the CMC-bound haemoglobin by 

Buchner filtration. The volume of the eluate was measured and the 

CMC then washed with an equal volume of cold equilibration buffer.

The eluates were pooled and NADP added to a final concentration of 

20 pM. The solution was then centrifuged for 20 minutes at 38 000 x £ 

(A°C) and the supernatant mixed with sufficient ammonium sulphate to 

provide a final concentration of 2,72 M. After the ammonium sulphate 

had dissolved, the preparation was stood at 0°C for 10 minutes and then 

centrifuged at 38 000 x £ for 10 minutes. The supernatant was discarded 

and the precipitated material, which included L-xylulose reductase,
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stored at 0 - 4°C until required. Enzyme solutions made by dissolving 

the precipitated material obtained in this way have been referred to as 

crude (haemoglobin free) preparations.

2.4.1.3. Preparation of the normal 
major i sozyme

The normal major isozyme was prepared by either column chromatography 

(see section 2.4.3.1) or by one of the two following methods:

Method 1

Ammonium sulphate precipitated material obtained in the way 

described above (section 2.4.1.2) was dissolved in equilibration 

buffer (10 mM sodium phosphate at pH 5,7), containing 20 pmoles 

NADP/-C at the rate of one m£ of buffer for every 10 m£ of original 

neat haemolysate used. The solution was dailysed against 

equilibration buffer for 2 hours at 0 - 4°C and then centrifuged for 

10 minutes at 38 000 x £  (4°C). The clear supernatant was diluted 

with an equal volume of equilibration buffer and then mixed with 

a batch of CM-cellulose equilibrated to pH 5,7 at the rate of 

0,075 mf of packed ion-exchanger for every m£ of neat haemolysate 

originally used. The ion-exchanger-enzyme slurry was kept at 0°C 

for 10 minutes with occasional stirring after which the major 

isozyme which had adsorbed onto the ion-exchanger was pelleted by 

centrifugation (one minute at 1 000 x g). The supernatant which 

contained the minor isozyme and some contaminating major isozyme 

was frozen for later use. The CM-cellulose with the adsorbed major 

isozyme was washed with three, 50 mf volumes of equilibration buffer by 

suspending the exchanger in the buffer and then pelleting it by 

centrifugation and discarding the supernatant. The major isozyme was
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then eluted from the ion-exchanger by mixing it with one mi of 600 mM 

NaCl in 0,2 M sodium phosphate at pH 7,0 for every m£ of dialysed 

enzyme preparation originally applied. After standing at 0°C for 

5 minutes with occasional stirring, the ion-exchanger was pelleted by 

centrifugation and the supernatant which contained most of the 

activity present, retained. Two further elutions were performed in 

the same way. Before use in kinetic studies, the eluted enzyme was 

dialysed against 10 mM sodium phosphate buffer at pH 7,0 for 2 to 3 

hours at 0 - ^°C.

Method 2

Ammonium sulphate precipitated material obtained in the way 

described in section 2.k . 1.2 was mixed with 20 mM sodium phosphate 
buffer at pH 5,7 at the rate of 2 mi of buffer for every 10 mi of 
original neat haemolysate used. Sucrose, to a final concentration 

of 10% w/v was added to the supernatant before it was applied to a 

Sephadex G-25 (fine) column which had been equilibrated with 20 mM 

sodium phosphate at pH 5,7. The volume of enzyme solution applied 

to the column was limited to less than 20% of the column's bed 

volume so that complete desalting would be ensured. The column 

was developed with equilibration buffer under gravity and the 

protein solution which eluted after the void volume, collected by 

hand using the small traces of haemoglobin which were present as a 

marker. The desalted enzyme solution was mixed with a batch of CMC 

equilibrated with 10 mM sodium phosphate at pH 5,7, and the isozymes 

further separated as described for Method 1. The eluted major 

isozyme was finally desaltec on the same Sephadex column which had 

been re-equilibrated with 20 mM sodium phosphate at pH 7,0.
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2 . k . ] . k .  Preparation of the normal 
minor isozyme

The minor isozyme containing supernatants which had been reserved 

during preparation of the major isozyme were thawed, pooled and 

centrifuged for 10 minutes at 35 000 x £ at h°C. The supernatant 

(27,6 m?) was freed of traces of contaminating major isozyme by 

passing it through a 20 m£ (bed volume) column of CMC which had 

been equilibrated with 20 mM sodium phosphate at pH 5,7. The 

minor isozyme was then precipitated by the addition of ammonium 

sulphate to a final concentration of 2,72 M and pelleted by 

centrifugation at 35 000 x £ for 10 minutes at k°C. The pellet was 

dissolved in 5 m£ of 20 mM sodium phosphate buffer at pH 7,0 and 

then desalted on a Sephadex G-26 (fine) column as described in 

sec t i cn 2.k .1.3.

Before use in kinetic studies, the preparation was electrophoresed 

(see section 3.3*3.2) in order to ascertain that no major isozyme was

p resent,

2. k .2 . Kinetic stud i es

Kinetic studies were carried out on both crude (haemoglobin free) 

enzyme preparations as well as on preparations of the normal major 

and minor isozymes.

2.4.2.1. Kinetic studies on 
crude preparations

Michael is constant and pH-activity studies were performed on crude 

(haemoglobin free) enzyme preparations.
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2. b. 2.1.1. Michael is constants

a) K for NADP: m

The ammonium sulphate precipitated material obtained after the 

removal of haemoglobin (see section 2.A. 1.2) was dissolved in a small 

volume (2 ~10 ml) of a solution containing 2,7 mM EDTA (pH 7,0) and 

7 mM 8_mercaptoethanol and then dialysed at 0 - 4°C for 2 to b hours. 
After dialysis, the enzyme solution was centrifuged at 38 000 x £ 

for 10 minutes at b°C. A stock NADP solution (containing approximately 

1,5 mg of NADP disodium salt/m€) was prepared and assayed as described 

in section 2.3.^. A series of dilutions which would provide reaction 

mixture concentrations of between b ,7 and 28,6A yM were made from this 

stock. Reaction mixtures were constituted as follows:

0,3 ml Tris-HCl buffer 1 M at pH 7,0 (final concentration = 0,1 M)

0,3 ml 27 mM MgCl2 (final concentration = 2,7 mM)

0,3 ml NADP solution
1,6 ml 3,286 M xylitol (final concentration = 1,75 M)

0,5 ml enzyme preparation

3,0 mt

Changes in fluorescence due to the production of NADPH were followed 

on a Baird-Atomic Fluorimet fluorometer fitted with filters 1X0 and 

0Y’3. Preliminary tests showed that blanks were unnecessary as no 

change in fluorescence took place in the absence of xylitol. Reciprocals 

of reaction velocity were plotted against the corresponding reciprocals 

of substrate concentration and a regression line (obtained by the method 

of least squares using a Hewlett-Packard calculator with Hewlett- 

Packard programmes, Stat 1-05A and Stat 1-22A) fitted. The apparent 

was then obtained from the reciprocal of the x-axis intercept. The
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determination was repeated with fresh enzyme preparations from non-Jewish 

subjects on two further occasions and also on enzyme prepared from the 

Ashkenazi and Lebanese pentosurics.

b) K for xylitol at pH 7,0:m

Enzyme was prepared from normal and pentosuric individuals in the 

way described for the NADP K determinations. The same basic assay 

was also used except that in some determinations, reactions were 

followed by monitoring changes in extinction at 3A0 nm in a spectro­

photometer. The NADP concentration employed was 1,5 mM and the 

highest and lowest xylitol concentrations used with enzyme from normals 

were 0,197 and 0,0328 M respectively. Three determinations were made 

with enzyme from normals and two with enzyme from the pentosuric 

subjects. The xylitol concentrations used with enzyme from the 

pentosurics ranged between 0,29 and 1,75 M.

A direct comparison of the rates at which enzyme (in crude 

preparations) from a pentosuric and a normal catalysed the reverse 

reaction at different xylitol concentrations was made as follows:

Crude (haemoglobin free) enzyme preparations were obtained from a 

normal and a pentosuric individual and assayed at a xylitol concentration 

of 1,753 M. Quantities of the two enzyme preparations which contained 

approximately equal activities (at a xylitol concentration of 1,753 M) 

were then allowed to catalyse and reverse reaction at two lower xylitol 

concentrations (0,877 and 0,584 molar). The results were finally 

represented in the form of a Lineweaver-Burk plot.

c) K for xylitol at pH 9,5:m ' r

The ammonium sulphate precipitated material obtained (see section 

2.A. 1.2) from approximately 20 ml? of neat haemolysate was dissolved
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0,2 M Tris, 0,2 M glycine and 0,2 M sodium dihydrogen orthophosphate to 

pH 9,5 with ION NaOH. Twenty yrnoles of NADP were added to the enzyme 

solution before dialysing it for 3 hours against one litre of the 

above buffer. Reaction mixtures were constituted as follows:

0,3 m£ dialysis buffer (pH 9,5)

0,2 m£ dialysed enzyme solution

0,1 mf! NADP solution (final concentration 0,254 mM)

0,4 m£ xylitol solution at various concentrations 

1 ,0 m€

The range of xylitol concentrations used with the enzyme from pentosurics 

was 0,266 to 1,6 moles/£ and with enzyme from normal individuals,

0,152 to 0,32 moles/£.

d) for L-xylulose:

The ammonium sulphate precipitated material obtained after removal 

of haemoglobin (see section 2.4.1.2) was dissolved in a solution 

containing EDTA (2,7 mM, pH 7,0), B-mercaptoethanol (7,0 mM) and NADPH 

(10 yM) and then dialysed for 3 hours against one litre of the same 

solution before being centrifuged (at 38 000 x c[ for 10 minutes at 4°C) 

to remove material which precipitated during dialysis.

A solution of L-xylulose was prepared, and a series of dilutions 

made from this. Reaction mixtures (pH 7,0) contained 0,1 M Tris, 2,7 mM 

MgCl2, 0,25 mM NADPH, L-xylulose at various concentrations and 

enzyme preparation. The L-xylulose concentrations employed, ranged 

between 0,111 and 4,2 mM when using enzyme from normals and 0,133 

and 0,204 M when using enzyme from pentosurics. Reactions were 

followed by monitoring changes in extinction at 340 nm in a double
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beam spectrophotometer. Blanks were identical to the experimental 

solutions except that they contained water in place of L-xylulose.

e) K for NADPH:m

The K for NADPH of enzyme from normal individuals was estimated m

usinq the same basic reaction mixture as specified for the xylitol Km

estimations except that NADP was omitted and L-xylulose at 

concentrations of between 7,̂ * mM and 16,6 mM was used in place of 

xylitol. A stock NADPH solution was prepared and its concentration 

determined spectrophotometrica11y. A series of dilutions of the stock 

were made to provide reaction mixture NADPH concentrations of between 

6 and 128 pM. Reaction rates were measured in a double beam spectro­

photometer by following changes in extinction at 3A0 nm. Blank 

solutions consisted of the complete reaction mixture minus L-xylulose.

I
2.A.2.1.2. pH-activity studies

a) Reverse reaction (xylitojl dehydrogenase act i v i ty), enzyme from a 

norma 1 i nd t v idua1 :

Enzyme from a normal individual was separated from haemoglobin 

and concentrated by ammonium sulphate precipitation as described in 

section 2.A.1.2. The precipitate was dissolved in 7 mi of 2,7 mM 
EDTA (pH 7,0) which contained NADP at a concentration of 60 pM. The 

preparation was centrifuged for 20 minutes at 35 000 x £ (A°C) and the 

clear supernatant retained.

A solution containing 0,2 moles of Tris, 0,2 moles of glycine and 

0,2 moles of sodium dihydrogen orthophosphate per litre was made up 

and volumes of this adjusted with either ION NaOH or concentrated 

HC1 to pH values ranging from 6,0 to 12,0.
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Rates of the xylitol dehydrogenase catalysed reactions were 

then measured (at three different xylitol concentrations) at 

various pH values. Reaction solutions contained Tris, glycine 

and sodium orthophosphate each at a concentration of 0,1 M; 0,25 mM 

NADP and xylitol at a final concentration of either 0,8, 0,072 or 

0,038 M. A separate blank (containing all reagents except xylitol) 

was prepared for each assay. Reaction rates were measured in a 

double beam spectrophotometer by monitoring changes in extinction 

at 3^0 nm.

After the reactions had proceeded for a sufficient interval, the

assay mixtures were reserved and their pH values measured. Reciprocals

of the rates measured with each of the three xylitol concentrations

at each pH were plotted against reciprocals of the corresponding

xylitol concentrations and theoretical V and K values estimated ' max m

from regression equations calculated by the method of least 

squa res.

b) Reverse reaction (xylitol dehydrogenase activity), enzyme from 

a pentosuric individual:

The method followed was the same as that used with enzyme from the 

normal individual except that reaction rates were measured at one 

xylitol concentration only (0,8 M) because the amount of enzyme 

available was limited.

c) Forward reaction (L-xylulose reductase activity), enzyme from 

a norma 1 i nd i v i dua1 :

The method followed was the same as that used when exploring the 

reverse reaction pH-activity relationship, except that L-xylulose 

and NADPH were used in place of xylitol and NADP. The final NADPH
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concentration was 0,2*4 mM and the three L-xylulose concentrations 

employed at each pH were 7,**00, 0,672 and 0,352 mM.

The effect of pH on the L-xylulose reductase activities of the 

normal minor isozyme and of enzyme from the pentosurics was not 

investigated because these enzymes have high Michael is constants for 

L-xylulose and the determinations would consequently have required 

large amounts of L-xylulose.

2.*4.2.2. Kinetic studies on the major isozyme 
of normal individuals

2.*4.2 . 2.1. Michael is constants

a) K for xy1i tol:m

A preparation of the normal major isozyme (13 m£) was mixed with 

16 ymoles of NADP and then dialysed for 2 hours against two litres of 

10 mM sodium phosphate buffer at pH 7,0. The dialysed preparation was 

divided into 200 aliquots and frozen. The aliquots of enzyme 

solution were thawed (two at a time) immediately before use and mixed 

with Tris-glycine buffer (which had been adjusted to pH 9,0 with NaOH) 

and the other components of the reaction mixture, minus xylitol.

After temperature equilibration, xylitol at the same temperature was 

added to the experimental solution (an equal volume of water was 

added to the blank) and the enzyme catalysed formation of NADPH 

followed at 3**0 nm on a double beam spectrophotometer. Reaction 

mixtures contained 0,05 M Tris, 0,05 M glycine, 0,25 mM NADP, 

xylitol at concentrations ranging between 0,078 and 1,0 M and enzyme 

solution. The determination was repeated once with a fresh enzyme 

prepa ration.



b) K for NADP:m

The enzyme used for this determination was prepared by the second

of the methods described in section 2 . 1.3. After the enzyme

solution had been desalted on a Sephadex G-25 (fine) column it was

divided into 300 y£ aliquots and frozen. A solution of NADP was

prepared and its concentration measured as described in section

2.3.1*. The frozen aliquots of enzyme solution were thawed

immediately before use and mixed with Tris-glycine buffer (which

had been adjusted to pH 9,0 with NaOH) and the remaining

components of the reaction solution barring xylitol. The mixtures

were allowed to equilibrate to 30°C before reactions were started

by the addition of xylitol to the experimental solutions (water

in place of xylitol was added to the blanks). Changes in extinction

at 3^0 nm were then monitored in a double beam spectrophotometer.

The reaction mixtures contained 0,05 M Tris, 0,05 M glycine, 1,1+ M

xylitol, NADP at concentrations ranging between 6,19 and 37,13 yM

and enzyme solution. The K was estimated from a Lineweaver-Burkm

plot as before.

c) for L-xylulose:

The preparation of enzyme for this determination was the same as 

that used for the xylitol (at pH 9,0) except that the buffer 

against which the enzyme was finally dialysed contained 10 yM NADPH 

in place of NADP and the pH of the reaction mixture buffer (0,2 M Tris, 

0,2 M sodium orthophosphate adjusted with NaOH) was 7,0. The reaction 

mixture contained 0,05 M Tris, 0,05 M sodium orthophosphate, 0,21+ mM 

NADPH, enzyme solution and L-xylulose at concentrations ranging from 

0,38 to 21+ ,00 mM. Blank solutions contained water in place of 

L-xylulose. Reactions were followed by monitoring changes in
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extinction at 3^0 nm and the K was finally estimated from am '
Lineweaver-Burk plot.

d) K for NADPH:m

The enzyme preparation used for this estimate was passed 

through a Sephadex G-25 (fine) column (enzyme solution volume 

equalled approximately 20% of column bed volume) in order to replace 

the NaCl containing buffer which had been used to elute the enzyme from 

the final batch of ion-exchanger, with a 20 mM sodium phosphate buffer 

at pH 7,0- This was also done to remove possible traces of NADP 

which may have remained in the enzyme solution from earlier steps in 

its preparation.

A stock NADPH solution was prepared and its concentration measured 

as described in section Z . } . k . The buffer used in the reaction mixture 

was the same as that used when estimating the enzyme's for 

L-xylulose. Reaction mixtures contained 0,05 M Tris, 0,05 M sodium 

orthophosphate, 16,1 mM L-xylulose, enzyme solution and NADPH at 

concentrations ranging between 9 and 100 yM. The rates at which NADPH 

disappeared from reaction mixtures were followed in a double beam 

spectrophotometer. The blank solution contained all components of the 

reaction mixture except NADPH. A second blank containing all the 

components of the reaction mixture minus L-xylulose was also prepared 

as a check.

2 . k . 2 . 2 . 2 . pH-activity studies

a) Reverse reaction (xylitol dehydrogenase activity):

Enzyme for this investigation was prepared and dialysed by the 

first method described in section 2.4.1.3. In other respects, the 

method followed is the same as that used with the crude preparation



of normal enzyme already described except that some additional points 

were obtained for pH values close to the enzyme's apparent pH 

optimum on the day following the main determination and the buffer 

strength was reduced to half that used before.

b) Forward reaction (L-xylulose reductase activity):

Enzyme for this investigation was prepared and dialysed as 

described in section 2.4.1-3- The method followed was the same as 

that described for the pH-activity investigation done on the normal 

crude enzyme preparation except that the buffer concentration was 

reduced by half.

2.4.2.3 - Kinetic studies on the minor isozyme 
of normal individuals

2.k . 2.3.1. Michaeli s constants

a) K for xy1i tol:m

The method followed was identical to that used for measuring the 

for xylitol of enzyme in crude preparations from pentosurics.

b) K for L-xylulose:m

The method followed for this determination was the same as that 

used for estimating the for L-xylulose of enzyme in crude 

preparations from the pentosuric subjects. The L-xylulose concentrations 

employed ranged from 12,5 to 87,8 mM.

2.k . 2.3-2. pH-act i v i ty

The method followed was the same as that used when investigating the 

pH-activity relationship of enzyme from pentosurics except that the



buffer concentration was halved and the xylitol concentration 

increased from 0,8 M to l,1! M which would be closer to a saturating 

substrate concentration.

2.4.3. Chromatography and electrophoresis

Red cell L-xy1ulose-reductase isozymes from both normal and pentosuric 

individuals were chroma togrammed and electrophoresed. In addition, an 

electrophoretic comparison was made of liver and red cell isozymes.

2.4.3.1. Chromatography

The xylitol dehydrogenase present in 43 mi of freshly prepared 
haemolysate from an individual with normal enzyme activity was 

separated from haemoglobin by the method described in section 2.4.1.2. 

The ammonium sulphate precipitate obtained was dissolved in 5 mi of 
10 mM sodium phosphate buffer at pH 5,7 (equilibration buffer), 

mixed with 40 ymoles of NADP and then dialysed for 90 minutes against 

two litres of equilibration buffer. Following dialysis, the preparation 

was centrifuged for 20 minutes at 35 000 x £ (4°C) and 7 m£ of the 

resulting supernatant applied to the top of a 160 m£ (bed volume)

CMC column which had been equilibrated with the above buffer. As 

soon as the enzyme solution had entered the column, a linear gradient 

of NaCl in equilibration buffer (0 - 600 mM NaCl over a volume of 

400 m£) was applied. The column (cross-sectional area = 5.2 cm2) 

was developed at a flow rate of one mi per minute and 5 fractions 

were collected. The relative amount of protein in each fraction 

was gauged by measuring its extinction at 280 nm. In addition, 

the extinctions at 410 nm of the last 7 to 20 fractions were also 

measured in order to detect the trace amounts of haemoglobin which
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began to elute at this stage. The relative xylitol dehydrogenase 

activity of each fraction was estimated by adding 300 y£ of the 

fraction to 300 y£ of a reaction mixture whose preparation is 

described below. The samples were incubated at 30°C for 30 minutes 

and then 1,4 m£ of 1,0 M Tris-HCl at pH 7,0 were added to each and 

fluorescence due to NADPH which had formed, measured on a Perkin- 

Elmer 650-1 OS fluorescence spectrophotometer with excitation and 

emission wavelengths set at 347 nm and 460 nm respectively. A standard 

was prepared by adding a known quantity of NADPH (5,28 nmoles in 5 y£) 

to 300 y£ of one of the void volume fractions and treating this in 

the same way as the 300 y£ aliquots taken from the other fractions.

Reaction mixture preparation: 7,55 g xylitol, 10 mg NADP 

(disodium salt), 0,6 g Tris and 0,375 g glycine were dissolved in 

approximately 15 m£ of water and the pH adjusted to 10,5 with 10 N 

NaOH before making the volume up to 20 m£.

The separation method described above was followed on a number of 

occasions using enzyme prepared from normal individuals, both 

pentosurics (HK and RB) and a daughter of HK.

2.4.3.2. Electrophoresi s

Fresh haemolysates were prepared from whole blood or from dialysed 

and washed preserved red cells (see section 2.3.2). The liver 

specimens used were obtained at autopsy and had been stored frozen 

at -70°C for varying periods ranging from 3 to 21 months. Two of the 

liver specimens were from individuals who died of different 

apparently inherited (undiagnosed) metabolic disorders and the third 

specimen was from a healthy individual who died a violent death.
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Homogenates were prepared by adding approximately 2 volumes of water 

to small pieces (.+ 3 mm3) of freshly thawed liver and disrupting 

these by hand in a ground glass homogeniser (0°C). The homogenates 

were then centrifuged at 9 000 x £ for 3 minutes and the xylitol 

dehydrogenase activities of supernatants adjusted to approximately 

0,38 ymoles/hour/100 y£.

Electrophoresis was carried out in starch gels using a modification 

of the buffer system employed by Fildes and Parr (1963)- The gel 

buffer consisted of 0,01 M sodium phosphate buffer at pH 7,0, and the 

electrode buffer of 0,2 M sodium phosphate at pH 7,0 instead of the 

0,1 M sodium phosphate buffer (pH 7,0) used by Fildes and Parr. This 

modification was made because the original buffer sometimes failed to 

adequately control the pH of the gel. NADP (20 yM) was included in 

the gel buffer and in the electrode buffer of the cathode tank.

Starch gels were made by swirling mixtures of starch and gel 

buffer (25 g hydrolysed starch, Merck, and 250 m-C gel buffer) in 

one litre Erlinmeyer flasks over a Bunsen flame until the mixtures 

became viscous. Five ymoles of NADP were then added to each molten 

gel before it was 'degassed' by attaching the flask to a vacuum 

pump for about 10 seconds. The degassed gels were poured into 

perspex trays (20 cm long, 13 cm wide and 1 cm deep) and left to set 

for 30 to 40 minutes. The gels were then covered with thin polythene 

sheets and placed in a refrigerator until required (gels were used 

within 24 hours of preparation). Whatman 17 MM filter-paper rectangles 

(approximate size: 0,8 x 0,4 cm) were soaked with neat haemolysate 

or enzyme solution and inserted 4 cm from the cathode end of each 

gel. Gels were then placed between cathode and anode buffer compart­

ments and connected to these by lint wicks which had been soaked
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in electrode buffer. Two glass rods (approximately 0,5 cm in diameter) 

were placed on either side of the sample bearing inserts to hold the 

polythene sheet (which was temporarily removed during sample application) 

clear of the gel at the origin. Electrophoresis was carried out at a 

constant voltage of 6 ,̂  v/cm for 16 hours in a refrigerator at 

approximately ^°C.

Following electrophoresis, the gels were cut horizontally into 

two slices by passing a length of taut narrow gauge stainless steel 

wire through each and the slices then separated. A sheet of Whatman 3 

MM filter paper of the same size and shape as the cut surface of the 

gel was soaked in staining solution and then laid over the surface. The 

gels were Incubated at 37°C and then viewed under long wavelength 

u11raviolet light.

Staining solutions

Three different staining solutions were used:

1. A stain which was best for detecting the major isozyme of 

normals by its xylitol dehydrogenase activity.

2. A stain suitable for detecting both major and minor 

isozymes of normals as well as the residual enzyme of 

pentosurics by their xylitol dehydrogenase activities.

3. A stain for detecting L-xylulose reductase activity.

Stain 1

The substances listed below were dissolved in approximately 7 

of water, and the pH adjusted to 10,5 with 10 N NaOH before making

the volume up to 10 m£.

0,15 g glycine (final concentration 0,2 M),

1,52 g xylitol (final concentration 1,0 M),

2,0 mg NADP (disodium salt) (final concentration 0.25 mM) .
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Stain 2

The substances listed below were dissolved in approximately 7 m£ of 

water and the pH adjusted to 9,5 with 10 N NaOH before making the 

volume up to 10 mZ.
0,15 g glycine (final concentration 0,2 M),

0,24 g Tris (final concentration 0,2 M) ,

4,56 g xylitol (final concentration 3,0 M) ,
2,0 mg NADP (disodium salt) (final concentration 0,25 mM),

10,0 mg MgCl2-6H20 (final concentration 4,93 mM).

Stain 3

Prepared by mixing -

0,2 mZ of 1,0 M Tris-HCl buffer, pH 7,0 (final concentration 
0,2 M Tris) ,

0,2 mZ of 27 mM MgC12 (final concentration 2,7 mM),

0,6 mg NADPH (tetrasodium salt) (final concentration ± 0,36 mM), 

0,266 mZ of 1,5 M L-xylulose (final concentration 0,2 M) and 
1,334 mZ water.

2.4.4. The effect of various substances on enzyme activity

2.4.4.1 Nicotinamide on xylitol dehydrogenase 
act i v i ty

This effect was demonstrated as follows: A fresh haemolysate was 

prepared from a normal individual and aliquots of this assayed by the 

glutathione method in the presence of either 0, 0,1, 1,0 or 10 mM 

nicotinamide. The amount of haemoglobin in each assay was measured in 

order to correct for errors made in pipetting the haemolysate.

2.4.4.2. Magnesium chloride and other salts on 
xylitol dehydrogenase and L-xylulose 
reductase activity

The following experiment was performed with the aim of establishing 

whether it was necessary to add MgC12 to systems for assaying red cell
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xylitol dehydrogenase activities. Enzyme which had been separated 

from haemoglobin and concentrated by ammonium sulphate precipitation as 

described in section 2.*4.1 was dissolved in 2 mi of a solution 
containing 60 yM NADP, 7 mM 8-mercaptoethanol and 2,7 mM EDTA (pH 7,0) 

and then dialysed (0 - *4°C) against one litre of the same solution for 3 

hours. The xylitol dehydrogenase activity of the preparations was then 

assayed in the presence and absence of 2,7 mM MgC12 using a reaction 

mixture which contained 0,1 M Tris (pH 7,0), 2,7 mM MgCl2 (or water),

0,25 mM NADP, 1,75 M xylitol and enzyme solution. Reactions were 

followed by monitoring changes in extinction at 3^0 nm in a double 

beam spectrophotometer. The blank contained water in place of 

xylitol.

The next experiment was carried out on a preparation of the normal 

major isozyme (see section 2.*4.1.3). Before use, the enzyme solution 

was desalted on a Sephadex G-25 (fine) column (the volume of enzyme 

solution applied was 23,7% of the column volume). The desalted 

enzyme's L-xylulose reductase activity was then assayed in the 

presence and absence of 5 mM MgC12• The reaction mixture contained 

0,05 M Tris and 0,05 M sodium orthophosphate (adjusted to pH 7,0 

with 10 N NaOH) , 5 mM Mg C1 2 (or water), 0,2*4 mM NADPH, 16 ,1 mM 

L-xylulose and enzyme solution.

The third experiment was done with the aim of finding a possible 

metal activator of the major isozyme of normal individuals. A preparation 

of the normal major isozyme was concentrated by ammonium sulphate 

precipitation. The precipitated protein obtained after centrifugation 

(38 000 x £ for 10 minutes) was resuspended in approximately 2 m£ of 

supernatant and *40 pmoles of NADPH added. The suspension was then 

divided into two equal portions; one of these (0,55 m£) was dialysed
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against one litre of 2,7 mM EDTA (pH 7,0) while the other was dialysed 

against one litre of 10 mM sodium phosphate buffer (pH 7,0) for 2 hours. 

One-hundred aliquots of both the EDTA and phosphate dialysed enzyme 

solutions were separately mixed with 100 p£ volumes of various salt 

solutions (MgCl2, MnCl2, CuS0i+, FeSOt, and Zncl2) each at a concentration 

of 2 mM. The enzyme-salt solution mixtures were stood at approximately 

^°C for one hour and their xylitol dehydrogenase activities then assayed. 

The reaction mixture concentrations of the various salts was 0,2 mM.

2.5. Enzyme storage and stabilisation

2.5.1. Storage in red cells and haemolysates

Three methods of storing the xylitol dehydrogenase of red cells were 

invest igated.

Method 1

A preparation of washed, packed red cells was divided into aliquots 

and these stored at -20°C for various times.

Method 2

Fresh, packed red cells were mixed with preserving solution as 

described in section 2.3.1 and separate aliquots of the mixture stored 

frozen at -20°C.

Method 3

Whole blood was mixed with the anticoagulant ACD at the rate of 

6,66 m£ of blood/m(? of ACD and stored at ^“C.

When required, the preserved cells (Method 2) were thawed and then 

dialysed overnight against saline at 4°C. After dialysis, the cells 

were subjected to the washing procedure described under haemolysate 

preparation (see section 2.3.2) and then lysed by 3 cycles of freezing



and thawing. Red cells stored as part of whole blood (Method 3) were 

washed and lysed in the same way as the dialysed preserved cells. 

Haemolysates which resulted from the storage conditions of Method 1 

were used directly after thawing. Xylitol dehydrogenase activities 

were determined by the glutathione method.

2.5.2. Storage in concentrated ammonium 
sulphate solutions

For practical purposes, an idea of the rate at which crude (haemoglobin 

free) preparations of L-xylulose reductase from normal individuals 

lost activity when stored precipitated in 2,72 M ammonium sulphate 

solutions was obtained as follows: The method used to obtain crude 

(haemoglobin free) preparations of enzyme (see section 2.4.1.2) was 

followed until just before the ammonium sulphate precipitation step. 

3-mercaptoethanol and NADP were added to the enzyme solution (final 

concentrations: 7 mM and 20 yM respectively) and L-xylulose 

reductase then precipitated by the addition of ammonium sulphate as 

described in section 2.it. 1. After standing at 0°C for 15 minutes, 

the precipitated material was pelleted by centrifugation at 38 000 x £ 

for 10 minutes at *+°C and all but 5 to 10 mi of the supernatant 
discarded. The precipitated material was resuspended and the mixture 

stored at *t°C. Aliquots of the suspension were withdrawn and assayed 

after various times of storage. The experiment was repeated with the 

omission of 3-mercaptoethanol.

2.5.3. Enzyme stabilisation

Crude (haemoglobin-free) preparations from normal individuals were 

found to lose activity fairly rapidly unless stored frozen or as 

ammonium sulphate precipitates. The following experiments were
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therefore carried out in order to determine whether enzyme inactivation 

could be prevented by the presence of various substances.

One m£ aliquots of enzyme solution, prepared by the method described 

in section 2.4.1.2, were mixed with 0,5 m£ volumes of solutions which 

contained different combinations of the following substances: NADP, 

B-mercaptoethanol, EDTA and xylitol. The final concentrations of the 

above substances (when present) were: 10 yiM NADP, 2,7 mM EDTA, 7 mM 

B-mercaptoethanol and 0.1 M xylitol. Table 2.1 shows the different 

combinations of these substances which were mixed with separate 

aliquots of enzyme solution. The mixture comprising combination 11 

plus enzyme solution was frozen at -20°C while the remaining 10 

enzyme-stabilising solution mixtures were incubated at 30°C for 

15 hours. All eleven preparations were then assayed.

In the next experiment a crude haemoglobin-free preparation of 

enzyme from a normal individual was mixed with NADP, B~mercaptoethano1 

and EDTA (pH 7,0) so that final concentrations of these substances 

(10 yM NADP, 7 mM B-mercaptoethanol and 2,7 mM EDTA) were equal to 

those recommended for G6PD stabilisation (Betke e t  a t . ,  1967). Aliquots 

of the enzyme solution were then heated for 25 minutes at ^8°C in the 

presence of different amounts of NADP (9 to 129,5 yM). The aliquots 

were then cooled and their activities compared to similar aliquots 

which had remained at. 0°C during the heating period.

In the following experiment, activities present in aliquots of 

enzyme solution were again measured after these had been heated in the 

presence of a more continuous range of NADP concentrations. Enzyme 

was separated from haemoglobin and precipitated by ammonium sulphate 

as described in section 2.A.1.2. The precipitate was pelleted by
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centrifugation and then dissolved in 3 m£ of cold sodium EDTA at pH 7,0.

The resulting solution was then dialysed against one litre of the same EDTA 

solution (0 - 4°C) for 3 hours. One hundred p-C aliquots of dialysed 

enzyme were added to 100 p-C aliquots of 0,1 M Tris-HCl buffer at 

pH 7,0 and then mixed with different amounts of a NADP solution and 

water to produce a series of 300 p-C buffered enzyme solutions with 

NADP concentrations ranging between 0 and 110 pM. Duplicate solutions, 

containing NADP at the highest concentration were stored on ice 

while the rest were heated for 25 minutes at 48°C. After heating, 

the enzyme solutions were cooled on ice, their NADP concentrations 

equalised and then both heated and unheated solutions assayed.

Once the red cells of normal individuals had been found to contain 

two L-xylulose reductases, the thermal lability of the major isozyme 

in the presence of different concentrations of NADP was investigated.

Before use, the enzyme solution (5,5 mC) was passed through a 40 mC 

(bed volume) Sephadex G-25 (fine) column which had been equilibrated 

with 20 mM sodium phosphate at pH 7,0 in order to remove NaCl left 

over from the preparation procedure. Three hundred p-C aliquots of 

enzyme solution were heated at 40°C for 0, 10 or 20 minutes and then 

cooled and assayed in order to obtain an idea of the enzyme's stability.

The heating procedure was repeated at 42°C both in the presence and 

absence of 254 pM NADP and the aliquots assayed after cooling. Finally, 

aliquots of buffered enzyme solution containing different concentrations 

of NADP (0 - 100 pM) were heated at 42°C for 40 minutes. After 

heating, the aliquots were cooled, their NADP concentrations were 

equilised (100 pM) and their activities measured.
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2.6. Population screening and family studies

The L-xylulose reductase assay used in the population screening and 

family studies was the pyruvate method described in section 2.3.7.

2.6.1. Establishment of a normal range

Before attempting to use the pryuvate assay method for the identifi­

cation of heterozygotes, the range of red cell activities in a sample 

of Ik non-Jewish subjects was determined. Blood for this purpose was 

collected in vacutainers containing ACD and haemolysates were prepared 

and assayed within 2 days of collection.

2.6.2. Pentosuric family study

When the pyruvate assay method had been found to differentiate clearly 

between pentosurics and normals, blood was obtained from the family 

members of one of the pentosurics (HK) and assayed in order to ascertain 

whether the pentosuria allele (as judged by the levels of L-xylulose 

reductase activity) could be detected in heterozygotes. A portion of 

the blood taken from each individual was also used for gene marker 

stud ies.

2.6.2.1. Measurement of serum and plasma 

L-xylulose concentrations

Serum and plasma L-xylulose concentrations in samples from family 

members were measured by the method described by Kumahara e t  a l .  
(1961). Samples were deproteinised by adding a one-tenth volume of 

12% perchloric acid to them and then centrifuging at 38 000 x £ 

for 5 minutes at 0 - k°C. Aliquots of supernatant were then adjusted 

to approximately pH 7,2 by the addition of 0,2 N KOH and the clear
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supernatants remaining after precipitation of potassium perchlorate 

assayed. One m£ assay mixtures were constituted as follows:

0,10 m€ 0,4 M Tris-maleate buffer at pH 7,5,

0,10 m£ 10 pM cystein solution,

0,10 m£ 50 mM magnesium chloride solution,

0,40 m6 deproteinised serum or plasma,

0,19 m£ water,

0,01 m£ L-xylulose reductase suspension in 3 M
ammonium sulphate (equivalent to 0,42 U).

The total change in extinction at 340 nm due to the reduction of

L-xylulose was used to calculate the amount of NADP formed and hence

the amount of L-xylulose originally present in each sample.

2.6.3- Screening the Ashkenazi-Jewish sample

Haemolysates, prepared by sonicating dialysed, washed, preserved red 

cells from 237 Ashkenazi-Jewish medical student volunteers were 

assayed by the pyruvate method.

2.6.3.1. Follow-up stud ies

Repeat determinations of haemolysate L-xylulose reductase activity 

were carried out on fresh specimens obtained from the 7 individuals 

whose activities had been found to be more than 2 SD below the sample 

mean. Samples obtained from available close relatives of these 

individuals were also assayed.

Six of the 7 'low activity1 individuals were then subjected to the 

D-g1ucurono1actone loading test described by Kumahara e t  a l . (1961). 

Subjects were asked to fast overnight and on the following morning a 

sample of blood (10 mi) was drawn from each. They were then given 

25 g of D-glucuronolactone by mouth and one hour later a second blood
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sample was drawn. The samples were allowed to clot at 0 - 4°C for 

approximately 4 hours before the serum was removed. The L-xylulose 

concentrations of the serum samples were then measured in the way 

described in section 2.6.2.1.

2.6.4. Linkage analysis

Linkage analysis was carried out on data collected on members of the 

Lebanese and Ashkenazi-Jewish families in which pentosuria alleles were 

segregating.

2.6.4.1. Gene marker studies

Gene marker studies were carried out (by the author's colleagues) on 

donated blood from members of the families in which the pentosuria allele 

had been found to be segregating. The phenotypes of all available 

subjects were established for the following systems:

Red cell enzyme systems Red cell Serum protein systems
____________ _____ ______  antigen groups ______ _________ ■_____

Acid phosphatase (ACPi) ABO Properdin Factor B (Bf)

Adenosine deaminase (ADA) MNSs Group spectific component (Gc)

Adenylate kinase (AKi) Rh Haptoglobin (Hp)

Carbonic anhydrases 1 Duffy Transferrin (Tf)
and 1 1 (Cai and Ca2) Kel 1
Esterase D (EsD) P
Glutamate pyruvate 
transaminase (GPTi)

G1ucose-6-phosphate 
dehydrogenase (G6PD)

Glyoxalase 1 (GLOi)

Peptidases A and B (Pep 
A and Pep B)

Phosphog1ucomutases (1 
and 2) (PGMX and PGM2)

6-Phosphogluconate 
dehydrogenase (PGD)
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Blood grouping was carried out according to methods in Race and Sanger 

(1968). Methods used for the red cell enzyme systems appear in Harris 

and Hopkinson (1976). Typing of the serum protein systems was carried 

out by the following methods: Properdin factor B (Bf) and group 

specific component (Gc) types were identified after electrophoresis by 

the method of Teisberg (1970) and immunofixation by the method of 

Alper and Johnson (1969). Additional information about the Gc subtypes 

was obtained through isoelectric focusing by the method of Kiihnl e t  
a l . (1978). Haptoglobin and transferrin phenotypes were determined by 

the methods described by Giblett (1969)-

2.6.4. 2. Lod score determination
1

Morton's sequential test (Morton, 1955) was used for evaluating the 

likelihood of linkage between the major L-xylulose reductase gene 

locus and the loci of those polymorphic genes (listed in section 

2.6.4.1) which showed useful variation. For two generation pedigrees 

where mating had been of the double back-cross type, the logs of the 

odds (lod scores) were obtained from the Table which appears in 

Race and Sanger (1968). The lods for more complicated pedigrees were 

obtained by computer using the LIPED 3 programme devised by Ott 

(1977) for the E1ston-Stewart algorithm (Elston and Stewart, 1971).



CHAPTER 3
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3. RESUL Ii>

3.1. L-xy lu lose  production

A comparison of the sepa ra t ion  of L-x y lu lo se  obta ined w ith  the two 

chromatography so lv en ts  is  shown in F igure  3.1. I t  can be seen tha t 

the e thy l a c e ta te- p y r id in e - w a te r  so lven t  brought about a b e t te r  

separa t ion  o f L-x y lu lo se  from the o ther  sugars p resen t ,  in a g iven time, 

than the 1-butano1-p yr id ine-w a te r  s o lv e n t .  An in d ic a t io n  o f the 

p u r i t y  o f the L-x y lu lo se  produced car, be obta ined from F igure  3.2 

which shows the presence of on ly  one substance as revea led  by the 

nap tho resorc ino l s t a in .

3 .2 . Demonstration o f  low enzyme a c t i v i t i e s  in pen tosu rics  
by the g lu ta th io n e  and pyruvate  methods

F igures  3-3 and 3.^ show the r e s u l t s  obta ined when haemolysate x y l i t o l  

dehydrogenase and L-x y lu lo se  reductase a c t i v i t i e s  o f  a normal and a 

pen tosu r ic  in d iv id u a l  were compared. From F igure  3 .3 . which shows the 

r e s u l t s  obta ined by the 'g lu t a th io n e  method', i t  can be seen tha t a 

s ig n i f i c a n t  non - l in ea r  blank reac t io n  occurred in both assays . A 

s t r a ig h t  l in e ,  in d ic a t in g  th a t  the x y l i t o l  dehydrogenase ca ta lysed  

reac t io n  was l i n e a r ,  could be obta ined by sub tra c t in g  the blank from 

the experimental va lu e s .  Assays done by the pyruvate  method (F ig u re  

3.*0 showed a much sm a lle r  blank reac t io n  than th a t  observed w ith  

the g lu ta th io n e  method. The r e s u l t s  presented in F igure  3-3- confirm  

the f in d in g  o f  Wang and van Eys (1970) tha t pen tosu rics  have a 

d e f ic ie n c y  o f red c e l l  NADP-1inked x y l i t o l  dehydrogenase a c t i v i t y .

The re s u l t s  obta ined by the pyruvate  method (F ig u re  3.^0 demonstrate 

tha t pen tosu r ics  have the correspond ing , expected d e f ic ie n c y  o f
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<-----  O rig in

L- x y Iu 1ose

L-xy1ulose

F igure  3•1• Sect ions  o f two chromatograms which were developed w ith 

d i f f e r e n t  s o lv e n ts .  The cen tra l  s t r ip  ( la b e l le d  11) was 

part o f a chromatogram which had been developed w ith  the 

e thy l  a ce ta te- p y r id in e - w a te r  so lven t and the s t r ip s  on 

e i t h e r  s ide  o f i t  were pa rts  o f a chromatogram which was 

developed w ith  1-bu tan o l-p y r id ine-w a te r . The dark-grey 

bands on the chromatograms are  due to the presence o f 

L-x y lu lo se ,  w h i le  the f a in t  brown and blue bands are due 

to the presence o f o ther  pentoses which formed during the 

re f lu x in g  s tep .
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F igure  3-2. A chromatogram (developed w ith  e thy l a ce ta te- p y r ; d j ne 

w ate r )  which was run to check the p u r i t y  of the 

L-xy lu lose  produced. Four a p p l ic a t io n s  of the same 

L-xy lu lose  so lu t io n  were made. No o ther bands apart 

from those due to L-xy lu lose  were v i s i b l e  on the 

chromatogram.
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Figure  3 .3 . A comparison o f normal and pentosuric  haemolysate

x y 1i to I dehydrogenase a c t i v i t i e s  as measured by the 
g lu ta th io n e  method. The lower curve fo r  each assay 

was obta ined by su b trac t ing  the blank from the 

experimental read ings. The a c t i v i t i e s  of the normal 
and pen tosu r ic  haemolysates were 1.819 and 0.0^8 
u moles/hr/g Hb r e s p e c t i v e ly .
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"TIME OF INCUBATION (M lm o t h s )

F igure  3.**. A comparison o f normal and pentosuric  L-xy lu lose  

reductase a c t i v i t i e s  as measured by the pyruvate 

method. The a c t i v i t i e s  o f the normal and pentosuric  

haemolysates were 6.827 and 0.115 p moles/hr/g Hb 
respect i v e 1y .
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L-xy lu lose  reductase a c t i v i t y  which is the ac tua l cause of e s se n t ia l  

pentosu ria .

3.3. K in e t i c ,  chromatographic and e le c t ro p h o re t ic  s tud ies

3 .3 .1 . Enzyme p repara t ion

The to ta l  enzyme recovered from haemolysates (from normals) a f t e r  

haemoglobin separa t ion  ranged between f o r t y - f i v e  and s ix ty-one per cent 

of the o r ig in a l  a c t i v i t y .  Resu lts  o f a t y p ic a l  separa tion  appear in 

Table 3.1. Y ie ld s  o f crude haemoglobin-free enzyme ac t iv i ty /m £  of 

haemolysate from the pen tosu r ic  sub jec ts  were between 0,0131 and 

0,0257 pmoles/hour. P rep a ra t ion s  o f the normal major isozyme made from 

crude haemoglobin-free e x t ra c ts  contained between twenty and f i f t y  per 

cent of the a c t i v i t y  o r i g i n a l l y  present in the crude p rep ara t io ns .

3 .3 .2 .  Michael is constan ts  and the e f f e c t s  o f pH 
on enzyme a c t i v i t y

3 .3 .2 .1 .  S tud ies  on crude enzyme p repara tions

F igures  3.5 to 3.12 a re  Lineweaver-Burk p lo ts  o f  r e s u l t s  obta ined w ith

crude, haemoglobin-free p rep ara t ions  o f  enzyme from the pentosuric

sub jec ts  and from normal in d iv id u a ls .  From Table 3.2 in which the K

va lues  obta ined are  l i s t e d ,  i t  can be seen that the K fo r  NADP o fm
the 'p en to su r ic  enzyme* is ve ry  s im i la r  to that o f  the normal enzyme. 

These two enzymes, however, have s t r i k in g l y  d i f f e r e n t  Michael is 

constants  fo r  x y l i t o l  (see F igure  3 .8 ) .  The re s u l t s  shown in 

F igure  3-9 a l lo w  a d i r e c t  comparison to be made between the ra tes  at 

which enzyme from a pen tosu r ic  and a normal in d iv id ua l c a ta ly sed  the 

reverse  reac t io n  at d i f f e r e n t  x y l i t o l  co n cen tra t io n s .  The Michael is 

constan ts  o f  the normal and 'p en to su r ic *  enzymes fo r  L-xy lu lose
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[n a d p ]

F igure  3-5. L ineweaver-Burk p lo ts  used to est im ate  the "norm al" and

"p e n to s u r ic "  enzymes Km va lues  fo r  NADP (a t  pH 7 .0 ) .  The 

apparent Km fo r  NADP of enzyme from the normal in d iv id ua l 

was 3.88 pM and that o f enzyme from the pentosuric  (H .K . ) ,  

3.78 pM. A s im i la r  determ ination  c a r r ie d  out on enzyme 

from pen tosu r ic  R .B . y ie ld ed  an apparent o f 6.67 pM.
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Figure  3-6. Lineweaver-Burk p lo t  o f data used to es t im ate  the K fo r  ------------  m
x y l i t o l  o f enzyme prepared from a normal ind iv id ua l 

( r e a c t io n  pH 7-0). The re c ip ro ca l  o f  the x-ax is  i n t e r ­

cept y ie ld s  an apparent o f 0.206 M. Two a d d it io n a l  

de term inations of th is  y ie ld ed  va lues o f 0.199 M and 

0.139 M.

F igure  3-7- Lineweaver-Burk p lo ts  of data (obtained a t a reac t ion  pH of 

7.0) used to es t im ate  the fo r  x y l i t o l  o f enzyme prepared 

from the two pentosuric  sub jec ts  (H .K. and R . B . ) .  The 

apparent fo r  x y l i t o l  o f  enzyme from H.K. was 2.383 M anc 

that of enzyme from R .B . ,  1.537 M.
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Figure  3-8. L ineweaver-Burk p lo ts  of data used to estim ate  the normal 

and "p en to su r ic  enzyme's" Michael is constants  fo r  x y l i t o l  

a t  pH 9-5. The 'norm al' enzyme's apparent Km fo r  x y l i t o l  
was 36.2 mM w h ile  that of the 'p en tosu r ic  enzyme', was 
65^ mM.
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Figure 3 • 9 • The re s u l t s  of a d i r e c t  comparison o f ra tes  at which enzyme 

from a pentosuric  and a normal in d iv id ua l ca ta lysed  the 

reverse  reac t io n  (pH 7.0) a t  va r io us  x y l i t o l  co ncen tra t io ns .  

The "p e n to s u r ic "  and "norm al" enzyme p repara tions  were 

ad justed  (a t  the h ighest x y l i t o l  concen tra t ion  used) to 

approx im ate ly the same a c t i v i t y .  The ra tes  at which the 

ad justed  pentosuric  and normal enzyme p repara tions  ca ta lysed  

the reverse  reac t ion  were then measured a t  two lower x y l i t o l
concen t ra t io n s .
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Figure  3.10. Lineweaver-Burk p lo t  of data used to estim ate  the K fo r
m

L-x y lu lo se  o f  enzyme prepared from a normal ind iv id ua l 

( r e a c t io n  pH 7 .0 ) .  The re c ip ro ca l  of the ar-axis in te rcep t 

y ie ld s  and apparent «m of 0.773 mM. Two ad d it io n a l  

determ inations  of th is  Km gave va lues  of 0.527 and 1.026 mM.
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F igure  3-11. L ineweaver-Burk p lo t  o f data used to estim ate  the K fo r
m

L-xy lu lose  of enzyme prepared from pen tosu r ic  H.K.

( re a c t io n  pH 7 .0 ) .  The re c ip ro ca l  o f the x-ax is  in te rcep t  

y ie ld s  an apparent o f 0.0971 M. A s im i la r  determ ination  
w ith  enzyme from pen tosu r ic  R .B . y ie ld ed  an apparent K

m
of 0.045^* M.
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Fi ju re  3-12. Lineweaver-Burk p lo t  of data used to estim ate  the K fo r
m

NADPH of enzyme from a normal in d iv id ua l ( re a c t io n  pH 7 .0 ) .

ihe re c ip ro ca l  o f the x~axis  in te rcep t y ie ld s  an apparent
K o f 20.52 pM. A d d it io na l  de term inations of th is  K m m
y ie ld ed  va lues  o f 27-97 pM, 7.81 pM, 18.01 pM, 32.91 pM 
and 49.75 pM.
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d i f f e r  even more s t r i k in g l y  than th e i r  corresponding Michael is

constants  fo r  x y l i t o l  (see F igures  3.10 and 3*11 and Table 3 .2 ) .  The

normal enzyme's K fo r  NADPH (forward re a c t io n )  was measured fo r  m

completeness (see F igure  3.12) but not tha t o f the 'p en to su r ic  enzyme' 

because th is  would have required s a tu ra t in g  co ncen tra t io ns  of the 

second su b s t ra te ,  L-x y lu lo se ,  which was in short supply.

pH a c t i v i t y  s tu d ie s :  I d e a l l y ,  the e f f e c t  o f pH on reac t ion  ra tes

should be measured at s a tu ra t in g  sub s tra te  concen tra t io ns  because

the ra te  a t  which an enzyme c a ta ly s e s  i t s  re a c t io n  may be in fluenced

by two pH r e la te d  f a c to r s ,  namely, the enzyme's a f f i n i t y  fo r  i t s

sub s tra tes  a t  a p a r t i c u la r  pH and i t s  a b i l i t y  to a c tu a l l y  c a ta ly s e

the re a c t io n  at tha t pH (Dixon and Webb, 1964). The use o f sa tu ra t in g

sub stra te  concen tra t io n s  e l im in a te s  the a f f i n i t y  fa c to r  but, i t  is  not

always f e a s ib le  ( fo r  reasons o f s o l u b i l i t y ,  lack  of su b s t ra te ,

sub s tra te  in h ib i t io n ,  e t c . ) ,  to use s a tu ra t in g  sub s tra te  co n cen tra t io n s .

An a l t e r n a t i v e  approach, and the one used here fo r  the normal enzyme,

is to determine V va lues  at d i f f e r e n t  pHs. The re s u l t s  of the max r

p H - a c t iv i t y  s tud ies  done on the normal enzyme are  shown in F igures  3.13

and 3.1^. The rough Michael is  constan t e s t im a tes  obta ined w h ile

es t im a ting  the V va lues  are a lso  shown in the F iq u res .  The max

x y l i t o l  dehydrogenase and L-x y lu lo se  reductase  a c t i v i t i e s  o f  enzyme 

from normals had very  d i f f e r e n t  pH optima (10,5 ~ 11,5 and 5,5 “ 6,5 

r e s p e c t i v e ly )  and the apparent K va lues  fo r  x y l i t o l  and L-xy lu lose  

showed marked v a r ia t io n s  w ith  pH. The p H - a c t iv i t y  determ ination  

c a r r ie d  out on the 'p en to su r ic  enzyme' was on ly  done fo r  the reverse  

reac t ion  and then using on ly  a s in g le  x y l i t o l  concen tra t ion  because 

the amount of enzyme a v a i l a b le  was l im i te d .  The apparent pH optimum 

of the 'p en to su r ic  enzyme' (see F igure  3.15) when c a ta ly s in g  the
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Figure  3•1^ . The e f f e c t  of pH on the L-xy lu lose  reductase a c t i v i t y  

o f a crude (haemoglobin-free) enzyme p reparation  from

a norma 1 i nd i v i dua1.
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Figure  3-15- The e f f e c t  o f pH on the x y l i t o l  dehydrogenase a c t i v i t y  

of a crude (haemoglobin-free) enzyme p repara tion  from 

a pentosuric  sub je c t .
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reverse  r e a c t io n ,  was between pH 9,0 and 10,0, which is lower than 

that o f  normal enzyme (see F igure  3-13) which was approximately 11,

3*3 .2 .2 . Major and minor isozymes from normals

When haemolysates and crude haemoglobin-free p repara t ions  from normal 

in d iv id u a ls  had been found to conta in  small amounts o f a second L-xy lu lose 

reductase ( c a l le d  the minor isozyme - see sec t ion  3 .3 .3 .2 ) ,  ad d it io n a l  

k in e t i c  s tud ies  were c a r r ie d  out on th is  as w e ll as on the major isozyme. 

The Lineweaver-Burk p lo ts  obta ined are shown in F igures 3.16 to 3.21 

and the Michael is constan ts  which were estim ated from these are l i s t e d  

in Table 3 .3 . Table 3.3 a ls o  shows re s u l t s  obta ined under s im i la r  

co nd it io ns  w ith  crude, haemoglobin-free p repara t ions  from normals and 

p e n to su r ic s .  From the Table i t  can be seen tha t estim ates o f the normal 

major isozyme M ich a e l is  constan ts  fo r  L-xy lu lose  and NADP are s im i la r  

to those obta ined w ith  crude haemoglobin-free p repara t ions  from normals 

I t  w i l l  a lso  be noted tha t the normal minor isozyme M ich ae l is  constants 

fo r  x y l i t o l  and L-x y lu lo se  are almost id e n t ic a l  to those estim ated for 

the 'p en to su r ic  enzyme1. Est im ates o f the normal major isozyme M ich ae l is  

constants  fo r  x y l i t o l  and NADP (made fo r  the sake of c h a ra c te r is in g  the 

enzyme) were c a r r ie d  out a t  pH 9,0 because in th is  region small 

v a r ia t io n s  in pH due to experimental e r ro r  would have minimal e f f e c t s

on the K va lues  (see F igure  3 .22a ).m

The e f f e c t  of pH on the x y l i t o l  dehydrogenase and L-xylu lose 

reductase a c t i v i t i e s  o f  the major and minor isozymes are shown in 

F igures  3-22 to 3-2*4. The shapes of the p H - a c t iv i ty  curves obtained 

w ith  the normal major isozyme are s im i la r  to those obta ined w ith  the 

crude haemoglobin-free p repara t ions  from normals. In a d d i t io n ,  pH 

was found to have a s im i la r  in f luence  on the major isozyme M ich ae l is
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Figure  3.1A Lineweaver-Burk p lo t  of data used fo r  the es t im a tion  of 

the normal major isozymes Michael is constan t (a t  pH 9.0 ) 

fo r  NADP. The rece ip ro ca l  of the x-ax is  in te rcep t  y ie ld s  
an apparent Km of **.^76 pM.

F igure 3-17- Lineweaver-Burk p lo t  of data used fo r  the est im ation  of 

the normal major isozymes Michael is constant (at pH 7.0) 

fo r  NADPH. The rece ip ro ca l  o f the x-ax is  in te rcep t  y ie ld s  
and apparent Km of 16.33 pM.
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Figure  3.18. Lineweaver-Burk p lo t  o f data used fo r  the est im ation  of 
the normal major isozymes Michael is constant (a t  pH 9.0) 
fo r  x y l i t o l .  The re c ip ro ca l  o f the x-ax is  in te rcep t  
y ie ld s  an apparent K o f 0.060 M.

F igure  3-19. Lineweaver-Burk p lo t  o f data used fo r  the es t im a tion  of 
the normal major isozymes Michael is constant (a t pH 7-0) 
fo r  L-x y lu lo se .  The re c ip ro ca l  of the x-axis in te rcep t 
y ie ld s  an apparent fo r  L-xy lu lose  o f 0.924 mM.
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F igure 3■20. Lineweaver-Burk p lo t  of data used for the estimation of the 
normal minor isozymes Michael is constant (at pH 9.5) for 
x y l i t o l .  The re c ip ro ca l  of the:c~axis intercept y ie lds  an 
apparent fo r  x y l i t o l  of 0.617 M.

F igure  3.21. Lineweaver-Burk p lo t  o f data obtained on the normal minor 
isozyme a t  a reac t io n  pH of 7.0. The reciprocal of the 

x-ax is  in te rcep t  y ie ld s  an apparent K for L-xylulose of 
0.099*4 M. m
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F i gu re 3•22 . The e f f e c t  of pH on the x y l i t o l  dehydrogenase a c t i v i t y  

o f the normal major isozyme (a) r e s u l t s  of the f i r s t  

de te rm ina t io n ; (b) a d d it io n a l  data po in ts  obtained at 

pH va lues  c lo se  to the apparent pH optimum.
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F igure 3.22b



V
i

aax-vn rcnxo

88

i

pH

Figure 3 • 23 • The e f f e c t  o f pH on the L-xy)u lose  reductase a c t i v i t y  

o f the major isozyme of normal in d iv id u a ls .
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Figure 3.2^. The e f f e c t  o f pH on the x y i i t o l  dehydrogenase a c t i v i t y  of 

the minor isozyme from a normal in d iv id u a l .  The curve 

obta ined w ith  a p rep ara t ion  of enzyme from a pentosuric  

(a lre a d y  presented in F igure 3.15) is a lso  shown in the 
F igure .
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constants  fo r  x y l i t o l  and L-xy lu lose  to that found fo r  enzyme in crude 

haemog1o b in- free  p repara t ions  from normal in d iv id u a ls .  I t  is 

in te r e s t in g  that the major isozyme M ich a e l is  constants fo r  x y l i t o l  

and L-xy lu lose  are  high a t pH va lues  c lo se  to i t s  pH optima; one 

would expect enzymes to  have high a f f i n i t i e s  fo r  t h e i r  sub s tra tes  at 

th e i r  pH optima. The shape of the p H - a c t iv i t y  curve  obta ined w ith  the 

minor isozyme from normals (F igu re  3.2*0 can be seen to be very 

s im i la r  to tha t obta ined w ith  a crude haemoglobin-free p repara t ion  of 

enzyme from a pen tosu r ic  and t h i s ,  together w ith  the s im i l a r i t y  of 

th e i r  M ich a e l is  constants  fo r x y l i t o l  and L-xy lu lose  and th e i r  apparen tly  

id e n t ic a l  e le c t r o p h o re t ic  m o b i l i t i e s  (see F igures 3.26 and 3.28) 

suggests that the 'p en to su r ic  enzyme1 and the minor isozyme from 

normals are the same. Table 3*^ l i s t s  the apparent pH optima of the 

major and minor isozymes as well as est im ates  obta ined fo r  enzyme in 

crude haemoglobin-free p repara t ions  from normals and pen tosu r ics .

3.3-3. Chromatography and e le c t ro p h o re s is

3 .3 .3 .1 .  Chromatography

Chromatography of crude p rep ara t ions  o f L-xy lu lose  reductase from normal 

in d iv id u a ls  (F ig u re  3.25) revea led  two w e ll separated peaks of 

a c t i v i t y .  The f i r s t  peak to e lu te  ( ju s t  a f t e r  the vo id  volume) was 

c a l le d  the minor isozyme w h ile  the second peak (which e lu ted  before 

the t races  o f haemoglobin present)  was c a l le d  the major isozyme. In 

c o n t ra s t ,  enzyme p rep ara t ions  from both pentosurics  lacked the second 

(major) peak w h ile  an enzyme p rep ara t ion  from a c a r r i e r  of the 

pentosu ria  a l l e l e  ( in d iv id u a l  M I-2  in F igure  3.36) contained both 

minor and major isozymes, but the major isozyme peak was reduced in 

comparison to the p a tte rn  obta ined fo r  normal in d iv id u a ls .
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F igure  3-25. Chromatography of x y l i t o l  dehydrogenase from (a) a normal 
in d iv id u a l ,  (b) a pentosuric  and (c )  a c a r r i e r  of the 
pentosuria  a l l e l e .  E x t in c t io n  va lues at 280 nm represent 
the e lu t io n  of p ro te in ,  w h ile  those measured a t ^10 nm 
represent the e lu t io n  o f trace  amounts of haemoglobin.
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Figure  3.25c

(3
) 

N
O

H
D

N
IM

3



94

3 .3 .3-2. E le c tro p h o res i  s

Resu lts  obta ined by e le c t ro p h o re s is  o f  human l i v e r  and crude haemolysate 

L-xy lu lose  reductases are presented in F igures  3-26 to 3.28. A 

p repara t ion  o f  the minor isozyme from the red c e l l s  of a normal 

in d iv id u a l was a lso  e lec trophoresed  in the gel shown in F igure  3.28.

The absence o f the major isozyme in a haemolysate from a pentosuric  

(RB) can be seen in F igure  3.26. Haemolysates from the two c a r r i e r s ,  

the daughter o f pentosuric  HK and one o f the Ashkenazi- Jew ish  c a r r i e r s ,  

MR ( in d iv id u a l  111-11 in F igure  3.40) which were e lectrophoresed  on 

the same gel (F ig u re  3 .2 6 ) ,  showed both isozymes, but the s ta in in g  of 

the major isozyme appeared to be less intense than the major isozyme 

in samples from normal in d iv id u a ls .  A comparison o f the m o b i l i t ie s  

of the major red c e l l  and l i v e r  isozymes can be made from F igures 3.27a 

and 3.27b. The l i v e r  major isozyme migrated more r a p id ly  than the 

red c e l l  major isozyme. The gel shown in 3.27b, was s ta ined  under 

co nd it io ns  which revea led  the minor isozymes more c l e a r l y .  I t  can 

be seen from F igure  3-27b tha t the minor isozyme o f l i v e r  a lso  migrates 

s l i g h t l y  f a s t e r  than i t s  red c e l l  co u n te rp a r t .  The f a c t  that both 

minor isozymes (red c e l l  and l i v e r )  were best revea led  by a s ta in  

which had a high x y l i t o l  co ncen tra t io n  (compare F igures 3.27a and b) 

and fu r th e r ,  tha t they occur in s im i la r  p roportions in red c e l l s  and 

l i v e r ,  suggests tha t they are  homologous. The s ig n i f ic a n c e  o f the 

f a in t  bands c lo se  to the o r ig in  in F igure  3.27b is not understood.

D i f f e r e n t  s l i c e s  o f the same g e l ,  one s ta ined  in a way which 

revea led  x y l i t o l  dehydrogenase a c t i v i t y  and one s ta ined  by a so lu t io n  

which revea led  L-xy lu lose  reductase a c t i v i t y ,  are shown in F igure 3.28a 

and b. Th is  was done in order to show that the same enzymes which
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F igure  3.26. An e le c t ro p h o re t ic  comparison of red c e l l  NADP-1inked 

x y l i t o l  dehydrogenases from two normal in d iv id u a ls  

( lan es  1, 3 and 6 ) ,  two c a r r i e r s  o f  the pentosuria  

a l l e l e  ( lan es  2 and 4) and pentosuric  R .B . ( lane  5 ) .
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F igure  3.27. An e le c t ro p h o re t ic  comparison of red c e l l  and l i v e r  NADP- 
1 inked x y l i t o l  dehydrogenases (L-xy lu lose  red u c ta ses ) .  
Lanes 1, 3 and 5 contained red c e l l  isozymes and lanes 2 
and k, l i v e r  isozymes.
(a )  Gel s ta ined  under co nd it io ns  favou rab le  fo r  major 
isozyme a c t i v i t y .
(b) Top s l i c e  of the same gel s ta ined  under cond it ions  
more favou rab le  to the minor ( r a p id ly  m igra t ing ) isozymes.
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F igure  3.28. An e le c t ro p h o re t ic  demonstration of the correspondence 
between NADP-1inked x y i i t o l  dehydrogenase a c t i v i t y  and 
L-xy lu lose  reductase a c t i v i t y .  Lanes 1, 3 and 6 contained 
enzyme from a normal in d iv id u a l ;  lanes 2 and 5, a p re ­
pa ra t ion  o f the minor isozyme from a normal in d iv id u a l and 
lane h enzyme from a pen tosu r ic  (H .K . ) .

(a) Bottom s l i c e  o f the gel s ta ined  by x y i i t o l
dehydrogenase a c t i v i t y .
(b) Top s l i c e  o f the gel s ta ined  by L-xy lu lose  
reductase a c t i v i t y .
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c a ta ly s e  the NADP-1inked dehydrogenation of x y l i t o l ,  a ls o  c a ta ly s e  

the reduction  of L-x y lu lo se .  Two bands are v i s i b l e  in the lanes 

co n ta in ing  enzyme from pen tosu rics  in F igures  3.26 and 3»28a. The top 

(anodal) band is the minor isozyme w h ile  the lower band may be an 

a l t e re d  form o f the major isozyme. The ex tra  bands v i s i b l e  in 

F igures 3.28a and b may be d e te r io r a t io n  products o f  the major and 

minor isozymes, but th is  is  not c e r t a in .  One o f  these bands, the 

shadow seen in lane 2 of F igure  3.28b a t  a p o s it io n  ju s t  below the 

leve l of the major isozyme band, was caused by the presence of a 

y e l lo w ish  substance which apparen t ly  lacked L-xy lu lose  reductase 

a c t i v i t y  but which was accentuated when the gel was i l lum ina ted  from 

below w h ile  being photographed.

3 .3 .^ . The e f f e c t s  o f  va r io us  substances on 
enzyme a c t i v i t y

I n i t i a l  assays o f NADP-1inked x y l i t o l  dehydrogenase a c t i v i t y  were done 

(accord ing to the recommendation o f Wang and van Eys, 1970), in the 

presence o f n ico tinam ide (0 ,7 !^  mM in the 'g lu t a th io n e '  assay and 

2 ,L  mM in the ' spectrophotometr i c ' a s s a y ) .  P re l im in a ry  r e s u l t s  (not 

presented) suggested that crude haemoglobin-free p rep ara t ions  from 

normal in d iv id u a ls  had a higher enzyme a c t i v i t y  when n ico tinam ide was 

l e f t  out o f the assay system. The r e s u l t s  presented in Table 3-5 

show that n ico tinam ide co ncen tra t io ns  of 1 and 10 mM markedly in h ib ited  

haemolysate NADP-1inked x y l i t o l  dehydrogenase a c t i v i t y .

In s p i te  o f the f a c t  tha t Hickman and Ashwell (1959) found 'no 

evidence  fo r  a rnetal c o f a c t o r 1 fo r  guinea pig l i v e r  L-xy lu lose 

reductase , magnesium c h lo r id e  has been included in L-xy lu lose  reductase 

assay systems by a number of researchers  (Freedberg e t  a t . ,  1959; 

A rsen is  and Touster ,  1969; Wang and van Eys, 1970). During the
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present s tudy, no n o t ic e a b le  d i f fe re n c e  in a c t i v i t y  was detected  when 

d ia ly sed  crude haemoglobin-free p rep ara t ions  of enzyme from a normal 

in d iv id u a l  were assayed in the presence and absence o f 2,7 mM 

magnesium c h lo r id e .  However, a small (1,** per cen t )  increase in 

a c t i v i t y  was observed when a 'd e s a l te d '  p repara t ion  of the normal 

major isozyme was assayed in the presence o f 5 mM magnesium ch lo r id e  

(see Table 3 .6 )*  Whether th is  apparent increase is s ig n i f i c a n t  is  

not known.

The e f f e c t s  of a number of other s a l t s  on the a c t i v i t y  o f  the 

normal major isozyme were a lso  in ve s t ig a te d  (see F igure  3 .29 ).  Only 

manganese c h lo r id e  appeared to increase  enzyme a c t i v i t y  but th is  

was found to be an a r t i f a c t  as the ' in c r e a s e '  would take p lace  even 

in the absence of enzyme. I t  can a lso  be seen from the F igure  tha t 

the presence of EDTA appeared to  p ro te c t  the enzyme from in a c t iv a t io n  

by copper.

3 .A. Enzyme storage and s t a b i l i s a t i o n

3 .4 .1 .  Storage in red c e l l s ,  haemolysates and in 
concentrated  ammonium sulphate so lu t io n s

The e f f i c a c y  of d i f f e r e n t  methods o f s to r in g  crude L-xy lu lose  reductase 

is shown in F igure  3.30. I t  can be seen tha t the enzyme lo s t  a c t i v i t y  

r a p id ly  when stored as p a rt  of a frozen haemolysate whereas f u l l  enzyme 

a c t i v i t y  was maintained fo r  seventeen days in ACD blood stored a t  4 °C. 

A f t e r  th is  enzyme a c t i v i t y  decreased, f a l l i n g  to e ig h ty- fo u r  per cent 

a f t e r  th i r t y - tw o  days. Long term storage was best in frozen preserved 

red c e l l s  which lo s t  less  than e ig h t per cent o f t h e i r  enzyme a c t i v i t y  

a f t e r  114 days s to rage . The storage o f  ammonium sulphate  p re c ip i ta te d  

enzyme in so lu t io n s  co n ta in in g  2,95 M ammonium su lphate  and 20 pM 

NADP is  shown in F igure  3.31. I t  can be seen from the F igure  tha t
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Figure  3-29. The e f f e c t s  o f va r io us  s a l t s  on the x y l i t o l  dehydrogenase 

a c t i v i t y  of the normal major isozyme. Enzyme was e i th e r  

d ia ly se d  aga ins t  2.7 mM EDTA (pH 7.0) or 10 mM sodium 

phosphate b u f fe r  (pH 7.0) and then stored fo r  1 hour at 

0-A°C in the presence o f va r io us  s a l t s  (1 mM f in a l  

co n cen tra t io n )  before being assayed.



F igure  3.30. Enzyme a c t i v i t y  remaining in preserved red c e l l s ,  red 

c e l l s  o f whole blood and haemolysates a f t e r  va r ious  
times o f s to ra g e .
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Figure  3 - 31 . The decrease in a c t i v i t y  w ith  time o f crude haemoglobin

fre e  p rep ara t io ns  of normal red c e l l  L-xy lu lose  reductase 

when stored p re c ip i t a te d  in 2.9 M ammonium sulphate 

(a t  ± ^°C in the presence of 20 yM NADP and 7 mM 0-mercapto- 
e th a n o l ) .
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the presence of 7 mM B-mercaptoethanol had no p re s e rv a t iv e  e f f e c t  on 

enzyme a c t i v i t y .

3 .4 .2 . Enzyme s t a b i l i s a t i o n

The p ro te c t iv e  e f f e c t  o f NADP on L-xy lu lose  reductase in p repara tions  

from normal in d iv id u a ls  is  demonstrated by the r e s u l t s  shown in 

F igures 3.32 to 3.34 and Table 3.7. From F igure  3-32, i t  can be seen 

tha t the a l iq u o ts  o f enzyme so lu t io n  which contained NADP during 

storage (a t  30°C fo r  f i f t e e n  hours) had more a c t i v i t y  a f t e r  storage 

than those which contained no NADP. Table 3.7 shows that r e l a t i v e l y  

high NADP co ncen tra t io n s  were ab le  to safeguard enzyme in crude 

haemoglobin-free p rep ara t io ns  from being in a c t iv a te d  by heat (48°C 

fo r  tw e n ty- f ive  minutes) w h i le  F igure  3.33 i l l u s t r a t e s  that high 

NADP co ncen tra t io ns  had the same e f f e c t  on the normal major isozyme. 

F igure  3.34 shows how the normal major isozyme and enzyme in crude 

haemoglobin-free p rep ara t io ns  from normals lo s t  a c t i v i t y  when heated 

in the presence of va r ious  lower concen tra t io ns  o f  NADP. Heating 

resu lted  in an i n i t i a l  drop in a c t i v i t y  in a l l  samples (even a t  the 

h ighest NADP concen tra t io n s  used ). Apart from t h i s ,  no fu r th e r  drop 

occurred in a l iq u o ts  con ta in ing  between 100 and 40 yM NADP but 

a l iq u o ts  which contained less  than 40 yM NADP showed a fu r th e r  drop 

in a c t i v i t y .

3.5 Popu la t ion  screen ing and fam ily  s tud ies

3 .5 .1 . Determ ination o f the normal range o f  L-xy lu lose  
reductase a c t i v i t y

The range o f  L-xy lu lose  reductase a c t i v i t i e s  in haemolysates from the 

sample o f non-Jewish in d iv id u a ls  is presented in F igure  3.35. The
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F igure  3•32. Resu lts  of the experiment designed to te s t  d i f f e r e n t  com­

b in a t io n s  of NADP, x y l i t o l ,  3-mercaptoethanol and EDTA for 

th e i r  a b i l i t y  to p ro te c t  L-xy lu lose  reductase ag a in s t  in ­

a c t i v a t io n  during s to rage . The combinations o f substances 

present during storage are ind ica ted  by the plus and minus 

signs beneath the histogram. P rep a ra t ion  11 had no ad d i ­

t i v e s  and was stored frozen a t -20°C w h ile  the remaining 

p rep ara t ions  were s to red  at 30°C fo r  f i f t e e n  hours. The 

i n i t i a l  a c t i v i t y  of the enzyme p repara tion  was 9.^1 

nmoles/hr/50 u l .
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Figure  3-33- E f f e c t  of a r e l a t i v e l y  high NADP concen tra t ion  (25^ yM) 

on the s t a b i l i t y  o f the normal major isozyme a t various 

tempe ra tu r e s .
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F igure  3-3^- The e f f e c t  o f va r ious  co ncen tra t io ns  of NADP on the 

s t a b i l i t y  of the normal major isozyme and on enzyme 

in a crude haemoglobin f re e  p repara t ion  from a normal 
i nd i v i dua1.
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ACTIVITV (p m o ls/ h r/ g M b )

F igure  3-35. D is t r ib u t io n  of haemolysate L-xy lu lose  reductase 

a c t i v i t i e s  in a sample o f seventy four non-Jewish 

in d iv id u a ls  as measured by the pyruvate method.
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mean activity (± 1 SD) was A ,97 ± 1 ,10  ymo 1 es/hour/g Hb. There is a 

suggestion of a second mode at approximately 7 pmoles/hour/g Hb which 

could be due to genetic variability or sampling and or experimental 

error.

3 .5 .2 .  Lebanese fam ily  study

A f te r  a normal range had been e s ta b l is h e d ,  the pyruvate method was 

app lied  to samples from members of a fa m ily  in which the pentosuria  

a l l e l e  was known to be segregating (see F igure  3 .36 ).  In d iv id u a l fam ily  

members could on the bas is  o f th e i r  red c e l l  L-xy lu lose  reductase 

a c t i v i t i e s  be assigned to one of three c a te g o r ie s :

1. Those who had normal le v e ls  of a c t i v i t y  (w ith in  two standard 

d e v ia t io n s  o f the normal mean) and who were considered to be 

homozygous fo r  the normal a l l e l e .

2. The proband who showed approx im ate ly zero a c t i v i t y  under the 

co nd it io ns  of the assay and who is considered to be homozygous for 

the pen tosu r ia  a l l e l e .

3. A group who had in term ed iate  le v e ls  of a c t i v i t y  (more than two 

standard d e v ia t io n s  below the normal mean) and who are b e l ieved  to 

be heterozygous fo r  the normal and pentosuria  a l l e l e s .

The suggestion made by P o l i t z e r  and Fleischmann (1962) tha t pentosuria  

is dominantly in h e r ited  in th is  fam ily  was in ves t ig a te d  by measuring 

serum L-xy lu lose  le v e ls  in some of i t s  members (see F igure  3 .37 ).  I t  

was found tha t fam ily  members could be d iv id ed  in to  on ly  two c la sses  

on the bas is  o f t h e i r  serum L-xy lu lose  l e v e l s :

1. The probarid who showed the c h a r a c t e r i s t i c  high L-xy lu lose  le ve l  of 

a p e n to su r ic ,  and

2. the remaining fam ily  members who had b a re ly  measurable serum (or 

plasma) L-xy lu lose  l e v e ls .
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F i gu re 3•36• Haemolysate L-xy lu lose  reductase a c t i v i t i e s  (p moles/hr/g Hb) 

in samples from the Lebanese pentosuric  (H.K.) and some of 

her r e l a t i v e s  (mean a c t i v i t y  ± 1 SD fo r  normals was *4.97 

± 1.09 pmoles/hr/g H b ) . Note that in d iv id u a ls  1-6 and 1-7 
are re la te d  to each o ther ( f i r s t  co u s in s ) .
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HOMO ZYSOU5 FO fZ - 
PENTO&URIA AU.ELE

NCTT TESTED

3•37. Pa r t  of the Lebanese fam ily  pedigree showing serum

L-xy lu lose  co ncen tra t io ns  (mgs/100 ml) in samples from 

va r io us  fam ily  members. The va lues found in plasma are 

shown in b racke ts .  Genotypes were assigned on the basis  
o f red c e l l  L-xy lu lose  reductase a c t i v i t i e s .



The Ashkenazi p e n to s u r ic 's  plasma L-x y lu lo se  leve l was measured for 

the sake o f  comparison and found to be 1,5** mg/100 m€ which was almost 

id e n t ic a l  to tha t found in the plasma of the Lebanese pentosuric  

(1,53 mg/100 m£). Although severa l members of the Lebanese fam ily  

had L-xy lu lose  reductase a c t i v i t i e s  which were more than two standard 

d e v ia t io n s  below the normal mean, on ly  one o f these , the proband (who 

showed approx im ate ly zero a c t i v i t y )  had the c h a r a c t e r i s t i c  high serum 

L-xy lu lose  le ve l  o f  a pen tosu r ic .  I t  seems, th e re fo re ,  that pentosuria  

is in h e r i te d  as a re ce s s iv e  in th is  fam ily  too.

3 .5 .3 . Ashkenazi- Je w ish sample

Resu lts  obta ined when a sample o f the loca l Ashkenazi- Jew ish populat ion  

was screened fo r  pentosu ria  c a r r i e r s  appear in F igure  3.38. The mean 

red c e l l  L-xy lu lose  reductase le ve l  (± 1 SD) was **,97 ± 1 ,0 8 ymol es/hour/g 

Hb which is almost id e n t ic a l  to that found in the non-Jewish sample 

(**,97 ± 1,10 ymoles/hour/g H b ). The d i s t r ib u t io n  of a c t i v i t i e s  in the 

Ashkenazi sample, however, d i f f e r s  from that o f the non-Jewish sample 

in th a t  there appears to be a second mode of low a c t i v i t i e s  which is 

la rg e ly  due to the presence o f  the pentosu ria  a l l e l e  in th is  popu la t ion .

The re s u l t s  of the D-g1ucuronolactone loading te s t  subsequently c a r r ie d  

out on s ix  of the seven in d iv id u a ls  comprising the low a c t i v i t y  qroup 

are presented in Table 3-8. I t  can be seen that a l l  but one of them 

showed la rge  increases  in serum L-xy lu lose  concen tra t ions  in response 

to the load o f the L-xy lu lose  p recursor adm in is te red . The 

increases  recorded are  s im i la r  to those found by Kumahara e t  a t .  (1961) 

fo r  heterozygotes.

I f  i t  is assumed that none of the in d iv id u a ls  whose a c t i v i t i e s  f e l l
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L.- XYLULOSE REDUCTASE. ACTIVITY 
(pmols/hr/g Hb

F igure  3 «38. D is t r ib u t io n  of haemolysate L-xy lu lose  reductase 

a c t i v i t i e s  in a sample o f  237 Ashkenazi- Jew ish 
medical s tuden ts .
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about the second (high a c t i v i t y )  mode are heterozygous for the 

pentosuria  a l l e l e ,  then the frequency o f  th is  a l l e l e  as estimated from 

the apparent heterozygote  frequency is 0,0127.

3 .5 .3 .1 . Investigation of relatives of the 
low activity individuals

The parents of four of the 'low activity' individuals identified in 

the Ashkenazi-Jewish sample were available for investigation and in 

each case one of them also had a L-xylulose reductase level which was 

more than two standard deviations below the Ashkenazi sample mean 

(see Figure 3-39). A fifth individual's parents were not available, 

but some of his relatives, representing three generations of this 

family showed L-xylulose reductase levels which were similar to his 

see F igu re 3•40) .

3 .5 .4 .  L i nkage ana l y s is

The segregation  of the pentosuria  a l l e l e  and a l l e l e s  of the polymorphic 

systems l i s t e d  in Sec t ion  2 .6 .4  was fo llowed in six families (five 

Ashkenazi and one Lebanese). No c lo se  linkage between the major L-xylulose 

gene locus and any of the other polymorphic lo c i investigated was apparent 

(see Table 3 .9 ) .  The h ighest lod score obta ined was 0,795 in favour of 

l inkage  w ith  the 6-phosphog1uconate dehydrogenase locus. Of the fifteen 

polymorphic systems fo r  which lods could be c a lc u la t e d ,  seven showed some 

p o s i t i v e  sco res . The ' p o s i t i v e  score systems' can be ranked in order of 

the numbers of o f fs p r in g  used in the c a lc u la t io n  of the lods so that some 

idea of th e i r  p o ss ib le  s ig n i f i c a n c e  can be ob ta ined . The lods in favour 

of linkage w ith  GPT\ were c a lc u la te d  from matings which yielded twenty-two 

o f f s p r in g .  PGMi was next w ith  twenty o f f s p r in g ,  then Go and B f  with twelve 

o f fs p r in g  each fo llow ed  by MNSs with  e leven and PGD with  four offspring.
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I

I

FAM ILY I K

FAM ILY F A .

I

I

FAM ILY O O .

FA M ILY  D .M .

F igure  3.39- Pedigrees of four of the Ashkenazi- Jew ish students who are 

b e l ie ved  to c a r r y  the pentosu ria  a l l e l e .  Haemolysate 

L-xy lu lose  reductase a c t i v i t i e s  (p moles/hr/g Hb) appear 
below the symbols. The a c t i v i t y  le ve l  fo r  normals was 

4.07 ± 1.09 u n i t s ;  nt = not te s ted .
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Figure  3 • ^0 • Ped igree of Ashkenazi- Jew ish student M.R. Haemolysate

L-x y lu lo se  reductase a c t i v i t i e s  (y moles/hr/g Hb) appear 

below the symbols rep resen ting  those in d iv id u a ls  s tud ied . 

The mean a c t i v i t y  le ve l  found fo r  normals was k .31 ± 1.09 
u n i t s ;  nt = not te s ted .
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The ABO and ESD are  la s t  w ith  two o f fs p r in g  each. Two of the lo c i  fo r  

which p o s i t i v e  scores were obta ined occur on the short arm o f chromosome 1. 

They are  PGD which is s i tu a te d  between the p terminus and p3^, and PGMi 

which is s i tu a te d  a t  p22.1 (Human Gene Map, 1983)-



CHAPTER k
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k. DISCUSSION

A.1. Enzyme studies

Since the demonstration by Wang and van Eys (1970) that a deficiency 

of red cell NADP-dependent xylitol dehydrogenase activity occurred 

in pentosurics and that a decreased level existed in a heterozygote, 

the identification of heterozygotes by their low red cell xylitol 

dehydrogenase activities has appeared to be feasible. The main 

difficulty with this approach is that red cell enzyme activities, 

even of normal individuals, are very low. As an indication of this, 

Kumahara et at. (1961) failed completely to detect NADP-1inked 

xylitol dehydrogenase activity in red cells when surveying various 

human 'tissues and secretions' for its presence. Wang and van Eys 

(1970) reported a mean level for normals of only 29 nmoles/minute/g 

Hb (1,7;* pmoles/hour/g Hb) which, for the sake of comparison, is 

approximately lAOOth the haemolysate activity of the familiar enzyme 

g1ucose-6-phosphate dehydrogenase (Beutler, 1975). The mean haemolysate 

L-xylulose reductase activity for normals as measured by the pyruvate 

method in the present study was found to be ^,97 ymoles/hour/g Hb.

Preliminary attempts to assay the NADP-1inked xylitol dehydrogenase 

activity of crude haemolysates, by direct spectrophotmetric 

monitoring of NADPH produced through its action, were unsuccessful 

because of the low activities combined with the relatively high 

haemoglobin concentrations. The glutathione method (Wang and van 

Eys, 1970) and the pyruvate method could be successfully applied 

because these assay systems allow relatively large amounts of 

haemolysate to be used without interference by haemoglobin because 

the latter is precipitated before the reaction product is measured.
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Results obtained by the glutathione method confirmed Wang and van 

Eys's finding that pentosurics have a deficiency of NADP-1inked 

xylitol dehydrogenase activity, while measurements made by the newly 

developed pyruvate method demonstrated that the observed deficiency 

of xylitol dehydrogenase activity corresponds to a deficiency of 

L-xylulose reductase activity which is the actual cause of essential 

pentosur i a.

b. 1 . 1. Kinetic studies on crude preparations of enzyme

Kinetic studies carried out by Wang and van Eys (1970) led them to 

the conclusion that the residual enzyme of pentosurics was altered in 

a way which lowered its affinity for NADP and that this, or rather its 

implied impaired inability to bind NADPH (they did not follow the 

reaction in the forward, in vivo direction), resulted in the enzyme 

being unable to adequately catalyse the dehydrogenation of L-xylulose. 

They state:

"The Michael is constant for xylitol on the NADP-1 inked 
dehydrogenase in the pentosuric blood appeared normal....
Therefore the decreased NADP affinity of the enzyme is 
apparently the molecular abnormality that causes the 
enzymatic disorder in pentosuria."

Attempts to verify this were hampered by the haemoglobin in 

haemolysates and so a batch method for its removal was developed 

and kinetic studies carried out on the resulting crude haemoglobin- 

free preparations.

Michael is constants were initially measured at pH 7,0, the pH 

at which Wang and van Eys (1970) obtained the best discrimination 

between normals and pentosurics and the pH at which they carried out 

their Michael is constant studies. The first surprising result 

obtained was that enzymes from normals and pentosurics showed
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similar K values for NADP, a findinq which was at variance with that ofm
of Wang and van Eys (1970). The second significant finding was that

enzyme prepared from pentosurics had a much higher for xylitol than

the enzyme obtained from normal individuals and this led in turn to the

finding that the enzyme from pentosurics also had a much higher for

L-xylulose. It is realised that estimates of the K for NADP of them
enzyme from pentosuric subjects are likely to be inaccurate because 

the concentration of the second substrate, xylitol, could not be raised to 

levels which would have been saturating for the enzyme. Because of this, 

it was not strictly correct to regard the enzyme as if it were catalysing 

a single substrate reaction when arriving at an estimate of the K^.

The influence of pH on the rates at which red cell L-xylulose 

reductase catalyses the forward and reverse reactions was then 

investigated using crude haemoglobin-free preparations from normal 

individuals. Reaction rates at three different xylitol (for the 

reverse reaction) and L-xylulose (for the forward reaction) 

concentrations were measured at each pH so that theoretical Vmax
values could be estimated from Lineweaver-Burk plots. This 

procedure was followed because the substrate affinities of many 

enzymes change with changing pH (Dixon and Webb, 1964) and it is 

therefore desirable to either work with saturating substrate 

concentrations if this is possible or, if it is not, to calculate

theoretical V values. NADP and NADPH concentrations were keptrnax
constant in the pH-activity studies because the enzymes have high 

affinities for these substrates and it is likely that the concentrations 

of these substances were saturating over the range of pH values used. The 

range of pH values used in these investigations was limited in the 

acid region by the instability of NADPH. The relationship between 

pH and xylitol dehydrogenase activity of enzyme from a pentosuric was 

investigated at only one xylitol concentration because of a lack
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of enzyme. The pH-activity curve obtained is, therefore, only a rough

representation of the actual relationship in this case. The K for
m

NADPH of the enzyme from pentosurics was not measured because this 

would have required saturating concentrations of L-xylulose, the 

second substrate, and this was in short supply.

Results of the first set of pH-activity studies indicated the 

need for further K studies at pH values different from 7,0. The K 

for xylitol of the enzyme from pentosurics was compared with that of 

enzyme from normal individuals at a reaction pH of 9,5 which appears 

to be close to the pH optimum of the 'pentosuric enzyme'. Further, 

pH-activity studies indicated that the Michael is constants for 

xylitol and L-xylulose of enzyme from normal subjects changed radically 

with pH. Estimates of the Michael is constants for these substrates 

were accordingly made at pH values where possible variations in pH would 

have had minimal effects (pH 9,0 for xylitol and NADP and pH 7,0 for 

L-xylulose and NADPH).

*4.1.2. Chromatography and electrophoresis

After NADP had been found to stabilise the xylitol dehydrogenase of 

crude haemoglobin-free preparations from normal individuals, attempts 

were made to find a concentration of NADP which would provide 

adequate protection for the enzyme but which would not be too 

expensive to use. Experiments aimed at finding such a concentration 

showed that the relationship between the enzyme's thermolability and 

the NADP concentration was not a simple one. It was thought that 

this could be due to the presence of more than one enzyme in the 

crude preparations, each with a different degree of stability at 

different NADP concentrations. Crude haemoglobin-free preparations
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from the red cells of normals were subsequently chromatographed 

in columns of CMC equilibrated to pH 5,7. Two well separated peaks 

of activity were found to elute from the columns; the first (called 

the minor isozyme) eluted immediately after the void volume and the 

other (called the major isozyme), further along the applied NaCl 

gradient. Crude enzyme preparations from pentosuric subjects 

contained only the isozyme corresponding to the first peak (the 

minor isozyme) while a preparation from the daughter of one of the 

pentosurics showed both peaks, but with the second peak (the major 

isozyme) reduced. These findings were confirmed by electrophoresis 

performed on haemolysates obtained from normals, pentosurics and 

heterozygotes. Ironically, the NADP-stabi1ity curve obtained with 

preparations of the major isozyme of normals still had the same shape 

as that found with crude preparations. Haemolysates electrophoresed 

and stained at high concentrations of xylitol (reverse reaction) or 

L-xylulose (forward reaction) showed that the minor isozyme of 

normals and the enzyme from pentosurics migrate at similar if not 

identical rates. A number of other faint bands could also be seen 

on zymograms which had been stained at high xylitol concentrations. 

The significance of these bands is not understood although it is 

possible that the faint band just cathodal to the 'fast band1 of 

pentosurics (see Figures 3-26 and 3-28a) is an altered form of the 

major isozyme.

Electrophoresis of liver NADP-1 inked xylitol dehydrogenases 

from three individuals who were presumably non-pentosurics revealed 

in each case the presence of two isozymes which occur in similar 

proportions to those of red cells. Although minor differences in the 

migration rates of the liver and red cell isozymes were apparent, it 

seems likely that these respective isozymes are coded by the same
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genes and then post-transcriptional1y modified in different ways in 

liver and red cells or reticulocytes. There are precedents for this: 

adenosine deaminase for instance exists in different (inter­

convertible) forms in various human tissues (Akedo et al., 1972; 

Hirschhorn, 1975). |3-Hexosami n i dase B is present in one form in a 

variety of tissues but in several forms in plasma (Price and Dance,

1972).

^.1.3. The effect of various salts and of nicotinamide 

on enzyme activity

Among the minor points checked during this study, was whether the 

addition of magnesium chloride to assay systems was necessary. All 

previously published assays (Hollmann and Touster, 1956; Hickman and 

Ashwel1, 1959; Freedberg et al., 1959; Wang and van Eys, 1970) 

incorporated magnesium chloride but there are conflicting reports 

about whether its presence is necessary for the full activation of at 

least one L-xylulose reductase, that from guinea piq liver (Hickman and 

Ashwel1, 1959; Arsenis and Touster, 1969)* The inclusion of magnesium 

chloride in assay mixtures which have high pH values, results in the 

formation of a precipitate which interferes with the spectrophotometric 

monitoring of reactions and it was left out in pH optimum determinations 

for this reason. Although the methods used to remove magnesium chloride 

from enzyme solutions in experiments aimed at determining whether its 

presence is necessary (dialysis against EDTA and chromatography on 

Sephadex G-25 columns) may not have been completely successful, it 

seems likely that its addition to assay systems is not essential.

In the experiment in which enzyme was either dialysed against EDTA or 

phosphate buffer before being incubated with various salt solutions, 

the preparation which had been dialysed against EDTA showed approximately
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the same activity as that which had been dialysed against phosphate 

buffer. None of the salt solutions (including magnesium chloride) 

appeared to activate the enzyme even though manganese chloride was 

thought, initially,to produce such an effect. Subsequent experiments 

showed, however, that this was an artifact.

Wang and van Eys (1970) claimed that nicotinamide increases red 

cell NADP-1 inked xylitol dehydrogenase activity and, accordingly, 

included it in their 'glutathione1 and 'spectrophotometric1 assays at 

concentrations of 0,1*4 and 2,5 mM respectively. It was found during 

the present study that the omission of nicotinamide had little effect 

on activities as measured by the glutathione method but that the 

presence of this substance at concentrations of 1,0 and 10,0 mM caused 

a definite inhibition of product formation.

Addition of B-mercaptoethanol to assay systems had no effect and 

neither did its presence in suspensions of ammonium sulphate- 

precipitated enzyme noticeably prevent loss of activity during 

s torage.

*4.1.4. Kinetic studies on the major and minor 

isozymes of normal individuals

When it was found that at least two different L-xylulose reductases 

exist in red cells of normal individuals (the major and minor 

isozymes), additional kinetic studies were carried out on the separate 

enzymes. Results obtained with the major isozyme were similar to 

those obtained with crude (haemoglobin-free) preparations from 

normal individuals. This was not surprising because the minor 

isozyme (judging from the electrophoretic study) appears to make up 

only a small proportion of normal haemolysate activity, the balance
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being due to the major isozyme.

The kinetic studies carried out on the minor isozyme of normal 

individuals yielded results which (as expected) were similar to 

those obtained with enzyme from pentosurics. The fact that the 

enzyme of pentosurics and the minor isozyme of normals are present at 

similar levels of activity in haemolysates, that they migrate at the 

same rate when electrophoresed and chromatographed and have similar 

substrate affinities and pH optima, strongly suggests that these are 

one and the same enzyme.

There are a number of possible explanations for the isozyme 

patterns observed in pentosurics and normals (see Figure ^.1). The 

single structural gene models involve a possible processing gene and 

are thought to be less likely explanations than the two gene models, 

since processing defects could be expected to cause changes in the 

amounts of the minor isozyme produced, something which was not 

apparent in samples from pentosurics. In addition, carriers of the 

pentosuria allele were found to have decreased amounts of the major 

isozyme, i.e. the pentosuria allele is codominant in effect at this 

level which is contrary to what would be expected in a case of a 

partial deficiency of a processing enzyme. Paigen (1979) makes the 

following observation with regard to this:

"Fortunately, a simple test can almost always discriminate 
whether the mutation has occurred in the structural gene or 
at a locus concerned with post-translationa1 processing.
Mutations in structural loci are almost invariably expressed 
codominant1y , whereas mutations in processing loci are 
generally dominant or recessive."

The simplest of the two structural gene models would

seem to be the most likely since the more complex 'subunit model1

should logically be extended to include a third isozyme (3n) which
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was not apparent in haemolysates. In addition, if pentosuria 

resulted from a lack of the hypothetical mixed oligomer an3n> due 

to a 3 gene mutation, then an increase in the hypothetical 

a-subunit oligomer (corresponding to the minor isozyme) may be 

expected, and no such increase was apparent. More elaborate 

extensions of the two structural gene modelscan be made, for instance 

by postulating the presence of a systematic regulatory gene 

(Paigen, 1979) for the major isozyme locus. In such a case, 

pentosuria could be the result of homozygosity for a mutated form 

of the regulatory rather than the structural gene. However, if the 

faint band just cathodal to what is believed to be the minor 

isozyme in electrophoresed samples from pentosurics can be shown to 

be an altered form of the major isozyme, then this would be evidence 

in favour of a structural rather than a regulatory gene mutation.

The presence of one out of two normally occurring L-xylulose 

reductases in pentosurics explains at least partly, the finding of 

Hankes et at. (1969) that pentosurics in spite of a block in the 

D-glucuronic acid pathway are still able to catabolise myo-inositol 

at slightly less than ten per cent of the normal rate. Hankes et 

at. state:

"Pentosurics, with a block in the glucuronate-xylulose 
pathway, are able to catabolyse myo-inositol at less 
than 10% of the normal rate as judged by the conversion 
of inosi tol-14C to glucose-1‘*C and 14CO2- There is no 
way at present of knowing whether the pentosurics' 
ability to transform a little inositol to these products 
results from 'leakage' of L-xylulose past the metabolic 
block, or from the operation of an alternate metabolic 
route."

The presence of the minor isozyme in pentosurics clearly constitutes 

such a 'leak' but does not rule out the possibility of an alternate

metabolic route.
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Whether the minor isozyme is a hitherto undescribed enzyme or 

merely mitochondrial L-xylulose reductase is not known at present, 

although the second alternative seems unlikely because red cells 

invariably lack mitochondrial enzymes and, in addition, mitochondrial 

L-xylulose reductase is membrane bound. The minor isozyme's 

relatively high Michael is constants for L-xylulose and xylitol may 

be an indication that these substances are not its usual substrates 

and that its main function is in some other pathway.

k.2. Population and family studies

Wang and van Eys's glutathione method for measuring haemolysate xylitol 

dehydrogenase activities has two main draw-backs: firstly, equilibrium 

strongly favours the reverse of the reaction catalysed and, secondly, 

some naemolysates bring about a significant non-xylitol dehydrogenase 

catalysed production of glutathione (the product measured) which has 

to be controlled for. The pyruvate method was the assay of choice for 

the population and family studies because it suffers from neither of 

these disadvantages; L-xylulose reductase activity is measured (the 

reaction proceeds in the favoured, in vivo direction), and no 

significant blank reaction takes place. Another reason for choosing 

the pyruvate method for the population and family studies was that 

there is a greater difference between the 'pentosuric' and 'normal' 

enzyme's Michael is constants for L-xylulose than there is between 

their Michael is constants for xylitol. By using L-xylulose as 

substrate, better discrimination could be achieved between normals 

and carriers of the pentosuria allele because a more effective substrate 

concentration could be chosen, i.e. one low enough to minimise the 

effect of the 'pentosuric enzyme' in samples from heterozygotes, while
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still enabling the 'normal enzyme' to function at rates close to 

its V Under such conditions, heterozygotes would be expected

to show activities which are closer to the ideal level of fifty per 

cent of normal and pentosurics would be expected to have activities 

close to zero.

**.2.1. Investigations on the Lebanese family

After establishing a normal range by measuring activities in a sample 

of non-Jewish individuals, the pyruvate method was tried out on 

members of the Lebanese family in which a pentosuria allele was 

known to be segregating. It was found that individual family members 

could be placed into one of the following three categories on the 

basis of their L-xylulose reductase activities:

1. The proband (11-8 in Figure 3-36), a known pentosuric, showed 

approximately zero activity.

2. A group of individuals with normal levels of activity (above 

3,3 units; the mean for normals being *4,97 ± 1,09 units).

3. A third group with intermediate levels (1,02 to 1,66 units), 

i.e. with levels which were well above zero but more than two 

standard deviations below the normal mean.

Since none of the non-Jewish subjects whose activities were measured 

when establishing the normal range had levels as low as those of the 

intermediate (third) group, it is assumed that these individuals are 

carriers of the pentosuria allele. The same family was studied by 

Politzer and Fleischmann (19&2) who classified individuals as either 

normal or pentosuric according to whether L-xylulose could be 

consistently detected (by chromatography) in their urine. No 

quantitative data were presented and, since carriers sometimes excrete
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more L-xylulose than the trace amounts present in the urine of 

normal individuals (Touster and Shaw, 1962), it is not surprising 

that Politzer and Fleischmann reached the following conclusion:

"Acceptance of the recessive hypothesis would involve 
considerable assumptions, and we therefore favour the 
hypothesis that L-xylulosuria in this family is due to a 
dominant gene with poor penetrance."

Figure **.2 allows a comparison to be made between Politzer and 

FIeischmann1s interpretation of part of this family and that arrived 

at in the present study. It can be seen from Figure A.2a that only 

the proband 11-6 showed the high serum L-xylulose levels (measured 

in the present study) characteristic of pentosurics (Kumahara et at., 

1961, for comparison found levels of 1,2, 1,3 and 1,7 mg/100 m£ in 

samples from three pentosurics), while individuals I 1-1, lll-l and 

I I 1-2, who were classified by Politzer and Fleischmann as pentosurics, 

had bearly detectable levels. Figure *t.2b shows the author's 

interpretation, based on red cell L-xylulose reductase activities, of 

the same pedigree. The two classifications, Politzer and Fleischmann1s 

and the author's, are applied to different phenotypic levels: Politzer 

and Fleischmann used as their criterion, the apparent presence or 

absence of L-xylulose in urine samples while the present author based 

his classification on measurements of enzyme activity. The high 

serum L-xylulose level of the proband correlates with her lack of 

L-xylulose reductase activity, but the low serum L-xylulose levels 

of the purported heterozygotes do not differ significantly from those 

of the normals, which suggests that pentosuria is recessively inherited 

in this family after all. Added evidence for this is that the only 

other reported cases of pentosuria in non-Jews occurred in three 

other Lebanese families (Khachadurian, 1962) and in each of these the 

condition was recessively inherited.
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Figure 4.2. Pedigree of part of the Lebanese family studied.

(a) Shows Politzer and FIeischmann1s interpretation 

of the fami 1y and

(b) shows the author's classification.

The figures below the symbols in (a) are the serum, 

and in brackets, plasma L-xylulose concentrations 

measured during the present study. The figures appearing 

below the symbols in (b) represent red cell L-xylulose 

reductase activities (the mean for normals was k .97 ± 1.09 

units) .
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Plasma L-xylulose concentrations in samples from the Lebanese and 

Ashkenazi pentosurics investigated in the present study were almost 

identical (1,53 and 1,5^ mg/100 mZ respectively), and electrophoresis 

of their red cell L-xylulose reductases produced the same zymogram 

pattern. In addition, both subjects showed approximately zero red 

cell L-xylulose reductase activity (as measured by the pyruvate 

method), and their residual L-xylulose reductase had similar 

Michael is constants for xylitol, L-xylulose and NADP. These 

similarities do not necessarily mean that the Ashkenazi and Lebanese 

pentosurics have the same pentosuria causing alleles since any 

mutation which resulted in the absence of the major L-xylulose 

reductase isozyme would produce the same basic phenotype. The 

occurrence of pentosuria in two distinct groups (the Lebanese and 

Ashkenazim) may, as Khachadurian (1962) has pointed out, mean that 

their respective alleies arose on separate occasions. Tradition, 

however, and blood group data (Mourant et al., 1976 and 1978), 

strongly suggest that the forefathers of the Ashkenazim came from the 

Middle-Last. If this is so, then it is possible that one type of 

pentosuria allele was present in Middle-Eastern populations before the 

diaspora and that the founders of the Ashkenazim carried it with them 

to Europe. There are genetic similarities between the Ashkenazim and 

some f today's Lebanese populations which suggests that gene flow may 

have taken place between the populations to which their respective fore­

fathers belonged. The Rh blood group system is most informative in this 

respect. Generally, people of the Middle-East (as well as the Ashkenazi 

and Sephardic Jews) show a relatively high frequency of the CDe haplotype 

and a relatively low ede frequency. In addition, cDe, a haplotype 

■which was very likely introduced to the Middle-East as a result of 

interbreeding with African slaves (Patai and Wing, 1975), is elevated
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in the Ashkenazim (and Sephardim) as well as in some of today's Lebanese 

populations. In accordance with the Rh evidence of African-Ashkenazi 

admixture, the Ashkenazim (as well as the Sephardim) show raised 

frequencies of other 'African alleles' such as the Duffy blood group 

Fy allele and the Kidd blood group Jka allele. Further evidence of 

similarities between the Ashkenazim and populations of the Middle-East was 

obtained by Wing (197*0 who found that the Ashkenazi haptoglobin and red 

cell acid phosphatase frequencies resembled more closely those of 

Mediterranean non-Jewish populations than they did non-Jewish European 

populat ions.

If the forefathers of the Ashkenazim acquired the pentosuria allele 

in the Middle-East and took it with them to Europe, its frequency could 

have been increased there by the same process or processes which 

brought about the relatively high frequencies of alleles which 

cause conditions such as Tay-Sachs disease, Gaucher's disease 

dysautonomia, etc. Although the process whereby these genes reached 

their relatively high frequencies in the Ashkenazim cannot be 

identified with certainty so long after the establishment of the 

population, some inferences may be drawn all the same. Heterozygote 

advantage is often invoked as an explanation for the occurrence at 

polymorphic frequencies of alleles which are deleterious when 

homozygous, and although this almost certainly accounts for the high 

sickle cell, thalassaemia and variant G6PD gene frequencies in areas 

where malaria is endemic, it is difficult to find many other examples. 

Tentative evidence that heterozygote advantage could have been 

responsible for the high frequencies of some of the disease causing 

alleles in the Ashkenazim is the fact that three of the diseases 

(Tay-Sachs, Niemann Pick and Gaucher's disease) involve defects in 

sphingolipid catabolism which suggests that the same environmental factor
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was countered in three similar but slightly different ways. Additional 

evidence favouring the idea that heterozygote advantage was responsible 

for the high Tay-Sachs allele frequency has been provided by 

Myrianthopou1 os and Aronson (I966) who found that a sample of Tay-Sachs 

allele carriers gave rise to slightly more offspring (while living in 

eastern Europe) than a non-carrier control group did, although the 

difference was not statistically significant.

On the other hand, chance events can have an important effect 

on the composition of gene pools as is evidenced by the relatively 

high frequencies of deleterious dominant alleles in certain populations. 

One such example is the presence of the porphyria varigata gene 

at a high frequency in the South African Afrikaaner population (Dean, 

1963). The fact that high frequencies of the Tay-Sachs, Gaucher and 

other disease causing alleles in the Ashkenazim go together with 

unusually low frequencies of alleles, such as that which causes 

phenylketonuria (Chase and McKusick, 1972), is tentative evidence that 

founder effect-genetic drift has operated on the gene pool of this 

group. The classic phenylketonuria allele is of particular interest 

since it occurs at appreciable frequencies in Sephardic and Oriental 

Jews as well as in European gentile populations, but is virtually 

unknown in the Ashkenazim (Cohen et at., 1961). Additional evidence 

that founder effect-genetic drift played an important part in 

raising the frequencies of disease causing genes such as the 

Tay-Sachs and familial dysautonomia alleles in the Ashkenasim was 

obtained by tracing the ancestors of individuals who suffered 

from such diseases back to their place or origin in eastern Europe.

Meals (1970 summarised the data which shows that the ancestors of 

Ashkenazi-Jews with differrent inherited diseases came from different
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parts of eastern Europe. For instance, those with Tay-Sachs came 

mainly from the area surrounding Kaunas, Vilnius and Grodno in what 

is today the USSR, while those with dysautonomia came mainly from 

further south (from the area surrounding Krakow, Lvov and Budapest 

in southern Poland, the northwestern tip of Rumania and southwestern 

USSR).

4.2.2. Studies on the Ashkenazi-Jewish subjects

The distribution of red cell L-xylulose reductase activities in the 

Ashkenazi-Jewish sample appears to be bimodal. Parents and other 

close relatives of five out of the seven individuals in the low 

activity group were available for investigation, and in all five 

cases, one of the parents or close relatives (if the parents were not 

available) also showed similar low levels of activity. Six of the 

seven 'low activity1 individuals were subjected to the glucuronolactone 

loading test (Kumahara et at., 1961), and five of these showed the 

relatively large increases in serum L-xylulose concentrations 

characteristic of heterozygotes. The remaining individual did not 

show an increase and as her family were not available for investigation, 

she was assumed to be a non-carrier. One out of the seven low 

activity individuals was unwilling to undergo the loading test, but 

since one of his parents and two of his sibs had similar low L-xylulose 

reductase activity levels, he was considered to be a heterozygote, 

it is possible that some of the individuals in the high activity 

group were carriers of the pentosuria allele as well. However, a 

comparison of the allele's apparent frequency; q = 0,0127 (calculated 

from the apparent heterozygote frequency), with estimates arrived at by 

extrapolating from homozygote frequencies in other Ashkenazi 

populations; 0,0083 - 0,0125 (Lasker, 1952) and 0,0l4l (Mizrahi and
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Ser, 1963) suggests that very few, if any, heterozygotes were missed.

**.2.3. Linkage studies

Although L-xylulose reductase does not appear to be an important 

enzyme, its locus once mapped could serve as a 'landmark' and possibly 

facilitate further mapping of the human genome. Unfortunately, 

leukocytes (Kumahara et al., 1961) and cultured skin fibroblasts 

(personal observation) do not exhibit appreciable L-xylulose 

reductase activity which means that the technique of interspecific 

somatic cell hybridisation would not be a suitable method by which 

to assign the structural gene for this enzyme. More sophisticated 

methods for locating gene loci such as in sutu hybridisation of 

specific DNA probes to metaphase chromosomes would require the 

hardly justifiable expenditure of a considerable amount of time 

and resources. In the light of these arguments, conventional 

linkage studies are believed to be the most economical approach 

towards mapping the 'pentosuria gene', particularly with the discovery 

of more and more restriction fragment length polymorphisms.

So far, no strong evidence in favour of linkage between the 

'pentosuria gene' locus and any of the twenty-one other gene loci 

investigated, has been found by this approach. The highest 1od 

score obtained was 0,795 (at a 0 value of 0,05) in favour of linkage 

with the 6-phosphog1uconate dehydrogenase (PGD) locus which is 

situated on the short arm of chromosome 1. Positive lod scores in 

favour of linkage with the phosphog1ucomutase-1 (PGMi) locus which is 

also on the short arm of chromosome 1 were also obtained. The PGD and 

PGMi loci lie fairly far apart (the approximate recombination 

fraction in males is 0,39 and that in females 0,65 (Cook and
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Hamerton, 1979)), and since negative scores were obtained for linkage 

between the L-xylulose reductase locus and the Rh locus which lies 

between PGD and PGM\, it is unlikely that the L-xylulose reductase 

locus is linked to either of these. Furthermore, a lod score of

0. 795 is far short of 3,0, the value at which the odds in favour of 

linkage are considered to be significant (Morton, 1955). Consistently 

negative lod scores were obtained for possible linkage with the Rh,

Duffy and Kell blood group determining genes, the serum protein system,

Hp and the red cell enzyme systems, ACPi and AK\. Lod scores which 

are lower than -2,0, a value which is considered to be significant 

evidence against linkage (Morton, 1955) were found for the Rh locus

at 9 values of 0,05 and 0,10, as well as for the GPT\ locus at a 0 

value of 0,05. Another gene which does not appear to be closely linked 

to the major L-xylulose reductase locus is that whose mutants cause 

autosomal recessive retinitis pigmentosa. Khachadurian (1962) 

encountered both pentosuria and retinitis pigmentosa in a Lebanese 

family but found that the genes for these conditions had segregated 

independently in various family members.

A .3. Conclus ions

1. Normal individuals have at least two L-xylulose reductases in their 

liver tissue and red blood cells. Pentosurics lack one of these

i sozymes.

2. It is likely (but not proven) that the two main L-xylulose 

reductases of normal individuals (the major and minor isozymes) are 

coded for by genes at separate loci.

3. The inheritance of pentosuria in the South African Lebanese family 

appears to be erecssive. This finding contradicts a previous suggestion
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(Politzer and Fleischman, 1962) that the condition is dominantly 

inherited in this family.

The frequency of the pentosuria allele in a sample drawn from the 

local Ashkenazi-Jewish population is estimated to be 0,0127.

5. No close linkage between the pentosuria allele and any of twenty- 

one other polymorphic gene loci was found.

**. A Further studies

1. The purification of the major and minor isozymes and an 

investigation of their molecular weights and possible subunit 

compos i t ions.

2. A comparison of electrophoretic mobilities, substrate affinities 

and susceptibility to inhibition of the mitochondrial, the major 

and minor isozymes.

3. A search for e 1ectrophoretica11y distinct variants in various 

populations and an extension of the linkage study to other loci 

such as the HLA system and those of arbitrary restriction 

fragment length polymorphisms.

k. An investigation of the faint band seen in electrophoresed samples 

from pentosurics in order to determine whether it is due to an 

altered form of the major isozyme.

3. A possible ultimate comparison of the Lebanese and Ashkenazi 

alleles at the DNA ievel and the chromosome assignment of the 

major L-xylulose reductase structural gene, by in situ 

hybridisation to metaphase chromosomes.
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