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Abstract We show that, if they exist, lepton number asym-
metries (Lα) of neutrino flavors should be distinguished from
the ones (Li ) of mass eigenstates, since Big Bang Nucle-
osynthesis (BBN) bounds on the flavor eigenstates cannot
be directly applied to the mass eigenstates. Similarly, Cos-
mic Microwave Background (CMB) constraints on the mass
eigenstates do not directly constrain flavor asymmetries. Due
to the difference of mass and flavor eigenstates, the cosmo-
logical constraint on the asymmetries of neutrino flavors can
be much stronger than the conventional expectation, but they
are not uniquely determined unless at least the asymmetry
of the heaviest neutrino is well constrained. The cosmolog-
ical constraint on Li for a specific case is presented as an
illustration.

1 Introduction

A large lepton number asymmetry of neutrinos is an intrigu-
ing possibility with respect to its capability of resolving sev-
eral non-trivial issues of cosmology (see for example [1–
3]), but it has been known to be constrained tightly by Big
Bang Nucleosynthesis (BBN) [4,5]. Interestingly, recently
[6] it has been shown that, even if BBN constrains the lep-
ton number asymmetry of the electron-neutrino very tightly,
such as Le � O(10−3), much larger muon- and tau-neutrino
asymmetries ofO(0.1–1) are still allowed as long as the total
lepton number asymmetry is sizable. Such large asymmetries
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are expected to be constrained mainly by cosmic microwave
background (CMB) via the extra neutrino species �Neff [7].

If asymmetric neutrinos have a thermal distribution, their
contribution to �Neff is expressed as

�Neff = 15

7

∑

α

(
ξα

π

)2
[

2 +
(

ξα

π

)2
]

(1)

where ξα ≡ μα/T is the neutrino degeneracy parameter.
Conventionally, the summation in Eq. (1) has been done with
neutrino flavors (νe,μ,τ in the case of only three active neutri-
nos). An implicit assumption here is that the extra radiation
energy coming from asymmetric neutrinos are solely from
flavor eigenstates. However, due to neutrino flavor oscilla-
tions [9–12], the equilibrium density matrix is not diagonal
in the flavor basis (as one naively expects, flavor eigenstates
not being asymptotic states of the Hamiltonian) and their
description in terms of only diagonal components (a more or
less hidden assumption when assuming thermal distribution
for flavors) cannot capture all the contributions to the extra
radiation energy density [8]. On the other hand, well after
their decoupling from a thermal bath, free-streaming neutri-
nos should be described as incoherent mass eigenstates only.
Hence, the appropriate estimation of �Neff should be done
exclusively with neutrino mass eigenstates instead of flavor
eigenstates in Eq. (1).

In this letter, we argue that the equilibrium lepton num-
ber asymmetry matrix reached by the BBN epoch is diag-
onal in the mass-eigenstate basis and related to the one in
the flavor-eigenstate basis simply by the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix, and we show that the lep-
ton number asymmetries of the mass eigenstates are different
from those of flavors. A numerical demonstration is provided.
Also, we discuss implications of a lepton number asymmetry
on cosmological data such as CMB + SNIa.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/188763345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5147-4&domain=pdf
mailto:Gabriela.Barenboim@uv.es
mailto:whkinney@buffalo.edu
mailto:wipark@jbnu.ac.kr


590 Page 2 of 7 Eur. Phys. J. C (2017) 77 :590

2 Lepton number asymmetries of neutrino
flavor vs. mass eigenstates

The lepton number asymmetries of neutrinos in flavor basis
can be defined as a matrix such as

Lf = ρ − ρ̄

nγ

(2)

where ρ/ρ̄ and nγ are the (mode-integrated) density matrices
of neutrinos/antineutrinos and the photon number density. In
the very early universe, it is natural to assume that neutri-
nos are in interaction eigenstates (i.e., flavor eigenstates),
since their kinematic phases are very small and collisional
interactions to thermal bath are large enough to block flavor
oscillations. Hence, if it were generated at very high energy,
Lf is likely to be diagonal and to remain constant. While
oscillations are blocked, individual flavor lepton numbers
are conserved. However, due to the fact that neutrinos are
not massless and mix (according to the values of the mixing
parameters and mass differences measured by a variety of
experiments [13]), as the temperature of the radiation domi-
nated universe drops below around T ∼ 15MeV, flavor oscil-
lations become active. Lf starts evolving at this epoch, and it
settles down to an equilibrium state finally at T ∼ 2–5 MeV
before BBN starts [4,14–18], depending on the neutrino mass
hierarchy. Here, we consider the case of the normal mass
hierarchy with zero CP-violating phase.

Once it reaches its final equilibrium value, Lf becomes
time-independent. The shape of Lf at the final equilibrium
is determined by various effects including vacuum oscilla-
tions, MSW-like effects coming from charged lepton back-
grounds, neutrino self-interactions, and collisional damping.
So, it is difficult to predict analytically, and in practice it is
only accessible via numerical methods. However, all these
effects except vacuum oscillations are active in particular
windows in temperature and eventually disappear. Hence,

the final shape of Lf should be determined by vacuum oscil-
lation parameters only. Note that the flavor states mixed by
vacuum oscillation parameters are nothing but mass eigen-
states in the flavor basis. Therefore, the statistical equilibrium
state of Lf should be that of mass eigenstates expressed in
the flavor basis.

Since in vacuum the mass and flavor eigenstates are related
to each other by the PMNS matrix,UPMNS [19–21], our argu-
ment implies that, for a diagonalization matrix D, the matrix
Lm of asymmetries in the mass basis is given by

Lm = D−1Lf D = U−1
PMNSLfUPMNS, (3)

implying

D = UPMNS. (4)

On general grounds, at late times we do not expect Lf to
be diagonal. The operator responsible for the evolution of
the density matrix is not diagonal, so that a diagonal density
matrix will not be the asymptotic solution of those equations
unless it is proportional to the identity matrix. Hence, generi-
cally the asymmetries of the neutrino mass eigenstates differ
from those of the flavor, and this fact should be taken into
account when observational constraints on the lepton number
asymmetries are considered.

In order to verify our argument, we solved numerically
the quantum kinetic equations of neutrino/antineutrino den-
sity matrices [22,23] in a simplified way as done in Ref. [6],
in which the dynamics of a typical mode mimicking the col-
lective behavior of all modes was analyzed. An example is
shown in Fig. 1, where one finds the evolutions of Lαβ , the
(real) entries of Lf for the neutrino’s normal mass hierarchy
with [13]

�m2
21 = 7.53 × 10−5eV2, (5)

�m2
31 � �m2

32 = 2.67 × 10−3eV2, (6)
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Fig. 1 Evolutions of Lf for θ = (θ12, θ13, θ23) with θi j being the mixing angles in PMNS matrix, and (ξe, ξμ, ξτ ) = (−1.0, 1.6, 0.3). Left/Right
diagonal/off-diagonal entries
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Fig. 2 Comparisons of lepton number asymmetries of both mass
eigenstates (Li ; i = 1, 2, 3) and flavor eigenstates (Lα; α = e, μ, τ )
for θ = (θ12, θ13, θ23). Solid/dashed lines are the asymmetries of fla-
vor/mass eigenstates. Left and right panels are showing two exam-

ples of Lm leading to Le ≈ 0 satisfying BBN constraint. Left
Lm = diag(L1, L2, L3) = (−t2

12L0, L0, 0). Right Lm = diag(−(t2
12 +

t2
13/c

2
12)L0, L0, L0)

and the mixing angle θi j shown in the figure [13,24]. As
shown in the right panel of the figure, the off-diagonal entries
of Lf do not disappear, making Lm different from Lf . Also,
we found that the numerical simulation reproduces the rela-
tion of Eq. (4) quite precisely within errors of O(0.1)% even
at x = 1.

The differences between diagonal entries of Lf and Lm

can be seen by expressing the former in terms of the latter.
First, Le is given by

Le = c2
13

(
c2

12L1 + s2
12L2

)
+ s2

13L3, (7)

where ci j/si j/ti j = cos θi j/ sin θi j/ tan θi j with θi j being
the mixing angle in the PMNS matrix. Since BBN requires
|Le| � O(10−3), we may set Le = 0 for an illustration when
|Le| ≪ |Li | in Eq. (7). In this case, Lμ and Lτ are given by

Lμ = c23

[
(1 − t2

12)c23 − 2s13s23t12

]
L2

+
[
(1 − t2

13)s
2
23 − t12t

2
13c23(2s13s23 + t12c23)

]
L3,

(8)

Lτ = s23

[
(1 − t2

12)s23 + 2s13c23t12

]
L2

+
[
(1 − t2

13)c
2
23 + t12t

2
13s23(2s13c23 − t12s23)

]
L3.

(9)

From Eqs. (8) and (9) with measured values of mixing angles
[13], we find that Lμ ∼ Lτ for |L3| � |L2|, as shown in
Fig. 2. One may think that it is also possible to have |Lμ,τ | �
|L2,3| if L2 ∼ −L3. However, our numerical testing showed
that generically Max[{|Lαβ |α �=β}] � Max[{|Lαα|}]. Hence,
on general grounds one expects to have

O(0.1) � Max[{|Li |}]/Max[{|Lαα|}] � O(1), (10)

showing that it is critical to know at least two of the Li in
order to constrain Lμ and Lτ .

3 Cosmological constraints

A large lepton number asymmetry in one or more neu-
trino species creates an extra radiation density in the uni-
verse relative to the standard contributions of photons and
CP-symmetric active neutrinos, a form of so-called “dark
radiation”. Extra relativistic degrees of freedom in cosmol-
ogy have attracted considerable recent attention as a way
to resolve the apparent discrepancy in measurement of the
Hubble parameter from CMB data and type-Ia supernovae
[7,28,29,34–39]. In this section, we investigate the possibil-
ity that a primordial lepton asymmetry may provide a dark
radiation density which can reconcile CMB and SNIa values
for the Hubble parameter.

We consider two basic cases. The first is an eight-
parameter �CDM + ξ version of cosmology without contri-
bution from primordial tensor fluctuations, with parameters:

• Baryon density bh2.
• Dark matter density Ch2.
• Angular scale of acoustic horizon θ .
• Reionization optical depth τ .
• Helium fraction YP .
• Power spectrum normalization As .
• Scalar spectral index nS.
• Lepton asymmetry ξ .

In the second case, motivated by models of early-universe
inflation, we include the tensor/scalar ratio r as a ninth param-
eter to the fit. H0 is a derived parameter. We assume a normal
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mass hierarchy for neutrinos, with one massive neutrino with
mass mν = 0.06 eV. Since the BBN constraint on Le should
be satisfied, we are not free to choose |Li | � |Le| in an
arbitrary way, but constrained to satisfy approximately

c2
12L1 + s2

12L2 + t2
13L3 = Le

c2
13

≈ 0, (11)

from Eq. (7). As the simplest possibility, we may set L3 = 0
leading to L1 ≈ −t2

12L2. Then, for thermal distributions of
two light mass eigenstates,1

�Neff = 15

7

∑

i=1,2

(
ξi

π

)2
[

2 +
(

ξi

π

)2
]

≈ 15

7

(
ξ2

π

)2

×
{

(1 + t4
12)2 +

[
1 + (4 + t4

12)t
4
12

](
ξ2

π

)2
}

,

(12)

where ξi s are degeneracy parameters of each mass eigenstate,
and |ξi | � 1 and t2

12 � 1 were assumed. (See also Refs. [30–
33] for a discussion of joint constraints on Nef f and YP .)

Strictly speaking, the late-time free-streaming neutrino
mass eigenstates are not in thermal distribution since they are
linear combinations of thermal distributions of flavor eigen-
states. Hence, the ξi in Eq. (12) should be understood as effec-
tive degeneracy parameters. The error in �Neff depends on
the initial configuration of the lepton number asymmetries in
flavor basis, but it is expected to be of O(10)% or smaller for
|ξi | � 1. We constrain the parameter space with: (a) Planck
2015 TT/TE/EE + lowTEB temperature and polarization data
[7,41], and the Bicep/Keck 2014 combined polarization data
[42], and (b) CMB data combined with the Riess et al. super-
nova data [34]. The allowed contours are calculated numer-
ically using a Markov chain Monte Carlo method with the
cosmomc software package [43], using the CAMB Boltz-
mann code modified according to Eq. (12).2 The curvature
k is set to zero, and the dark energy equation of state is
fixed at w = −1. For these constraints, we run eight parallel
chains with Metropolis-Hastings sampling, and use a con-
vergence criterion of the Gelman and Ruben R parameter of
R − 1 < 0.05.

1 Strictly speaking Eq. (12) is only valid for massless neutrinos. With
non-zero masses, the thermal distribution and energy density of neutri-
nos/antineutrinos are modified (see, for example, Ref. [40]). We have
not taken into account such modifications in this work. However, as
long as the masses of two light mass eigenstates are much smaller than
their momentum around the epoch of CMB decoupling, Eq. (12) is a
good enough approximation.
2 The data sets themselves contain multiple internal parameters, which
we do not list here.

Fig. 3 Constraints on H0 and ξ for the eight-parameter �CDM + ξ

case. Filled contours show the 68% (dark red) and 95% (light red)
constraints from Planck + BICEP/Keck alone. Dashed contours show
the corresponding constraints with the addition of the Riess et al.
supernova data. The constraint on H0 from the supernova data alone,
H0 = 73.24 ± 1.74 [34], is shown by the filled regions, with 1σ limits
in lavender, and 2σ limits in gray

3.1 Case 1: �CDM + ξ

Figure 3 shows constraints on H0 and ξ for the case of
the eight-parameter �CDM + ξ fit. We plot constraints
from Planck + BICEP/Keck only (filled contours), and
Planck + BICEP/Keck + Riess et al. (dashed contours). The
CMB data alone show no evidence for non-zero neutrino
chemical potential, with a 95%-confidence upper bound of
|ξ | < 0.77 (corresponding to �Neff � 0.30 or (L1, L2) �
(−0.19, 0.56) for θ12 = π/6), with H0 = 67.71 ± 0.95.
For combined CMB and supernova data, there is weak evi-
dence for a non-zero chemical potential, with |ξ | = 0.63 ±
0.27 (corresponds to �Neff ≈ 0.20+0.21

−0.14 or (L1, L2) ≈
(−0.15+0.07

−0.07, 0.45+0.22
−0.20) for θ12 = π/6) at 68% confidence,

with H0 = 69.25 ± 1.18. The combined CMB + supernova
data, however, should be interpreted with caution: as the filled
contours illustrate, the CMB data and supernova data taken
separately are barely compatible, with only a small overlap in
the 95% confidence regions, even when dark radiation from
a neutrino asymmetry is included as a parameter. Combin-
ing two fundamentally incompatible data sets in a Bayesian
analysis is likely to give a biased fit, which is reflected in
the best-fit values for the two cases, with the best-fit to CMB
alone having − ln(L) = 6794.38, while the best-fit for the
combined CMB + supernova data is measurably worse, with
− ln(L) = 6798.21. For the CMB data alone, including lep-
ton asymmetry, the 95%-confidence upper bound on the Hub-
ble parameter is H0 < 69.7. This can be compared with a
95%-confidence lower bound from Type-Ia supernovae of
H0 > 69.8. Other parameters are consistent with their best-
fit �CDM values. We therefore conclude, contrary to existing
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Fig. 4 CMB constraints on lepton number asymmetries for the nine-
parameter model including tensor perturbations. Contours are 68 and
95% uncertainties from CMB-only (red-shaded regions), and CMB +
supernovae (dashed lines).Left constraint as a function of ξ and H0. The
filled region is the Riess et al. constraint on H0 from supernovae. Right

constraint on the spectral index nS and tensor-to-scalar ratio r , plotted
with the predictions of representative choices of inflationary scalar-field
potential. Dotted contours for �CDM + r , with fixed ξ = 0. This can
be compared to Fig. 1 of Tram et al. [39]

claims in the literature [25–29], that inclusion of dark radia-
tion does not provide a consistent mechanism for reconciling
the discrepancy between CMB and supernova data. Further-
more, there is no evidence for a non-zero lepton asymmetry
from current data.

3.2 Case 2: �CDM + ξ + r : constraints on inflation

Figure 4 shows parameter constraints on the nine-parameter
case, with tensor perturbations included, consistent with
generic expectations from inflation. Constraints in the H0,
ξ parameter space are extremely similar to the case of no
tensors, which is reasonable considering the upper bound of
r < 0.07 obtained from Planck + BICEP/Keck data [44]. In
this case we obtain a 95%-confidence upper bound on the
lepton asymmetry of |ξ | < 0.77, and |ξ | = 0.63 ± 0.29
for Planck + BICEP/Keck + SNIa at 68%-confidence. The
best-fit to CMB alone is − ln(L) = 6793.52, and CMB +
SNIa is − ln(L) = 6798.14, nearly identical to the no-tensor
case. As in the no-tensor case, we conclude that here is no
evidence for dark radiation from a lepton asymmetry. Con-
straints on inflationary potentials are shown in the right-hand
panel of Fig. 4, which can be compared to Fig. 1 of Tram et al.
[39]. Our constraints here are considerably tighter. The dif-
ference is that here we include the BICEP/Keck polarization
data, which results in a considerably stronger constraint on
the parameter space than that provided by Planck alone. Of
particular note, our constraint rules out power-law inflation,
with V (φ) ∝ eφ/μ, even in the presence of dark radiation,
which is allowed by the constraints of Tram et al. Reference

[45] reaches a similar conclusion based on constraints from
Planck on σ8 and the reionization optical depth τreio.

4 Conclusions

In this letter, we argued that, when lepton number asymme-
tries of neutrinos in flavor basis are mixed among themselves
due to neutrino oscillation in the early universe before BBN,
the eventual asymmetries after reaching the final equilibrium
of flavor mixings are well described in the basis of mass
eigenstates, which are related to flavor eigenstates by the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. That
is, the matrices of lepton number asymmetries in mass and
flavor basis (Lm and Lf , respectively) are related as

Lm = U−1
PMNSLfUPMNS, (13)

where UPMNS is the PMNS matrix, and Lm appears to be
diagonal. We demonstrated this argument by a numerical
simulation, and we showed analytically that the asymmetries
of mass eigenstates can be even larger than those of flavor
eigenstates.

Conventionally, the constraint on the lepton number asym-
metries of neutrino flavors has been associated with neu-
trino flavor eigenstates, counting their contributions to the
extra radiation energy density �Neff . However, our find-
ing showed that, when neutrino flavor eigenstates have
large lepton number asymmetries at temperatures well above
O(10)MeV, neutrino flavor mixings cause not only re-
distribution of asymmetries among flavor eigenstates but
also sizable amounts of asymmetries of flavor-mixed states.
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Hence, an appropriate estimation of �Neff should take into
account the contributions from flavor-mixed states too. Such
an estimation can be performed in either a flavor basis or
a mass basis, but the mass basis provides a simpler way
since the asymmetries are diagonal in the basis. The result-
ing �Neff can be larger than the one estimated with flavor
eigenstates only. This implies that the constraint on the lepton
number asymmetries of neutrino flavor eigenstates becomes
stronger than conventional expectation (or the asymmetries
of neutrino flavor eigenstates are more constrained than those
of mass eigenstates).

As shown in Ref. [6] and in this work, in principle �Neff

can be of O(0.1–1) just from asymmetric neutrinos without
resorting to an unknown “dark radiation”. Such a large �Neff

has been considered in the literature as a possible solution to
the discrepancy of the measured expansion rate H0 in CMB
and SNIa data. In analyses of cosmological data, typically, if
�Neff is from asymmetric neutrinos, the neutrino degener-
acy parameters have been taken in an arbitrary way without
distinguishing mass and flavor eigenstates, although implic-
itly the lepton number asymmetry (Le) of electron-neutrinos
must be assumed to be small to satisfy BBN constraint. We
showed that this approach is inconsistent unless the lepton
number asymmetries (Li ) of mass eigenstates which are rel-
evant for CMB data for example are constrained to satisfy

Le = c2
12L1 + s2

12L2 + t2
13L3 ≈ 0, (14)

for |Le| ≪ |Li |. Also, analyzing cosmological data (CMB
only or CMB + SNIa), we found that CMB data alone show no
evidence for non-zero neutrino lepton number asymmetries,
with 95% CL upper bound of |ξ | ≤ 0.77 at 95% CL as the
degeneracy parameter of the dominant mass eigenstate. For
combined CMB and SNIa data, there is weak evidence for
non-zero lepton number asymmetries, with |ξ | = 0.63 ±
0.27 at 68% CL, but the fit becomes worse relative to the
case of CMB data alone. So, even if large lepton number
asymmetries may fit the data, it does not look preferred.

As the final remark, because of the degeneracy of Lm

for a given �Neff , the bound on �Neff cannot be uniquely
interpreted in terms of the asymmetries of neutrino flavors
(specifically Lμ and Lτ of muon- and tau-neutrinos), unless
the impact on small scale power spectrum is sensitive enough
to distinguish at least the contribution of the heaviest neutri-
nos.
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