
 

 

 

 

 

 

 

Utilising the Software Engineering Methods and Theory 

framework to critically evaluate software engineering practice in 

the South African banking industry 

 

Alistair Graham Le Roux 

agleroux@gmail.com 

 

 

 

 

A research report submitted to the Faculty of Engineering and The Built Environment of the 

University of Witwatersrand, Johannesburg 

In partial fulfilment of the requirements for the Degree of Master of Science in Engineering 

Supervised by Professor Barry Dwolatzky 

September 2015 

 

  



 

 

Declaration 

 
I declare that this research report is my own, unaided work, except where otherwise acknowledged. 

It is being submitted for the Degree of Master of Science in Engineering in the University of the 

Witwatersrand, Johannesburg. It has not been submitted before for any degree in any other 

university 

 

 

Alistair Graham Le Roux 

 

Signed this ____ day of __________ 20____ 

  



 

 

Acknowledgements 
 

Professor Barry Dwolatzky for his supervision, guidance and encouragement throughout the course 

of this research project. 

Mr Johannes Vorster for his insight and encouragement in the initial phases of this project.

 



 

i 

 

Abstract 

In recent years, software has become the cornerstone of banking and new business products are 
directly dependant on software. The delivery cycles for new features is now related to market share. 
This drive to use software as a vehicle for competitive advantage has created an environment in 
which software development of new business systems are increasingly on the critical path of many 
projects. An organisation’s portfolio of software intensive projects is situated within this complexity 
and organisations attempt to mitigate the risks associated with these complexities by implementing 
software development processes and practices. A key problem facing the modern bank is how to 
define and build a software development process that caters for both the traditional and 
increasingly agile genres of software development characteristics in a consistent and manageable 
way.  

The banks attempt to address this problem through continuous methodology and process 
improvements. Comparing and assessing non-standardised software engineering lifecycle models 
without a common framework is a complex and subjective task. A standardised language is 
important for simplifying the task for developing new methods and practices or for analysing and 
documenting existing practices.  

The Software Engineering Methods and Theory (SEMAT) initiative has developed a standardised 
kernel of essential concepts, together with a language that describes the essence of software 
engineering. This kernel, called the Essence, has recently become an Object Management Group 
(OMG) standard. The Essence kernel, together with its language, can be used as the underpinning 
theory to analyse an existing method and help provide insights that can drive method 
enhancements.  

The research report proposes a simple, actionable analysis framework to assist organisations to 
assess, review and develop their software engineering methods. The core concepts of the 
methodology are identified and mapped to the Essence concepts. The governance model of the 
Essence is mapped to the governance model of the industry model and a set of practices is identified 
and documented in the Essence language. The mapping and resulting analysis can be used to test 
the validity of the Essence theory in practice and identify areas for improvement in both the method 
and the Essence standard.  

The analysis framework has been applied to an operational software development lifecycle of a large 
South African bank. A mapping of the Essence concepts to the governance model and method 
documented in the lifecycle was completed. This mapping revealed that the Essence is a valid tool 
and can be used to describe a method in practice. Furthermore it is useful as an analysis framework 
to assess the governance model that manages and measures the progress of an endeavour in the 
Bank.  

The case study and resulting analysis demonstrate that the Essence standard can be used to analyse 
a methodology and identify areas for improvement. The analysis also identified areas for 
improvement in the Essence specification. 

  



 

ii 

 

Table of Contents 
Declaration ............................................................................................................................................................. ii 

Acknowledgements ............................................................................................................................................... iii 

Abstract ................................................................................................................................................................... i 

Table of Contents ................................................................................................................................................... ii 

List of Figures ......................................................................................................................................................... iii 

List of Tables .......................................................................................................................................................... iii 

Glossary ................................................................................................................................................................. iv 

Chapter 1 Introduction ........................................................................................................................................... 1 

Chapter 2 Literature Review ................................................................................................................................... 3 

Defining Software Engineering ...................................................................................................................... 3 

Factors and Challenges that Software Engineering must solve ..................................................................... 4 

Software Engineering Process Models ........................................................................................................... 5 

Software Engineering Theories and Standards .............................................................................................. 6 

Defining Software Development Practices .................................................................................................... 8 

Method Languages and Model Comparisons ................................................................................................ 8 

The Value of SEMAT ....................................................................................................................................... 8 

Chapter 3 Research Objectives ............................................................................................................................. 10 

The Research Question ................................................................................................................................ 10 

The Research Approach ............................................................................................................................... 10 

The Analysis Framework .............................................................................................................................. 11 

The Case Selection ....................................................................................................................................... 11 

The Data Collection ...................................................................................................................................... 11 

Chapter 4 Research Theory and Data ................................................................................................................... 13 

SEMAT Essence Overview ............................................................................................................................ 13 

The Bank’s Model......................................................................................................................................... 18 

Identifying the Bank’s Alphas ....................................................................................................................... 23 

Identifying the Bank Alpha States ................................................................................................................ 24 

Mapping the Bank’s Alphas to the Essence Alphas...................................................................................... 26 

Mapping the Essence States onto the Bank’s Lifecycle ............................................................................... 28 

Mapping the Essence Activity Spaces to the Bank’s Lifecycle ..................................................................... 29 

Identification of Practices using the Essence definition of a Practice .......................................................... 30 

Chapter 5 Analysis of the Research ...................................................................................................................... 32 

Analysis of the Essential Concepts ............................................................................................................... 32 

Analysis of Practices ..................................................................................................................................... 35 

Analysis of Activity Spaces ........................................................................................................................... 35 

Chapter 6 Conclusion and Future Work ............................................................................................................... 37 

Appendix A: Detailed Analysis of Observations .................................................................................................... 40 

A1: Analysis of Essential Concepts ................................................................................................................... 40 

A2: Analysis of Essence Alpha States ............................................................................................................... 43 

A3: Analysis of Activity Spaces ......................................................................................................................... 44 

A4: Analysis of Baselines .................................................................................................................................. 45 

Appendix B: Bank’s Alpha Table ........................................................................................................................... 46 



 

iii 

 

Appendix C: Mapping Slots to Baselines ............................................................................................................... 49 

Appendix D: Mapping CAR’s to Slots .................................................................................................................... 50 

References ............................................................................................................................................................ 52 

 

List of Figures 
Figure 1: The fundamental goal of software engineering ...................................................................................... 3 

Figure 2: Core components of the Essence .......................................................................................................... 14 

Figure 3: Essence kernel alphas ............................................................................................................................ 14 

Figure 4: Alpha decomposition ............................................................................................................................. 15 

Figure 5: Essence activity spaces .......................................................................................................................... 16 

Figure 6: Essence components of a practice ........................................................................................................ 17 

Figure 7: Phase pattern ........................................................................................................................................ 18 

Figure 8: The Bank’s SDLC elements ..................................................................................................................... 18 

Figure 9: Key SDLC language concepts ................................................................................................................. 19 

Figure 10: Method metamodel ............................................................................................................................. 20 

Figure 11: Phases of the management model ...................................................................................................... 21 

Figure 12: Governance model .............................................................................................................................. 22 

Figure 13: Conceptual model of a slot .................................................................................................................. 23 

Figure 14: Information contained in a work product ........................................................................................... 25 

Figure 15: Slots modelled as kernel elements ...................................................................................................... 34 

Figure 16: Activity spaces mapped to activities .................................................................................................... 35 

 

List of Tables 
Table 1: Slots linked to gates ................................................................................................................................ 24 

Table 2: Bank alphas identified in work products................................................................................................. 24 

Table 3: Slot states for a gate ............................................................................................................................... 25 

Table 4: States for non-slot alphas ....................................................................................................................... 26 

Table 5: Slots mapped to Essence alphas ............................................................................................................. 27 

Table 6: Alphas mapped to non-slot alphas ......................................................................................................... 28 

Table 7: Essence alpha states mapped to baselines ............................................................................................. 28 

Table 8: Essence alpha states mapped to full lifecycle ......................................................................................... 29 

Table 9: Activity spaces per phase per alpha ........................................................................................................ 30 

Table 10: Component modelling practice ............................................................................................................ 31 

Table 11: Analysis of slots and alphas .................................................................................................................. 42 

Table 12: Analysis of Essence alpha states ........................................................................................................... 43 

Table 13: Analysis of activity spaces ..................................................................................................................... 44 

Table 14: Analysis of baselines ............................................................................................................................. 45 

Table 15: Banks alpha table .................................................................................................................................. 46 

Table 16: Mapping slots to baselines ................................................................................................................... 49 

Table 17: Mapping CAR's to slots ......................................................................................................................... 51 



 

iv 

 

Glossary 
Activity  An activity describes some work to be performed 

Activity Space  A set of essential things to do in a software endeavour 

Agile Manifesto 
 A formal proclamation designed to guide an iterative and people-centric approach to software 
development 

Alpha  An alpha is an essential element of a software engineering endeavour 

CSR Conceptual solution review 

Baseline  A milestone set by the governance gates in the Bank's lifecycle 

BRR  The business requirements review of the Bank's lifecycle 

BTF The build, test and fix phase of the Bank's lifecycle 

Business Context A document describing a business opportunity 

CAB Change advisory board which manages all changes to production systems 

CAR 
 A continuous assessment criteria used to assess the state of a work product in a governance gate 
review 

CDR  The critical design review, which assesses the detail designs of a software endeavour 

Competency  The essential things to know in a software engineering endeavour 

DD The detailed design phase of the Bank's lifecycle 

Deployment Unit A deployable piece of software, data or infrastructure 

Discipline  A list of tasks that are grouped as part of a domain 

EAPR  The enterprise architecture peer review of the Bank's lifecycle 

Essence A standard that defines the essential set of concepts that are common to all software projects 

Essence kernel The essential set of alphas and activity spaces that are common to all software projects 

Functional Component 
A concept that represents the static structure and dynamic behaviour of an element of the 
software to be built 

Function-Behaviour-
Structure 

An ontology that represents the process of designing as transformations between function, 
behaviour and structure 

FRF Financial review forum, where project budgets are authorised 

HLD The high level design phase of the Bank's lifecycle, where the overall solution is defined 

IDA The infrastructure design authority, which reviews infrastructure designs 

IEEE The Institute for Electronics and Electrical Engineers 

IMPL The implementation phase of the Bank's lifecycle 

ISO 24744 An ISO standard for software engineering metamodeling 

LSR Logical solution review, where the high level solution architecture is reviewed 

MD 
The macro design phase of the Bank's lifecycle, where the software components data and 
interfaces are defined 

Metamodel A model that defines the underlying concepts of a model 

Node A logical container with a defined set of attributes that supports software, data and infrastructure 

Object Management 
Group 

An international standards consortium 

OPEN 
Object-oriented process, environment and notation. A public domain, fully object-oriented 
methodology and process 

Open Process 
Framework 

A public-domain object-oriented framework of method components 

Operational 
Component 

A concept that represents the non-functional qualities required to support an element of the 
software to be built 

Pattern 
A pattern is a generic mechanism for naming complex concepts that are made up of several 
Essence elements 

PBR Project benefits review 

PDR The preliminary design review, which assesses high level application design 

PIR Post implementation review 

Practice A practice is a description of how to handle a specific aspect of a software engineering endeavour 

PRR 
The production readiness review, which assesses the production release readiness of the 
software and infrastructure 

SDLC 
System Development Lifecycle which describes a process for planning, creating, testing, and 
deploying a software system 

SEMAT 
Software Engineering Methods and Theory. Founded in September 2009 by Ivar Jacobson, 
Bertrand Meyer, and Richard Soley 

Slot A conceptual placeholder for a set of work products to be reviewed at a governance gate 



 

v 

 

SO The solution outline phase of the Bank's lifecycle 

Sociotechnical A concept that recognizes the interaction between people and technology 

SOMA Service oriented modelling architecture, a practice for developing a service oriented architecture 

SPEM (2.0) 
Systems Process Engineering Metamodel, an OMG standard for modelling software engineering 
processes, currently at version 2.0 

SRR 
The system requirements review, which reviews the system use cases and infrastructure 
requirements of a solution 

TRB 
The technical review board, which owns and manages the six technical governance gates in the 
Bank's lifecycle 

TRR 
The testing readiness review, which reviews the system and user acceptance test cases and test 
environment readiness 

UD 
The micro design phase in the Bank's lifecycle, where the detailed internal aspects of an 
application is designed   

Work Products An output of an activity, typically a document 

 

 

 



 

1 

 

Chapter 1 Introduction 

As software has become the cornerstone of banking models in recent years a situation has arisen 
where new business products are directly dependant on customer facing software. The delivery 
cycles for new features in the software frontends is now related to the market share of the product. 
This drive to use software as a vehicle for competitive advantage has created an environment in 
which software development of new business systems are increasingly on the critical path of many 
projects. These projects are expected to deliver quality, flexible, low cost systems in significantly 
shorter periods of time. This environment is further complicated by a rapid pace of technological 
change, increased end user involvement, outsourcing of non-core business domains to vendors, an 
increasing reliance on off-the-shelf software and a requirement to interoperate across 
organisational boundaries [1].  

The turnaround time for this pace of software delivery requires refactored software development 
processes and lifecycles that support fast time to market, rapidly changing requirements, unknown 
user requirements and heterogeneous deployment environments. The frontend systems, however, 
still require integration with the large, well understood back end information and transaction 
processing systems that are the heart of business [2]. These systems are large, complex, largely 
undocumented and require a different software process. They need a process that allows for careful 
requirements analysis, detailed systems analysis, and impact analysis with clearly specified changes. 
These changes need to be rigorously tested through processes that include regression and 
integration testing. 

Furthermore organisations are beginning to realise that these complex systems are core assets to 

the organisation and are demanding that they are modified in a structured, repeatable and cost 

effective way[3]. An organisation’s portfolio of software intensive projects is situated within this 

complexity and organisations attempt to mitigate the risks associated with these complexities by 

implementing software development processes and practices. These methodologies prescribe a set 

of well-defined activities and tasks designed to provide structure, repeatability and stability to the 

organisation’s delivery capabilities. These robust processes and practises are generic and often 

ignore the social, organisational and problem context of the organisation [4][5][6]. 

Alter describes software projects as a type of work system, and identifies nine  elements (customers, 
products and services, processes and activities, participants, information, technologies, 
environment, infrastructure, and strategies) that are linked in a multi-dimensional model that is  
required to understand and model any system[7]. These elements need to be defined in a way that 
enables an efficient work system that achieves the objectives of all role players.    

A key problem facing these organisations is how to define and build a software development process 
that caters for both the traditional and increasingly agile genres of software development 
characteristics in a consistent and manageable way. These processes must be defined in a way that 
does not neglect the systemic interrelationships that have been cultivated between the operations 
of the organisation and the technology systems supporting them. Ignoring the work systems that 
frame the software development context will reduce the amount of agility the organisation can 
tolerate[8]. 

The de facto runtime lifecycles of the banks in South Africa are hybrid models that attempt to 
balance this desire for greater agility with the operational risk that is their reality. Analysing these 
models for improvement is challenging because: 



 

2 

 

 Lifecycle terms and definitions are inconsistent and have many definitions[9] 

 Project management, system development and software development lifecycles are tightly 
coupled to the point that it is no longer clear to which domain a term or definition 
belongs[10] 

 Linking agile and plan driven models to a formal program and portfolio management 
framework is difficult as the core concepts across the models are neither standardised nor 
consistent[11][12]. 

Furthermore, a single development technique is not appropriate in these large heterogeneous 
environments. Applying object oriented techniques to sequential programing paradigms rooted in 
structured analysis is inappropriate and confusing, leading to teams not adopting a method or set of 
techniques because it is unhelpful in the analysis of their system[13]. 

Software engineers and the organisations that employ these process models require an effective 
thinking framework, to bridge the gap between their current ways of working and any new ideas and 
practices that they need to adopt. Senge proposes this model as a way to ensure a systems approach 
to thinking about problems[14].  

Software Engineering Methods and Theory (SEMAT) as a framework has proposed a model that 
standardises the core elements of any software development model. SEMAT is an initiative that is 

 ”attempting to re-found software engineering based on a solid theory, proven principles and best 

practices that: 

 Include a kernel of widely-agreed elements, extensible for specific uses 

 Addresses both technology and people issues 

 Are supported by industry, academia, researchers and users 

 Support extension in the face of changing requirements and technology” [15] 

SEMAT provides a thinking framework that can help organisations with large, complex software 
development models to begin streamlining and improving their models by using a standardised 
framework with a core set of elements. SEMAT has managed to define the core elements of a 
software development endeavour and the lifecycle of these elements without prescribing a process 
that must be followed. This provides organisations with a powerful, standardised and paradigm 
independent language to help align actual project processes and techniques and the formally 
defined processes required by management.  

The remainder of the research report is structured as follows. Chapter 2 presents a literature review 
of related work. Thereafter, Chapter 3 details the research objectives, design and methodology 
approach. Chapter 4 presents the research work completed and is structured into three sections, a 
brief introduction to the theory of SEMAT, a description of the Bank’s model and a mapping of the 
models using the methodology described in Chapter 3. Chapter 5 provides an analysis and discussion 
of the research work that was completed and  
Chapter 6 concludes the research report and discusses possible future work. 

 



 

3 

 

 Chapter 2 Literature Review 
 

In the review of available literature the following themes emerged: 

 Defining software engineering 

 Factors and challenges that software engineering must solve 

 Software engineering process models 

 Software engineering theories and standards 

 Method languages and model comparisons 

 Defining software development practices 

 The value of SEMAT 

The chapter discusses each of the themes briefly to give the reader a broader view of software 

engineering as it relates to models, processes, practices and theories. The chapter concludes with a 

section on the value that the SEMAT initiative brings to the current body of knowledge. 

Defining Software Engineering 

A survey of available literature to identify a definition for software engineering revealed that it is a 

broad domain covering a range of topics. The IEEE defines software engineering as: 

“(A) The application of a systematic, disciplined, quantifiable approach to the development, 

operation, and maintenance of software; that is, the application of engineering to software. 

(B) The study of approaches as in definition (A).”[16] 

Sommerville, like many software engineering textbook authors, limits the definition of software 

engineering to software development and software maintenance: 

“Software engineering is an engineering discipline that is concerned with all aspects of software 

production from the early stages of system specification to maintaining the system after it has gone 

into use.”[17] 

Somerville’s definition leads to the idea that software engineering is about achieving the overall 

basic goal of taking a user’s need through a process and delivering working software that satisfies 

this need. This basic concept is illustrated here in a diagram adapted from[18]: 

 

Figure 1: The fundamental goal of software engineering (adapted from [18]) 

 

Software
User Needs and 
Requirements

Processes

Methods & Techniques

Satisfies



 

4 

 

All the available literature supports Somerville’s definition and suggests that the essential aspects 

required for software engineering to achieve its basic goal are: 

 Requirements gathering 

 Software design and implementation 

 Validation of the software against the requirements.   

This view does not explicitly consider the sociotechnical nature of software engineering as an 

essential aspect. Furthermore it is evident that there is wide disagreement on the processes, 

methods and techniques required to effectively and efficiently achieve these tasks[19].  

The IEEE definition of software engineering is adopted for this paper with the explicit inclusion of the 

sociotechnical aspects of a software engineering endeavour. This definition is consistent with the 

SEMAT Essence kernel which considers the sociotechnical aspects of software engineering as 

essential. 

Factors and Challenges that Software Engineering must solve 

McLeod et al [1] discusses how software development in industry today is faced with factors that are 

challenging the current theories about how to effectively build software intensive systems. Today’s 

theories must be able to deal effectively and efficiently with the rapid pace of technological change. 

This change quickly renders software development languages and techniques obsolete and makes it 

increasingly difficult to manage development skills.  The increasing sophistication of development 

tools and technologies facilitates faster development turnaround times, but introduces architecture 

and maintenance issues [20].  

The current trend of organisations to focus on their core business functions and capabilities has led 

to greater reliance on packaged software acquisition rather than bespoke development[21]. These 

packages require customisation and integration into the organisations system landscape and have 

paved the way for greater outsourcing as deep domain knowledge now resides with the software 

package vendor and is not required in the technology department. Furthermore, there is an 

increased emphasis on enterprise wide systems that allow for standardised, streamlined and cost 

effective business processes that increases the complexity of the requirement gathering and design 

processes required[21]. These factors are interrelated and together demand different approaches to 

software engineering and provide the potential for unpredictable or unintended consequences. 

Bloch et al [22] discuss four ways to improve IT project delivery and identify factors that contribute 

to project failures: 

 Missing focus (vague vision and weak requirements) 

 Content issues (incorrect details and missing content) 

 Skill issues (developer and project management skills) 

 Execution issues 

They determined that managing strategy and stakeholders, the right technical experts, an effective 

team and core project management practices are the key factors for success and are the 

cornerstones of any project. They also propose that mastering technology by acquiring the right 

technical experts will somehow ensure that the right technical processes are adopted.  



 

5 

 

Furthermore, organisations are faced with significant challenges in introducing agile practices into 

existing traditional plan driven models and processes. Merging these models into a consistent model 

that does not reduce agility or ignore the existing working processes  is difficult as the core concepts 

across the models are neither standardised, consistent nor necessarily organisationally suitable[11]. 

Additionally, project management, system development and software development lifecycles are 

tightly coupled and there is no clear distinction between the concepts that are defined for 

governance, project management coordination and structuring, and the concepts specifically 

required for developing software[23]. 

Software Engineering Process Models 

The modern software development lifecycle has become complex as customers and stakeholders 

demand newer entry points into the lifecycle as their demands are not always for a new software 

solution. The modern lifecycle needs to balance enterprise architecture strategies, innovative 

business solutions, stability of operations, outsourcing, and integration and multiple competing 

sponsors and priorities. The modern lifecycle can be considered ‘messy’ [24] and will depend on 

coordination and synchronisation more than individual productivity.  

Current trends in software engineering are revealing the importance of systems thinking and  the 

complex nature of project teams and the critical importance of understanding an organisation’s 

culture, project team members, their tasks and processes and how these variables interact, 

synchronise and develop emergent behaviour [5]. Appelo illustrates how project teams interact as 

agents and require significant management input to synchronise, and, the processes and practices 

that help teams to synchronise effectively are more likely to be adopted. Myburgh [25] extends this 

idea and proposes that a software engineering endeavour is a combination of management 

governance and production governance. He postulates that when management and production 

processes are appropriately synchronised then software engineering enters a band of feasibility 

where there is a high probability that good quality software can be delivered within budget and on 

time. This band spans across both agile and plan driven approaches. Kajko-Mattsson [20] supports 

the distinction between engineering and management processes and identifies an overriding process 

within which other processes branch off. These overriding processes are management processes and 

are the lifecycle elements of a software development lifecycle and the methods are the engineering 

aspects.  

Boehm[8] postulates that neither agile nor rich process models solve all software engineering 

problems and do not provide any silver bullets. He observes that, though methods are useful, more 

value will be found in focussing on people and communication. He recommends that while agile and 

plan driven approaches have strong home grounds, strategies are needed to integrate them to 

capitalise on their strengths and minimise the effects of their weaknesses. Each organisation needs 

to balance their approach to software engineering to fit the organisations evolving needs and not 

assume that an engineering paradigm that worked previously will work into the future. 

Many of the rich software engineering process models and standards in use today are rooted in the 

idea that software processes are software too. This idea was first proposed by Osterweil in the late 

Eighties [26]. Kruchten[27] argues that these rich processes collapse due to their highly prescriptive 

artefact based foundations. He questions whether these process models are addressing the right 

problems and that process defined as executable software is the wrong metaphor and incorrectly 



 

6 

 

assumes that human actors are merely machines blindly executing process. He expresses the view 

that we should not start with complex, detailed all-encompassing processes before we have 

identified the right paradigm. Peter Senge [14] confirms this view about the hazards of applying fixes 

to effects without understanding the true causes and the context of those causes in his work on 

systems thinking. Kruchten postulates that we need a descriptive approach based on observing what 

people do rather than what we think people should do.  

Kajko-Mattsson [20] describes how homogenous project processes are not optimised to run across 

multiple teams and environments. To embrace this heterogeneity, software organizations have 

created many process variants that are dedicated to various needs, development styles, product 

complexities, process formalities, cultures, and project types. Each project team will attempt to 

satisfy its specific needs while fitting into the organisation’s overarching prescriptive processes by 

creating a project process. This results in multiple variants of processes and practice across teams 

and introduces productivity constraints and significant synchronisation issues. Kajko-Mattsson 

reasons that a standardised mechanism is needed to aid software engineers and managers in 

adapting their practices that will not interfere with the production and management of software. 

Also, because the terms are standard, they represent ideas that are common to development and 

are therefore a fruitful source of abstractions. The trick is to identify the right level of commonality 

and variability to provide software engineering with processes that can leverage current 

technologies, trends and techniques [28]. 

Software projects need to strike a balance between quickly delivering software, satisfying 

stakeholders, addressing risks and improving ways of working. A software project is faced with two 

distinct types of complexity, as defined by Senge[14] and Appello [5]. Detail complexity, relating to 

the complexity and structure of the code, which is typically the focus of developers and analysts and 

dynamic complexity which relates to the interaction of all the components, including the hardware, 

software, agents and other dependencies, of a software solution. This dynamic complexity gives rise 

to emergent behaviours in the project teams and in the actual operation of the software as it 

provides its functions to the end user. This behaviour can lead to a successful software project or 

inhibit the delivery and final usefulness of the software.  

What is clearly needed is a software engineering theory that embraces the inherent complexity of 

the software that must be built and complex adaptive nature of the context in which the software 

development takes place. 

Software Engineering Theories and Standards 

Software engineering is not short of theories and process models that attempt to solve for the 

current state of the domain. Each of these brings a perspective on the domain of software 

engineering but none provide an overall theory or model that caters for both production complexity 

and the management complexity. Furthermore each perspective provides its own set of definitions 

to terms that have become over used and over extended. This problem is so prevalent that most 

software development methodologies now suggest that developers equip themselves with a 

dictionary of standard terms to make communication among developers easier and more precise 

[28]. 

Over the last decade a number of theories and standards have been proposed to define the core 

elements of software engineering.  



 

7 

 

Systems Process Engineering Metamodel (SPEM)[29] was adopted by the OMG as a standard for 

modelling software engineering processes. This standard is a comprehensive model with a very 

complex language for defining software processes. The standard is designed to be used by method 

engineers and based on the idea that software processes are software and can be defined as a 

software program. Consequently, it has a well-defined object oriented metamodel and derived 

domain model that can be theoretically instantiated as objects in an object oriented language.  

Elvesæter et al [30] indicates that SPEM 2.0 does not support enactment of the activities and 

processes that it defines. These are typically enacted in project management tools as work 

breakdown structures that are derived from the set of defined activities.  

At the core of the SPEM 2.0 specification is the idea that a practitioner performs a set of activities in 

a set sequence on a set of work products. The work products provide the linking between processes 

and practitioners and the process ends when a work product has been completed to a defined level 

of detail[31].  

Nardini et al[31] also expresses the concern that the implementation of SPEM in practice is not 

simple, as the specification is generic and provides no guidance on how to use it. Furthermore it 

lacks a formal semantic definition for its concepts which will reduce the consistency of any methods 

developed across organisations. 

Kuhrmann et al[32] conducted a study to determine where software process development stands 

today. They discovered that of the plethora of software development process models that are 

discussed in literature very few are documented and only two are used in practice. Furthermore, 

there is no evidence of ISO 24744 or OPEN development outside of the original standards and 

academic papers referencing ISO 24744 where it supported the instantiation of objects through a 

discussion of powertypes and situational engineering.  

There is evidence of academic papers that have attempted to define a theoretical domain model for 

software engineering. Kruchten[33] used the Function-Behaviour-Structure framework as a 

theoretical model and applied it to software engineering processes. This model identifies key 

engineering design elements. The model was designed to be applicable to any engineering domain. 

Kruchten noted that software engineering lacks a fundamental theory, making the analysis 

experimental. The model allowed Kruchten to reason about how to cater for multiple entry points 

into the software engineering lifecycle where reverse engineering and reusing components is 

standard practice. The model also illustrates how an underlying theory can be used to influence the 

kinds of modelling and specifications that can simplify the description process. 

Kruchten has more recently proposed a model of software development that abstracts software 

development into core components that are always evident in any endeavour. He identifies the core 

concepts of intent, product, work and people and overlays this with project variability components 

and details how the tool can be used for analysis of a software engineering endeavour and the 

underlying process models. This model factors in the variable components that are often ignored in 

more traditional process models and which are the greatest contributors to project failure[34]. 



 

8 

 

Defining Software Development Practices 

Henderson-Sellers[35] argues that successful methods that help software engineers build quality 

software system are those that are constructed from small atomic ‘chunks’ of method process from 

a repository of predefined method fragments. These chunks can then be linked together in a method 

that satisfies a particular situation[35]. These atomic components need a strict definition and an 

overall metamodel. Henderson proposes a metamodel to describe these chunks that contain a 

process part and a product part that is influenced by the process part. His model also provides for a 

description of the usage of the method chunk. The proposal does not provide any guidance on how 

to take a method and break it up into fragments and chunks, relying on the ISO 24744 standard as 

the underlying metamodel and the Open Process Framework as the method repository. 

Method Languages and Model Comparisons 

A review of the literature that researches method languages shows that the available literature is 

limited to comparisons of the SPEM 2.0 metamodel and the ISO 24744 standard by Henderson-

Sellers[36] and this is limited to a discussion of issues with the theoretical object models of the 

metamodels. Elvesaeter et al[37] compares the Essence model and SPEM 2.0 for the purposes of 

migrating a SPEM 2.0 model into an Essence model. This paper does not use the Essence as a 

framework to analyse an existing software engineering model. 

The literature review also revealed no theoretical software engineering model used as a framework 

to assess a model currently used in industry. There are, however a number of papers that compare 

theoretical models and describe their home grounds [38],[8]. These comparisons are focussed on 

helping organisations select a model based on the project and organisational characteristics. 

The Value of SEMAT 

From the literature study it is clear that there are a number of frameworks that have been proposed 

and can be used to evaluate software engineering models and methods, and only one metamodel 

that has been used in industry. Dwolatzky[39] states that software engineering is hampered by a 

split between academic definition and research and what is considered useful in industry. What is 

needed is a common theory for software engineering that combines academic theory, industry 

experience which is sometimes considered best practice and proven principles.  

Software Engineering Method and Theory (SEMAT) started in 2009 with a call by Jacobson, Meyer, 
and Soley to “ Refound software engineering based on a solid theory, proven principles and best 
practices”[40]. This call was followed by a vision statement [41] and work commenced on developing 
a kernel of core concepts and defining a theoretical base to underpin software engineering as a 
discipline. A kernel was then published in response to the Object Management Group’s request for 
proposal: “A Foundation for Agile Creation and Enactment of Software Engineering” in 2012[42]. 
 
SEMAT as an initiative has the potential to provide a common theoretical framework that will help 

academics and industry practitioners debate and agree software engineering best practice and 

methods. SEMAT provides a set of concepts that are equally useful for a developer team to define 

their way of working and for the organisation to use the same concepts to understand how they 

need to set up their project portfolios in a way that best fits the project and organisation 

characteristics [43].  

This will help remove duplication of practices and processes and help change managers introduce a 

set of consistent models that provide both agile and plan driven approaches. Project managers and 



 

9 

 

engineers now have a flexible way to align and agree a practical way of working across the multiple 

systems and teams that are required on any given complex project [40]. Furthermore the Essence 

kernel makes it explicit that the sociotechnical aspects of software engineering are not second class 

citizens [9].  

The Essence kernel has proved to be practical, providing real world value in developing a framework 

for growing methodologies in practice and as a lightweight software process improvement 

approach[44]. The Essence kernel has also been found useful for team reflection and providing a 

mechanism to help transition projects in a structured way[45]. 

SEMAT is not without its critics. Concerns have been raised about SEMAT attempting to create a 

generalised, universal theory that can be applied in any context and that the complex development 

context can somehow fit into a standard, predefined set of alphas [46]. Cockburn [47] has 

challenged the underlying reasons that support the original call to action and claim that they are 

inaccurate, misleading and not based on any agreed evidence. He ultimately questions the validity of 

developing a theory of software engineering when, as he maintains, it is still not understood what 

happens on most software projects. 

The current work in SEMAT and on the Essence kernel is focussed on using the kernel as a 

framework to improve software engineering tuition[45] and as a consulting tool for improving 

software processes[44]. 



 

10 

 

Chapter 3 Research Objectives 
The objective of this study is to evaluate the usefulness of SEMAT (Software Engineering Methods 

and Theory) as a framework for software engineering process analysis. To achieve this objective, the 

SEMAT[9] model will be evaluated against an industry lifecycle to gain a deeper understanding of the 

Essence kernel and identify gaps in the model. The evaluation and its resultant analysis model could 

assist organisations to analyse and recommend improvements to their software system delivery 

capabilities.  

The Research Question 

The following research question will guide the development of this objective: 

In what way can the underlying model of the organisation’s software development lifecycle be 

critically evaluated by mapping the software development lifecycle onto the SEMAT kernel and does 

the mapping provide insight into the gaps identified? 

To answer this question a set of hypothesis are formulated to help narrow down the scope of the 

investigation. The following hypotheses have been identified: 

1. The SEMAT framework can be mapped to a custom industry lifecycle and it can be used to 

describe how the entire process hangs together 

2. The SEMAT framework is a useful construct in analysing software engineering models and is 

useful in identifying gaps and guiding the selection of appropriate practices and methods to 

address these gaps 

The Research Approach 

The selected approach is designed to facilitate an understanding of the context of the organisation 

and to gain an understanding of the existing software development cycle. This understanding will 

provide a foundation to illustrate how the existing lifecycle and its related practices can be mapped 

to the SEMAT kernel using the kernel and its language. The resulting mapping will be used to 

describe how the SEMAT kernel and language can be used to analyse the practices and processes 

contained within the organisation’s repository. The analysis will provide a set of suggestions for 

consideration as feedback to the SEMAT team and a framework for analysing the organisation’s 

processes and practices. 

 The steps of the methodology are outlined here: 

1. A literature survey of SEMAT and other frameworks that are useful in analysing software 

engineering processes and practices  

2. Researching and reviewing relevant literature 

3. Researching and understanding the SEMAT concept and identifying key concepts 

4. Researching the organisation’s processes and practices and identifying its underlying 

language and concepts 

5. Associating key concepts of the organisation’s method to the SEMAT Kernel and language 

6. Using the mapped framework to identify gaps and possible mechanisms to resolve these 

gaps in both the organisation’s  lifecycle and the SEMAT Kernel 

7. Confirming the hypothesis and subsequent answering the research question 



 

11 

 

The Analysis Framework 

A framework for the analysis of a software engineering lifecycle was developed to help with the 

investigation and analysis. The framework helps identify the underlying domain model, the key 

elements of the model and how these elements fit together in practices. This framework will provide 

a foundation to develop a generic analysis model that could be used to assess any organisation’s 

software engineering capability.   

The framework consists of a set of questions that are designed to help analyse an existing set of 

practices and methods in terms of the language of the SEMAT kernel. The set of questions used as 

the basis of this research is described here:  

 What are the essential concepts that practitioners work with (alphas)? 

o Do these essential concepts have states? 

o Do checklists exist to determine the states? 

o What lifecycle concepts can be expressed in terms of the states of a collection of 

alphas? 

o What collection of work products manifests an essential concept? 

 What are the essential activities and tasks that are executed? 

o Which concepts do they drive? 

o Which states do they drive? 

o What criteria are to be fulfilled to measure the completeness of an activity? 

 What work products provide evidence of the essential concepts? 

o What activities provide guidance on creating work products? 

 What patterns are defined? (phases, milestones, gates) 

 What practices can be identified? 

The Case Selection 

The organisation selected is one of the banks in South Africa with a significant investment in 

technology and software intensive systems. In recent years the industry has had to deal with the 

rapid pace of technological change, customers increased usage of mobile technology and an 

increased use of technology solutions to gain competitive advantage. This market-driven change has 

challenged the organisation’s software development capability resulting in a desire to improve their 

existing software and systems development processes. The company recently embarked on a 

journey to introduce a new system development lifecycle to improve its software delivery capability. 

This new methodology promises to help the organisation reduce the time and cost it currently takes 

to introduce new software into the organisation and to reduce the risk of introducing this software 

and its related infrastructure components into the operational environment. The new lifecycle is an 

ideal candidate to use as a case for assessing the new SEMAT standard, as it is formally defined and 

documented in a tool and easily accessible to the researcher.  

In the research described here, the unit of analysis was at the level of the described engineering 

lifecycle and its template artefacts. The study did not consider any projects that used the method, 

nor did the study consider any artefacts delivered as part of any endeavour.  

The Data Collection 

A number of data sources were used as sources in this study. The primary source was the internally 

published method website, which acted as the organisation’s method repository and contained all 



 

12 

 

the processes, activities, work breakdown structures, templates and techniques. The repository is a 

live repository and as such the lifecycle is under continuous modification for improvement and the 

research standardised on version 9.0 of the method for the purposes of analysis. The organisation’s 

published method, and related documentation is proprietary, and due to license constraints is not in 

the public domain and consequently cannot be distributed to external parties.  

 The researcher used two other sources of information to supplement this primary information, an 

extract of the method activities for use in method adoption workshops and the Technical Review 

Board workbook which is used extensively in the governance model of the new lifecycle. The 

research method required the use of the published SEMAT Essence specification, version 1.0, 

published on the OMG website [9]. 

 



 

13 

 

Chapter 4 Research Theory and Data 
This chapter details the research work that was completed as part of the critical analysis of the 

Essence model and the Bank’s lifecycle. The chapter is structured into three sections, each 

describing an aspect of the research work. The first section introduces the Essence model and 

discusses some key aspects of the standard to facilitate an understanding of the terms and concepts 

used in later sections. The second section introduces the Bank’s system development lifecycle in the 

language of the Essence standard. The final section discusses the research work completed to 

critically analyse the Essence standard against the Bank’s lifecycle.  

SEMAT Essence Overview 

SEMAT is a software engineering community initiative designed to address many of the current 

issues in software engineering [40].  A key outcome of this community is a specification called the 

Essence that is intuitive and provides a simple graphical syntax to simply capture and explain existing 

practices [15]. The overarching vision is to create a specification that supports enactment of 

software engineering by practitioners much like the Agile Manifesto supports more agile software 

development practices [30]. 

The Essence, as an emerging standard, is composed of a kernel of essential elements of a software 

endeavour and a language to describe these elements. The standard enables the essential things to 

work with, essential things to do and essential things to know to be defined and described in a 

consistent, coherent and easily understood language with both a textual and graphical syntax [9]. A 

feature of the Essence is the ability to separate the elements that define the domain of software 

engineering from how it is used in a specific software endeavour or organisational context [15]. 

The domain of software engineering is captured in a kernel and described using a small set of 

language concepts. The kernel describes the core concepts that can be used to describe any 

software engineering endeavour. The kernel is organised into the three areas of concern of 

Customer, Solution and Endeavour and composed of a set of: 

 Alphas, which are an abstract representation of the core things to work with  

 Activity spaces, which are containers for the core things to do 

 Competencies, which are the core things to know [9] 

The kernel provides a framework on which a set of practices can be composed. A practice will extend 

the kernel alphas with a set of concrete work products and extend the activity spaces with concrete 

activities. This model is illustrated in the following diagram, Figure 2, adapted from the Essence – 

Kernel and Language for Software Engineering Methods [9] which provides a visual representation of 

the core components of the kernel, their conceptual relationships and highlights the separation of 

the kernel and the practice elements that are used to enact the method [9].  



 

14 

 

 

Figure 2: Core components of the Essence (adapted from [9]) 

The Alphas 

The alphas, as defined in the Essence, are the core elements in the kernel. They represent: 

 The key concepts of the things to work with in software engineering 

 A mechanism to assess the state and health of any software engineering endeavour 

 A standard definition of components that can be used to describe any software engineering 

method or practice  

Alphas are not a simple functional decomposition of an endeavour into core work products, they are 

abstract concepts that represent elements that are the most important to understand, monitor and 

progress. Alphas are common concepts that are present in any method or practice and do not 

describe any method or artefact. This abstract definition allows for a domain model to be developed 

that details how these elements are related without prescribing a particular implementation.  This 

enables the alphas to describe both an agile method and a traditional waterfall method with the 

same well-defined constructs. This ability to describe all methods and practices in the same way 

leads to a constructive method of comparison. Figure 3, borrowed from [9], illustrates the Essence 

kernel alphas and how they are grouped into their areas of concern and details their relationships 

with each other [9]. 

 

Figure 3: Essence kernel alphas [9]  

AlphaState

Fulfils

Targets contains

Work 
Product

P
ro

gr
es

se
s

Organises

Activity

Competency

Requires

Produces

Activity 
Space

O
rgan

ises

Elements that define a Practice

Elements that define the Kernel

evidences



 

15 

 

Each alpha has a set of states that support and guide the progress of an endeavour and attached to 

each state is a well-defined checklist that helps a team identify that a state has been achieved. For 

example, the Opportunity dimension of an endeavour will move through the following states as the 

endeavour progresses[9]: 

 Identified 

 Solution needed 

 Value established 

 Viable 

 Addressed 

 Benefit accrued 

The team can assess the state of their opportunity by applying the checklists associated with each 

state to their current situation. This approach helps the team plan the activities required to progress 

this dimension of their endeavour to the next state [15].  

An important aspect of the alphas and their relationships is the dynamic multi-dimensional view of 

the state of all aspects of the endeavour that is provided [9].  

The alphas not only provide states, but provide a framework to organise and build more detailed 

views. Alphas can be decomposed into sub-alphas to allow for more detailed, practice specific states 

and work products to be described. These sub-alphas provide more granular mechanisms to 

progress the state of the superordinate alpha in some measurable way. Figure 4, based on an 

example diagram in [9], illustrates an example of this decomposition, using elements from the 

Bank’s methodology. 

 

Figure 4: Alpha decomposition (adapted from [9]) 

The Activity Spaces 

The Essence provides a set of activity spaces that represent abstract things to be done. They support 

the alphas by providing an abstract view of the type of activities that are required to progress the 

Software System

Software System 
Element

1

Containment

Functional 
Component Technical 

Component
Deployment Unit

1..* 1..* 1..*

Architecture Selected

Interfaces Agreed

Specified

Operational 
Model

Component 
Model

Specified

Location 
Model

Deployment 
Model



 

16 

 

alphas states. Each activity space is a placeholder for a collection of activities, actions or tasks but is 

not a process view, as they are a “network of collaborating elements” [15] with no inherent 

sequencing defined. These activity spaces drive completion criteria that map directly to the states of 

the alphas that they address. An activity space may impact one or more alphas and the activity space 

completion criteria represent specific states of these alphas. This provides a multi-dimensional 

snapshot of the state of the important elements of the endeavour at the completion of a set of 

activities. This snapshot is not based on the completion of a set of work products, but rather on the 

attainment of criteria that that will provide project managers and teams a complete view of the 

state of a project. 

The activity spaces are organised into three areas of concern, but unlike the alphas are not directly 

related to each other. Their relationships are mapped via their alphas and the alpha relationships. 

Figure 5, borrowed from [9], illustrates the core set of activity spaces defined by the Essence [9].  

 

Figure 5: Essence activity spaces [9] 

Each area of concern contains a set of activity spaces that progress the alphas in that area of 

concern. The activity spaces take alphas as input and after some work is performed the alphas are 

potentially updated and their states may have changed. For example, the activity space Explore 

Possibilities has no alphas as input but after possibilities have been explored via a set of practice 

activities and tasks, the Stakeholder alpha state should have progressed to recognised [9]. If the 

alpha state has not been achieved after assessing it using its checklist then the activity space 

completion criteria has not been met, and a decision can be taken on what work must be completed 

to progress the alpha to the correct state.  

Activities that provide guidance on how to progress a specific alpha state are placed within the 

activity space whose completion criteria address that alpha state. This construction provides a 

mechanism to ensure that an activity space contains a coherent, non-redundant and complete set of 

activities when practices are defined and a method is assembled. Activities, in addition to providing 

specific technical guidance on the completion of work, may indicate the competency required for 

performing this work. This facilitates the creation of practical and useable methods and practices 

[15].  Figure 6, adapted from  [9] and [48], illustrates how all the Essence elements are related. 

Explore 
Possibilities

Understand 
Stakeholder Needs

Ensure Stakeholder 
Satisfaction

Use the System

Understand the 
Requirements

Shape the 
System

Implement the 
System

Test the 
System

Deploy the 
System

Operate the 
System

Prepare to 
do the Work

Coordinate 
Activity

Support the 
Team

Track Progress Stop the Work

C
u

st
o

m
er

So
lu

ti
o

n
En

d
ea

vo
u

r



 

17 

 

 

Figure 6: Essence components of a practice (adapted from [9,43,48]) 

The Practices and Patterns 

A practice is the Essence’s mechanism of providing a way to define a chunk of the work to be done 

and the processes required to sequence this work. A practice defines the concrete work products, 

activities and patterns required to guide and help practitioners achieve their purpose [9]. A practice 

can be considered a self-contained chunk containing the minimum components required to achieve 

a purpose [35]. These chunks can then be assembled into a method. Approaching method creation 

and adoption in this way allows the method to be developed from actual artefacts and process used 

by practitioners and allows these practices to be easily discussed and reused [44]. Figure 6 illustrates 

how a practice links into the Essence kernel and uses the kernel components.   

The Essence make use of the concept of a pattern to cater for concepts that do not fit into the basic 

elements and are not things that can be worked with, cannot be allocated as tasks nor are they 

competence related. Typical lifecycle elements that fit this definition are phases and roles, which are 

there to add structure and groupings[9]. Figure 7, based on [9] illustrates a typical phase pattern 

found in a bank development lifecycle. The work is partitioned into a phase called solution outline 

that delivers the Business Model and Architecture Model work products.  

Practice

Kernel

Activity Space

Activity

Action

Work Product 
Manifest

Competency

Alpha

Work 
Product

Pattern

State

Level of Detail

Checkpoint

Manifested in

has

Measured by

binds

Performed on
performs

Placeholder for

contains

has

contains

defines

defines

contains
has



 

18 

 

 

Figure 7: Phase pattern (adapted from [9]) 

The Bank’s Model  

The Bank’s model is a general purpose lifecycle whose overarching mandate is to manage and 

balance the process of introducing change into the already operational banking system landscape 

without introducing instability and failures. This mandate of managing risk drives the core features 

of the lifecycle. 

The Bank’s systems development lifecycle (SDLC) is constructed of three elements: 

 The underlying metamodel for documenting and publishing the lifecycle 

 The method model, including the content and the underlying practices and techniques 

 The process and management model 

The illustration in Figure 8, describes the elements in Bank’s model: 

 

Figure 8: The Bank’s SDLC elements 

The Meta Model 

The core method of the Bank is documented and managed using a framework and tool that 

conforms to the Software and Systems Process Engineering Metamodel (SPEM 2.0) [29]. Figure 9, 

adapted from [37], [49] and [50] , illustrates the key language concepts that make up the Bank’s 

lifecycle model. 

Solution Outline

Sequences 
work 

delivering

Business 
Model

Architecure 
Model

Work

SPEM 2.0 MetaModel

Method & 
Content 
Model

SP
EM

 2
.0

 M
o

d
ellin

g 
To

o
l

Management & 
Process Model



 

19 

 

 

Figure 9: Key SDLC language concepts (adapted from[37,49,50]) 

The metamodel contains four key areas of concern: 

 The process area  

 The content area 

 The categories area 

 The guidance types area 

The process area of concern contains elements for structuring and sequencing activities and tasks. 

The process area provides mechanisms for describing what has to be done and when it should be 

done including dependencies on other activities. It does not provide any mechanism to describe how 

the work is to be completed. The content area of concern provides the elements needed to define 

how a task is to be completed [49]. This definition includes work products and guidance types that 

describe in detail how to do the work.  The task element links the process and content models. 

An important principle that is evident in the use of the model, and can cause confusion to 

practitioners, is the idea of reusable content and processes. Each element in the model is considered 

for reusable content and is defined once and then the same definition is reused across the lifecycle 

[49]. An example illustrating this principle is the task Detail Key System Use Cases; it is a task that is 

defined once with all the work products, roles and guidance associated with the task. The task is 

then linked to multiple activities in various phases, resulting in a single description of Detail Key 

System Use Cases listed in multiple phases.  

The model allows for a task to be categorised into disciplines such as test management which 

categorises all tasks related to testing. This assists a practitioner in identifying a list of tasks required 

for their job type. A discipline is not equivalent to a practice; a practice is a type of guidance which 

creates a coherent composition of tasks, roles and work products to fulfil a piece of work[49]. A 

discipline is a list of tasks that can be considered part of a domain; it provides no structure or 

guidance for completing any work. 

Delivery 
Process

Phase

Iteration

Activity

Task

Task 
Descriptor

Guidance

Roadmap

Visual Representation

structures

Contains

Decomposed into

structures

details how

Describes

Work 
Product

Discipline

Domain

Work Product Kind
details how

Works on

Toolset

Role

Checklist

Guidelines

Templates

Examples

Process

Content

Categories Guidance 
types

Tool Mentors

Estimation 
Consideration

Report

Whitepaper

Concept

Supporting 
Materials

Reusable 
Asset



 

20 

 

The Method Model 

The metamodel described previously provides a taxonomy and structure to capture a breakdown of 

the work to be completed. The tasks and guidance in this breakdown provide details of how to 

complete the various work products, but the metamodel does not describe why the tasks and work 

products are required and how they fit together to define a working software system. This 

information is captured in the guidance types and provides the model from which the tasks, work 

products and roles are derived.  Figure 10 provides a conceptual view of the underlying engineering 

method and is built up from the work product model in [50] and [51]. It highlights the core elements 

of the method and how they are sequenced to provide a complete solution to the business concept. 

It illustrates an understanding that the business concept that drives and informs the requirements is 

not completed upfront, but is developed over the life of the endeavour. This will impact the stability 

of the requirements and the engineering approach required to develop software to fulfil the 

requirements and satisfy the business concept. 

 

Figure 10: Method metamodel 

The overarching engineering objective is to ensure alignment to the emerging business concept and 

integration into the existing operational environment. This objective is achieved by moving the 

solution through: 

 A conceptual phase, designed to explore possible solutions to the business concept 

 An identify phase, designed to identify use cases, components and data entities and pull 

together an architecture overview of the solution 

 A specify phase, designed to detail the use cases, components, data models and facilitate 

the design of the components, databases and test cases. The application deployment is 

modelled and deployment procedures developed to ensure the solution can be 

operationalised 

 A build phase, where the software is developed, built and tested 

 A deploy phase (not illustrated) [50] 

It must be noted that the model allows for both a waterfall and an agile incremental development 

approach, with specify, build and deploy phases part of an iterative model.  

Concept 
Overview

Conceptual 
Component 

models

Conceptual 
Operational 

models

Architecture 
Overview

High level 
Component 

model

High level 
Operational 

model

Conceptual 
Data model

Test Strategy

System 
Context

Business 
Concept

Use Case 
Model

Non Functional 
Requirements

Specified 
Component 

model

Specified 
Operational 

model

 Data model
Database 

design

Deployment
Procedures

Component 
designs

Detailed 
Use Cases 

Test Cases 
&Test Plan 

Setup 
Environments

Build
Source 
Code

Test 
Results

Detail Non 
Functional 

Requirements

Increasing Requirements Detail

Increasing Business Concept Maturity

Conceptual Identify Specify Build



 

21 

 

The Management and Governance Model 

The method and its related activities and tasks are organised into a structure that provides a means 

to manage the project and apply the appropriate governance. This structure ensures that the 

organisations objectives are achieved through appropriate monitoring and risk management 

practices.  

The management model is structured on the Project Management Institutes project management 

process and contains seven phases [50]. Figure 11 illustrates how the model is structured and is 

based on a diagram obtained from the Bank’s method [50,52]. 

 

Figure 11: Phases of the management model 

The Seven phases illustrated in the Figure 11 are briefly described: 

 Idea generation phase which is the entry point of an initiative into the portfolio planning 

processes.  

 Concept evaluation phase where the project is initiated and teams and scope are identified 

 High level design phase where the solution is outlined and the project is formally planned 

and project execution funding is allocated 

 Detail design phase where the approved solution is analysed, defined and designed 

 Build, test, fix phase where the software is developed, tested and bugs are fixed 

 Implementation phase where the solution is deployed into the operational environment 

 Benefit harvesting phase where the business case benefits are measured in the production 

environment to verify the actual benefits achieved[50] 

Each phase is further decomposed into one or more technical solution phases, which contain the 

activities and tasks directly related to the software and solution development. These phases are: 

 Solution outline which contain the tasks for defining the solution approach and architecture 

 Macro design which contain the detailed solution tasks 

 Micro design which contain the component software design tasks 

 Build, which contains the tasks for coding and testing 

 Deploy which contains the tasks for deploying the solution into production[50] 

The governance model is centred on governing three core elements of the endeavour[52,53]: 

 The funding of the work 

 The project management activities 

 The software development and solution activities 

For the purposes of this research the focus will be applied to the software development and solution 

governance activities, the funding and project management governance activities will not be 

Idea 
Generation

Concept 
Evaluation

High Level Design Detail Design Build Test Fix Implementation

Benefit 
HarvestingSolution 

Outline
Macro Design Micro Design Build Deploy

Release



 

22 

 

considered. Figure 12 illustrates a consolidated view of the governance and management model and 

is built from information gathered from the Bank’s method [50,52,54,55]. It illustrates the key 

governance check points and how they are related to the model’s phases. 

 

Figure 12: Governance model 

The governance of the solution is owned and managed by the enterprise architects and is 

implemented through a set of reviews and boards mandated to assess and manage specific domains: 

 The enterprise architecture peer review (EAPR) 

 The infrastructure design authority (IDA) 

 The technical review board (TRB) 

The EAPR is the overarching board that delegates project level governance to virtual technical review 

boards, which are setup and managed within the individual projects. The EAPR reviews the 

conceptual solutions and runs the infrastructure design authority which is mandated to review the 

infrastructure components of a solution and to manage the risk of introducing new components into 

the operational environment[53,54].  

The TRB governance gates perform a number of functions that support the endeavour. Each gate is 

constructed of a set of work product slots, a set of continuous assessment criteria, a review log and 

a set of scores. These elements together create the capability to assess a software endeavour at a 

point in time and create a baseline. The primary mandate of each gate is to build shared 

accountability and to ensure alignment and quality for the solution[52,55,56]. Each gate has a 

specific alignment and quality focus. 

There are six TRB gates defined[52,56]: 

 Business requirements review (BRR), which creates a customer baseline 

 System requirements review (SRR), which creates a system baseline 

 Preliminary design review (PDR), which creates a component baseline 

Idea 

Generation

Concept 

Evaluation

High Level Design

CSR

BRR

FRF

SRR

IDA LSR

Solution Outline Project Planning

Enterprise Architecture Peer Review

Technical 
Review Board

Detail Design

Macro Design

Micro Design

Project Excecution

Technical 
Review Board

PDR

CDR

FRF

Build

Test

Technical 
Review Board

TRR

PDR

Project Excecution

Build, Test, Fix

Implementation Benefit Harvesting

Deploy

Project Excecution Project Close Out

CAB
Change 

Managment
Project 

Management Office

PIR PBR

Owns

Input into

CSR: Conceptual Solution Architecture
IDA: Infrastructure Design Authority
LSR: Logical Solution Review
BRR: Business Requirements Review
SRR: System Requirements Review
FRF: Financial Review Forum

Gate

Phase
PDR: Preliminary Design Review
CDR: Critical Design Review
TRR: Testing Readiness Review
PDR: Production Readiness Review
CAB: Change Advisory Board
PIR: Post Implementation Review
PBR: Project Benefits Review



 

23 

 

 Critical design review (CDR), which creates a design baseline 

 Testing readiness review (TRR), which creates a test baseline 

 Production readiness review (PRR), which creates a production baseline 

Identifying the Bank’s Alphas 

The foundation of the Essence kernel is the concept of an alpha, which is an essential thing that 

engineers will work with in building software intensive systems and this was the starting point of the 

research. The Bank’s existing lifecycle documentation was unpacked to identify concepts that are 

considered important. The approach considered the governance model, the list of activity 

definitions, the work product descriptions and linked technique papers in identifying potential 

alphas. The list of activities proved too granular to effectively identify these alphas and was not used 

directly in the identification process; however the activity descriptions related to an identified alpha 

were used to help understand how the alpha fitted into the whole process.  

The governance model provided a rich source of activities, work products and potential alphas that 

are considered important enough to formally review and track. The governance model makes 

extensive use of a concept called a slot. These slots represent the essential things to work with in the 

Bank’s lifecycle and provided an initial list of potential alphas. Each governance gate review assesses 

a set of slots and has a defined set of criteria for each type of review. Furthermore each slot has a 

defined set of work products that fulfil the slot’s requirements depending on where in the lifecycle 

the slot is being referenced. 

Each review is designed to measure the technical health and progress of the work products and thus 

the state of a slot at specific points in the lifecycle. Figure 13: Conceptual model of a slot, illustrates 

the concept of a slot defined using the Essence language and based on a diagram from [9]. 

  

Figure 13: Conceptual model of a slot (adapted from [9]) 

The Bank’s lifecycle defines thirteen slots that represent placeholders for concrete work products. 

These slots are defined once and reused across the phases of the lifecycle and are fulfilled by the 

same work products at different levels of detail and states of completion.  The table in Table 1 lists 

the slots and links them to their corresponding gates, refer to Appendix D: Mapping CAR’s to Slots 

for further details.  The table shows that not all slots are reviewed by a specific gate and the Project 

Work slot is not reviewed by any gate.   

Slot

State

Continuous 
Assessment Criteria

Fulfils

Measured by

contains

Work 
Product

evidence
Baseline Aligns a set of 

synchronises

TRB Gate sequences

creates



 

24 

 

Method Slots Technical Review Board Gates 

 BRR SRR PDR CDR TRR PRR 

Business Requirements Y N N N N N 

Existing Environment Y Y Y Y N N 

Business Model Y Y Y Y N N 

Application Model N Y Y Y N N 

Requirements Report N Y Y Y N N 

Test Approach N Y N N N N 

Architecture Model N Y Y Y Y Y 

Standards & Procedures N Y Y Y Y Y 

Test Pack N Y Y Y Y Y 

User Experience Model N Y Y Y N Y 

Technical Implementation N N N N N Y 

Project Work N N N N N N 

Project Definition & Scope Y N N N N Y 

Table 1: Slots linked to gates 

Reviewing the list of work products created and used in the lifecycle revealed a further set of alphas 

that provide a deeper level of granularity. This set of alphas is evidenced in the work products that 

are linked to the slots, but are not necessarily reviewed by a gate. The Deployment Unit is an 

example of an alpha that is used in developing the Node and consequently the Operational Model, 

but is not reviewed as a standalone work product.  Table 2 lists a subset of this list of Bank alphas 

and the work products that realise them. A more detailed table is provided in Appendix B: Bank’s 

Alpha Table 

Identified Bank Alpha Work Products 

Component ( Functional Component)  Architecture Overview 

 Component Model 

 Conceptual Solution Architecture 

 Component Design 

 Component Specification 

 Source Files 

Node (Operational Component)  Node Model 

 Node 

 Connection 

 Operational Model 

 Zone Model 

 Location Model 

Deployment Unit  Operational Model 

 Node Model 

Data  Data Migrated 

 Data Migration Specification 

 Data Model 

 Database Transaction Descriptions 

 Metadata Strategy 

 Physical Database Design 

Table 2: Bank alphas identified in work products 

Identifying the Bank Alpha States  

Each governance gate reviews a collection of slots that is specific to each gate. The work products 

that make up these slots are reviewed against a set of continuous assessment requirements (CAR) 

questions. These CAR questions indirectly measure the state of the slots. Table 3 illustrates the 

mapping of the BRR gate, the slots that are reviewed and the states derived from the gate’s CARs. 

This mapping reveals that the slots have a set of states, and it is discovered that the gate baselines 

are expressed in terms of the states of a collection of slots, and by reference a collection of Essence 

alphas. Thus a Customer Baseline, which is a milestone set by the BRR, can be considered achieved if 



 

25 

 

the business requirements are defined, traceable, agreed and have a priority; the as-is architecture is 

validated; the as-is business process is identified and validated; any gaps identified and the to-be 

business processes have been defined. The data in Table 3 reveals that a slot may be constructed 

from more than one bank alpha as is evident in the Existing Environment slot where the slot contains 

work products and states for both business process and architecture.  The definition of a slot does 

not prevent this scenario and may be an indicator that a slot is not a good match to the Essence 

alpha definition.  

Slot Gate Baseline Slot State 

Business Requirements BRR Customer  Business Requirements Defined 

 Business Requirements Traceable to Scope 

 Business Requirements Agreed 

 Business Requiremenst Priority Agreed 

Existing Environment BRR Customer  As-Is Architecture Validated 

 As-Is Business Process Identified 

 As-Is Business Process Validated 

 Gaps Identified 

Business Model BRR Customer To-Be Business Process Defined 

Table 3: Slot states for a gate 

This same process was employed to identify the states that are linked to the Bank alphas, listed in 
Table 2,  that were previously identified through the detailed review of the Bank’s work products. 
This work proved difficult as the states of these alphas were not always explicit, used or referenced 
directly in any activity or review and thus required a detailed review of the technique papers, 
templates and tasks related to the alpha’s work products. Figure 14 illustrates this complexity and 
the method relationships. 
 

 
Figure 14: Information contained in a work product (adapted from [48]) 

The Bank’s lifecycle contains a method that is designed around functional, operational and 
requirements domains. The functional domain contains work products and activities concerned with 
the functionality of collaborating software components of a software system. The functional aspect 
is expressed as one or more models that represent the static structure and dynamic behaviour of the 
components in the system. The functional domain progresses a Functional Component alpha. 
    
The operational domain comprises work products that are concerned with the distribution of system 
components across the organization's geography in order to achieve the required service level 
characteristics (performance, availability, and so forth). The operational work products are normally 
represented by one or more operational models that describe the type and location of hardware 
nodes, connections, network topology, in terms of the placement of deployment units. 

Practice

Work 
ProductActivity

Level of Detail

State

Continuous 
Assessment Criteria

Slot

Alpha

Assessed by

Has a

Has a
Used in

Has an embedded

Part of a

Describes an

Updated by

Has a

Technique 
Paper

Contains

May be part of



 

26 

 

They are also concerned with the systems management functions and activities needed to maintain 
the system components such as software distribution and responding to alerts. The operational 
domain progresses an Operational Component alpha.  
  
The requirements domain is decomposed into business requirements and system requirements and 
the testing of the requirements. The business requirements sub-domain comprises work products 
and activities to define the business and help to develop the business opportunity. The work 
products are also used to document the business processes, the business direction and business 
cases. The business requirements domain progresses the Business Context, Business Process and 
Opportunity alphas 
 
The system requirements sub-domain addresses the development, documentation, and 
management of the requirements for the software, hardware or system developed. The work 
products and activities are concerned with use cases, non-functional requirements and actors. The 
system requirements domain progresses the System Requirements alpha 
 
The testing sub-domain defines the work products and activities that address the strategy, planning, 
managing and executing activities of the testing process. The sub-domain also defines activities and 
work products for analysing test results, and reporting on testing activities. The testing sub-domain 
progresses the Test alpha which is a sub-alpha of the System Requirements alpha. The data in Table 4 
represents a subset of the outcome of this work. A complete table is provided in Appendix B: Bank’s 
Alpha Table. 
 
Bank Alpha States Level of Detail Work Products 
Component (Functional 
Component) 

 Responsibilities Identified 

 Responsibilities Allocated 

 Component Specified 

 Component Developed 

 Component Deployed 

 Logical Application 

 Specified/Logical 

 Physical 

 Architecture Overview 

 Component Model 

 Conceptual Solution Architecture 

 Component Design 

 Component Specification 

 Source Files 

Node (Operational 
Component) 

 Node Identified 

 Components Allocated 

 Connections & Interactions 
Specified 

 Physical Node Sized 

 Node Configured 

 Logical Application 

 Logical 

 Physical 

 Unsized 

 Ranged 

 Sized 

 Node Model 

 Node 

 Connection 

 Operational Model 

 Zone Model 

 Location Model 

Deployment Unit  Identified 

 Placed 

 Connected 

 Tested 

 Logical Application 

 Logical 

 Physical 

 Operational Model 

 Node Model 

Data  Conceived 

 Resolved 

 Normalised 

 Transformed 

 Implemented 

 Conceptual 

 Logical 

 Physical 

 Data Migrated 

 Data Migration Specification 

 Data Model 

 Database Transaction Descriptions 

 Metadata Strategy 

 Physical Database Design 

Table 4: States for non-slot alphas 

Mapping the Bank’s Alphas to the Essence Alphas 

Once the list of alphas was defined and their states identified, these alphas were mapped to the 

Essence alphas. Each slot, as a potential alpha, was assessed to see if it could be mapped to at least 

one of the Essence kernel alphas to identify gaps in the Bank’s lifecycle and assess the validity of the 

set of kernel alphas.  The Essence alphas were mapped to both the slots via analysis of the slot 

descriptions, the descriptions of the work products that fulfilled the slot and the activities that 

create and progress the work products, and the alphas identified from reviewing work products, 

technique papers and activities not specifically linked to the list of slots.  



 

27 

 

Each slot’s work products were assessed to see if they described a kernel alpha in some way. If a 

work product could be linked to a kernel alpha in some way, either by the work product description 

or by its related task descriptions it was indicated in a matrix as a ‘Y’. If there was no link the cell was 

left blank. This analysis was captured in a matrix, mapping the slots against the Essence kernel 

alphas. It is evident from Table 5 that each slot is mapped to at least one Essence kernel alpha, refer 

to Appendix C: Mapping Slots to Baselines for more details. It is evident from the matrix that the 

Team alpha is not fulfilled by any slot work products and therefore not included in any slot. This 

matrix does not capture any information regarding the state of the Essence kernel alphas.  

Method Slots Essence Alphas  

Table derived from  
information contained  
in work products linked to 
the slots. 

O
p

p
o

rtu
n

ity 

Sta
keh

o
ld

ers 

R
eq

u
irem

en
ts 

So
ftw

a
re 

System
 

Tea
m

 

W
o

rk 

W
a

y o
f 

W
o

rkin
g

 

Business Requirements Y       

Existing Environment Y Y      

Business Model Y       

Application Model    Y    

Requirements Report   Y     

Test Approach      Y  

Architecture Model    Y    

Standards & Procedures   Y Y  Y Y 

Test Pack    Y    

User Experience Model   Y Y    

Technical Implementation    Y    

Project Work      Y  

Project Definition & Scope      Y  

Table 5: Slots mapped to Essence alphas 

Extending the mapping to the alphas identified through the review of work products, activities and 

technique papers produced a matrix, a subset of which is illustrated in Table 6. The matrix links the 

Bank alphas to one or more Essence kernel alphas via the descriptions of the activities and work 

products that evidence the Bank alpha. The Bank alpha’s activities and work product descriptions 

were assessed against the checklists linked to the Essence kernel alphas to determine if the Essence 

alpha states were progressed by any of the Bank’s work products and activities. A complete table is 

provided in Appendix B: Bank’s Alpha Table. 

 
Bank Alpha Activities Work Products Essence Alpha 
 Component 
(Functional 
Component) 

 Outline Conceptual Technical Solution 

 Outline Technical Solution 

 Develop Technical Architecture 

 Develop Physical Architecture 

 Refine Technical Architecture 

 Develop Detail Component Design 

 Develop Solution Software Components 

 Update Technical Design 

 Deploy to ETE, QA 

 Deploy Production Environment 

 Cutover to Production 

 Architecture Overview 

 Component Model 

 Conceptual Solution Architecture 

 Component Design 

 Component Specification 

 Source Files 

Software System 

Node (Operational 
Component) 

 Outline Conceptual Technical Solution 

 Outline Technical Solution 

 Develop Technical Architecture 

 Develop Physical Architecture 

 Refine Technical Architecture 

 Deploy to ETE, QA Environment 

 Deploy Production environment 

 Node Model 

 Node 

 Connection 

 Operational Model 

 Zone Model 

 Location Model 

Software System 



 

28 

 

Bank Alpha Activities Work Products Essence Alpha 
 Cutover to Production 

Deployment Unit No activities specific for deployment unit, 
embedded in guidences and templates 

 Operational Model 

 Node Model 

Software System 

Data  Develop Data Design 

 Refine Data Design 

 Develop Solution Data Components 

 Deploy ETE, QA Environments 

 Deploy Production Environment 

 Data Migrated 

 Data Migration Specification 

 Data Model 

 Database Transaction Descriptions 

 Metadata Strategy 

 Physical Database Design 

 

Business Process  Capture Existing Environment 

 Outline Business Solution 

 Develop Business Solution 

 Refine Business Solution 

 Business Event List 

 Business Rules 

 Procedures Document 

 Process Assessment & Analysis 

 Process Definition 

 Process Identification 

 High Level Gap Analysis 

 Business Function/ System Matrix 

Requirements 
Opportunity 

Stakeholders Obtain Current Organisation Description  Stakeholder Analysis 

 Stakeholder Matrix  

 User Profiles 

Stakeholder 

Table 6: Alphas mapped to non-slot alphas 

Mapping the Essence States onto the Bank’s Lifecycle 

The Bank’s process model tracks six essential milestones called baselines. These baselines form the 

key indicators of the progress of an endeavour. Each activity and work product is grouped and 

structured to progress the solution towards these baselines and the governance gates assess the 

achievement of these baselines. Mapping the Essence kernel alpha states against the baselines 

provides insight into the validity of the states identified by the Essence model and highlights gaps in 

the Essence model and in the Bank’s model. The table below,Table 7, details the initial mapping of 

the Essence kernel alphas against the baselines based on the required work product inputs into the 

baseline and the documented baseline definition. 

Essence Alpha SDLC Baselines 

 Customer System 
Logical 

Solution 
Component Design Test Production 

Opportunity 
 Solution 

Needed 

 Value 
Established 

  Viable 

Viable - - - Addressed 

Stakeholder 

 Recognised 

 Represented 

 Involved 

In Agreement In Agreement - - - 
 Satisfied for 

Deployment 

Requirement Bounded Coherent Coherent Acceptable  Addressed Fulfilled 

Requirement 
Item 
(sub alpha) 

Identified Described Described - - Implemented Verified 

Software System - 
 Architecture 

Selected 
 Architecture 

Selected 
- - - 

 Demonstrable 

  Useable 

 Ready 

 Software System 
Element (sub 
alpha) 

- Identified Identified 
Interfaces 
Agreed 

- Developed Ready 

Work 
Initiated (Pre-
execution 
Tailored) 

Under 
Control 
(Execution 
Tailored) 

Under 
Control 
(Execution 
Tailored) 

Under Control 
(Execution 
Tailored) 

Under Control 
(Execution 
Tailored) 

Under Control 
(Execution 
Tailored) 

Concluded 

 
Way of Working 

- - - - - - - 

Team Seeded Formed Formed 
 Collaborating 

  Performing 

 Collaborating 

  Performing 

 Collaborating 

  Performing 

 Collaborating 

  Performing 

  Adjourned 

Table 7: Essence alpha states mapped to baselines 



 

29 

 

The table highlights some key gaps in the mapping. It is immediately obvious from this mapping that 

each baseline can be described by a set of Essence alpha states, much like the link between the 

Essence activity space completion criteria and a set of Essence alphas states. A detailed analysis of 

this table is provided in Appendix A4: Analysis of Baselines. 

The Bank’s lifecycle defines a number of phases based on a traditional phase model and sub-phases 

that provide a structure for the engineering activities. These groupings have activities and work 

products as outputs that progress the engineering activities and fit into the project management 

phases of the lifecycle. These engineering sub-phases are: 

 Solution outline (SO), located within high level design (HLD) 

 Macro design (MD), located within detail design (DD) 

 Micro design (UD), located within detail design (DD) 

 Build, Test, Fix (BTF) 

 Implementation (IMPL). 

Each of these phases moves an endeavour through various levels of detail and completeness. The 

lifecycle can be described in terms of the Essence alpha states by using actual activities described in 

the lifecycle and in which phase they are executed. 

This mapping provided the following Table 8 that captures the full lifecycle, the phases and the 

Essence alpha states.  

Essence Alpha 

Phase 

CE HLD DD BTF IMPL 

 SO MD UD BTF IMPL 

Opportunity Identified 
 Solution Needed 

 Value Established 
Viable - Addressed Benefits Accrued 

Stakeholders Recognised 
 Represented 

 Involved 

 In Agreement 

- - 
 Satisfied for 

Deployment 
- 

Requirements Conceived 
 Bounded 

 Coherent 
Acceptable - Addressed Fulfilled 

Software System  Architecture Selected - - 
 Demonstrable 

 Useable 

 Ready 

Operational 

Team Seeded 
 Formed 

 Collaborating 

 Performing 

 Formed 

 Collaborating 

 Performing 

- - Adjourned 

Work Initiated 
 Prepared 

 Started 

 Under Control 

 Prepared 

 Started 

 Under Control 

- - Closed 

Way of Working Principles Established Foundation Established - - - - 

Table 8: Essence alpha states mapped to full lifecycle 

Table 8 maps all the Essence alpha states, and shows that the Essence alphas cover the core phases 

of the Bank’s lifecycle.  A detailed analysis of this table is provided in Appendix A2: Analysis of 

Essence Alpha States. 

Mapping the Essence Activity Spaces to the Bank’s Lifecycle 

Each activity space defined in the Essence kernel takes a set of alphas as input and progresses these 

alpha’s states. The Essence alphas were mapped to the corresponding phase, by comparing the 

activity space and its completion criteria that progress the alpha to the Bank’s defined activities in 

that phase. The activity spaces that matched were captured in the matrix in Table 9. The matrix 



 

30 

 

describes how the Opportunity alpha is progressed to addressed state and the Stakeholders alpha is 

progressed to the state satisfied for deployment through the completion of the activity space Ensure 

Stakeholder Satisfaction. The corresponding activities in the Banks lifecycle occur in the build, test, 

and fix phase (BTF). 

During high level design the activity space Prepare to do the Work is executed and the Team alpha is 

progressed to seeded, the Work alpha is initiated and prepared and the Way of Working alpha is 

progressed to agreed. The matrix of Table 9: Activity spaces per phase per alpha, indicates that 

activity spaces cross phase boundaries in the Bank’s lifecycle as activities in each phase add details to 

the work products that drive the states of the alphas. 

Essence 
Alpha 

Phase 

CE HLD DD BTF IMPL 

 SO MD UD BTF IMPL 

Opportunity  None  Explore Possibilities 

 Understand Stakeholder 
Needs 

 Understand Requirements 

 Understand 
Stakeholder Needs  

 Understand 
Requirements 

 Understand 
Stakeholder Needs  

 Understand 
Requirements 

 Ensure Stakeholder 
Satisfaction 
(Addressed) 

 None 

Stakeholders  Understand 
Stakeholder 
Needs 

 Explore Possibilities 

 Understand Stakeholder 
Needs 

 None  Ensure Stakeholder 
Satisfaction 

 Ensure Stakeholder 
Satisfaction 

 Use the System 

 None 

Requirements  None  Shape the System 

 Understand Requirements 

 Explore Posibilities 

 Understand Stakeholder 
Needs 

 Shape the system 

 Test the System 

 Understand 
Stakeholder Needs 

 Understand 
Requirements 

 Shape the System 

 Understand 
Stakeholder Needs 

 Understand 
Requirements 

 Test the System 
(Sufficient & 
Fulfilled) 

 None 

Software 
System 

 None  Shape the System 

 Understand Requirements 

 Explore Posibilities 

 Understand Stakeholder 
Needs 

 Way of Working 

 Test the System 

 Prepare to do the Work 

 Shape the System 

 Test the System 

 Implement the 
System 

 Prepare to do the 
Work 

 Shape the System 

 Test the System 

 Understand 
Stakeholder Needs 

 Implement the 
System 

 Test the System 

 Deploy the System 

 Deploy the 
System 

 Test the 
System 

Team  Prepare to do 
the Work 

 Prepare to do the Work  None  None  None  None 

Work  Prepare to do 
the Work 

 Track Progress 

 Prepare to do the Work 

 Support the Team 

 Plan the Work 

 Prepare to do the 
Work 

 Shape the System 

 Coordinate Activity 

 Support the Team 

 Track Progress 

 Shape the System 

 Prepare to do the 
Work 

 Support the Team 

 Coordinate Activity 

 Prepare to do the 
Work 

 Support the Team 

 Track Progress 

 Shape the System 

 Coordinate Activity 

 Test the System 

 Coordinate 
Activity 

 Track 
Progress 

 Prepare to 
do the Work 

 Deploy the 
System 

Way of 
Working 

 None  Pepare to do the work 

 Support the Team 

 Pepare to do the 
Work 

 None  Support the Team  Support the 
Team 

Table 9: Activity spaces per phase per alpha 

 

Identification of Practices using the Essence definition of a Practice 

The alphas, work breakdown structures, activities, tasks and required work products structured into 

a process with governance gates, baselines and states, guide the engineers and project managers on 

what work needs to be completed. These elements do not describe how the work is to be done. The 

Essence defines the concept of practices to cater for guidance on how to perform a task.  These 

practices describe the techniques that a team or individual will use to complete the work required to 

progress the state of an alpha.  

The Bank’s lifecycle activities, work products and technique papers for each identified alpha were 

reviewed to identify practices that could be mapped to the Essence definition of a practice. This 

analysis revealed a number of practices: 



 

31 

 

 Governance practice (Enterprise Architecture and Technical) 

 Concept Evaluation practice 

 Business Modelling practice (including process development) 

 Requirements practice 

 Architecture practice (Component and Operational) 

 Project Management practice, which contains: 

o Organisational practices (including milestones, gates and funding) 

o Social practices 

 Testing practice 

 Development practice 

 Deployment practice 

 Service Oriented Modelling Architecture practice(SOMA) 

Mapping the alpha, work products, activities, states, roles and checklists resulted in a table that 

captured the essential parts of the practices. Not all the practices were mapped and a sample of the 

mapping is illustrated in Table 10, refer to Appendix B: Bank’s Alpha Table for a complete mapping: 

Bank 
Alpha 

States Level of 
Detail 

Activities Work Products Roles Checklists 

Component 
(Functional 
Component) 

 Responsibilities Identified 

 Responsibilities Allocated 

 Component Specified 

 Component Developed 

 Component Deployed 

 Logical 
Application 

 Specified 

 Physical 

 Outline Conceptual Technical 
Solution 

 Outline Technical Solution 

 Develop Technical 
Architecture 

 Develop Physical Architecture 

 Refine Technical Architecture 

 Develop Detail Component 
Design 

 Develop Solution Software 
Components 

 Update Technical Design 

 Deploy to ETE, QA 

 Deploy Production 
Environment 

 Cutover to Production 

 Architecture Overview 

 Component Model 

 Conceptual Solution 
Architecture 

 Component Design 

 Component 
Specification 

 Source Files 

 Application 
Designer  

 Application 
Developer  

 SOA 
Designer  

 System 
Analyst  

 Technical 
Solution 
Architect 

 Architecture Overview 

 Business Function/System 
Matrix 

 Component Design 

 Component Model 

 Component Specification 

 Interface Specification 
Validation and Verification 

 Physical Packaging 
Validation & Verification 

 Reference Architecture Fit 
Gap Analysis 

 Standards Validation & 
Verification 

 Subsystem Analysis 

 UI Design Specifications 

Table 10: Component modelling practice 

The checklists listed in the matrix do not match the checklists as defined in the Essence. The Essence 

checklists are defined as the criteria to assess the achievement of the state of an alpha. The 

checklists defined here are designed to quality check the completed work products, which indirectly 

will drive the progress of an alpha and its state.  



 

32 

 

Chapter 5 Analysis of the Research 
This chapter provides an analysis of the research work that was concluded to critically analyse the 

Essence model using the Bank’s software development lifecycle. The analysis of the models was 

approached from two viewpoints to provide a mechanism to assess the Essence model. The first 

viewpoint assumed the Essence standard is correct and the Bank’s lifecycle was assessed against the 

Essence. The second viewpoint assumed the Bank’s lifecycle is the standard and the Essence was 

assessed against the Bank’s lifecycle.  The rest of the section is structured as follows: 

 Analysis of the essential concepts 

 Analysis of the practices  

 Analysis of the activity spaces and activities 

Analysis of the Essential Concepts 

The Bank’s core lifecycle is structured and published as a set of tasks and activities that progress the 

completion of a set of work products through a series of phases. Each activity description has an 

implied state of completion for the work product that it is acting on. The state of an endeavour 

executing the lifecycle is assessed through a series of baselines which determine the completion of 

each engineering phase. The lifecycle does not explicitly define the criteria that can be used to 

determine the attainment of a baseline. It does, however, specify the work products that are 

required for a baseline. The lifecycle uses the concept of a slot as a placeholder for these work 

products. A baseline is therefore composed of one or more slots, which contain one or more work 

products.  

The lifecycle creates each baseline through a series of technical reviews, enterprise architecture peer 

reviews and financial reviews. The technical reviews have specific criteria that determine the state of 

the work products and thus the state of the slot.  

From this analysis, a set of concepts that are considered important to the Bank can be derived. This 

leads to the idea that slots could be good candidates for alphas: 

 They are important enough to be reviewed in formal reviews  

 They are composed of work products that are progressed through the lifecycle  

 They are consistent throughout the lifecycle 

 They have a set of assessment criteria applied to them in a technical review  

Analysing the slots using the concept of an alpha as defined by the Essence model as a framework 

provides a number of observations into the Bank’s governance model. These observations and the 

corresponding analysis are detailed in Appendix A1: Analysis of Essential Concepts 

The initial idea of assessing a slot as a possible alpha was useful in identifying gaps in the governance 

mechanism and in the set of tasks that progress these work products. It also provided a useful 

starting point in identifying the concepts considered important in the Bank’s lifecycle. 

However, a slot, as defined in the Bank’s lifecycle, is a placeholder for a set of work products and 

does not have a set of explicit states. The slot definition allows it to contain work products that are 



 

33 

 

linked to multiple alphas and additionally it does not map to any activities that will progress its state. 

For these reasons a slot is not a good candidate for an alpha as defined by the Essence.  

The Essence provides a consistent and well represented set of criteria that can be distributed 

appropriately across the entire Bank’s lifecycle. This set of criteria is an effective tool in assessing the 

coverage and validity of the measures defined in the Bank’s governance gates. The use of the criteria 

in the research highlighted that a number of key concepts are not reviewed optimally in the Bank’s 

lifecycle. Furthermore, the mapping revealed that a number of criteria defined in the Bank’s lifecycle 

are not measuring any input into the gates and thus helped identify missing work products.  

The current governance criteria provide a good starting point to develop states for the Bank’s core 

concepts which can be linked to the Essence alphas and thus can be used to progress the Essence 

alpha states. 

The Essence alphas do not map exactly to the baseline model of the Bank’s lifecycle, but by mapping 

the alpha states to the equivalent baseline, listed in Table 8: Essence alpha states mapped to full 

lifecycle, it becomes clear that the Banks’s process has a high focus in driving the completion of a 

significant amount of work in the high level design phase. The high number of states progressed 

could indicate that too much work is completed in these earlier phases.   

The Bank’s governance gate assessment provided insight into key states that the Software System 

alpha progresses through, but is lacking in the Essence specification. A key alpha in any software 

engineering project is the software and the systems on which the software is deployed. The Essence 

model does not provide states for the design and integration of the software system and its 

components. A key gap is the link between the development of each component and their assembly 

into an integrated system. For a large bank with significant integration requirements across a 

number of disparate systems, the lack of design and integration states would make it difficult to 

assess the viability of a solution and to synchronise teams. The Software System could potentially 

have integrated as a state.  

The Bank’s lifecycle does not consider the Way of Working alpha in any activities, with the exception 

of the method adoption workshops. It does assess the Way of Working alpha indirectly in the 

governance reviews by reviewing the work products submitted for review against the set of work 

products defined by the team in the method adoption workshop. 

The Way of Working alpha state is dependent on what level of the endeavour is being referred to. If 

referring to the individual component (application) teams, then they would typically have developed 

a ‘way of working’ and it would be in use already across all the projects the team is working on. If 

you are referring to the project team, then it is required to follow a prescribed method, which from 

an organisation perspective is in use. The specific parameters that the project team agree to are 

discussed and agreed to in the method adoption workshop to develop a specific project method that 

is tailored from the in use method for the needs of the team and type of project.   

The method metamodel described previously in The Bank’s Model section provides a set of core 

elements that can be considered Bank alphas in much the same way as the slots have been 

considered. These core elements were reorganised into logical groupings of activities, work products 

and checklists according to the Essence definition of a practice. This reorganisation was achieved by 



 

34 

 

reviewing the work products linked to these elements to elicit core concepts, identifying these 

concepts in the activity descriptions and then reading any technique papers that referred to these 

concepts. This process led to the identification of a set of concepts that form the foundation of the 

Bank’s lifecycle method. These concepts are: 

 Component 

 Node 

 Data 

 Test 

 Deployment Unit 

 Requirement 

 Security 

 Business Context 

 Business Requirement 

These core concepts are the essential things that practitioners in the Bank work with and can 

therefore be considered as the kernel of alphas for the Bank. Figure 15: Slots modelled as kernel 

elements, illustrates how these concepts fit together to progress an Essence alpha and how the 

governance model and the slots could be linked to the Essence alphas. The slot is defined here as a 

sub-alpha of the Essence alpha and is a placeholder for a set of work products at a level of detail to 

be assessed at a governance gate. Each Essence alpha can be part of multiple slots and will provide 

different sets of work products at different levels of detail to each slot.  

 

Figure 15: Slots modelled as kernel elements 

The sub-alphas, in Figure 15 defined as Component, Node and Deployment Unit, drive the 

progression of the Essence alpha, Software System, via their work products, which will be formally 

assessed and baselined at each technical review (TRB) gate.  

Software System

1
Containment

Component Node Deployment Unit

1..* 1..* 1..*

Slot
1 1..*

TRB Gate

1..*

1..*

Work Product 
Manifest

Level of Detail

Component 
Model

Operational 
Model

Location 
Model

Deployment 
Model



 

35 

 

Analysis of Practices 

The Bank’s lifecycle and method describe a number of useful concepts within a framework that are 

designed to help improve software quality and the delivery of software solutions into the 

operational environment. This framework is not explicit in the work breakdown structure, phases 

and task descriptions. To understand how the activities and work products fit together to produce a 

quality software system, a practitioner must read a number of technique papers and activity 

descriptions.  To effectively use the lifecycle, a practitioner requires a deep knowledge of the entire 

model.  

Building a method that links all the important concepts in a consistent and easily followed model is 

not trivial. The SPEM 2.0 model provides a mechanism to easily and consistently document a work 

breakdown structure. How to capture the core concepts and describing how they link together 

logically in a work breakdown structure is not clear and not adequately addressed. The Essence 

provides a mechanism to capture a practice or technique in a way that supports the definition of a 

set of activities and linked work products to explicitly progress the core concepts of the practice. 

However it does not provide enough guidance on how to identify alphas and their states and to 

classify them appropriately. This will make it difficult for software development teams to document 

their practices. 

Analysis of Activity Spaces 

Mapping a subset of the activities that progress the Bank’s Component alpha to the equivalent 

Essence activity spaces is illustrated in Figure 16: Activity spaces mapped to activities. This mapping 

highlights some important information: 

 It illustrates how the activities driving the development of a software component are linked 

to each other in a process flow 

 It illustrates the completion criteria for an activity and demonstrates how the completion of 

an activity will drive the development of a software component 

 It highlights the gaps in the activities, activity spaces and completion criteria 

 

 

Figure 16: Activity spaces mapped to activities 

Outline Conceptual 
Technical Solution

Outline Technical 
Solution

Develop technical 
architecture

Develop Physical 
Architecture

Refine Technical 
Architecture

Develop detail 
Component Design

Develop solution 
Software 

Components

Responsibilities 
identified

Responsibilities 
allocated

Component 
Specified

Component 
Developed

Iterate per release

Explore Possibilities
Shape the System

Specify the System
Implement the 

System

Activity space

Bank activity

Completion criteria



 

36 

 

Analysing the mapping of the Essence activity spaces to the Bank’s core concept of Component as 

defined by the Essence specification as a framework provides a number of observations. These 

observations and corresponding analysis are detailed in Appendix A3: Analysis of Activity Spaces. 

A key outcome of this mapping is the difficulty experienced in linking the activities and tasks defined 

in the Bank’s method with the equivalent Essence activity spaces. There are two aspects of this 

mapping that make this process difficult.  

Firstly, there is no easy way to link a newly defined alpha with the existing Essence activity spaces 

except via the Essence alphas and their completion criteria. The Essence does not provide enough 

guidance on how to link the states and completion criteria of alphas and sub-alphas to activities and 

tasks.  

Secondly, the Essence activity spaces need to be decomposed into finer grained activity spaces. The 

alpha states linked to the activity space completion criteria are too high level to enable a useful 

mapping to the Bank’s activities and tasks.  

Furthermore, there is no indication of how an activity in the Bank’s model progresses a specific work 

product or core concept. It requires a deep exploration of each activity, each work product that is 

affected by the activity and any linked guidance material to identify how a work product and its 

related core concepts are progressed to completion.  It is also not clear which completion criteria 

must be mapped; it can be either the software Component state or the work product level of detail 

criteria.  A further complication is that the work products assessed do not necessarily map to a single 

core concept, and thus the progress of these core concepts is not visible. 



 

37 

 

Chapter 6 Conclusion and Future Work 
The objective of this study was to evaluate SEMAT (Software Engineering Methods and Theory) as a 

framework for software engineering process analysis. To achieve this objective, the 

SEMAT[9]Essence model was  evaluated against an industry lifecycle, specifically an established 

South African Bank, to gain a deeper understanding of the Essence kernel and identify gaps in the 

model. This chapter concludes the research described in this research report. The research questions 

are answered and the contribution of this research report is discussed 

Chapter 3 proposes the question and hypotheses that determine the focus of this research. 

The research question “In what way can the underlying model of the organisation’s software 

development lifecycle be critically evaluated by mapping the software development lifecycle onto 

the SEMAT kernel and does the mapping provide insight into the gaps identified?” is answered by 

discussing its two hypotheses.  

1. The SEMAT framework can be mapped to a custom industry lifecycle and it can be used to 

describe how the entire process hangs together 

2. The SEMAT framework is a useful construct in analysing software engineering models and is 

useful in identifying gaps and guiding the selection of appropriate practices and methods to 

address these gaps 

Chapter 4 describes how the industry lifecycle is mapped to the Essence kernel and the Essence 

concept of a practice can be used to describe the underlying model. The research has shown that the 

work products, tasks, baselines and governance model that practitioners are expected to work with 

can be mapped to the Essence model. It is a straightforward exercise to map tasks to alpha activities, 

and work products to Essence alphas and to document these in the form of an Essence practice. 

Furthermore, it has been shown that the baselines and the governance Continuous Assessment 

Criteria can be used to align the states of the Essence alphas.  

The core elements that drive the underlying metamodel of the Bank’s lifecycle can be identified by 

answering these four questions in the following order: 

 What are the essential concepts that practitioners work with (alphas)? 

o Do these essential concepts have states? 

o Do checklists exist to determine the states? 

o What milestones can be expressed in terms of the states of a collection of essential 

concepts? 

o What collection of work products manifests an essential concept?  

 What are the essential activities and tasks that are executed? 

o Which concepts do they drive? 

o Which states do they drive? 

o What criteria are to be fulfilled to measure the completeness of an activity? 

 What work products provide evidence of the essential concepts? 

o What activities provide guidance on creating work products 

 What patterns are defined? (phases, milestones, gates) 

 What practices can be identified? 



 

38 

 

This set of questions can be used as a simple framework to support organisations in assessing and 

improving their software development lifecycles. 

Chapter 5 describes the findings that resulted from the analysis of the model using the Essence as 

the framework. The research describes how the use of the framework identified gaps in both the 

Bank’s model and the Essence model.  

The Essence alpha Way of Working is not optimally supported in the Bank’s model, and the 

corresponding Essence states do not add value to the execution of the lifecycle in a predefined 

software engineering model.   

The Team alpha is not managed in the governance model, but is catered for in the method adoption 

workshops and team support process workshops, which are defined as activities in the lifecycle.  

The Software System alpha’s set of states does not explicitly provide for the design of the 

components of the software system and does not consider the existing environment that the new or 

enhanced system will be deployed and integrated into. This reduces the usefulness of the set of 

states to track the progress of the Software System alpha. 

Slots are not good candidates for alphas as they are more suited to grouping a set of related work 

products and do not have the concept of a state. The governance gates apply the assessment criteria 

to the work products and not to the slots. 

Mapping the baselines to the Essence alpha states demonstrated how the alpha states and checklists 

could be used to standardise the Continuous Assessment Criteria and abstract the criteria away from 

specific work products and tasks. 

Identifying potential alphas is straightforward using the framework described above. Relating the 

newly identified alphas to the Essence kernel alphas is not easy and the Essence specification does 

not provide any guidance on how to structure the alpha, sub-alpha relationships. Defining an 

appropriate set of states for a new alpha is not trivial and is easily confused with the level of detail of 

a work product. 

Relating the Bank’s tasks and activities to the Essence activity spaces using the completion criteria is 

very difficult as the completion criteria of the Essence alphas are not linked to a work product 

completion criterion. There is no indication of how an activity or an activity space progresses the 

state of a work product. 

The work of developing a solid theory of software engineering is only just beginning and more 

research is required to test the Essence standard. There are a number of areas where future work is 

suggested to clarify and improve the Essence standard: 

 Clear guidelines are required to assist practitioners in using the Essence model to document 

their practices 

 Further work is required in the Essence model to develop a language and metamodel to 

describe the analysis and design processes used by software engineers 

 Further empirical comparisons of other financial services industry lifecycles is required to 

develop an industry domain model based on the Essence language and concepts



 

39 

 

In conclusion this report tests the Essence standard against an operational industry software 

engineering lifecycle. It demonstrates how the Bank’s lifecycle can be described in terms of the 

Essence kernel. It shows how the Essence alphas and their states provide a useful framework to 

assess key dimensions that are relevant in an industry lifecycle. The analysis provides a number of 

insights into these key dimensions and proposes some enhancements to the Essence standard and 

suggests some improvements that should be considered in the Bank’s model.  

  



 

40 

 

Appendix A: Detailed Analysis of Observations 
 

A1: Analysis of Essential Concepts 
 

Analysis of Slots and Alphas 
  

Observation Evidence Analysis 

There are review gates that have 
slots as input, but do not have 
any criterion that assesses the 
Slot or its constituent work 
products 

The slot Existing Environment is 
documented as a required input into 
the Business Requirements Review, 
System Requirements Review, the 
Preliminary Design Review and the 
Critical Design Review, yet only the 
Business Requirements Review has 
criteria that evaluate the Existing 
Environment slot work products. 

On reviewing the work products associated 
with the Existing Environment slot it is 
discovered that it only captures the current 
organisation business context and the existing 
applications, technology and infrastructure 
context. Thus this slot does not need to be 
assessed later on in a project, and there is no 
valid reason to include it in later reviews. It is 
recommended to remove the slot in later 
reviews as it creates unnecessary project 
overhead to maintain documentation that is 
not used 

There are gates with assessment 
criteria not linked to a slot 

The Production Readiness Review 
contains the criterion summary 
available of the baseline 
requirements versus requirements 
delivered and this criterion is not 
linked to any slot or work product 

A set of defined criteria to be used in a formal 
governance review implies that the criteria 
must be assessing an attribute that is of some 
importance to the progression of an 
endeavour. A criterion that does not have 
anything to measure may indicate a work 
product that is missing. On closer inspection 
there is a critical work product missing. 
Planning a release would require a clear 
understanding of the complete set of 
requirements that must be satisfied, mapped 
against the set of requirements completed 
and tested for a particular release, and a plan 
of when the remaining requirements will be 
delivered 

Mapping the Essence alphas 
against the slots using the slot 
work products to guide the 
mapping reveals that each slot is 
mapped to at least one Essence 
alpha 

Appendix C: Mapping Slots to 
Baselines 

The slots and their fulfilling work products are 
considered important concepts and are 
tracked throughout the Bank’s lifecycle. This 
insight provides support for the claim that the 
Essence alphas represent the essence of 
software engineering 

Mapping the slots against the 
Essence alphas reveals that not 
all alphas map to a slot 

The Team alpha is not mapped to any 
slot as it is not addressed by any 
work products linked to the slots 

The Team alpha, and to a large degree, the 
Work alpha are not directly addressed by the 
technical review boards as they are not part 
of the technical solution being assessed. 
Enhancing the review board criteria to focus 
on the Team attributes will enable the 
reviews to highlight potential skills shortfalls 
and missing domains such as security earlier 
on in the process, thus avoiding project 
bottlenecks occurring later in the build and 
test phases 



 

41 

 

Analysis of Slots and Alphas 
  

Observation Evidence Analysis 

Mapping the slots, assuming 
they are alphas, to the review 
gates reveals that not all slots 
are inputs into a gate 

The Technical Implementation slot, 
which covers the actual development 
outputs and work products is not 
reviewed by any gate 

Initial thinking questioned why the actual 
development work is not formally reviewed. 
Further analysis of the process reveals that 
these outputs are in fact reviewed via the 
outputs of testing. The test work products are 
extensively addressed by the Critical Design 
Review, Testing Readiness Review and 
Production Readiness Review.  
This model fits with the Essence alpha states 
for the alpha Software System which is 
progressed from architecture selected directly 
to Demonstrable. The build of the software is 
considered a mechanism to progress a set of 
requirements from the state of conceived to 
the state of fulfilled and not a state to be 
achieved on its own merit. 

Mapping the slots to the review 
gates reveals that not all slots 
are inputs into a gate and 
challenges our assumptions 
about what should be measured 
and the timing of these 
measurements 

The Requirements Report slot is not 
an input into the Testing Readiness 
Review and Production Readiness 
Review. 

The requirements are reviewed through the 
Test Pack slot which contains traceability 
matrices that link test cases back to the use 
cases. A well-defined set of requirements is of 
no value to a review that is assessing the 
readiness of the testing environment and the 
test cases to begin testing a solution. A work 
product that maps the set of requirements 
under review to the test cases that will test 
these requirements will be useful to assess 
the appropriateness of the tests and the test 
coverage 

The Bank’s governance model 
does not adequately assess the 
state of the Essence alphas in 
later phases 

The governance model does not 
directly measure the state of the 
Requirement and Software System 
alphas in the implementation and 
deployment phases. It provides a 
generic set of criteria that focus on 
test case approval, completeness and 
configuration management 

The Essence describes a functional test state 
that assesses the Requirements and a quality 
test state that assesses the Software System. 
Enhancing the Bank’s governance model with 
criteria that focus on both the functional and 
non-functional tests could improve the test 
coverage 

The gate assessment criteria 
(CAR) assess and set multiple 
states for an alpha within a gate 

The Requirements Report slot’s state 
for use cases is set to identified 
uniquely, prioritised, agreed, 
complete, solution independent, 
validatable, verifiable, testable and 
traceable to scope in the System 
Requirements Review 

The process provides no mechanism to help 
assess the attainment of each of these states 
and by assessing them altogether it offers the 
team no insight into the state of the 
requirements until much later in the project 
and places a huge burden on the reviewers to 
deal with a huge quantity of data for a single 
review. The Essence provides a set of criteria 
that determine the state of the complete set 
of requirements for the endeavour and a 
separate set of criteria that can determine the 
state of individual requirements. The validity 
of assessing the system requirements to this 
level of detail in a phase that is designed to 
provide enough information to cost a project 
needs further investigation 

Work products that are used as 
input into the gates can be 
composed of other work 
products. These work products 
also progress a number of alphas 

The Conceptual Solution Architecture 
(CSA), as a work product, will 
progress its constituent parts to 
different states. A CSA will have the 
requirements as bounded, the 
current environment as validated 
and the architecture as identified 

The CSA is not a good candidate for an alpha 
as it progresses the states of the 
Stakeholders, Opportunity, Software System 
and Requirements alphas. The CSA should be 
defined as a slot or a baseline and not as an 
individual work product 



 

42 

 

Analysis of Slots and Alphas 
  

Observation Evidence Analysis 

The Essence specification lacks 
key states and checklists to cater 
for understanding the existing 
technical environment. 
 

Software System alpha does not cater 
for understanding the current 
environment and context into which 
software will be delivered.  It does 
not address this concept in either its 
states or checklists 

The SDLC requires a current environment to 
be understood as part of the Customer 
Baseline. The current environment activities 
and work products are the initial point of 
departure for driving the Software System 
state. Understanding the current 
environment is a critical activity for any 
software endeavour that will either change or 
interface with an existing operational system. 
Ignoring the environment could potentially 
result in significant scope change and 
requirements analysis in the build and test 
phases of a project 

The Essence specification lacks 
key development states and 
checklists that are required for 
large, multi-system projects 

The Software System state 
progresses from architecture selected 
to demonstrable and bypasses 
design, build and integration states 

This omission could lead to the state of the 
alpha as being unknown for a large portion of 
the lifecycle and the software development 
and integration progress not being tracked.  
Tracking the states of multiple systems’ 
design and development progress is a key 
activity for any large endeavour in a bank. 
Each system is typically managed by 
independent teams and not managing these 
dependencies and their progress could lead to 
deployment failures and potential rework 

The Essence specification 
provides a simple view of the 
state of an endeavour from a 
single perspective. It does not 
consider multiple teams in 
complex operational 
environments 

The bank has two levels of teams; the 
teams that own and manage a 
technology or application and the 
project teams that introduce new 
solutions into the bank. The project 
teams work with multiple 
applications and application teams 

The way of working for the application team 
is fundamentally different to the way a 
project team works. The Bank’s lifecycle must 
cater for both. It must be understood that an 
application team may simultaneously receive 
requirements from multiple competing 
projects and their view of alphas states is not 
the same as those of any individual project 

Table 11: Analysis of slots and alphas 

  



 

43 

 

A2: Analysis of Essence Alpha States 
 

Analysis of Essence Alpha States 
  

Observation Evidence Analysis 

The Bank’s documented model 
does not cater for states past 
Implementation 

The final state of Stakeholders 
satisfied in use is not evident in the 
lifecycle 

The documented model stops at 
Implementation and does not have any 
activities defined to assess this state or 
progress the alpha to this state. The Bank’s 
model needs to cater for a review of the use 
of the software after the solution is live and in 
active use. 

Micro design does not progress 
any Essence alpha 

The Opportunity alpha is not 
addressed in micro design 

This makes sense as no new requirements or 
opportunities are being defined or explored 
here. This phase explicitly details each 
identified component, therefore it does not 
progress the Opportunity state, as the 
opportunity is now in development. Micro 
design is a development phase as the 
activities relate to detailed component 
designs and database designs 

Micro design does not progress 
any Essence alpha 

Requirements are not progressed in 
micro design 

This is correct as the requirements are now 
being implemented in the design rather than 
being detailed 

Work alpha states are duplicated 
across solution outline and 
macro design 

Work undergoes a prepared state, 
started state and under control state 
for high level design and again for 
detail design, BTF and 
implementation 

There are two places where Work is prepared, 
started and under control. The first is the end 
of concept evaluation, where an initial scope 
and business case are tabled and funding for 
high level design is obtained. The second 
place is at the end of high level design, where 
the final quote for the work is generated and 
a business case completed for the rest of the 
project. 

Team alpha states are duplicated 
across solution outline and 
macro design 

Team undergoes a created, formed 
and encouraged to collaborate states 
for high level design and again for 
detail design 

There are two, financially driven, phases in 
which a team is created, formed and 
encouraged to collaborate. The process 
requires an initial pre-execution team for high 
level design and a much larger team for detail 
design that will form the execution team for 
the rest of the project. 

Way of Working alpha is only 
addressed in solution outline  

Way of Working undergoes a 
foundation established state in 
solution outline 

The Way of Working alpha is addressed in the 
high level design phase through two method 
adoption workshops. The output of these 
workshops is a set of activities, work products 
and an agreed project method that will be 
used to develop the project plans 

Table 12: Analysis of Essence alpha states 

 

  



 

44 

 

A3: Analysis of Activity Spaces 
 

Analysis of Activity Spaces 
  

Observation Evidence Analysis 

The Essence activity spaces need 
to be decomposed into finer 
grained activity spaces to enable 
a useful mapping to the Bank’s 
activities and tasks 

The Essence activity space Shape the 
System has a completion criterion of 
architecture selected and this 
criterion in the Essence implies 
software architecture described at a 
very detailed technical level.  

The Bank requires a number of enterprise 
architecture and infrastructure architecture 
decisions to be decided before any software 
design is completed (refer to Figure 16: 

Activity spaces mapped to activities). Thus 

Shape the System is composed of three 
activity spaces in the Bank, where the 
components are identified, and finally 
allocated to the appropriate existing system 
or new system. 

The Essence definition of activity 
spaces in terms of a set of alpha 
states requires a deep 
understanding of the concepts 
underpinning a set of activities 
or work products to define the 
completion criteria 

Activity space Explore Possibilities 
completion criteria does not have a 
completion criteria for alternate 
solutions 

The Outline Conceptual Technical Solution 
explores possible solutions to the business 
opportunity and provides a recommendation 
on an appropriate solution that balances the 
enterprise architecture and opportunity 
requirements with the constraints of the 
existing operational environment. This 
identifies a state alternate solutions identified 
gap in the completion criteria for Explore 
Possibilities 

There is no indication of how an 
activity progresses a specific 
work product in the Bank’s 
lifecycle and thus accurately 
determine the state of an 
endeavour 

The use case artefact Detail Key 
System Use Cases activity is defined 
once and reused as is in solution 
outline and macro design phases. 
There is no indication of how the 
activity progresses the specific work 
product 

Many of the work products and artefacts in 
the Bank’s lifecycle are defined once and 
reused across activities and many activities 
are defined once and reused in the process. If 
the activity had specific work product or alpha 
states as input and output, then an 
appropriate work product level of detail and 
completion state could be defined and a 
single work product definition and activity 
definition could be used 

Table 13: Analysis of activity spaces 

  



 

45 

 

A4: Analysis of Baselines 
 

Analysis of Baselines 
  

Observation Evidence Analysis 

The customer area of concern is 
not supported in design phase 

The Opportunity alpha is not 
progressed during the design phase, 
the essence states are achieved up to 
viable at the System Baseline 

The next state is met not at the Test Baseline 
as would be expected but at the Production 
Baseline. The Test Baseline ensures that all 
the required tests, test data and 
infrastructure for testing is defined and 
available, the test results are assessed at the 
production readiness review where the 
Production Baseline is reviewed 

The Design Baseline does not 
progress the customer and 
solution area of concern 

The Requirement alpha is not 
progressed by the Design Baseline. 

The Component Baseline describes how the 
components of the system will meet the 
requirements and will define a system that 
can be described as acceptable. The Design 
Baseline describes how to build the 
components that have already described an 
acceptable system. 

The Software System alpha is the 
least supported as defined by the 
Essence 

The Software System alpha does not 
provide any states that deal with 
Component Baseline, Design Baseline 
and Test Baseline 

Software System alpha states move directly 
from selecting architecture which is covered 
by the System Baseline to states that provide 
evidence of a working system measured by 
the Production Baseline. The Test Baseline 
only deals with test readiness and not with 
the outcomes of the tests, this is measured as 
part of the Production Baseline 

The baselines in the Bank’s 
model do not progress the 
endeavour aspects of the 
Essence 

Way of Working alpha is not 
addressed at all by the baselines 

These alphas are progressed orthogonally to 
the baselines. In the Bank, the work is 
specified in a pre-determined schedule and 
work breakdown structure and each project is 
expected to follow a prescribed method and 
the tasks and work products can be tailored 
to suite the size and complexity of the 
project. The way of working is predetermined 
at the organisation level and all teams are 
expected to follow the process as it is defined 
thus these states apply more to the 
implementation of the defined process across 
all projects 

The Software System Element 
sub-alpha covers some of the 
missing states in  the Software 
System alpha 

Software System Element sub-alpha 
sets the state  of the alpha to 
interfaces identified at the 
Component Baseline 

In the macro design phase of the Bank’s 
model, the component model and operational 
model are specified and the components are 
allocated detail responsibilities and their key 
interfaces are agreed and associated to 
nodes. In the micro design phase the 
individual software components and their 
agreed interfaces are completely specified. 

The baselines in the Bank’s 
model do not address the 
endeavour aspects of the 
Essence 

Way of Working alpha is not 
addressed by any baseline and work 
is not adequately tracked. 

These alphas are progressed orthogonally to 
the baselines. In the Bank, the work is 
specified in a pre-determined schedule and 
work breakdown structure and each project is 
expected to follow a prescribed method and 
the tasks and work products can be tailored 
to suite the size and complexity of the 
project. The way of working is predetermined 
at the organisation level and all teams are 
expected to follow the process as it is defined 
thus these states apply more to the 
implementation of the defined process across 
all projects 

Table 14: Analysis of baselines 



 

46 

 

Appendix B: Bank’s Alpha Table 
 

Bank Alpha States Level of Detail Activities Work Products Roles Checklists 

Component 
(Functional 
Component) 

 Responsibilities 
Identified 

 Responsibilities 
Allocated 

 Component 
Specified 

 Component 
Developed 

 Component 
Deployed 

 Logical 
Application 

 Specified/Logic
al 

 Physical 

 Outline Conceptual 
Technical Solution 

 Outline Technical 
Solution 

 Develop Technical 
Architecture 

 Develop Physical 
Architecture 

 Refine Technical 
Architecture 

 Develop Detail 
Component Design 

 Develop Solution 
Software 
Components 

 Update Technical 
Design 

 Deploy to ETE, QA 

 Deploy Production 
Environment 

 Cutover to 
Production 

 Architecture 
Overview 

 Component Model 

 Conceptual 
Solution 
Architecture 

 Component Design 

 Component 
Specification 

 Source Files 

 Application 
Designer  

 Application 
Developer  

 SOA Designer  

 System 
Analyst  

 Technical 
Solution 
Architect 

 Architecture Overview 

 Business 
Function/System 
Matrix 

 Component Design 

 Component Model 

 Component 
Specification 

 Interface Specification 
Validation and 
Verification 

 Physical Packaging 
Validation & 
Verification 

 Reference Architecture 
Fit Gap Analysis 

 Standards Validation & 
Verification 

 Subsystem Analysis 

 UI Design 
Specifications 

Node 
(Operational 
Component) 

 Node Identified 

 Components 
Allocated 

 Connections & 
Interactions 
Specified 

 Physical Node Sized 

 Node Configured 

 Logical 
Application 

 Logical 

 Physical 

 Unsized 

 Ranged 

 Sized 

 Outline Conceptual 

  Technical Solution 

 Outline Technical 
Solution 

 Develop Technical 
Architecture 

 Develop Physical 
Architecture 

 Refine Technical 
Architecture 

 Deploy to ETE, QA 
Environment 

 Deploy Production 
Environment 

 Cutover to 
Production 

 Node Model 

 Node 

 Connection 

 Operational Model 

 Zone Model 

 Location Model 

 Infrastructure 
Designer 

 Architecture Overview 

 Candidate Asset List 
Validation & 
Verification 

 Configuration 
Management  

 Identify Hardware 
Software 
Incompatibilities 

 Network Conceptual 
Design Validation and 
Verification 

 Network Node Design 
Validation and 
Verification 

 Reference Architecture 
Fit Gap Analysis 

 Standards Validation & 
Verification 

 Subsystem Analysis 

 Viability Assessment 

Deployment 
Unit 

 Identified 

 Placed 

 Connected 

 Tested 

 Logical 
Application 

 Logical 

 Physical 

No activities specific 
for deployment unit, 
embedded in 
guidances and 
templates 

 Operational Model 

 Node Model 

 Infrastructure 
Designer 

 None 

Data  Conceived 

 Resolved 

 Normalised 

 Transformed 

 Implemented 

 Conceptual 

 Logical 

 Physical 

 Develop Data 
Design 

 Refine Data Design 

 Develop Solution 
Data Components 

 Deploy ETE, QA 
Environments 

 Deploy Production 
Environment 

 Data Migrated 

 Data Migration 
Specification 

 Data Model 

 Database 
Transaction 
Descriptions 

 Metadata Strategy 

 Physical Database 
Design 

 Data Modeller  Data Model 

 Database Transaction 
Descriptions Validation 
& Verification 

 Physical Database 
Design 

Business 
Process 

 Scoped 

 Analysed 

 Gaps Identified 

 Prioritised 

 Defined 

 Tested 

 Outlined 

 Developed 

 Capture Existing 
Environment 

 Outline Business 
Solution 

 Develop Business 
Solution 

 Refine Business 
Solution 

 Business Event List 

 Business Rules 

 Procedures 
Document 

 Process Assessment 
& Analysis 

 Process Definition 

 Process 
Identification 

 High Level gap 
Analysis 

 Business Function/ 
System Matrix 

 Business 
Analyst 

 Process 
Engineer 

 Process Definition 
Validation & 
Verification 

 Process Identification 
Validation & 
Verification 

 Requirements User 
Report Validation & 
Verification 

 Business Direction 
Validation & 
Verification 

 Goal Service Model 

 Business 
Function/System 
Matrix 

Table 15: Banks alpha table 



 

47 

 

Bank Alpha States Level of Detail Activities Work Products Roles Checklists 

Test  Test Strategy agreed 

 Test Plan Created 

 Test Environment 
Ready 

 Tests Specified 

 Tests Completed 

 Tests Successful 

 Test Cycle: 

 Scenarios Identified 

 Test Cases Created 

 Tests Executed 

 Test Results 
Analysed 

 Test Coverage 
Satisfactory 

 Planned 

 Identified 

 Specified 

 Outline Test Plan 

 Develop Test Plan 

 Conduct Static Testing 

 Develop Test 
Specifications 

 Setup Test 
Environment 

 Prepare for Testing 

 Test Integrated 
Technical Solution 

 Perform User 
Acceptance Testing 

 Test Production 

 Development 
Integration Test 
Plan 

 Master test plan 

 Operability Test 
Plan 

 Solution 
Verification Test 
Plan 

 Static Test Plan 

 System Test Plan 

 Test Case 

 Test Data 

 Test Environment 
Configuration 

 Test Evaluation 
Summary 

 Test Execution Plan 

 Test Findings 

 Test Log 

 Test 
Measurements 

 Test Plan 

 Test Script 

 Test Specification 

 Test Strategy 

 User Acceptance 
Test Plan 

 Test Manager 

 Test Analysts 

 Tester 

 Business Event List 
Validation & 
Verification 

 Acceptance Test 
Environment 

 Analyse Test 
Environment 

 Determine Level of 
Tests 

 Determine Test Focus 
Area 

 Early Usability 
Evaluation & 
Walkthroughs, Heuristic 
Reviews 

 Operability Test 
Environment 

 System Test 
Environment 

 Systems Integration 
Test Environment 

 Test Case 

 Test Data 

 Test Environment 
Configuration 
Validation & 
Verification 

 Test Findings 

 Test Log 

 Test Measurements 
Validation & 
Verification 

 Test Script 

 Test Specification 

System 
requirements 

 Identify 
Requirements 

 Prioritising Use 
Cases 

 Developing High 
Level Summaries 

 Developing Detailed 
Event Flows 

 Identified 

 Detailed 

 Outline System Use 
Case 

 Describe the System 
Context 

 Detail Non Functional 
Requirements 

 Elicit and Categorise 
Requirements 

 Provide AUMR 
Checklist 

 Detail Key System Use 
Case Scenarios 

 Document Business 
Rules 

 Refine Interface 
Contsraints 

   

 Actor 

 Assumptions & 
Dependencies 

 Authentication & 
User Management 
Requirements 

 Change Cases 

 Non Functional 
Requirements 

 Requirements List 

 Requirements User 
Validation Report 

 Risks & Issues 

 Security Design 
Directives 

 System Context 

 System Use 
CaseSystem Case 
Model 

 Usability 
Requirements 

Business 
Analyst 

 Change Cases 
Validation & 
Verification 

 Requirements User 
Report Validation & 
Verification 

 System Wide 
Requirements (FURPS+) 

 Usability Requirements 
Validation and 
Verification 

 Use Case 

 Use Case Model 

 User Groups Validation 
& Verification 

 UI Guidelines Validation 
& Verification 

 User Profiles Validation 
& Verification 

Work  Planned 

 In progress 

 Completed 

None  Produce Estimation 

 Draft Execution 
Project Budget 

 Document Business 
Case 

 Conduct Financial 
Review Forum (FRF) 

 Conduct Phase Close 
Out 

 Monitor and Control 

 Develop Solution 
Development Plans 

 Detail Solution 
Development Plans 

 Update Estimations 

 Update Lessons 
Learned 

 

 Configuration 
Management Plan 

 Work Product List 

 WBS 

 Scope of Work 

 Release Plan 

 PM Schedule 

 Project Estimates 

 Project Definition 

 Project Defined 
Process 

 Project Budget 

 Increment Goals 

 Deployment Plan 

 Consolidated 
Sequence of Events 

 Project 
Manager 

 Deployment Plan 
Validation & 
Verification 

 Develop High Level Test 
Schedule 

 Acceptance Test Plan 

 Plan validation & 
Verification 

 Increment goals 
Validation & 
Verification 

 Master Test Plan 

 Release Plan Validation 
& Verification 

 Static Test Plan 

 Test Plan 

 Test Strategy Complete 

 Test Scope 

 Usability Design 

  Evaluation Plan 

  Validation and 
Verification 

 Usability Test Plan 

 Production Cutover 
Checklist 

 Gear Entry Exit Criteria 
 



 

48 

 

Table 15: Banks alpha table 

Bank Alpha States Level of Detail Activities Work Products Roles Checklists 

Business 
Context 

 Identified 

 Validated 

 Prioritised 

None  Understand Business 
Drivers 

 Business Direction 

 Business Drivers 

 Classified 
Business Terms 

 Industry 
Environment 
Analysis 

 Key Performance 
Indicators 

 Business 
Analyst 

 Industry Environment 
Analysis Validation & 
Verification 

 Business Direction 
Validation & 
Verification 

 Business Event list 
Validation & 
Verification 

Opportunity  Identified 

 Validated 

 Prioritised 

None  Define Problem 
Statement 

 Understand Business 
Requirements 

 Understand Business 
Drivers 

 Define Problem 
Statement 

 Customer Wants 
and Needs 

 Problem 
Statement 

 Business Case 

 Business 
Analyst 

None 

Security none none  Consistency 
Assurance  

 Conduct Security 
Design Consistency 
Assurance  

 Provide 
Authentication and 
User Management 
Requirements 
(AUMR)  

 Prepare Security & 
Risk Assessment 
(SRA)  

 Compile Security 
Design Directives 

 Security Design 
Directives 

 SOA LAC Form 

 Solution 
Architect 

 Business 
Analyst 

 Security 
Designer 

 AUMR Checlist 

 Current Technical 
Environment  

 Security Control 
Checklist 

 Penetration Testing 
Preparation Checklist 

 Security & Risk 
Assessment 

Stakeholders Identified None  Obtain Current 
Organisation 
Description 

 Stakeholder 
Analysis 

 Stakeholder 
Matrix 

 User Profiles  

 Business 
Analyst 

 Process 
Engineer 

None 

Table 15: Banks alpha table 

  



 

49 

 

Appendix C: Mapping Slots to Baselines 
 

Slot Work Products Gates Essence Alpha Baselines 

C
u

sto
m

e
r 

Syste
m

 

Lo
gical 

C
o

m
p

o
n

e
n

t 

D
e

sign
 

Te
st 

P
ro

d
u

ctio
n

 

Business 
Requirements 

Business Direction, Industry Environment, Business  
Drivers, Customer Wants & Needs BRR Opportunity X 

      

Existing 
Environment 

Baseline Survey Report, Current Organisation 
Description, Process Assessment & Analysis, Process 
Definition, Technical Environment 

BRR,SRR,PDR,CDR Opportunity X X 
 

X X 
  

Business Model Business Event List, Business Rules, Classified 
Business Terms, Process Definition BRR,SRR,PDR,CDR Opportunity X X 

 
X X 

  

Application 
Model 

Interface Specification,Interfaces, Data Model, 
Database Transaction Descriptions, Physical 
Database Designs, Service Design Model SRR,PDR,CDR Software System 

 
X 

 
X X 

  

Requirements 
Report 

Non-functional Requirements, Actors, System Use 
Cases, System Use Case Model, Technical 
Environment, AUMR Checklist, User Profiles, 
Useability Requirements 

SRR,PDR,CDR Requirements 
 

X 
 

X X 
  

Test Approach Master Test Plan, Test Plan, Test Strategy SRR/ Work 
 

X 
     

Architecture 
Model 

Ref Arch Fit Gap Analysis, Security Design Directives, 
Service Level Characteristics Model, Viability 
Assessment, Operational Model, Performance 
Model, Component Model, Architectural Decisions, 
Architecture Overview, Security & Risk Assessment 

SRB,SRR,PDR,CDR,
TRR,PRR 

Software System 
 

X 
 

X X X X 

Standards & 
Procedures 

Standards, Configuration Management Plan, 
Principles, Policies, Guidelines, Deployment 
Procedures, Release Candidates, IT Services Strategy, 
IT Services Detail Design, Deployment Plan, Coding 
Guidelines, Build Procedures, Application 
Maintenance Turnover Definition 

SRR,PDR,CDR,TRR,
PRR 

Software System 
 

X 
 

X X X X 

Test Pack Defect Log, Development Integration Test Plan , 
GEaR Entry and Exit Criteria , Master Test Plan, 
Operability Test Plan, Solution Verification Test Plan, 
Static Test Plan, System Test Plan, Test Environment 
Configuration, Test Execution Plan, Test Findings, 
Test Log, Test Measurements, Test Plan, Test 
Specification, User Acceptance Test Plan 

SRR,PDR,CDR,TRR,
PRR 

Software System 
 

X 
 

X X X X 

User Experience 
Model 

UI Prototype, UI Guidelines, UI Design Specification, 
Interactive Concept, Usability Requirements SRR,PDR,CDR Requirements 

 
X 

 
X X 

  

Technical 
Implementation 

Build, Data Migration Programs, Media Content, 
Source Files  PRR Software System 

       

Project Work Project Management Schedule, Work Breakdown 
Structure  

Not included in 
gates 

Work 
       

Project Definition 
& Scope 

Project Definition 
SRB,BRR,PRR Opportunity X 

     
X 

Table 16: Mapping slots to baselines 

 

  



 

50 

 

Appendix D: Mapping CAR’s to Slots 
 

Sl
o

t 

W
o

rk
 

P
ro

d
u

ct
s 

Es
se

n
ce

 

A
lp

h
a 

B
R

R
 S

ta
te

s 

SR
R

 S
ta

te
s 

P
D

R
 S

ta
te

s 

C
D

R
 S

ta
te

s 

TR
R

 S
ta

te
s 

P
R

R
 S

ta
te

s 

B
u

si
n

es
s 

R
eq

u
ir

em
en

ts
 

B
u

si
n

es
s 

D
ir

ec
ti

o
n

, 

In
d

u
st

ry
 E

n
vi

ro
n

m
en

t,
 

B
u

si
n

es
s 

 D
ri

ve
rs

, 

C
u

st
o

m
er

 W
an

ts
 &

 

N
ee

d
s 

O
p

p
o

rt
u

n
it

y 

B
u

si
n

es
s 

R
eq

u
ir

em
en

ts
: 

1
. D

ef
in

ed
 

2
. T

ra
ce

ab
le

 t
o

 S
co

p
e 

3
. A

gr
ee

d
/S

ig
n

ed
 O

ff
 

4
.A

gr
ee

d
 P

ri
o

ri
ty

 

--
- 

--
- 

--
- 

--
- 

--
- 

Ex
is

ti
n

g 
En

vi
ro

n
m

en
t 

B
as

el
in

e 
Su

rv
ey

 R
ep

o
rt

, 

C
u

rr
en

t 
O

rg
an

is
at

io
n

 

D
es

cr
ip

ti
o

n
, P

ro
ce

ss
 

A
ss

es
sm

en
t 

&
 A

n
al

ys
is

, 

P
ro

ce
ss

 D
ef

in
it

io
n

, 

Te
ch

n
ic

al
 E

n
vi

ro
n

m
en

t 

O
p

p
o

rt
u

n
it

y 

A
rc

h
it

ec
tu

re
: 

1
. A

s-
Is

 V
al

id
at

ed
  

B
u

si
n

es
s 

P
ro

ce
ss

: 

1
.I

d
en

ti
fi

ed
 

2
.V

al
id

at
ed

 A
s-

Is
 

3
. G

ap
s 

Id
en

ti
fi

ed
 

N
o

 C
A

R
 r

el
at

ed
 t

o
 t

h
is

 S
lo

t 

in
 S

R
R

, b
u

t 
 it

 is
 a

n
 in

p
u

t 

in
to

 t
h

e 
re

vi
e

w
 

N
o

 C
A

R
 

N
o

 C
A

R
 

--
- 

--
- 

B
u

si
n

es
s 

M
o

d
el

 

B
u

si
n

es
s 

Ev
en

t 
Li

st
, 

B
u

si
n

es
s 

R
u

le
s,

 

C
la

ss
if

ie
d

 B
u

si
n

es
s 

Te
rm

s,
 P

ro
ce

ss
 

D
ef

in
it

io
n

 

O
p

p
o

rt
u

n
it

y 

B
u

si
n

es
s 

P
ro

ce
ss

:  

1.
 D

ef
in

ed
 T

o
-B

e 

N
o

 C
A

R
 

N
o

 C
A

R
 

N
o

 C
A

R
 

--
- 

--
- 

A
p

p
lic

at
io

n
 M

o
d

el
 

In
te

rf
ac

e 
Sp

ec
if

ic
at

io
n

 

In
te

rf
ac

es
, D

at
a 

M
o

d
el

, 

D
at

ab
as

e 
Tr

an
sa

ct
io

n
 

D
es

ri
p

ti
o

n
s,

 P
h

ys
ic

al
 

D
at

ab
as

e 
D

es
ig

n
s,

 S
er

vi
ce

 

D
es

ig
n

 M
o

d
el

 

So
ft

w
ar

e 
Sy

st
em

 

--
- 

N
o

 C
A

R
 

1.
D

at
ab

as
e 

ar
ch

it
ec

tu
re

 

C
o

m
p

le
te

 

2.
 In

te
ra

ct
io

n
 D

ia
gr

am
s 

C
o

m
p

le
te

 

3.
 In

te
rf

ac
es

 D
es

ig
n

ed
 

(L
o

gi
ca

l &
 P

h
ys

ic
al

) 

1.
D

at
ab

as
e 

D
es

ig
n

 

C
o

m
p

le
te

 

2.
 In

te
rf

ac
e 

D
es

ig
n

 

C
o

m
p

le
te

 

--
- 

--
- 

R
eq

u
ir

em
en

ts
 R

ep
o

rt
 

N
o

n
-F

u
n

ct
io

n
al

 R
eq

u
ir

em
en

ts
, 

A
ct

o
rs

, S
ys

te
m

 U
se

 C
as

es
, S

ys
te

m
 

U
se

 C
as

e 
M

o
d

el
, T

ec
h

n
ic

al
 

En
vi

ro
n

m
en

t,
 A

U
M

R
 C

h
ec

kl
is

t,
 U

se
r 

P
ro

fi
le

s,
 U

se
ab

ili
ty

 R
eq

u
ir

em
en

ts
 

R
eq

u
ir

em
en

ts
 

--
- 

R
eq

u
ir

em
en

ts
: 

1.
 Id

en
ti

fi
ed

 U
n

iq
u

el
y 

2.
 P

ri
o

ri
ti

se
d

 

3.
A

gr
ee

d
 

4.
 C

o
m

p
le

te
 

5.
 S

o
lu

ti
o

n
 In

d
ep

en
d

en
t 

6.
 V

al
id

at
ab

le
 

7.
 V

er
if

ia
b

le
 

8.
 T

es
ta

b
le

 

9.
 T

ra
ce

ab
le

 t
o

 s
co

p
e 

&
 B

u
si

n
es

s 

R
eq

u
ir

em
en

ts
 

1.
 U

se
 c

as
es

 a
re

 C
o

m
p

le
te

 

2.
 F

u
n

ct
io

n
al

 R
eq

u
ir

em
en

ts
 

C
o

m
p

le
te

 (
im

p
lie

d
) 

1.
 N

o
n

 F
u

n
ct

io
n

al
 R

eq
u

ir
em

en
ts

 

C
o

m
p

le
te

 (
Im

p
lie

d
) 

2.
 N

FR
 D

es
ig

n
s 

C
o

m
p

le
te

 

3.
 P

ro
d

u
ct

io
n

 D
at

a 
w

ill
 S

u
p

p
o

rt
 

re
q

u
ir

em
en

ts
 

--
- 

--
- 

Te
st

 A
p

p
ro

ac
h

 

M
as

te
r 

Te
st

 P
la

n
, 

Te
st

 P
la

n
, T

es
t 

St
ra

te
gy

 

W
o

rk
 

--
- 

R
eq

u
ir

em
en

ts
: 

1.
 T

es
ta

b
le

 

--
- 

--
- 

--
- 

--
- 

A
rc

h
it

ec
tu

re
 M

o
d

el
 

R
ef

 A
rc

h
 F

it
 G

ap
 A

n
al

ys
is

, 

Se
cu

ri
ty

 D
es

ig
n

 

D
ir

ec
ti

ve
s,

 S
er

vi
ce

 L
ev

el
 

C
h

ar
ac

te
ri

st
ic

s 
M

o
d

el
, 

V
ia

b
ili

ty
 A

ss
es

sm
en

t,
 

O
p

er
at

io
n

al
 M

o
d

el
, 

P
er

fo
rm

an
ce

 M
o

d
el

, 

C
o

m
p

o
n

en
t 

M
o

d
el

, 

A
rc

h
it

ec
tu

ra
l D

ec
is

io
n

s,
 

A
rc

h
it

ec
tu

re
 O

ve
rv

ie
w

, 

Se
cu

ri
ty

 &
 R

is
k 

A
ss

es
sm

en
t 

So
ft

w
ar

e 
Sy

st
em

 

1.
 S

o
lu

ti
o

n
 O

p
ti

o
n

s 

A
gr

ee
d

 

2.
 A

p
p

ro
ac

h
 R

at
if

ie
d

 

3.
 C

o
m

p
o

n
en

t 
M

o
d

e
l 

Id
en

ti
fi

ed
 

Sy
st

em
 A

rc
h

it
ec

tu
re

 

Id
en

ti
fi

ed
 

So
lu

ti
o

n
 A

d
re

ss
es

 

C
u

st
o

m
er

 B
as

el
in

e
 

Sy
st

em
 A

rc
h

it
ec

tu
re

: 

1.
 A

gr
ee

d
(i

m
p

lie
d

) 

2
. S

at
is

fi
es

 S
ys

te
m

 

R
eq

u
ir

em
en

ts
/F

ea
tu

re
s 

 A
rc

h
it

ec
tu

re
: 

1.
 D

yn
am

ic
 A

rc
h

it
ec

tu
re

 

C
o

m
p

le
te

 

2.
 S

ta
ti

c 
A

rc
h

it
ec

tu
re

 

C
o

m
p

le
te

 

3.
 C

o
m

p
o

n
en

t 
M

o
d

el
 

d
ef

in
ed

 
1.

C
o

m
p

o
n

en
t 

d
es

ig
n

 

C
o

m
p

le
te

 

2.
 O

p
er

at
io

n
al

 M
o

d
el

 

D
es

ig
n

 C
o

m
p

le
te

 (
N

FR
 

re
q

u
ir

em
en

ts
) 

3.
 P

ro
d

u
ct

io
n

 d
at

a 
w

ill
 

su
p

p
o

rt
 c

o
m

p
o

n
en

t 

re
q

u
ir

em
en

ts
 

1.
Te

st
 A

rc
h

it
ec

tu
re

 

In
fr

as
tr

u
ct

u
re

 &
 S

o
ft

w
ar

e 

Im
p

le
m

en
te

d
 &

 R
ea

d
y 

1.
 P

ro
d

u
ct

io
n

 

In
fr

as
tr

u
ct

u
re

 A
gr

ee
d

 

(i
n

cl
 C

ap
ac

it
y 

&
 

Sc
al

ab
ili

ty
) 

St
an

d
ar

d
s 

&
 

P
ro

ce
d

u
re

s 

St
an

d
ar

d
s,

 

C
o

n
fi

gu
ra

ti
o

n
 

M
an

ag
em

en
t 

P
la

n
, 

P
ri

n
ci

p
le

s,
 P

o
lic

ie
s,

 

G
u

id
el

in
es

, 

D
ep

lo
ym

en
t 

P
ro

ce
d

u
re

s,
 R

el
ea

se
 

C
an

d
id

at
es

, I
T 

Se
rv

ic
es

 

St
ra

te
gy

, I
T 

Se
rv

ic
es

 

D
et

ai
l D

es
ig

n
, 

D
ep

lo
ym

en
t 

P
la

n
, 

C
o

d
in

g 
G

u
id

el
in

es
, 

B
u

ild
 P

ro
ce

d
u

re
s,

 

A
p

p
lic

at
io

n
 

M
ai

n
te

n
an

ce
 T

u
rn

o
ve

r 

D
ef

in
it

io
n

 

So
ft

w
ar

e 
Sy

st
em

 

--
- 

St
an

d
ar

d
s:

 

1.
 Id

en
ti

fi
ed

 

N
o

 C
A

R
 

N
o

 C
A

R
 

1.
P

ro
b

le
m

, D
ef

ec
t 

,C
h

an
ge

 M
an

ga
m

en
t 

P
ro

ce
d

u
re

s 
Es

ta
b

lis
h

ed
 

&
 A

gr
ee

d
 

1.
In

st
al

l P
la

n
s 

D
ef

in
ed

 

2.
 In

st
al

l P
ro

ce
d

u
re

s 

D
ef

in
ed

 



 

51 

 

Sl
o

t 

W
o

rk
 

P
ro

d
u

ct
s 

Es
se

n
ce

 

A
lp

h
a 

B
R

R
 S

ta
te

s 

SR
R

 S
ta

te
s 

P
D

R
 S

ta
te

s 

C
D

R
 S

ta
te

s 

TR
R

 S
ta

te
s 

P
R

R
 S

ta
te

s 

Te
st

 P
ac

k 

D
ef

ec
t 

Lo
g,

 D
ev

el
o

p
m

en
t 

In
te

gr
at

io
n

 T
es

t 
P

la
n

 , 
G

Ea
R

 E
n

tr
y 

an
d

 E
xi

t 
C

ri
te

ri
a 

, M
as

te
r 

Te
st

 

P
la

n
, O

p
er

ab
ili

ty
 T

es
t 

P
la

n
, 

So
lu

ti
o

n
 V

er
if

ic
at

io
n

 T
es

t 
P

la
n

, 

St
at

ic
 T

es
t 

P
la

n
, S

ys
te

m
 T

es
t 

P
la

n
, 

Te
st

 E
n

vi
ro

n
m

en
t 

C
o

n
fi

gu
ra

ti
o

n
, 

Te
st

 E
xe

cu
ti

o
n

 P
la

n
, T

es
t 

Fi
n

d
in

gs
, 

Te
st

 L
o

g,
 T

es
t 

M
ea

su
re

m
en

ts
, 

Te
st

 P
la

n
, T

es
t 

Sp
ec

if
ic

at
io

n
, U

se
r 

A
cc

ep
ta

n
ce

 T
es

t 
P

la
n

 

So
ft

w
ar

e 
Sy

st
em

 

--
- 

R
eq

u
ir

em
en

ts
: 

1
.A

cc
ep

ta
n

ce
 C

ri
te

ri
a 

Id
en

ti
fi

ed
 

2
.V

al
id

at
ab

le
 

3
. T

es
ta

b
le

 

N
o

 C
A

R
 

Te
st

 P
la

n
s:

 

1
. T

ra
ce

ab
le

 t
o

 C
o

m
p

o
n

en
t 

R
eq

u
ir

em
en

ts
 

2
.T

ra
ce

ab
le

 t
o

 A
cc

ep
ta

n
ce

 C
ri

te
ri

a
 

Te
st

 D
at

a:
 

1
. T

es
t 

d
at

a 
w

ill
 s

u
p

p
o

rt
 

as
so

ci
at

ed
 t

es
t 

1
.E

V
T 

Te
st

 C
o

m
p

le
te

d
 

2
.T

es
t 

D
at

a 
Lo

ad
ed

 

3
.T

es
t 

C
as

es
 C

o
m

p
le

te
 

4
.T

es
t 

C
as

es
 R

ev
ie

w
ed

 

1
. A

ll 
Te

st
s 

C
o

m
p

le
te

d
 

Su
cc

es
sf

u
lly

 

2
. A

ll 
Te

st
s 

Si
gn

ed
 O

ff
  

U
se

r 
Ex

p
er

ie
n

ce
 M

o
d

el
 

U
I P

ro
to

ty
p

e,
 U

I 

G
u

id
el

in
es

, U
I D

es
ig

n
 

Sp
ec

if
ic

at
io

n
, I

n
te

ra
ct

iv
e 

C
o

n
ce

p
t,

 U
sa

b
ili

ty
 

R
eq

u
ir

em
en

ts
 

R
eq

u
ir

em
en

ts
 

--
- 

Sy
st

em
 A

rc
h

it
ec

tu
re

: 

1
. A

gr
ee

d
 

2
. S

at
is

fi
es

 S
ys

te
m

 

R
eq

u
ir

em
en

ts
/F

ea
tu

re
s 

3
. U

I S
ta

n
d

ar
d

s 
A

gr
ee

d
 

1
.P

h
ys

ic
al

 In
te

rf
ac

e 

D
es

ig
n

ed
(U

I)
 

1
. I

n
te

rf
ac

e 
D

es
ig

n
s 

C
o

m
p

le
te

 

2
. N

FR
 D

es
ig

n
s 

C
o

m
p

le
te

 

(U
I)

 

--
- 

--
- 

Te
ch

n
ic

al
 Im

p
le

m
en

ta
ti

o
n

 

B
u

ild
, D

at
a 

M
ig

ra
ti

o
n

 

P
ro

gr
am

s,
 M

ed
ia

 C
o

n
te

n
t,

 

So
u

rc
e 

Fi
le

s 
 

So
ft

w
ar

e 
Sy

st
em

 

N
o

t 
in

cl
u

d
ed

 in
 g

at
es

 

--
- 

--
- 

--
- 

--
- 

--
- 

P
ro

je
ct

 W
o

rk
 

P
ro

je
ct

 

M
an

ag
em

en
t 

Sc
h

ed
u

le
, W

o
rk

 

B
re

ak
d

o
w

n
 

St
ru

ct
u

re
  

W
o

rk
 

N
o

t 
in

cl
u

d
ed

 in
 

ga
te

s 

--
- 

--
- 

--
- 

--
- 

--
- 

P
ro

je
ct

 

D
ef

in
it

io
n

 &
 

Sc
o

p
e 

P
ro

je
ct

 

D
ef

in
it

io
n

  

O
p

p
o

rt
u

n
it

y 

Sc
o

p
e 

&
 

O
b

je
ct

iv
es

: 

1.
 D

ef
in

ed
  

2.
 V

er
if

ie
d

  

3.
 A

gr
ee

d
  

4.
Si

gn
ed

 O
ff

 

--
- 

--
- 

--
- 

--
- 

M
TP

 

D
el

iv
er

ab
le

s 

D
ef

in
ed

 a
n

d
 

A
gr

ee
d

 U
p

o
n

  

Table 17: Mapping CAR's to slots 

  



 

52 

 

References 
[1] L. McLeod, S.G. MacDonell, and B. Doolin, “Qualitative research on software development: a 

longitudinal case study methodology,” Empirical Software Engineering, vol. 16, 2011, pp. 430–
459. 

[2] A.M. French, “Web Development Life Cycle: A New Methodology for Developing Web 
Applications,” Journal of Internet Banking and Commerce, vol. 16, 2011, pp. 2011–8. 

[3] O. Cawley, X. Wang, and I. Richardson, “Regulated Software Development–An Onerous 
Transformation,” Foundations of Health Information Engineering and Systems: Second 
International Symposium, FHIES 2012,August, 2012. Revised Selected Papers, Springer, , pp. 
72–86. 

[4] H. Van Baelen, “Agile (Unified Process),” Agile Record, vol. 6, 2011, p. 22. 
[5] J. Appelo, Management 3.0: Leading Agile Developers, Developing Agile Leaders, Addison-

Wesley Professional, 2010. 
[6] P. Clarke and R.V. O’Connor, “The situational factors that affect the software development 

process: Towards a comprehensive reference framework,” Information and Software 
Technology, vol. 54, 2012, pp. 433–447. 

[7] S. Alter, “Is Work System Theory a Practical Theory of Practice?,” Systems, Signs & Actions, vol. 
7, 2013, pp. 22–48. 

[8] B. Boehm and R. Turner, “Observations on balancing discipline and agility,” Proceedings of the 
Agile Development Conference, IEEE, 2003, pp. 32–39. 

[9] OMG, “OMG Standard, Kernel and Language for Software Engineering Methods(Essence), 
Object Management Group (OMG), Document formal/2014-11-02, November 2014,” 
http://www.omg.org/spec/Essence/1.0/. 

[10] P. Ralph, “Toxic concepts in systems analysis and design: the systems development lifecycle,” 
Proceedings of the 9th AIS SIGSAND Symposium, St. John’s Newfoundland, Canada, 2010. 

[11] B. Boehm and R. Turner, “Management challenges to implementing agile processes in 
traditional development organizations,” Software, IEEE, vol. 22, 2005, pp. 30–39. 

[12] J. Vähäniitty and K.T. Rautiainen, “Towards a conceptual framework and tool support for 
linking long-term product and business planning with agile software development,” 
Proceedings of the 1st international workshop on Software development governance, ACM, 
2008, pp. 25–28. 

[13] R.G. Fichman and C.F. Kemerer, “Object-oriented and conventional analysis and design 
methodologies,” Computer, vol. 25, Oct. 1992, pp. 22–39. 

[14] P. Senge, The fifth discipline: the art and practice of the learning organisation, Doubleday, 
1990. 

[15] I. Jacobson, P.-W. Ng, P. McMahon, I. Spence, and S. Lidman, “The essence of software 
engineering: the SEMAT kernel,” ACM Queue, vol. 10, 2012, p. 40. 

[16] “The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition,” IEEE Std 100-2000, 
2000. 

[17] I. Sommerville, Software Engineering, 9th Edition, Pearson Addison-Wesley, 2011, . 
[18] P. Jalote, A Concise Introduction to Software Engineering, Springer, 2008. 
[19] H.N. Tran, B. Coulette, D.T. Tran, and M.H. Vu, “Automatic reuse of process patterns in process 

modeling,” Proceedings of the 2011 ACM Symposium on Applied Computing, ACM, 2011, pp. 
1431–1438. 

[20] M. Kajko-Mattsson, “Maturity is also about the Capability to Conform the Process to the Right 
Context!,” Proceedings of the FSE/SDP workshop on Future of software engineering research, 
ACM, 2010, pp. 181–186. 

[21] M. Morisio, C.B. Seaman, A.T. Parra, V.R. Basili, S.E. Kraft, and S.E. Condon, “Investigating and 
improving a COTS-based software development,” Proceedings of the 22nd international 
conference on software engineering, ACM, 2000, pp. 32–41. 

[22] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-scale IT projects on time, on budget, and 
on value,” McKinsey Quarterly,October, 2012, pp. 2–7. 



 

53 

 

[23] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A systematic 
review,” Information and software technology, vol. 50, 2008, pp. 833–859. 

[24] Applications Leadership Council, “Embrace the Open, ‘Messy’ SDLC,” Online, 
https://aec.executiveboard.com/Members/ResearchAndTools/, accessed January 2015. 

[25] A. Myburgh, “Situational software engineering Complex Adaptive responses of software 
development teams,” Proceedings of the 2014 Federated Conference on Computer Science and 
Information Systems (FedCSIS), 2014, pp. 841–850. 

[26] L. Osterweil, “Software processes are software too,” Proceedings of the 9th international 
conference on software engineering, IEEE Computer Society Press, 1987, pp. 2–13. 

[27] P. Kruchten, “A Plea for Lean Software Process Models,” Proceedings of the 2011 International 
Conference on Software and Systems Process, ACM, 2011, pp. 235–236. 

[28] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and Variability in Software Engineering,” 
From the Trenches IEEE Software, 1998, pp. 37–45. 

[29] OMG, “Software & Systems Process Engineering Meta-Model Specification, Version 2.0, 
Object Management Group (OMG), Document formal/2008-04-01, April 2008,” Online, 
http://www.omg.org/spec/SPEM/2.0/PDF/, accessed 2014. 

[30] B. Elvesæter, M. Striewe, A. McNeile, and A.-J. Berre, “Towards an Agile Foundation for the 
Creation and Enactment of Software Engineering Methods: The SEMAT Approach,” Second 
Workshop on Process-based approaches for Model-Driven Engineering (PMDE 2012), Joint 
Proceedings ECMFA, 2012, pp. 279–290. 

[31] E. Nardini, A. Molesini, A. Omicini, and E. Denti, “SPEM on test: the SODA case study,” 
Proceedings of the 2008 ACM symposium on Applied computing, ACM, 2008, pp. 700–706. 

[32] M. Kuhrmann, D.M. Fernández, and R. Steenweg, “Systematic software process development: 
where do we stand today?,” Proceedings of the 2013 International Conference on Software 
and System Process, ACM, 2013, pp. 166–170. 

[33] P. Kruchten, “Casting Software Design in the Function-Behavior-Structure Framework,” IEEE 
Software, vol. 22, 2005, pp. 52–58. 

[34] P. Kruchten, “The frog and the octopus: a conceptual model of software development,” 
Online, ArXiv e-prints, http://arxiv.org/abs/1209.1327, accessed June 2015. 

[35] B. Henderson-Sellers, C. Gonzalez-Perez, and J. Ralyté, “Comparison of method chunks and 
method fragments for situational method engineering,” Proceedings of the 19th Australian 
Conference on Software Engineering, IEEE, 2008, pp. 479–488. 

[36] B. Henderson-Sellers, “Method Engineering: Theory and Practice,” Information Systems 
Technology and its Applications, 5th International Conference, 2006, pp. 13–23. 

[37] B. Elvesæter, G. Benguria, and S. Ilieva, “A Comparison of the Essence 1.0 and SPEM 2.0 
Specifications for Software Engineering Methods,” Proceedings of the Third Workshop on 
Process-Based Approaches for Model-Driven Engineering, ACM, 2013, pp. 1–10. 

[38] S. Seema and others, “Analysis and tabular comparison of popular SDLC models,” International 
Journal of Advances in Computing and Information Technology, vol. 1, Jun. 2012, pp. 277–286. 

[39] B. Dwolatzky, “Re-founding software engineering practice-The SEMAT initiative,” Proceedings 
of the 4th IEEE Software Engineering Colloquium (SE), 2012, pp. 1–3. 

[40] I. Jacobson, S. Huang, M. Kajko-Mattsson, P. McMahon, and E. Seymour, “Semat—Three Year 
Vision,” Programming and computer software, vol. 38, 2012, pp. 1–12. 

[41] I. Meyer B. Jacobson and R. Soley, “Software Engineering Method and Theory - A Vision 
Statement,” Online, http://blog.paluno.uni-due.de/semat.org/wp-content/uploads/ 
2012/03/SEMAT-vision.pdf, accessed 2014. 

[42] OMG Submitters, “Essence – Kernel and Language for Software Engineering Methods , Initial 
Version 1.0, Object Management Group (OMG), Document ad/2011-02-04 , February 2012,” 
http://www.omg.org/cgi-bin/doc?ad/2011-02-04/PDF. 

[43] OMG Submitters, “Revised OMG Proposal Submission, Essence-Kernel and Language for 
Software Engineering Methods, Object Management Group (OMG), Document ad/2013-02-01, 
February 2013,” http://www.omg.org/cgi-bin/doc?ad/13-02-01/PDF. 

[44] P.-W. Ng, “Software Process Improvement and Gaming using Essence: An Industrial 
Experience,” Journal of Industrial and Intelligent Information, vol. 2, 2014, pp. 45–50. 



 

54 

 

[45] C. Péraire and T. Sedano, “State-based Monitoring and Goal-driven Project Steering: Field 
Study of the SEMAT Essence Framework,” 36th International Conference on Software 
Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31 - June 07,, 2014, pp. 
325–334. 

[46] K. Smolander and T. Paivarinta, “Forming theories of practices for software engineering,” 
Software Engineering (GTSE), 2013 2nd SEMAT Workshop on a General Theory of, IEEE, 2013, 
pp. 27–34. 

[47] A. Cockburn, “A Detailed Critique of the SEMAT Initiative,” Online, http://a.cockburn.us/2985, 
accessed February 2015. 

[48] R. Cornelissen, “Towards a methodology-growing framework,” Msc Thesis, 
http://fmt.cs.utwente.nl/education/master/236/, University of Twente, 2013. 

[49] P. Haumer, “IBM Rational Method Composer: Part 1: Key concepts,” Rational Edge, December 
2005, Online, http://www.ibm.com/developerworks/rational/library/dec05/haumer/, accessed 
Aug 2015. 

[50] Nedbank, “Nedbank Innovation Lifecycle,” Online, http://nedbankmethod.nednet.co.za/, 
accessed Aug 2014. 

[51] P. Spaas, “SDS R3: System Description Standard: Semantic Specification, 2014,” 
Online,https://www.ibm.com/developerworks/community/files/app/file/746b578b-fbe0-4c71-
ba07-45b72e35cc64, accessed Aug 2015. 

[52] Nedbank, “SIP Governance - TRB - 2012-06-08,” 2012. 
[53] Nedbank, “Enterprise Architecture Governance,” Online, http://team/sites/gt/ea/Governance, 

accessed Aug, 2014. 
[54] Nedbank, “EA Governance Communication Update,” Online, 

http://team/sites/gt/ea/Architecture Services, accessed Aug, 2014. 
[55] Nedbank, “Technical Review Board Information Cafe,” Online, 

http://gt.nedportal.nednet.co.za/sites/DnA/DnA/SA/trb/, accessed Aug, 2014. 
[56] Nedbank, “Technical Review Board Workbook,” Online, 

http://gt.nedportal.nednet.co.za/sites/DnA/DnA/SA/trb/, accessed Aug, 2014. 
 

 


	Declaration
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Chapter 1 Introduction
	Chapter 2 Literature Review
	Defining Software Engineering
	Factors and Challenges that Software Engineering must solve
	Software Engineering Process Models
	Software Engineering Theories and Standards
	Defining Software Development Practices
	Method Languages and Model Comparisons
	The Value of SEMAT

	Chapter 3 Research Objectives
	The Research Question
	The Research Approach
	The Analysis Framework
	The Case Selection
	The Data Collection

	Chapter 4 Research Theory and Data
	SEMAT Essence Overview
	The Alphas
	The Activity Spaces
	The Practices and Patterns

	The Bank’s Model
	The Meta Model
	The Method Model
	The Management and Governance Model

	Identifying the Bank’s Alphas
	Identifying the Bank Alpha States
	Mapping the Bank’s Alphas to the Essence Alphas
	Mapping the Essence States onto the Bank’s Lifecycle
	Mapping the Essence Activity Spaces to the Bank’s Lifecycle
	Identification of Practices using the Essence definition of a Practice

	Chapter 5 Analysis of the Research
	Analysis of the Essential Concepts
	Analysis of Practices
	Analysis of Activity Spaces

	Chapter 6 Conclusion and Future Work
	Appendix A: Detailed Analysis of Observations
	A1: Analysis of Essential Concepts
	A2: Analysis of Essence Alpha States
	A3: Analysis of Activity Spaces
	A4: Analysis of Baselines

	Appendix B: Bank’s Alpha Table
	Appendix C: Mapping Slots to Baselines
	Appendix D: Mapping CAR’s to Slots
	References

