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Abstract The self-interactions of the conformal mode of
the graviton are controlled, in dimensionless gravity theo-
ries (agravity), by a coupling f0 that is not asymptotically
free. We show that, nevertheless, agravity can be a complete
theory valid up to infinite energy. When f0 grows to large
values, the conformal mode of the graviton decouples from
the rest of the theory and does not hit any Landau pole pro-
vided that scalars are asymptotically conformally coupled
and all other couplings approach fixed points. Then agravity
can flow to conformal gravity at infinite energy. We identify
scenarios where the Higgs mass does not receive unnaturally
large physical corrections. We also show a useful equivalence
between agravity and conformal gravity plus two extra con-
formally coupled scalars, and we give a simpler form for the
renormalization group equations of dimensionless couplings
as well as of massive parameters in the presence of the most
general matter sector.
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1 Introduction

The idea that scalars, like the Higgs, must be accompanied
by new physics that protects their lightness from power-

a e-mail: alberto.salvio@cern.ch

divergent quantum corrections led to the following view of
mass scales in nature: the weak scale is the supersymmet-
ric scale, and the Planck scale is the string scale. The non-
observation of supersymmetric particles around the weak
scale challenged this scenario, leading to the alternative idea
that only physical corrections to scalar masses must satisfy
naturalness. Namely, extra new particles with mass Mextra

and coupling gextra to the Higgs, must satisfy

δMh ∼ gextraMextra � Mh . (1)

A rationale for ignoring power-divergent corrections is the
following. The one-loop quantum correction to the masses of
scalars, vectors and of the graviton is power divergent, show-
ing the dangers of attributing physical meaning to power-
divergent corrections. A cut-off (such as string theory) that
knows that vector and graviton masses are protected by gauge
invariance can keep them to zero, while giving a large cor-
rection to scalar masses. A less smart cut-off (such as dimen-
sional regularization) can be blind to the difference, and set
to zero all power divergences. The simplest cut-off with this
property is no cut-off: a theory where all renormalizable cou-
plings flow up to infinite energy without hitting Landau poles.

The above arguments motivate the following scenario: if
nature is described at fundamental level by a dimension-
less Lagrangian, all power-divergent quantum corrections—
being dimensionful—must be interpreted as vanishing. Tak-
ing gravity into account, the most general dimensionless
action in 3 + 1 space-time dimensions contains gauge cou-
plings, Yukawa couplings, scalar quartics, non-minimal ξ -
couplings between scalars and gravity and, in the purely grav-
itational sector, two dimensionless gravitational couplings,
f0 and f2, analogous to gauge couplings:

S =
∫

d4x
√| det g|

[
R2

6 f 2
0

+
1
3 R

2 − R2
μν

f 2
2

+ Lmatter

]
, (2)

where Lmatter corresponds to the part of the Lagrangian that
depends on the matter fields, with dimensionless parameters
only. This theory [1] is renormalizable, as suggested in [2]
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and formally proven in [3]. The weak scale, the QCD scale
and the Planck scale can be dynamically generated [4] from
vacuum expectation values or from condensates. Perturbative
dimensionless theories automatically give slow-roll inflation
[4–9] (see also refs. [10,11] for related studies).

However, Eq. (2) means that four derivatives act on the
graviton: thereby some graviton components have a negative
kinetic term.1 Classically the theory in (2) is sick [13]: the
energy is unbounded from below. A sensible quantum the-
ory might exist, analogously to what happens with fermions:
their classical energy is negative, but their quantum theory is
sensible.2 We will not address this problem here.

We will here study whether this theory can flow up to infi-
nite energy. The Quantum Field Theory (QFT) part can have
this property. Realistic TeV-scale extensions of the Standard
Model (SM) can be asymptotically free [23,24], and it is not
known whether the SM itself can be asymptotically safe, in a
non-perturbative regime [25]. The gravitational coupling f2
is asymptotically free. The difficulty resides in the coupling
f0: a small f0 grows with energy, until it becomes large.

In this paper we will show that, despite this, the the-
ory can flow up to infinite energy, in an unusual way. In
Sect. 2 we present an alternative formulation of agravity that
makes it easier to compute its renormalization group equa-
tions (RGE): f0 becomes the quartic of a special scalar, the
conformal mode of the agraviton. Then a large f0 means
that the conformal mode of the agraviton gets strongly self-
coupled. The rest of the theory decouples from it, if at the
same time all scalars become conformally coupled, namely
if all ξ parameters run to −1/6, and all the other couplings
reach ultraviolet (UV) fixed points, where all β-functions
vanish.

In Sect. 4 we isolate the conformal mode of the graviton
and show that its strong dynamics is such that f0 does not hit
a Landau pole. This means that the infinite-energy limit of
agravity can be conformal gravity. The unusual phenomenon
that allows one to reach infinite energy is that the conformal
mode of the graviton fluctuates freely, but the rest of the-
ory is not coupled to it: it becomes a gauge redundancy of a
new local symmetry, Weyl symmetry. Since this symmetry is
anomalous, conformal gravity cannot be the complete theory:
going to lower energy the conformal model of the graviton

1 This can maybe be avoided introducing an infinite series of higher
derivative terms [12], but the resulting gravity theories contain infinite
free parameters and are not known to be renormalizable.
2 The ample literature of ‘ghosts’ was critically reviewed in [14]; for
later work, see [15–22], where it was proposed that a four-derivative
variable q(t) contains two canonical degrees of freedom (d.o.f.), q1 =
q and q2 = q̇, with opposite time-reflection parity, such that usual
T -even representation (q1|x〉 = x |x〉 and p1|x〉 = i d

dx |x〉) must be
combined with the T -odd representation (q2|y〉 = iy|y〉 and p2|y〉 =
d

dy |y〉) obtaining consistent results (positive energy, normalizable wave
functions, Euclidean continuation), although the interpretation of the
resulting negative norm is unclear.

starts coupling to the rest of the theory, which becomes agrav-
ity. This issue is discussed in Sect. 3. In Sect. 5 we propose
scenarios where the Higgs mass does not receive unnaturally
large corrections. Conclusions are given in Sect. 6. Finally, in
the appendix we provide a new and simple expression for the
one-loop RGE of all dimensionless parameters (Appendix A)
as well as of all dimensionful parameters (Appendix B) in
the presence of the most general matter sector, which was
not studied before.

2 Agravity

Allowing for generic scalars φa with generic dimensionless
coupling ξab to gravity, − 1

2ξabφaφbR, the one-loop RGE for
f0 is [4,26–28]

(4π)2 d f 2
0

d ln μ̄
= 5

3
f 4
2 + 5 f 2

2 f 2
0 + 5

6
f 4
0

+ f 4
0

12
(δab + 6ξab)(δab + 6ξab) > 0

for f0 � 1, (3)

where μ̄ is the renormalization scale in the modified minimal
subtraction scheme (see also [29,30] for a previous attempt
to determine this RGE). This shows that, in all theories, f0
is asymptotically free only for f 2

0 < 0. However, nega-
tive f 2

0 corresponds to a run-away potential [4,6,7], and this
instability cannot be made harmless (or even beneficial for
explaining dark energy) by invoking a small enough negative
f 2
0 , since tests of gravity exclude extra graviton components

below 0.05 eV (see [31,32] for attempts to have f 2
0 < 0).

The fact that f 2
0 < 0 is phenomenologically problematic

was already noted in [4], where it was pointed out that it
leads to a tachyonic instability. Barring stabilization through
background effects in cosmology, one needs f 2

0 > 0. But
the one-loop RGE show that a small f 2

0 > 0 grows until it
becomes non-perturbative.3

These RGE show peculiar features. Only scalars (not vec-
tors nor fermions) generate f0 at one-loop, and only if their
ξ -couplings have a non-conformal value, ξab �= − δab/6.
The ξ -couplings often appear in the RGE in the combination
ξab + δab/6, but not always. The coupling f0 appears at the
denominator in the RGE for the ξ -couplings [4].

The above features can be understood noticing that a new
symmetry appears in the limit f0 → ∞ and ξab → − δab/6:

3 Different statements in the literature (even recent) appear either
because some previous results contained wrong signs or because some
authors use computational techniques that try to give a physical mean-
ing to power divergences, obtaining gauge-dependent and cut-off-
dependent results. Claims that a run-away potential with very small
f0 can mimic Dark Energy do not take into account bounds on extra
graviton components.
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Table 1 Transformations of
coordinates and fields under a
Weyl transformation

Dilatation ⊗ Diffeomorphism = Weyl transformation

Coordinates dxμ eσ dxμ e−σ dxμ dxμ

Graviton gμν gμν e2σ gμν e2σ gμν

Scalars φ e−σ φ φ e−σ φ

Vectors Vμ e−σ Vμ eσ Vμ Vμ

Fermions ψ e−3σ/2ψ ψ e−3σ/2ψ

the Weyl (or local conformal) symmetry. The Weyl symmetry
is a local dilatation dxμ → eσ(x)dxμ compensated by the
special diffeomorphism dxμ → e−σ(x)dxμ such that the
coordinates dxμ remain unaffected. The various fields rescale
under a dilatation as determined by their mass dimension, and
they transform under a diffeomorphism as dictated by their
Lorentz indices, as summarized in Table 1.

Agravity is invariant under global Weyl transformations:
being dimensionless, it is invariant under global dilatations
(for which σ does not depend on x); being covariant, it is
invariant under local diffeomorphisms.

Agravity is not invariant under local Weyl transforma-
tions. A generic dimensionless theory can be written in
terms of the metric gμν , real scalars φa , Weyl fermions
ψ j and vectors VA (with field strength F A

μν). The action
S = ∫

d4x
√| det g|L can be split as S = SWeyl + S��Weyl

where the first part is invariant under Weyl transformations,

LWeyl =
1
3 R

2 − R2
μν

f 2
2

− 1

4
(F A

μν)
2

+ (Dμφa)
2

2
+ ψ̄ j i /Dψ j

+ 1

12
φ2
a R − 1

2
(Ya

i jψiψ jφa + h.c.)

− λabcd

4! φaφbφcφd , (4)

and the second part,

L��Weyl = R2

6 f 2
0

− 1

2
ζabφaφbR,

where ζab ≡ ξab + δab/6, (5)

is not invariant.4 To see this we will now perform a Weyl
transformation,

gμν(x) → e2σ(x)gμν(x), φ(x) → e−σ(x)φ(x),

ψ(x) → e−3σ(x)/2ψ(x), Vμ → Vμ. (6)

This will also lead to an equivalent formulation of the theory.

4 We omitted the topological Gauss–Bonnet term.

Equivalent formulations of agravity

The extra scalar field σ(x), defined in (6), will be called
the ‘conformal mode of the agraviton’; for the moment it is
introduced as an extra gauge redundancy. We will comment
on the corresponding gauge symmetry later on.

All terms in Eq. (4) are invariant under Weyl transfor-
mations. Since vectors and fermions appear only in Eq. (4),
σ does not couple to them. Only the terms that break Weyl
symmetry give rise to interactions of σ . The transformation
(6) leads to√| det g| → e4σ

√| det g|,
R → e−2σ (R − 6e−σ �eσ ). (7)

Therefore, the Weyl-breaking part of the Lagrangian becomes√| det g|L��Weyl = √| det g|

×
[

(R − 6e−σ �eσ )2

6 f 2
0

− 1

2
ζabφaφb(R − 6e−σ �eσ )

]
,

(8)

which is one simple way to rewriteL��Weyl, which will be used
later on.

Another simple and useful form of L��Weyl can be obtained
from (8) as follows. We define �L = eσ and complete the
square rewriting Eq. (8) as

L��Weyl = A2

6 f 2
0

− 3

8
f 2
0 (ζabφaφb)

2,

A = R − 6
��L

�L
− 3

2
f 2
0 ζabφaφb. (9)

Next we write the square as A2/6 f 2
0 = − 1

6 f 2
0 �2

L�2
R +

1
3�R�L A by introducing an auxiliary field�R with quadratic
action, such that integrating it out gives back the original
action. The resulting expression only contains the combina-
tion �L�R , that is, invariant under �L → t�L , �R →
�R/t , which forms a SO(1,1) scale symmetry. Indeed, one
can verify that SO(1,1) is broken by adding Lagrangian
terms with dimensionful coefficients, such as the Einstein–
Hilbert term or the cosmological constant, as done later in
Eq. (40). Now, we can rewrite �L�R in vectorial notation
as �L�R = 1

4 (�2+ − �2−) = 1
4
��2 by going from the “light-

cone basis” �L ,R to the �± basis as �L = t (�+ − �−)/2
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and �R = (�+ + �−)/2t and defining the SO(1,1) vector
�� = (�+,�−). Then the Weyl-breaking part of the action
can be written in the final form

S��Weyl =
∫

d4x
√| det g|

×
[
gμν

2
(∂μ

��)(∂ν
��) + 1

12
��2R − f 2

0

96

(
��2 + 6ζabφaφb

)2]
.

(10)

The non-trivial result is that the Weyl-breaking part of the
action has been rewritten as an extra Weyl-invariant action
involving the extra scalar SO(1,1) doublet ��, which describes
the conformal mode of the agraviton.

We have not (yet) imposed any constraint on the metric
gμν after the transformation in Eq. (6); therefore we have a
Weyl-type gauge invariance acting as

gμν(x) → e−2χ(x)gμν(x), φ(x) → eχ(x)φ(x),

ψ(x) → e3χ(x)/2ψ(x), Vμ → Vμ (11)

where χ(x) is an arbitrary real function of x . The transforma-
tion σ → σ +χ is equivalent to including �L = eσ and �R

among the scalars φ. Therefore, agravity is equivalent to con-
formal gravity plus two extra conformally coupled scalars,
�+ and �−.5 In the new formulation of agravity with the
field ��, the gravitational couplings f0 and ξab have become
scalar quartic couplings.

The formulations presented in this section certainly are
equivalent at the classical level. At quantum level, the equiv-
alence needs to take into account the anomalous transfor-
mation law of the path-integral measure, which amounts
to adding an effective σ -dependent term in the action.
This amounts to σ starting to couple to terms that break
scale invariance proportionally to their quantum β-functions.
These extra couplings only affect RGE at higher loop orders,
as we will discuss in Sect. 3.

It is now clear why the one-loop RGE for f0, Eq. (3),
does not receive contributions from fermions and vectors:
f 2
0 is the quartic coupling of a neutral scalar with no Yukawa

interactions. A positive f 2
0 corresponds to a positive quartic.

Furthermore the symmetry SO(1,1) can be complexified into
SO(2) by redefining �− → i�− without affecting the RGE
at perturbative level: only non-perturbative large field fluctu-
ations are sensitive to the difference. By defining an extended
set of quartic couplings, λABCD, where the capital indices run
such that the quartics that involve the two extra scalars �� are

5 Similar remarks have been made in the context of Einstein gravity
(rather than in agravity) in [33–35], where it was found that Einstein
gravity is equivalent to conformal gravity plus a single conformally
coupled scalar. Similar statements have been made in a different theory
without the R2/6 f 2

0 term in [36,37].

included, the generic RGE for the scalar quartics only, known
in a generic QFT up to two loops, are 6

dλABCD

d ln μ̄
= 1

(4π)2

∑
perms

1

8
λABEFλEFCD

+ 1

(4π)4

[
γ

2
λABCD − 1

4

∑
perms

λABEFλCEGHλDFGH

]
+ · · · ,

(12)

where γ = �AA + �BB + �CC + �DD (with �AB =
1
6λACDEλBCDE ) is the scalar wave-function renormaliza-
tion, the sums run over the 4! permutations of ABCD and
· · · is the contribution of the other couplings.

From Eq. (12) one can re-derive the one-loop RGE for f0
and ξab, computed as gravitational couplings in [4]. The two
results agree. Furthermore, the same RGE acquire a sim-
pler form if rewritten in terms of the λABCD coefficients.
The RGE are explicitly written in Eq. (50) in Appendix A,
and neither f0 nor any other coupling appear anymore at the
denominator in the RGE.

The graviton propagator

A gravitational computation is now only needed to compute
the part of the RGE involving f2. So far the field σ , or ��,
has been introduced as an extra gauge redundancy. One can
fix it by setting σ = 0, going back to the original formula-
tion where the full RGE were computed in [4]. In the rest of
this section (which contains technical details used only for
a double check of the main results) we show how one can
choose an alternative convenient condition: that the fluctua-
tion h′

μν around the flat space of gμν after the transformation
in Eq. (6) has vanishing trace, that is,

h′ ≡ ημνh′
μν = 0. (13)

We have introduced a prime in h′
μν to distinguish it from

the fluctuation hμν around the flat space of the metric before
transformation (6). The new variables h′

μν and σ are given in
terms of the old ones (the trace h ≡ ημνhμν and the traceless
part hTL

μν ≡ hμν − ημνh/4) by

e2σ = 1 + h

4
, h′

μν = e−2σ hTL
μν . (14)

The path-integral measure Dgμν ≡ Dh DhTL
μν splits as

Dgμν = Dh′
μν Dσ = Dh′

μνD ��. We neglect here the Weyl
anomaly because, as explained above, it does not affect the
one-loop RGE.

In order to compute quantum effects, we consider the
following convenient gauge fixing for the diffeomorphisms
xμ → xμ + ξμ(x):

6 For a recent summary see [38].
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∂μh′
μν = 0, (15)

where we use the flat metricημν to raise and lower the indices.
This choice avoids kinetic mixing between σ and h′

μν and
leads to a simple propagator of h′

μν

D′
μν ρσ = −2 f 2

2
i

k4 P
(2)
μνρσ , (16)

where

P(2)
μνρσ = 1

2
TμρTνσ + 1

2
Tμσ Tνρ − 1

3
TμνTρσ ,

Tμν = ημν − kμkν/k
2. (17)

To determine the Lagrangian of the Fadeev–Popov ghosts
we have to perform the variation of ∂μh′

μν with respect to
diffeomorphisms, whose effect on hμν at the linear level in
ξμ is

hμν → hμν − (∂μξν + ∂νξμ)

−(hαμ∂ν + hαν∂μ + (∂αhμν))ξ
α. (18)

The effect of diffeomorphisms on h′
μν and σ can be computed

by first splitting Eq. (18) in its traceless and trace parts,

h → h − 2∂μξμ − 2hTL
αμ∂μξα − 1

2
h∂μξμ − ξα∂αh, (19)

hTL
μν → hTL

μν − ∂νξμ − ∂μξν + 1

2
ημν∂αξα

− hTL
αμ∂νξ

α − hTL
αν ∂μξα − ∂αh

TL
μνξ

α

+ 1

2
ημνh

TL
αβ ∂βξα − 1

4
h(∂νξμ + ∂μξν)

+ 1

8
ημνh∂αξα, (20)

and next by using Eq. (14) to express hTL
μν and h in terms of

h′
μν and σ . The result is

e2σ → e2σ

(
1 − 1

2
∂μξμ − 1

2
h′

μα∂μξα − 2ξα∂ασ

)
, (21)

h′
μν → h′

μν − ∂νξμ − ∂μξν + 1

2
ημν∂αξα

−h′
αμ∂νξ

α − h′
αν∂μξα − ∂αh

′
μνξ

α + 1

2
h′

μν∂αξα

+1

2
ημνh

′
αβ∂βξα + 1

2
h′

μνh
′
αβ∂βξα. (22)

Notice that the transformation law of h′
μν is independent

of σ : having used the gauge in Eq. (15) the Fadeev–Popov
procedure does not generate any new coupling of σ to the
Fadeev–Popov ghosts.7 In conclusion, we have shown how
to implement the gauge where the graviton is traceless.

7 We treated the Weyl transformation as a change of variables in field
space. We could equivalently have seen it as an extra gauge redundancy.
In this alternative formalism, using the Fadeev–Popov procedure to
fix both diffeomorphisms and the Weyl symmetry, the gauge fixing
in Eq. (15) avoids mixed terms in the ghost system; the ghosts for
the Weyl gauge fixing are non-dynamical and integrating them out is

3 Conformal gravity

We return to our physical issue: the coupling f0 is not asymp-
totically free. In Sect. 4 we will argue that f0 grows with
energy, becoming non-perturbative at f0 ∼ 4π and contin-
uing to grow up to f0 → ∞ in the limit of infinite energy,
such that the R2/6 f 2

0 term disappears from the action. In
this section we show that this limit is well defined. It is pre-
cisely defined as agravity with parameters chosen such that
all Weyl-breaking terms L��Weyl in Eq. (5) vanish:

f0 = ∞, ξab = −δab

6
. (23)

The R2/6 f 2
0 term provides the kinetic term for σ , the con-

formal mode of the agraviton. Thereby σ fluctuates wildly
in the limit f0 → ∞. Indeed, the agraviton propagator of
[4] has a contribution proportional to f 2

0 , which diverges as
f0 → ∞. Faddeev and Popov have shown how to deal with
these situations: add an extra gauge fixing for the extra gauge
redundancy appearing in conformal gravity, local Weyl trans-
formations.

In general, conformal gravity is not a consistent quantum
theory, because its Weyl gauge symmetry is anomalous. In
a simpler language, the dimensionless couplings run with
energy as described by their RGE.8 The theory is no longer
scale invariant, and the conformal mode of the graviton cou-
ples to all non-vanishing β-functions. The Weyl-breaking
terms of the agravity Lagrangian are generated back by quan-
tum corrections. The consistent quantum theory is agravity.
For this reason our work differs from articles where con-
formal gravity is proposed as a complete theory of gravity
[39,40].

Nevertheless, conformal gravity can be the consistent
infinite-energy limit of agravity provided that all β-functions
vanish at infinite energy: the theory must be asymptotically
free or asymptotically safe, in other words all couplings other
than f0 have to reach a UV fixed point where all β-functions
vanish, as we will see.

In this section we clarify these issues by computing the
one-loop RGE of conformal gravity coupled to a generic
matter sector, as in Eq. (4). The RGE can be obtained with-
out performing any extra computation by using the pertur-
bative equality obtained in the previous section: agravity is
equivalent to conformal gravity plus two extra scalars, ��.
In the other direction, this means that conformal gravity has
the same RGE as agravity minus two scalars. Thereby the

Footnote 7 continued
equivalent to the modified diffeomorphism transformation law of the
traceless graviton, Eq. (22).
8 One might hope that all couplings stay at fixed points at all ener-
gies, but this possibility is excluded because one must recover a non-
conformal behavior at low energies for phenomenological reasons.
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RGE for f2 in conformal gravity is obtained by substituting
Ns → Ns − 2 in (50a) obtaining

(4π)2 d f 2
2

d ln μ̄
= − f 4

2

(
199

15
+ NV

5
+ N f

20
+ Ns

60

)

( for f0 → ∞ and ξab → −1

6
δab). (24)

This reproduces the result obtained in [41–44] with a dedi-
cated computation in the gauge of Eq. (13), where only the
traceless part of the graviton propagates; see Eq. (16). Then
the one-loop RGE for all other parameters can be obtained
from the agravity RGE, listed in the appendix, by dropping
those for f0 and ξab, as well as the terms involving f0 and
ξab + δab/6 from the remaining RGE. The result is

(4π)2 dYa

d ln μ̄
= 1

2
(Y †bY bY a + YaY †bY b) + 2YbY †aY b

+Yb Tr(Y †bY a) − 3{C2F , Ya} + 15

8
f 2
2 Y

a,

(25)

(4π)2 dλabcd

d ln μ̄
=

∑
perms

[
1

8
λabe f λe f cd

+3

8
{θ A, θ B}ab{θ A, θ B}cd − Tr YaY †bY cY †d

+ 5

288
f 4
2 δabδcd + λabcd

×
[ ∑
k=a,b,c,d

(Y k
2 − 3Ck

2S) + 5 f 2
2

]
, (26)

for f0 → ∞ and ξab → − 1
6δab, where Y k

2 , Ck
2S and C2F

are defined in Eq. (51). We do not know of any previous
determinations of the RGE in (25) and (26). We do not show
the RGE of the gauge couplings because they are not modified
by the gravitational couplings (see the first paper in [41–44]
and [4,45,46]).

Anomalous generation of 1/ f 2
0

However, the fact that f2 and other gauge, Yukawa and quar-
tic couplings start having non-vanishing β-functions means
that the conformal-gravity computation becomes inconsis-
tent when going to higher orders. The conformal mode of
the agraviton, σ , is a decoupled degree of freedom in the
classical Lagrangian of conformal gravity. At quantum loop
level, σ starts coupling to all terms that break scale invariance
proportionally to their β-functions, so that σ can no longer
be gauged away.

Once σ couples to other particles, they can propagate
in loops within Feynman diagrams containing, as external
states, σ only. This describes how the R2 term is generated
at a loop level sufficiently high for the diagram to contain
running couplings. The result can be written in terms of β-
functions through the aid of consistency conditions obtained
by formally promoting the couplings to fields, including the

gravitational coupling. A scalar quartic λ starts contributing
at λ5 order [47,48]; a gauge interaction starts contributing at
g6 order [49,50]; the effect of scalar quartics, Yukawa and
gauge couplings was computed in [51] in parity-invariant
theories. The final result can be written as an RGE for 1/ f 2

0 :

d

d ln μ̄

1

f 2
0

= b1b2NV

18

g6

(4π)8 + 1

25920(4π)12

× (
6λabcdλcdmnλmnpqλaprsλbqrs

+12λabcdλcdmnλmrpqλbspqλanrs

−λacdmλbcdmλanrsλbnpqλrspq
) + · · · (27)

in the limit f0 → ∞ and ξab → −δab/6. We have writ-
ten explicitly the leading gauge contribution assuming, for
simplicity, a gauge group G with a single gauge coupling
g, NV vectors and N f Weyl fermions in the same repre-
sentation R of G: b1 and b2 are the usual one-loop and
two-loop β-function coefficients for g, precisely defined as
dg/d ln μ̄ = −b1g3/(4π)2 − b2g5/(4π)4 + · · · and given
by [52]9 We also have

b1 = 11

3
C2G − 2

3
TF N f ,

b2 = 34

3
C2

2G − 10

3
C2GTF N f − 2C2FTF N f . (30)

The gauge contribution to 1/ f 2
0 can be either positive or

negative, depending on the field content. For example, in
the SM one has NV = 3, b1 = 19/6 and b2 = − 35/6
for SU(2)L and NV = 8, b1 = 7 and b2 = 26 for
SU(3)c. The quartic of the Higgs doubled H , defined by
the potential λH |H |4, contributes to the RGE for 1/ f 2

0 as
416λ5

H/5(4π)12, which is sub-dominant with respect to the
gauge contributions. Integrating the gauge contribution alone
from infinite energy down to a scale where g � 1, one finds
1/ f 2

0  −b2NV g4/72(4π)6.
The · · · in Eq. (27) denote extra terms due to Yukawa cou-

plings (partially computed in [51]) and to gravitational terms
(never computed and presumably first arising at order f 6

2 ).
The full unknown expression might perhaps take the form of
a β-function of some combination of couplings, given that
the Weyl symmetry is not broken when all β-functions van-
ish. Barring this exception, which seems not to be relevant

9 The group quantities C2G , C2F and TF are defined as usual in terms
of the generators t A in the representation R as follows:

[t A, t B ] = i f ABC tC , f ACD f BCD = C2GδAB , (28)

t At A =C2F , Tr(t At B) = TFδAB .

For example, for the vector representation of SU(N ) we have

C2G = N , C2F = N 2 − 1

2N
, TF = 1

2
. (29)
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(nature is neither described by a free theory nor by a con-
formal theory), Eq. (27) means that conformal gravity is not
a complete theory: at some loop level, quantum corrections
start generating back the extra couplings f0 and ξab present
in agravity.

One important aspect of Eq. (27) is that its right-hand side
vanishes when all couplings sit at a fixed point, where all
β-functions vanish. This tells us that the f0 → ∞ limit is
consistent when the other couplings on the right-hand-side
approach a fixed point.

Anomalous generation of ξ + 1/6

Non-conformal ξ -couplings are generated at one-loop by the
gravitational coupling f2. Starting from ξ = −1/6 at infinite
energy, f2 induces a negative value of

f 2
0 (ξ + 1/6) ∼ −O( f 2

2 ) (31)

at finite energy. However, as argued later, naturalness
demands f2 � 10−8. At perturbative level, f0 alone does not
generate ξ + 1/6. Extra anomalous contributions to ξ + 1/6
are first generated at order y6/(4π)6, y2λ2/(4π)6, λ4/(4π)8

in the Yukawa couplings y and in the scalar quartics λ (see
eqs. (6.33) and (7.22) of [51], where individual terms have
different signs; see also [47,48]). For example the quartic
couplings alone contribute as

dζab

d ln μ̄
= 1

18(4π)8

×
(

1

6
λcpqrλdpqrλcmnaλdmnb + λpqmnλpqcdλcmraλdnrb

−λrpqdλrmncλdmnaλcpqb

)
+ · · · (32)

for f0 → ∞ and ξab → −δab/6, where · · · denote the con-
tribution of the other couplings. In the SM Higgs case this
contribution is dξH/d ln μ̄ = 48λ4

H/(4π)8 + · · · , having
written the potential as λH |H |4 and the non-minimal cou-
pling to gravity as −ξH |H |2R.

It is important to note that the right-hand-side of Eq. (32)
vanishes when all couplings sit at a fixed point, where all
β-functions vanish. This tells us that the f0 → ∞ limit is
consistent when at the same time ζab → 0 and the other cou-
plings approach a fixed point. In this precise limit the confor-
mal mode decouples from the rest of the degrees of freedom.

4 The conformal mode of the agraviton

So far we have shown that a large self-coupling f0 of the
conformal mode of the agraviton does not affect the rest
of physics, provided that the non-minimal couplings ξ of
scalars go to the conformal value and the remaining cou-
plings approach a fixed point. We next address the big issue:

what happens to the conformal mode of the agraviton when
f0 is big?

The one-loop agravity RGE for f0, Eq. (3), is valid for
f0 � 1 and shows that a small f0 grows with energy. In
general, when a dimensionless coupling behaves in this way,
three qualitatively different things can happen depending on
the non-perturbative behavior of the β-function,

d f0
d ln μ̄

= β( f0). (33)

1. If β( f0) grows at large f0 faster than f0, then
∫ ∞ d f0/

β( f0) is finite and f0 hits a Landau pole at finite energy.
The theory is inconsistent.10

2. If β( f0) vanishes for some f0 = f ∗
0 , then f0 grows to

f ∗
0 , entering into asymptotic safety.

3. If β( f0) remains positive but grows less than or as f0,
then f0 grows to f0 = ∞ at infinite energy.11

In order to study what happens at large f0, we can ignore
all other couplings and focus on the conformal mode of
the agraviton. We can choose a conformally flat background
gμν(x) = e2σ(x)ημν , as the background does not affect the
UV properties of the theory. Recalling Eq. (8), the action for
the conformal mode only is

S =
∫

d4x
√| det g| R2

6 f 2
0

= 6

f 2
0

∫
d4x(e−σ �eσ )2

= 6

f 2
0

∫
d4x[�σ + (∂σ )2]2. (34)

The field σ has mass dimension 0, and its action in Eq. (34)
respects the following symmetries: shifts σ(x) → σ(x) +
δσ ; Poincaré invariance; scale invariance; invariance under
special conformal transformations:

σ(x) → σ(x ′) − 2c · x,
x ′
μ = xμ + cμx

2 − 2xμ(c · x), (35)

at first order in the infinitesimal constant vector cμ. Confor-
mal invariance here appears as a residual of the reparametriza-
tion invariance of the gravitational theory: it is present
because conformal transformations are those reparametriza-
tions that leave the metric invariant, up to an overall scale
factor. Being a residual of reparametrization invariance, this
symmetry is non-anomalous, up to the usual scale anomaly.
No other action is compatible with these symmetries. Taking

10 For example, lattice simulations indicate that one scalar quartic or
the gauge coupling in QED behave in this way [53–55].
11 For example, this behavior is realized if the β-function has the form
β( f0) = f0Z( f0) with Z( f0) = b/( f 2

0 + f −2
0 )/(4π)2 with b > 0.

Then at low energy f0 runs logarithmically towards f0 → 0, and at large
energy 1/ f0 runs logarithmically towards 1/ f0 → 0. Indeed, the full
solution for f 2

0 > 0 is f 2
0 = t +√

1 + t2 where t = b ln(μ̄/�0)/(4π)2

and �0 is the transition scale at which f0 ∼ 1.
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into account that d4x = (1 + 8c · x)d4x ′, the single terms in
the action of Eq. (34) vary under a conformal transformation
as

δ

∫
d4x (∂σ )4 = 8

∫
d4x[−c · ∂σ(∂σ )2], (36a)

δ

∫
d4x (∂σ )2�σ = 4

∫
d4x[c · ∂σ(∂σ )2 − c · ∂σ�σ ],

(36b)

δ

∫
d4x (�σ)2 = 8

∫
d4x[c · ∂σ�σ ], (36c)

such that the combination in Eq. (34) is invariant.12 We ver-
ified, at tree level, that the scattering amplitudes vanish, in
agreement with the Coleman–Mandula theorem.

For small f0 one can compute the theory perturbatively
around the four-derivative kinetic term (�σ)2. As discussed
in Sect. 2, this can be equivalently formulated as an SO(2)-
invariant scalar � with a quartic coupling. This shows that
UV-divergent quantum corrections preserve the form of the
action, such that the quantum action is given by

� = Z( f0) S + finite effects. (37)

Indeed, in the scalar theory with the field � and the sim-
ple quartic coupling all divergences can be reabsorbed by
renormalizing f 2

0 (which in that formulation represents the
quartic coupling) and the field, �. Going back to the for-
mulation in terms of σ , both renormalizations (of f0 and of
�) can be expressed in terms of a common rescaling of the
action, which is what appears in Eq. (37).

The common UV-divergent factor Z( f0) renormalizes
equally all terms in the action, such that it can be seen as
an RGE running of f0, which we give here up to two loops:

d f 2
0

d ln μ̄
= 1

(4π)2

5

6
f 4
0 − 1

(4π)4

5

12
f 6
0 + · · · . (38)

The one-loop term reproduces the corresponding term in
the full gravitational computation, Eq. (3), while the two-
loop term was never obtained before. The Weyl anomaly,
mentioned in Sect. 2, affects this RGE only at higher loop
level. The reason is that the β-functions are already one-loop
effects, so that one needs at least two vertices and one extra
loop to get a contribution from the anomaly. This remark not
only applies to pure anomalous effects, but also to mixed
f0-anomaly contributions; in the latter case, indeed, a cou-
ple of internal σ -lines should be converted to the particles

12 Alternatively, since conformal invariance can be seen as an inver-
sion xμ → yμ = xμ/x2 followed by a translation and by another
inversion, one can more simply check that the action is invariant
under the inversion: d4x → d4y/y8, σ(x) → σ(y) + ln y2 and
[�xσ + (∂xσ)2] = y4[�yσ + (∂yσ)2]. The transformation rule of
σ under the coordinate transformation xμ → yμ = xμ/x2 can be
obtained by recalling its general definition in (6) and that we are assum-
ing here a conformally flat metric, i.e. gμν(x) = e2σ(x)ημν .

which σ couples to through the anomaly and again at least
two vertices proportional to β-functions and one extra loop
are needed.

When f0 grows the path integral receives contributions
from fluctuations of σ with larger and larger amplitude, prob-
ing the terms in the action of Eq. (34) with higher powers in
σ . For large f0 the action becomes dominated by the (∂σ )4

term that has the highest power of σ , while the kinetic term
becomes negligible. This can happen because all terms in
the action have the same number of derivatives. For exam-
ple, a field configuration σ(r) = σ0e−r2/a2

contributes as
S ∼ (σ0 + σ 2

0 )2/ f 2
0 , independently of the scale a, such that

for f0 � 1 the path integral is dominated by the second term.
In the limit f0 → ∞ the action S simplifies to

S∞ = 6

f 2
0

∫
d4x (∂σ )4. (39)

Although for large f0 the theory is non-perturbative in f0, one
can still develop an analytical argument to show the absence
of a Landau pole of f0, as we now discuss. The action in
Eq. (39) acquires new symmetries: S∞ is Z2-invariant (Z4-
invariant if complexified); furthermore, being the term of S
with the highest power of σ , it is invariant under the homo-
geneous part of the transformation in Eq. (35), while the
other two terms, (∂σ )2�σ and (�σ)2 or any combination
of them, are not. Symmetries imply that the quantum action
�∞, which includes the classical and UV-divergent quan-
tum corrections, is fully described by �∞ = Z∞S∞, where
Z∞ is a constant, related to the Z( f0) in the full theory
as Z∞ = lim f0→∞ Z( f0). This constant must equal unity,
Z∞ = 1 because the theory is classical at large field val-
ues, for which S∞ � 1, and because its form at all field
values is fixed by symmetries. The theory with action S∞,
despite being interacting, behaves as a free theory, in the
sense that the quantum action does not receive divergent
corrections.

This shows that, in the full theory, f0 can flow to large
values without hitting Landau poles: β( f0) = O(1/ f0) at
f0 � 1. Having distilled the non-perturbative dynamics of
the conformal mode of the agraviton in a simple action, Eq.
(34), it seems now feasible to fully clarify its dynamics. We
have shown that it hits no Landau poles, excluding case 1. of
the initial list. The theory at f0 � 1 should be computable by
developing a perturbation theory in 1/ f0. We have not been
able of excluding case 2: a vanishing β( f0) at f0 ∼ 4π . Non-
perturbative numerical techniques seem needed to determine
the behavior of the theory at the intermediate energy at which
f0 ∼ 4π , although this currently needs adding a regulator
that breaks the symmetries of the theory (such as a lattice or
a momentum averager [56–58]), obscuring possible general
properties (such as the sign of β( f0)) that could follow from
the positivity of the symmetric action in Eq. (34).
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The letter ‘a’ in the name ‘conformal mode of the
agraviton’ reminds us that our field σ contains two degrees of
freedom because its action contains four derivatives, while
the usual ‘conformal mode of the graviton’ obtained from
the Einstein action only contains one degree of freedom.
More precisely, the Einstein term alone, − 1

2 M̄
2
PlR, where

M̄Pl is the reduced Planck mass, gives a negative kinetic term
3M̄2

Pl�L��L for �L = eσ ; see Eq. (7). Summing the Ein-
stein term with R2/6 f 2

0 , the four-derivative conformal mode
of the agraviton σ splits into a physical mode with positive
kinetic term and mass M0 = f0M̄Pl/

√
2 for f0 � 1, and

the usual massless Einstein term, which is reparametrization
dependent.13 To see this, it is convenient to use the form of
the action where σ is rewritten in terms of two fields with two
derivatives, �L and �R (see Sect. 2). Adding to the previous
discussion the Planck mass the Lagrangian becomes

L = −2�R��L − 1

6
f 2
0 �2

L�2
R + 3M̄2

Pl�L��L . (40)

We expand in fluctuations around the minimum, �R = 0 and
�L = 1, where we arbitrarily choose unity in order to keep
the metric as ημν , while other values would correspond to a
different unit of mass. Then the quadratic part of the action
can be diagonalized by defining �L = 1 + (α + β)/

√
3M̄Pl,

�R = √
3Mβ, where α is the Einstein ghost and β is the

massive scalar component of the graviton. The result is

L = α�α + β(−� − M2
0 )β − V with

V = 1

6
f 2
0 β2(α + β)(α + β + 2

√
3M̄Pl). (41)

5 Scenarios compatible with naturalness of the Higgs
mass

In the following we discuss implications of case 3. Qualita-
tively different scenarios can arise, depending on the ordering
between the key scales:

• �0, the energy scale at which the self-coupling of the
conformal mode equals f0 ∼ 4π , with f0 � 4π at
E � �0 and f0 � 4π at E � �0.

• �2, the energy scale at which the graviton self-coupling
equals f2 ∼ 4π , with f2 � 4π at E � �2.

• The Planck scale. As this is the largest known mass
scale, in the context of dimensionless theories it can be

13 Many authors refuse to view the theory with higher derivative as
legitimate because of the consequent ghosts; see e.g. [59] for attempts
to discard the (�σ)2 term. Accepting the presence of higher derivatives
allows one to describe the Weyl anomaly as ordinary RGE running of
f0,2, rather than by modifying Einstein gravity by adding a complicated
‘quantum anomalous action’ [60–62] which encodes the anomalous
behavior of generic undefined theories of gravity.

interpreted as the largest dynamically generated vacuum
expectation value or condensate.

The scales �0,2 can be physically realized in nature (like the
scale �QCD at which SU(3)c becomes strong) if they are
larger than the Planck scale. Otherwise they are not realized
(like the scale at which SU(2)L would have become strong,
if symmetry breaking had not occurred at a higher energy)
and we use �2 � MPl to denote f2 � 1 at MPl where MPl

is the Planck mass.
In this section we adopt Higgs mass naturalness as a cri-

terion to limit the possible speculations. For example, the
simplest possibility in which the Planck scale is identified
with �2 or �0 leads to unnaturally large physical correc-
tions to the Higgs mass from gravity. Naturalness demands
f2 � 1 at the Planck scale, while f0 can be either very small
or very large, giving rise to two natural possibilities shown in
Fig. 1: f0 � 1 at MPl (left panel) and f0 � 1 at MPl (right).

5.1 f0 � 1 at the Planck scale

The first possibility is the one considered in [4], which
showed that the Planck mass can be dynamically gener-
ated, within a dimensionless theory, from a dynamically
induced vacuum expectation value of a fundamental scalar
S = (s+ is′)/

√
2. The part of the dimensionless Lagrangian

involving S and the SM Higgs doublet H is

L =
[
|DμS|2 − λS|S|4 − ξS|S|2R

]

+
[
|DμH |2 − λH |H |4 − ξH |H |2R

]

+ λHS|S|2|H |2. (42)

Provided that λS runs in such a way that it vanishes at the
same scale at which its β-function vanishes, s gets a vac-
uum expectation value with cosmological constant tuned to
zero, and M̄2

Pl = ξS〈s〉2 is positive provided that the param-
eter ξS , renormalized at the Planck scale, is positive. An
unpleasant feature of the model is that the mixed quartic
λHS must be very small, in order to avoid inducing an unnat-
urally large contribution to the Higgs mass (M2

h = λHS〈s〉2,
which appears in the potential as −M2

h |H |2/2). References
[4,6,7] showed that λHS can be naturally small, despite being
generated at loop level through gravity loops as

(4π)2 dλHS

d ln μ̄
= − ξH ξS[5 f 4

2 + 36λ̃H λ̃S]
+ · · · ( f0 � 1), (43)

where λ̃S ≡ f 2
0 (ξS + 1/6) and λ̃H ≡ f 2

0 (ξH + 1/6) are the
couplings that appear in the perturbatively equivalent formu-
lation of agravity of Eq. (10), where f0 and ξH,S become
quartic couplings with an extra scalar ��. The Higgs mass
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Fig. 1 RGE running of the main dimensionless couplings f0, f2, gP
in the two possible scenarios that do not lead to unnaturally large correc-
tions to the Higgs mass: f0, f2 � 1 at the Planck scale (left), f2 � 1

and f0 � 1 at the Planck scale (right). Here MPl is the Planck mass,
M2 ≡ f2 M̄Pl/

√
2 is the graviton ghost mass, �0 is the RGE scales at

which f0 ∼ 4π .

is natural if f0,2 � 10−8. The above scenario needs to be
reconsidered:

(a) Is naturalness still satisfied, or f0 becoming strongly cou-
pled at the energy scale �0 generates a λ̃H,S of the same
order?

(b) Can one get ξS > 0 at the Planck scale starting from
ξS = −1/6 at infinite energy?

A peculiar RG running behavior at a very large scale, such
as �0 � 101016

GeV, does not imply perturbative contri-
butions to scalar masses of the same order, as long as no
new physics nor vacuum expectation values nor condensates
develop at that scale [25]. Non-perturbative ultra-Planckian
contributions to the cosmological constant and the Planck
mass from a f0 ∼ 4π are forbidden by the global shift sym-
metry σ → σ + δσ . Planckian corrections to the cosmolog-
ical constant remain unnaturally large as usual.

The answer to (a) seems to be positive: as shown in Sect. 2
perturbative corrections in f0 behave like quartic scalar cou-
plings, and thereby renormalize the λ̃H,S couplings (mixed
quartics between the scalars and the conformal mode of the
graviton) only multiplicatively, like in the one-loop RGE,
Eq. (50d). The same happens at f0 � 1: non-vanishing λ̃H,S

are only generated by f2 (see Eq. (31)) and by the multi-loop
anomalous effects discussed in Sect. 3. Non-perturbative cor-
rections in f0 ∼ 4π presumably too renormalize λ̃H,S only
multiplicatively, as the scalars H, S are not involved in the
strong self-coupling of the conformal mode of the graviton.

Concerning issue (b), the answer can be positive in a the-
ory where ξS is very close to −1/6 around and above the
energy scale �0, and a positive ξS is only generated through
anomalous running (see e.g. Eq. (32)) at a much lower energy
where f0 � 1 by some matter coupling becoming non-
perturbative.

Given that non-perturbative physics seems anyhow neces-
sary, we propose here a simpler mechanism for the generation

of the Planck mass that relies on a new strong coupling gP ,
rather than on a perturbative coupling λS . Without introduc-
ing any extra scalar S (and thereby bypassing the issue of a
small λHS), the Planck scale can be induced by a new gauge
group G (under which the Higgs is neutral) with a gauge
coupling gP that runs to non-perturbative values around the
Planck scale, such that condensates f are generated. This
is shown as blue curve in Fig. 1. This scenario can be very
predictive, as one coupling gP dominates the dynamics. The
sign of M2

Pl is predicted; however, it is not determined by dis-
persion relations and seems to depend on the detailed strong
dynamics of the model (gauge group, extra matter represen-
tations) [63–68].

One has the desired M2
Pl > 0 provided that the theory

admits an effective-theory approximation where the effect of
the strong dynamics is dominantly encoded in a mixing of
the graviton with a composite spin-2 resonance, analogously
to how a photon/ρ mixing approximates QCD effects. Then
the relevant effective Lagrangian for the graviton hμν and the
spin-2 resonance is

Leff = −M2

2
Rρ + f 4[a(hμν − ρμν)

2

+(h μ
μ − ρ μ

μ )2] + O(∂4hμν) + O(∂4ρμν). (44)

The first term is the positive quadratic kinetic energy for the
spin-2 resonance generated by strong dynamics; we wrote it
as a ‘curvature’ Rρ multiplied by some positive M2 > 0.
The second term is a mass term, which presumably approx-
imatively has Fierz–Pauli form, a ≈ 1.14 Next, we integrate
out ρμν obtaining an effective action for the graviton hμν . At
leading order in derivatives one simply has ρμν = hμν , irre-
spectively of the precise form of the mass term. Thereby

14 It can be rewritten in a covariant form as the mass term resulting,
in the unitary gauge, from the spontaneous symmetry breaking of gen-
eral coordinate invariance acting separately on ordinary fields and on

composite fields, GLh ⊗ GLρ
f→ GL (see e.g. [69]).
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the resulting effective action is the Einstein action, with
M̄2

Pl = M2.
Furthermore, the strong dynamics generates at the same

time a cosmological constant. In a theory with no matter
charged under G it is negative and of order M4

Pl:

V = Tμ
μ

4
= ∂μDμ

4
= 1

4

βgP

2gP
〈F A2

αβ 〉 (45)

where Dμ is the anomalous dilatation current and βgP < 0.
This large contribution to the cosmological constant can

be avoided if the theory also includes a Weyl fermion λ in
the adjoint of the gauge group G, such that the most general
dimensionless action,

S =
∫

d4x
√| det g|

[
− F A2

μν

4g2
P

+ λ̄Ai /DλA + R2

6 f 2
0

+
1
3 R

2 − R2
μν

f 2
2

]
, (46)

is accidentally supersymmetric in its strongly coupled sector.
With this particle content 〈F A2

αβ 〉 = 0 vanishes, being the D-
term of an accidental unbroken global supersymmetry, while
the fermion condensate can be computed [70–72].

The Higgs has no renormalizable interaction with the
strong sector at the Planck scale: it is only generated through
gravitational loops, between the Planck mass and the masses
M0,2 of the extra components of the agraviton. The one-loop
RGE for the Higgs mass in this regime was computed in [4],
and the contribution proportional to M̄2

Pl is

(4π)2 d

d ln μ̄
M2

h = −ξH [5 f 4
2 + f 4

0 (1 + 6ξH )]
M̄2

Pl + · · · for M0,2 < μ̄ < MPl

(47)

where · · · are contributions that are not dangerous from the
point of view of naturalness. In Appendix B we write the
one-loop RGE for the most general massive parameters.

5.2 f0 � 1 at the Planck scale

A simpler alternative that avoids having a very large RGE
scale at which f0 crosses 4π is that f0 is still large at the
Planck scale and never gets small.

The conformal mode of the agraviton only has small
anomalous couplings, until its dynamics suddenly changes
when some vacuum expectation value or condensate is first
generated. We assume that the largest such effect is the
Planck mass, which can be generated in the ways discussed
in the previous section. Then the tree-level Lagrangian of Eq.
(41) describes how σ splits into two-derivative modes. The
SO(1,1) symmetry that prevented quantum corrections to the
strongly interacting theory with f0 � 1 gets broken by MPl.

The physical difference with respect to the previous case
is that only the Einstein conformal mode of the graviton
appears in the effective theory below the Planck scale down
to the scale M2. The RGE are those of gauge-fixed confor-
mal gravity (see Eqs. (24), (25) and (26)). Proceeding as in
Appendix B, the RGE of the Higgs mass is

(4π)2 d

d ln μ̄
M2

h = 5

6
f 4
2 M̄

2
Pl + · · · ,

for M2 < μ̄ < MPl, (48)

which is naturally small for f2 � 10−8.

6 Conclusions

In dimensionless gravity theories (agravity), the conformal
mode of the agraviton consists of two fields: the usual confor-
mal mode of the graviton and an extra scalar, jointly described
by a four-derivative action for a single field σ , defined by
gμν(x) = e2σ(x)ημν . The self-interactions of the conformal
mode of the agraviton are controlled by a coupling f0 that is
not asymptotically free. In Sect. 2 we recomputed its RGE,
and we extended it at the two-loop level, by developing a for-
mulation where f 2

0 becomes an extra scalar quartic coupling.
In the presence of scalars, their dimensionless ξ -couplings to
gravity become scalar quartics, and the whole agravity can be
rewritten as conformal gravity plus two extra scalars with an
SO(1,1) symmetry. This perturbative equivalence allowed us
to recompute the one-loop RGE equations of a generic agrav-
ity theory, confirming previous results [4], writing them in
an equivalent simpler form where no couplings appear at the
denominator in the β-functions, extending them at two loops.

In particular, rewriting f 2
0 as a quartic scalar clarifies why

a small f0 grows with energy in any agravity theory. A Lan-
dau pole would imply that agravity is only an effective theory
and that the Higgs mass receives unnaturally large correc-
tions.

In Sects. 2, 3 and 4 we have shown that, nevertheless,
agravity can be a complete theory. Agravity can be extrap-
olated up to infinite energy, although in an unusual way:
the dimensionless coupling f0 grows with energy, becomes
strongly coupled above some critical RGE scale �0, and can
smoothly grow to f0 → ∞ at infinite energy. Although we
have excluded that f0 has a Landau pole, i.e. that it blows up
at finite energy, there is another possibility which we have
not studied in the present work: f0 can approach asymptot-
ically a finite non-perturbative fixed point. Analyzing this
possibility requires having control on intermediate regimes
where f0 ∼ 4π , which is beyond our current ability.

Provided that all scalars are asymptotically conformally
coupled (all ξ -couplings must run approaching −1/6) and
all matter couplings approach a fixed point (possibly a free
one, like in QCD) in the UV, the simultaneous f0 → ∞ limit
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turned out to be consistent. In this case and in the limit of
infinite energy the conformal mode of the agraviton fluctu-
ates freely and decouples from the rest of the theory. In the
UV limit the theory can then be computed by viewing σ as
a gauge redundancy, which can be fixed with the Faddeev–
Popov procedure. One then obtains conformal gravity at infi-
nite energy. In Sect. 3 we provided the one-loop RGE at the
zero order in the expansion in 1/ f 2

0 and ξ + 1/6, including
the most general matter sector.

However, the conformal symmetry is anomalous and its
violation is dictated by renormalization group equations that
describe how the dimensionless parameters that break con-
formal symmetry, f0 and ξ +1/6, are generated at a few-loop
order. As a result, at energies much above �0 the conformal
mode of the agraviton σ is strongly self-coupled ( f0 � 1)
and fluctuates wildly, being negligibly coupled to other par-
ticles. In Sect. 4 we isolated its peculiar action and showed
that, despite the strong coupling, it can be controlled through
its symmetries. The action is sufficiently simple for its full
quantum behavior to be simulated on a Euclidean lattice.

The anomalous multi-loop RGE which generate 1/ f 2
0 and

ξ + 1/6, are not (yet) fully known, but it is already possi-
ble to discuss the physical implications of this theory. We
assume that the largest mass scale dynamically generated
through vacuum expectation values or condensates is the
Planck scale. Two situations discussed in Sect. 5 can lead
to a scenario where the Higgs mass does not receive unnat-
urally large corrections. If f0 � 1 at the Planck scale one
obtains agravity at sub-Planckian energies: we wrote the most
general RGE for massive parameters, and we argued that a
new gauge group with a fermion in the adjoint can become
strongly coupled around the Planck scale and successfully
generate M̄Pl, without generating a Planckian cosmological
constant (this mechanism was never explored before in the
context of agravity). Alternatively, f0 � 1 at the Planck
scale seems to be a viable possibility: in this case the scalar
component of the agraviton is above the Planck scale.
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A One-loop RGE in agravity

When f0 and all couplings are small, the one-loop β-
functions βp ≡ dp/d ln μ̄ of all parameters p of the generic

agravity theory of Eqs. (4) and (5), can be conveniently writ-
ten in terms of the combination of parameters that appear in
Eq. (10), ζab = ξab + δab/6 and

λ̃abcd = λabcd + 3 f 2
0 (ζabζcd + ζacζbd + ζadζbc),

λ̃ab = f 2
0 ζab, λ̃ = f 2

0 . (49)

The RGE are

(4π)2 d f 2
2

d ln μ̄
= − f 4

2

(
133

10
+ NV

5
+ N f

20
+ Ns

60

)
, (50a)

where NV , N f , Ns are the number of vectors, Weyl fermions
and real scalars (in the SM NV = 12, N f = 45, Ns = 4),
and

(4π)2 d f 2
0

d ln μ̄
= 5

3
f 4
2 + 5 f 2

2 f 2
0 + 5

6
f 4
0 + 3λ̃abλ̃ab, (50b)

(4π)2 dλ̃abcd

d ln μ̄
=

∑
perms

[
1

8
λ̃abe f λ̃e f cd

+3

8
{θ A, θ B}ab{θ A, θ B}cd

− Tr YaY †bY cY †d +
+ 5

288
f 4
2 δabδcd + 1

16
λ̃abλ̃cd

]

+λ̃abcd

[
5 f 2

2 +
∑

k=a,b,c,d

(Y k
2 − 3Ck

2S)

]
,

(50c)

(4π)2 dλ̃ab

d ln μ̄
= f 2

0 λ̃ab

3
+ λ̃abcd λ̃cd + 5 f 2

2 λ̃ab

+λ̃ab
∑
k=a,b

(
Y k

2 − 3Ck
2S

)
+ 2λ̃acλ̃cb

+5 f 4
2 δab

18
,

(4π)2 dY a

d ln μ̄
= Y †bY bY a + YaY †bY b

2

+2YbY †aY b + Yb Tr(Y †bY a)

−3{C2F ,Ya} + 15

8
f 2
2 Y

a . (50d)

The sum over “perms” runs over the 4! permutations of abcd
and Y k

2 , Ck
2S and C2F are defined by

Tr(Y †aY b) = Ya
2 δab, θ A

acθ
A
cb = Ca

2Sδab,

C2F = t At A, (51)

where θ A and t A are the generators of the gauge group for
scalars and fermions, respectively (the gauge couplings are
contained in θ A and t A).
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B One-loop RGE for massive parameters in agravity

For the sake of completeness we also write the RGE for the
most generic massive parameters that can be added while
keeping the theory renormalizable: the reduced Planck mass
M̄Pl = MPl/8π , the cosmological constant �, scalar squared
masses m2

ab, scalar cubics Aabc, fermion masses Mi j defined
as

Lmassive = −1

2
M̄2

PlR − � − 1

2
m2

abφaφb

−1

6
Aabcφaφbφc − 1

2
(Mi jψiψ j + h.c.). (52)

The RGE for the massive terms can be obtained from the
generic dimensionless RGE by considering one neutral scalar
s as a dummy non-dynamical variable, such that

M̄2
Pl = ξsss

2, � = λssss
s4

4! , Mi j = Y s
i j s,

m2
ab = λabss

s2

2
, Aabc = λabcss. (53)

This technique has been used to determine the RGE of mas-
sive parameters in generic QFT without gravity [38]. Grav-
itational couplings have been included in some less general
models in [27,73]. The generic RGE of massive parameters
in agravity are

(4π)2 dM̄2
Pl

d ln μ̄
= 1

3
m2

aa + 1

3
Tr(M†M) + 2ξabm

2
ab

+
(

2 f 2
0

3
− 5 f 4

2

3 f 4
0

+ 2X

)
M̄2

Pl, (54a)

(4π)2 d�

d ln μ̄
= m2

abm
2
ab

2
− Tr[(MM†)2] + 5 f 4

2 + f 4
0

8
M̄4

Pl

+(5 f 2
2 + f 2

0 )� + 4�X, (54b)

(4π)2 dM

d ln μ̄
= 1

2
(Y †bY bM + MY †bY b)

+2YbM†Yb + Yb Tr(Y †bM)

−3{C2F , M} + 15

8
f 2
2 M + MX, (54c)

(4π)2 dm2
ab

d ln μ̄
= λabe f m

2
e f + Aaef Abe f − 2

[
Tr(Y {aY †b}MM†)

+ Tr(Y †{aY b}M†M) + Tr (YaM†YbM†)

+ Tr (MY †aMY †b)
]

+5

2
f 4
2 ξab M̄

2
Pl + f 4

0

2
(ξab + 6ξaeξeb) M̄

2
Pl

+ f 2
0

(
m2

ab + 3ξb f m
2
a f + 3ξa f m

2
b f + 6ξaeξb f m

2
e f

)

+m2
ab

⎡
⎣ ∑
k=a,b

(Y k
2 − 3Ck

2 ) + 5 f 2
2 + 2X

⎤
⎦ , (54d)

(4π)2 dAabc

d ln μ̄
= λabe f Ae f c + λace f Ae f b + λbce f Aef a

− 2 Tr
(
Y {aY †bY c}M†

)
− 2 Tr

(
Y †{cY aY †b}M

)

+ f 2
0

(
Aabc + 3ξa f A f bc + 3ξb f A f ac + 3ξc f A f ab

)
+ 6 f 2

0

(
ξaeξb f Aef c + ξaeξc f Ae f b + ξbeξc f Aef a

)

+ Aabc

⎡
⎣ ∑
k=a,b,c

(Y k
2 − 3Ck

2 ) + 5 f 2
2 + X

⎤
⎦ , (54e)

where the curly brackets represent the sum over the per-
mutations of the corresponding indices: e.g. Y {aY †b} =
YaY †b+YbY †a . Notice that X is a gauge-dependent quantity,
equal to

X = (3c2
g − 12cg + 13)ξg

4(cg − 2)
+ 3(cg − 1)2 f 2

0

4(cg − 2)2 (55)

using the gauge-fixing action of [4], which depends on two
free parameters ξg and cg:

Sgf = − 1

2ξg

∫
d4x fμ∂2 fμ,

fμ = ∂ν(hμν − cg
1

2
ημνhαα). (56)

The RGE of massive parameters are gauge dependent
because the unit of mass is gauge dependent. Any dimen-
sionless ratio of dimensionful parameters is physical and the
corresponding RGE is gauge-independent, as can easily be
checked from Eqs. (54a)–(54e). For example [4] gave the RG
equation for M2

h/M̄
2
Pl.
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