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Abstract We present a self-consistent calculation of the
four-gluon vertex of Landau gauge Yang–Mills theory from a
truncated Dyson–Schwinger equation. The equation contains
the leading diagrams in the ultraviolet and is solved using as
the only input results for lower Green functions from previ-
ous Dyson–Schwinger calculations that are in good agree-
ment with lattice data. All quantities are therefore fixed and
no higher Green functions enter within this truncation. Our
self-consistent solution resolves the full momentum depen-
dence of the vertex but is limited to the tree-level tensor struc-
ture at the moment. Calculations of selected dressing func-
tions for other tensor structures from this solution are used
to exemplify that they are suppressed compared to the tree-
level structure except for possible logarithmic enhancements
in the deep infrared. Our results furthermore allow one to
extract a qualitative fit for the vertex and a running coupling.

1 Introduction

The non-perturbative analysis of quantum field theories
is one of the great challenges in physics. One particular
approach is to use functional equations for Green functions
which are the basic building blocks of a quantum field the-
ory. In quantum chromodynamics (QCD) they can be used as
input for hadron phenomenology and strong-interaction mat-
ter studies; see, e.g., [1–11], but they also allow direct conclu-
sions on non-perturbative aspects like confinement [12–14]
or dynamical mass generation; see, e.g., [1,2,6] and the ref-
erences therein.

The main challenge for functional methods is the neces-
sity to truncate the originally infinite hierarchy of functional
equations for Green functions and to quantify the resulting
uncertainties. The most straightforward way to assess the
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quality of a particular truncation by going beyond it in a sys-
tematic way as provided, e.g., by derivative or vertex expan-
sions is often rather difficult. Hence alternative possibilities
for tests are welcome and widely used, such as comparisons
with results from lattice simulations where they are available.

In this paper we focus on Yang–Mills theory in the Landau
gauge. The good understanding of this particular covariant
gauge that was established in the past provides the basis for
many of the more phenomenological investigations of QCD.
The Landau gauge propagators have been well studied with
various methods, e.g., lattice simulations [15–20], Dyson–
Schwinger equations (DSEs) [21–37], the functional renor-
malization group (FRG) [32,38], a variational approach [39],
a one-loop model calculation with gluon mass term [40], or
the (refined) Gribov–Zwanziger framework [41–46]. Also
three-point functions are by now better understood [47–58]
and their equations of motion can be solved self-consistently
[53,57,58]. The qualitative behavior of propagators and ver-
tices is well captured by standard truncations of functional
equations, but their quantitative reliability still needs to be
tested and improved. Based on our most recent results for the
complete set of two- and three-point functions [57], however,
there is quite compelling evidence to expect that the system
of DSEs truncated to the primitively divergent Green func-
tions might yield a rather good approximation that does not
rely on any further external input. The two pieces missing to
confirm this are the four-gluon vertex, which was the only
remaining model input in such calculations [57,58], and the
two-loop diagrams in the gluon propagator DSE (of which
one also contains the four-gluon vertex). Few direct calcula-
tions of the latter exist [59–61], but for the four-gluon vertex
information is even more scarce. Here we provide further
information from calculating the four-gluon vertex within
a state-of-the-art truncation that takes into account its full
momentum dependence. An interesting additional feature of
this truncation for the four-gluon vertex DSE is that for the
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first time no model input is required here, since only prim-
itively divergent lower n-point Green functions enter at this
level which are all known sufficiently well.

So far, little non-perturbative information on the four-
gluon vertex is available to compare with, unfortunately.
Even for the three-gluon vertex, available lattice results are
limited to very restricted kinematical regions [48]. Due to the
existence of six kinematic variables in the four-gluon vertex
(as compared to three for three-point functions) the situa-
tion is even much more difficult here. Thus, even if lattice
data for the four-gluon vertex will become available in the
future, a kinematically reasonably complete coverage will
likely remain impossible for some time to come. A contin-
uum method has a clear advantage in this respect, although
the resolution of the full kinematic dependence is certainly a
challenge here as well. Perturbative results at the symmetric
point were presented in Refs. [62,63]. Studies beyond pertur-
bation theory can be found in Refs. [64–66]. In Ref. [65] the
box diagrams were studied in a certain momentum configu-
ration which we will refer to as configuration A below. As
input non-perturbative propagators from the so-called scal-
ing type were used [21,22,27]. In Ref. [66] this was extended
to include all UV leading one-loop diagrams and propagators
of the decoupling type were used as input [67].

In this work we go beyond these previous studies in sev-
eral ways. First of all, we take into account the full momen-
tum dependence. This is useful when our results are used as
input in future calculations, because they provide a guideline
to develop approximations that still capture the main fea-
tures but are easier to handle than the full results. The full
momentum dependence is also required to solve the equa-
tion self-consistently so that we can study the back coupling
effects for the vertex. Finally, we use for the first time non-
perturbative input for the three-gluon vertex that is in good
agreement with lattice data.

In Sect. 2 we fix our notations and present a self-contained
derivation of the four-gluon vertex DSE. This section also
contains information on the truncation, the tensor basis, the
kinematics and the renormalization. The input we employ is
described in Sect. 3 and our results are presented in Sect. 4.
We conclude in Sect. 5. Some technical details as regards
color contractions, tensor bases, and the numerical calcula-
tions to solve the four-gluon vertex DSE can be found in the
appendices.

2 The four-gluon vertex DSE

2.1 Derivation of the four-gluon vertex DSE

The Lagrangian density of Yang–Mills theory, fixed to the
linear covariant gauge, is

Leff
YM = LG + LGF + LFP, (1)

LG = 1

4
Fa

μνF
a
μν, (2)

LGF = 1

2ξ
(∂μA

a
μ)2, (3)

LFP = −i(∂μc̄
a)Dab

μ cb, (4)

where A is the gluon field and (c̄) c is the (anti-)ghost field.
The gauge fixing parameter is denoted by ξ . For the Landau
gauge it will be set to 0 later. The field strength tensor Fa

μν

and the covariant derivative Dab
μ are given by

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ − g f abc Ab

μA
c
ν, (5)

Dab
μ =

(
δab∂μ + g f abc Ac

μ

)
. (6)

From the Lagrangian density the path integral is defined as

Z [J, σ, σ̄ ]
=

∫
D[Acc̄] exp

{
−

∫
d4x Leff

YM

+
∫

d4x
(
Aa

μ J
a
μ + σ̄ aca + c̄aσ a) }

, (7)

where J , σ , and σ̄ are the sources for the gluon and ghost
fields. For the derivation of Dyson–Schwinger equations the
one-particle irreducible (1PI) action will be used, which is
obtained from the path integral via a Legendre transforma-
tion:

�[�] = − ln Z [J ] + �i Ji . (8)

Here Ji represents the sources J , σ and σ̄ and � ∈
{Acl, ccl, c̄cl} denotes the classical fields determined by

Acl = δ ln Z [J ]
δ J

, ccl = δ ln Z [J ]
δσ̄

, c̄cl = δ ln Z [J ]
δσ

. (9)

In the following we will drop the subscript cl again. For
convenience we use a multi index for the fields and sources
that includes field species, Lorentz and color indices, and
position (or alternatively momenta). Consequently, repeated
indices entail summation over the discrete and integra-
tion over the continuous variables. For example, �i Ji =∫

d4x(Aa
μ(x)Jaμ(x) + σ̄ a(x)ca(x) + c̄a(x)σ a(x)).

The derivation of Dyson–Schwinger equations requires
the existence of a well-defined generating functional.
Although we use its path integral representation, this is not
necessary and other possibilities exist; see, e.g., [68]. Before
we derive the master equation, we change to renormalized
quantities by introducing the standard renormalization con-
stants for the gluon field (Z3), the ghost field (Z̃3), the three-
gluon vertex (Z1), the ghost–gluon vertex (Z̃1), the four-
gluon vertex (Z4), the gauge fixing parameter (Z6), and the
coupling (Zg) [68]. Due to gauge invariance, these renormal-
ization constants are related. For now we add a superscript R
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to all renormalized quantities. The renormalized fields φR are
connected to the bare ones by φ = Z1/2

φ φR and the renor-

malized coupling gR to the bare one by g = ZggR. The
action in terms of renormalized fields is denoted by S[φR].
We start with the integral over the derivative of the path inte-
gral which—assuming no boundary terms exist—must van-
ish, viz.
∫

D[φR] δ

δφR
j

exp
(
−S[φR] + φR

i J
R
i

)
= 0, (10)

where S[φR] = ∫
dxLR,eff

YM is the gauge-fixed, renormalized
action and φR ∈ {AR, cR, c̄R}. The sources were rescaled
such that they correspond to the sources of the renormalized
fields, JR

i = Z1/2
φ Ji . Equation (10) can be rewritten to

⎛
⎝− δS[φR]

δφR
j

∣∣∣∣
φR
j =δ/δ JR

j

+ JR
j

⎞
⎠

∫
D[φR] exp

(−S[φR] + φR
i J

R
i

)

=
⎛
⎝− δS[φR]

δφR
j

∣∣∣∣
φR
j =δ/δ JR

j

+ JR
j

⎞
⎠ Z [JR] = 0. (11)

With Eq. (8) this can be reformulated to the master equation
for the DSEs of one-particle irreducible (1PI) Green func-
tions; see, e.g., [1,69,70]:

δ�[�R]
δ�R

j

= δS[φR]
δφR

j

∣∣∣∣∣
φR
j =�R

j +DR,J
ji δ/δ�R

i

. (12)

This equation relates a derivative of the renormalized action
S[φR] to a derivative of the renormalized effective action
�[�R]. Consequently, in addition to renormalized quantities
also the renormalization constants appear. However, they are
needed to guarantee a consistent renormalization and guar-
antee the disappearance of the perturbative UV divergences
in the equations. Any truncation applied to the equations
must not interfere with that. The renormalization scheme
used here, discussed in Sect. 2.6, fulfills this property.

The meaning of Eq. (12) is that one should differentiate
the action S[φR] with respect to a field φR

i and then replace
every field φR

i by the classical field �R
i plus a functional

derivative multiplied by DR,J
ji . The Dyson–Schwinger equa-

tions (DSEs) resulting from this procedure can conveniently
be represented by Feynman diagrams. DR,J

ji is the second
derivative given by

DR,J
ji = δ2 ln Z [J ]

δ JR
j δ JR

i

. (13)

If we set the sources to zero, this becomes the propagator
DR,J=0

j i . In our case we have the ghost and the gluon propa-
gators,

DR,ab(p) = −G(p2)

p2 δab, (14)

DR,ab
μν (p) = PT

μν(p)
Z(p2)

p2 δab, (15)

where PT is the transverse projector, PT
μν(p) = δμν −

pμ pν/p2.
From the master equation (12) the DSE for any n-point

function can be derived by n − 1 field derivatives and subse-
quently setting the sources to zero. For n = 2 one obtains the
DSEs of the inverse propagators and for n > 2 the equations
for the vertices which we define as1

�R
i1...in = − δn�[�R]

δ�R
i1

. . . δ�R
in

∣∣∣∣
�=0

. (16)

As a characteristic feature every diagram in a DSE contains
a bare vertex, which entails restrictions on the set of possible
diagrams. Due to the self-interaction of the gluons via the
three- and the four-gluon vertices, the DSE of the four-gluon
vertex is the four-point function with most terms, namely 60
terms of which there are 20 one-loop and 39 two-loop dia-
grams. In particular the tensorial structure of the four-gluon
vertex is, because of its four color and four Lorentz indices,
considerably more complicated than those of the pure ghost
or the ghost–gluon four-point functions. So, in principle, the
derivation of its DSE is straightforward but tedious, and we
used the Mathematica package DoFun [71,72] for this task.

Before we turn to the details of the four-gluon vertex DSE,
we drop the superscript R again. In the following, all quan-
tities are renormalized.

With the truncation discussed in Sect. 2.2, the DSE for the
four-gluon vertex �abcd

μνρσ (p, q, r, s) is schematically written
as

�abcd
μνρσ (p, q, r, s)

= �(0),abcd
μνρσ + �abcd

μνρσ (p, q, r, s) + �acdb
μρσν(p, r, s, q)

+ �adbc
μσνρ(p, s, q, r) + · · · , (17)

where we used the fact that all one-loop diagrams appear in
three permuted versions. Suppressing momentum arguments,
the sum of all unpermuted one-loop diagrams, denoted by
�abcd

μνρσ in Eq. (17), is (see also Fig. 1)

�abcd
μνρσ

=
∫

dk4

(2π)4

(
1

2
SF�abcd

μνρσ + DT�abcd
μνρσ

+ GlB�abcd
μνρσ − 2 GhB�abcd

μνρσ + ST�abcd
μνρσ

)
. (18)

1 The advantage of this choice of signs is that the signs of all diagrams
are the same except for minus signs from Grassmann loops. However,
it is completely arbitrary.
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Fig. 1 The truncated four-gluon vertex DSE. We use the follow-
ing shorthand notation: {i, j, k} represents three diagrams where the
indices at the first, second and third positions are chosen. We call the
second and the third diagram on the right-hand side swordfish (SF) and
dynamic triangle (DT), respectively. The diagrams in the second line

are named gluon box (GlB), ghost box (GhB) and static triangle (ST)
(from left to right). Further, we call the swordfish and the dynamic tri-
angle the dynamic diagrams since they depend on the four-gluon vertex.
Accordingly, we call the diagrams of the second line static diagrams.
Feynman diagrams were created with JaxoDraw [73]

The subscripts denote the names of the diagrams as explained
in Fig. 1. The five individual i�abcd

μνρσ are called primitive dia-
grams from which other diagrams are constructed by permu-
tation. They are given by

SF�abcd
μνρσ = Z4 �

(0),b′′aba′
β ′′μνα′ Da′a′′

α′α′′ �a′′cdb′
α′′ρσβ ′ Db′b′′

β ′β ′′ , (19a)

DT�abcd
μνρσ = Z1 �

(0),c′′aa′
γ ′′μα′

Da′a′′
α′α′′ �a′′bb′

α′′νβ ′ Db′b′′
β ′β ′′ �b′′cdc′

β ′′ρσγ ′ Dc′c′′
γ ′γ ′′ , (19b)

GlB�abcd
μνρσ = Z1 �

(0),d ′′aa′
δ′′μα′

Da′a′′
α′α′′ �a′′bb′

α′′νβ ′ Db′b′′
β ′β ′′ �b′′cc′

β ′′ργ ′ Dc′c′′
γ ′γ ′′ �c′′dd ′

γ ′′σδ′ Dd ′d ′′
δ′δ′′ , (19c)

GhB�abcd
μνρσ = Z̃1 �(0),ad ′′a′

μ

Da′a′′
�ba′′b′

ν Db′b′′
�cb′′c′

ρ Dc′c′′
�dc′′d ′

σ Dd ′d ′′
, (19d)

ST�abcd
μνρσ = Z4 �

(0),c′′aba′
γ ′′μνα′

Da′a′′
α′α′′ �a′′cb′

α′′ρβ ′ Db′b′′
β ′β ′′ �b′′dc′

β ′′σγ ′ Dc′c′′
γ ′γ ′′ . (19e)

Purely gluonic vertices are denoted by � with the cor-
responding number of Lorentz and color indices, while the
ghost–gluon vertex has only one Lorentz index which is asso-
ciated to the first color index. Here the renormalization con-
stants Z1, Z̃1, and Z4 of the three-gluon, the ghost–gluon and
the four-gluon vertices appear.

2.2 Asymptotic behavior and truncation

Our truncation scheme consists of two parts: As usual, we
discard several diagrams based on their asymptotic behavior.
As it happens, all remaining Green functions required for the
calculation are already known and we need no model input.

However, we further simplify the system by a restriction of
the color and Lorentz bases for the four-gluon vertex. The
latter aspect of the truncation is discussed in Sect. 2.3.

For the diagrammatic truncation of the four-gluon ver-
tex DSE we follow the same arguments as employed for the
three-gluon vertex [57,58]. The main guidelines are the cor-
rect IR behavior and the inclusion of all diagrams contribut-
ing at one-loop order in the UV. Thus we retain only one-
loop diagrams with primitively divergent Green functions.
The presence of only one-loop diagrams means also that we
do not have to deal with overlapping divergences since there
are no sub-diagrams that have internal lines in common. To
be precise, there are 20 one-loop diagrams. From them we
discard one with a ghost–gluon five-point function, one with
a gluonic five-point function, and three ghost triangles with a
ghost–gluon four-point function leaving the 15 diagrams rep-
resenting the �’s in Eqs. (17) and (18), which are depicted
in Fig. 1. The neglected one-loop diagrams do not contribute
to the leading UV order, since they contain non-primitively
divergent Green functions. However, they could contribute
to the low- and mid-momentum behavior. For now, we adopt
it as a working hypothesis that their contributions are smaller
than those of the considered diagrams. This is motivated
by the observation that, based on a comparison with lattice
results, this is true for the three-gluon vertex [57]. Includ-
ing such diagrams would require the inclusion of additional
DSEs, which is beyond the scope of the present work.

For the discussion of the IR behavior of the vertex we
have to elaborate shortly on the IR behavior of Landau gauge
Yang–Mills theory in general. It is well known that the system
of propagators allows two different types of solutions [29,31,
32]. One is called decoupling solution and actually consists
of a family of solutions that have all in common that the ghost
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dressing function G(p2) and the gluon propagator Z(p2)/p2

become constant in the IR:

G(p2) → c,
Z(p2)

p2 → m2
gl, for p2 → 0. (20)

This solution is, besides by the DSE approach [29–32,36],
also found by many other methods like lattice calculations,
e.g., [15–20], with the functional renormalization group [32],
within the refined Gribov–Zwanziger framework [44–46],
with an effective model [40] or in a variational approach
[39]. From the functional perspective the different solutions
are distinguished by the boundary condition imposed for the
ghost propagator DSE [32]. As a limiting case also the solu-
tion c → ∞ exists. This is called the scaling solution and
characterized by a power law behavior of all Green functions
[21,33,74]. The propagator dressing functions can be written
as

G(p2) = cgh(p
2)δgh , Z(p2) = cgl(p

2)δgl . (21)

The exponents δgh and δgl are related by 2δgh + δgl = 0.
Typically they are given in terms of κ := −δgh. Its value can
be calculated analytically as κ = (93 − √

1201)/98 ≈ 0.6
[24,25]. This value can only change if the ghost–gluon vertex
is not regular in the IR, viz. if its IR limit depends on the angle
between two momenta [25,75]. Within modern truncations
for the ghost–gluon vertex no such dependence was seen [53].

A very convenient feature of the scaling solution is that
the qualitative behavior of all Green functions can be derived
without truncations by combining the two systems of func-
tional equations given by the functional renormalization
group (FRG) and the DSEs [33]. For a vertex with 2n ghost
and m gluon legs the dressing functions behave qualitatively
as (p2)(n−m)κ where p is an IR momentum scale [33,74].
Consequently we expect that for this type of solution the
four-gluon vertex behaves as (p2)−4κ . This behavior is exhib-
ited by all diagrams with a bare ghost–gluon vertex. Within
our truncation these are the ghost boxes. However, other
diagrams with ghost–ghost–gluon–gluon or ghost–ghost–
gluon–gluon–gluon functions exist that have by power count-
ing the same IR behavior but are discarded here. In fact, all
diagrams can be classified in terms of their scaling behavior
as determined by the bare vertex [76].

For the decoupling type of solution such a straightforward
classification is not possible. From the three-gluon vertex it
is known that it diverges logarithmically in the IR [54,56–58]
and it was conjectured that this is also true for the four-gluon
vertex [56]. For both quantities these divergences stem from
the ghost loops. We will come back to this point in Sect. 4.

2.3 Tensor basis

The four-gluon vertex is undoubtedly the most complicated
primitively divergent Green function of Landau gauge Yang–

Mills theory. With four color indices it possesses a non-trivial
color structure and the four Lorentz indices allow a multitude
of Lorentz tensors. We start with a discussion of the former.

As specified in Sect. 3, we use only the totally anti-
symmetric structure constant f abc for the three-point func-
tions. To our knowledge no proof exists that the totally sym-
metric color part is non-zero in three-point functions. Thus
we neglect the totally symmetric dabc from the beginning,
but note that the color tensors we use can partly also be
expressed via the d symbols. The building blocks are then the
Kronecker delta δab and the totally anti-symmetric structure
constant f abc. The basis constructed from them is

Cabcd
1 = δabδcd , Cabcd

2 = δacδbd , Cabcd
3 = δadδbc,

Cabcd
4 = f abn

′
f cdn

′
Cabcd

5 = f acn
′
f dbn

′
. (22)

Another possible tensor,Cabcd
6 = f adn

′
f bcn

′
, is not included

since it can be expressed via the Jacobi identity as Cabcd
6 =

−Cabcd
4 − Cabcd

5 . Furthermore, contractions of more anti-
symmetric structure constants can be reduced to this set. In
particular, in the four-gluon vertex DSE terms of the form

Cabcd
7 = f a

′ab′
f b

′bc′
f c

′cd ′
f d

′da′
(23)

appear. For SU (3) it reduces to

Cabcd
7 = 3

4

(
Cabcd

1 + Cabcd
2 + Cabcd

3

)
− Cabcd

4 − 1

2
Cabcd

5

(24)

and for SU (2) to

Cabcd
7 = Cabcd

1 + Cabcd
3 . (25)

For SU (N ) with N > 3 the tensor Cabcd
7 is linearly inde-

pendent and must be considered as well. This is shown in
Appendix A.

The Lorentz space is even more complicated than the color
space. If one constructs all possible Lorentz tensors from the
metric tensor δμν and the three independent momenta, one
arrives at 138 tensors. They can be split into the following
classes:

3 dimensionless tensors:

δμνδρσ , δμρδνσ and δμσ δνρ

54 tensors of dim. 2:

δμν p
1
ρ p

2
σ , δρσ p

1
μ p

2
ν , δμρ p

1
ν p

2
σ , δνσ p

1
μ p

2
ρ , δμσ p

1
ν p

2
ρ ,

δνρ p
1
μ p

2
σ , pi ∈ {p, q, r}

81 tensors of dim. 4:

p1
μ p

2
ν p

3
ρ p

4
σ , pi ∈ {p, q, r}

However, from considerations along the lines of Refs.
[58,77,78], it turns out that there are only 136 independent
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tensors [79]. In Landau gauge the completely transverse sub-
space is sufficient, which still contains 43 linearly indepen-
dent tensors [64].

For a first study of the vertex within our truncation the
full transverse basis is still by far too large. Thus we restrict
ourselves here to the tree-level structure of the four-gluon
vertex, which is given by

�(0),abcd
μνρσ (p, q, r, s)

= −g2
[ (

f acn
′
f bdn

′ − f adn
′
f cbn

′)
δμνδρσ

+
(
f abn

′
f cdn

′ − f adn
′
f bcn

′)
δμρδνσ

+
(
f acn

′
f dbn

′ − f abn
′
f cdn

′)
δμσ δρν

]
, (26)

and we replace all full four-gluon vertices by

�abcd
μνρσ (p, q, r, s) = �(0),abcd

μνρσ D4g(p, q, r, s). (27)

The non-perturbative information is contained in the dress-
ing function D4g(p, q, r, s). This approximation of the full
vertex is motivated by two things: First, this strategy worked
very well for the three-gluon vertex, where it was explicitly
shown that other dressing functions are severely suppressed
[58]. Second, as we will show in Sect. 4 by considering also
additional dressings, it turns out a posteriori that the dressing
of the tree-level tensor provides the largest contribution of all
calculated dressings. Thus we expect this to be a good first
approximation of the full vertex, while a calculation with the
full tensor basis is left to future studies.

2.4 Bose symmetry

A truncated DSE in general does no longer reflect all the
symmetries of the full equation. For gluonic Green functions
the Bose symmetry is of special importance. If we simply
went ahead and calculated the truncated DSE Eq. (17), the
results would not be symmetric under the exchange of the
leg attached to the bare vertices and another one. This would
entail that the results depend on the way the four-gluon vertex
is fed back into the DSE. Thus it is necessary to symmetrize
the results. We want to stress that this effect comes from using
dressed vertices in our setup and would be absent if all ver-
tices were bare. The straightforward way for symmetrization
is to average over the four DSEs with different momenta at
the legs attached to the bare vertices. Within our truncation
this corresponds to calculating all possible permutations of
the primitive diagrams. The actual number of diagrams can
be reduced using inherent symmetries of the equation. Nev-
ertheless, this would lead to an increase in complexity and
computing time, which we will avoid as explained below.

First of all, we consider how to extract the dressing func-
tion D4g(p, q, r, s) from the DSE given in Eq. (17). For this

the following projection is employed that explicitly gets rid of
all longitudinal parts (momentum arguments are suppressed
on the right-hand side):

L(p, q, r, s) := �abcd
μνρσ PT

μμ′ PT
νν′ PT

ρρ′ PT
σσ ′ �

(0),abcd
μ′ν′ρ′σ ′

�
(0),e f gh
αβγ δ PT

αα′ PT
ββ ′ PT

γ γ ′ PT
δδ′ �

(0),e f gh
α′β ′γ ′δ′

.

(28)

Note that �adbc
μσνρ does not represent the sum of all one-loop

terms of the four-gluon vertex DSE but appears in three per-
muted versions in the DSE; see Eq. (17). From Eq. (28) one
can obtain the symmetrized, transversely projected tree-level
dressing function by

D4g(p, q, r, s)

= Z4 + 1

4

[
L(p, q, r, s) + L(q, r, s, p)

+ L(r, s, p, q) + L(s, p, q, r)

+ L(p, r, s, q) + L(q, s, p, r)

+ L(r, p, q, s) + L(s, q, r, p)

+ L(p, s, q, r) + L(q, p, r, s)

+ L(r, q, s, p) + L(s, r, p, q)
]
. (29)

Equation (29) is obtained from Eq. (17) by projecting it
onto the transverse tree-level structure and symmetrizing it.
Naively, one would expect 4! = 24 terms. However, this
number reduces to 12 since some diagrams turn out to be
identical. The reasons are the Bose symmetry of the four-
gluon vertex itself and the irrelevance of the direction of the
loop momentum; see Fig. 1.

To reduce the computational effort we did not calcu-
late all L explicitly. Rather, we computed the normalized
one-loop expression, given by Eq. (28), and from that the
dressing function with Eq. (29). In other words, calculat-
ing L(p, q, r, s) with full momentum dependence gives us
access to all other variants of L appearing in Eq. (29) so
that D4g(p, q, r, s) can be computed from the calculation
of only one L .

We explicitly tested what happens when no symmetriza-
tion is employed and found that there is a considerable impact
on the results. Furthermore, we want to mention that no trans-
verse projection was employed in Ref. [65]. Thus our results
for the ghost and gluon boxes cannot directly be compared to
theirs. Unfortunately, the transverse projection also increases
the complexity of the four-gluon DSE significantly, by about
an order of magnitude.

2.5 Kinematics

Another new aspect of our investigation is that we take into
account the full momentum dependence of the vertex. This
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Table 1 Definitions of the kinematic configurations A, B, and C used in plots

Configuration CBA

Definition
S2 = R2 = Q2 = p2

θr = θq = ψq = 0

S2 = R2 = Q2 = p2

θr = θq = ψq = π
2

S2 = R2 = p2, Q2 = 2p2

θr = π
2 , θq = π

4 , ψq = 0

Visualization

s r q

q

r

s

s

r

q

The dashed lines represent the fourth momentum vector given by momentum conservation

is due to the large number of kinematic invariants a consider-
ably complex task. The vertex depends on three independent
momenta, say, s, r , and q, from which six kinematic invari-
ants can be formed, e.g., s2, r2, q2, s · r , s · q, and r · q.
However, this choice has the disadvantage that the domains
of the latter three are not independent. Hence, we directly
use spherical coordinates to describe the three momenta at
the cost of having some sets of coordinates that describe the
same momentum vectors.2 Exploiting the O(4) symmetry
we define

s = S

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , r = R

⎛
⎜⎜⎝

cos(θr )
sin(θr )

0
0

⎞
⎟⎟⎠ ,

q = Q

⎛
⎜⎜⎝

cos(θq)
sin(θq) cos(ψq)

sin(θq) sin(ψq)

0

⎞
⎟⎟⎠ , (30)

where S, R, Q ∈ R
+ and θr , θq , ψq ∈ [0, π ] . From

Eq. (30) it is easy to see that the domain of q · r is not
[−QR, QR] but depends on the other angles. For example,
for θr = π/2 we have q · r = QR sin(θq) cos(ψq). This
in general cannot be rewritten into a form QR cos(αr ) with
αr ∈ [0, π ]. As a second example consider θr = 0. Then
q · r = QR cos(θq), but θq is already the free angle from
s · q. Thus we prefer to work with the angle ψq instead of
r · q.

The dressing function itself is defined on a six-dimensional
grid of the variables s2, r2, q2, θr , θq , and ψq . Typically we
use 15 points for the radial and 7 points for the angular vari-
ables. When we have a converged solution also points on a
finer grid are calculated.

2 E.g., the vectors defined in Eq. (30) do not depend on ψq if θq = 0.

Table 2 Renormalization constants and cutoffs for the used decoupling
[53] and scaling input [81]

Z3 Z̃3 Z1 Z4 �2(GeV2)

Decoupling 4.528 1.714 2.642 1.541 48530

Scaling 3.930 1.552 2.532 1.632 18814

For visualization of our results we have to fix some vari-
ables. In Table 1 three kinematic configurations are shown,
which will be used later. Configuration A is the one also used
in Refs. [65,66].

2.6 Renormalization

The integrals of the four-gluon vertex DSE are logarithmi-
cally divergent. However, since we are using input that was
obtained within the MiniMOM scheme [21,80], we are not
free to subtract these divergences via a momentum subtrac-
tion. Within that scheme the renormalization constant of the
ghost–gluon vertex Z̃1 is fixed to 1 for the Landau gauge.
The ghost and gluon propagators, on the other hand, were
obtained from a self-consistent calculation which also entails
certain values for their renormalization constants Z̃3 and Z3,
respectively. The Slavnov–Taylor identities (STIs) then fix
the renormalization constants of the three- and four-gluon
vertices as

Z1 = Z̃1Z3/Z̃3 = Z3/Z̃3, (31)

Z4 = Z̃2
1 Z3/Z̃

2
3 = Z3/Z̃

2
3 . (32)

The corresponding values can be found in Table 2.
We use the given value for Z4 in the tree-level expression

of the vertex. However, the renormalization constants in front
of the integrals in Eq. (19) are treated differently. Motivated
by the gluon propagator equation, where this is necessary
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to obtain the correct anomalous dimension, we replace the
renormalization constants Z1 and Z4 by momentum depen-
dent functions [22,53]. The purpose of these functions is
to effectively add a UV dressing to the bare vertices which
brings the equation in line with the renormalization group
(RG). The main requirement for these functions is to pos-
sess the correct UV behavior. This can be achieved by the
following ansatz in case of Z4:

Z4 → D4g
RG(p, q, r, s) = G

(
p̄2

)α4g
Z

(
p̄2

)β4g
(33)

where the momentum p̄ is defined as p̄2 = (p2 + q2 +
r2 + s2)/2. The factor 2 appears, because in the integral
p̄ approaches for high loop momenta the loop momentum
itself. The exponents α4g and β4g are determined from the
anomalous dimensions of the ghost propagator (δ = −9/44),
the gluon propagator (γ = −13/22) and the four-gluon
vertex (γ4g = 2δ − γ = 2/11) from the requirement
α4gδ + β4gγ = γ4g . As a second condition serves the IR

finiteness of D4g
RG(p, q, r, s) [53]. Solving for the exponents

yields

α4g = −2 − 8δ, β4g = −1 − 4δ (scaling); (34a)

α4g = 4 + 1/δ, β4g = 0 (decoupling). (34b)

For Z1 the replacement is given by [53]

Z1 → D3g
RG(p, q, r) = G

(
p̄2

)α3g
Z

(
p̄2

)β3g
(35)

where p̄2 is (p2 + q2 + r2)/2 and

α3g = −2 − 6δ, β3g = −1 − 3δ, (scaling); (36a)

α3g = 3 + 1/δ, β3g = 0, (decoupling). (36b)

3 Input

The four-gluon vertex DSE is calculated with input from
other calculations whose results are in good agreement with
lattice data. However, this was achieved by the dependence
of the corresponding calculations on higher Green functions
which were modeled based on the existing information from
several sources. One important feature of our input is that
we consider all important tensor structures. For the propa-
gators and the ghost–gluon vertex this is trivially satisfied,
because they each possess only one relevant tensor structure
in the Landau gauge. For the three-gluon vertex there are
four transverse tensors. However, we consider here only the
one derived from the tree-level tensor, as it was shown in
Ref. [58] that the other three are severely suppressed in all
momentum regimes.

The propagators we use for the decoupling case stem from
Ref. [53], where the ghost–gluon vertex was dynamically

included and an optimized effective three-gluon vertex was
used. The results for the propagators, obtained for α(μ) =
g2/4π = 1, are shown in Fig. 2. Although the ghost–gluon
vertex was also calculated there, we employ the bare vertex
here. The reason is that it enters only in a static diagram.
From the three-gluon vertex, where this is also the case, we
know that the influence on the results is minor. We illustrate
in Fig. 4 that this also holds true for the four-gluon vertex. On
the other hand, for the propagators this is different and the
mid-momentum regime of the gluon propagator is affected
by this choice [83]. For scaling we use as input data obtained
along the lines of [81]. The corresponding dressing functions
are shown in Fig. 2.

The ghost–gluon vertex is described completely by one
dressing function alone due to the transversality of the Lan-
dau gauge:

�abc
μ (k; p, q) := i g f abc PT

μν(k)pνD
Ac̄c(k; p, q). (37)

The gluon momentum is denoted by k and the (anti-) ghost
momentum by (q) p and PT

μν(k) is the transverse projector.
Except where mentioned in Sect. 4.1 we use DAc̄c(k; p, q) =
1. We note that there is also a longitudinal dressing func-
tion for the ghost–gluon vertex which is constrained by the
Slavnov–Taylor identities. However, it decouples from the
transverse part, as discussed in detail in Ref. [32], and it is
not required here.

The three-gluon vertex has four transverse tensors, but
here we consider only the tree-level tensor and denote the
full three-gluon vertex by

�abc
μνρ(p, q, k) = �(0),abc

μνρ (p, q, k)D3g(p, q, k), (38)

where the tree-level tensor is given by

�(0),abc
μνρ (p, q, r)

= −ig f abc
[
(p − q)ρδμν +(q − r)μδνρ +(r − p)νδμρ

]
.

(39)

The dressing function D3g(p, q, k) contains the non-
perturbative information. Note that the restriction to the tree-
level tensor is a very good approximation as demonstrated
by an explicit calculation of the other dressing functions [58]
which were found to be very small. For the longitudinal part
the same argument applies as for the ghost–gluon vertex and
we do not consider it here.

The data we use for the decoupling three-gluon vertex
was calculated in Ref. [57] with the propagators discussed
before. Again, good agreement with lattice results was found
as shown in Fig. 3. For that calculation a model for the four-
gluon vertex was required; see Eq. (40) below. However, we
want to emphasize that coupling this vertex back into the
gluon propagator reduces the agreement with lattice results
again. Thus we expect that two-loop diagrams are important
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Fig. 2 Propagator dressing functions for decoupling (solid line) [53] and scaling (dashed line) [81] in comparison to lattice data [82] with β = 6
and lattice sizes of L = 32 (green) and L = 48 (red)
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Fig. 3 Three-gluon vertex dressing function from Ref. [57] (decou-
pling) and calculated with the scaling solution propagators obtained
along the lines of Ref. [81] in comparison with lattice data [48] where

different colors/symbols refer to different values of β ∈ {2.2, 2.5} and
different lattice sizes 1.4 fm < L < 4.7 fm. The solid lines correspond
to the decoupling and the dashed lines to the scaling solution

in the gluon propagator DSE, see also [59–61]. The input we
have here, on the other hand, can be interpreted essentially as
equivalent to existing lattice results. For the scaling solution
we calculated the three-gluon vertex from the propagators
using the same four-gluon vertex model. Note that although
the IR behavior of the corresponding diagram is not cor-
rect then, the IR behavior of the three-gluon vertex itself is
because it is determined by the ghost triangle diagram. The
scaling results for the three-gluon vertex are shown in Fig. 3.

All input quantities are rescaled in the plots, because the
shown lattice data is not renormalized. In our calculations,
on the other hand, we used the renormalized input data. The
importance of consistently renormalized input data is dis-
cussed in Sect. 4.

4 Results

4.1 Ghost box

Since it is expected that the ghost box yields the IR lead-
ing contribution to the four-gluon vertex both for scaling

and decoupling solutions [33,56,74] we start by a dedicated
analysis of this diagram. No iteration is necessary and we
can calculate specific kinematic configurations with a very
high precision.

The ghost box contribution for the three special configura-
tions defined in Table 1 is shown in Fig. 4. To obtain the sym-
metrized results for configuration C , we calculate the (two)
distinct permutations and then take the (weighted) average.
The other configurations need not be symmetrized since no
distinct permutations exist. The symmetrization for configu-
ration C is especially important if the transversely projected
decoupling ghost box is calculated. In this case, contribu-
tions of different permutations diverge logarithmically in the
IR but the (weighted) sum approaches a finite value. Thus
we confirm the finiteness of the tree-level dressing function
beyond configuration A, for which this was already found in
Ref. [66]. Indeed our calculations show that the ghost box is
IR finite for all momentum configurations.

In Fig. 4 we also illustrate the effect of the transverse pro-
jection by showing results obtained from the projector given
in Eq. (28) without transverse projections. As it turns out,
this can have a sizable quantitative but not qualitative effect:
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Fig. 4 Symmetrized ghost box contributions for the configurations
defined in Table 1 for decoupling and scaling (left/right). The continu-
ous lines corresponds to the projector in Eq. (28) that projects onto the

transverse part only. The dashed lines were obtained by dropping the
transverse projectors in Eq. (28). The dot-dashed lines were obtained
with a full ghost–gluon vertex

The form of the curves stays the same, but the transverse pro-
jection can increase (config. B) as well as decrease (config.
A and C) the contribution of the ghost box.

The influence of a dressed ghost–gluon vertex was also
studied and is shown in Fig. 4. For this we used the ghost–
gluon vertex from Ref. [53]. Note that with a dressed ghost–
gluon vertex the symmetrization requires the calculation of
more diagrams than in the case of a bare vertex. A dressed
ghost–gluon vertex always leads to an increase in the region
below 1 GeV, but compared to the contributions of the other
diagrams, discussed below, this is only a minor effect.

It can be shown analytically that the ghost box vanishes
completely under transverse projection for configuration A. It
was this configuration that was used in Ref. [65] to determine
the IR scaling fixed point of the running coupling. We will
come back to this in Sect. 4.4. It is noteworthy that the angular
dependence, viz., the dependence on the configuration, is
stronger if the ghost box is transversely projected.

4.2 Full calculation

We will now turn to the results from the self-consistent solu-
tion of the truncated four-gluon vertex DSE. For this we
take into account the complete momentum dependence and
solve the equation by a fixed point iteration as explained in
Appendix B.

The results for the four-gluon vertex dressing function are
shown in Figs. 5 and 6. The former shows the kinematic
configurations A, B, and C . The shaded area indicates the
angle dependence. To determine it we used the configuration

S2 = R2 = Q2 = p2

and took the minimal and maximal values for the dress-
ing when varying the angles. However, this area has to be
interpreted with a grain of salt, because what we plot as

the boundaries of this area is determined by a few extreme
points whereas the majority of the points lie around the solid
lines. To illustrate this we show three-dimensional plots in
Fig. 6 where configurations with the largest angle depen-
dence are shown. Note that the typical angle dependence is
much smaller. The main origin of the angle dependence is the
gluon box. To check that this is not a numeric artifact, we cal-
culated the gluon box for momenta and two angles fixed while
varying the third angle. This calculation was repeated with
increased numeric precision. The results, shown in Fig. 7,
clearly illustrate that increasing the numeric precision has
no impact. Figure 7 also shows the effect of a dressed three-
gluon vertex compared to a bare one: It strongly enhances
the angle dependence. Furthermore, the importance of the
symmetrization can be seen. The plot shows the contribu-
tion of a single gluon box. If it were already symmetric, the
results would be the same independent of varying θq or θr .
Note that even in the case of bare three-gluon vertices there
is a difference, because a single gluon box is not symmetric
under the exchange of q and r , see Fig. 14, but only the sum
of the three diagrams appearing in the DSE.

The contributions of the individual diagrams to the dress-
ing function are plotted in Fig. 8 for different configurations.
As can be seen, the scaling and the decoupling solution are
very similar above 1 GeV. Below 1 GeV, the ghost box starts
to dominate the scaling solution due to the IR divergence,
D4g ∝ (

p2
)−4κ

. For configuration A, for which the ghost
box vanishes, the dynamic diagrams become large in the
IR but remain finite. For all other configurations, all other
diagrams of the scaling solution are insignificant in the IR
due to the dominance of the ghost box. For the decoupling
solution, since for this tensor there is no IR divergent con-
tribution from the ghost box, all diagrams contribute with
a finite value. The mid-momentum regime is dominated by
the gluonic diagrams. Interestingly, both triangle diagrams,
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Fig. 5 Four-gluon vertex dressing function for three momentum con-
figurations and its angle dependence indicated by the colored gray area.
For the angle dependence a coarser grid was used than for the configura-
tions and the points were only connected to guide the eye. The particular
configurations can lie slightly outside the gray area. For example, in

the case of configuration C this is due to the strong rise in the mid-
momentum regime and the fact that one of the squared momenta of
configuration C (see Table 1) is indeed higher than p2. The dashed
line corresponds to the fit to Eq. (40). Left decoupling solution. Right
scaling solution

Fig. 6 Top angular dependence of the dressing function. The squared
momenta and the angle ψq are kept constant: S2 = R2 = Q2 =
160 GeV2, ψq = 0. The shown configuration corresponds to the point
with the largest angle dependence we found; see also Fig. 5. Bottom

momentum dependence of the dressing function: S2 = R2 = p2 and
Q2 = q2. For the angles we chose θr = θq = ψq = π/2 (decoupling)
and θr = π/4, θq = π/2 and ψq = 0 (scaling). Note that the lower
plots are shown from different viewpoints
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Fig. 7 Angle dependence of a single gluon box (no symmetrization
employed) where S2 = R2 = Q2 = 50 GeV2 and ψq = 0 are fixed.
θq is varied while θr is kept fixed at 0 and vice versa as indicated in the
legend. Also shown is the effect a dressed three-gluon vertex has com-
pared to a bare one: it enhances the angle dependence. For standard/high
precision, 30/50 (12/25) nodes per radial (angular) integration region
were used. Clearly the standard precision is sufficient as the lines lie on
top of each other

dynamic and static, are very similar.3 The two diagrams dif-
fer only by the dressings of the three- and four-gluon vertices;
see Fig. 1.

So far, the gluonic four-point interactions had to be mod-
eled whenever they were not neglected. In Ref. [60], e.g., a
specific model for the four-gluon vertex was used to incor-
porate the sunset diagram of the gluon propagator DSE. In
recent calculations of the three-gluon vertex [57,58], the
four-gluon vertex also had to be modeled. In both studies
it was found that the four-gluon vertex must be of a cer-
tain strength so that the three-gluon vertex DSE converges
within the applied truncation scheme. The model employed
in Ref. [57] is given by

D4g, dec
model (p, q, r, s)=

(
atanh

(
b/ p̄2

)
+1

)
D4g

RG(p, q, r, s)

(40)

with D4g
RG(p, q, r, s) defined in Eq. (33). It is interesting to

see that such a simple form can indeed describe the four-
gluon vertex tree-level dressing quite well, as we tested by
fitting configurations A, B, and C. Given that the angle depen-
dence is predominantly weak, the fit for configuration C ,
shown in Fig. 5, can serve as a good first approximation for
the four-gluon vertex in other calculations. The values for the
parameters are a = 1.15 and b = 0.63 GeV2. However, we
emphasize that this function only gives a qualitative repre-

3 Note that our separation of triangles is not the same as in Ref. [66].
There the separation into triangle 1 and triangle 2 was motivated by the
simplifications occurring due to the chosen momentum configuration,
which led to two classes of integrals.

sentation of the four-gluon vertex. In particular, it describes
only the tree-level tensor.

4.3 Other tensors

Given the complexity of the four-gluon vertex DSE with its
many tensor structures, the calculation of all dressing func-
tions constitutes a further challenge which will not be entered
here fully. However, as a first step we can take our solu-
tion approximated by the tree-level tensor and calculate other
dressing functions. For the three-gluon vertex all transverse
dressing functions were calculated in [58] with the result that
the tree-level tensor yields indeed by far the most important
contribution with the other three tensors at least an order of
magnitude smaller. When it comes to the four-gluon vertex,
the situation is similar, but with an additional twist: While we
find that the other tensor structures we probed are suppressed
as compared to the tree-level one over a wide momentum
regime, they possess a logarithmic IR divergence.

To assess the size of other dressing functions, we use the
results for the tree-level dressing from the full (decoupling)
calculation and calculate several other projections. This is no
longer a self-consistent solution but should give us at least an
idea about the magnitude of such contributions. We consider
two classes of other tensors: One that also contains only the
metric and no momenta and thus contains the tree-level ten-
sor, and one whose tensors are constructed from momenta
only.

The two tensors chosen from the first class are based on
Refs. [64,65] but restricted to their transverse parts. They
are constructed from a subset of Bose symmetric tensors by
orthogonalization. The four-gluon vertex is then written as

�abcd
μνρσ (p, q, r, s) =

3∑
i=1

V abcd
i,μνρσ (p, q, r, s)D4g,Vi (p, q, r, s).

(41)

The basis tensors V abcd
i,μνρσ (p, q, r, s) are given in Eq. (C.16).

Vabcd
1,μνρσ (p, q, r, s) corresponds to the transversely projected

tree-level tensor.
Due to the orthogonality of the tensors V abcd

i,μνρσ (p, q, r, s),
the corresponding dressing functions can be extracted from
the four-gluon vertex DSE by replacing the tree-level tensor
in the projector (28) by the corresponding V abcd

i,μνρσ (p, q, r, s).
However, in practice we found it easier to project with the
non-orthogonalized tensors given in Eq. (C.12), because they
are shorter, and calculate the dressings D4g,Vi (p, q, r, s)
from the results.

The two additional dressings D4g,V2(p, q, r, s) and D4g,V3

(p, q, r, s) are shown in Figs. 9 and 10. Again we find no large
dependence on the chosen configuration. Most strikingly the
magnitude of the two dressings is very small compared to
the tree-level dressing, but it becomes larger in the IR where
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Fig. 8 Contributions of individual diagrams to the tree-level dressing function. Decoupling (left) and scaling solution (right)

they diverge logarithmically. This divergence, which is due
to the ghost box, see Figs. 9 and 10, was also seen in Ref. [66]
for the related dressing D4g,G , which belongs to the tensor
Gabcd

μνρσ given by

Gabcd
μνρσ = (δabδcd + δacδbd + δadδbc)

× (δμνδρσ + δμρδνσ + δμσ δνρ). (42)

G can be written as a linear combination of the tensors Ṽ2 and
Ṽ3; see Eq. (C.12). Since the results for D4g,V2 and D4g,V3

are very similar, D4g,G resembles the two as well. In partic-
ular we do not find an enhancement in the mid-momentum
regime as was found in Ref. [66]. As we checked explicitly,
the source of this enhancement lies in the truncation scheme
employed in Ref. [66], where all renormalization constants in
front of the loop diagrams were set to 1. One can see in Figs. 9
and 10 that the contributions of the individual diagrams are
by no means small and the resulting dressing is only small in
the mid-momentum regime because of delicate cancelations.
Since all diagrams contain either Z1 or Z4, which have very
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Fig. 9 Results for D4g,V2 (left) and individual contributions to configuration C (right)
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Fig. 10 Results for D4g,V3 (left) and individual contributions to configuration C (right)

different values, see Table 2, the renormalization constants
naturally play an important role in this and should be taken
into account properly.

As a second example we consider a tensor constructed
from momenta only. This case serves to investigate if tensors
from another class as before have a different behavior. As a
Bose symmetric representative of such a class we choose the
tensor Pabcd

μνρσ (p, q, r, s) given in Eq. (C.16). It is constructed
from

P̃abcd
μνρσ = (δabδcd + δacδbd + δadδbc)

× sμrνqρ pσ + rμsν pρqσ + qμ pνsρrσ√
p2 q2 r2 p2

(43)

by transverse projection and normalization to the tree level;
see Appendix C. As it turns out the behavior of the corre-
sponding dressing is indeed different from that of D4g,V2

and D4g,V3 . In particular the angle dependence is more pro-
nounced as can be seen in Fig. 11. Besides the height of the
bump in the mid-momentum regime also the sign depends

on the configuration. We present no results for configuration
A, since the tensor P̃ is then purely longitudinal.

Finally we compare the contributions of different dress-
ing functions in Fig. 12. Clearly, the tree-level dressing func-
tion is dominant. However, this is due to the tree-level dia-
gram itself, which contributes with the constant value Z4;
see Fig. 8. The loop diagrams only account for compara-
tively small changes around the value of the renormalization
constant Z4. Taking this into account, the contributions of the
loop diagrams are similar for all considered dressings. One
exception is that only the non-tree-level dressing functions
diverge logarithmically in the IR. However, this divergence
sets in at very low momenta at around 100 MeV and the dom-
inant dressing over a wide range of momenta is that of the
tree-level tensor.

4.4 Running coupling

From the four-gluon vertex a renormalization group invari-
ant running coupling can be defined, as it can be from any
other vertex [22,74]. Up to now the couplings derived from
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Fig. 11 Results for D4g,P (left) and individual contributions to configuration C (right)
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Fig. 12 Comparison of the dressing functions D4g, D4g,V2 , D4g,V2 ,
and D4g,P for configuration C

the ghost–gluon, the three-gluon and the four-gluon vertices
were calculated; see, e.g., [32,53,57,58,65] for results from
DSEs. They are given by [74]

αMM(p2) = α(μ2)G2(p2)Z(p2), (44a)

α3g(p2) = α(μ2)

[
D3g(p2)

]2
Z3(p2)

[
D3g(μ2)

]2
Z3(μ2)

, (44b)

α4g(p2) = α(μ2)
D4g(p2) Z2(p2)

D4g(μ2) Z2(μ2)
, (44c)

where α(μ2) = g2/4π is the running coupling at the renor-
malization scale μ. For the arguments of the three- and four-
gluon vertices a generic scale p2 was given. Which kine-
matic configuration is chosen is in principle free. For the
three-gluon vertex we choose the symmetric point and for
the four-gluon vertex configuration C . Note that the denom-
inators of the three- and four-gluon vertex couplings are not
unity, because we work here in the MiniMOM scheme where

G2(μ2)Z(μ2) = 1. Choosing, e.g.,
[
D3g(μ2)

]2
Z3(μ2) = 1

would correspond to a different scheme. Hence we have to
take this factor into account.

In Fig. 13 we show the different running couplings. For
large momenta they all agree as they should with only small
deviations. At low momenta the four-gluon vertex running
coupling vanishes like p4. In the scaling case all couplings
exhibit an IR fixed point [74]. For the four-gluon vertex it is
determined by the ghost box as it was also found in Ref. [65]
without transverse projection. However, if only the trans-
verse part is considered, the contribution for configuration A,
which was used in [65], vanishes, as discussed in Sect. 4.1.
Thus this configuration is not suited for calculating the run-
ning coupling within this truncation. Since the existence of
the IR fixed point should not depend on the angular configu-
ration, we believe that this is a shortcoming of the truncation
and not a general feature. Indeed there are two (scaling) IR
leading diagram types, namely swordfish-like and triangle
diagrams with internal ghost lines, which we neglected. They
may yield a contribution that does not vanish in the IR and
provides a non-vanishing value for the running coupling. We
did not follow this further, as it would require ghost–gluon
four- and five-point functions. For configurationC we extract
a value of α4g(0) = 0.00042. This is in accordance with the
findings of Ref. [65] that the fixed point value of the four-
gluon vertex is much lower than that of the ghost–gluon ver-
tex, which is αMM(0) ≈ 2.97 [25]. For the symmetric point
of the three-gluon vertex we extract α3g(0) = 0.0032. Our
value for α3g(0) deviates from the value found in Ref. [58],
α3g(0) 	 0.0016, but this is due to the different ghost prop-
agator input.

5 Summary and conclusions

In the past the two- and three-point functions of Yang–Mills
theory were intensively scrutinized with functional equa-
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Fig. 13 Comparison of the running couplings from the ghost–gluon, the three-gluon and the four-gluon vertices. Left decoupling solution. Right
scaling solution

tions. However, within the employed truncations these cal-
culations still relied on model input for higher Green func-
tions. Using lattice data, these models could be tuned such
that neglected contributions could be effectively taken into
account which led to good agreement with lattice results.
Thus, as far as two-and three-point functions are concerned,
we have quantitatively reliable input for other calculations
such as those performed here.

Employing the by now common truncation to the UV lead-
ing diagrams, which also contain IR leading diagrams, the
DSE of the four-gluon vertex does not rely on any model. This
is, within this truncation scheme, a unique feature among the
primitively divergent Green functions. However, given the
tensorial complexity of the vertex, we solved the DSE self-
consistently only for the tree-level tensor. A posteriori, we
confirmed for some additional dressing functions that their
magnitude is much smaller than that of the tree-level tensor
over a wide momentum regime. In the IR, on the other hand,
the tree-level dressing is in the decoupling case constant,
whereas other dressings can diverge logarithmically. These
divergences set in at about 100 MeV. Since a four-gluon ver-
tex is within a functional equation for one-particle irreducible
(1PI) functions contracted with at least two gluon dressing
functions, which are IR suppressed, these divergences most
likely do not have a strong effect on other Green functions
as long as no other IR divergent expressions appear in the
integrand.

For the dominant tree-level structure we found that the box
diagrams are almost negligible and the triangle and swordfish
diagrams yield the largest contributions. However, for other
tensors this is no longer the case. Especially the gluon box
can have a sizable impact and the ghost box leads to the IR
divergence mentioned before.

It is important to note that the fact that other dressings
functions are so small in the mid-momentum regime is in

no way trivial, as it comes from cancelations between all the
diagrams taken into account. If it turns out that also dress-
ing functions beyond those we investigated here follow this
pattern, the four-gluon vertex can be well approximated by
one tensor only. This would alleviate its use in future studies,
like its effect in the gluon propagator or three-gluon vertex
DSEs, considerably. As a first approximation we provide a
fit that describes the dressing qualitatively well.

An important aspect of our calculations was that we used
only the transverse subspace, since it is sufficient for the
Landau gauge. By studying the ghost box diagram explicitly
also without transverse projection we found that there can
be a considerable influence of this restriction which most
likely also exists for other diagrams. Thus in future studies
this restriction should always be taken into account.

From the four-gluon vertex a running coupling can be
extracted. Qualitatively it behaves as expected, viz., it agrees
in the perturbative regime with the couplings from the ghost–
gluon and three-gluon vertices and then turns toward zero in
the IR for decoupling and toward an IR fixed point for scaling.
We confirmed that the value of this fixed point is very small
compared to that of the MiniMOM coupling.

The four-gluon vertex was the last primitively divergent
Green function of Landau gauge Yang–Mills theory for
which a self-consistent solution was lacking. Its calculation
constitutes an important step toward a fully self-contained
description of Yang–Mills Green functions from functional
equations and will enable the study of its impact on the prop-
agators and the three-gluon vertex.
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Appendix A: Color calculations

To calculate color traces, we employ the following two well-
known identities:

f am
′n′

f bm
′n′ = Ncδ

ab, (A.1a)

f aa
′b′

f bb
′c′

f cc
′a′ = Nc

2
f abc. (A.1b)

If the trace contains six structure constants, it is sometimes
necessary to insert the Jacobi identity,

Cabcd
4 + Cabcd

5 + Cabcd
6 = 0, (A.2)

before Eqs. (A.1) can be applied. The rank-4 color tensors
Ci are given in Eqs. (22) and (23).

We show now that C7, defined in Eq. (23), is not linearly
independent of the tensor set given in Eq. (22) for Nc < 4.
To start with, consider the set of tensors C1, . . . ,C5 and C7.
The scalar product 〈Ci , C j 〉 of two tensors is given by the
trace over the color indices. Thus, the metric tensor of a six-
dimensional color space defined by C1, . . . ,C5 and C7 is
given by

gcolor
6 =

⎛
⎜⎜⎜⎝

〈C̃1, C̃1〉 . . . 〈C̃1, C̃5〉 〈C̃1, C̃7〉
...

. . .
...

...

〈C̃5, C̃1〉 . . . 〈C̃5, C̃5〉 〈C̃5, C̃7〉
〈C̃7, C̃1〉 . . . 〈C̃7, C̃5〉 〈C̃7, C̃7〉

⎞
⎟⎟⎟⎠ , (A.3)

where C̃i is defined as the normalized Ci , viz., C̃i =
Ci/

√〈Ci , Ci 〉. Calculating the determinant yields

det
(
gcolor

6

)
= 1

4

(
N 2

c − 9
) · (

N 2
c − 4

)3

(
N 2

c − 1
) · (

N 2
c + 12

) . (A.4)

Hence, if Nc = 3 or Nc = 2, det(gcolor
6 ) = 0. If the determi-

nant of the metric tensor is zero, the tensors (i.e., C1 . . .C5

and C7) are linearly dependent. One can similarly show
that the determinant of the metric tensor of the color space
spanned by the tensorsC1 . . .C5 is not zero, det(gcolor

5 ) �= 0 .
Thus, C7 can be expressed in terms of C1 . . .C5:

Cabcd
7 =

5∑
i=1

aiC
abcd
i . (A.5)

Multiplying Eq. (A.5) by the basis tensors Eq. (22) gives five
equations. Solving this linear system of equations yields the
ai ′s and thus Eq. (24) in the case of SU (3) and Eq. (25) in
the case of SU (2).

Appendix B: Technical details of the calculation

The four-gluon vertex was calculated with the CrasyDSE
framework [70]. In a first step, we calculate all static dia-
grams, the diagrams that do not depend on the four-gluon
vertex (the diagrams in the second line in Fig. 1). Calcu-
lating on cores of Intel Xeon E5-2670 processors, the first
step takes typically 30,000 core hours. For the actual itera-
tion process we only need to calculate the swordfish and the
dynamic triangle diagrams, where one iteration step typically
takes 10,000 core hours. Fortunately, the four-gluon vertex
DSE converges relatively fast within 6–8 iteration steps. We
perform the integration as detailed below.

The integration itself is done by a standard Gauß–
Legendre quadrature. Unfortunately we cannot integrate out
any variables analytically and have to perform all four inte-
grations numerically. We use spherical coordinates given by

k = K ·

⎛
⎜⎜⎝

cos(θk)
sin(θk) cos(ψk)

sin(θk) sin(ψk) cos(φk)

sin(θk) sin(ψk) sin(φk)

⎞
⎟⎟⎠ . (B.6)

The integral measure is then (with K = |k|)
∫

dk4 = 1

2

∫ �2

ε2
dK 2 K 2

∫ π

0
dθk sin2(θk)

×
∫ π

0
dψk sin(ψk)

∫ 2π

0
dφk . (B.7)

Exploiting that all scalar products of k and s, r or q, and
thus the kernels, depend on cos(φk) only, the φk integra-
tion can be simplified:

∫ 2π

0 dφk · · · = 2
∫ π

0 dφk . . . . We split
each integration into several integration regions in order to
not integrate over the singularities arising from the internal
propagators. We choose the momentum routing such that the
loop momenta of the gluon box and the ghost box are given
by

k1 = k, (B.8a)

k2 = k + s, (B.8b)

k3 = k − r, (B.8c)

k4 = k − r − q. (B.8d)

The routing is illustrated in Fig. 14. The integrand diverges
if k2

1 = 0, k2
2 = 0, k2

3 = 0 or k2
4 = 0. Due to the choice of

coordinates, this leads to four integration regions in K 2, three
in θk , two in ψk and one in φk . The momentum routing of the
swordfish and the triangle diagrams can be chosen such that
only loop momenta given in Eq. (B.8) appear. This allows
us to use the same quadrature for all diagrams. For the static
diagrams we use 30 (12) integration nodes for every momen-
tum (angular) integration region (for the dynamic diagrams
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Fig. 14 The momentum routing used in the truncated four-gluon vertex DSE. The factors of 3 for each diagram represent the fact that we do not
need to calculate the different permutations of the diagrams if we symmetrize the DSE with respect to all external legs

we use up to 15 integration nodes per angular integration
region). Thus, for each of the 153 × 73 = 1,157,625 exter-
nal grid points, we need to evaluate 1,244,160 internal grid
points. The most complicated kernel is that of the gluon box.
To evaluate the gluon box kernel once, we need about 50,000
multiplications even though we optimized the kernel with a
specialized Mathematica [84] algorithm.

In the evaluation of the kernels values for the variables
of the four-gluon vertex may appear that are outside of the
grid. In this case an appropriate extrapolation must be per-
formed. For the angles (θr , θq , ψq ), it can happen that they
are (slightly) higher than the highest angular grid point, since
we did set the highest grid point slightly below π to avoid the
appearance of a (well-defined) 0/0. In that case we simply
approximate the dressing function by the boundary value.

The squared momenta, on the other hand, can be below as
well as above the range defined. In the former case, the IR
extrapolation, we again use the boundary value. This is rea-
sonable if the IR behavior of the dressing function is insignif-
icant for the iteration, or the dressing function is constant in
the IR. The latter is approximately the case in the decoupling
solution (see, e.g., Fig. 8), the former in the scaling solution:
The ghost box is the leading diagram of the scaling solution
in the IR. Since the ghost box does not depend on the four-
gluon vertex, it does also not depend on the extrapolation.
Thus the IR region is not affected by the extrapolation of the
four-gluon vertex.

For the ultraviolet (UV) extrapolation we use a Bose
symmetric model in analogy to that used for the three-
gluon vertex [57]. For that purpose we define the averaged
momentum p̄ by p̄2 = (p2 + q2 + r2 + s2)/2 and denote
the highest averaged momentum that lies within the grid
by p̄2

0 = (p2
0 + q2

0 + r2
0 + s2

0 )/2 . Using the exponents
from Eq. (34), we approximate the dressing function in the
UV by

D4g
UV(p, q, r, s)

= D4g(p0, q0, r0, s0)

(
G( p̄2)

G( p̄2
0)

)α4g
(
Z( p̄2)

Z( p̄2
0)

)β4g

.

(B.9)

We find that the highest calculated UV points show the
expected UV behavior given by Eq. (B.9). In addition,
Eq. (B.9) connects the extrapolated momentum region with
the non-extrapolated region smoothly. Therefore, the UV
extrapolation by Eq. (B.9) is a reasonable extrapolation.
However, in some isolated cases it can happen that the results
deviate. One such example is configuration A with p2 equal
to the highest point on the momentum grid. For specific per-
mutations the angle configuration corresponds to one of the
configurations with a large angle dependence; see Fig. 6.
Thus the extrapolation gives a value that is off. However,
such configurations are rare and we expect them to have a
negligible influence on the total calculation.

An extrapolation is also necessary for some points in
the symmetrization process. However, the UV extrapolation
function is valid for the dressing function D4g(p, q, r, s) and
not L(p, q, r, s) given in Eq. (28). Thus we work with

D4g(p, q, r, s) = Z4 + 3L(p, q, r, s), (B.10)

which should approximate the dressing function well enough
to allow a good extrapolation. The final dressing function is
obtained from averaging over all 12 D4g.

Appendix C: Extended tensor basis

The tensors employed for the investigation of alternative
dressings in Sect. 4.3 are discussed here. We consider two
classes that differ in the structure of the Lorentz part. The
tree level belongs to the first class, which contains only ten-
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sors constructed from the metric. The second class consists
of tensors constructed by momenta only.

The tensors of the first class were also used in Refs. [64,
65], but for our purposes some modifications were necessary,
which we summarize here. Starting from the color tensors
given in Eq. (22) and the Lorentz tensors

L1
μνρσ = δμνδρσ , L2

μνρσ = δμρδνσ , L3
μνρσ = δμσ δνρ,

(C.11)

a three-dimensional Bose symmetric subspace is given by

Ṽ abcd
1,μνρσ = �(0),abcd

μνρσ , (C.12a)

Ṽ abcd
2,μνρσ = δabδcdδμνδρσ + δacδbdδμρδνσ + δadδbcδμσ δνρ,

(C.12b)

Ṽ abcd
3,μνρσ

= (δacδbd + δadδbc)δμνδρσ + (δabδcd + δadδbc)δμρδνσ

+ (δabδcd + δacδbd)δμσ δνρ. (C.12c)

Orthonormalizing this basis leads to the expressions given in
Eq. (10) of Ref. [65]. However, we found that the expression
given for V3 contains several errors.

Here we are only interested in the transverse part of the
four-gluon vertex and thus construct a basis from the trans-
versely projected tensors. Combining this with a Gram–
Schmidt orthogonalization we obtain the following basis,
where all indices and arguments are suppressed and T
denotes the transverse projection of all four Lorentz indices:

V 1 = T Ṽ1, (C.13a)

V 2 = T

(
Ṽ2 − V 1

V 1 · Ṽ2

V 1 · V 1

)
, (C.13b)

V 3 = T

(
Ṽ3 − V 1

V 1 · Ṽ3

V 1 · V 1
− V 2

V 2 · Ṽ3

V 2 · V 2

)
. (C.13c)

As a tensor of the second class we consider

P̃abcd
μνρσ = (δabδcd + δacδbd + δadδbc)

× sμrνqρ pσ + rμsν pρqσ + qμ pνsρrσ√
p2 q2 r2 p2

, (C.14)

which is also Bose symmetric. The tensor P̃ is orthogonal
to Ṽ1 due to the color part but not to Ṽ2 and Ṽ3. For esti-
mating the magnitude of the corresponding dressing func-
tions orthogonality to the tree-level tensor suffices. Hence,
we simply use the transversely projected tensor (suppressing
indices again)

P = T P̃ . (C.15)

For meaningful comparisons the tensors need to be nor-
malized. Thus, we introduce normalization factors:

Vi = Ni V i , P = NP P (C.16)

To simplify notation, we denote the norm of a tensor by

‖X‖ =
√
Xabcd

μνρσ X
abcd
μνρσ .

A straightforward choice would be to normalize the tensors
to 1, viz., ‖Vi‖ = 1 and ‖P‖ = 1. However, then V1 does
not coincide with the transversely projected tree-level tensor.
Thus we use N1 = 1. In order to make the dressing functions
comparable, we demand

‖V1‖ = ‖V2‖ = ‖V3‖ = ‖P‖ , (C.17)

which leads to

N2 = −
∥∥V 1

∥∥
∥∥V 2

∥∥ , N3 = −
∥∥V 1

∥∥
∥∥V 3

∥∥ , and NP =
∥∥V 1

∥∥
∥∥P∥∥ .

(C.18)

The signs of the tensors are in principle arbitrary and we
chose them such that the corresponding dressing functions
have the same sign as the tree-level. Note that via the nor-
malization factor each tensor gets a factor of g2. In general,
the normalization factors depend on the momenta. However,
for a fixed momentum configuration with one momentum
scale, as used in our plots, the norms are constant for purely
dimensional reasons. Thus, the normalization factors are also
constant then.

Finally we mention the influence of this choice of nor-
malization on Fig. 12. To obtain tensors normalized to 1, we
need to divide the tensors V1, V2, V3, and P by

∥∥V 1
∥∥. Since

the
∥∥V 1

∥∥ is constant for a specific configuration, the relative
values of the dressing functions in Fig. 12 would have been
identical if we had chosen to work with tensors normalized
to 1. To be precise, a plot for tensors normalized to 1 can be
obtained by multiplying all values of the dressing functions
by

∥∥V 1
∥∥ = 7

2g
2Nc

√
3(N 2

c − 1) ≈ 51.44 g2 for configura-
tion C .
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