
The African Journal of Information and Communication (AJIC), Issue 15, 2015
38

ATTRIBUTES CONTRIBUTING TO STUDENTS’ USE OF QUALITY SOFTWARE
DEVELOPMENT PRACTICES

Guillaume Nel
Lecturer, Department of Information Technology, Central University of Technology (Free State) and PhD student, Department of
Computer Science and Informatics, University of the Free State, South Africa

Liezel Nel
Adjunct Professor, Department of Computer Science and Informatics, University of the Free State, South Africa

Johannes Cronje
Dean, Faculty of Informatics and Design, Cape Peninsula University of Technology, South Africa

ABSTRACT
In 2001 the “McCracken group”, through a multi-institutional study, concluded that many students finishing their introductory programming
courses could not program due to a lack of problem solving skills. In 2004 Lister established that students have a fragile grasp of skills to
read and interpret code. Humphrey suggests that educators must shift their focus from the programs that the students create to the data of the
processes the students use. This paper addresses the problem of poor performing students through an investigation of their quality appraisal
techniques (QATs) and development processes. Firstly, a survey was conducted to determine the current software development practices used
by a group of undergraduate Computer Science students. Numeric data collected revealed that the current practices used by the majority
of students would not be sufficient to produce quality programs. Secondly, a case study was conducted to gain a deeper understanding of
the various factors that are likely to influence students’ intention to use QATs. Analysis of numeric data collected through a survey revealed
that students’ intentions to use QATs are driven by ease of use, compatibility, usefulness, result demonstrability, subjective norm and career
consequences. Thirdly, an experiment was conducted to determine students’ perceptions on the use of process measurement data to improve
their current software development practices. Analysis of numeric and narrative data revealed that performance measurement data could
provide students with useful information to adopt proper development practices.

KEYWORDS
problem solving, software development process, quality appraisal techniques, personal software process,
undergraduate education

INTRODUCTION
Despite all the efforts of Computer Science educators to train students to develop software programs of the highest
standard, the programming performance of undergraduate students is often worse than expected. This can be
attributed to the lack of problem solving skills (McCraken et al., 2001), as well as poor code reading and interpretation
skills (Lister et al., 2004). Humphrey (1994; 1999) created the Personal Software Process (PSP) that guides software
developers in the use of process measurement and quality appraisal techniques (QATs) (in the form of personal
design reviews and code reviews) to improve the quality of their programs. He suggests that educators must shift
their focus from the programs that the students create to the data of the processes the students use (Humphrey,
1999). Various researchers reported on their experiences with the incorporation of PSP in educational environments
(Börsteler et al., 2002; Jenkins & Ademoye, 2012; Towhidnejad & Salimi, 1996; Williams, 1997).

The aim of this paper is threefold:

1. To discover which QATs and software development practices are used by undergraduate Computer Science
students at a selected South African University of Technology.

2. To identify factors that influence students’ intent to use QATs.
3. To investigate the role of process measurement data as a contributor to the use of quality software

development practices.

LITERATURE REVIEW
In 2001 the “McCracken group” (McCraken et al., 2001) conducted a multi-national, multi-institutional study in
the United States of America (US) and other countries during which they assessed the programming competency of
Computer Science students who completed their first or second programming courses. They found that the majority
of the students’ programming performance was much worse than expected. Students indicated “the lack of time to
complete the exercise” (McCraken et al., 2001, p. 133) as the major reason for poor performance. The research group
also found that students struggle to abstract the problem from the exercise description (McCraken et al., 2001) and
therefore lack the ability to do problem solving. The group argues that students might have inappropriate (bad)
programming habits because they treat program code as text and simply try to fix syntax instead of focusing on the
task that the code must accomplish. They suggest that future research should analyse narrative data gathered from
students to gain better insight into the students’ development processes and problem-solving behaviour.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/188768926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The African Journal of Information and Communication (AJIC), Issue 15, 2015
39

Lister et al., (2004) conducted a follow-up study on the McCracken group’s research to investigate alternative reasons
for poor programming performance. Their findings indicate that many students have “a fragile grasp of both basic
programming principles and the ability to systematically carry out routine programming tasks, such as tracing
(or ‘desk checking’) through code” (Lister et al., 2004, p. 119). According to Perkins, Hancock, Hobbs, Martin and
Simmons (1989), students’ code reading and interpretation skills can be linked to their ability to review and debug code.

Software quality can be defined as software that conforms to the user requirements (Crosby, 1979). Software review
methods are widely used in the industry to improve the quality of software programs (Fagan, 1976; Schach, 2011),
as testing alone is seen as a very ineffective and time-consuming debugging strategy (Schach, 2011). According to
Humphrey (2005), effective defect management is essential in order to manage cost and schedule during software
development and also contributes to software quality. Humphrey states that testing alone is not the most effective
way to remove defects. He proposes the inclusion of additional quality appraisal techniques such as inspections,
walkthroughs and personal reviews. An inspection is a kind of structured team peer review process that was
introduced by Mike Fagan (1976). Walkthroughs are less formal, with fewer steps than inspections (Schach, 2011).
Fagan (1976) concludes that a developer’s productivity increases when he uses inspections because less time is spent
on unit testing. Schach (2011) indicates the advantages in time, cost and essentially project success when defects are
discovered early in the development life cycle.

Humphrey (2005) regards inspections and walkthroughs as team quality techniques. He proposes that individual
software developers should review their work before peer inspection, hence the term “personal reviews”. He indicates
that, despite all the literature that guides software developers on “good” practices and effective methods, the only
generally accepted short-term priority for a software developer is “coding and testing”.

Humphrey (1999) claims that one of the biggest challenges in software development is to persuade software developers
to use effective methods. Software developers tend to stick to a personal process that they develop from the first small
program they have written, and it is difficult to convince them to adopt better practices. Humphrey (2005) created a
PSP course in which a software developer gradually learns to adopt his/her software practices according to personal
measurements. The aim of the course is to improve program quality through personal reviews and to enable a
software developer to make more accurate estimations based on personal historical performance data (collected by
the individual). Analyses of thousands of PSP students’ measurement data indicate that personal reviews improve
program quality and that students spent less time in the testing phase if they use quality appraisal techniques
(design reviews and code reviews). The course data also indicates an improvement on predictions based on historical
data. Humphrey (1999) states that PSP trained students in an educational environment will only use these methods
if the educator grades them on the use thereof, and that most students eventually will fall back on a process of coding
and testing. He suggests that Computer Science educators must shift their focus from the programs that the students
create to the data of the processes the students use. A number of researchers reported on their experiences with the
incorporation of personal software process techniques in educational environments.

Jenkins and Ademoye (2012) conducted a pilot and follow-up experiment in which students used personal code
reviews to improve the quality of their individual programs. Although there is no concrete evidence to support this
statement, the narrative feedback from the students in both experiments indicate that they believe the process of
using code reviews improved the quality of their programs.

Towhidnejad and Salimi (1996) incorporated a simplified version of PSP as part of two first-year Computer Science
courses. They report that PSP helped students to improve their time management and time estimations, as well as to
decrease the number of syntax defects. Students only accepted PSP as an integral part of their development practices
in their second semester of PSP usage. The educators’ biggest challenges were (1) to motivate students to follow the
PSP defined process and (2) to get students to collect accurate and reliable data.

In an attempt to train better software developers the University of Utah incorporated PSP concepts in all their
undergraduate Computer Science courses. Williams (1997) reports that although students demonstrated accurate
theoretical knowledge of PSP principles, they struggled with the application thereof. He remarks that discussion
of group statistical feedback data might influence students’ intention to capture more accurate individual process
measurements. His biggest challenge was to motivate students to use PSP as part of their natural program
development practices.

Börsteler et al., (2002) report on their experiences of teaching some PSP variations at different universities. At Montana
Tech, University of Montana, students showed initial resistance to PSP but the general reaction at the end of the
course was that they felt “more aware of their programming practices and shortcomings” (p. 45). Although some
master’s students at Drexel University also showed initial resistance to PSP several of them reported incorporating
at least some PSP parts in their work environments. An evaluation of Purdue University students’ attitude towards
PSP reveals that they regarded PSP activities as “extra work” (p. 45) and did not show appreciation for the potential
benefits of this disciplined process. Students strongly recommended that PSP topics should rather be placed in
later programming courses when students are already familiar with language-specific syntax and development
environment. At Umeå University the use of PSP was optional in a second year C++ course, with only six of 78
students opting to use it throughout the course. The students’ main reason for abandoning PSP was that it “impose[d]
an excessively strict process on them” (p. 44) and that they did not believe that the extra effort was worthwhile.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
40

In an attempt to test the process improvement claims of PSP, Prechelt and Unger (2000) conducted an experiment to compare
the performance of PSP-trained programmers (P-group) and non-PSP trained programmers (N-group). They report that 18
of the 24 P-group participants did not use PSP techniques at all. Prechelt and Unger (2000) claim that the low level
of PSP usage might be explained by the “different temperaments of the programmers”, the small size of the PSP tasks
as well as the absence of “a working environment which actively encourages PSP usage” (p. 471). They call for further
investigations into the technical, social and organisational attributes (beyond the level of training and infrastructure
provided) that might influence the use of PSP methods.

METHODOLOGY
This research study followed a mixed methods approach based on the Framework of Integrated Methodologies
(FraIM) as suggested by Plowright (2011). The context of this study was the Information Technology department
at a selected South African University of Technology. The study was divided into three cases in order to distinguish
between the three main sources of data (Plowright, 2011).

CASE 1 METHODOLOGY
In Case 1 a survey (Plowright, 2011) was conducted to gather information regarding undergraduate Computer Science
students’ perceptions of the quality appraisal techniques and software development processes they normally use
when developing programs. The research population for this case included all first, second and third year Computer
Science students at the selected institution. Data was collected by means of “asking questions” in a paper-based self-
completion survey containing closed questions (Plowright, 2011). The survey was distributed and completed during
normal lectures. A total of 251 students (the sample) completed the survey. This sample included 74 first-year, 113
second-year and 64 third-year students. The numerical data collected through the survey was analysed in MS Excel
and the results grouped according to the year level of the respondents.

CASE 2 METHODOLOGY
In Case 2 a case study (Plowright, 2011) was conducted to gain a deeper understanding of the various factors that are
likely to influence students’ intention to use QATs. The research population for this case was restricted to fourth-year
Computer Science students from the selected institution, who were registered for the Software Engineering module
(55 students). These students were selected because they were already familiar with the various techniques that can
be used to improve the quality of their programs. Data was collected by means of “asking questions” in a paper-based
self-completion survey (Plowright, 2011). The survey was distributed and completed at the end of a scheduled lecture.
Forty-seven students (the sample) completed the survey (85% response rate).

There are numerous theoretical models that can be used to examine individual intentions to adopt information
technology tools. Although software development methodologies and more specifically QATs cannot necessarily
be regarded as technological tools, a study conducted by Riemenschneider, Hardgrave and Davis (2002) provides
empirical evidence that established models of individual intentions for tool adoption can be used to provide insights
into methodology adoption by software developers in a large organisation. For their study, Riemenschneider et al.,
(2002) selected the following existing technology acceptance models:

• Technology Acceptance Model (TAM) (Davis, 1989);
• TAM2 (Venkatesh & Davis, 2000);
• Perceived Characteristics of Innovating (PCI) (Moore & Benbasat, 1991);
• Theory of Planned Behaviour (TPB) (Ajzen, 1985); and
• Model of Personal Computer Utilisation (MPCU) (Thompson, Higgins & Howell, 1991).

After evaluation of these five models Riemenschneider et al., (2002, p.1139) identified 12 constructs (which include
both common and unique constructs from the selected models) as appropriate in the context of methodology adoption.
The selected constructs are defined as follows in the context of Case 2:

• Behavioural intention (BI) – the extent of the student’s intention to use QATs.
• Usefulness (U) – the extent to which the student thinks that using QATs will enhance his/her

programming performance.
• Ease of use (EOU) – the extent to which the student perceives that using QATs will be free of effort.
• Subjective norm (SN) – the extent to which the student thinks that others, who are important to him/

her, think he/she should use QATs.
• Voluntariness (VOL) – the extent to which the student perceives the adoption of QATs as non-mandatory.
• Compatibility (C) – the extent to which QATs are perceived as being consistent/compatible (incorporable)

with the current manner in which the student develops systems.
• Result demonstrability (RD) – the extent to which the results or benefits of using QATs are apparent

to the student.
• Image (IMG) – the extent to which the use of QATs is perceived to enhance the student’s image/status

in his/her social system.
• Visibility (VIS) – the extent to which the use of QATs can be observed in the student’s learning

environment.
• Perceived behavioural control – internal (PBC-I) – the student’s perceptions of internal constraints

on using QATs.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
41

• Perceived behavioural control – external (PBC-E) – the student’s perceptions of external constraints
on using QATs.

• Career consequences (CC) – the extent to which the adoption of QATs will influence the student’s
chance to secure employment after completing his/her degree.

The survey constructed for Case 2 was based on the validated measurement scales from Riemenschneider et al.’s
(2002) research study, with rewording of a number of items to make it relevant in terms of the context of Case 2.
Each item was based on a 4-point Likert scale (1 = strongly disagree and 4 = strongly agree). The numerical data
collected through the survey was analysed using SPSS software.

CASE 3 METHODOLOGY
In Case 3 an experiment (Plowright, 2011) was conducted to gain a deeper understanding of students’ development
processes through the collection of actual process data. The population for this case included all third year Computer
Science students at the selected institution. These students were selected since they already had intermediate
programming skills and experience in software defect removal strategies. From this population six students were
randomly selected to participate in the practical experiment. Data collection included observations, asking questions
(post-activity survey and interviews) as well as artefact analysis (Process Dashboard© data and program code)
(Plowright, 2011).

The Case 3 experiment consisted of four steps as summarised in Table 1. The instructor first conducted a tutorial
activity to teach students how to log and interpret performance-measurement data using the Process Dashboard©
software. During this tutorial students were required to do an exercise in which they had to log time, size and defect
measurements in different phases of the software development life cycle. The various defect types and examples
of defects categorised into types were also discussed. After the tutorial the students completed an individual
programming exercise during which they had to capture performance data using the Process Dashboard© software.
For this programming exercise the students had to implement the code to simulate the “Quick Pick” option of the
South African National Lottery (LOTTO©) draw.1

TABLE 1: EXPERIMENT DESIGN
Activity Duration Rationale

1. Instructor presents performance measurement tutorial. 1 hour Teach students to do process measures and interpret process data.

2. Students do programming exercise.
 while Instructor makes observations.

3 hours
Capture process measures while doing programming exercise
(student).
Record student behaviour and questions asked (instructor).

3. Students complete post-activity survey. 15-20 min Explore students’ perceptions of process measuring.

4. Instructor conducts interviews with students 10 min (per student) Gain deeper insights into students’ development processes.

The students received an extensive background document on how “LOTTO” draws work. In the “Quick Pick”
option a user of the system first had to select the number of player lotto draw records that should be generated.
The requested number of records then had to be generated randomly, sorted and written to a text file. Each draw
record had to contain the draw date, draw number (starting from 1) and seven unique numbers ranging from
1 to 49 (the six lotto numbers in ascending order followed by a bonus number). Students could use any resources,
including the Internet, to complete this activity. While the students worked on the individual programming
exercise the instructor moved around the students and recorded his observations as well as all questions from
the students. After this exercise the students had to complete a post-activity survey that consisted of mostly
open-ended questions. The purpose of this survey was to explore the students’ perceptions on the capturing and
interpreting of process-measurement data. In the final activity of Case 3 the instructor conducted interviews with
all six students. During these interviews open-ended questions were used to gather narrative data regarding the
students’ development processes.

DISCUSSION OF RESULTS

CASE 1: PRE-SURVEY
Students first had to indicate how much of their development time is spent in each of the provided phases (see Figure 1).
On average, students spent 25% of their development time on planning and design. They also indicated that most of
their development time is spent on coding and contributes to 50% of the total development time. They spent 25% of
their time on testing and debugging, which is roughly half the time that they spent on coding. Students of all year
levels indicated almost similar results, which is an indication that a first year student and a third year student make
use of similar development practices. It should be noted that the reported times are mostly estimates (individual
perceptions) since only 16% of the students indicated that they record the actual time that they spend in the different
development phases. The majority (88%) of students indicated that they do not use any time estimation techniques.

1 https://www.nationallottery.co.za

The African Journal of Information and Communication (AJIC), Issue 15, 2015
42

FIGURE 1: ESTIMATED TIME SPENT IN DEVELOPMENT PHASES

The next section of the survey focused on defect removal strategies. Students reported that they primarily use
debugging for fixing defects as opposed to design and code reviews (see Figure 2). The use of design and code reviews
increment slightly (10%) from first- to third-year students. Only 30% of the students indicated that they keep record
of the defects they make.

FIGURE 2: USE OF DEFECT REMOVAL STRATEGIES

Students were also asked to give an indication of the average mark they obtain for their programming assignments.
As indicated in Figure 3 the reported average marks form a normal distribution curve around 59.5%.

1st year 2nd year 3rd year

Student group

Pe
rc

en
ta

ge

of

st
ud

en
ts

1st year 2nd year 3rd year
Student group

Pe
rc

en
ta

ge
 o

f
ti

m
e

The African Journal of Information and Communication (AJIC), Issue 15, 2015
43

FIGURE 3: AVERAGE MARKS FOR PROGRAMMING ASSIGNMENTS

Students then had to select (from three provided options) the main reason why they do not score full marks in
all their programming assignments. The data analysis revealed distinct differences between the responses from
students in the different year levels (see Figure 4). The majority of first-year students (54%) believe that their lack
of programming skills is the major cause of poor results. Second-year (47%) and third-year (62%) students mostly
put the blame on their inability to identify defects. Towards the third year fewer students (16%) regard their “lack of
skill” as the major reason for failure. Although the students in all year levels regard “time” as a stumbling block to
their success it is not seen as the major contributor (with values ranging between 17% and 27%).

FIGURE 4: MAIN REASON FOR NOT SCORING 100% FOR ASSIGNMENTS

When students were asked to indicate their preferred software development life-cycle model the majority of
second-year (68%) and third-year (63%) students selected “code-and-fix” (see Figure 5). It is not surprising that all
the first year students selected the “don’t know” option, since the first Software Engineering course is part of the
second year curriculum. The senior students’ reliance on code-and-fix strategies serves as an indication that they lack
a thorough design phase in their development process.

Pe
rc

en
ta

ge

of

st
ud

en
ts

Average mark

1st year

2nd year

3rd year

Pe
rc

en
ta

ge

of

st
ud

en
ts

1st year 2nd year 3rd year

Student group

The African Journal of Information and Communication (AJIC), Issue 15, 2015
44

FIGURE 5: PREFERRED SOFTWARE LIFE CYCLE

Without a process that accommodates designs, students would spend little time on design reviews and consequently
would not be able to identify defects early in the development life cycle. The students therefore have to rely on
code reviews and debugging as their primary technique for finding and fixing defects. When using code-and-fix
strategies the “thinking” process of “how to solve a problem” would occur during the coding phase – not during
the design phase – which explains why students spent most of their time in the coding phase. Since the students
indicated “debugging” as their primary technique for fixing defects (see Figure 2) it is no surprise that they struggle
to identify defects. They treat the consequence of a defect, which makes it a lot more difficult and takes more time to
find the actual defect. This also explains why students see the “identification of defects” as a major contributor to poor
results (see Figure 4). This effect will increase towards the third year when assignments are more comprehensive
– therefore making it more difficult to identify defects. The student, however, will not realise this because he/she
is using exactly the same process that worked for him/her from the first year. This explains why there is almost no
difference in the time spent in phases from first to third year (see Figure 1).

CASE 2: CASE STUDY
Initial analysis of the Case 2 survey data revealed that the voluntariness and perceived behavioural control – internal
constructs displayed low construct reliability (Cronbach’s alpha < 0.64). Only the 10 remaining constructs were
therefore retained for further analysis (see Table 2).2

Pe
rc

en
ta

ge
 o

f
st

ud
en

ts

1st year 2nd year 3rd year

Student group

The African Journal of Information and Communication (AJIC), Issue 15, 2015
45

TABLE 2: CONSTRUCTS RETAINED
Construct Scale items alpha

Behavioural intention (BI)
Mean = 3.6809
SD = 0.45951

• I intend to use QATs in future programming tasks.
• Given the opportunity, I would use QATs. 0.640

Usefulness (U)
Mean = 3.4433
SD = 0.37795

• Using QATs improves my programming
performance.

• Using QATs increases my productivity.
• Using QATs enhances the quality of my programs.
• Using QATs makes it easier to do my programming

tasks.
• The advantages of using QATs outweigh the

disadvantages.
• QATs are useful in programming tasks.

0.681

Ease of use (EOU)
Mean = 2.8156
SD = 0.45872

• Learning QATs was easy for me.
• I think QATs are clear and understandable.
• Using QATs does not require a lot of mental effort.
• I find QATs easy to use.
• QATs are not cumbersome to use.
• Using QATs does not take too much of my time.

0.663

Subjective norm (SN)
Mean = 3.0071
SD = 0.73717

• People who influence my behaviour think I should
use QATs.

• People who are important to me think I should use
QATs.

• My fellow students think I should use QATs.

0.760

Compatibility (C)
Mean = 2.9504
SD = 0.56027

• QATs are compatible with the way I develop
systems.

• Using QATs is compatible with all aspects of my
programming tasks.

• Using QATs fits well with the way I work.

0.783

Image (IMG)
Mean = 2.9929
SD = 0.67204

• Software developers who use QATs have more
prestige than those who do not.

• Software developers who use QATs have a high
profile.

• Using QATs is a status symbol amongst software
developers.

0.745

Visibility (VIS)
Mean = 2.4521
SD = 0.68888

• QATs are very visible at the Department.3
• It is easy for me to observe others using QATs.
• I have had plenty of opportunity to see QATs being

used.
• I can see when other students use QATs.

0.748

Personal behavioural control – external (PBC-E)
Mean = 2.8553
SD = 0.57891

• Specialised instruction and education concerning
QATs is available to me.

• Formal guidance is available to me in using QATs.
• A specific group is available for assistance with

QATs difficulties.
• For making the transition to QATs, I felt I had a solid

network of support (e.g., knowledgeable fellow
students, student assistants, lecturers, etc.).

• The Department provides most of the necessary help
and resources to enable students to use QATs.

0.724

Career consequences (CC)
Mean = 3.2270
SD = 0.59123

• Knowledge of QATs puts me on the cutting edge in my
field.

• Knowledge of QATs increases my chance of getting a job.
• Knowledge of QATs can increase my flexibility of changing

jobs.
• Knowledge of QATs can increase the opportunity for more

meaningful work.
• Knowledge of QATs can increase the opportunity for

preferred jobs.
• Knowledge of QATs can increase the opportunity to gain

job security.

0.841

Result demonstrability (RD)
Mean = 3.1383
SD = 0.6273

• I would have no difficulty telling others about the
results of using QATs.

• I believe I could communicate to others the
consequences of using QATs.

• The results of using QATs are apparent to me.
• I would have no difficulty explaining why QATs may

or may not be beneficial.

0.825

1

3 Although the true name of the academic department and institution concerned was used on the actual instrument it will not be disclosed here in
order to protect the anonymity of the selected institution.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
46

The next step was to identify the constructs that can be regarded as significant determinants of students’ intentions
(BI) to use QATs. Each construct was tested individually using least-squares regression analysis. Table 3 shows the
results of each construct test – indicating the names of the constructs as well as the beta coefficients, significance
levels and R2 values.

TABLE 3: REGRESSION ANALYSIS OF CONSTRUCTS

Construct β Standard error of
β t Sig. R2

Ease of use 0.412 0.136 3.023 0.004** 0.169

Compatibility 0.341 0.111 3.065 0.004** 0.173

Usefulness 0.467 0.167 2.788 0.008** 0.147

Result
demonstrability

0.280 0.101 2.779 0.008** 0.146

Subjective norm 0.224 0.870 2.587 0.013* 0.129

Career
consequences

0.274 0.108 2.526 0.015* 0.124

Personal behavioural
control – external

0.216 0.114 1.897 0.064 0.074

Visibility 0.156 0.097 1.614 0.113 0.055

Image 0.139 0.100 1.396 0.170 0.041

Notes: * p<0.05, ** p < 0.01

Ease of use and compatibility showed the highest significance followed by usefulness and result demonstrability
(p < 0.01). Subjective norm and career consequences were also significant (p < 0.05) while PBC-E, visibility and image
were not significant. A comparison between these significant determinants and those identified in Riemenschneider
et al.’s (2002) study reveal some interesting commonalities as well as several notable differences. When compared
to the six significant determinants identified in the present study, Riemenschneider et al.’s study only identified
compatibility, usefulness and subjective norm as significant determinants of methodology use intentions.

The results of this research study show that the perceived compatibility of software process innovations (such as QATs)
with a developer’s pre-existing software development process have a highly significant influence on intention to use.
Chan and Thong (2009, p. 811) emphasise that the adoption of innovations often requires a radical change in the
developers’ existing work practices. If the innovation is not compatible with the developers’ current practices they are
unlikely to perceive it as beneficial. In a study comparing the PSP experiences of first-year and graduate students,
Runeson (2001) concludes that it is easier to convince first-year students to use PSP as part of their development
process since they have not yet formed established development habits.

There are numerous examples of prior studies that have found perceived usefulness as a significant factor in predicting
professional developers’ intention to use software process innovations such as software development methodologies
(Chan & Thong, 2009; Riemenschneider et al., 2002;), programming languages (Agarwal & Prasad, 2000) and CASE tools
(Iivari, 1996). Overall, these studies suggest that an innovation is only likely to be accepted if it is perceived as useful
in increasing job performance (Chan & Thong, 2009). Similar to software developers in an industry environment,
student developers are also influenced by a reward structure. They want to be productive and attain high marks for
their assignments. If they do not see QATs as beneficial to their productivity they are unlikely to regard it as useful.

In support of prior studies, the Case 2 results also show that subjective norm significantly affects intention.
Riemenschneider et al., (2002) warn that developers who believe in the usefulness and compatibility of a software
process innovation might avoid using the innovation because of the negative views of peers and supervisors who
oppose the use thereof. Chang and Thong (2009) conclude that the significance of subjective norm as a determinant
can be attributed to the importance of teamwork in software development. The student software developers in the
context of Case 2 are also required to complete a number of group projects. Even in cases where they are working
on individual projects the students often form study groups to help one another. This creates a social learning
environment where students could be subjected to peer influences. Students at the University of Utah who followed
PSP practices during pair programming activities reported a higher level of enjoyment and higher confidence levels
in their own work (Börsteler et al., 2002). These students also mentioned that they “encouraged each other to follow
PSP practices” (p. 45).

The difference in the two studies regarding the effect of ease of use on adoption could possibly be attributed to the
difference in contexts – working environment vs. education environment. While professional developers are already
using the innovation, students are still in the process of learning how to use it. The professionals may have already
moved beyond early concerns regarding the effort required to use the innovation (Chan & Thong 2009, p. 811).
Chang and Thong (2009) also conclude that the diverse views on the resulting demonstrability of methodology use in
Riemenschneider et al.’s study may be attributed to the long development cycles of real-world methodologies – preventing
software developers “from observing the results in a short period of time” (p. 811). While the students in Case 2 have
not necessarily used QATs in their own development projects they might believe that they have adequate theoretical

The African Journal of Information and Communication (AJIC), Issue 15, 2015
47

knowledge regarding the benefits of using QATs. In an attempt to improve students’ utilisation of PSP, Williams (1997)
found that even if students have theoretical knowledge of the process they might still struggle to apply it.

The significance of career consequences as a determinant of students’ intention to use QATs could also be attributed
to the educational context. Since students are preparing to enter the job market they are likely to regard their
familiarity with industry-used techniques as something that will influence their chances of securing employment
after the completion of their degree. In Börsteler et al.’s (2002) study students who have used PSP in their first-year
course reported that their knowledge of software engineering principles helped them to obtain summer internships.

CASE 3: PROGRAMMING EXPERIMENT
The discussion in this section considers the data that was collected during Steps 2, 3 and 4 of the Case 3 programming
experiment.

INSTRUCTOR OBSERVATIONS
The instructor made the following main observations while the students were completing the exercise:

• Students searched the Internet to find solutions for the exercise.
• No designs were created to solve the exercise problem.
• Some students forgot to start and stop the Process Dashboard© timer when switching phases.
• Some defects were not logged.
• Students struggled to distinguish between the “coding” and the “testing” phase.
• Students struggled to describe their logged defects.

The students did not log the re-work coding in the correct phase. Most of them logged that time under coding,
which explains why re-work or testing time was lower than coding time (also see section on Process Dashboard©
performance data.). More precise measurements would result in much higher testing times. Towhidnejad and Salimi
(1996) also reported that only half of their students collected accurate and reliable data.

PROGRAM CODE
Not one of the students in the group produced a fully-functional program (according to the given specifications)
during the allotted time frame. Two of the students (Student A and Student B) created programs that accomplished
almost all of the given requirements. Both of their programs generated the specified number of player lotto draw
records and wrote these records to the output file. They were, however, unable to calculate the draw date and draw
number (for each record generated), which also had to be part of the output file. Students C, D and E had executable
programs. Student C’s program could only generate a fixed number of lotto draw records (10) without duplicates,
while the output was written to the screen instead of the required text file. These draw records also did not include
the draw date and draw number. Student D’s program calculated incorrect draw numbers and wrote these numbers
to the screen. Student E’s program only contained a user input screen with no code to solve the lotto draw problem.
The program created by Student F could not be executed. Inspection of the intended code logic revealed that his
program was unable to generate any random numbers and did not contain any code to generate output.

PROCESS DASHBOARD© PERFORMANCE DATA
The six students on average spent 135 minutes each to create the program. This time frame included all phases of
development: planning, design, coding and testing. The instructor decided to end the programming exercise after two
and a half hours, as enough useful experimental data was accumulated. At that time the students also indicated that
they would not be able to identify and fix all remaining defects even without a time limit.

On average the students spent their time as follows:

• 17% on planning;
• 1% on design;
• 0% on design reviews;
• 45% on coding;
• 1% on code reviews; and
• 36% on testing or debugging.

The actual time that these students captured while working shows a good correlation with the times reported in the
pre-survey (see Figure 1). The actual testing or debugging time, however, would be much higher if these students had
to continue to produce fully-functional programs. The students on average produced 45 lines of code, which resulted
in a productivity of 20 lines of code per hour. Each student recorded an average of five defects, with 90% of these
defects injected during coding. The limited time spent on designs also indicates that most defects would be injected
during coding. Ninety-five percent of the defects were removed in the testing phase – an indicator that debugging was
used as the primary technique for defect removal. Given that only 1% of the time was spent in reviews, this would
yield few defects (2%) to be found during reviews. No design reviews were conducted because of the lack of designs
and only 1% of the time spent on the design phase. This resulted in defects being discovered late in the development
life cycle (testing), which makes it more difficult to identify them.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
48

POST-ACTIVITY SURVEY
Students indicated that capturing time measurement data in the correct phases was easy, but identifying and
describing defects was difficult. For process improvement some students indicated that they would spend more time
on creating effective designs, and need to learn the skill to do effective reviews to pick up defects earlier in
the life cycle. Participants in Prechelt and Unger’s (2000) study made almost identical remarks. In McAlpin and
Liu’s (1995) study the programmers’ software quality increased because they were motivated to spend more time on
designs and reviews.

Most students were surprised by how much time they spent on testing and indicated that debugging might not be
the most effective way to find and fix defects. In one of Humphrey’s (1994) earlier studies about process feedback he
remarks that programmers are typically surprised at how much data they can gather from small exercises and how
quickly they can start using the measurement data to improve their personal software practices.

INTERVIEWS
An interview was conducted with each student in order to gain a deeper understanding of the development processes
each one followed to create the program. The only artefacts that the students created (in addition to the captured
Process Dashboard© measurement data) were the actual code (see section on Program code). The students did not
create designs and therefore these interviews focused on what each student did during the problem-solving process.

The students all indicated that their first step in solving the problem was to do an Internet search for possible
solutions. They all found code that they thought could possibly solve the problem. They copied the code and then tried
to change it to solve the problem. As part of Feiner and Krajnc’s (2009) experiment they asked their students what
their first step would be in solving a given programming assignment. They report that most of their students indicated
that they would search “the Internet” or “use Google” first. A survey conducted at the end of their experiment also
revealed their students’ general acceptance of “Copy & Paste” programming as part of their software development
process (Feiner & Krajnc, 2009, p. 84). All the students in our experiment indicated that this is the method they
usually follow when completing their programming assignments.

In retrospect, all the students indicated that they should rather have started by first solving the problem logically
(using flowcharts or pseudo code) and then searched for code snippets to accomplish specific tasks. They also indicated
that they do not find it easy to write pseudo code to solve problems and therefore prefer to search for code solutions
where the logical thinking has already been done. Generally, they find it “hard to start” solving a problem.

CONCLUSION
In this paper various attributes contributing to the poor quality of student programs have been mentioned.
The findings of Case 1 revealed that most students rely on a process of “code-and-fix”, as predicted by Humphrey
(1999). “Code-and-fix” remains the predominate process of choice from first- to third-year level, which indicates
no process improvement through these years of study. Students also regard “testing” as the most effective
strategy to remove defects. The case study conducted in Case 2 revealed that students’ usage of QATs is
driven by ease of practice, compatibility, convenience, result demonstrability, subjective norm and career
consequences. These usage intentions differ from those identified in studies that involved professional programmers
(Agarwal & Prasad, 2000; Chan & Thong, 2009; Iivari, 1996; Riemenschneider et al., 2002). More in-depth research
is needed to identify additional factors that could possibly affect students’ desire to use QATs. After a selected group
of third-year students participated in a practical experiment (Case 3), they – through the use of process measurement
data – realised (1) how much time they were actually spending on testing or rework, and (2) that testing is not the
most effective method to find and solve defects. Process-measurement data could therefore be regarded as a potential
contributor to the usefulness construct of students’ willingness to adopt QATs.

The students’ feedback indicated that they also lack design and problem-solving skills. This provides further
verification for the findings of McCracken et al.’s study (2001). This lack of design and problem-solving skills could
potentially be the main driver behind the students’ preference towards a “code-and-fix” development process.
However, data collected during Case 3 revealed that the students’ development process could rather be described
as “copy-paste-and-fix”, since very little code was produced from scratch. An in-depth investigation is necessary to
see if “copy-paste-and-fix” is the prevailing development process for most undergraduate computer programming
students. If this is found to be the case, educators could focus on equipping students with proper “Copy and Paste”
skills [as suggested by Feiner and Krajnc’s (2009)]. While additional attempts to improve students’ code reading
and interpretation skills could advance their ability to review and debug their own code (Perkins et al., 1989), it
could also enable them to effectively reuse code snippets copied from the Internet and other sources. It is, however,
recommended that educators enforce effective design techniques from the first programs that students write in an
effort to ensure that they will not fall back on an unstructured “code-and-fix” or “copy-paste-and-fix” life cycle. Case 3
has shown that the effect of process-measurement data should be regarded as a valuable contributor to any process
improvement changes that educators want to enforce on students. The ultimate ideal is that students be able to adapt
their processes according to their personal data.

ACKNOWLEDGMENTS
This paper is based on research conducted under the supervision of Profs J. C. Cronje and L. Nel, in partial fulfilment of the
requirements for the Doctoral Degree in Computer Information Systems in the Faculty of Natural and Agricultural Sciences at
the University of the Free State, and is published with the necessary approval.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
49

REFERENCES
Agarwal, R. & Prasad, J. (2000). A field study of the adoption of software process innovations by information systems professionals. IEEE

Transactions on Engineering Management, 47(3), 295-308.

Ajzen, I. (1985). From intentions to action: A theory of planned behavior. In J. Kuhl and J. Beckmann (Eds), Action control: From
cognition to behavior (pp.11-39). New York, NY, Springer Verlag.

Börsteler, J., Carrington, D., Hislop, G.W., Lisack, S., Olson, K. & Williams, L. (2002). Teaching PSP: Challenges and lessons learned.
IEEE Software, 19(5), 42-48.

Chan, F. K. Y. & Thong, J. Y. L. (2009). Acceptance of agile methodologies: A critical review and conceptual framework. Decision Support
Systems, 46, 803-814.

Crosby, P. B. (1979). Quality is free. New York, NY, McGraw-Hill.

Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3),
318-339.

Fagan, M.E. (1976). Design and code inspections to reduce errors in program development. IBM Systems Journal, 15(3), 182-211.

Feiner, J. & Krajnc, E. (2009). Copy & paste education: Solving programming problems with web code snippets. Proceedings of the
Interactive Computer Aided Learning (ICL 2009) conference (pp. 81-88).

Humphrey, W. S. (1994). Process feedback and learning. Proceedings of the 9th International Software Process Workshop (pp. 104-106).

Humphrey, W.S. (1999). Why don’t they practice what we preach? The personal software process (PSP). Annals of Software Engineering,
6(1-4), 201-222.

Humphrey, W. S. (2005). PSP: A self-improvement process for software engineers. Upper Saddle River, NJ, Pearson Education Inc.

Jenkins, G.L. & Ademoye, O. (2012). Can individual code reviews improve solo programming on an introductory course? Innovations in
Teaching and Learning in Information and Computer Sciences (ITALICS), 11(1), 71-79.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, K. Seppälä, O.,
Simon, B. & Thomas, L. (2004). A multi-national study of reading and tracing skills in novice programmers. In Working Group reports
from ITiCSE on innovation and technology in computer science education (ITiCSE-WGR ‘04) (pp. 119-150). New York, NY, ACM.

Iivari, J. (1996). Why are CASE tools not used? Communications of the ACM, 39(10), 94-103.

McAlpin, J. & Liu, J. B. (1995). Experiencing disciplined software engineering at the personal level. Proceedings of the IEEE Pacific Rim
Conference on Communications, Computers, and Signal Processing (pp. 124-127).

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I. & Wilusz, T. 2001. A
multi-national, multi-institutional study of assessment of programming skills of first-year CS students. In Working Group reports from
ITiCSE on innovation and technology in computer science education (ITiCSE-WGR ‘01) (pp. 125-180). New York, NY, ACM.

Moore, G. & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an Information Technology
innovation. Information Systems Research, 2(3), 192-222.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. (1989). Conditions of learning in novice programmers. Journal of
Educational Computing Research, 2(1), 37-55.

Plowright, D. (2011). Using mixed methods: Frameworks for an integrated methodology. London, UK, SAGE Publications (Kindle edition).

Prechelt, L. & Unger, B. (2000). An experiment measuring the effects of personal software process (PSP) training. IEEE Transactions on
Software Engineering, 27(5), 465-472.

Riemenschneider, C. K., Hardgrave, B. C. & Davis, F. D. (2002). Explaining software developer acceptance of methodologies: A comparison
of five theoretical models. IEEE Transactions on Software Engineering, 28(12), 1135-1145.

Runeson, P. (2001). Experiences from teaching PSP for freshmen. Proceedings of the 14th Conference on Software Engineering Education
and Training, IEEE (pp. 98-107).

Schach, S. R. (2011). Object-oriented and classical software engineering (8th ed.). Singapore, McGraw-Hill.

Thompson, R., Higgins, C. & Howell, J. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.

The African Journal of Information and Communication (AJIC), Issue 15, 2015
50

Towhidnejad, M. & Salimi, A. (1996). Incorporating a disciplined software development process in to introductory computer science
programming courses: Initial results. Proceedings of the 26th Annual Frontiers in Education Conference (FIE ’96), Vol. 2. (pp. 497-500).

Venkatesh, V. & Davis, F. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies.
Management Science, 46(2), 186-204.

Williams, L.A. (1997). Adjusting the instruction of the personal software process to improve student participation. Proceedings of the 27th
Annual Frontiers in Education Conference (FIE ’97), Vol. 1. Teaching and Learning in an Era of Change (pp. 154-156).

