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Foreword

The Canopy Health Monitoring (CanHeMon) project ran at the Joint Research Centre of the
European Commission from mid-2015 to mid-2018 and was funded by DG SANTE. This
report provides technical details about the work carried out during the project, while a
separate Science for Policy report provides a summary of the main findings and a synoptic
outlook on the potential use of remote sensing to support plant health policy in the EU.
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Abstract

As part of the EU emergency measures against the pine wood nematode (PWN)
(Bursaphelenchus xylophilus) laid down under Decision 2012/535/EU, Portugal should
perform, outside and during the flight season of the vector, surveys of coniferous trees
located in the 20 km wide buffer zone established along the Spanish border, with the aim
to detect trees which are dead, in poor health or affected by fire or storm. These trees
shall be felled and removed, as required by the Decision, to avoid that they act as
attractants for the longhorn beetle (Monochamus species), the vector responsible for the
spread of PWN. The CanHeMon project tasked the Joint Research Centre with analysing a
portion of the buffer zone, using remote sensing data, to support detection on the ground
of declining pine trees. During the project, a 400 km? area was imaged twice, in autumn
2015 and autumn 2016, at 15 cm resolution from aircraft, and individual declining tree
crowns were detected using a MaxEnt-based iterative image analysis algorithm, the
performance of which was gauged through visual photointerpretation. The scalability of the
automated methods was then tested using an image mosaic of the entire buffer zone at
30 cm resolution. Finally, broad recommendations were formulated on the use of remote
sensing for large-area surveys in the context of plant health emergencies.



1 Introduction

The Canopy Health Monitoring (CanHeMon) project ran at the Joint Research Centre of the
European Commission from mid-2015 to mid-2018 and was funded by DG SANTE. DG
SANTE is responsible, among other things, for the European Union’s plant health
legislation, which aims to put in place effective measures to protect the Union’s territory
and its plants, as well as ensuring that trade is safe and that the impacts of climate change
on the health of EU crops and forests are mitigated.

For specific harmful organisms that threaten its crops and forests, the EU takes emergency
control measures. The pine wood nematode (Bursaphelenchus xylophilus) is such a
quarantine pest. It can kill European coniferous tree species and has been spreading
through Portugal since the end of the 1990s.

As part of the emergency measures against the pine wood nematode (Decision
2012/535/EU), Portugal should perform, outside and during the flight season of the vector,
surveys of the coniferous trees located in the 20 km buffer zone established along the
Spanish border with the aim to detect trees which are dead, in poor health or affected by
fire or storm. According to the Decision, these trees shall be felled and removed each
winter lest they attract the longhorn beetle (Monochamus species) that is responsible for
spreading the nematode. Monitoring such a large area (greater than 20 000 km?) for
individual trees in declining health is a daunting task, particularly as large stretches of the
area are hard to reach with vehicles or on foot. The aim of the CanHeMon project was to
demonstrate how remote sensing could support this monitoring task, by collecting and
analysing remote sensing data for the area to pinpoint individual coniferous trees in
declining health.

The remote sensing work needed to adhere to a tight time schedule, as trees may not
decline and attract longhorn beetles until late summer or early autumn, meaning remote
sensing data should depict the state of the trees in the autumn. Then, the images had to
be processed and analysed within weeks for the results to be useful for implementing the
emergency measures. These measures namely stipulate that all declining trees must be
removed by the end of April.



2 Remote sensing data

To carry out the CanHeMon project, we acquired four airborne remote sensing datasets.

2.1 RGB-NIR images with 15 cm resolution near Castelo Branco -
autumn 2015

The core study area of CanHeMon was close to Castelo Branco, in a 400 km? portion of the
buffer zone closest to the PWN outbreak at the time. RGB-NIR images with 15 cm spatial
resolution were procured and acquired specifically for this project on 26, 27 and 28
November 2015 in order to image the entire study area. The contractor used an Intergraph
DMC photogrammetric camera system, mounted on a gyrostabilised platform T-AS Mount
on board a Cessna 402B. It was deployed alongside a Daedalus sensor which imaged at
180 cm ground resolution in 15 narrow optical bands (nine visible, four near-infrared, and
two mid-infrared), as well as measuring thermal emissivity.

Covering the entire area required 26 flight lines, with the aircraft flying in a north-south
direction, spaced to ensure sufficient side-by-side overlap between images of adjacent
lines in order to ensure precise mapping. Images were only acquired under bright-sky
conditions, and between 11.15 and 14.00 local time to ensure sufficient illumination.
Images were ordered with absolute spatial accuracy (RMSE) of < 1.5 m, with 95 % of
pixels located with less than 3.5 m error. Band-to-band co-registration in the images had
to be less than 0.5 pixels.

Image mosaics were ordered as 4-band GeoTIFF files, as a mosaic of the entire study area
split into 1 km by 1 km tiles, with the tile boundaries coinciding with the 1 km integer
coordinates in the EPSG:32629 projection and the band order Blue-Green-Red-NIR, and
projected in EPSG:32629.

The composite images created from the orthophotos comprised circa 140 GB. These data
can be accessed through the web mapping service WMS (%).

2.2 Hyperspectral images of ‘hotspots’ in Castelo Branco - spring
2016

To investigate 13 specific areas where RGB-NIR images indicated declining trees in
November 2015, a small campaign was carried out on 18 May 2016 to acquire
hyperspectral and multispectral images of declining trees.

The hyperspectral images covered 200 spectral bands of 10 nm full width at half maximum
(FWHM) in the region 400-800 nm, with 65 cm spatial resolution.

The multispectral images had six bands centred at 450 nm, 490 nm, 550 nm, 670 nm, 710
nm and 800 nm, with 10 nm FWHM and 25 cm spatial resolution. The images were
radiometrically calibrated and atmospherically corrected to surface reflectance.

2.3 RGB-NIR images with 15 cm resolution near Castelo Branco -
autumn 2016

The RGB-NIR image collection of autumn 2015 over the Castelo Branco area was repeated
in the autumn of 2016 using exactly the same acquisition scheme with flights.

These data can be accessed through the web mapping service WMS.

(}) http://cidportal.jrc.ec.europa.eu/jeodpp/services/ows/wms/canhemon/portugal



Figure 1. Map of Portugal, and outline in red of the 30 cm RGB-NIR images acquired by the
project. The grid depicts the ‘blocks’ in which these data were generated, delivered, and analysed.

2.4 RGB-NIR images with 30 cm resolution, entire buffer zone

RGB-NIR orthophotos were procured for the entire PWN buffer zone (circa 23 000 km?2).
Given the size of the area, the short duration of the project, and the budget, it was
impossible to carry out a dedicated airborne campaign to image the entire buffer zone.
Instead, images from an existing campaign were sought. A mosaic of images with 30 cm
spatial resolution, acquired between 7 December 2014 and 26 June 2016, was ultimately
purchased. The data were acquired and processed, as part of a multinational aerial imaging

campaign, in 1 ° x 1 ° *blocks’.

Table 1. Start and end dates of the periods during which images were acquired to generate blocks
of 30 cm RGB-NIR images.

Block

Start Capture

End Capture

Block

Start Capture

End Capture

[Date] [Date] [Date] [Date]

AU_06 29/05/2015 29/05/2015 AW_08 30/05/2015 31/05/2015
AU_07 07/09/2015 15/10/2015 AX_05 16/05/2015 28/05/2015
AU_08 05/09/2015 26/06/2016 AX_06 06/12/2014 07/12/2014
AV_06 16/05/2015 17/05/2015 AY_06 01/12/2014 14/05/2015
AV_07 15/05/2015 16/05/2015 AY_07 07/12/2014 29/11/2015
AV_08 31/05/2015 23/07/2016 AZ_06 01/12/2014 14/05/2015
AW_05 16/05/2015 28/05/2015 AZ_07 07/12/2014 29/11/2015
AW_06 17/05/2015 24/08/2015 AX_07 08/12/2014 11/12/2014
AW_07 28/05/2015 05/09/2015




The images were acquired using Leica ADS100 sensors which work on the principle of a
push broom scanner and therefore record data continuously, while the aircraft is moving
forward. The combination of the recorded lines (nadir, forward and backward) forms an
image strip.

Images were produced following state-of-the-art photogrammetric procedures, to produce
image mosaics with minimal spatial discontinuities, in colours that are unrelated to the
land surface. This is challenging since extended image acquisition campaigns are needed
to cover large areas such as the PWN buffer zone. As a result, the images can be from
different seasons and years and thus have very different spectral characteristics.

Besides the standard image mosaics, which were produced in 8-bit, a 16-bit surface
reflectance image mosaic was produced. This mosaic, which prioritises physical precision
(quantifying the proportion of incoming electromagnetic radiation reflected by the land
surface in W-srrtm~2nm-'), is not commonly produced in the photogrammetric
community. However, it allows for a better comparison with satellite images.

Acquisition of the images, and associated intellectual property, was governed by service
contract number 930705 between the EU and COWI A/S.

Given the large volume, the data were initially delivered in seven stages, with the final
project data delivered to the JRC on 26 February 2018, after being released by the
Portuguese authorities. Because errors in the data and metadata were detected by the
JRC, as of July 2018, the data are being corrected by COWI A/S.



3 Complementary geospatial data

Complementary geospatial data can greatly aid the analysis of up-to-date remotely sensed
images. They can provide contextual information that is not contained in, or easily
extracted from, the remote sensing data. Here, two different types of data were used: one
thematic and one image. The thematic map of land use in the study area allowed us to
restrict the analysis to areas where coniferous trees may be present; this greatly improves
processing speed, as less data need to be handled by the image interpretation. In some
cases, it also significantly improves image classification, as the algorithm has fewer data
combinations to learn to distinguish.

In addition, older orthophotos (in this case from 2012), where available, allowed us to
identify many areas where coniferous trees were too young and small for reliable health
evaluation through image analysis. These areas included plantations that were barren
(unplanted) in 2012, and recognisable as such in the 2012 orthophotos, but densely
planted with saplings in 2015 and 2016. As they are plantations, such areas were not
excluded from analysis based on the COS (see below), and they do have abundant
vegetation in the new images; however the small size of the trees, and sometimes the
abundance of other vegetation, prevents reliable analysis. These areas were identified in
the imagery by comparing vegetation indices (mathematical combinations of observations
in different spectral bands that highlight vegetation) in different years; areas that had an
extremely low vegetation index in 2012 (indicating they were barren), but a high one in
2016 or 2017, could not be covered by mature trees in 2016, and were excluded from the
image classification. Below, we provide more details on the two auxiliary geospatial
datasets.

Besides the aerial images analysed for this project, the following complementary geospatial
data were used.

3.1 Carta de Uso e Ocupacao do Solo de Portugal Continental (COS)

The land cover and land use map of mainland Portugal (Carta de Uso e Ocupacdo do Solo
de Portugal Continental, COS) at its highest level of detail (level 5) distinguishes circa
2 000 land cover classes with a minimum mapping unit of 1 ha [1] [2]. It was produced
through the visual interpretation of orthophotos alongside ancillary data. Its estimated
horizontal accuracy is 5.5 m. Further information about the COS is available at:
http://www.dgterritorio.pt/dados abertos/cos

I4

At its finest level, the COS distinguishes for example between ‘Florestas de pinheiro bravo
and ‘Florestas de pinheiro manso’, which are Pinus pinaster and Pinus pinea forests,
respectively. It also identifies multiple forest types with dominant, co-dominant, or
secondary presence of coniferous tree species.

3.2 RGB-NIR images with 50 cm resolution near Castelo Branco

RGB-NIR aerial images with 50 cm resolution near Castelo Branco were obtained from the
ICNF for use in the CanHeMon project in June 2015. The data comprise circa 144 GB and
the conditions for sharing them were set out in the ICNF Iletter
27935/2015/DGACPPF/DPFVAP.

10


http://www.dgterritorio.pt/dados_abertos/cos

4 Interpretation of data

Before images were analysed, they were quality checked, paying particular attention to
the following potential artefacts, which were remedied where possible:

— Blurriness in the images, stemming from movement and vibrations of the sensor.

11



— Cloud-cover or atmospheric haze in the images. These were not present, since the
technical specifications in the procurement procedures requested that images only be
acquired under clear-sky conditions.

— Image-processing artefacts. Errors at the sensor or elsewhere in the image-processing
chain can cause anomalies in the images that hamper their interpretation or analysis.

- LR
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— Geo-registration quality. Geo-registration of the images was checked using the location
of known features, and cartographic reference layers.

— Seamlines in the image mosaics. As the orthophoto mosaics delivered are composed of
many individual images (whether individual frames or flight lines), they can display
edge effects (i.e. seamlines) at the borders between frames or flight lines. These
borders can reveal either faults in the geo-registration (bordering images don't align
well), or - more commonly - spectral differences, owing to neighbouring images being
acquired under different conditions. The differences in condition can be atmospheric
(different illumination stemming from different time of day or flight direction), or
surface-related (different season).

e Seamline artefacts in orthophoto dataset.

e Seamline between an image acquired on 15 October 2015 (top) and one
acquired on 29 May 2015 (bottom).

13



Seamline below which image is blurred.
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e Greatly different illumination on opposing sides of N-S seamline.

e Different illumination on opposing sides of W-E seamline.

— The original images, from which the large-area orthophoto mosaics were composed,
were acquired in a wide range of seasons and conditions. We ensured this could be
accounted for in processing the image mosaic, by requiring that the data be delivered
with pixel-level metadata, describing, for individual pixels in the mosaic, exactly when
they were imaged. As this is non-standard practice in the photogrammetry community,
these metadata had to be carefully quality checked.

— Oblique viewing angles of the sensor can affect the interpretation of remote sensing
data. This is the case for wide-angled cameras deployed on aircraft and for data from
very high resolution satellite sensors that are able to acquire off-nadir images.

15



Particularly for forests, this can have dramatic effects on the way trees are seen in the
images.

— The surface reflectance data were assessed for spectral accuracy, by checking that the
magnitude and pattern of reflectance spectra for typical land surface features (water,
soil, asphalt, healthy vegetation) were in line with expectations.

16



5 Image interpretation algorithms

5.1 Algorithm aim and challenges

We devised an image interpretation algorithm to highlight features in orthophotos that
might represent coniferous trees with crowns showing signs of poor health. Several aspects
made this challenging:

— There was no contemporary, authoritative database available to us, showing the precise
location and time of observation of individual declining trees, with which to train such
an algorithm.

— While relatively high in spatial detail, orthophotos are relatively poor in spectral detail;
measuring light in only four, relatively broad, spectral bands (red, green, blue, near-
infrared). The spectral signature of declining tree crowns in these bands can be very
similar to that of, among others, bare soil, having a brownish colour in the visible
wavelengths and low radiance in the near-infrared portion of the spectrum.

To tackle these challenges:

— We used algorithms that were not over-reliant on training data and could cope with
uncertainty in these data.

— We made our algorithms iterative, so that their output could be evaluated and the
results of the evaluation fed back to the algorithm for further refinement.

— We sought auxiliary geospatial data that would help distinguish areas with coniferous
vegetation, where declining trees may occur, from other areas that might be spectrally
similar. These data included the earlier COS land cover map, and older orthophotos.

— We based our image interpretation not only on the spectral characteristics of individual
pixels in the images, but also on morphometric and textural aspects of the orthophotos.

5.2 Image pre-processing

Areas which, according to the COS land cover map, did not include any coniferous
vegetation were masked from the images of the buffer zone and not analysed. To identify,
and exclude from analysis, areas that had been cleared since the creation of the COS, we
masked areas where either the 2012 orthophotos, or more recent orthophotos, had a
particularly low normalised difference vegetation index (at 1 m resolution), which indicates
the absence of any green vegetation.

The following ‘texture layers’ were created from the red and near-infrared bands of the
orthophotos, using GRASS [3] (and more specifically its ‘r.texture’ function), and
considered as potential predictor variables in the classification algorithm, to give more
information about the spatial distribution of tonal variation within a band [4]:

— sum average (SA)

— entropy (ENT): this measure quantifies randomness. It is high when values within a
moving window have similar values, and lower when they are more uniform.

— difference entropy (DE)
— sum entropy (SE)

— variance (VAR): a measure of grey tone variance within the moving window (second-
order moment about the mean)

— difference variance (DV)
— sum variance (SV)

— angular second moment (ASM, also called Uniformity): this is a measure of local
homogeneity and the opposite of Entropy. High values of ASM occur when the pixels in

17



the moving window are very similar. The square root of the ASM is sometimes used as
a texture measure and is called Energy.

inverse difference moment (IDM, also called Homogeneity): this measure relates
inversely to the contrast measure. It is a direct measure of the local homogeneity of a
digital image. Low values are associated with low homogeneity and vice versa.

contrast (CON): this measure analyses the image contrast (local grey-level variations)
as the linear dependency of grey levels of neighbouring pixels (similarity)

correlation (COR): this measure analyses the linear dependency of grey levels of
neighbouring pixels

— information measures of correlation (MOC)

maximal correlation coefficient (MCC).

5.3 Algorithm choice

Here, we used the MaxEnt model, which was originally developed for modelling species
niches and distributions by applying a machine learning technique based on maximum
entropy [5]. A particularity of MaxEnt is that it is designed to be trained on presence
observations only [6]. It does so by searching for the distribution with the maximum
entropy for an input set of occurrences and a set of constraining variables [7], (which in
our case are derived from the remote sensing data).

Entropy is a measure of unpredictability of a state or, equivalently, of its average
information content [8]. Therefore, a distribution with higher entropy is less constrained
and the maximum entropy principle seeks the maximum entropy probability distribution,
subject to a constraint that each occurrence has the same mean under the observed
distribution. Thus, the model output can be interpreted as predicted probability of
presence, or as predicted local abundance [9]. Here, we selected the probability output of
the model since we are considering the probability that a single pixel in an image belongs
to a declining tree, rather than considering whether an individual may be present in the
pixel (as is the case in traditional MaxEnt applications where pixels are larger than
individuals).

The model was implemented in the programming language R [10], and its dismo package
[11], initiated with a small set of declining crowns that were visually detected in the
orthophotos. The algorithm then randomly selected locations from the background as
‘pseudo-absences’ [12] (i.e. points that are unlikely to be declining trees). The model was
then calibrated, using as input predictor variables the RGB-NIR and texture bands of the
orthophotos.

5.4 Algorithm input

The orthophotos are composed of four separate layers of information, corresponding to the
blue, green, red, and near-infrared spectral bands. These individual layers, together with
texture layers calculated from the red and near-infrared bands, were used as inputs (i.e.
‘predictor variables’) in the classification algorithm. The texture layers capture land surface
properties that may relate to surface roughness and contrast - features which can help
distinguish crowns from other features in the landscape.

5.5 Algorithm settings

The number of ‘pseudo-absences’ used by the algorithm can be set by the user. A number
that is too high will slow down the algorithm; a number that is too low will compromise
detection accuracies, as it prevents the algorithm from describing all the landscape features
that are not declining trees. Optimising the number of background points thus involves
determining the minimum number of points required to obtain near-optimal algorithm
performance. To determine this, we ran a range of tests with different sample sizes of
background points, relying on the area under the curve (AUC) and Cohen’s kappa statistics

18



to determine algorithm performance. The AUC is used to estimate the predictive accuracy
of a distributional model derived from presence-absence observations. Since our model is
based on presence-only data, this metric can help to see the predictive power of the model,
but it cannot be taken as an objective measure of the performance of the algorithm. The
AUC namely weights omission and commission errors equally, while in presence-only
models the omission errors are weighted more strongly than the commission errors. The
kappa statistic measures inter-rater agreement for categorical variables. It is generally
considered a more robust measure than simple per cent agreement calculation (also
termed ‘overall accuracy’), as kappa accounts for the possibility of the agreement occurring
by chance. A kappa value close to 1 thus indicates a good agreement between the metrics
(in our case observations and model predictions) and one close to 0 indicates the
agreement is no better than expected from random chance. These tests suggested that 10
000 background points per 1 km? image tile were appropriate for the algorithm training,
ensuring kappa and AUC values above 0.98.

Once the minimal number of background points was set, we determined whether the set
of input variables fed into the model could be reduced; many of the original ones might be
correlated. While MaxEnt is relatively robust to correlation among input variables,
eliminating superfluous ones would speed up the processing. Principal component analysis
revealed that nearly 100 % of the variation in the texture layers could be described by
three components. Hence, we retained as predictor variables only the texture layers that
contribute most to the eigenvectors of those three principal components.

After this process the predictors selected for the model were:

— RGB-NIR bands

— contrast texture of red and NIR band

— sum average texture of red and NIR band

— sum variance texture of red and NIR band

— variation texture of band red and NIR band

— information measures of correlation of first order texture of red band
— correlation texture of NIR band.

The graph shows multiple eigenvectors overlapping with respect to variability within the
distribution, indicating they are correlated. So as not to carry this correlation into the
variables fed into the model, and to reduce the dimensionality of the input variables, we
selected layers that were less correlated and reduce the information content only
minimally.
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Figure 2. Principle component analysis of the initial set of image-based predictor variables
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5.6 Algorithm tuning

The MaxEnt model assigns to each pixel a probability that it represents (part of) a declining
tree crown. Because tree crowns are larger than the individual pixels in the image, we
considered whether or not pixels assigned high probabilities formed shapes that resembled
a tree crown (in terms of size). Pixels assigned relatively low probabilities, or forming
shapes that were too large or small to be a tree crown, were filtered out from the model
predictions. As part of the algorithm tuning, we had to determine what constitutes ‘low
probabilities’ (p) or the sizes (s) beyond which shapes are unlikely to be tree crowns. The
cut-offs for both p and s can be chosen depending on the survey priorities. They can be
set to either minimise ‘false negatives’, or to maximise ‘user accuracy’. In the former case,
the algorithm will try to ensure all declining trees are detected in the images, but at the
cost of also highlighting features that turn out not to be declining trees (‘false positives’).
This choice minimises the risk of leaving declining trees unfound, but at the cost of having
to reject many of the detections. In the latter case, the algorithm is tuned to make sure
that, when a feature is flagged in the images as ‘declining tree’, it is most likely to be
correct, yet at the risk of leaving a portion of actual declining trees undetected. This trade-
off in tuning the algorithm has direct links to resource deployment elsewhere; in the
scenario where ‘false negatives’ are minimised and field crews need to reach trees detected
by remote sensing, resources might be wasted on reaching trees that do not turn out to
be in decline. If ‘user accuracy’ is optimised, on the other hand, field operations might be
more efficient, but not all declining trees will be detected.

The R functions written to tune and run the model are publicly available at:
https://github.com/MartinezlLaura/CanHeMonR.MaxEnt
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6 Image analysis hardware

We sought an image analysis platform that could efficiently handle and parallelise the
computations on the large (terabyte) volumes of image data in this project. The JRC Earth
Observation Data and Processing Platform (JEODPP), which was developed in parallel with
the CanHeMon project, increasingly met these needs over the course of the project. Being
an inhouse service of the EC, it facilitates processing of the data for which the licensing
does not permit public distribution. It is a versatile platform that brings the users to the
data through web access and allows for large-scale batch processing of scientific workflows,
remote desktop access for fast prototyping in legacy environments, and interactive data
visualisation/analysis with JupiterLab.

At the basis of the JEODPP are storage and processing nodes in an infrastructure based on
commodity hardware and the CERN EOS distributed file system, which provides a disk-
based, low-latency storage service. With its highly scalable hierarchical namespace, and
data access possible by the XROOT protocol, it was initially used for physics data storage.
The main target area for the service is scientific data (in CERN’s case, physics data)
analysis, which is characterised by many concurrent users, a significant fraction of random
data access, and a large file-open rate. For user authentication, EOS supports Kerberos
(for local access) and X.509 certificates for grid access. To ease experiment workflow
integration, SRM as well as GridFTP access are provided. EOS further supports the XROOT
third-party copy mechanism from/to other XROOT enabled storage services. As of summer
2018, the storage capacity of the EOS distributed file system of the JEODPP is 14 PiB,
which is set up to store 7 PiB of data (with the other 7 PiB set up to ensure redundancy).

The JEODPP’s processing servers contain circa 12 000 cores, with 10 to 19 GB RAM per
core. It has 10 servers for data services, such as web mapping and database hosting. It
was also recently extended with two GPU servers, with two processing units each.

On this hardware, large-scale batch processing is executed through lightweight Docker
virtualisation and management with HTCondor. Docker is a computer program that
performs operating-system-level virtualisation, also known as containerisation. Containers
are isolated from each other and use their own set of tools and libraries; they can
communicate through well-defined channels. All containers use the same kernel and are
therefore more lightweight than virtual machines. Containers are created from ‘images’
which specify their precise contents. Images are often created by combining and modifying
standard images downloaded from repositories. In our case, we use a Debian image with
all the libraries needed to run the code - mainly R and GDAL libraries.
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7 Processing load and time

Covering the entire PWN buffer zone with 4-band images of 30 cm resolution, stored in 8-
bit, generates 2.4 TB of data. Generating the associated texture layers used in the analyses
here adds an additional 50 TB. The data were delivered and processed in 24 904 tiles
measuring 1 km by 1 km.

Processing a single tile in each iteration takes 40 to 55 minutes, with a memory usage of
5-7 GB on a regular CPU (with 2 to 8 cores). Processing the entire buffer zone on a single
CPU would thus take more than a year.

Assigning all of the 12 000 cores of the JEODPP to the task would see it completed in less
than two hours. In practice, between 100 and 500 cores of the JDEOPP were used in the
processing at any one time.

The figure below shows, for a subset of the dataset, the actual processing times and
memory usage by the JDEOPP.

Figure 3. Processing and memory usages for jobs executed on the JDEOPP
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8 Accuracy assessment of image interpretation

8.1 Sample-based validation and iterative model calibration

To facilitate the validation of image classification outputs, and more precisely the status
and location of declining coniferous trees detected, we built a dedicated web page
accessible on the JRC network. This page allowed an operator to visualise randomly
selected declining trees, according to the image classification, or objects that were not
classified as declining trees and judge their status visually, based on the available images.
By assigning the images presented with the label ‘declining tree’, ‘not declining tree’, or
‘possibly declining tree’, using simple keyboard strokes, a set of validation records were
generated (see screen capture of the site below).

Figure 4. Screen capture of the internal website to support the collection of validation data on
visual image inspection

Canopy Validation too
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0 0 0
Total Processed

YES NO MAYBE

Using the records generated through the site, confusion matrices could be produced to
estimate different performance statistics for the algorithm, including user accuracy,
producer accuracy, and Cohen’s kappa.

To facilitate visual inspection and validation of the declining tree detections stemming from
the image classification, we generated a dedicated web application. The application loads
the locations of the detections, commonly generated in shapefile format, into a database
and generates a sample from them, as well as from points that were not classified as
declining trees. It then displays the points in this sample on top of matching images, for
an operator to visually classify them. The operator’s classifications are stored in the
database and used to generate accuracy statistics for the automated image classification.

Moreover, the collected records served as further training data to refine calibration of the
model in an iterative way; i.e. after the initial model was run to classify the images and
had detected declining trees, results from the validation were included as training data to
improve the model. This iterative run-validate-recalibrate cycle could be repeated until the
performance statistics of the classification saturate.

8.2 Image analysis results

After three iterations of the algorithm, we identified 19 656 trees in the Castelo Branco
area that had considerably declined in health between November 2015 and November
2016.
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The algorithm was initiated with a limited set of declining trees visually detected in the
images during quality checking, and then run in a first iteration that randomly selected
points in the images that represented objects other than declining trees. The MaxEnt
algorithm was then calibrated and left to run over the entire area. A sample of the objects
classified after this first iteration as declining trees was then visually inspected. This yielded
many newly detected declining trees, as well as objects that were wrongly detected as
declining trees. Both sets of objects were fed back to the algorithm for recalibration, with
the first group allowing it to better identify declining trees, and the latter group allowing it
to better distinguish them from objects with which they could be confused. This process
was repeated over three iterations.

To display how the performance of the declining tree detection algorithm is evaluated in
different stages of the individual iterations, we use a series of graphs.

Since MaxEnt assigns to each cell in an image the probability that it belongs to a declining
crown, to binarise its output a suitable cut-off probability needs to be determined. To do
this, we considered a range of probability cut-offs and determined, for each one, the
resulting tree classification accuracy.

The following graph shows the tree detection ratio (as a function of this cut-off probability),
based on the fraction of known declining trees that are detected, and the fraction of
detected trees that turn out to be correct.

Figure 5. Tree detection ratio as a function of the cut-off used to classify the probabilities
generated by the MaxEnt model into presence/absence
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As the cut-off value increases, a greater proportion of the mapped declining trees are
indeed known declining trees. However, at the same time, fewer declining trees are actually
mapped and more of the known declining are therefore missed.

The green line indicates the cut-off probability below which less than 10 % of the known
declining trees are missed by the algorithm.
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The determined cut-off probability is then used to binarise all the pixels in the MaxEnt
output, assigning those below the cut-off the value 0, and those above the value 1.

The binarised maps allow the delineation of objects (clusters of pixels) considered to be
declining tree crowns. We checked how the size of these objects related to their likelihood
of indeed representing tree crowns, as both extremely large as well as very small objects

are unlikely to actually be tree crowns.
Therefore, only considering very small objects is likely to lead to declining tree detections.

Also considering objects with a crown-like size is likely to greatly increase the number of
declining trees detected, while including very large objects is unlikely to increase this

number further. The following graph shows this for the actual results.

Figure 6. Cumulative ratio of trees retrieved as a function of object size cut-off, whereby
all objects under a certain size cut-off (displayed on the x-axis) are retained.
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This illustrates how, by selecting objects with an area between 0.1 m? and 3.5 m?, we
detect almost 80 % of declining trees without any errors of commission. In other words,

we achieve an accuracy of 100 % with a 20 % detection error.

Indeed, the objects that correspond to known declining trees cluster in an area range
between 0.1 m? and 4 m2. The majority of false positives, however, have an area between

2.5 m? and 6 m?, as evidenced by the graph below.
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Figure 7. False discovery rate and positive predicted rate, as a function of object size
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Since the algorithm aimed to detect nearly all declining trees, and detected trees need to
be inspected, as a final step a visual check was performed on the detected trees. Here, a
choice must be made, balancing the likelihood that an actually declining tree is detected,
with the number of detections that need to be rejected during visual inspection because
they are wrong.

Figure 8. Ratio of false positive to true positive detections and cumulative ratio of true positives,
as a function of object size cut-off
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If it is paramount that all declining trees are detected, the algorithm is bound to have a
larger number of ‘false positives’ that need to be filtered out in a final, manual step. If the
final visual inspection needs to be kept to a minimum, then all detected objects can be
guaranteed to be declining trees, but many actual declining trees will be missed. This
choice is ultimately based on risk assessment and resources, and its implications are
illustrated below using our actual results.

If it is paramount that absolutely all declining trees are detected, then for every
10 correctly identified trees, circa 7 need to be rejected during a final visual inspection of
the output.

This effort can be reduced to circa 5 rejections per 10 correct identifications if it is
considered sufficient that > 95 % of declining trees are detected.

The images over the Castelo Branco area were purpose-collected for this project. The
experiment to scale up the analysis to the entire buffer zone was added later and
necessarily relied on existing data which were not purpose-collected for this project. These
data were mostly collected in summer, which is not the best period to assess decline in the
context of the pine wood nematode outbreak. Moreover, they were collected over a long
time period, with images of adjacent areas collected months or years apart. This difference
in acquisition date and image calibration meant that the buffer zone had to be analysed in
‘chunks’ of data acquired in the same time window.

Figure 9. Example of seamlines in an image mosaic generated from images acquired on different
dates
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This implies that the algorithm had to be calibrated individually for different image ‘chunks’.
This was not possible in sections of the buffer zone in which few or no declining trees could
be visually identified in the available images, as there was no material available to initiate
the algorithm calibration iterations. The extremely low prevalence of visibly declining trees
in the available buffer zone images severely hampered the ability to detect further such
trees.

In concrete terms, the difference in acquisition dates and pre-processing of the data means
that the crowns of declining trees show up in very different ‘colours’ depending on where
they are. This makes it extremely challenging for a single parameterisation of the image
analysis algorithm to successfully analyse the entire area.

Figure 10. Tree detection error ratio, as a fraction of the cut-off used to classify the probabilities
generated by the MaxEnt model into presence/absence
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While acceptable error rates are achieved, objects misclassified as declining trees are less
easily identified based on their size, than in the higher resolution purpose-collected images.
While small objects are more likely to be false positive detections than larger objects,
erasing them from the output also leads to the loss of correct detections; e.g. erasing
detected objects smaller than 2.5 m? avoids 25 % of the false positives, but ensures only
65 % of the true positives are retained.

Figure 12. As Figure 5.
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As a result, to ensure that more than 80 % of known declining trees were detected in the
images, final visual inspections of the output would have to reject 50 to 60 wrongly
detected crowns for each correct one.

Figure 13. As Figure 8.
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This discrepancy between the results that can be obtained with the purpose-collected and
the off-the-shelf images has several causes. Firstly, the purpose-collected images were
acquired in autumn, when more trees were in a state of decline, providing the algorithm
with a larger target sample. Secondly, the purpose-collected images had a spatial
resolution of 15 cm, as opposed to 30 cm for the off-the-shelf images available. Thirdly,
the off-the-shelf images had poorer spectral definition than the purpose-collected images.
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The figures below show the same healthy tree crown, as seen in the four bands (red, green,
blue, NIR) of the purpose-collected DMC images (on the left), and in the off-the-shelf
ADS100 images (on the right). The tree is bordered by vegetation on the left, and by a
road on the right. The histograms on the bottom show the distribution of the values in each
of the channels. It illustrates how the DMC images have a better contrast between crown
and background, and make better use of the full data range in their description of the
crown. The ADS100 data instead cluster in narrow data ranges.

Figure 14. Blue, Green, Red, and Near-Infrared views (clockwise from top left) of a single tree
crown, as described by the DMC images (two left columns) and ADS100 images (two right
columns).

Finally, the ADS100 data contained many more artefacts from acquisition and pre-
processing than the DMC data, which are practically free from artefacts.

During processing of the images of the entire buffer zone, the algorithm failed to calibrate
when areas were large and extremely few training points were available (AU_06, AU_07,
AU_08, AV_07, AY_07). In other areas, where the model did calibrate, it did not detect
any declining trees in the ADS100 images (AV_08 and AW_08).

In yet other areas, e.g. AT_06, which measures 488 km? in the north west of the buffer
zone, detections were made but not as efficiently as with the purpose-collected imagery;
selecting a probability cut-off of 0.75 ensures 91 % of the trees were correctly detected.
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Figure 15. As Figure 5.
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The selected cut-off probability was 0.75, with 91 % of the trees correctly detected. The
circa 900 declining crowns correctly identified outnumber the objects wrongly identified as
declining trees. This true-false ratio could not be further improved based on the sizes of
the objects, as both showed a similar distribution along an object-size gradient. In total,

2 882 trees were flagged as declining in this area, of which 855 were confirmed upon visual
inspection.

Figure 16. As Figure 6.
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A final visual inspection of the output in this area would have to reject circa 8 detected for
every 10 correct ones. If this ratio is to be brought down, smaller objects could be removed
from the output; however this will be at the cost of losing about a quarter of correct

detections.

For comparison, in the 4 269 km? AX_07 area in the south of the buffer zone, we finally
obtained lower rates of true positives to false positives, but had greater opportunity to
trade off detection probability and final visual inspection effort. For this chunk of data, the
selected cut-off probability was 0.95, which ensured 93 % of the declining trees were

detected.

Figure 17. As Figure 5.
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Figure 18. As Figure 6.
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Among the objects detected, false positive detections are particularly prevalent among
smaller sized objects. Consequently, rejecting these smaller objects (e.g. < 1 m?) would
eliminate circa 75 % of the false positive detections, but only 30 % of the true positive
detections. Should the analyses be continued into a new iteration to further calibrate the
model, this could be a good course of action.

Until then, for objects smaller than 1 m?, circa 4 wrong detections for every correct
detection need to be rejected during a final visual inspection, compared with a ratio of 17
to 10 for larger objects. Overall, 90 306 objects were flagged as declining trees in this
area, of which we estimate 23 014 are correct identifications.

Figure 19. As Figure 8.
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9 Mobile data exchange platform

We developed a mobile application (working title: TreeChecker) which facilitates the
exchange of remote sensing data, and results stemming from their analysis, and in situ
data collections. The application and its back-end are queued for a security assessment by
the JRC Local Information Security Officer (LISO), without which it cannot be released.

The application allows the interactive visualisation of remote sensing data hosted on a
server, and the download of these data to the device so that they can be shown in a
dynamic map, even when the device is offline. This feature is critical, as mobile networks
are often weak in remote areas. Data on individual trees can then be collected in the field
(including tabular data, free text, form data and photographs). The user can directly link
these data to what is seen in the images, or image-derived layers, meaning the geolocation
of the observation is not limited to the accuracy of the device’s positioning. Once the device
comes back online on a Wi-Fi network, the collected data are then automatically
synchronised with the server.

The platform can host data for different regions, which may correspond to different
quarantine pest outbreaks, and set which users have access to data from which regions.
This ensures that sensitive data (whether licensed remote sensing data or sensitive field
observations) can be protected.

Figure 20. Overview of navigation in the TreeChecker mobile application

Welcome!
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1. Entry point and log in 2. Management of AOI's 3. Data/Observations Management

The following describes use cases for the Treechecker application, and its main
functionality. It also describes the workflow of a user when interacting with the application.

The descriptions of the use cases consist of:

— A mockup of a mobile device for the different interactive screens envisaged in the final
application. Note that the application should function on multiple screen sizes.

— A context that explains through which screen and/or action the user has reached this
particular point in the workflow. The context can be considered as the pre-condition.

— A user-system interaction to describe in detail how the user can communicate with the
application.
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— A consequence to describe the final outcome(s) of the user-system interactions. The
consequence can be considered as post-conditions.

— Observations which provide additional information.

9.1 Installation

U9 04 us2a

Informacion de la ap...

Google Play Store

versién 7.3.07.K-all [0] [PR] 139935

Context:

— The user downloads and installs the application after searching by its name: Tree
Checker.

User-system interaction:
— The user locates the application.

— The user gets a short description of the application and additional metadata such as
developer, license, objectives and eventually user comments and user ratings.

— The user downloads and installs the mobile application on their terminal.

Consequences:

— The terminal shows an icon as a bookmark link that provides access to the mobile
application.

Observations:

— The mobile application is compatible with Android versions = 5.0.
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9.2 Authentication - Login Page
NPT

elcome to Tree Checker survey tool.

Log in

Context:
— The user has installed the application and has pressed the application’s icon.
AND

— The user explicitly accepts the terms and conditions for the mobile application (exact
wording to be provided by the JRC).

AND

— The user has selected the language for the application. English shall be provided as
the only option.

User-system interaction:
— The application presents the user with a login page.

— The user fills in the corresponding text boxes with personal info: email address and
password.

— The user presses the Log in button.

Consequences:
— The user is authenticated against the application.
— The user is ready to browse through different mobile pages.

— The user is permanently logged in to the application, meaning that login session does
not expire.

Observations:

— The user has internet connection.

— The mobile application does not offer options in multiple languages at present.
— The mobile application does not allow registration of new users.

— Only known pre-approved users can access the application.
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— Different permissions have previously been established for different users.

— If the user deletes local data in their mobile storage settings, they must re-enter their
credentials.

9.3 Visualisation of different screens

Explanation pages:

EEETYY N PTY I T X

First slide explaining Second slide explaining Third slide explaining
the Tree Checker tool the Tree Checker tool the Tree Checker tool
o == o) o b

Context:

— The user has entered their credentials on the login page and has pressed the Log in
button.

User-system interaction:
— The application presents the user with a sliding page (see Sequence of sliding pages).

— The user can browse from one slide to another by swiping their finger horizontally on
the screen.

— In future, the user can skip this initial explanation by clicking on the Skip button.

Consequences:

— The user reaches the first access point to the mobile application.

Observations:

— This page corresponds to a page slider in which the user can browse a few pages
visually describing the main functionality of the application.

— This page is shown when the application is opened for the first time after installation,
or when the user has clicked on the Info menu item in Menu View.

— Main menu contains a Help button.
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9.3.1 Sequence of sliding pages
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9.3.2 Select Geographical Zone (GZ) View

Select your region of interest

Context:
— The user has read the explaining pages or has skipped them.
OR

— The user has pressed the Select Area item in Menu view.

User-system interaction:

— The application presents the user with a page to select one of the geographical zones
(G2).

— Depending on user permissions, one or more GZs are available to explore.

— The user presses image-like button.

Consequences:
— The application goes directly to Select Area view to download images.

— The user selection is saved so it can be recovered in case of application closure/crash.

Observations:

— Interaction occurs with back-end via API. Available GZ for logged user is fetched from
the back-end. Per-user zone information is available even if offline. It is thus pre-
fetched when the user is logged in.

— Each GZ corresponds to different layers from a WMS service. The mobile application
displays a screenshot of the GZ.

— If the user has permissions to a GZ, its image-like button is enabled; if the user does
not have permission to GZ its image-like button is disabled.
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9.3.3 Select Area of Interest (AOI) View

Select your area of interest

g o ©

Context:

The user has selected a desired GZ.
AND

The user has internet connection.

User-system interaction:

The application presents the user with a page to create the area of interest (AOI) to
survey over a background image. The user can zoom the area to explore in the GZ.

The pre-selected area is shown as a blue coloured semi-transparent rectangle that
can be easily altered:

e using points to move the corners and change the extent around a central
point,

e by dragging the rectangle to move it.
The maximum size of the AOI should be at least 15 km?.
The user gives a name for the new AOI (e.g. AOI 01).
The user presses the Download button.

The application shows the progress of the download process.

Consequences:

The application redirects the user to the Menu view when the user presses the Menu
button.

The user can decide to select another AOI by clicking the Select Area item in Menu
view.
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The user can check all AOIs created by clicking on AOI List button (and eventually
delete them).

If the selected AOIl is larger than a predefined threshold, a warning message appears,
and images are prevented from being downloaded.

If no Wi-Fi connection is available, a warning message informs the user that
downloading is recommended over a Wi-Fi connection.

If offline, download is not possible, and a full screen message informs the user that
Wi-Fi connection is recommended to download images for the AOI.

Observations:

The application downloads images (background images and points from WMS server)
falling within the selected extent and makes them later available on the terminal
regardless of internet connection.

The application grabs additional information like AOI extent (BBOX).
Interaction with back-end via API is required.

e AOIs created by the logged in user will be fetched from the back-end to display
in AOI List View.

e The application will push AOI data to the server.

9.3.4 Select AOI - Part 1

vt User-system interaction:

g o ©

— The user selects the desired extent to explore by
Select your area of interest changing the blue coloured transparent rectangle,
zooming and/or moving it.

— The user presses the Next button to go to the next
view (Select AOI - Part 2).

— The user can press the Menu button to go to Menu
view.

— The user can press the AOI list button to go to AOI
List View.

— The user can press the Change GZ button to go to
Select GZ View.
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9.3.5 Select AOI - Part 2
[ v

Select your area of interest

9.3.6 Select AOI - Part 3
T

Please, name your area of interest (ACI)
and play download button:

Name:

User-system interaction:

The application displays the selected area as
described in the previous step.

The user presses the Next button to go to next
view (Select AOI - Part 3).

The user can press the Menu button to go to Menu
view.

The user can press the AOI list button to go to AOI
List View.

The user can press the Change GZ button to go to
Select GZ View.

User-system interaction:

The application displays a form with a text box.
The user names the created AOI.

The user presses the Download button to download
images from WMS servers falling within that area.
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9.3.7 Select AOI - Part 4

Please, name your area of interest (AOI)
and play download button:

Name:

Downloading images from the server. A
Wi-Fi connection would be desirable

LOADING...

User-system interaction:

— The application shows information about the
download process.

— The application redirects to AOI List View.
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9.3.8 AOI actions

Select your area of interest Select your area of interest Please, name your area of interest (AOI)
and play download button:

Name:

g @

Please, name your area of interest (AOI) My AOI list:

and play download button:

Name: Area 01 9: @ MI
Area 02 9: m1

Downloading images from the server. A
Wi-Fi connection is recommended

LOADING...
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9.3.9 AOI List view

T
My AOI list:
Area 01 q: @ Ml
Area 02 v: MI

Context:

— The user has clicked on the Area List button in (Data) List view.

User-system interaction:

— The application presents a list of all AOIs created and downloaded by the user in the
Select AQOI view.

— A box displays the number of survey data falling within that AOL.
— There is also a trash button to delete that AOI.

Consequences:

— The application provides a list of all AOI areas explored for a given GZ.

Observations:

— The user can delete AOI items created but cannot create one from this page. To
create a new AQI, they need to return to the menu.

— AOI data deleted in the application does not imply AOI data or survey data will be
deleted in the external database.

— Interaction occurs with back-end via API.
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9.3.10 Menu view

Details

Map / Survey

£,
Q

Data
Select Area

Help

Context:
— The user has clicked on the top left menu in Map view.
OR

— The user has clicked the settings button from Select AOI view, Profile, AOI List.

User-system interaction:
— The application presents the user with five clickable items:
e When the user clicks the Details item, the menu disappears to yield to Profile view.

e When the user clicks the Map/Survey item, the menu disappears to yield to Map
view.

e When the user clicks the Data item, the menu disappears to yield to Data view

(List View).
e When the user clicks the Select Area item, the menu disappears to yield to Select
AOQOI view.
e When the user clicks the Help item, the menu disappears to yield to explaining
page.
Consequences:

— The user can see (but not edit) information about their profile (as registered by
administrators).

— The user can see information about the AOIs they have downloaded when online.

— The user can see information about the data they have created during ongoing or
past surveys.
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— The user can see information about maps served through an embedded external WMS
service.

9.3.11 Menu actions

Courary/Region

Details

2
Map / Survey

Welcome User: Your Data

[« @& 90 -
Ol o R
Peenz @B 9O
o @ 9O
& [rrce G 9 o
[ W ) Select Area e e 1
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Help

Select your area of interest
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9.3.12 Profile view
[ 4o

User settings:

Name

Occupation

Country/Region

{} u

Context:
— The user has opened the main menu and clicked the Details item.

User-system interaction:
— The application presents the user with a Profile view.

— The user can slide through Profile view to see, but not edit, information about the

user:
e Name
e Email

e Occupation
e Country/Region
— The user can return to the menu screen by pressing Back button or/and Menu button.

Consequences:
— The application provides the user with information about their profile.

Observations:
— Items are not clickable. The user cannot change profile settings.

— Interaction with back-end via API is required.
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9.3.13 Map view (Survey view)

Context:

The user has selected an AOI and downloaded images for this area.
OR

The user has access to the Map view from different views: Menu view, List view and
Detail view (Data).

User-system interaction:

The application displays an interactive map centred either on the selected AOI or on
the location detected by the device’s GPS sensor (and/or other location detectors).

The user’s location and direction in the field is shown on top of the map with a
GPS/compass icon.

The user can browse through the map by touching the screen:
e one-finger or two-finger swipe to drag the map,
e two-finger pinch for zoom in/out.

The user can see the map legend and change the visibility of different layers by
clicking on the menu icon in the top right corner of the screen.

The user can re-centre the view on the location identified by the device by clicking
on the bottom right button.

The user can see the application main menu by clicking on the top left corner menu.

Consequences:

This is the landing page that the user arrives on when launching the mobile
application.
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— The user can navigate and zoom to the desired location, at several zoom levels, to

look for features or add new data.

images, if online):

— The application can display additional spatial information (on top of third-party

e WMS layer showing different layers (images + points),

e data layer showing the data recorded by the user.

Observations:

Map controls such as zoom in/out and drag are done using touchscreen gestures.

The application shows WMS images (background and point feature) as previously

downloaded.

The application shows red locator icons showing the data the user has recorded in
the area covered by the device screen. The data layer is not visible in the map in two
situations: 1) when the user has not yet created any data, and 2) when the created
data does not fall within the current map extent.

If no images fall within the user location and the user is online, OpenStreetMap is

shown.

This map view is available even if the user has no internet connection.

9.3.14

MY DATA
NDVI > 0.7
0.5 <NDVI<0.6

0.4<NDVI<0.5

’
y' a v . 0.3 <NDVI<0.4
v [ ovcos

#
& ‘ v BACKGROUND IMAGE
Vs SIrE

% f-

Map view actions: load legend and change layer visibility

User-system interaction:

The user clicks on the blue menu icon in the top
right in Map View.

The application automatically shows a floating
panel on the top right side with map legend
information. Basically, the legend shows the
various colours with the respective attributes for
WMS point features and user-created geodata on
top of the downloaded background images.

The user toggles the visibility of a layer (WMS
layer/data layer) by clicking on the checkbox for
the legend item.

The user clicks again on the top right menu icon to
make the legend panel disappear.

Observations:

Points are not clickable; the user cannot get
information about points beyond their legend.

Geodata (MY DATA in the legend) are clickable.
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9.3.15

Tree 01

9.3.16

Map view actions: load information by clicking on data icon

User-system interaction:
— The user clicks on a geodata icon.

— The application automatically shows a pop-up
message located around that pressed icon with the
name of the corresponding tree species.

— User can select another geodata icon.

— When another location with a MY DATA record is
pressed, a new pop-up message appears and the
earlier pop-up message disappears.

Observations:

— The user cannot get information about individual
points (circles in the mock-up) for which they have
not recorded data.

— Geodata are clickable.

Map view actions: go to Menu

Q

ra
<)

Details

Map / Survey

Data

Select Area

Help

O O

User-system interaction:

— The user clicks on the top left menu icon in Map
view.

— The application automatically shows the Menu
view.

— The user can recover the Survey view by clicking
on Map/Survey item.

Observations:

— See more information in Menu View.
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9.3.17 Map view actions: add data to survey

My data

Name

Tree Species

Photo

Comment

User-system interaction:

The user is browsing in Map view.
The user wants to create a geodata entry.

The user long-presses with their finger in the
location where the data should be assigned.

The application presents a form-based page with
various fields to be completed by the user.

The user enters the fields, with choices from
dropdown menus, options to take photographs
using the mobile device, and option to add free
text in the comment box, and presses the Save
button.

The application returns to Map View. Map view now
also shows the new georeferenced data record with
a red coloured locator icon.

Observations:

See more information in Create View.
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9.3.18 Data views (multiple): List view

Welcome User: Your Data
Tree 01 o ¥V O »
Tree 02 o v O »
Tree 03 o 9 X »
Tree 04 o § O »
Tree 05 e ¥ O »
Tree 06 % ¥ O »

(Aol st | [ Continue Survey |

Context:

The user has pressed the Data button in the main menu (Settings view).

User-system interaction:

The application presents a list of named items for all data the user has created (for
any geographical area).

The user can scroll through the list, if it extends beyond the screen, by sliding their
finger up and down.

The user can click on the first (i.e. left) icon for each item to see more information.

The user can click on the second (i.e. middle) icon for each item to go directly to a
map view centred on this data record.

The third (i.e. right) icon shows the user whether the data item is in sync with the
back-end.

The user can click on Continue Survey button and go to Map View.
The user can click on AOI List button and go to AOI List View.

Consequences:

The user can see all in-situ data they have created on this screen.

The user can get more information on individual data entries by clicking on the first
icon.
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The user can go directly to a map view of any data record by clicking on the second
icon.

The user can check whether a data entry is in sync with an external server.

Observations:

Items created by the user are stored in the local storage.

Interaction with back-end via API is required. In case of no connectivity, all survey
data will be pre-fetched via API after the user logs in, and displayed with sync status
when List view is loaded.

If online, data synchronisation with the external server should take place in the
foreground. If offline, data synchronisation is not achieved.

Each item is shown with the name given to it by the user in Edit View.

Interactions via API, such as pushing newly created survey data and pulling/fetching
survey data from the server when online.
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9.3.19 Data views (multiple): List view - Actions

[ v
Welcome User: Your Data

Tree 01 s'o %) C >
Tree 02 e VY O »
Tree 03 o 9 O
Tree 04 e v O »
Tree 05 o ¢ Q
Tree 06 o 9§ O »

((aor st ] [ Continue Survey |

EEEECENCEN . ...
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My data :Tree 01

Tree Species
Crown Diameter
Canopy status

Tree 01

Healthy

Comment

Delete

B ...

Map view

v
My data :Tree 01

Name Tree 01
Tree Species Acacia
Crown Diameter 6.85
Canopy status Healthy
Comment
Delete



9.3.20 Data views (multiple): Create view

My data

Name

Tree Species

Crown Diameter :
Canopy status :

Photo

Comment

Context:

The user is browsing the map and wants to create a data item in the desired location.
AND

The user has long-pressed with their finger in that location.

User-system interaction:

Application presents a form-based page with various fields.
The user fills the various form fields.

Both Tree Species and Comment are text boxes that the user can fill freely. When
the user enters text in the Tree Species field, the application provides auto-complete
suggestions.

Photo button allows the user to either go to Camera to take picture(s) or go to User
Photo Gallery to select a photo there. After selection, a thumbnail for the image is
attached and, if desired, the user can add more images.

Crown Diameter and Canopy status are select boxes with predefined values and, if
pressed, a full-screen view with a list of possible values is displayed. After selection,
the system is backed to edit the form.

Consequences:

When the Save button is pressed, data is stored locally on the mobile device.

The application redirects to List view, with the message ‘Your data was correctly
saved’.

Data synchronisation with the external server is achieved only when Wi-Fi
connectivity is available.
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e Once data is uploaded to the external server, the system will present the data
item in the List view with a synced icon.

e If data is stored but not yet uploaded, the system will present the data item
in the List view with an unsynced icon.

— The application captures additional information:
e creation date timestamp (DD:MM:YY - hh:mm:ss),
e spatial coordinates for the location pressed (longitude/latitude),
e compass direction for the user location (degrees relative to north),

e internal identifier for the recorded item.

Observations:

— Only the name attribute has a default value: Tree XX where XX is an auto-incremental
value when subsequent data are created. User can decide whether to change this
when creating or updating the data.

— Except for the Comment field, all information fields in this form are compulsory.

9.3.21 Data views (multiple): Create view - Actions

T
510
535

Ny data

Healthy
hama b
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9.3.22 Detail view

My data :Tree 01

N Y " \
e
Go to Map
Name Tree 01
Tree Species Acacia
Crown Diameter 6.85
Canopy status Healthy

Photo Comment

Context:

The user has clicked on the Edit button within the Detail view.

User-system interaction:

The application presents a list of changeable items for all data as created by user.

The user can click on the corresponding attribute fields: Name, Tree Species, Crown
Diameter, Canopy status.

The user can click on the photo box.
The user can click on the Comment field.
The user can click and move the red pin in the top browsable map.

The user can click on the Save button to save changes in Edit view.

Consequences:

The user can see on the screen all the data recorded in situ for a given location.

The application displays an Edit form, allowing the user to change the attributes
registered for the location.

The application displays a Select form for changing Crown Diameter and Canopy
status (see Create View).

The application displays the camera options, to change photo or upload a new one.

Observations:

58




— When changes are made in individual Edit/Select forms, the application goes to Edit
view.

— When changes are saved by pressing the Save button, the application goes to List
View, with the message ‘Your data were correctly modified’.

— The application retains additional information about modification and stores the date
and timestamp of the update (DD:MM:YY - hh:mm:ss).

9.3.23 Delete view
My data
Are you sure to delete this data Tree 01 ?
Context:

— The user has clicked on the Delete button within the Detail view.

User-system interaction:

— The application presents an information message, asking them to confirm deletion of
the recorded data item.

— The user can click on Yes button.

— The user can click on No button.

Consequences:
— When No button is pressed, the application takes them to Edit view.

— When Yes button is pressed, the application takes them to Detail view.
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9.4 External server

The application is a survey tool, to both visualise external background images and to create
and manage georeferenced data from different users. All data created are stored locally on
the user device, to reduce dependence on network connection during data collection. Once
an internet connection is available, the data are synchronised. This synchronisation
includes the uploading of all data collected to an external server.

The mobile application currently displays pages only in English but the development should
have potential to jump to multilingual later.
9.4.1 Data typology in application workflow

The data collected, as well as all other information, will eventually be stored on an external
server, not only for proper functioning of the application itself, but also for further
processing tasks and analysis.

User permissions allow the user to visualise different spatial layers, called geographical
zones (GZs) throughout this document. Depending on a given user’'s membership of pre-
defined user groups, they can access the content of one, several, or all available GZs.

After login, the application should display the information the user has provided for:
— geographical zones, available according to the user’s role/group,

— area of interest created by the user when online,

— survey data created by the user (for that particular AOI) in the field.

For a given GZ, the user can access, download and query distinct areas of interest (AOIs).
For a given GZ, the user can manage all AOIs downloaded. For each AQOI, the user can
create new survey data from the application’s Map view, as well as manage data created
in previous survey sessions from the application’s List Detail views.

All this information and settings should be:

— fetched/pulled from the external database to be correctly displayed and managed by
the application for all different logged in users,

— sent/pushed to the external database when the user selects/creates/modifies/deletes
any of those pieces of information.

The types of information (typology) to be saved in the remote database encompass:
— users

— geographical zones

— areas of interest

— survey data

— data label (Tree species, Crown diameter, Canopy status)

— photo.

Users

Relevant data to be saved (minimum):
— user_id

— hame

— username

— password
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— email address
— occupation
— country

— language

Groups/Roles

Relevant data to be saved (minimum):
— group_id
— group_name

— role

Country

A list of all countries that encompass the geographical zones. These will be identified by
country code; for instance, ES = Spain, IT = Italy.

Geographical zone (GZ)

Relevant data to be saved for each accessible GZ (minimum):

— gz_id

— gz_name

— country

— layer_name

— wms_url

— proj

‘layer_name’ is the name of the layer as published on the WMS server.
‘wms_url’ is the URL to access the WMS server.

‘proj’ is the projection of the layer.

Observation: GZs are connected to the Group table through an M2M relationship.

Area of interest (AOI)

Relevant data to be saved for each AOI created by the user (minimum):
— aoi_id

— aoi_name

— Xmin

— Xmax

— Ymin

— Ymax

— gz_id

— creation_date

— is_deleted
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‘aoi_name’ is auto-generated by the application (e.g., AOI-01), but can be changed by the
user during AOI creation.

*Xmin’, *Xmax’, ‘Ymin’, ‘Ymax' is the BBOX for the area the user wants to download. Units
are related to the projection of the GZ.

‘creation_date’ is the date timestamp for the AOI (format: DD:MM:YY - hh:mm:ss).

‘is_deleted’ is a Boolean variable that indicates whether an AOI has been deleted by the
user.

‘gz_id’ refers to the GZ associated with that AOIL.

Tree species
— tree_specie_id
— tspec_name

‘tspec_name’ will be from a list of pre-selected names for tree species, to be provided by
the JRC. The application uses this list to provide the user with auto-complete functionality,
when the Tree Species field is filled out in Data Create view. Additional data can be added
by users through the application.

Crown diameter

— crown_diameter_id
— cdiameter_name

‘cdiameter_name’ will be numerical values between 0.1 m and 30 m, with 0.25 m
increments.

Canopy status

— canopy_status_.id
— cstatus_name

‘cstatus_name’ can only be these text values: Healthy, Stressed, Sick, Dead.

Photo

— photo_id
— sd_id

— compass
— longitude
— latitude

‘sd_id’ refers to the survey data table. More than one photo can be associated with a given
record in the survey data.

‘longitude’ and ‘latitude’ is the pair of spatial coordinates that determine the geolocation of
a point in relative projection. These are detected by the mobile terminal, with precision of
up to six decimals.

‘compass’ is the orientation of the geolocated photo, relative to north (perhaps in a
metadata jpg file).
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Survey data (SD)

Relevant data to be saved for each SD created by the user in a survey session:
— sd_id

— sd_name

— tree_specie_id

— crown_diameter_id
— canopy_status_id
— comment

— aoi_id

— gz_id

— user_id

— creation_date

— update_date

— longitude

— latitude

— compass

— is_deleted

“sd_name” would be auto-generated by the application (e.g., Tree-01), but can be changed
by the user during SD creation.

‘comment’ will be text filled by the user, in the form displayed in Data Create view.
‘crown_diameter’ and ‘canopy_status’ will be one of the following multiple-option values:

— Crown diameter — numerical values between 0.1 m and 30 m, with 0.25 m
increments,

— Canopy status  — text values: Healthy, Stressed, Sick, Dead.
‘tree_specie_id’ refers to the tree species covered by this SD.

‘photo’ refers to image/images (jpg); the value is the path to the image saved on the
server.

‘aoi_id’ refers to the AOI with which this SD is associated.

‘gz_id’ refers to the GZ with which this SD is associated.

‘user_id’ refers to the user who created the SD.

‘creation_date’ is the date timestamp for the SD (format: DD:MM:YY - hh:mm:ss).
‘update_date’ is the date timestamp for the SD (format: DD:MM:YY - hh:mm:ss).

‘longitude’ and ‘latitude’ is the pair of spatial coordinates that determine the geolocation of
a point in relative projection. These are detected by the mobile terminal, with precision up
to six decimals.

‘compass’ is the orientation of the user device. Units are degrees relative to north.

‘is_deleted’ is a Boolean variable that indicates whether an SD has been deleted by the
user.
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9.4.2 Data storage

All these data are saved in permanent storage such as a relational database management
system, essentially PostgreSQL or MySQL. All pieces of information should be stored in
various tables inside a database, maintaining the correspondences between them, to
guarantee the integrity and updating of those data. No database schema is imposed, but
we can at least state that it could contain the following tables:

— USER

— GROUP

— COUNTRY

— GEOGRAPHICAL_ZONE
— AREA_OF_INTEREST
— SURVEY_DATA

— TREE_SPECIES

— STATUS_CANOPY
— CROWN_DIAMETER
— PHOTO

— METADATA

9.4.3 Application-server communication

Communication between the mobile application and the external server is done via HTTP
protocol. Data coming from the server will be managed by the application for different
purposes, basically editing and visualisation.

Spatial layers, referring to spatial data such as background images and points (GZs) are
published on WMS servers and are accessible via HTTP endpoints.

To establish communication between the mobile application and the available external
server, a REST API (Representational State Transfer / Application Programming Interface)
should be implemented, to be consumed by the mobile application. The mobile application
will act as consumer of the API, connecting transparently (push/pull) to objects on the
server via HTTP in order to perform create, update and delete (CRUD) operations on data.
This process should ensure synchronisation between the client device and the remote
server.

It should be pointed out that permanent network connectivity is required to push data to
the remote server/pull data from the server. The mobile application should be aware of
this limitation, pre-fetching data needed to be completely operational during application
usage. Business logic should be correctly implemented to only select AOI images when the
terminal is online, and to be available when the user is not online and entering survey
data.

Both user profile information and user permissions have been stored to guarantee that a
certain number of users can log in and access relevant information. An authentication
mechanism should be implemented; for instance, tokens or sessions via API to authorise
access to the various content.

This REST API should be well documented, providing among other things information about
URL endpoints, CRUD type operation on different data, HTTP verbs to access/modify
resources on demand, and output format.

The following collections could be defined (minimum):
— gzone: geographical zone

— aoi: area of interest
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— sdata: survey data
— user: user

— label: label

— photo: photo

— settings: settings

If we hold Tree-checker as the domain name for the external server, the following would
be an example of some possible endpoints:

— for ‘gzone’ collection

HTTP

verbs Description Output

URL endpoints CRUD

http://domain/gzone/<gzone id> | Read | GET gzone_id is the unique JSON
identifier of the
geographical zones you
want to retrieve

Return gzone with the
specified gzone_id, or
else 404 response

http://domain/gzone Read | GET Return a list of JSON
geographical zones

— for ‘aoi’ collection

URL endpoints CRUD AU Description Output
verbs

http://domain/aoi/<aoi id> Read GET aoi_id is the unique JSON
identifier of the AOI
you want to retrieve
Return AOI with the
specified aoi_id, or else
404 response

http://domain/aoi Read GET Return a list of AOI JSON
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— for ‘sdata’ collection

HTTP

URL endpoints CRUD
verbs

Description Output

http://domain/sdata/<sdata id> | Read GET sdata_id is the unique GeoJSON
identifier of the sdata
you want to retrieve

Return sdata with the
specified sdata_lid, or
else 404 response

http://domain/sdata Read GET Return a list of sdata GeoJSON

http://domain/sdata/<sdata id> | Create | POST | sdata_id is the unique | GeoJSON
identifier of the sdata
you want to retrieve

Return 201 response
with sdata with the
specified sdata_.id
created

http://domain/sdata/<sdata id> | Update | PUT sdata_id is the unique | GeoJSON
identifier of the sdata
you want to update

Return sdata with the
specified sdata_.id, or
else 404 response

http:/domain/sdata/<sdata id> | Delete | DELET | sdata_id is the unique | GeolSON
E identifier of the sdata
you want to delete

Return 404 response if
sdata_id does not exist

— for ‘user’ collection

URL endpoints CRUD AL Description Output
verbs

http://domain/user/<user id> Read GET user_id is the unique JSON
identifier of the user
you want to retrieve
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Return user with the
specified user_id, or
else 404 response

9.4.4 Remote Server and deployment

CentOS is the operative system used in our back-end servers to deploy various Python-
based solutions and web applications.

This external server should be live and will act as a web server to deliver web services
through API, as outlined in this document.

These are the components of the system to be provided as a final product:

— database schema,

— REST API,

— source code for the mobile application.

A script or other utility tool should be provided for the deployment of this infrastructure.
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10 What to consider when developing similar systems

10.1 Every case is different

When thinking about remote sensing-based support for tree pest management, it is crucial
to recognise that every case is different and there is no ‘one size fits all’. In the case of
the pine wood nematode, the timing of image acquisition is critical as it links to the biology
of the species, and the timing of required intervention. The aim of identifying individual
trees, rather than stands of trees, dictates the image required. The fact that trees with
obvious visible signs of decline, regardless of the cause, needed to be detected made high
spectral resolution less important and meant that 4-band broadband sensors should be
suitable, particularly given the size of the area. These considerations - and the associated
trade-offs - differ between pest outbreaks, and recommendations should therefore be
made on a case-by-case basis. The following is true where individual trees with canopies
in clearly declining health need to be detected.

10.2 Platform choice

The need for individual tree detection limits the choice of platforms from which data can
be used, as it constrains spatial resolution. None of the satellites from the Copernicus
programme, for example, provide images at high enough spatial resolution to distinguish
individual trees. Some commercial satellites do acquire images with the necessary
resolution, but for large areas, their cost is on a par with airborne campaigns. Moreover,
they tend to have less flexibility in deployment than aircraft, as one depends on satellite
overpass time and competitive scheduling between acquisition needs.

The acquisition of orthophotos from aircraft has a history going back further than that of
satellite-based imaging. As historically such photographs were used for visual rather than
quantitative analysis, orthophotos, unlike passive optical satellite images, are rarely
processed to express physical units such as surface radiation or surface reflection, which
hampers their automated analysis.

More recently, drones have gained a lot of attention for image acquisition; however, their
autonomy, and particularly the legal restrictions on their deployment, means they are not
yet suitable to collect imagery over very large areas.

Smallsats provide a new platform for image acquisition; they rely on off-the-shelf
technology to keep the cost of individual satellites down, and on mass deployment to
ensure short revisit times. However, their cost savings on the instrumentation side mean
that, for the time being, their geometric and spectral accuracy remains low.

In the coming decades, it is likely that high altitude pseudo-satellites will provide an
additional unmanned platform for high-resolution image acquisition.

10.3 Metadata matters

There are a number of opportunities to take aerial photographs, as they are commonly
acquired during photogrammetric campaigns, which are more useful for plant health
monitoring. Historically, photogrammetric campaigns aimed to generate large-image
mosaics to assess the state of the landscape or territory in a given period. Hence, such
collections are referred to by the year of acquisition (e.g. [13]). To assess plant health
status, more temporal detail is however required; phenology is very important to both pest
biology and the assessment of plant health, particularly for deciduous trees, but also for
non-deciduous ones. Moreover, this time-variant role in biological process is closely
intertwined with opportunities for pest management efforts. The timing of the data
acquisition should thus strike a balance between the optimal date for measurement based
on epidemiology and physiology, and maximum usefulness for phytosanitary interventions,
also allowing enough time for image processing and analysis.
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When acquiring large collections of orthophotos, it is important that the acquisition date
and time be included in the metadata, ideally on a per pixel basis. In the ADS100 data
acquired for this project, the metadata corresponded instead to the original flight lines
from which data were drawn for the final image mosaic, and contained the start and end
date and time for each flight line.

Standard photogrammetric cameras have only four broad bands; when deployed in a
purpose-designed campaign, this proved sufficient to detect obvious signs of decline in
coniferous trees. As a general rule, automated algorithms analysing such images will not
detect features that cannot be distinguished by the human eye in three-band composites
made from these images. In many other pest management settings, it is paramount that
much earlier stages of decline, indicating potential infection rather than suitability for the
vector, are detected. In such cases, photogrammetric cameras are not adequate for the
task, and hyperspectral cameras, or multispectral cameras with a carefully selected
bandset, should be deployed [14].

Analysis of very high resolution images over large areas requires human resources
combining expertise in remote sensing, big data handling, and plant health. Furthermore,
adequate computational resources are required, so that data can be analysed quickly
enough for the results to be relevant and timely enough for interventions on the ground.
In most scenarios, such analysis greatly depends on the quality and availability of detailed
georeferenced ground observations for calibration and validation of results.

Recent developments in image analysis techniques include methods that harness deep
learning neural networks, such as TensorFlow developed by Google, to detect objects in
images. These machine learning techniques can be powerful with sufficient training, which
can be expedited by ‘transfer learning’, where a neural network for a new task leverages
networks performing similar tasks. Several deep learning neural networks are available as
open source libraries and will gain traction for image analysis over the coming years.

10.4 Non-image data

Remote sensing analysis is unlikely to replace field and laboratory inspections for pest
management in the foreseeable future. Instead, it is important that these different data
sources are analysed in conjunction. In the scientific world this is commonly done, or even
expected, through coordinated field and airborne imaging campaigns. Coordination and
data flows between field, laboratory, and remote sensing operations will greatly improve
the contribution of the latter in any operational deployment of remote sensing in plant
health management.

10.5 Making use of existing data

10.5.1 Orthophoto archives

Particularly when using spectrally poor data, such as orthophotos, it is crucial to fully
exploit the temporal dimensions of the data, when available, to overcome some of the
shortcomings of the single-date imagery. In this project, for example, we used older
orthophotos together with the newer ones, to detect areas that had recently been logged
or planted (and were not distinguished as such in the land cover maps). These detections
allowed us to mask such areas from analysis, as they are highly unlikely to contain fully-
grown crowns. This masking allowed the image classification algorithms to be trained more
quickly, as they did not have to ‘learn’ to distinguish such areas as not containing declining
trees. As alternatives, LIiDAR datasets - where available, up-to-date, and sufficiently
detailed - could be used to distinguish areas with and without trees, or even individual tree
crowns.

10.5.2 Land cover maps

High resolution land cover maps can perform a similar function, allowing remote sensing
analysis to focus on areas of interest and ignore those that do not contain the host species

69



of the pest in question. Land cover maps are not always up to date. However, they are
usually younger than trees with fully developed crowns, meaning they can be relied upon
to identify areas with mature forest, but might not distinguish recently cleared or replanted
forests.

10.6 New generation of image analysis algorithms

A new generation of deep learning algorithms is providing new opportunities to accelerate
and generalise image analysis algorithms. At the end of the project, we performed tests
with neural networks to detect declining trees in the multispectral images (15 cm DMC)
acquired over the study area. We chose and implemented a neural network based on
instance segmentation, which combines object detection and pixel-wise segmentation to
not only detect specific objects in an image, but also to outline them individually.

We used a training dataset of 350 crowns, detected in different zones of the study area
through the methods described in this report. We trained the neural network through
80 epochs of 50 iterations each (where an ‘epoch’ describes the number of times the
algorithm has seen the entire dataset and an ‘iteration’ describes the number of times a
sample of the data passes through the algorithm). This model training phase was fairly
limited, as the loss function indicated that model performance would improve with more
epochs and iterations. Nonetheless, preliminary results show near-complete detection and
delineation of known declining trees, and a very low false positive rate, in par with those
achieved at the end of the MaxEnt iterations (with cases mainly occurring in bare soil areas
with similar spectral characteristics to the declining crowns). Based on these preliminary
results, further research is ongoing into the use and development of this new generation
of image analysis algorithms for plant health applications.
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Figure 21. A subset of declining tree crowns, as detected and outlined using a neural network
based on image segmentation and trained on the 15 cm aerial photographs acquired in the Castelo
Branco area in November 2016
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11 Meetings
The CanHeMon work was presented at multiple internal and external meetings, including:

— October 2015: EFSA's Second Scientific Conference - ‘Shaping the Future of Food
Safety, Together’, Milan, Italy

— March 2016: DG SANTE - JRC CanHeMon progress meeting
— May 2016: First meeting of the EC Expert Group on Forest Health and Pests

— June 2016: Standing Committee on Plants, Animals, Food and Feed, section Plant
Health

— March 2017: DG SANTE - JRC CanHeMon progress meeting

— April 2017: ICNF Portugal - JRC meeting about CanHeMon, Lisbon, Portugal
— May 2017: JRC - Forest Europe meeting, Ispra, Italy

— May 2017: MAGRAMA Spain - JRC meeting about CanHeMon, Madrid, Spain

— May 2017: Unmanned Aircraft Systems for Remote Sensing Conference, Hobart,
Tasmania

— June 2017: JRC - University of Birmingham meeting on forest monitoring, Ispra, Italy

— June 2017: Standing Committee on Plants, Animals, Food and Feed, section Plant
Health

— August 2017: JRC - European Forest Institute meeting, Bonn, Germany
— December 2017: Visit from Commissioner Andriukaitis to the JRC, Ispra, Italy
— February 2018: COST Action ES1309 OPTIMISE Final Conference, Sofia, Bulgaria
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