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Abstract. Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous
results of Gluodynamics finding a glueball at ∼ 1750 MeV. I analyze the implications of this discovery
from the point of view of glueball-meson mixing in light of the experimental scalar sprectrum.

1 Introduction

Glueballs have not been an easy subject to study due to
the lack of phenomenological support and therefore much
debate has been associated with their properties [1]. I cen-
ter the discussion here on the consequences of the spec-
trum obtained by lattice QCD where the results seem to
be converging. In quenched QCD the masses of the scalar
glueballs appear large ≥ 1700MeV [2–5], a result which
has been confirmed by unquenched calculations [6].

Several glueball-meson mixing scenarios have been dis-
cussed in the literature using either lattice calculations or
phenomenology [2,3,7–12]. I implement a combination of
lattice results and phenomenology to study the implica-
tions of recent lattice results in the possible mixing sce-
narios in the scalar sector.

2 The scalar spectrum

Lattice QCD provides us with a value for the mass of the
0++ glueball states as shown in table 1.

The three calculations give a similar mass for their
lowest state for which I take the mean 1743 ± 42MeV in
my analysis.

In table 2, I show the experimental scalar spectrum,
namely that of the particles labelled f0.

The three heaviest states have not been confirmed and
some authors also question the existence of the f0(1370).

An observation at the light of the experimental spec-
trum is that the excited glueballs obtained in QCD calcu-
lations are very high in mass and therefore I do not expect
them to mix with the mesons. Thus the lattice calculations
and the observed scalar spectrum lead to a scenario of one
glueball amidst several scalar mesons in the range between
1–2GeV.
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Table 1. Glueball masses with JPC assignments. The column
Gl reports the results of the unquenched QCD calculation by
Gregory et al. [6], the columns Mp and Ky show the data from
Morningstar and Peardon [4] and Chen et al. [5], respectively.

JPC Mass MeV

Unquenched Quenched

Gl Mp Ky

0++ 1795(60) 1730(50)(80) 1710(50)(80)

0++ 3760(240) 2670(180)(130)

3 Glueball-meson mixing

The most naive way of implementing a mixing scenario is
by assuming a Hamiltonian which is not diagonal in the
unmixed states. Thus there are two ingredients to this
Hamiltonian, the unmixed masses and the off-diagonal
mixing parameters.

The calculations thus far have led to different realiza-
tions of mixing. Some obtain that the f0(1710) is mostly
glueball with small admixtures of qq̄ states [2,3,9–11].
Others claim that the f0(1500) is mostly glueball, with
small admixtures of qq̄ states [7,8].

I analyze next which scenarios could arise in a full
QCD calculation. The idea is to construct a Hamiltonian
which is not diagonal in the unmixed lattice states and
diagonalize it to obtain the physical states. The decisive
input is the glueball mass as given by lattice QCD. I as-
sume that the rest of the particles in the unmixed Fock
space are scalar mesons. Since the scalar meson spectrum
of lattice QCD is not well known I will be guided by phe-
nomenology.
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Table 2. Scalar particles appearing in the PDG’s particle listings [13].

JPC Name Mass MeV Width MeV Comment

0++ f0(500) 400–550 400–700

0++ f0(980) 990 ± 20 40–100

0++ f0(1370) 1200–1500 200–500

0++ f0(1500) 1505 ± 6 109 ± 7

0++ f0(1710) 1720 ± 6 135 ± 8

0++ f0(2020) 1992 ± 16 442 ± 60 needs confirmation

0++ f0(2100) 2013 ± 8 209 ± 19 needs confirmation

0++ f0(2200) 2189 ± 13 238 ± 50 needs confirmation

For the off-diagonal matrix elements I use Hamil-
tonian perturbation theory with 1/Nc arguments. With
these assumptions the matrix elements are of the form
∼ |〈Ψn|Hnon-diagonal|Ψm〉|2/(En − Em), therefore they de-
pend on the inverse of the decay coupling f2

meson ∼ Nc,
f2
glueball ∼ N2

c , and on the inverse of the energy difference
of the two levels. For almost degenerate unmixed states,
the mixing parameters might be larger than for states of
quite different masses.

For the off-diagonal matrix elements I use Hamil-
tonian perturbation theory with 1/Nc arguments. With
these assumptions the matrix elements are of the form
∼ |〈Ψn|Hnon-diagonal|Ψm〉|2/(En − Em), therefore they de-
pend on the inverse of the decay coupling f2

meson ∼ Nc,
f2
glueball ∼ N2

c , and on the inverse of the energy difference
of the two levels. For almost degenerate unmixed states,
the mixing parameters might be larger than for states of
quite different masses. I have assumed in this Nc count-
ing that the meson and glueball states can be degenerate,
while not so the meson states. Thus the Hamiltonian ma-
trix might look for a three-state mixing as

⎛
⎝

ms1 a b

a ms2 c

b c mg

⎞
⎠ , (1)

where, ms1 and ms2 represent the unmixed scalar meson
masses, and mg the unmixed glueball mass. I assume no
specific quark subtructure for the unmixed meson states.
This is another result that lattice QCD must provide. Non-
perturbative dynamics is so complex, as sum rule calcula-
tions have shown, that any specific input for the unmixed
meson quark substructure might lead to misconceptions.

In this matrix, the diagonal matrix elements I take
motivated by phenomenology and their values incorporate
all higher-order corrections, ∼ 1 + O(N−2

c ) + . . . for the
glueballs, and ∼ 1 + O(N−1

c ) + . . . for the mesons. The
mixing matrix elements are ∼ O(N−2

c ) for meson-glueball
states since ΔE ∼ 1/Nc, but they are also ∼ O(N−2

c ) for
the meson-meson states since ΔE ∼ O(1) for them. Thus

Fig. 1. The largest eigenvalue of the studied analog of a three
state mixing matrix is shown as a function of the relevant pa-
rameters in Cardano’s formulas. The values used for the diag-
onal elements were 1750, 1500, 1300 close to the physical f0

masses, and the mixing parameters b, c range from 0 → 1000,
and a from −1000 → 1000 in discrete steps.

a, b and c will be of the same order of magnitude, i.e.
≤ 250MeV.

Field theoretic models give rise to mixing formulas
which are quadratic in the hadronic masses [14,15]. The
Hamiltonian formalism used here is linear in the masses
and turns out more manageable for numerical analysis.
For the values of the masses under study the difference
between the two approaches is small.

It is trivial to prove that in a two by two symmetric
mass mixing matrix the unmixed mass of the heavy state
will increase after non-trivial diagonalisation. For a three-
state mass mixing matrix it is not so trivial to show that
the heaviest state mass also increases after non-trivial di-
agonalisation. This can be done using Cardano’s formulas,
as presented in fig. 1. Cardano’s formulas depend only of
one sign, sign(abc), therefore one reaches all the desired
values by only letting one of the parameters become nega-
tive. I have used as diagonal elements numbers close to the
actual f0 masses and the off diagonal elements have taken
values far beyond my expectation for the physical mixing
parameter values. Moreover, a full Cardano-Vieta analy-
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Fig. 2. Left: Eigenvalues of the mixing matrix for the glueball and two meson states. The masses and their errors are from
PDG [13]. Right: The probability distribution for the f0(1710) of the unmixed states as a function of c, having fixed a = b =
50 MeV. The dotted line represents the glueball with unmixed mass (1670 MeV), the full line the heavy meson with unmixed
mass (1530 MeV), the dashed line the light meson with unmixed mass (∼ 1380 MeV). The error bars in the probability curves
are just to guide the eye.

Fig. 3. Left: Eigenvalues of the mixing matrix for the glueball and two meson states. The masses and their errors are from
PDG [13]. Right: The probability distribution for the f0(1710) of the unmixed states as a function of c. The other mixing
parameters have been fixed to a = 100 MeV and b = 100. The dotted line represents the unmixed glueball (1750), the dashed
line represents the light unmixed meson (1550), the full line represents the heavy unmixed meson (1900).

sis of the characteristic polynomial imposing the glueball
mass and the physical meson masses leads to a much re-
stricted range for the parameters a, b and c, namely none
of them can be larger than 250MeV in good agreement
with our 1/Nc analysis.

The QCD lattice mass value for the scalar glueball is
very high and the error relatively small if the three values
shown in table 1 are averaged with errors in quadrature
mg = 1743 ± 42MeV. One can still argue, given the er-
rors in the lattice calculation, that the glueball mass could
be below, but certainly not much below, the experimen-
tal f0(1710). Therefore, I foresee two scenarios: i) the un-
mixed QCD mass value is below the f0(1710) but close to
it, and ii) the unmixed glueball mass value is above the
f0(1710) in agreement with the lattice QCD average value.
In the latter case I will analyze two cases depending on
the unmixed spectrum, one will be associated with weak
mixing, while the other with strong mixing.

The first scenario requires very small mixing, as can
be seen in fig. 2 (left). The unmixed values were chosen
ms1 = 1380MeV, ms2 = 1530MeV and mg = 1670MeV,
the latter two standard deviations below the central lat-
tice value. The mixing parameters that fit the data are
small a = b = 50MeV and c = 70MeV. Note that in
this case one can also trivially construct a two state weak
mixing scenario, with the outcome that the f0(1710) is

Fig. 4. Eigenvalues of the mixing matrix for the glueball
and two meson states. The masses and their errors are from
PDG [13].

again mostly glueball, the f0(1500) mostly meson and the
mixing parameters are small. Thus the f0(1370) is not re-
quired from the point of view of mixing.

I show in fig. 2 (right) the probability distribution
for the final mostly glueball state. It turns out that the
experimental f0(1710) comes out mostly glueball in agree-
ment with a lattice calculation of mixing [2,3], a lattice
study of glueball decay [12], and other phenomenological
analysis [11].
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Fig. 5. The probability distributions as a function of b of the mixed states, for mixing parameters a = 100 MeV, c = 70MeV.
The notation follows the unmixed states: the full line represents the glueball (1750 MeV), the dashed line represents the meson
(1710 MeV), the dotted line represents the meson (1760) MeV. The left figure represents the probability distribution of the
f0(2020), the middle that of the f0(1710), and the right figure that of the f0(1500).

I must point out that none of the mixing parameters
was fixed a priori. I performed the fit varying all the pa-
rameters within the allowed range. Once a good result was
found I chose to plot against that parameter which was
more sensitive to the mixing. The procedure will become
particularly clear when the last scenario is shown.

Let me now elaborate on the other scenario, namely
assuming mg > 1710MeV, i.e. I take 1750MeV, close to
the average value, as the unmixed glueball mass. As a
result of Cardano’s analysis, I know that the only way to
get that mass down to the f0(1710) is by incorporating
a heavier meson. In particular, I show in fig. 3 (left) a
three state mixing where the f0(1710) is mostly glueball
but the f0(2020), a not yet confirmed particle, must exist
to get the experimental values for the lower masses. The
corresponding probability curves, fig. 3 (right), show that
the glueball component is at the level of 70%. Most of the
other 30% is carried by the f0(2020). Besides the existence
of the f0(2020), another feature of this scheme is that the
f0(1370), whatever it be, is not required, and thus the
error bars are really very small and the fit quite restrictive.
Another characteristic of this weak mixing scheme in the
spread distribution of the unmixed spectrum: the particles
appear with an energy step of 150–200MeV. Note that in
this case a two state mixing scenario could also be trivially
constructed, but here the f0(2020) would be unavoidable
and the f0(1500) would decouple from the mixing scheme.

Within the latter scenario also a strong mixing
relization arises. As shown in fig. 4, I am able to get
a good fit to the data starting from almost degenerate
unmixed states. In this case the unmixed values are for
two mesons at 1710MeV and 1760MeV and a glueball
at 1750MeV. The mixing parameters between the almost
degenerate light meson and glueball is large b = 210MeV,
while the others are normal a = 100MeV, c = 70MeV.
On the other hand this strong mixing affects the f0(1710)
strongly, which now contains very little glueball, ∼ 17%,
while increasing dramatically the glueball content of the
f0(1500), ∼ 41%, and some that of the f0(2020), ∼ 42%,
see fig. 5. In this strong mixing scenario the glueball is a
relic of the original glueball state and therefore it will be
difficult to single out glueball properties. Again no need
for the f0(1370) in the fit.

I might summarize at this stage my findings by stating
that accepting a mass value for a glueball as obtained from
lattice QCD for the unmixed glueball state and allowing

for mixing under the strict scrutiny of the 1/Nc expan-
sion, two scenarios appear as dictated by the shape of the
unmixed spectrum: i) a week mixing scenario, whose con-
sequence is that the f0(1710) is an almost pure glueball
state; ii) a strong mixing scenario in which the f0(1710)
has almost no glueball component, while the f0(1500) and
the f0(2020) have about 40% glueball component. The role
played by the scalar meson spectrum in the realization of
mixing is fundamental. A detailed lattice QCD descrip-
tion of this spectrum would determine the mixing scenario.
Within the weak mixing scenario it is very important the
value of the mass of the unmixed glueball state. If it is
below the f0(1710) the mixing proceeds via the f0(1500)
and the f0(1370) and it is not very constrained due to the
large indeterminacy in the latter. If that mass is above
1710MeV the f0(2020) is required to bring the mass value
down, while the f0(1370) is unnecessary.

In order to complete the analysis I should discuss de-
cays. However, I cannot carry out that analysis because
there is no dynamical model, as in refs. [14,15], behind the
approach developed here. If lattice QCD would provide me
with the decay rates of the glueball and the unmixed scalar
mesons, I could a posteriori confirm which of the mixings
scenarios leads to the experimental decay rates by using
the mixing parameters obtained.

4 Conclusions

In this paper I take a very pragmatic point of view. I as-
sume that the lowest found lattice QCD glueball state is
associated with real physical states within the f0 spectrum
and try to establish the connection by implementing phe-
nomenologically mixing with the nearby scalar mesons. In
order to estimate the mixings I use the splitting pattern
of the f0 spectrum and 1/Nc arguments.

I find two possible weak mixing scenarios which as-
sociate the lattice glueball mostly with the f0(1710). In
this case the exact value of the unmixed glueball state is
fundamental to determine the physical realization of mix-
ing, being the f0(1710) the dominant scale. If the unmixed
glueball mass is below that value, the f0(1370) should ex-
ist and may play a relevant role. If the mass is above,
at least the f0(2020) is required to enter the mixing to
bring down the unmixed mass to the physical mass. The
scalar spectrum in both cases is loose, with an energy step
between 150–200MeV.
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I also find a strong mixing scenario which leads to the
f0(1500) and the f0(2020) having a strong glueball compo-
nent, while the f0(1710) is mostly mesonic in character. In
this case the unmixed scalar spectrum presents an almost
degeneracy around the unmixed glueball mass.

The main conclusion of this calculation is that given
the fact that mixings are difficult to calculate in lattice
QCD, a good knowledge of the scalar meson spectrum to-
gether with phenomenology will clarify the glueball con-
stituency of the physical f0’s in full QCD. Once the scalar
spectrum is known the f0 spectrum and the arguments
about the mixing used in this communication will fix quite
strongly the mixing parameters.

I have presented a guide of possible mixing schemes as
characterized by the structure of the spectrum, in partic-
ular the mass of the calculated scalar glueball has played
a crucial role. Giving the above analysis I find that the
f0(1710) being mostly glueball is the most natural sce-
nario. This conclusion has been recently also reached by
several authors using effective theories [16] and a holo-
graphic top-down approach [17,18]. If the glueball is ac-
companied, besides the f0(1500), by the f0(1370) or the
f0(2020) in the mixing scenario is a matter of experimen-
tal determination. It is clear that for this purpose not
only masses, but also decay rates should be used to de-
termine the main properties of the glueball component.
That study is outside the scope of this presentation due
to lacking lattice QCD data.
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