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Abstract Puff field theory (PFT) is an example of a non-
local field theory which arises from a novel embedding of
D-branes in a Melvin universe. We study several rotating
and pulsating string solutions of the F-string equations of
motion in the supergravity dual of the PFT. Further, we find
a PP-wave geometry from this non-local spacetime by apply-
ing a Penrose limit and comment on its similarity with the
maximally supersymmetric PP-wave background.

1 Introduction and summary

It is not uncommon to find examples of quantum field the-
ories (QFT) which violate Lorentz invariance in the high
energy limit. These theories might play a crucial role in
understanding physics beyond the standard model of par-
ticle physics. In the context of string theory, for example, a
few Lorentz violating theories are constructed from the local
deformation of the N = 4 super Yang–Mills (SYM) the-
ory. The UV-completeness of such theories are recovered by
constraining the conformal dimensions of such deformation
operators, although, in the IR limit, the action for these the-
ories can approach that of N = 4 SYM theory. An exam-
ple of such a theory includes N = 4, SYM on a space
of non-commutative R4 [1], which in the IR limit looks
like N = 4 SYM deformed by an operator of conformal
dimension � = 6, breaking the Lorentz group SO(3, 1) to
SO(2)×SO(1, 1). The non-commutativity introduces a fun-
damental linear non-locality into the construction of such a
theory. It is worth mentioning that in many of these theories
the fundamental particles can become extended non-local
objects, making them intriguing for string theorists. It is,
therefore, interesting to explore such possible extensions of
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field theories that incorporate the violation of Lorentz invari-
ance at some typical mass scales.

Puff field theory (PFT) [2] is an example of a Lorentz vio-
lating non-local field theory. The idea follows the construc-
tion of non-commutative SYM (NCSYM) by Douglas and
Hull [3]. In NCSYM we consider n-coincident D0 branes
in type IIA string theory compactified on a small T 2. This
theory is T-dual to type IIA on a large T 2 with n D2 branes.
But this T-duality does not simply map the small T 2 to a
large one if a NS NS 2-form flux Bμν is turned on along T 2

as an obstruction. It was argued by Douglas and Hull that
the D2-branes in this setting will be described by non-local
interactions in the NCSYM. The construction of PFT is a
variant of such a small/large volume duality. Now consider a
Kaluza–Klein particle with n units of momentum in type IIA
string theory compactified on a T 3. An appropriate U-duality
transformation transforms this setting into n D3-branes on
type IIB theory compactified on large T 3. Instead of Bμν
flux as in the previous case, we give a geometrical twist that
will prevent U-duality from producing type IIB on a large
T 3. It has been argued in [2] that in the low energy limit the
Kaluza–Klein particle is described by a decoupled non-local
field theory that breaks Lorentz symmetry SO(3, 1) but pre-
serves rotational invariant group in three dimensions, SO(3).
This conjectured field theory, where the particle carrying a
R-charge now expands to occupy a D3 brane worldvolume
proportional to the R-charge and the dimensionful deforma-
tion parameter, is termed PFT. Nothing is known about the
explicit lagrangian form of PFT, but the supergravity descrip-
tion of PFT can be obtained from the non-trivial embedding
of D-brane geometry in a Melvin universe, as done in [4].
The result is a type IIB supergravity background supported
by a 4-form RR flux and a constant dilaton. While construct-
ing the supergravity dual background of PFT it was required
that the setting should preserve a few of the supersymme-
tries to avoid instability altogether. It has also been argued
that the supersymmetry preservation for this field theory will
depend on the nature of symmetry of the deformation param-
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eter. This can in turn be fixed by choosing the geometrical
twist accordingly.

Now we can see that the background dual to PFT looks
incredibly complex. But in this work we find that the near
horizon geometry of the background, in the Penrose limit,
reduces to the PP-wave of AdS5 × S5. This result prompts us
to look for solutions of the F-string equations of motion in
this background in the semiclassical limit. In the context of
AdS/CFT duality, string solutions in the semiclassical limit
have proved to be of key importance in exploring various
aspects of the correspondence. According to the AdS/CFT
correspondence [5–7] quantum closed string states in bulk
should be dual to local operators on the boundary. This state-
operator matching can be tractable only in the large angular
momentum limit, on both sides of the duality [8–16], as both
the string theory and the gauge theory are integrable in the
semiclassical limit; see for example [17–21]. In this connec-
tion a large number of rotating and pulsating string solutions
have been studied in various string theory backgrounds; see
for example [22–50]. Here, we try to extract some simple
solutions following results from these works.

In the case of our background, we expand it in the near
horizon limit keeping only AdS5 × S5 plus the leading order
deformation terms, containing the mixing of coordinates
from both AdS and sphere part. It has already been shown in
[2] that this leading order term in the dual gauge theory cor-
responds to a deformation operator of conformal dimension
� = 7 to N = 4 SYM. That is, in the low energy limit the
total Lagrangian can be written as

L = L N=4 + ηO(7) + · · · (1.1)

Here η is the dimensionful deformation parameter. Thus,
we choose to ignore the higher order deformation terms in our
metric and study a general class of rotating string solutions
in some approximation. We find that the dispersion relations
among various conserved quantities differ slightly from that
of the general AdSn × Sn . Next we study a class of solu-
tions both rotating and pulsating in this background. Such a
kind of string states are expected to be dual to highly excited
sigma model operators. As the oscillation number is a quan-
tum adiabatic invariant, the series relation of the energy in
terms of oscillation number and other conserved quantities
is presented as the solution to characterize the dynamics of
these string states.

The rest of the paper is organized as follows. In Sect. 2
we write down the supergravity description of PFT and take
the appropriate near horizon limit for studying the rotating
string solutions. In Sect. 3, we study the Penrose limit of the
supergravity dual background of PFT. Section 4 is devoted
to the study of rigidly rotating strings in this background.
We present the regularized dispersion relations among var-
ious conserved charges corresponding to the string motion.
We also present solutions for strings which are both rotating

and pulsating in the above background. Finally, in Sect. 5 we
conclude with some comments.

2 Supergravity description of PFT

Following [4] we know that the supergravity dual background
of PFT is given by the following metric and 4-form field:

ds2

α′ = K
1
2

(
−H−1dt2 + dU 2 + U 2ds2

2 +
9∑

i=8

dY 2
i

)

+K − 1
2

(
3∑

i=1

dx2
i + HU 2(dφ + A +�3 H−1dt)2

)
,

A

α′2 = K −1(−dt + U 2�3(dφ + A)) ∧ dx1 ∧ dx2 ∧ dx3,

eφ = gI I B = 2πg2
Y M , (2.1)

where the harmonic functions H and K are

H = 4πgI I B N

(U 2 + ||Y ||2)2 , K = 4πgI I B N

(U 2 + ||Y ||2)2 +�6U 2;
(2.2)

also ds2
2 = 1

4 (dθ
2 +sin2 θdϕ2) is the “Fubini–Study” metric

and A = − 1
2 (1− cos θ)dϕ is the connection of a Hopf fibra-

tion. Note that to obtain this background one needs to take
the decoupling limit α′ → 0. However, in this limit the value
of �3 = ηα′2 is held fixed for large value of deformation
parameter η.

Now, considering U = V cos ζ and ||Y || = V sin ζ , i.e.
Y8 = V sin ζ cosψ and Y9 = V sin ζ sinψ , we can rewrite
the metric and 4-form as follows [4]:

ds2

α′ = K
1
2 (−K −1dt2 + dV 2 + V 2dζ 2 + V 2 sin2 ζdψ2)

+1

4
K

1
2 V 2 cos2 ζdθ2

+1

4
K − 1

2 V 2 cos2 ζ(K sin2 θ + H(1 − cos θ)2)dϕ2

+K − 1
2 H V 2 cos2 ζdφ2

+K − 1
2

3∑
i=1

dx2
i + 2K − 1

2 V 2 cos2 ζ�3dtdφ

−K − 1
2 H V 2 cos2 ζ(1 − cos θ)dφdϕ

−K − 1
2 V 2 cos2 ζ�3(1 − cos θ)dtdϕ,

A

α′2 = K −1
(

−dt+�3V 2 cos2 ζ

(
dφ− 1

2
(1−cos θ)dϕ

))
∧ dx1 ∧ dx2 ∧ dx3,

eφ = 2πg2
Y M , (2.3)

with K = H +�6V 2 cos2 ζ , H = 8π2g2
Y M N

V 4 . Now we want
to take the near horizon limit on this full generalized metric.
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Note that in the near horizon limit (i.e. V → 0), H = C2

V 4 ≈
K , where C2 = 8π2g2

Y M N , and we have kept terms up to
V 4. The resulting metric and the 4-form field are

ds2

α′ = V 2

C

(
−dt2 +

3∑
i=1

dx2
i

)
+ C

dV 2

V 2

+2�3V 4

C
cos2 ζdt

(
dφ − sin2

(
θ

2

)
dϕ

)

+C

[
dζ 2 + sin2 ζdψ2 + cos2 ζ

{(
dθ

2

)2

+ dφ2

+ sin2
(
θ

2

)
dϕ2 − 2 sin2

(
θ

2

)
dφdϕ

}]
,

A

α′2 = − V 4

C2 dt ∧ dx1 ∧ dx2 ∧ dx3 . (2.4)

Now making the following change of variables:

θ = 2θ, ϕ = φ1 − φ2, φ = φ1, ζ = ζ − π

2
,

we get

ds2

α′ = V 2

C

(
−dt2 +

3∑
i=1

dx2
i

)
+ C

dV 2

V 2

+2�3V 4

C
sin2 ζdt (cos2 θdφ1 + sin2 θdφ2)

+C[dζ 2 + cos2 ζdψ2 + sin2 ζ(dθ2

+ cos2 θdφ2
1 + sin2 θdφ2

2)],
A

α′2 = − V 4

C2 dt ∧ dx1 ∧ dx2 ∧ dx3. (2.5)

This is the metric we are interested in on taking the Penrose
limit.

3 Penrose limit

In this section we would like to find a PP-wave metric by
applying a Penrose limit on the background (2.5). To take
the Penrose limit on (2.5), we start with a null geodesic in (t ,
V , ψ) plane following [51]. Keeping the other coordinates
fixed, the metric becomes

ds2

α′ = C

[
−V 2dt2 + dV 2

V 2 + dψ2
]
. (3.1)

To change the coordinates from (t, V, ψ) to (u, v, y),
which are more suitable to adapt the null geodesic, we use
the following transformation:

dV =
√

1 − l2V 2du,

dt = du

V 2 + ldy − dv,

dψ = ldu + dy, (3.2)

where l = J
E , J , and E , respectively, are angular momentum

and energy along the geodesic (3.1). Substituting (3.2) in
(2.5), and making the change of coordinates

u = u, v = v

C
, y = y√

C
, xi = xi√

C
,

ζ = z√
C
, �3 = �3,

followed by a large C limit, the metric and the field strength
reduce to

ds2

α′ = 2dudv − z2l2du2 + (1 − l2V 2)dy2

+V 2
3∑

i=1

dx2
i + dz2 + z2d�2

3,

F = dA = −4V 3l
√

1 − l2V 2du

∧ dy ∧ dx1 ∧ dx2 ∧ dx3. (3.3)

Again rescaling u → μu and v → v
μ

, we get

ds2

α′ = 2dudv − μ2z2l2du2 + (1 − l2V 2)dy2

+V 2
3∑

i=1

dx2
i + dz̄2,

Fuyx1x2x3 = −4μV 3l
√

1 − l2V 2, (3.4)

where dz̄2 = dz2 + z2d�2
3. This is the Rosen form of the

PP wave. To convert this into Brinkman form we make the
following substitution:

u = u, y = y√
1 − l2V 2

, xi = xi

V
, z̄ = z̄,

v = v + 1

4

[
∂u(1 − l2V 2)

1 − l2V 2 y2 + ∂u(V 2)

V 2

3∑
i=1

x2
i

]
, (3.5)

Substituting these we get the Brinkman form of the PP-
wave as

ds2

α′ = 2dudv + (F1 y2 + F2x2
i − μ2z2l2)du2

+dy2 +
3∑

i=1

dx2
i + dz̄2,

Fuyx1x2x3 = −4μl, (3.6)
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where

F1 = 1

2

[
∂u

{
∂u(1 − l2V 2)

1 − l2V 2

}
+ 1

2

{
∂u(1 − l2V 2)

1 − l2V 2

}2
]
,

F2 = 1

2

[
∂u

{
∂u(V 2)

V 2

}
+ 1

2

{
∂u(V 2)

V 2

}2
]
. (3.7)

This form is similar to the form that is obtained by taking
a Penrose limit on the geometry of a stack of N D3-branes in
the near horizon limit. String propagation in this background
has been studied in detail [8]. The main output of this section
is that the very complicated metric (2.5) reduces to a well
known form in the Penrose limit. That signifies that when we
consider the deformation term to be small, the local geom-
etry will behave like AdS5 × S5 to a local observer on the
geodesic mentioned in this section. In the next section we
will be interested in finding solutions of the string equation
of motion in the semiclassical limit in the background (2.5).

4 Semiclassical string solutions

If we neglect V 4 term in (2.5), then the metric simply takes
the form of AdS5 × S5, for which the rigidly rotating string
solutions are well studied. It would be interesting if we can
find string solutions by keeping the first order term in V 4.

By rescaling, t → �C
2
3 t , xi → �C

2
3 xi and substituting

V = 1
�

WC
1
3 , we get

ds2

α′ = C

[
W 2

(
−dt2 +

3∑
i=1

dx2
i

)
+ dW 2

W 2

+ 2W 4 sin2 ζdt (cos2 θdφ1 + sin2 θdφ2)

+ dζ 2 + cos2 ζdψ2 + sin2 ζ(dθ2 + cos2 θdφ2
1

+ sin2 θdφ2
2)

]
,

A

α′2 = −C2W 4dt ∧ dx1 ∧ dx2 ∧ dx3. (4.1)

It is very hard to solve the equations of motion for the fun-
damental string in the above background (4.1), since they lead
to highly non-linear coupled differential equations. However,
we can simplify and consider a less general geometry than
(4.1) by putting W = W0 and θ = θ0. For these values, the
metric (4.1) becomes

ds2

α′ = C

[
W 2

0

(
−dt2 +

3∑
i=1

dx2
i

)
+ 2W 4

0 sin2 ζdt

×(cos2 θ0dφ1 + sin2 θ0dφ2)+ dζ 2 + cos2 ζdψ2

+ sin2 ζ(cos2 θ2
0 dφ2

1 + sin2 θ0dφ2
2)

]
, (4.2)

where W0 and θ0 are constants. In the following analysis
we will keep the terms up to O(W0

4) only. It can be noted
that making the coordinates W and θ constant will certainly
impose some non-trivial constraints on the string solutions
in this background. We will, however, show that these con-
straints merely reduce to some relations between the vari-
ous constants mentioned in the wordsheet embedding of our
choice.

4.1 Rigidly rotating strings

We start our analysis by writing down the Polyakov action
of the F-string in the background (4.2),

S = − 1

4πα′

∫
dσdτ

[√−γ γ αβgM N ∂αX M∂βX N
]
, (4.3)

where γ αβ is the world-sheet metric. In a conformal gauge
(i.e.

√−γ γ αβ = ηαβ ) with ηττ = −1, ησσ = 1 and ητσ =
ηστ = 0, the Polyakov action in the above background takes
the form

S = −
√
λ

4π

∫
dσdτ

[
W 2

0 {−(t ′2 − ṫ2)+ x ′
i
2 − ẋi

2} + ζ ′2

−ζ̇ 2 + cos2 ζ(ψ ′2 − ψ̇2)+ sin2 ζ {cos2 θ0(φ
′
1

2 − φ̇1
2
)

+ sin2 θ0(φ
′
2

2 − φ̇2
2
)} + 2W 4

0 sin2 ζ {cos2 θ0(t
′φ′

1

−ṫ φ̇1)+ sin2 θ0(t
′φ′

2 − ṫ φ̇2)}
]
, (4.4)

where ‘dots’ and ‘primes’ denote the derivative with respect
to τ and σ , respectively; also we have ’t Hooft coupling√
λ = C . For studying the rigidly rotating strings in this

background we choose the following ansatz:

t =τ+h0(y), xi = νi (τ+hi (y)), i =1, 2, 3, ζ =ζ(y),
φ1 = ω1(τ + g1(y)), φ2 = ω2(τ + g2(y)),

ψ = ω3(τ + g3(y)), (4.5)

where y = σ − vτ . Variation of the action with respect to
X M gives us the following equation of motion:

2∂α(η
αβ∂βX N gK N ) − ηαβ∂αX M∂βX N ∂K gM N = 0, (4.6)

and variation with respect to the metric gives the two Virasoro
constraints,

gM N (∂τ X M∂τ X N + ∂σ X M∂σ X N ) = 0,

gM N (∂τ X M∂σ X N ) = 0. (4.7)

Next we have to solve these equations by the ansatz we
have proposed above in (4.5). Solving for t , φ1, and φ2 we
get
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−∂h0

∂y
+ω1W 2

0 cos2 θ0 sin2 ζ
∂g1

∂y
+ω2W 2

0 sin2θ0 sin2 ζ
∂g2

∂y

= 1

1 − v2 [c4 − vW 2
0 sin2 ζ {ω1 cos2 θ0 + ω2 sin2 θ0}],

W 4
0 sin2 ζ

∂h0

∂y
+ ω1 sin2 ζ

∂g1

∂y

= 1

1 − v2 [c5 − v sin2 ζ(ω1 + W 4
0 )],

W 4
0 sin2 ζ

∂h0

∂y
+ ω2 sin2 ζ

∂g2

∂y

= 1

1 − v2 [c6 − v sin2 ζ(ω2 + W 4
0 )], (4.8)

where c4, c5, and c6 are integration constants. Solving (4.8),
we get

∂h0

∂y
= 1

1 − v2 [W 2
0 (c5 cos2 θ0 + c6 sin2 θ0)− c4],

∂g1

∂y
= 1

1 − v2

[
1

ω1

{
c5

sin2 ζ
− W 4

0 (v − c4)

}
− v

]
,

∂g2

∂y
= 1

1 − v2

[
1

ω2

{
c6

sin2 ζ
− W 4

0 (v − c4)

}
− v

]
. (4.9)

Solving for ψ and xi , respectively, we get

∂g3

∂y
= 1

1 − v2

[
c7

cos2 ζ
− v

]
,
∂hi

∂y
= ci , (4.10)

where c7 and ci , (i = 1, 2, 3) are integration constants. As
discussed before, putting W and θ as constants generates
some confining constraint equations from the equations of
motion for W and θ . These constraint equations in this case
can be written as

W 2
0 sin2 ζ(ω1 cos2 θ0 + ω2 sin2 θ0)

= (W 2
0 d1 + v − c4)(3W 2

0 d1 − v + c4)

+1 − (1 − v2)ν2
i {(1 − vci )

2 − c2
i }

c2
6 − c2

5

sin4 ζ
+ ω2

1 − ω2
2 = 2W 4

0 (ω2 − ω1), (4.11)

where d1 = c5 cos2 θ0 + c6 sin2 θ0. These constraints (4.11)
will imply ζ = constant, which is a trivial solution. To have a
non-trivial solution for strings in this supergravity PFT back-
ground, we must put

ω1 cos2 θ0 + ω2 sin2 θ0 = 0, c5 = c6. (4.12)

Using (4.12), (4.11) can be put in the form

(W 2
0 c5 + v − c4)(3W 2

0 c5 − v + c4)+ 1

= (1 − v2)ν2
i {(1 − vci )

2 − c2
i }

ω1 + ω2 = −2W 4
0 . (4.13)

Since the above equations confine our parameter space
non-trivially, we have to be careful in our approach for ana-
lyzing string solutions. As a check we can see that using the
conditions mentioned in (4.12) and solving for ζ we get

(1 − v2)2
∂2ζ

∂y2 = sin ζ cos ζ

[
c2

5

sin4 ζ
− ω2

3c2
7

cos4 ζ
− ω2

]
,

(4.14)

where ω2 = ω2
1 cos2 θ0 +ω2

2 sin2 θ0 −ω2
3. Integrating (4.14),

we get

(1 − v2)2
(∂ζ
∂y

)2 = − c2
5

sin2 ζ
− ω2

3c2
7

cos2 ζ
− ω2 sin2 ζ + c8,

(4.15)

where c8 is integration constant. For self consistency of the
solution, (4.15) will have to be properly supplemented by the
two Virasoro constraints.

The Virasoro constraint gM N (∂τ X M∂σ X N ) = 0 in this
case will become

(1 − v2)2
(
∂ζ

∂y

)2

= W 2
0 (W

2
0 c5 − c4)

2

−1 − v2

v
W 2

0 (W
2
0 c5 − c4)+ (1 − v2)2W 2

0 ν
2
i

ci

v

−(1 − v2)2W 2
0 ν

2
i c2

i − ω2
3 cos2 ζ

− sin2 ζ(ω2
1 cos2 θ0 + ω2

2 sin2 θ0)− c2
5

sin2 ζ
− ω2

3c2
7

cos2 ζ

+2W 4
0 (v − c4)c5 + 1 − v2

v
W 4

0 c5

+2W 4
0 c4c5 +

(1 + v2

v

)
c7ω

2
3. (4.16)

Again the Virasoro gM N (∂τ X M∂τ X N + ∂σ X M∂σ X N ) =
0 becomes

(1 − v2)2
(
∂ζ

∂y

)2

= W 2
0 (W

2
0 c5 − c4)

2

+1 − v2

1 + v2 W 2
0 {1 − v2 − 2v(W 2

0 c5 − c4)}

−(1 − v2)2W 2
0 ν

2
i c2

i − (1 − v2)2

1 + v2 W 2
0 ν

2
i (1 − 2vci )

−ω2
3 cos2 ζ − sin2 ζ(ω2

1 cos2 θ0 + ω2
2 sin2 θ0)

− c2
5

sin2 ζ
− ω2

3c2
7

cos2 ζ

+2W 4
0 (v − c4)c5 + v(1 − v2)

1 + v2 W 4
0 c5

+W 4
0 c4c5 +

( 4v

1 + v2

)
c7ω

2
3. (4.17)

Subtracting these two Virasoro constraints we get another
relation between the constants:

c7ω
2
3 + W 2

0 ν
2
i {(1 − v2)ci + v} − W 2

0 (v − c4)

+W 4
0 c5

v2(1 − v2)+ c4v(1 + v2)

(1 − v2)2
= 0. (4.18)
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Note that from (4.16), if we identify

c8 = W 2
0 (W

2
0 c5 − c4)

2 + 2W 4
0 vc5 + 1 − v2

v
W 2

0 c4

+(1 − v2)2W 2
0 ν

2
i

(ci

v
− c2

i

)
− ω2

3 + 1 + v2

v
ω2

3c7,

(4.19)

then (4.16) is consistent with the equation of motion (4.15).
To summarize, (4.13) and (4.18) give the desired constraint
equations for the string solutions in the background (4.2).
Since these constraints are highly non-linear in the parame-
ters, it can be clearly stated that our rotating string solutions
are valid only in a highly confined parameter space.

Since we are interested in infinite angular momenta solu-
tions we can consider the limit ∂ζ

∂y → 0 as ζ → π
2 , which in

(4.15) implies c7 = 0 and c8 = c2
5 + ω2. Substituting this in

the above equation we get

∂ζ

∂y
= ω cot ζ

1 − v2

√
sin2 ζ − sin2 ζ0, (4.20)

where sin ζ0 = c5
ω

. Looking at the symmetry of the back-
ground (4.2), a number of conserved charges can be con-
structed as follows:

E = −
∫
∂L
∂ ṫ

dσ =
√
λ

2π

W 2
0

1 − v2

[
(1 − v2 + vc4)

] ∫
dσ,

Pi =
∫
∂L
∂ ẋi

dσ =
√
λ

2π
νi W 2

0 (1 − vci )

∫
dσ,

Jψ =
∫
∂L
∂ψ̇

dσ =
√
λ

2π

ω3

1 − v2

∫
cos2 ζdσ,

Jφ1 =
∫

∂L
∂φ̇1

dσ =
√
λ

2π

cos2 θ0

1 − v2

×
∫ [

(ω1 + W 4
0 ) sin2 ζ − vc5

]
dσ,

Jφ2 =
∫

∂L
∂φ̇2

dσ =
√
λ

2π

sin2 θ0

1 − v2

×
∫ [

(ω2 + W 4
0 ) sin2 ζ − vc5

]
dσ. (4.21)

Also the deficit angles are given by

�φ1 = ω1

∫
∂g1

∂y
dσ = 1

1 − v2

×
∫ [

c5

sin2 ζ
− W 4

0 (v − c4)− vω1

]
dσ,

�φ2 = ω2

∫
∂g2

∂y
dσ = 1

1 − v2

×
∫ [

c5

sin2 ζ
− W 4

0 (v − c4)− vω2

]
dσ. (4.22)

For our convenience, we will use the combined angular
momenta and deficit angles as

Jφ = Jφ1 + Jφ2 =
√
λ

2π

1

1 − v2

∫
(W 4

0 sin2 ζ − vc5)dσ

�φ = �φ1 +�φ2

2

= 1

1 − v2

∫ [
c5

sin2 ζ
− c4(ω1 + ω2)

2

]
dσ. (4.23)

In what follows, we will find relations among various
charges in different limiting cases. Since some of the charges
in 4.21 are divergent, we will use a particular type of regu-
larization technique to extract the relations.

4.1.1 Case I: giant magnon

For this case, we choose c5 = c4(ω1+ω2)
2 , and the angle deficit

becomes

�φ = 2c5

ω

∫ π
2

ζ0

cos ζdζ

sin ζ
√

sin2 ζ − sin2 ζ0

= 2 arccos(sin ζ0),

(4.24)

which implies sin ζ0 = cos
(
�φ
2

)
. In this condition the

expression of energy and linear momenta Pi can be written
as

E =
√
λ

π

W 2
0

ω

[
1 − v2 + vc4

] ∫ π
2

ζ0

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

,

Pi =
√
λ

π

W 2
0

ω
νi (1 − v2)(1 − vci )

×
∫ π

2

ζ0

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

. (4.25)

It can be seen that these expressions are divergent. But
looking at the other charges in this case we find that

Jψ =
√
λ

π

ω3

ω
cos ζ0 (4.26)

is finite, while the combined angular momentum can be writ-
ten as

Jφ =
√
λ

π

W 4
0 − vc5

ω

∫ π
2

ζ0

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

−
√
λ

π

W 4
0

ω

∫ π
2

ζ0

sin ζ cos ζdζ√
sin2 ζ − sin2 ζ0

. (4.27)

It is clear that Jφ also diverges due to the first integral.
Now we follow the regularization scheme outlined in [34],
for example. Let us define the divergent quantity

Ẽ = W 4
0 − vc5

W 2
0

[
1 − v2 + vc4 + νi (1 − v2)(1 − vci )

]
×

(
E + 1

3

∑
Pi

)
. (4.28)
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Thus we can write

Ẽ − Jφ =
√
λ

π

W 4
0

ω
cos ζ0, (4.29)

which is a finite quantity. It can easily be shown that the
above mentioned conserved charges obey a dispersion rela-
tion among them of the form

Ẽ − Jφ =
√

J 2
ψ + f (λ) sin2

(�φ
2

)
, (4.30)

where f (λ) = λ
π2

W 8
0 −ω2

3
ω2 . The above relation is analogous to

the two spin giant magnon dispersion relation.

4.1.2 Case II: Single Spike solution

For this case, choosing c5 = c4(ω1+ω2)

2v2 , we see that the deficit
angle

�φ = 2c5

ω

[
(1 − v2)

∫ ζ0

π
2

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

+
∫ ζ0

π
2

cos ζdζ

sin ζ
√

sin2 ζ − sin2 ζ0

]
(4.31)

diverges due to the first integral. The energy E and linear
momenta Pi also diverge as in the previous case. Here again
we will use the divergent combination of the form

E + 1

3

∑
Pi =

√
λ

π

W 2
0

ω

[
1 − v2 + vci

+νi (1 − v2)(1 − vci )
] ∫ ζ0

π
2

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

.

(4.32)

The other conserved charges are given by

Jφ =
√
λ

π

W 4
0 − vc5

ω

∫ ζ0

π
2

sin ζdζ

cos ζ
√

sin2 ζ − sin2 ζ0

−
√
λ

π

W 4
0

ω

∫ ζ0

π
2

sin ζ cos ζdζ√
sin2 ζ − sin2 ζ0

, (4.33)

which also are diverging due to the first integral and

Jψ = −
√
λ

π

ω3

ω
cos ζ0 (4.34)

is finite as before. Now we can regularize the value of �φ
by subtracting out the divergent part,

(�φ)reg = �φ − 2πc5(1 − v2)√
λW 2

0

[
1 − v2 + vci + νi (1 − v2)(1 − vci )

]
×

(
E + 1

3

∑
Pi

)
= −2 arccos(sin ζ0), (4.35)

which implies sin ζ0 = cos
(
(�φ)reg

2

)
. Again we write the

regularized value of Jφ as

(Jφ)reg = Jφ − W 4
0 − vc5

W 2
0

[
1 − v2 + vci + νi (1 − v2)(1 − vci )

]
×

(
E + 1

3

∑
Pi

)
,

=
√
λ

π

W 4
0

ω
cos ζ0. (4.36)

We can see that the constants of motion satisfy the following
dispersion relation:

(Jφ)reg =
√

J 2
ψ + f (λ) sin2 (�φ)reg

2
, (4.37)

where f (λ) = λ
π2

W 8
0 −ω2

3
ω2 . This looks like the spiky string

dispersion relation presented in [37].

4.2 Rotating and pulsating strings with two equal spins

In this section we will focus on a class of ‘long’ semiclassi-
cal strings which are both pulsating and rotating in the back-
ground (2.5). Here we follow a simple procedure for our
analysis as in [52] for example.1 We again put W = W0 and
θ = π

4 for simplicity in the metric and keep terms up to W 4
0

in keeping with our approximation as before. The resulting
metric is

ds2

α
′ = C

[
W 2

0

(
−dt2 +

∑
(dxi )2

)
+ dζ 2 + cos2 ζdψ2

+1

2
sin2 ζ(dφ2

1 + dφ2
2)+ W 4

0 sin2 ζdt (dφ1 + dφ2)

]
.

(4.38)

We shall look for string propagation in this background using
the following ansatz:

t = t (τ ), xi = xi (τ ), ψ = ψ(τ), ζ = ζ(τ ),

φ1 = φ1(τ )+ m1σ, φ2 = φ2(τ )+ m2σ. (4.39)

Again we have to show that the above embedding is self-
consistent with the constraint equations as in the case before.
To check this, we start by solving the equations of motion
using the ansatz above. Solving the t equation of motion we
get

ẗ = W 2
0

2
∂τ {(φ̇1 + φ̇2) sin2 ζ }. (4.40)

1 Recently more generalized rotating and pulsating strings have been
studied in [53].
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Solving for φ1 and φ2, respectively, we get

φ̇1 = c5

sin2 ζ
− W 4

0 ṫ

φ̇2 = c6

sin2 ζ
− W 4

0 ṫ, (4.41)

where c5 and c6 are integration constants. Substituting the
values of φ̇1 and φ̇2 from (4.41) into (4.40) we get

ẗ = 0 ⇒ ṫ = c4, (4.42)

where c4 is the integration constant. Solving for xi andψ we
get

ẋi = ci , ψ̇ = c7

cos2 ζ
. (4.43)

Thus the equations for W and θ generate the constraints

c2
4 −

∑
c2

i = 2W 2
0 c4(c5 + c6),

c2
5 − c2

6

sin4 ζ
= m2

1 − m2
2. (4.44)

For the same reason as discussed in the previous section we
must impose the constraint c5 = c6, which implies m2

1 = m2
2.

These conditions merely point out that φ̇1 = φ̇2 (i.e. the
corresponding angular momenta are equal) and fix the values
of c5 and c6 from the above equations. Substituting these
conditions into the ζ equation we get

d2ζ

dτ 2 = sin ζ cos ζ

[
− c2

7

cos4 ζ
+ c2

5

sin4 ζ
− m2

]
. (4.45)

Integrating the above we arrive at

(
dζ

dτ

)2

= − c2
7

cos2 ζ
− c2

5

sin2 ζ
− m2 sin2 ζ + c8, (4.46)

where c8 is an integration constant. Now looking at the isome-
tries of the background, we can evaluate the constants of
motion from the action as

E = √
λE = √

λ

[
W 2

0 ṫ − 1

2
W 4

0 sin2 ζ(φ̇1 + φ̇2)

]
,

Pi = √
λPi = √

λW 2
0 ẋi ,

Jφ1 = √
λJφ1 =

√
λ

2
sin2 ζ

[
φ̇1 + W 4

0 ṫ
]
,

Jφ2 = √
λJφ2 =

√
λ

2
sin2 ζ

[
φ̇2 + W 4

0 ṫ
]
,

Jψ = √
λJψ = √

λ cos2 ζ ψ̇. (4.47)

Also we can see that the second Virasoro constraint in this
case implies that

m1Jφ1 + m2Jφ2 = 0. (4.48)

Since in this calculation we will be interested in the subset
of solutions which have two equal spins i.e.

Jφ1 = Jφ2 , ⇒ m1 = −m2 = m. (4.49)

We can see that this is in perfect agreement with (4.44),
thus making our solutions completely consistent. The first
Virasoro constraint gives the evolution equation for ζ

ζ̇ 2 = W 2
0 (ṫ

2 − ẋi
2)− cos2 ζ ψ̇2

−1

2
sin2 ζ

[
φ̇1

2+φ̇2
2 + 2W 4

0 (φ̇1 + φ̇2)ṫ+2m2
]
,

(4.50)

which can be shown to be exactly equivalent to (4.46) with
putting in the values and the identification c8 = W 2

0 (ṫ
2 −

ẋi
2) = W 2

0 (c
2
4 − ∑

c2
i ). So, in this case we note that the

constraint equations (4.44) are satisfied completely without
restricting our parameter space non-trivially as before.

Putting in the values from (4.47) into (4.50), we get

ζ̇ 2 = Ẽ2

W 2
0

− J 2
ψ

cos2 ζ
− J 2

sin2 ζ
− m2 sin2 ζ, (4.51)

where Ẽ2 = E2 − ∑P2
i + 2W 4

0 (Jφ1 + Jφ2) and J 2 =
2(J 2

φ1
+ J 2

φ2
), so that J is a real quantity. Now the equation

of motion for ζ looks like the classical equation for a particle
moving in a potential. Notice that the potential here grows
to infinity at both ζ = 0 as well as ζ = π

2 . So the functional
form suggests an infinite potential well with a minimum in
between the extrema. The ζ coordinate must then oscillate
in this well between a maximum and minimum value. We
define the oscillation number for the system as

N = 1

2π

∮
dζ ζ̇

= 1

π

∫ ζmax

ζmin

dζ

√√√√ Ẽ2

W 2
0

− J 2
ψ

cos2 ζ
− J 2

sin2 ζ
− m2 sin2 ζ ,

(4.52)

with N = N√
λ

being an adiabatic invariant, which should
have integer values in the usual quantum theory. Putting
sin ζ = x into the integral for the oscillation number, we
get

N = 1

π

∫ √
R2

√
R1

dx

1 − x2

×
√

Ẽ2

W 2
0

(1 − x2)− J 2
ψ − J 2(1 − x2)

x2 − m2x2(1 − x2),

(4.53)

123



Eur. Phys. J. C (2014) 74:3115 Page 9 of 11 3115

where R1 and R2 are two positive appropriate roots of the
polynomial

g(z) = m2z3 +
(

− Ẽ2

W 2
0

− m2

)
z2

+
(

Ẽ2

W 2
0

+ J 2 − J 2
ψ

)
z − J 2, z = x2. (4.54)

Naturally, we will be interested in the region of parameter
space where the roots to the above polynomial are real. Now
taking the partial derivative of N w.r.t. m we get

∂N
∂m

= −m

π

∫ √
R2

√
R1

dx

× x3√
Ẽ2

W 2
0
(1 − x2)− J 2

ψ − J 2(1−x2)

x2 − m2x2(1 − x2)

.

(4.55)

Now, to find the roots of the polynomial g(z) we do an
approximate analysis. In the large Ẽ but small J and Jψ
limit, we can find the three distinct roots:

α1 = Ẽ2

mW 2
0

+ W 2
0

J 2
ψ − J 2

Ẽ2
+ O

[
W 4

0 Ẽ−4
]
,

α2 = W 2
0 J 2

Ẽ2
+ O

[
W 4

0 Ẽ−4
]
,

α3 = 1 − W 2
0 J 2

ψ

Ẽ2
+ O

[
W 4

0 Ẽ−4
]
. (4.56)

Clearly we can see that 0 ≤ x2 ≤ 1, so in the large Ẽ
limit, we choose the appropriate upper and lower limit to the
integral accordingly. Putting x2 = z we write the integral as

∂N
∂m

= − m

2π

∫ α3

α2

dz

× z√
m2z3+

(
− Ẽ2

W 2
0

− m2

)
z2+

(
Ẽ2

W 2
0
+J 2 − J 2

ψ

)
z−J 2

.

(4.57)

Using standard integral tables we can transform this into a
combination of the usual elliptic integrals of the first and
second kind as

∂N
∂m

= −m

π

1√
α1 − α2

×
[
α1K

(
α3 − α2

α1 − α2

)
− (α1 − α2)E

(
α3 − α2

α1 − α2

)]
.(4.58)

We expand the equation again in the large Ẽ but small J
and Jψ limits to get

1

W0

∂N
∂m

= c1m2 Ẽ−1 + c2m4 Ẽ−3

×
[

c3 + J 2 − J 2
ψ

m2

]
+ O

[
W 5

0 Ẽ−5
]
, (4.59)

where the numerical constants are given by c1 = c2 = −0.25
and c3 = 0.375. Integrating this equation we get a series for
N ,

N = N0 + c1

3
m2W0 Ẽ−1 + c2

5
m5W0 Ẽ−3

×
[

c3 + 5

3

J 2 − J 2
ψ

m2

]
+ O

[
W 5

0 Ẽ−5
]
. (4.60)

The integration constant N0 can be evaluated by consid-
ering the integral for m = 0, i.e.

N0 = 1

π

∫ β2

β1

dx

1 − x2

×
√

Ẽ2

W 2
0

(1 − x2)+ J 2

(
1 − 1

x2

)
− J 2

ψ, (4.61)

where the limits are given by

β2 = β2
2,1

=
−

(
Ẽ2

W 2
0

+ J 2 − J 2
ψ

)
±

√(
Ẽ2

W 2
0

+ J 2 − J 2
ψ

)2

− 4 Ẽ2

W 2
0
J 2

−2 Ẽ2

W 2
0

.

(4.62)

Now using Ẽ2

W 2
0

+ J 2 − J 2
ψ = Ẽ2

W 2
0
β2 + J 2

β2 and changing

the variable, we transform the integral to

N0 = β1

π

∫ β2
β1

1

dx

1 − β2
1 x2

×
√

Ẽ2

W 2
0

β2
1 (1 − x2)+ J 2

β2
1

(
1− 1

x2

)
= 1

2

(
Ẽ

W0
− J + Jψ

)
.

(4.63)

We put back this value and then, by reverting the series, we
get

Ẽ

W0
= 2N + (J − Jψ)+ a1m3N−1−a2m3N−2(J −Jψ)

+a3m6N−3 A(m,J ,Jψ)− a4m6N−4(J − Jψ)
×B(m,J ,Jψ)+O[N−5], (4.64)

which reduces to the usual linear scaling relation of energy
with spins and oscillation number in the large N limit. Here

123



3115 Page 10 of 11 Eur. Phys. J. C (2014) 74:3115

a1 	 0.08334, a2 	 0.04167, a3 	 0.00347, a4 	 0.00521,
and

A(m,J ,Jψ) = −1 + d1

m
+ d2J (J − Jψ)

m3 ,

B(m,J ,Jψ) = −1 + d1

m
+ d2(2J 2 − J Jψ − J 2

ψ)

3m3 ,

(4.65)

with d1 	 1.35, d2 	 12. We can see that no higher
powers of W0 appears in the series, so we may claim that
our approximation on W0 does not bring about any diver-
gences in the spectrum of Ẽ . Also we recall that Ẽ2 =
E2 − ∑P2

i + 2W 4
0 (Jφ1 + Jφ2), and for the sake of com-

pleteness we compute the expansion for Ẽ =
√

E2 − ∑P2
i .

It is easy to find that the solution can be written as

Ẽ = 2N W0 + (

√
2(J 2

φ1
+ J 2

φ2
)− Jψ)W0

+
∞∑

n=1

(
1

N
)n

G(n)(m,Jφ1 ,Jφ2,Jψ), (4.66)

where

G(k) =
[

f1(m,J ,Jψ)W0 + (Jφ1 + Jφ2) f2(m,J ,Jψ)W 3
0

+ (Jφ1 + Jφ2)
2 f3(m,J ,Jψ)W 5

0

+(Jφ1 + Jφ2)
3 f4(m,J ,Jψ)W 7

0 + · · ·
]
. (4.67)

Here the functions fk(m,J ,Jψ) are of rather compli-
cated form and we do not present them here explicitly. But,
again, it seems clear that even without terms higher than
O(W 4

0 ) the series does not show any divergences, hinting at
a well behaved energy spectrum.

5 Conclusion

In this paper we have studied a few examples of semiclas-
sical strings in the near horizon geometry of PFT. We have
found the most general solutions of the equations of motion
of the probe fundamental strings in this background and
found dispersion relations among various conserved quan-
tities using some regularization technique. However, while
studying semiclassical strings in the PFT background we
have used some simplification and kept terms up to O(V 4),
where V is the radial coordinate. This approximation is justi-
fied by following [4], which would correspond to the leading
order deformation to N = 4 SYM. Also putting W and θ to
be constants has made us run into non-trivial constraints on
the parameter space. We can try to study string propagation
in the background with full generality. It will also be highly
challenging to study the boundary theory operators corre-
sponding to these states as the dual gauge theory is almost
unknown beyond the leading order. Hence, the semiclassical

analysis of the string states might give us hints about the pos-
sible nature of dual gauge theory operators next to leading
order. Furthermore it will be interesting to study the Wilson
loops in this background to have a better understanding of
this. We hope to come back to some of these issues in the
future.
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