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Abstract
A reliable supply of water to communities, industry and agriculture is crucial for a
healthy population, and a successful economy. Long-term management of water re-
sources poses significant challenges for decision makers due to uncertainties. Natural
variability in hydrological processes, as well as future changes in climate, land use,
demography and other socio economic factors are placing increased pressure on water
resources and pose a threat to water security.

The release of probabilistic climate information, such as the UKCP09 scenarios,
provides improved understanding of some uncertainties associated with climate
model projections. This has motivated a more rigorous approach to dealing with other
uncertainties in order to understand the sensitivity of investment decisions to future
uncertainty and identify adaptation options that are as far as possible robust.

To understand the implications of this range of uncertainties, a novel integrated
systems model has been developed that couples simulations of weather under current
and future climates, catchment hydrology, and the water resources system. This
systems model was used to assess the likelihood and magnitude of water scarcity.
Uncertainty and sensitivity analyses were undertaken to assess the implications
of uncertainties on water scarcity, and to subsequently identify water resources
management options that are robust to these uncertainties. The integrated systems
model has been applied in the Thames catchment which supplies the city of London,
UK. This region has some of the lowest rainfalls in the UK, the largest and fastest
growing population, and is therefore particularly sensitive to water availability.

Results indicate that by the 2080s, when accounting for all uncertainties considered
here, there may not be a considerable change in total amount of rainfall relative to
the control period (1961-1990). However as a result of an increase in temperature,
the annual mean PET is expected to increase by 26.6%. Based on the results, a 24.0%
and 1.3% reduction in annual mean daily flow and subsurface storage are projected to
occur in the Thames catchment respectively. Moreover, a 1083.0% increase in the total
number of drought days relative to the control period (1961-1990) is expected under
current population and climate trends by 2080s.

Water scarcity in London is most sensitive to climate and population change, and
so investment in monitoring to reduce these uncertainties would help improve the
robustness of investment decisions. A portfolio of adaptation measures, that includes
a combination of desalination plant with capacity of 150 Ml/d, constructing a new
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reservoir with 100 Mm3 capacity and 40.0% reduction in leakage, is required to
reduce the drought risks. However, sensitivity testing shows that measures taken to
reduce per capita water demand are more robust to future uncertainties than major
engineering interventions.
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Chapter 1

Introduction

This thesis shows how uncertainty and sensitivity analysis can be used to make more
robust decisions about water resources. A methodology is developed to create an
integrated systems’ model that couples simulations of weather under current and
future climates, catchment hydrology and the water resources system. This systems’
model is used to assess the likelihood and magnitude of water scarcity. Uncertainty
and sensitivity analyses are undertaken to assess the implications of uncertainties
on water scarcity, and to subsequently identify water resources management options
that are robust to these uncertainties. The method is demonstrated on the Thames
Catchment which supplies the city of London, UK. This region has some of the
lowest rainfalls in the UK, the largest and fastest growing population, and is therefore
particularly sensitive to water availability. This introduction sets out the rationale, aim
and objectives of this work.

1.1 Background

Climate change affects the whole world and in the coming decades hotter, drier
summers, wetter, colder winters, degraded water quality and higher sea levels are
projected. The impact of climate change on increasing the frequency and intensity
of extreme weather incidence, floods and drought, creates a global threat to water
resources which should be dealt with equally. A reliable supply of water to commu-
nities, industry and agriculture is crucial for a healthy population, and a successful
economy. It has been reported by World Economic Forum (2016), that the water crises
will be one of the most ”impactful” global risks for years to come. By definition,
global risk is considered to be a cluster of uncertainties which when occur can affect
regions, countries or vast populations within the next decade. According to the
predictions by World Economic Forum (2016), water crises can effectively lead to a
large displacement of populations against their will, social instability in the destination
of immigration, shortage of food supply (agricultural production), creating obstacles
for future urbanization and also creating health risks (e.g. outbreak of deadly diseases).

1



Reports indicate that almost one billion people do not have access to clean water and
nearly 40% of people in the world do not have access to water for one month every year
(WEF 2016). These examples show that the water crises is not only a problem of future
but also a current global threat. Given these threats (which potentially can turn into
devastating trends in the long term) it will become nearly impossible to live without
effective water management plans. Long-term management of water resources poses
significant challenges for decision makers due to a range of uncertainties. Natural
variability in hydrological processes, as well as future changes in climate, land use,
demography and other socio economic factors are placing increased pressure on water
resources and pose a threat to water security.

Effective management of water resources requires a long-term perspective (Hall
et al. 2012). This necessitates consideration of future uncertainties such as the impacts
of climatic and non-climatic drivers e.g. change in population, land use, demand
and technology. Due to these broad uncertainties and the difficulty in representing
and modelling the real world, the accurate prediction of climate change impacts is
extremely challenging. Wilby and Dessai (2010) describe this process as creating a
”cascade of uncertainty” which shows the aggregated uncertainties inherent in the
modelling process. Each step in the analysis from predicting future society, greenhouse
emission scenarios, global and regional climate change, local climate impact models
through to adaptation strategies, are not only affected by uncertainty from preceding
steps but also add new uncertainties into the analysis.

Another challenge to long-term management of water resources is the slow re-
sponse of the system to policies. Water companies are globally under pressure
to improve their management framework used for decision making to identify the
most reliable and cost-effective water management options to tackle uncertainties.
Although, there are many efforts to account for the future uncertainty in water
resources management plans, still it is not clear to what extent these frameworks may
be effective.

Uncertainty estimation is important for future predictions of climate change and its
impact on water resources management, future global policies and capital investments.
Uncertainty analysis has valuable implications for policy makers and managers of
environmental systems. In another word, having the knowledge of these uncertainties
can help to accurately improve the robustness of investment decisions and reduce the
risk of failure in tackling water shortages.

1.2 Challenges for Thames catchment

The Thames catchment, located in south east of the UK, supplies water for the city of
London. This region has unique conditions including the lowest rainfall in the UK,
the largest and fastest growing population, making it extremely sensitive to water
availability. This region also plays a very important role in the economy of the UK,
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as well as internationally (Wade, 1999). Historically, this region was rich in natural
resources such as water to sufficiently meet demands. However, as a result of climate
and demographic change, this region has been classified as a seriously water stressed
part of UK (Defra 2008). The projected increase in temperature, change in rainfall
patterns, land use change, demographic and economic shifts may increase the demand
for water and put more pressure on water resources in this area (UKCIP 2008; WWAP
2009). Hence, due to large uncertainty and inability in precisely modelling the real
world conditions in this region, managing water resources in Thames area has become
challenging for both water companies and decision makers making it a significant and
highly suitable location to trial the new approaches.

The projected reduction in water availability emerges from comprehensive studies
to understand to what extend the water resources is affected by hydrological char-
acteristics of Thames basin (Diaz-Nieto & Wilby 2005, Manning et al. 2009). During
last few decades a number of studies have been conducted to investigate the impact
of climate change on water resources and to address the uncertainty based decision
makings in this region (e.g. Wilby & Harris 2006; New et al. 2007; Manning et al.
2009; Brown & Wilby 2012; Matrosov et al. 2013; Borgomeo et al. 2014; Walsh et al.
2016). These studies used different methodologies to assess the sustainability of
water resources in this area. For instance, Wilby and Harris (2006), New et al (2007)
and Manning et al (2009) used probabilistic frameworks to assess uncertainties in
climate change impacts on River Thames flow projections. As noted by Wilby and
Harris (2006), low flows in Thames catchment are more sensitive to climate change
scenarios and downscaling of Global climate Models (GCM), rather than hydrological
model parameters and choice of emission scenarios. In addition, New et al (2007)
illustrated that the information from probabilistic approaches are suitable for risk
based adaptation assessments and different approaches for probabilistic analysis may
lead to different risk based decisions. Manning et al (2009) projected a reduction in
future water availability in this catchment and noted different downscaling methods
may lead to different flow predictions, which originated from their difference in
predicting Potential evapotranspiration (PET).

In this study, to understand the implications of the range of long-term uncertainties,
a novel integrated systems model is developed that couples simulations of weather
under current and future climates, catchment hydrology, and the water resources
system. Different to previous studies, a spatial weather generator and a physically
based spatially distributed hydrological model are used to better represent both the
climatological and land cover heterogeneity of the catchment. This, then, is coupled
to a rule-based water resource model in order to simulate the water availability and
frequency of water shortage in the catchment. This integrated systems’ model is used
to assess the likelihood and magnitude of water scarcity. Uncertainty and sensitivity
analyses are undertaken to assess the implications of uncertainties on water scarcity,
and to subsequently identify water resources management options that are robust to
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these uncertainties.
This integrated systems’ model is applied in a real-world water resources man-

agement case study of the Thames catchment, however it can be implemented for
catchments nationally and internationally. In addition, the presented integrated model
can be adapted to incorporate other weather generators, hydrological models and
water resources models.

1.3 Aim and objectives

The aim of this research is to provide insights into uncertainties in long-term manage-
ment of water resources to enable more robust planning and decision making. The
method will be demonstrated on the Thames catchment, a region which is pressured
by population growth, climate change and other socio economic drivers. This aim will
be achieved through the following objectives:

1. Develop a systems’ model that couples rainfall, catchment hydrology, water
resources and consumption for the Thames catchment.

2. Identify and quantify key uncertainties in long-term water resources manage-
ment.

3. Test a range of adaptation options and assess their robustness to these uncertain-
ties.

4. Stress test the system model to analyse the impacts of uncertainties and sensitivi-
ties of water resources in the Thames catchment.

1.4 Thesis outline

This thesis contains 7 chapters, including this introduction chapter.
Chapter 2 provides an overview of the research literature related to this study. It

discusses the impacts of climate change, globally, and in the UK, and to address the
Objective 2, various sources of uncertainty in managing water resources. Furthermore,
a range of models used for simulating future climate, river flows and available water
resources are also discussed in this chapter. This is followed by the potential methods
and approaches used for handling uncertainty and decision making under uncertainty.
The uncertainties in long-term management of water resources are quantified in
subsequent chapters.

Chapter 3 presents a novel integrated systems framework to assess the implications
of long-term uncertainties in water resources management which addresses Objective
1. This chapter also introduces a real world case study of the Thames catchment.
It is also describes the UK Climate Projections (UKCP09) Spatial Weather Generator
that provides time series of rainfall and PET. This is coupled with a physically based
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hydrological model of SHETRAN that simulates river flow in the catchment and drives
a rule-based water resources management model of LARaWaRM which quantifies
resultant daily water availability of the system. Both models are described in detail.

Chapter 4 discusses climate change impact assessment on meteorological and hy-
drological characteristics of the Thames catchment. This is followed by the projection
of the future change in total reservoir storage, frequency of drought days and testing
different demand and supply adaptation options to tackle water shortage in 2020s,
2050s, and 2080s. This chapter addresses Objectives 1 and 3.

Chapter 5 presents the uncertainty and sensitivity analyses to assess the impact of
uncertainties and sensitivities of water resources in Thames catchment. This chapter
discusses the impacts of different land use, demand, leakage and population change
scenarios on total reservoir storage and frequency of drought days in the catchment.
This chapter addresses Objective 4.

Chapter 6 discusses and analyses the implications of the results presented in
Chapter 5. This chapter presents two combinations of uncertainties that are at the
low and high plausible extremities of water availability. The robustness of different
adaptation options, under current and future climate changes, against these extremities
are considered. Sensitivity testing of the water resource model is also used to help
explain the results. This chapter also addresses Objective 4.

Chapter 7 reflects on the main conclusions of this study, considering its limitations
and setting out future research challenges.
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Chapter 2

Literature Review

2.1 Background

2.1.1 Global impact of climate change

Climate change affects the whole world and over coming decades hotter, drier
summers, wetter, colder winters, a reduction in water quality and an increase in sea
levels are projected. Moreover, the impact of climate change on water availability
makes it a serious threat to water resources which should be dealt with equally
seriously.

Over the last quarter of a century the global average temperature has increased by
0.2 ◦C per decade (Jenkins et al. 2009). This rise in global temperature is mainly caused
by the increase in the emission of greenhouse gasses from human activities, such as
burning fossil fuels (Stott et al. 2000, IPCC 2007, Jenkins et al. 2009).

Based on reports, 2015 and 2016 were the warmest years on record since 1850 and
2017 is predicted to be very warm globally (Met Office 2016). In 2016, the global mean
temperature was 0.84 ± 0.12 ◦C higher than 1961-1990 and 1 ◦C above preindustrial
levels, which is the highest level recorded since 1850. For 2017 it has been predicted
that the average temperature will reach 0.75 ± 0.12 ◦C higher than 1961-1990 levels.
The chance of global average temperature dropping to below that of 2015 an 2016 is
very unlikely (less than 5% chance).

2.1.2 Climate change in the UK

2.1.2.1 The climate during the past century

Global warming has already impacted the climate of the UK (Murphy et al. 2009,
Met Office 2016):

• Since 1981, there has been a 1.1 ◦C increase in temperature across the UK and 2015
was known as the warmest and fourth wettest year in a series from 1910.
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• Since 1980, there has been around a 0.8 ◦C increases in temperatures in Scotland and
Northern Ireland.

• Since 1766, rainfall totals have increased in winter and reduced in summer generally
(there has been no significant change in annual mean precipitation in England and
Wales).

• Over the last four decades, the amount of winter rainfall has increased over all
regions of the UK. Also, except for the North East of England and North Scotland,
the rest of the UK have experienced less rainfall in summer.

• Over the last three decades, there has been a 0.7 ◦C increase in sea-surface tempera-
ture around the UK.

• Over the 20th century, the sea level around the UK has risen by 1mm/y.

2.1.2.2 Climate during the next century

The UK climate Impacts Programme (UKCIP) (Jenkins et al. 2010) has projected the
probable changes in UK climate by the 2080s (relative to a 1961-1990 baseline) with a
medium emissions scenario. These projections are:

• The mean temperature is expected to increase during the summer and winter but
with little change in spring. Southern parts of the UK are expected to have up
to 4.2 ◦C increase in mean temperature during the summer, with a minimum
expected change of 2.5 ◦C for the Scottish islands.

• The mean daily maximum temperature is expected to increase in all areas of the UK.
During the summer, this increase is up to 5.4 ◦C in southern part of UK and 2.8 ◦C
in northern parts of England.

• Mean daily maximum temperature is expected to range between 1.5 ◦C and 2.5 ◦C
during winter.

• The warmest day of summer varies for different parts of the UK but it ranges
between +2.4 ◦C to +4.8 ◦C.

• There will be an increase in the mean daily minimum temperature in the UK ranging
from 2.1 ◦C to 3.5 ◦C depending on the location.

• Changes in annual precipitation will be very small.

• Winter precipitation is expected to increase by +33% over the west of the UK and
change by -11 to +7% in the Scottish highlands.

• The amount of precipitation in summer is expected to decrease by -40% in southern
England.
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According to UK Climate Projections (Jenkins et al. 2010), an increase of global
temperature by 2 ◦C may lead to serious impacts such as hotter summers and milder
winters, as well as sea level rise and melting of the polar ice. Global warming may also
lead to changes in the pattern of precipitation, causing more rain in winter and less
in summer. It is therefore likely that more droughts, floods and heavy rainfall will be
experienced in the future.

2.1.3 Climate change projections

Ocean-atmosphere General Circulation Models (GCM) are used to make projections
about future climates. GCMs are used for projecting all global variables. To assess
the impacts of climate change, GCM results should be downscaled to regional scales.
For the purposes of this project, the GCM outputs need to be downscaled for input
into hydrological models which require a much higher resolution. This downscaling
adds an extra layer of uncertainties to the projections. GCMs are more reliable at the
global scale than the regional scales which are needed for the water resources decision
making process.

Climate models are the only way to predict the future changes of the climate
system. These models, based on the physical processes of the Earth and atmosphere,
mathematically calculate the future of climate changes due to human activities. A
lack of knowledge about the Earth and climate system and the inability to model the
climate system may affect the accuracy of climate models and cause some inevitable
uncertainties to be raised by them (Murphy et al. 2009).

According to Murphy et al. (2009) the future emission of greenhouse gases is highly
dependent on population, technical development and human activities. As a result, it
seems impossible to predict the amount of future emissions precisely and it may cause
more uncertainty in climate projections.

2.1.4 London and south-east England water challenges

The south-east of England is one of the driest and fastest growing parts of the UK. It
plays a very important role in the economy of the UK as a whole (Wade et al. 1999).
According to the Office for National Statistics (ONS) Region and Country Profiles
analysis released in Oct 2013, 15% of the UK economic output is produced in south-
east. The south-east of England, which covers 19,100 km2 contains 14% of the total UK
population (8.7 million by mid-2012) (ONS 2013).

The potential impacts of climate change on the south-east of England have been
discussed since 1995 (Wade et al. 1999). The south-east of England has a high
concentration of population and traffic which increases the greenhouse gas (GHG)
emissions. In the past, this region was rich enough in natural resources such as water
to sufficiently meet demands, but currently as a result of social and environmental
changes, water resources in south-east England are under pressure and this area is
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already known as a ”water stress area” (Defra 2008).
The impacts of climate change, population change, migration, age distribution,

demographic and economic shifts, poverty and also changes in life style in south-east
England may increase the demand for water and put more pressure on water resources
in this area (UKCIP 2008, WWAP 2009). In addition, land use change as a result
of population growth, migration and urbanization may cause additional pressure on
surface and groundwater resources (WWAP 2009).

The main potential impacts of climate change predicted to occur in south-east
England by the 2080s are:

• Warmer summers and colder winters

• Drier summers and wetter winters

• Sunnier summers and higher evaporation

• Increase in wind speed and risk of severe storms

• Increase in sea level as a result of thermal expansion of sea water and melting of ice

A set of possible future climate scenarios have been projected for the south-east
of England by 2080s, relative to 1961-1990. For instance, under a medium emission
scenario annual temperature is expected to increase by 2.8-3.2 ◦C. Summer mean
temperature is likely to increase 3.9◦C. Moreover a 23% decrease in summer mean
rainfall. Moreover, under a medium emissions scenario, the annual rainfall in south-
east England is expected to increase by 2-5% contributed to by a 20% increase in winter
mean precipitation and a 22% decrease in summer mean rainfall (Defra 2009, Wade
et al. 1999).

2.1.5 Thames basin water challenges

The Thames region is one of the driest in the UK and hence sensitive to water
availability. In addition, it is one of the fastest growing parts of the UK and plays an
important economic role. As can be seen from Figure 2.1 this region has been classified
as a ”Serious” water stressed part of the UK which has lower than average rainfall and
very large demand (EA 2007, Hall et al. 2009, Thames Water 2013).

Future urban growth in the Thames catchment will mostly take place in Thames
Gateway, Olympic Park, Oxford, Swindon and Reading areas which may lead to an
increase in the population in the basin which urges the necessity of managing land
and water resources in this area (BGS 2015a).

Average water demand for London is 168 l/p/d, whereas the national average
water consumption is 147 l/p/d (Thames Water 2013). All of the new homes built
in this area should follow Building Regulation Part G, which is a joint statement
from Defra and Communities and Local Government (Fowler et al. 2007), to reduce
the potable water consumption to 125 l/p/d. According to Thames water, private
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Figure 2.1: Map of water stressed areas (EA 2007).
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properties that follow the Code for Sustainable Homes can achieve consumption of as
little as 80 l/p/d (Thames Water 2013).

Based on Thames Water 2013, “The actual delivered Per Capita Consumption (PCC)
will be influenced by occupancy and the water use behaviour of the occupants. This
means that for an “average” home, with “average” occupancy and behaviour, the
water consumption should be in the region of 125 l/p/d.”

2.1.6 Drought in Thames catchment

Frequency of the occurrence of droughts, rainfall reduction and increasing the tem-
perature during that last decades shows that the UK, especially south-east areas,
are very prone to drought. The future climate projections (Murphy et al. 2009)
indicate that the UK could experience more seasonality in rainfall (less in summer
and more during winter) and higher temperatures. These predictions, along with
current observations during the last decades, increase the concern about the sensitivity
of water resources in the area and the importance of applying a wide range of
modelling to develop a water resources management plan which is more robust to
future uncertainties (Thames Water 2013).

Drought is one of the consequences of climate change in England which has an
important role in water management planning in England, especially during the
past quarter century (Miller & Yates 2006). Three types of drought are commonly
identified: meteorological drought, agricultural drought and hydrological drought.
For meteorological drought there would be a reduction in amount of rainfall, and if the
soil moisture drops during the growing season, there will be an agricultural drought.
When there is a shortfall in surface runoff and groundwater levels hydrological
drought occurs (Marsh et al. 2007, Rodda & Marsh 2011).

Supply of water in the Thames catchment is highly dependent on surface water.
Approximately 80% of required water in this area is abstracted from the Thames river
and the remaining 20% is abstracted from groundwater (Thames Water 2013). In fact,
during drought when the surface water is limited, groundwater aquifers in this area
have an important role in supplying water. The level of water in aquifers is lowered
during summer. The aquifers are recharged over winter and depleted (by abstraction
or evaporation) during warm seasons.

According to Thames Water, five hyrological droughts occurred in the Thames
catchment over the last century. These droughts happened in; 1920-21, 1933-34, 1943-
44, 1975-76, 2004-06 (Marsh et al. 2007, Rodda & Marsh 2011) and 2010-2012 (Kendon
et al. 2013). The occurrence of these severe droughts put unexpected pressure on water
resources and forced water supply companies to consider the impacts of global climate
change and choose an appropriate adoption plan to cope with the following droughts
successfully (Miller & Yates 2006).

The drought of 1975-1976 lasted for 16 months (from May 1975 to Aug 1976), this
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was the driest drought during the previous 250 years which intensely affected both
surface water and groundwater (Rodda & Marsh 2011). The last drought in the
south-east of the UK occurred in 2010- 2012. It lasted for 2 years (from April 2010
to March 2012) and was the driest drought over the 128 years record for the Thames
catchment (Thames Water 2013). All three types of drought have been identified in the
2010-2012 drought. Rainfall reduction during this drought was ranked as one of the
most remarkable phenomenons in England and Wales in the last century. The impacts
of this drought on agriculture, low flow and reservoir and groundwater storages was
severe (Kendon et al. 2013).

2.1.7 Water resources planning guidelines in UK

According to Wade et al. (1999), the drought of 1995 in UK led to more attention
being paid to water resources planning and to the publication of the Water Resources
Planning Guidelines (WRPG) by the Environment Agency. Water companies have the
responsibility to provide required water and as a result they must strive to maintain a
balance between the demand and supply of water. For this reason, the Environment
Agency has introduced guidelines for water resources planning which should be
followed by all companies to help them to develop their plans to make sure that
they cover all of the requirements. The Water Resources Planning guidelines help the
companies to develop their water resources management plan according to the Water
Industry Act 19911 (EA 2012).

In fact, the water resources plan shows how a company intends to keep the balance
between water demands and supply. This plan should be set by estimating the
demand through consideration of the impacts of climate change during the following
25 years. Firstly, based on Defra/Welsh Assembly Government current demand
policy, a baseline forecast of demand should be presented by companies (EA 2012).
In preparing the baseline forecast, the possible impacts of climate change on supply
and demand for water should be considered by companies. Figure 2.2 illustrates the
components of water resources plan as proposed by the Environment Agency (2012).

Moreover, companies should make projections allowing for a suitable level of
headroom to deal with uncertainty over the next 25 years. As noted by EA (2012)
”headroom is a buffer between supply and demand designed to cater for specified
uncertainties.̈ In this way, the surplus or deficit of water can be calculated annually
which is referred to as the baseline supply-demand balance. This shows the future
situation in a company with respect to having an excess or a shortage of water. In
the case of a deficit of water, companies should use the most beneficial and cost
effective water management option to meet the predicted demand. This may lead to
the preparation of a final supply-demand balance to show how they intend to meet the
differences by their preferred option (EA 2012).

A company water resources management plan should contain (EA 2012):
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Figure 2.2: Components of a water resources plan (EA 2012).

• The reasons that show why this plan was chosen as the preferred one

• The details of the underlying assumptions in this plan

• A clear demonstration of how the system works

• The flexibility or robustness of the plan to risk and uncertainty resulting from climate
change.

• Finally the chosen water resources plan should be submitted to the Secretary of State
or the Welsh Minster, as appropriate. This plan is reviewed by the relevant minster
and any mistakes are reported to the company for revision.

2.1.8 Challenges in water resources projections

One of the most important limitations for successful hydrological simulation is the fact
that climate and hydrological data such as precipitation, evaporation and observed
flow data are continuous and variable (temporally and spatially). As a result, there is a
doubt that the observed hydro-climate data cannot represent the future data. Some of
the sources of uncertainties have been listed below (Wilby 2005, Serrat-Capdevila et al.
2011):

• Socio economic factors:

1. Change in population as a result of immigration and growing the population

2. Change in demand

3. Change in catchment hydrology as a result of land use change
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• Input data (climate change projections)

• Choice of model calibration period

• Structure of model formulation (recharge, runoff and evapotranspiration)

• Non-uniqueness of model parameter sets

• Choice of emission scenario

• Climate model ensemble member

• Downscaling technique

• Issues related to boundaries and scales (including soil parameters)

Challenges in water resources projections can be divided to three main groups
including supply-side, demand-side and modelling uncertainties:

2.1.8.1 Supply-side uncertainties

Climate change and global warming threaten the ecological and hydrological pattern
which may lead to increased temperatures, changes in crop patterns and pollution
of water resources. Climate change may affect the volume and seasonal variability
of river discharge and the rate of sedimentation in rivers. These changes can
gradually put more pressure on available water resources and increase the risk and
uncertainties (Defra 2008, WWAP 2009).

Natural variability can be one of the drivers of uncertainty in water availability.
The uncertainty in supplying water can be caused by internal or external natural
variability. Natural internal factors are related to the climate system and are caused by
the variable nature of the climate system which is not following a specific rule and is
highly uncertain. These factors range from the storms that affect the regional weather
to the changes that happen on a larger scale of seasons and years. Natural external
factors are caused by factors from outside of the climate system. Changes in solar
radiation and aerosols emitted from volcanic activities can be pointed to as examples
of these external factors (Murphy et al. 2009).

For the past three decades, the issue of nonstationarity has caused many concerns
for hydrologists and water resources managers (Salas et al. 2012). In the past, the
design and management of water systems were based on stationarity assumptions and
relied on past hydrological records. In fact, there was an assumption that all natural
variables such as annual flood peak were time invariant and could be estimated from
the hydrological records. However, As a result of human disturbance and climate
change Stationarity is dead and as a result the historical records cannot represent the
future any more (Milly et al. 2008). This Nonstationarity is caused by:

1. Land cover and land use changes, which have been caused by human interfaces,
and may affect the water supply, water quality (Milly et al. 2008) and rainfall-
runoff relationships (Salas et al. 2012).
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2. Major natural events such as forest fires and volcanic explosions may cause
changes in the composition of the soil surface and the air (Salas et al. 2012).

3. In global climate and hydrology the issue of nonstationarity is mainly caused by
the low-frequency components of oceanic-atmospheric phenomena such as Pacific
Decadal Oscillation (PDO), El Nino/Southern Oscillation, Atlantic Multidecadal
Oscillation (AMO) and Arctic Oscillation (Salas et al. 2012).

4. Global warming is a result of increase in greenhouse gas concentrations and it may
cause changes to oceanic and atmospheric processes and affects the hydrologic
cycle (Salas et al. 2012).

2.1.8.2 Demand-side uncertainties

Land use changes, changes in population and demand, economic growth and water
use efficiency are some examples of socio economic drivers that may have significant
effects on future water stress. The population growth, increasing demand and water
abstractions are known as the most important factors in increasing global water
stress (Shiklomanov & Rodda 2003, Alcamo et al. 2007).

Global warming, urbanization, demographic changes and rising living standards
increase the demand for food, water and other services which cause more pressure
on land, water and other energy sources, can be counted as main sources of demand
uncertainty (Defra 2008, WWAP 2009). It has also been estimated that the water
stress by 2025 will be mostly caused by increasing water demand than climate
change (Vorosmarty et al. 2000, Alcamo et al. 2007). According to Oki et al. (2003),
by 2050 the effect of population growth on increasing water stress will be more than
the impacts of economic and technological change.

Climate change may also alter the abstraction of water and put extra pressure on
surface and ground water resources. The domestic, agriculture and industry sectors
have important roles in increasing water abstraction. The abstracted water is mostly
used by domestic sectors and growing income is the most effective factor in domestic
water consumption. According to Alcamo et al. (2007), water abstraction has an
increasing trend in developing countries. While, in industrialized countries as a result
of technological improvement water abstraction is reduced. Alcamo et al. (2007)
claimed that the impacts of increasing the incomes is stronger than the population
effects.

2.1.8.3 Modelling uncertainties

For dealing with the changing climate and extracting the required projections, a
number of methods such as Ocean- atmospheric General Circulation Models (GCM)
have been identified. According to the UK Climate Projections science report, the
spatial resolution of the third Met Office coupled ocean-atmosphere GCM, HadCM3,
is 2.5◦ latitude by 3.75◦ longitude over land areas, and it also includes 19 vertical levels
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in the atmosphere and four layers in the soil, while according to Fowler et al. (2007) the
required resolution for hydrological resolution is 0.125◦ latitude and longitude (Salath
2003, Fowler et al. 2007). However, GCMs are more reliable at the global scale than
regional scales, which are needed for water resources decision making. For regional
scales the GCM output should be downscaled to the local scales. This downscaling
adds an extra layer of uncertainties to the projections.

Model inter-comparison projects such as CMIP5, CMIP3, ENSEMBLES, and Cli-
matePrediction.net have been used to investigate and reduce the impacts of uncertain-
ties in climate models (Brown & Wilby 2012). Based on Wilby and Harris (2006), in
comparison with uncertainty from emission scenarios, the choice of GCM is the most
important source of uncertainty. According to Kundzewicz and Stakhiv (2010) in order
to reduce the uncertainties in water resources adaptation and management options
more research is required to be done with the GCMs projections accuracy (Kundzewicz
& Stakhiv 2010, Salas et al. 2012).

Boberg and Christensen (2012) believe that simulating the current climate by
a known model and correcting the biases with observations, may lead to reduce
the spread of uncertainties (Boberg & Christensen 2012, Brown & Wilby 2012).
Wilby (2005) showed that the choice of emission scenario, downscaling technique,
lack of proper understanding of physical processes or our inability to represent
them properly (especially in boundaries of scale), choice of model calibration period,
structure of model formulation (recharge, runoff and evapotranspiration) and non-
uniqueness of model parameter sets may also cause additional uncertainties (Wilby
2005).

2.2 Modelling

2.2.1 Weather generator

GCMs provide weather variables information at a global scale (50,000 km2). However,
for assessing the impact of climate change on water resources finer resolutions and
more detailed data are required. As a result, the output from GCMs need to be
downscaled to higher resolutions. This downscaling can be achieved statistically or
dynamically. There are many tools available for the statistical downscaling of GCM
outputs. For example, the Statistical Down Scaling Model (SDSM), developed by Wilby
et al. (2002), generates single-site daily time series of weather variables for current and
future climate change scenarios. This model use statistical downscaling method to
downscale the variables from GCM outputs which can be used either as a stochastic
weather generators to produce weather variables or as a statistical downscaling model
to downscale the GCM outputs for catchments that has required observed data (Wilby
& Dawson 2013). The Model for Assessment of Greenhouse Gas Induced Climate
Change/ Scenario Generator (MAGICC/SCENGEN) (Wigley & Raper 1987, Hulme
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et al. 2000) is a free carbon cycle-climate model which takes in different greenhouse
gas emission scenarios and predicts global change in mean temperature and sea levels.
This model was used in the 1999 IPCC assessment report and has been updated
accordingly since then (Meinshausen et al. 2011). The Climate Information Portal
(CIP) is a web based portal that provides meteorological information for the whole
of Africa, including precipitation, maximum and minimum temperature station data.
This portal has been developed by the University of Cape Town, who downscaled
climate data by merging climatic information from the GHCN and WMO. For each
station, this portal provides the users with information about monthly observed data
(historical), historical average seasonality and downscaled future climate projections
(based on CMIP3 and CMIP5) (CIP 2015).

Other statistical downscaling tools include WGEN, which is a stochastic weather
generator developed in the US (Richardson & Wright 1984) to generate daily precipita-
tion, temperature (max and min) and also solar radiation. This model uses first order
Markov chain gamma distribution to predict dry or wet days as well as the amount
of precipitation (not the time series) and other variables which are all correlated to
occurrence of rainfall. The Long Ashton Research Weather Generator (LARS-WG) is
another example of stochastic weather generator that was developed with the purpose
of climate impact assessments (Racsko et al. 1991, Semenov & Barrow 1997). This
model uses semi empirical distribution of wet and dry series to generate daily time
series of weather variables such as precipitation, temperature (min and max) and solar
radiation. Semenov et al. (1998) compared the performance of LARS-WG with WGEN
on 18 different sites in USA, Europe and Asia. The authors believed that because
LARS-WG applies semi empirical distribution and use more parameters, this model
can simulate the historical data better and as a result performs more accurately than
the WGEN. So LARS-WG is more appropriate to be used for hydrological studies in
new sites (Semenov et al. 1998).

Neyman-Scott Rectangular Pulses (NSRP) (Cowpertwait et al. 1996a,b) is another
stochastic model that generates more detailed (hourly) time series of rainfall and other
weather variables. This model can be used for a single or combination of catchments,
as well as ungauged catchments where the observed data are not sufficient. More
importantly this model‘s use of event clustering can simulate extreme events while
previous WGs were not able to model the extreme events (e.g. extreme rainfall) (Kilsby
et al. 2007). This model has been extended to spatial-temporal model (STNSRP) by
Cowpertwait et al. (2002) which takes advantage of stochastic point process to model
the variables both spatially and temporally (Cowpertwait et al. 2002).

UK Climate Projections (UKCP09) (Murphy et al. 2009) use stochastic models to
provide probabilistic climate projections under three emission scenarios (low, medium,
high) for whole UK with 25 km resolutions. UKCP09 is used to create current and
potential future time series of rainfall and other meteorological variables that can
be used as input for hydrological models to simulate the hydrological behaviour of
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specific catchment (Kilsby et al. 2007, Glenis et al. 2015, Beven 2012). This climate
model, uses Bayesian framework and based on the perturbed physics ensemble
(PPE) from HadCM3 GCM (UK Met Office) and multi-model ensembles (MME),
with considering the structural error in climate model, creates probabilistic climate
projections. 11 runs of regional climate model (RCM) are used to downscale the climate
variables from global scale to 25 km resolutions (Murphy et al. 2009, Glenis et al. 2015).
The UKCP09 weather generator (UKCP09 WG), uses change factors derived statically
from UKCP09 climate projections and generates hourly or daily time series of weather
variables with higher spatial and temporal resolutions of 5x5 km (Kilsby et al. 2007,
Jones et al. 2009, Murphy et al. 2009, Jenkins et al. 2009, Glenis et al. 2015). The UKCP09
WG will be described in more details in Chapter 3.

The UKCP09 spatial WG uses regression and inverse-distance weighting to interpo-
late measured data from stations to gridded format, while CEH have developed a 1km
gridded daily rainfall dataset (CEH GEAR, Gridded Estimates of daily and monthly
Areal rainfall (1890-2015)) for the UK, which is also based on Met office observed
database but uses natural neighbour interpolation to generate gridded rainfall time
series are freely available for download. CEH-GEAR is free however the UKCP09 data
are not (Tanguy et al. 2014).

2.2.2 Hydrological models

Nobody knows what is exactly happening underground in the real world. Because
of the complexity of details and the ambiguity of the hydrological system, it is not
possible to precisely reproduce and model all the details of the rainfall-runoff process.
Despite of all the advances in measurement techniques in monitoring the subsurface of
ground, such as remote sensing and radar, still the information and knowledge about
the actual hydrological process in the environment is limited. As a result, hydrological
models are not able to model all the details, they only can approximately predict
the rainfall-runoff process in the catchment. Hence there is considerable uncertainty
in hydrological model projections. The uncertainty can be quantified using various
techniques such as Monte Carlo analysis. As a result of these uncertainties, risk
assessment framework are required for decision making (Beven 2012).

Our knowledge about hydrological systems is limited, but by using hydrological
models we will be able to analyse, study and reproduce past hydrological events,
as well as predict future hydrological events. The hydrological models demonstrate
the actual complex hydrological system in a very simple way. These models also
make it possible to evaluate the impacts of physical changes that human have made
to environment and finally help to improve our knowledge about the hydrological
system (Freeze & Harlan 1969).

Hydrological model have been classified in several ways (OConnell 1991, Wheater
et al. 1993, Singh et al. 1999) but are generally classified based on (Beven 2012):
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• The mathematical logic they are based on (e.g. deterministic or stochastic models)

• The way they discretely consider the catchment (e.g. Lumped, semi-distributed,
spatially distributed models)

• The structure of the model (e.g. Empirical, conceptual, physically based models)

2.2.2.1 Mathematical models

Hydrological models can be classified based on the mathematical model they are
following. In this case they can be deterministic or stochastic. In deterministic models,
for each set of input only one possible set of output is available. Which means
that in deterministic model, there is always one unique relationship between input,
parameters and output (Beven 2012).

In stochastic models (called probabilistic/ statistical model), for each set of inputs,
there are many sets of possible outputs. In other words, in a stochastic model for a
given set of inputs, a different set of outputs are randomly generated which shows the
uncertainty and error in input, parameters and boundary conditions. The uncertainty
in prediction of hydrological response can be presented and quantified by probability
distributions (Beven 2012).

2.2.2.2 Spatial discretisation of catchment

In lumped models the catchment is treated as a single homogeneous unit, and variables
are averaged over the whole catchment area. While, in distributed models a catchment
is divided into numerous grids and equations are solved for each grid cell and
parameters are local averages over each grid square. Distributed models are more
accurate because of the spatial description of the catchment (Beven 2012). The accuracy
of prediction increases if the model can be fully validated by observations (Bormann
et al. 2009).

To overcome the complexity of distributed models, semi distributed models have
proposed. Semi distributed models lie between conceptual and fully distributed
models. In this type of model, a catchment is divided into sub catchments and each of
these are treated as a lumped basin. Hydrological processes in each of sub catchments
are simulated by using Geographical information systems (GIS) and Hydrological
Response Units (HRU) which can be formed by combination of spatial soil, land use
and topography databases (Bormann et al. 2009, Beven 2012).

2.2.2.3 Structure of hydrological models

From a structural point of view, hydrological models are differentiated as empirical,
conceptual and physically based models.

Empirical models:
Empirical models, which are also called data driven models, are only based on

measured observations of input and output to a catchment. In fact, in empirical models
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a catchment is assumed to be a black box and only includes the mathematical equations
and statistical concepts between observed input (rainfall) and output (discharge) and
all the other hydrological processes in the catchment are excluded (Beven 2012). Hence
this model is only valid within the catchment boundary.

The empirical model is the oldest approach in hydrological modelling (Beven 2012).
Rainfall-runoff modelling has a long history and the first hydrological model was
proposed by an Irish engineer (Mulvany 1850). This model has a simple equation
which calculates the peak hydrograph for a catchment by inputting the catchment
area, maximum average rainfall intensity in catchment and an empirical coefficient.
This coefficient can be calculated from observed rainfall and peak discharge in the
catchment, which is not constant and can be different for different storm events.
This model is an example of the empirical approach which is based on the rational
relationship between amount of discharge, size of catchment and intensity of rainfall.
Hence, this has been known as Rational Method. There are some difficulties in
calculating the coefficient for catchments which do not have enough observations and
also for future storm events. Because this model only predicts the peak flow, it can
only be used in small impermeable catchments (Beven 2012).

Unit Hydrograph (UH) (Sherman 1932), ARMA (Autoregressive Moving Average)
(Box & Jenkins 1976), Artificial Neutral Network (ANN) (Garcia-Bartual 2002) and
Data-based Mechanistic (DBM) model (Young & Beven 1994) are other examples of
empirical approached models. In the latter model, available observed data indicates
the structure of the model which needs to be evaluated and considered only if there is
a mechanistic explanation (interpretation) for the suggested model. Hence, this model
has some disadvantages, such as:

• The observed data can have errors, some areas do not have reliable observed data, so
if the available observed data is wrong, the model will be wrong too. As a result
these errors can increase the uncertainty in hydrological models result.

• The empirical model is based on observation input and output to the catchment,
while eliminating the physical features. As a result of climate change and land
use changes, using only historical data might not be so helpful in predicting
hydrological systems.

Lumped conceptual models:

Conceptual models, sometimes called ”grey box” models, use physical laws in a
highly simplified way, they simulate the physical process by using simple mathemat-
ical equations. Some of the parameters used in conceptual models are not physically
meaningful. In other words, those parameters cannot directly be measured, they need
to be estimated by calibration against observed data (Wheater et al. 1993).

The first conceptual model developed by Norman Crawford and Ray Linsely at
Stanford University is the Stanford Watershed Model (SWM) (Crawford & Linsley
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1966). This model has 35 parameters, most have physical characteristics and only a
few of them need to be estimated by calibration (Beven 2012). The Sacramento model
(Burnash et al. 1973), SSARR (Rockwood 1968) and Tank (Sugawara et al. 1983) are
some examples of conceptual models.

CATCHMOD is another example of a lumped conceptual model, developed by
UK Environment Agency (Wilby et al. 1994) and has been used for climate change
impact studies and water resources planning in the Thames catchment and elsewhere
(Davis 2001, Wilby 2005, Wilby & Harris 2006, New et al. 2007, Manning et al.
2009). This hydrological model takes in daily time series of rainfall and potential
Evapotranspiration (PET) (mm/day/km2) and outputs daily time series of flows
(cumecs) at the catchment.

The Xinanjiang (Zhao et al. 1995), ARNO (Todini 1996) or Variable Infiltration
Capacity (VIC) (Wood et al. 1992) are other examples of conceptual semi distributed
hydrological models. The Xinanjiang model (Zhao et al. 1995), which originated in
China, is an explicit soil moisture accounting (ESMA) model. In ESMA models, the soil
moisture is modelled by considering connected reservoirs and a few simple equations
that control transfer between them (Beven, 2012).

ARNO (Todini 1996) is another example of conceptual model which is also classified
as semi distributed model. This model was first applied on the river ARNO in Italy
and is mostly used in real time flood forecasting, land surface and soil components in
global climate models (GCMs) (Todini 1996, Beven 2012). In this model the catchment
is divided into sub catchments based on natural sub basin boundaries. ARNO is a
large-scale hydrological model that apples various modules (e.g. soil moisture balance,
evapotranspiration, snowmelt, groundwater and routing of flow) to represent the
hydrological process. The soil moisture balance module used by ARNO is based on
the Xinanjiang model which was developed by Zhao (1995) that applies the probability
distribution function for soil moisture capacity (or uses the soil moisture distribution
function).

Wood et al. (1992) increased the number of soil layers in the ARNO model and de-
veloped the Variable Infiltration Capacity model (VIC) which considers heterogeneity
of soil storage and formation of fast runoff in the catchment and can be applied on large
scale catchments (Wood et al. 1992, Liang et al. 1994). All of these models are based on a
distribution function curve which shows the connection between soil storage capacity
and extension of saturated area (Beven 2012). The parameterization of these models is
estimated based on observed data.

TOPMODEL is another semi-distributed conceptual model (Beven & Kirkby 1979).
This model is based on a distribution function approach uses the topographical
data to spatially show the hydrological behaviour of the catchment. This model
uses a topographical index distribution, which is a parameter based on physical
characteristics and can only be used for small hill slope catchments (Franchini et al.
1996, Beven 2012).
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In summary, in comparison with conceptual models, semi distributed models
takes advantage of using more physically meaningful parameters. In fact, semi
distributed models are physically based models with less spatial complexity than a
fully distributed model. This type of model mostly uses a distribution function to
show the non linearities of run off formation in a simpler way than fully distributed
models, hence semi distributed models are much easier in terms of calibration. The
distribution in semi distribution models can be based on (Beven 2012) :

• Statistical description: Probability Distributed Model (Moore and Clarke, 1981;
Moore, 2007)

• Simple functional form, distribution function curve : The Xinanjiang (Zhao et al.
1995), Arno (Todini 1996) or Variable Infiltration Capacity (VIC) (Wood et al. 1992)

• Physical, index of hydrological similarity, topographical index : TOPMODEL (Beven
& Kirkby 1979)

Physically based spatially distributed (PBSD) models:
Freeze and Harlan (1969) presented a blueprint paper to develop physically based

mathematical hydrological model which is the basis for most of the physically based
models. In this hydrological model all surface and subsurface flow processes such as
overland and channel flow, infiltration, groundwater flow etc., are defined by partial
differential equations based on continuity of mass and energy. These equations and
the boundary conditions, which represent the shape of the hydrological catchment,
comprise the hydrological model runs on a computer. These models use a three
dimensional grid network to simulate the catchment. Mathematical equations are
solved by numerical techniques (Freeze & Harlan 1969). Since then, based on Freeze
and Harlan’s (1969) blueprint, several other physically distributed models have been
developed. SHE (Systme Hydrologique Europen; European Hydrological System)
model was developed by three European organisations; the Institute of Hydrology
(UK), SOGREAH (Saltelli et al. 2010) and Danish Hydraulic Institute (Denmark)
(Abbott et al. 1986). Each of these organisation were responsible for developing a part
of this model. Components such as interception, evaporation, snowmelt, overland and
channel flow, unsaturated and saturated subsurface flow can be modelled by SHE.
Table 2.1 summarized the equations and organizations that developed each of these
components (Abbott et al. 1986).

Physically based distributed models try to replicate the hydrological processes
in a catchment, hence this type of model is more complex than other hydrological
models (empirical and conceptual). The development of SHE as physically based
spatially distributed model (PBSD), made it possible to spatially model a catchment
to understand the spatial distribution of the catchment characteristics, simulate the
impacts of physically and meteorological changes in the catchment, and give the model
a high degree of flexibility in terms of updating the new hydrological features of
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the catchment. Compared to conceptual and empirical models, for the calibration of
physically based models less lengthy hydrometeorological data is required (Abbott
et al. 1986).

The performance of these models is highly related to the availability of measured
data. A large amount of data is required in physically based modelling, and some of
this data is not easy to be measured. Advances in measurement techniques such as
using radars and remote sensing can be helpful in reducing the uncertainty caused by
the lack of measurements.

In physically based models, the catchment is divided into grid squares which makes
it possible to predict and evaluate the impacts of future changes on each of the grid
cells in the catchment. These changes can be caused artificially (land use changes such
as deforestation and urbanization), or seasonally (changes in land cover as a result of
seasonal crops and vegetations).

Sources of uncertainty in simulation by PBSD models:

• This type of model needs a large amount of data that needs to be physically
measured. The availability and accuracy of these data may cause uncertainty.

• The land phase measurement usually has point scale which may be different with the
scales of the grids used in the model. The accuracy of the SHE model, depends on
the grid size (Xevi et al. 1997, Beven 2012).

• Because knowledge of the actual hydrological system is limited, the hydrological
process may not adequately represent the actual system and that can be counted
as another source of uncertainty.

The IHDM (Institute of Hydrology Distributed Model) developed by Institute of
Hydrology in UK (Calver & Wood 1995), THALES model (Grayson et al. 1995) and
CSIRO TOPOG-dynamic model (Vertessy et al. 1993) were developed in Australia, are
other examples of physically based distributed models.

The SHE model is a starting point for developing other PBSD models such as MIKE
SHE (Refsgaard & Storm 1995) and SHETRAN (Ewen et al. 2000). MIKE SHE is a
comprehensive PBSD model that provides 3 dimensional simulations of surface and
subsurface water flow and contaminant transport in a catchment (Singh et al. 1999,
Refsgaard & Storm 1995). This model is more suitable for small catchments and for
water resources management for irrigation planning (Yang et al. 2000).

SHETRAN (Ewen et al. 2000) is a PBSD hydrological model that provides a 3D
detailed visualization of temporal and spatial description of hydrological processes in
the catchment. SHETRAN is based on the SHE hydrological model and follows Freeze
and Harlans blueprint. This hydrological model was funded by United Kingdom Nirex
Limited (NIREX) for their research to evaluate the safety of using deep underground
radioactive wastes storage that led to the development of reactive solute transport
component in SHETRAN model. This model uses a finite difference method to
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solve the partial differential equations, used for physically spatially simulation of
the coupled surface/subsurface water flow, sediment transport and reactive solute
transport in a catchment. This model is described in more details in Chapter 3.

SHETRAN has three main components: water flow, sediment transport and
contaminant transport. For water flow, SHETRAN simulates coupled surface water
flow (overland and in streams) and subsurface water flow (unsaturated and saturated
zones such as confined, unconfined and perched aquifers). According to Ewen et
al. (2000), SHETRAN can be used for a single or group of catchments. In SHETRAN,
catchment is simulated as a series of columns. Each column consists of number of
grid cells, that each of them may represent different types of soil. In this hydrological
model flow can move in three dimensions, exchanging vertically or laterally between
maximum two cells in neighbouring columns (Ewen et al. 2000).

Most of the equations used in water flow simulation, such as equations used for
canopy interception of rainfall, evapotranspiration, overland flow and channel flow
are similar to the SHE hydrological model (see Table 2.1) (Abbott et al. 1986). But
the subsurface saturated run off component is modelled by variably saturated flow
equation proposed by Parkin (1996). As Ewen et al. (2000) claimed, SHETRAN is
a flexible and powerful hydrological model that can be used for managing water
resources (surface and groundwater) and assessing the environmental impacts of
climate change and land use changes. Setting up SHETRAN for a new catchment is
very time consuming (at least a few weeks) (Ewen et al. 2000). Hence, Birkinshaw et
al. (2010) developed the Graphical User Interface (GUI) that accelerates the process of
preparing input data for simulating water flow by SHETRAN. For using GUI, only
DEM data and catchment Mask are mandatory, providing vegetation and soil data are
optional as they can be accessed from soil and vegetation library (Birkinshaw et al.
2010).

From the literature, lumped conceptual models simulates observations well, how-
ever because they are not physically based they are assumed to be less accurate in
future prediction of catchment hydrology (Beven 2012). While, spatially physically
based model are not able to simulate the observations precisely, they are more helpful
in future prediction of environment impacts (Beven & Binley 1992).

The choice of model highly depends on data availability, scale and purpose of
hydrological modelling (Bormann et al. 2009). In ungauged catchments and where less
data are available, using lumped or semi distributed models is more reasonable. At
the regional scale, lumped and semi distributed conceptual models are more practical
than fully distributed models in terms of calibration and validation. At the local scale,
spatially distributed models are more appropriate, especially if studying the land use
changes is important (Bormann et al. 2009). Viney et al. (2005) proposed the ensemble
approach which combines lumped conceptual models with spatially physically based
models to improve the performance of hydrological models. Using an ensemble
approach makes it possible to take advantages of both type of hydrological model
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which may lead to reduced uncertainty in simulated results and increases the accuracy
of future predictions (Viney et al. 2005, Bormann et al. 2009).

2.2.3 Water resources models

Water resources models are important tools for simulating the water resources system
which are used for planning and managing the water system, analysing the operational
systems and predicting the performance of water system in future, for instance during
drought or flooding (Loucks et al. 1981, Loucks & Van Beek 2005). For these aims two
types of approaches are available; optimization or a rule-based approach (Matrosov &
Harou 2010).

The first type of modelling water resources is by using optimisation algorithms to
simulate the water system. These types of models are easier to be programmed but
they are not able to consider and model all the operational details in the system (Loucks
& Van Beek 2005, Matrosov & Harou 2010). WATHNET (Kuczera 1992), AQUATOOL
(Andreu et al. 1996), OASIS (Randall et al. 1997), MISER (Fowler et al. 1999), MODSIM
(Labadie et al. 2000), RIVERWARE (Zagona et al. 2001), MIKE BASIN (Jha & Gupta
2003), CALSIM (Draper et al. 2004), WEAP (Yates et al. 2005) and REALM (Perera et al.
2005) are examples of optimization simulation that used for modelling water resources
management. (For more information about the optimisation approach read Labadie
(2004) and Wurbs (2005)).

Ruled-based modelling is another type of water resources modelling which is
a computer based model that simulates the operating rules in water system by
programming codes using ”loops” and ”if else” statements. This group of models
are complicated to program, however they are more user friendly as the rules can be
changed according to user preference, they can be run for long time series and are very
reliable in simulating the water systems (Loucks & Van Beek 2005, Matrosov & Harou
2010). WRAP (Wurbs 2005), HEC-ResSim (Klipsch & Hurst 2007), AQUATOR (Oxford
Scientific Software 2008), WaterWare (Cetinkaya et al. 2008), WARGI-SIM (Sechi & Sulis
2009), IRAS-2010 (Matrosov & Harou 2010) are examples of rule-based water resources
management models.

AQUATOR (Oxford Scientific Software 2008) is a piece of water resources modelling
software that has been developed for water companies in the UK, such as the
Environment Agency (EA) and Thames water, to model the water system to evaluate
the performance of the system in providing enough water for the customers to meet
all the water demands in the area.

Interactive River Aquifer Simulation 2010 (IRAS-2010) is an example of a rule-based
water resources management model which is based on the Interactive River-Aquifer
Simulation (IRAS) model, developed by Loucks et al. (1995) at Cornell University.
In 2010, this model was updated by Matrosov and Harou for the Thames catchment
(Matrosov & Harou 2010). IRAS-2010 is an open source water resources model, that
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simulates the Thames catchment as a group of nodes and links which represent the
storage (reservoir, lakes, etc) and demand consumption sites, and links represent
the pipes or canals that transfer water between the nodes (Matrosov & Harou 2010,
Borgomeo et al. 2014).

The London Area Rapid Water Resources Model (LARaWaRM) is another rule-
based water resources management model developed in MATLAB. This model sim-
ulates water flows, water consumption, water storages and single and joint reservoir
releases in interlinked surface and ground water system. By using this model,
probabilistic climate change scenarios and different population demand assumptions
can be analysed and also the benefits of different decision adaptation options such as
no adaptation, new reservoir, desalination plant, demand management and reducing
leakage can be quantified. This model is explained in more details in Chapter 3.

2.3 Uncertainty handling

Uncertainty estimation is important for future predictions of climate change and its
impact on water resources management, future global policies and capital investments.
Uncertainty analysis has valuable implications for policy makers and managers of
environmental system. There are many different definition of uncertainty but generally
the outcomes and events that cannot be predicted with certainty are called uncertainty
(Loucks & Van Beek 2005).

2.3.1 Uncertainty in model outputs

To predict the performance indicators of the water resources system in future, the
environmental system needs to be simulated. The simulation models are used as a
primary tool to estimate the possible impacts of climate change. Due to the complexity
of the nature and lack of knowledge, the simplification of the real system is necessary
for modelling of the water resources system. As a result this prediction is not precise.
The modeller tries their best to make the simulations more accurate by doing more
research and collecting and analysing valuable data. The simulated results from
models may not be perfect but they are expected to be fairly similar to the observed
value. This is because the models are simplification of real world and as a result of that
models are not able to reproduce every details exactly as it happens in reality.

The sources of uncertainty in model outcome which are mainly caused by a lack of
knowledge and the inability to predict ahead of the time are presented in Figure 2.3
and described in details as follows:

• Information uncertainty: Lack of knowledge about the accuracy of measured
historical (hydrological and meteorological) data in the past, as well as natural
variability (temporal and spatial) and unpredictable change in frequency and
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amount of rainfall, temperature, evapotranspiration, water consumption in the
future. This type of uncertainty is a part of natural system which cannot be
reduced (Loucks & Van Beek 2005)

• Model Uncertainty: Lack of knowledge may cause outputs from a model which is
simplification of real world be different with the historical data. This uncertainty
can be reduced by additional research and further measurements (Loucks &
Van Beek 2005). This uncertainty is associated with:

◦ Parameter uncertainty: Lack of knowledge about the value of the parameters
that represent the dynamic of a process and/or characteristics of the location,
boundary of the domain of interest and initial condition which prescribe the
value of the variables at the beginning of the simulation (Loucks & Van Beek
2005, Curry & Webster 2011).

◦ Structural uncertainty: Inability in perfect representation of physical processes
of the real system in the model (Loucks & Van Beek 2005, Curry & Webster
2011, IPCC 2007).

◦ Numerical error: Errors in numerical methods used in model algorithms. For
better simulating the real system, complex models are used which introduce
another level of uncertainty and error to the outputs (Loucks & Van Beek
2005).

• Decision uncertainty: Inability to predict the future response of water resources
system as well as policies and decisions that will be made by organizations and
individuals about operating infrastructures such as reservoirs (Loucks & Van Beek
2005).

Figure 2.3: Sources of uncertainty in model outcome
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2.3.2 Sensitivity and uncertainty analysis

Uncertainty analysis quantifies the range of possible outcomes and uncertainty in
output of the models which is caused by uncertainty in inputs (Saltelli et al. 2010,
O’Hagan et al. 2006). Studies done about uncertainties show that input data and
parameter uncertainty are the most important source of uncertainty in hydrological
modelling (IWR 2008). Sensitivity analysis is also used to conduct the uncertainty
analysis (Uusitalo et al. 2015). Sensitivity analysis quantifies uncertainty in model
outputs depends on parameters and inputs. As noted by Saltelli et al. (2010),
the sensitivity analysis indicates how uncertainty in models outputs are related to
uncertainty in input and other factors. Although uncertainty and sensitivity are
different by definition, they often shares similar mathematical techniques (Pianosi et al.
2016). For instance, Monte Carlo simulation and Generalised Likelihood Uncertainty
Estimation (GLUE) (Beven & Binley 1992) are used for both uncertainty and sensitivity
analysis (Pianosi et al. 2016).

As noted by Pianosi et al. (2016), using sensitivity and uncertainty together offers
valuable information about the performance of the model, as for instance sensitivity
analysis shows the inputs which outputs are most sensitive to. In contrast, uncertainty
analysis shows whether the outputs given from sensitivity analysis fall within the
expected range of model output.

For sensitivity analysis, to monitor the sensitivity of model outputs the model is
run for various input data and parameters in their acceptable range, the amount of
change in output values indicates the uncertainty and sensitivity of the model outputs
to parameters values. For instance, if altering the input data leads to a considerable
change in outputs, the uncertainty to parameters values is large. In contrast, if the
changes in output is small, the uncertainty in input values, and in other words, the
sensitivity of the model output to input values is relatively small (Uusitalo et al. 2015).
Although sensitivity analysis used for assessing uncertainty in input values and model
parameters, for structural uncertainty the model outputs need to be compared with
actual observations. Because required observed data are not always available, expert
judgement is necessary for structural uncertainty evaluation (O’Hagan 2012, Uusitalo
et al. 2015). Various methods are used for uncertainty and sensitivity analysis such as:

Monte Carlo Simulation (MCS): MCS is one of the sampling techniques used
extensively in uncertainty analysis. This method uses uniform random sampling of
parameters and according to their probability distribution number of model param-
eters will be simulated and generated. The Monte Carlo simulation is a computer
intensive technique and generally after enough number of runs the results produced
by this method will be accurate (Beven 2012). MCS has also used as a sampling method
for sensitivity analysis (Yang 2011).

Probability theory: Uncertainties can be represented by probabilistic approaches.
In this method, the probability of an event is represented by the frequency of
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occurrence of that event. For instance, when a range of an input is available the
probability of an event can be identified as a ratio of the number of the times that
event occurs to the total number of the inputs. This method estimates the uncertainties
of model output for given uncertain input. In fact in this model, uncertainties of input
data are described by probability distribution and the aim is to calculate probability
distribution of the outputs of the model (IWR 2008).

Non-probabilistic methods (fuzzy set and possibility theory): The possibility
theory is based on the possibility of events and their fuzzy sets and was proposed
by Zadeh (1978). A fuzzy set is a non-probabilistic method for analysing uncertainties.
This method is used mostly where only a few numbers of observations are available
and statistical measurements are difficult to evaluate (Beven 2012). According to Zadeh
(1978), fuzzy measures are defined as a simple function of errors between observed and
predicted variables. When the error is zero or is in the range of zero, then the fuzzy
measure is assumed to be at the maximum level. By increasing the error, the fuzzy
measures are reduced and for the maximum level of errors the fuzzy measures are
reduced to zero.

Interval probability theory (IPT): This theory is used for uncertain inference, which
can be used in knowledge-based systems to measure the evidential support. An
interval number represents the features of incompleteness and fuzziness in a simple
manner. In interval theory of probability, degree of dependence between evidence is
introduced by parameter of ρ (Cui & Blockley 1990, Hall et al. 1999).

Latin Hypercube Simulation (LHS): The LHS method (McKay et al. 1979) estimates
the statistics of each output by dividing the probability distribution of each basic
variable into N ranges with an equal probability (1/N) of occurrence. This method
is more accurate than MCS in estimations of an output statistics (IWR 2008).

Point Estimation Methods: The point-probability distribution is used in this
method to estimate the statistical moments of outputs (mean and covariance). For
a given number of runs the statistical moments of model output can be estimated
with this model. In this method the sample of parameters depends on the number
of parameters (IWR 2008).

One-at-a-time and All-at-a-time sensitivity measures: The one-at-a-time method
is the simplest method used for sensitivity analysis that only varies one parameter
at a time, while the other parameters are kept constant at their current level. In
this method, the uncertainty can be shown with quantifying the change in output
of the model. This method can be used for a sensitivity ranking in which the value
of one parameter changes by a specific percentage and changes in output values are
quantified (Hamby 1994). This type of analysis is called local sensitivity as it only
considers sensitivity over a specific value chosen for the parameter and not over
the whole value distribution of input parameter. The latter analysis is called global
sensitivity analysis. Local sensitivity analysis mostly uses One-at-a-time method
(Pianosi et al. 2016, Hamby 1994). All-at-a-time is another method that combination of
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input parameters are changes at a time, so the changes in outputs show the interaction
of different parameters in the model. This method can be used for either local or global
sensitivity analysis (Pianosi et al. 2016).

Statistical techniques for sensitivity analysis: Analysis of variance (ANOVA)
developed by Ronald Fisher (1918), is a statistical model used to analyse the differences
between means and variances between and among groups. Variance-based sensitivity
analysis (VBSA) is a model independent method that can be used for sensitivity
analysis of model output. In contrast with standardised regression and correlation
coefficient, the non-linear and non-monotonic relationships between input and output
of a model can be accurately found by VBSA approach (Saltelli et al. 2010, Hamm et al.
2006).

Approximate numerical methods (Generalised Likelihood Uncertainty Estimation-
GLUE): Generalised Likelihood Uncertainty Estimation (GLUE) method, which was
firstly proposed by Beven and Binely (1992), is an approximate numerical method that
uses the results from Monte Carlo simulation and is used to estimate the uncertainties
caused by hydrological models and parameters (Beven 2012). In this method there is
an assumption that there is no single optimal model and this method is based on the
equifinality concept that there can be a range of input parameters and models which
may have the right sort of response for an application. In GLUE methodology, by
using Monte Carlo simulation and based on the observed parameters values random
parameter sets are generated to be used in each model and by comparing the results
with the available calibration data the likelihood can be measured (Anderson 1999,
Beven 2012).

Information-Gap (Info-Gap): Info-Gap is another method used for uncertainty
and sensitivity analysis. Info-Gap is a non-probabilistic technique that is used for
quantification of uncertainty and optimization of robustness to failure. This model
is very useful in decision making in highly uncertain circumstances that in spite of the
lack of information, decision makers need to make a realistic decision to wisely tackle
with the management problems (Hipel & Ben-Haim 1999).

2.3.3 Review of previous studies

The increasing need for managing environments under uncertainty leads to the growth
of studies conducted to investigate uncertainty based decision making. For instance,
Wilby and Harris (2006), used a probabilistic framework to assess uncertainties in
climate change impacts on the River Thames flow projections by the 2080s. They
found that low flows are more sensitive to climate change scenarios and downscaling
of GCMs rather than the CATCHMOD hydrological model parameters and emission
scenarios.

In addition, New et al. (2007) used a probabilistic approach from multi model
climate ensembles to assess uncertainty in impacts of climate change over regional

31



and local scales. New et al. (2007) used climate model climateprediction.net and
CATCHMOD and focused on the Thames River. Their results showed that the
information from using a probabilistic approach is more informative than using
scenario based approaches (Carter et al. 2001, New et al. 2007) which are suitable for
risk based adaptation assessments. Also different approaches for probabilistic analysis
may lead to different risk based decisions.

Dessai and Hulme (2007), identified robust adaptation strategies to assess climate
change in the east of the UK. The RCM was found to be the main source of uncertainty
in in this study. Based on their study, due to using the driest model (HadCM3) and
large size of supply adaptation option, the water resources, in this area remained
robust to uncertainties. As noted by Dessai and Hulmi (2007), finding robust
adaptation is not easy. Robust adaptation to climate change uncertainties is usually
costly and needs to be negotiated between decision makers and stakeholders.

Manning et al. (2009), used multi models ensemble to provide probabilistic climate
change information to assess water resources in the Thames catchment. As noted
by Manning et al. (2009), different downscaling methods may lead to different flow
prediction, which is originated in their difference in predicting PET. The results shows
a reduction in predicted water availability in this catchment.

Lopez et al. (2009) used an ensemble of climate models to assess impacts of climate
change on water supply and adaptation. They focused on the south-west of England.
Their results indicated that the wider range of information given from climate model
ensembles, in understanding the future impacts, is more helpful for decision makers
than the information from single model scenarios. Burke and Brown (2010) used
ensembles to asses uncertainty in the frequency of drought occurrence in the UK. The
results indicated the increase in occurrence of drought by the end of 21th century.

Christensen et al. (2012) used UKCP09 to project the impact of climate change on
river flows in UK for the 2020s. The GLUE methodology and also LHS approach
were adapted for uncertainty handling. Their results showed reduction in future flow,
simulated by CATCHMOD, in most of the UK and uncertainty presented in future
flow projections is mainly from the uncertainty in climate projections.

Harris et al. (2013) also used the UKCP09 WG for robustness analysis of the
North Strafforshire WRZ in the 2080s and noted that uncertainty caused by climate
model parametrization is greater than uncertainty from emission scenarios. It is also
stated that uncertainty in overall flow and water shortage is mostly originated from
uncertainty in climate model parametrization rather than choice of emission scenario.

These studies used varied methods to investigate the impacts of climate change on
water resources considering uncertainties and they all had a similar conclusion that
uncertainty in climate change impact assessment is large and inevitable. Furthermore,
downscaling and climate models lead to a large uncertainty in future flow projections
and also the impact projections are very sensitive to structure and parametrization of
climate models. These are originated in an inability to exactly model the climatological
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and hydrological process of the real world. As noted by Wilby and Dessai (2010),
there is ”cascade of uncertainty” in modelling process which means choosing different
scenarios for future, e.g. future society which is unknown, introduces new level
of uncertainty to the system which flows through into the next step (e.g. emission
scenario). Therefore, uncertainty in each step not only brings a new level to the system,
but also is affected by uncertainty from previous step as well.

2.3.4 Adaptation planning under climate change uncertainty

Long-term management of water resources poses significant challenges for decision
makers due to uncertainties. Long-term decisions regarding future investments e.g.
construction new infrastructures are costly. As noted by Hallegatte (2009) these
important decisions cannot be easily made due to the uncertainty in future climate
conditions. Hence, given the complexity of the future climate conditions, and the fact
that investing in supply adaptation options, such as constructing a new reservoir, is
costly, it becomes crucial for decision makers to consider the uncertainty in future
changes, and also increase their knowledge about climatic and non-climatic drivers to
evaluate and update their decisions over the time (Hallegatte 2009, Curry & Webster
2011).

During the last few decades, in order to manage uncertainty in long-term climate
projections, many techniques and approaches have been adapted. Based on the
literature, ”top-down” or ”Scenario-led” method is one of the approaches traditionally
used for adaptation decision making (Wilby & Dessai 2010, Brown & Wilby 2012)
which start from downscaling the GCM to generate the RCM, which is then fed
into the impact models to provide estimates of the impacts of climate change on the
hydrological characteristics of the catchment. As noted by Wilby and Dessai(2010)
the outcome of this approach contains a ”cascade of uncertainties” which is in fact
the aggregated uncertainties inherent in each step of the modelling process. Stakhiv
(2011) also believed that information provided by GCMs which contain a cascade of
uncertainties are not reliable to be used for decision making. In fact Stakhiv (2011)
suggested that ”adaptive management” is a suitable tool to assess adaptation options
regarding stress testing and monitoring the performance and vulnerability of existing
water infrastructure system.

Brown and Wilby (2012), also demonstrated climate stress testing or vulnerabil-
ity analysis as an alternative approach for decision making under climate change.
Brown et al. (2012) demonstrated the decision-scaling method to provide the required
information about sensitivity of a system to future climate for decision makers. A
”scenario-neutral” approach is another method based on sensitivity analysis which
was presented by Prudhomme et al. (2010). These methods, called ”Bottom-up meets
Top-down” methods (Brown & Wilby 2012) are unlike top-down methods, which
mainly focus on the sensitivity of catchments to a wide range of possible climate
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changes rather than outcomes of scenarios. In these methods, first the problems are
identified and then by stress testing the system, the performance of the system to
different climatic and non climatic variables are assessed and finally the GCM climate
projections are used to evaluate the future risk (Brown & Wilby 2012).

Robust decision making (RDM) is another quantitative approach to make decisions
under deep uncertainty. This approach supports decision makers in evaluating
adaptive strategies to eventually decide the most effective and robust option (Lempert
et al. 2006, Lempert & Groves 2010). As noted by Lempert et al. (2006) the robust option
is the one which is most reliable and flexible to unforeseen future climate condition.
The RDM approach was fist adapted by Lempert and Groves (2010) to assess the
impacts of climate change on Californian water resources system (Lempert & Groves
2010). The RDM approach in conjunction with Info-Gap Decision making has also
been used by Matrosov et al. (2013) to find the most robust water supply option for
Thames catchment, using UKCP09 and CATCHMOD. Risk-based decision making is
also another approach presented by Bormogeo et al. (2014) for the Thames catchment,
using UKCP09 and non-stationary probabilistic climate scenarios, and CATCHMOD
to simulate inflows.

Dynamic robustness or managed adaptive approach is another alternative approach
to deal with deep uncertainty in future conditions. The dynamic approaches such as
those proposed by Haasnoot et al. (2013), and Ranger et al. (2013) provide an oppor-
tunity for decision makers to dynamically identify a wider range of uncertainties, and
by sequencing of options as adaptation pathways, explore more flexible and profitable
short-term and long-term adapting plans over time.

The narrative scenarios and storylines of future climatic and non-climatic changes
(Clark et al. 2016, Yates et al. 2015) also been used as alternative approach for stress
testing the water supply system and adaptation options. In this method different
combinations of plausible future climatic and non-climatic scenarios are considered
to provide meaningful information for decision makers. These set of scenarios can
be used to analyse the performance of possible adaptation options in planning and
managing of the water resources.

2.4 Summary

This chapter provided an overview of the research literature related to this study. This
literature review summarised the impacts of climate change, globally, and in the UK.
Furthermore, various sources of uncertainty in managing water resources, a range of
models used for simulating future climate, river flows and available water resources
were presented in this chapter. This was followed by the potential methods and
approaches used for handling uncertainty and decision making under uncertainty.

The implications of the key uncertainties in long-term management of water
resources are explored in this thesis with a novel method using a coupled system of
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models that includes a weather generator, simulations of catchment hydrology and
the water resources system. This integrated systems model are presented in Chapter 3.
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Chapter 3

Integrated Systems Framework

3.1 Overview

This chapter presents a novel integrated systems framework to assess the implications
of long-term uncertainties in water resources management. This chapter demonstrates
this integrated systems model for a real world case study of the Thames catchment
which is one of the most water scarce basins in the UK. Furthermore, the chapter
introduces the choice of models used in this study. These are a spatial Weather
Generator (UKCP09) that provides time series of rainfall and PET; a physically based
hydrological model, SHETRAN, that simulates river flows in the catchment which
drives a rule-based water resources management model, LARaWaRM which quantifies
resultant daily water availability of the system. This coupled system of models are
set up for the Thames catchment and the performance of each of these models is
evaluated by validating their outputs against observed data, which is also presented
in this chapter

3.2 Overview of the integrated systems framework

In this study, to understand the implications of the range of long-term uncertainties,
a novel integrated systems model is developed that couples simulations of weather
under current and future climates, catchment hydrology, and the water resources
system. The framework of the integrated systems model is presented in Figure 3.1.
The main steps to create the integrated system are as follows:

Step 1: Climate scenario and weather generator model are used to provide daily series
of potential weather variables ( e.g. rainfall and Potential Evapotranspiration (PET)),
to drive the hydrological model.

Step 2: The generated meteorological time series are used as input for hydrological
model to simulate the current and future daily river flows within the catchment.
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Figure 3.1: Integrated systems framework for risk and uncertainty analysis. The proposed integrated

system models consists of a coupled system of models that includes a weather generator that provides

time series of rainfall, this drives a hydrological model that simulates daily river flows in the catchment,

and a water resources model which quantifies resultant daily water availability.
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Step 3: The synthetic flow time series simulated by the hydrological model are used
to drive a water resources model in order to predict the daily water availability in the
water resources zone and assess the likelihood and consequences of water scarcity in
the catchment.

Step 4: Sensitivity and uncertainty analysis water resources management options that
are robust to uncertainties are identified.

Step 5: Different sources of uncertainty such as climatic (climate models and emission
scenarios) and non-climatic (socio economic scenarios: land use, population and
demand change) drivers are accommodated in the framework and by repeating the
previous steps they can be analysed individually and/or in combination. Also the
benefits of different demand and supply adaptation options are tested and the most
robust adaptation options chosen.

The proposed integrated systems model can be implemented for any catchments
within the UK and internationality, and also can be adapted for different weather
generators, hydrological and water resources models. For this study, the integrated
systems model is developed for a real-world water resources management case study
of the Thames catchment, which is one of the most water scarce basins in the UK.

3.3 Thames catchment

This project is undertaken in the Thames catchment, a region which supplies water
to the city of London, UK. The Thames Basin is the largest basin (9948 km2) in the
South East of England which covers the most populated area in the UK (Thames Water
2013). GLA (2014), predict London’s population to increase from current 8.1 million
at present to between 10.1 - 10.7 million by 2041. On average Londoners consume 168
l/p/d water which is higher than the average UK consumption (147 l/p/d). Due to
experiencing hotter weather and increasing living standards, the consumption of water
is expected to increase in the future.

The River Thames is the second longest river in the UK (346 km). It rises from
Jurassic limestones of the Cotswold Hills in Gloucestershire and flows eastward,
passing through Oxford, Reading, The Chilterns, London and finally joins the North
Sea at its estuary. The River Thames between its source and Teddington is usually
non-tidal, from Teddington Lock to the Thames Estuary, river is tidal as it receives
tides from North Sea. The non-tidal part of Thames catchment is managed by the
Environment Agency (EA) (BGS 2015b). This study focuses on the non-tidal part of
Thames which is where the water resources are abstracted.

The average annual rainfall in this area is 737 mm, while the annual average of
rainfall in England and Wales is 897 mm (Thames Water 2013). In fact, this area is the
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most water scarce part of UK which has lower than average rainfall and very large
demand (EA 2007). Two thirds of the rainfall in this area is evaporated or transpired.
The remaining 246 mm is effective rainfall of which 55% abstracted and most used
for public supply including household and non-household demands (Thames Water
2013).

In the Thames catchment, water supplies come from a combination of surface
water and groundwater resources. Surface water is the primary source of water
which provides approximately 80% of the total supplied water. The remaining 20%
is abstracted from groundwater aquifers. The groundwater in this area yields from
boreholes distributed over the basin. During droughts, when the surface water
is limited, water is mainly supplied from groundwater aquifers (Thames Water
2013). There are three groundwater aquifers in this catchment, including the Chalk,
the Oolitic limestones of the Jurassic and the Greensand. Figure 3.2 shows major
groundwater aquifers of the Thames catchment.

Figure 3.2: Major aquifers of the Thames catchment (BGS 2015a).

There is a chain of reservoirs in Lee Valley, supplied by the River Lee and a group
of reservoirs in south west of London, supplied by the River Thames. In Thames
catchment the water is abstracted from the Lee and the Thames River and diverted
to the reservoirs. The abstraction from the rivers is subject to meet the minimum
environmental flows and maximum daily abstraction in the river. These limitations
are indicated in the Lower Thames Operating Agreements (LTOA) which is between
Thames Water Utilities Ltd (TWUL) and the EA. The Lower Thames control Diagram
(LTCD) dictates some restrictions on abstraction from River Thames at Teddington
Weir. These restrictions range between 300 Ml/d and 800 Ml/d which depend on
storage level in the reservoir (LAgS) and time of the year. The LTCD (see Figure 3.3)
indicates the target flow curves and the restriction levels (Level 1 to Level 4).
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Figure 3.3: Lower Thames Control Diagram (Thames Water 2013).

The application of target flow curves depends upon level of storage in the reservoir,
and time of the year. Target flow curves with an annual profile indicates the minimum
environmental flow that should be remain in the River Thames. When the reservoir is
full, the target flow is 800 Ml/d. By reducing the total reservoir level, the target flow
level also drops. This means that more water is allowed to be abstracted from the river
to preserve the storage level in the reservoir. The minimum target flow for Teddington
flow is 300 Ml/d. As reservoir levels drop, more strict restrictions are imposed on
customer demand. There is also a daily maximum abstraction of 5455 Ml/day and a
total annual abstraction license of 665388 Ml.

Table 3.1 shows the Target level of services (LoS), Demand saving (DS) restrictions
and the maximum frequencies of occurrence of these restrictions.

Level of Services
Frequency of Occurrence

(in average)
Water Use Restrictions

Level 1 1 year in 5 Intensive media campaign

Level 2 1 year in 10
Sprinkler/ unattended hosepipe ban

Enhanced media campaign

Level 3 1 year in 20
Temporary use ban

Ordinary Drought Order/permits

Level 4 Never
Rota Cuts and Standpipe

Emergency Drought Order

Table 3.1: Level of services and water use restrictions (Thames Water 2013)

In Thames basin, in addition to surface water and ground water sources, there are
two backup storage schemes used in during dry periods. This backup storage includes
North London Artificial Recharge Scheme (NLARS) and the West Berkshire Ground
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Water Scheme (WBGW). The NLARS is an aquifer storage refilled by excess treated
water that is pumped to the ground in north London and the WBGW is another aquifer
storage which is only available during extreme droughts. These backup storages are
used when reservoir storage drops below Level 4 of the control diagram threshold and
target flow drops below 400 Ml/d.

In order to better represent the study area, the Thames catchment is divided to two
sub-catchments including Thames at Kingston (including upper and Lower Thames)
and Lee at Feildes Weir. Figure 3.4 illustrates the boundaries of these sub catchments.
Characteristics of the Kingston and Lee sub-catchments are described in Table 3.2.

(a) (b)

Figure 3.4: The study area of the Thames Catchment.

Gauge station Period of report
Catchment area

(km2)
Catchment description

Thames at Kingston 1883-2012 9948 Chalk and Oolites

Lee at Feildes Weir 1879-2012 1036
Chalk catchment with

extensive Drift cover

Table 3.2: Thames sub catchments descriptions (NRFA 2012)
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3.4 Climate change projections and Weather Generator

Global climate models (GCM) provide projections of climate variables under different
emission scenarios at the global scale. For climate impact studies, higher resolu-
tion models and analysis are required, hence the outputs from GCMs need to be
downscaled to regional scales (RCM). The UK Climate Projections (UKCP09) (Murphy
et al. 2009) is a standard tool that projects the national future climate for the UK and
provides improved understanding of some uncertainties inherent in climate models. It
uses 11 members of Met Office RCM ensembles (HadRM3) to downscale the GCM
to provide probabilistic projections at 25 km resolution, (Murphy et al. 2009). As
noted by Murphy (2009), by using these 11 member HadRM3 based perturbed physics
ensembles (PPE), UKCP09 better samples the parameter uncertainties in downscaling
processes. Moreover, UKCP09 also uses multi-model ensembles, consisting of 12 other
climate models to sample structural uncertainty due to modelling errors. The UKCP09
climate projections is a useful tool for the climate change impact assessments and has
been extensively used for water resources management and decision making studies
within the UK (e.g. Harris et al. 2013; Christierson et al. 2012; Manning et al. 2009;
Matrosov et al. 2013; Borgomeo et al. 2014; Walsh et al. 2016).

For local climate change impact studies a higher resolution than 25 km is required.
The UKCP09 Weather Generator (UKCP09 WG) simulates the synthetic time series
of meteorological variables at 5 km resolution. This WG uses a stochastic (random)
method to generate the daily time series of weather variables, for current and future
climate (Kilsby et al. 2007). In UKCP09 WG, the future climates are defined with
change factors at monthly time steps which are obtained from UKCP09 probabilistic
projections, by measuring the difference between the statistics of the current value and
the projected future value of a weather variable (Jones et al. 2009).

UKCP09 WG is currently the best available tool to be used for this study, where a
stochastic rainfall model is required which can be perturbed for future climates. This
weather generator produces future daily or hourly time series of rainfall which match
basic summary statistics of future projections at the daily level, such as the mean,
standard deviation and proportion of dry days. However, the model is not directly
parameterised using seasonal or interannual properties, although generated series
are reasonably consistent with the baseline observed climate data (Jones et al. 2009).
Hence, the model is not capable of generating future series with a specified (increased
or decreased) long-term variability which for instance can be used for analysing
multi season droughts. There are monthly rainfall modelling frameworks which can
reproduce multi-site monthly total rainfall for drought analysis, as demonstrated by
Serinaldi and Kilsby (2012), but these models cannot currently project future changes
in variability. Even if a model were available with this capability, there is currently
no climate model which can reliably reproduce multi season drought characteristics of
rainfall for the baseline, and hence cannot be relied upon to predict future variability.
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Moreover, even if climate models could reliably reproduce the atmospheric circulation,
there are severe limits imposed on validating their reproduction of extreme drought
behaviour due to short observed records.

In UKCP09 WG, rainfall is the primary variable which means that first, the
UKCP09 climate projections, generates the daily sequence of rainfall and then based
on the simulated rainfall, the other variables such as mean daily temperature, vapour
pressure and sunshine are generated. The generated time series are stationary which
means they are all statistically consistent with real observed weather (Jones et al. 2009).
The WG is calibrated by observed daily rainfall and other variables for the baseline
climate 1961-1990.

The single-site UKCP09 WG is the original implementation of the UKCP09 WG,
which uses single-site Neyman Scott Rectangular Plus (NSRP) model to provide
the synthetic time series of climate variable at 5 km resolution (Jones et al. 2009)
rainfall model. The spatial UKCP09 WG is an upgraded version of this WG which
uses Spatial Temporal NSRP (STNRP) model (Cowpertwait 1995, Burton et al. 2008)
which produces time series of meteorological variables such as rainfall, temperature,
vapour pressure, wind, sunshine duration as well as PET, for each grid cells. The
PET calculated by spatial UKCP09 WG with FAO-modified (Food and Agriculture
Organization of the United Nation) version of Penman-Monteith method (Allen et al.
1998). All of these meteorological variables are internally consistent for each grid
cell (Kilsby et al. 2007). As described by Burton et al (2013), the advantage of using
spatial temporal weather generator is that it can simulate the weather scenarios for
current and future projections, of any location and on a regular grid, rather than
single or multi sites. Hence, using spatial UKCP09 WG in this project is advantageous
as the simulated weather scenarios can be easily coupled with spatially distributed
hydrological model of SHETRAN. It is recommended by UKCP09 WG guidelines
(UKCP09 UI 2009) to use a minimum of 100 runs (random samples) to sustain
the probabilistic nature of sampled datasets. Each of these runs are treated as an
independent event and they all are statistically consistent. Although, for any day, the
value of the generated weather variables are different, the underlying statistic for all
the runs are the same. For daily data the length of these runs must be between 30 and
100 years (UKCP09 UI 2009).

In this study, the initial analysis conducted to assess the validation of UKCP09
WG, revealed that this WG was not acceptable in term of validation. For instance in
October, there was more than 20% difference between simulated and observed rainfall
for Kingston catchment. After further investigation it became apparent that for 1961-
1990, monthly mean rainfall used for parametrisation of UKCP09 WG did not match
the observed rainfall provided by Met Office for 5 km reference dataset. Revealing
this issue led to updating the data used to parametrise UKCP09 WG. The new version
of spatial UKCP09 WG (SWG: new version of spatial UKCP09) is wholly consistent
with national gridded rainfall data set provided by Met Office. In this study, the new
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version of weather generator is used, which limits the ability to compare this work
with past studies (e.g. Walsh et al. 2016).

Figure 3.5: Rainfall grids (5×5 km) in Thames catchment used in spatial UKCP09 WG.

3.4.1 Validation of spatial UKCP09 WG

In order to choose the most suitable WG for the Thames catchment, both single-site
(SSWG) and spatial UKCP09 WG (SWG) were considered. For the single-site WG
(SSWG), the SWG runs only for the centroid grid, which represents the whole Thames
catchment. Therefore, in this study, the SWG is run once for all of the grid cells within
the Thames catchment and once for the centroid cell only. Figure 3.5 shows all the grid
cells and also the centroid grid of the Thames catchment.

For running the SWG, the grid cells IDs within the catchment, the emission
scenarios, time slice, the number of simulations as well as length of time series should
be specified. In this study 100 runs of 100-year in length gridded daily simulations of
control (1961-1990) and future time slices of 2020s, 2050s, and 2080s, under medium
emission scenario were generated and used to represent the whole basin. For SWG,
the 100 runs of 100-year gridded daily simulations were generated for all of the grids.

In order to assess the performance of spatial UKCP09 WG (SWG) in reproducing the
1961-1990 observed rainfall for each sub-catchments, the simulated rainfall for control
runs are validated against the relevant daily observed rainfall time series provided by
Met Office. In this chapter, only the 100 runs of 100-year-long control scenarios are
discussed. The outputs for future scenarios are discussed in the next chapter (Chapter
4).
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3.4.1.1 Validation of UKCP09 WG for Kingston sub-catchment

For this study, 100 runs of a 100-year-long gridded rainfall time series were generated
by the SSWG and SWG, as baseline scenarios. The outputs from the weather generator
are text files contain time series of different meteorological variables such as rainfall
and PET. The simulated rainfall and PET time series were extracted from WG outputs
for each sub-catchments.

Figure 3.6 shows boxplots1 representing the performance of SSWG and SWG for
average values of simulated rainfall against the observed values, for Kingston, 1961-
1990. The results show that SWG better simulated the observed rainfall for control
scenario. As it can be seen from this figure, across the year the median of average
observed values fall within the simulated range from SWG. While, for SSWG the
observed values are generally greater than the simulated range, except for June in
which observed rainfall is within the simulated range.

Although the SWG better simulates the actual rainfall, there is a 9.0% underesti-
mation in monthly mean rainfall for July and 5.0% overestimation in October. Not to
mention that these amount of difference in actual and simulated variables are still in
an acceptable range. Hence, in terms of validation, the results from SWG are valid and
acceptable.

Figure 3.6: Boxplots of mean daily rainfall for historical (1961-1990) and simulated values from SWG

and SSWG control scenario, Kingston sub-catchment.

1Each of the boxplots indicates the median, 25th, and 75th percentile values. Whiskers show the 1.5 times of inter quartiles

(IQRs), the difference between 25th and 75th percentile values. The small crosses are outliners, which are any points of data that

lies below (25th percentile - 1.5 IQRs) or above (75th percentile + 1.5 IQRs).
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Figure 3.7: Mean daily rainfall comparison between historical (1961-1990) and simulated values from

SWG and SSWG control scenario, Kingston sub-catchment.

Figure 3.7 illustrates the comparison between average simulated values and ob-
served rainfall for Kingston. As it can be seen the results from SWG better represents
the actual observed data for 1961-1990. More details about the difference and % change
within simulated and observed rainfall are listed in Table A.1.

The difference between average of daily observed rainfall over 30 years and average
of the 100 simulated 100-year-long daily rainfall from SWG is only 0.01 mm (1.94 mm
for SWG vs 1.95 for observed). While for SSWG this value is 1.77 mm which is nearly
9.0% lower than the observed one.

In the UK, PET for hydrological models is produced by the Met Office Rainfall
and Evapotranspiration Calculation System (MORECS) which provides estimates of
precipitation, evapotranspiration and soil moisture at 40 × 40 km resolution for the
whole of the UK (Hough & Jones 1997, Kay et al. 2013). For this project, a 5 × 5
km resolution is required therefore, historical PET is calculated using FAO Penman-
Monteith (Allen et al. 1998) from observed variables provided by the Met Office. The
calculated PET within each sub catchments have been validated against MORECS
annual mean PET for Thames catchment. Here, the 100 runs of 100-year-long time
series of simulated PET are generated by SWG.

The boxplots of daily mean PET in Kingston have been illustrated in Figure 3.8. This
figure compares the range of simulated PET against historical values. For simulated
PET, the values are from 100 runs of 100-year-long time series provided from SWG
outputs. As it can be seen, there is an underestimation in simulating PET during spring
and summer (from April to September) while the PET has been overestimated for the
rest of the year. Overall, the difference between SSWG and historical is always greater
than the difference between SWG and the historical.

Figure 3.9 compares the average of historical PET with simulated values. As it can
be seen, the maximum difference between historical and simulated PET are in June
and January. More details about this comparison are listed in Table A.2. For SWG,
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Figure 3.8: Boxplots of mean daily PET for historical (1961-1990) and simulated values from SWG and

SSWG control scenario, Kingston sub-catchment.

Figure 3.9: Mean daily PET comparison between historical (1961-1990) and simulated values from SWG

and SSWG control scenario, Kingston sub-catchment.
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there is 0.14 mm underestimation and 0.13 mm overestimation in June and January
respectively. This difference for SSWG ranged between -0.22 and 0.13 mm. Similar to
SWG, there is 0.13 mm overestimation in PET from SSWG while the difference between
historical and simulated PET with SSWG is higher in June (-0.22 mm).

Similar to rainfall, the difference between average annual PET between SWG and
historical is 0.01 mm which shows that the SWG PET is only 0.5% higher than the
historical PET. While this difference between historical and centroid is -0.02 mm which
also shows that there is 0.9% underestimation in SSWG. As a result, although the
difference between historical and simulated PET from both spatial and SSWG are slim,
still the SWG better simulates PET for Kingston.

3.4.1.2 Validation of UKCP09 WG for Lee sub-catchment

Figure 3.10 compares the performance of SSWG and also SWG for average values
of simulated rainfall against the observed values, for the Lee sub-catchment, 1961-
1990. As it can be seen from this figure, across the year the median of average
observed values fall within the simulated range from SWG. In contrast, for SSWG the
observed value is generally greater than the simulated range, except in July where
SSWG underestimates the rainfall. The results show that SWG better simulates the
observed rainfall for control scenario.

Figure 3.10: Boxplots of mean daily rainfall for historical (1961-1990), SWG and SSWG control scenario,

Lee sub-catchment.

Figure 3.11 compares the average of historical and simulated values of rainfall in
each month. For SWG, the simulated values are closer to historical rainfall values. The
maximum difference between the spatial and historical rainfall values are in July and
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Figure 3.11: Mean daily rainfall comparison between historical (1961-1990) and simulated values from

SWG and SSWG control scenario, Lee sub-catchment.

October. While for SSWG, there is a large overestimation in rainfall values in most of
the months. The only exception is July which there is 11.2% underestimation in rainfall
compared to observed values.

Table A.3 lists more details about the difference in historical and simulated rainfall
values. In the Lee sub-catchment, similar to Kingston, there is 9.0% underestimation
in monthly mean rainfall for July and 5.0% overestimation in October. More inves-
tigations showed that these errors in July and October are consistent in all the grids
and the whole Thames catchment itself. This shows a systematic error in the weather
generator which is highlighted as an important source of uncertainty in projecting the
future climate in this study.

The comparison between simulated rainfall and historical values shows 0.01 mm
underestimation in the average of annual rainfall for SWG, while the single site shows
0.06 mm overestimation in the annual rainfall values. As a result, it can be concluded
that the SWG better simulates the rainfall for Lee sub-catchment.

Figure 3.12 shows the boxplots of daily mean PET in the Lee sub-catchment. This
figure by comparing the range of simulated PET against historical values, illustrates
the performance of weather generators in simulating the PET. From the boxplots it can
be seen that, the average of PET simulated by weather generators are not very close
to the historical values. The simulation by SSWG is even worse than SWG. Similar to
Kingston sub-catchment, the results from weather generators show underestimation
in PET values during spring and summer while these values are overestimated for
autumn and winter. Generally, the difference between SSWG and historical values is
always greater than the difference between historical and SWG.

Figure 3.13 shows monthly comparison between averages of PET simulated by
the weather generators against historical values. For SWG the difference between
historical and simulated values, ranges between -0.05 mm and 0.17 mm. The
underestimation occurs only in three months from April to June. The maximum
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Figure 3.12: Boxplots of mean daily PET for historical (1961-1990), SWG and SSWG control scenario, Lee

sub-catchment.

Figure 3.13: Mean daily PET comparison between historical (1961-1990) and simulated values from SWG

and SSWG control scenario, Lee sub-catchment.
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underestimation is in June (-0.05 mm), and the greatest overestimation, with +0.17 mm
difference, happens in January. More details are tabulated in Table A.4.

For SSWG the difference ranges between -0.18 and 0.17. There is an underestimation
in half of the year, from April to September, and the maximum difference with 0.18 mm
occurs in June. There is overestimation in the rest of the months, January with 0.17
mm has the greatest overestimation. For annual rainfall, the average of rainfall given
from SSWG is 1.64 mm which shows that there is only 0.01 mm between SSWG and
historical. While for SWG, this difference is around 0.06 mm. This shows that in annual
scale the SSWG better simulates the PET while in monthly scale the performance of
SWG is better than single site.

3.5 Hydrological model

The synthetic rainfall and PET time series are then used as input for the hydrological
model to simulate the current and future daily discharge of the catchment. Initially
in this study, the conceptual hydrological model CATCHMOD was used to simulate
the discharge in Kingston and Lee sub-catchments (Walsh et al. 2016). However,
given the ability to modify model parameters is crucial for this uncertainty analysis, it
became apparent that CATCHMOD was not adequate for this study and the proposed
uncertainty analysis (e.g. land use change uncertainty). Conceptual hydrological
models, when compared with the physically based, are assumed to be less accurate
to predict future characteristics of the catchment, and they may not be robust under
climate change (Beven, 2000). While, physically-based spatially-distributed (PBSD)
models are more reliable when modifying model parameters and so they are better
suited to future prediction of environmental change (Breuer et al. 2009, Beven 2012).

Although, physically based hydrological models such as SHETRAN are very data
intensive, they are more suitable for uncertainty analysis, as they better capture the
spatial characteristics of the catchment compared to conceptual models (Beven 2012).
Not to mention that when SHETRAN couples with a spatial weather generator it
better represents spatial heterogeneity. Hence, it was decided to use the physically-
based spatially-distributed model SHETRAN (Ewen & Parkin 1996) as an alternative
hydrological model to simulate the flow in Thames catchment. However, given the
complexity of the SHETRAN model, along with the size of the catchment, model run
times were increased from a matter of minutes to over 30 days per simulation. As
a result, it was decided to reduce the resolution from 1 km to 5 km. Reducing the
resolution led to a significant reduction in run time for the Thames sub-catchment.
After reducing the resolution, each run for Kingston took 4 hours and for Lee took
only 30 minutes.
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3.5.1 SHETRAN hydrological model

SHETRAN is a physically-based spatially-distributed (PBSD) model (Ewen & Parkin
1996, Ewen et al. 2000, Birkinshaw et al. 2010) which can be used to study hydrological
and environmental impacts of climate change and land use change. In fact, this model
can be used for a single catchment or a group of catchments which are connected
contiguously (Ewen et al. 2000). Using SHETRAN in this study makes it possible
to extend this project from Thames catchment to whole the South East region in the
future.

SHETRAN is a fully distributed model which considers the basin as a group of
grids, columns and stream links. Each of the grids has a column consisting of various
cells located one above the other which represent the soil or geology and land use
associated with each cell. The rivers are modelled as a network of streams, each of the
rivers are simulated along the edges of the grids. This column approach couples the
surface and subsurface, makes it possible to model the transfer of water vertically and
horizontally. SHETRAN can model groundwater systems including perched aquifers
and confined aquifers.

The SHETRAN hydrological model is very data intensive and it usually takes
several weeks to create the preliminary data sets for a new catchment. As noted
by Ewen and Parkin (1996) the initial values for the parameters of the physically
based hydrological model such as SHETRAN, are chosen based on the literature, field
measurements of the physical properties and also expert knowledge of the modellers.
The authors present ”blind validation” approach for using models on the condition of
change. In this study the preliminary data sets for Thames catchment was provided
from previous study conducted in by Lewis (2016).

Unlike lumped conceptual models, physically based distributed models, in theory,
do not need calibration. In principle, SHETRAN is a physically based model with
parameters explicitly related to physical processes that can be determined a priori from
spatial data sets. By representing the physical processes (e.g. infiltration, saturation,
vertical and lateral flows, transpiration etc.) explicitly, the catchment response to
rainfall and evaporation forcing is constrained and more robust to variation in the
forcing than if described in one lumped process. Thus, physically-based models can
potentially avoid the situation where the flexible nature of a lumped parameterization
provides capability for model fitting along with the potential for over-fitting to the
calibration data set, resulting in less robust model for perturbed conditions outside
the range of the observed period. Key model parameters (e.g. depth of aquifer) are not
time-varying, and largely are independent from climate conditions. However, in many
cases, some adjustment to parameter values is necessary. For instance, for catchments
with significant groundwater systems, such as the Thames catchment, information on
the aquifer extent and porosity is limited and so some calibration is necessary. In this
study, because the value of the calibrated parameters is within the bound of physical
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values, there is some confidence that these parameters are applicable in the future as
well.

It is very important to define the boundary of a catchment carefully as it can become
one of the main sources of uncertainty (Shaw et al. 2010). This affects the evaluation
of input rainfall and output discharge of the catchment. Knowledge about geology,
topography and boundaries of the catchment has important role in assessing the water
resources of the study area. Digital Elevation Model (Singh et al. 2004) is widely used
to plot the catchment area on a topographical map, provides a better understanding
of impacts of neighbour catchments hydrology or water budget of the study area.
For instance in the Pang catchment, the river is a chalk stream which depends on
groundwater, much of the groundwater drains into the River Thames and not the Pang
river (Shaw et al. 2010).

3.5.2 Required data for SHETRAN set up

In SHETRAN, all the physically based properties (surface and subsurface) of the model
should be specified for each of the grid cells. Datasets required for each of the grids are
as follows:

• Digital Elevation Models (DEMs)

• Geology

• Soil properties

• Land cover map

• Rainfall

• Potential evapotranspiration (PET)

In order to simulate the discharge in Thames catchment, 5 km spatial resolution
and a daily time step were chosen. The selected spatial resolution is a compromise to
shorten the simulation times. For Thames catchment, SHETRAN is set up individually
for each of the sub-catchments of Kingston and Lee. For this aim, all the required
data need to be collected and stored in an acceptable format to be integrated into the
hydrological model.

The following distributed datasets are used to set up SHETRAN for the Thames
catchment:

Digital elevation model (OS landform)

Digital Elevation Model used in this study is based on Ordnance Survey (OS)
landform panorama data which was downloaded for 20 × 20 km tiles for whole
UK. Using ArcGIS, this was resampled to 5 km resolutions for Thames catchment.
Another required data for running SHETRAN is the river channels in the catchment. In
SHETRAN, minimum elevation in each grid cell is considered as river channel. Hence,
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in order to model the rivers within the Thames catchment, a DEM map with minimum
elevation (with 5 km resolution) was generated with ArcGIS.

Figure 3.14: DEM map for the Thames catchment.

Geology and soil

In SHETRAN, subsurface is modelled as a group of columns, consist of various cells
located one above the other which represents the soil or rock associated with each grid
cell. Information such as dominant topsoil and subsoil texture, depth of each layer,
saturated water conductivity, residual and saturated soil content need to be specified
for each of these layer. For this study, these parameters were provided by the European
Soil Database (ESDB) v2.0. 1km× 1km (Europen Soil Data 2006).

For better representation of the characteristics of the catchment, geological informa-
tion about aquifer properties of the catchment need to be provided. This information
was taken from British Geological Survey (BGS 2015a) 1:625000 scale digital hydroge-
ological map (BGS 2014). The subsurface map for the Thames catchment was created
from combining ESDB and BGS hydrogeological layers.

Land Cover map

Land cover map for Thames catchment was derived from CEH land cover map
(LMC) 2007, 1 km raster data sets (Morton et al, 2011). The LMC is produced from
satellite images containing 23 land cover classes. These land cover classes have been
simplified to only 7 classes to be used by SHETRAN. The land cover classes used by
SHETRAN are arable, bare ground, grass, deciduous forest, ever green forest, shrub
and urban (Birkinshaw et al. 2011).
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Figure 3.15: Subsurface map for the Thames catchment. This map created from combining ESDB

and BGS hydrogeology layers, and different colors indicate different soil categories consist of various

combinations of soil properties. In Thames catchment the dominant soil categories are 22 (dark green),

192 (yellow) and 25 (pink). Both categories 22 and 25 include highly productive (chalk) aquifers, while

no aquifer is present for category 192. The soil type for category 22 is silty clay loam, for 192 is sandy

loam and for 25 is silt loam.

Figure 3.16: Land cover map for the Thames catchment.
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Rainfall and Potential Evapotranspiration (PET) data

Daily time series of rainfall and PET precipitation for Thames catchment are
generated by SWG and SSWG and discussed in section 3.4.1. The SWG generates a
text file (contains time series of the weather variables such as rainfall and PET) for
each of the runs, and for each of the grid ID within the catchment. While for running
SHETRAN, for each of the runs, there should be a single file contains all the grid
IDs within each sub-catchment. Hence, to meet the required format for SHETRAN,
a python script was written to join the time series of all the grids of each of the sub-
catchments, in a single csv file.

Figure 3.17: Annual rainfall total for the Thames catchment.

3.5.3 Calibration and validation of SHETRAN for Thames catchment

After setting up the SHETRAN, the next stage is parameter calibration. In order to
reduce the uncertainty in the values for the parameters, the hydrological model should
be calibrated against measured data for the catchment, and also to test the fitness of the
hydrological model in predicting the impacts of changes in land use and climate, the
hydrological model need to be validated (Ewen & Parkin 1996).

In this study, SHETRAN is calibrated for the period of 1991-2001 (11 years).
For calibration, the results given from SHETRAN are compared with the historical
discharges measured for the same time period. The time series of observed flow data in
Thames catchment are obtained from National River Flow Archive (NRFA) for stations
39001 and 38001, Kingston and Lee respectively (NRFA 2012). Because the flow in
Thames River is highly influenced by human activities, only naturalized flows were
considered.
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Figure 3.18: Annual PET total for the Thames catchment.

The simulated discharge are from running SHETRAN with inputs from observed
rainfall and PET for 1991-2001. All the initial parameters values to run SHETRAN are
chosen based on its guideline 2. For calibration, the value of input parameters were
manually adjusted to get the best fit between observed and simulated discharge. The
value of the parameters were based on expert knowledge of Dr Stephen Birkinshaw. As
reported in the literature, following parameters are considered in course of calibration
of SHETRAN (Birkinshaw et al. 2011, 2014, Mourato et al. 2015):

• Ratio of actual/potential evapotranspiration for each land cover type (AE/PE)

• Depth of aquifer associated with each soil type

• Strickler overland flow (inverse of Manning’s Roughness Coefficient)

• Saturated hydraulic conductivity (Ks)

The next step after calibration, is validation. In order to test the fitness of the
hydrological model in predicting the impacts of changes in land use and climate,
the hydrological model need to be validated (Ewen & Parkin 1996). The aim of
validation is to make sure that simulations from hydrological model are valid for
future time periods. Hence, for validation the SHETRAN was run for an independent
period of 1961-1990. The running process is similar to calibration, but this time the
meteorological input data are for 1961-1990 time period. The simulated discharge are
compared with measured flow provided by NRFA for this time period.

In order to measure the performance of hydrological model in simulating real
historical discharge, different statistical metrics are used (Hall 2001, Krause et al. 2005,

2http://research.ncl.ac.uk/shetran/SHETRAN%20V4%20User%20Guide.pdf.
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Moriasi et al. 2007). One of these statistical measures which is widely reported in
hydrological literature is Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe 1970). NSE
is calculated as:

NSE = 1− ∑n
i=1
(
Oi − Si

)2

∑n
i=1
(
Oi −O

)2 (3.1)

Where O is observed, S is simulated and O is mean observed values. The range
of NSE lies between -∞ to 1. NSE of 1 indicates the simulated and observed values
perfectly match, while NSE of lower than zero indicates that the mean of observed
value can be a better predictor. Here, the NSE value greater than 0.65 has been
considered as good simulation (Singh et al. 2004, Moriasi et al. 2007). Although
NSE is widely used in hydrology, this metric has some limitations. It squared the
difference between observed and simulated value, which leads to overestimation
during peak flows and underestimation during low flows (Krause et al. 2005). Hence,
in conjunction with NSE, other metrics such as modified NSE and RMSE are also
considered.

The Modified NSE which has been recommended by Krause et al. (2005) is as
follows:

Modi f iedNSEj =
∑n

i=1 |Oi − Si|j

∑n
i=1 |Oi −O|j

withj ∈ N (3.2)

As it has been noted by Krause et al. (2005), if j=1 the overestimation of peak flows
reduces which gives a better overall evaluation of hydrological models.

The other metric used in this study is Root Mean Square Error (RMSE) (Singh et al.
2004, Moriasi et al. 2007).

RMSE =

√
1
N

n

∑
i=1

(
Si −Oi

)2 (3.3)

For RMSE the value of 0 shows a perfect fit between simulation and observed values
and the RMSE values less than half the standard deviation of the observed data can be
considered as an acceptable value (Singh et al. 2004).

3.5.3.1 Calibration and validation analysis for Thames at Kingston

The results of SHETRAN simulation for Kingston sub-catchment are shown in Figure
3.19. In calibration period (1991-2001) the comparison between daily observed and
simulated discharge gives NSE of 0.9, Modified NSE of 0.73 and RMSE of 8.98. These
metrics are listed in Table 3.3. The given results show that the time series of the
simulated discharge represent observed values well. As it can be seen in Figure 3.19,
especially the low flows are reasonably well captured by the model.

The validation is carried out for 1961-1990 gives NSE of 0.78, modified NSE of 0.61
and RMSE of 8.88. The NSE for validation is less than the calibration period. More
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Figure 3.19: Calibration and validation for Kingston sub-catchment.

Time period NSE Modified NSE RMSE

Calibration 1.1.1991-31.12.2001 0.90 0.73 8.98 (<42.9/2)

Validation 1.1.1961-31.12.1990 0.78 0.61 8.88 (<37.3/2)

Table 3.3: Calibration and validation for Kingston sub-catchment
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investigations show that the total PET, rainfall and runoff for validation period is
less than the calibration period (see Table 3.4). Because the basis for modelling, the
evapotranspiration and discharge, are unchanged in the model, the drop in NSE for
validation, from 0.9 to 0.78, has occurred. As it can be seen in Figure 3.19, in validation
period the low flow, especially the 1976 drought, is well captured by the simulation.

Rainfall (mm) PET (mm) Runoff (mm)

1961-1990 713.56 607.24 258.35

1991-2001 762.30 639.19 267.58

Table 3.4: Annual mean total rainfall, PET and run-off in Kingston sub-catchment

(a)

(b)

Figure 3.20: Mean flow comparison between historical and simulated values for calibration and

validation period, Kingston sub-catchment.

Figure 3.20 shows the historical and simulated mean flow in each month, for
calibration and validation period. The comparison between observed and simulated
flows shows that, for both calibration and validation period, the spring flows simulated
by SHETRAN are lower than the historical flows. The possible reason for this
underestimation is due to the nature of the chalk. Chalk and limestone cover 43.2%
of the Kingston catchment (NRFA 2012). During spring (March-June) the discharge
is mainly fed from stored water in the chalk aquifers (the flows often exceeds the
rainfall). Compared to conceptual hydrological models, the chalk aquifer is explicitly
included in SHETRAN. Chalk is a dual porosity medium-matrix and significant
fractures. To reflect this the SHETRAN parameters used had a high conductivity and
a small difference between the residual moisture content and the porosity. Although
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a simplified representation, SHETRAN does allow spatial variations on recharge and
the effect of overlaying vegetation and soil.

Table A.5 compares the mean flow, errors and % change between observed and
simulated discharge, for calibration and validation periods. Results show underes-
timation in mean annual flow in both time periods. For validation period the % of
error between observed and simulated, ranges between -22.2% to +8.2%. In March
with 22.2% underestimation, the difference between observed and simulated flows is
greater than the other months. The maximum overestimation, with +8.2%, happens in
December.

For calibration period in most of the months (March to October) there is an
underestimation, ranges between -21.0% and -4.6%. Same as validation period, the
difference between observed and simulated flow in March is at maximum level (-
21.4%), while December with 14.8% has the greatest overestimation in simulated flow.

3.5.3.2 Calibration and validation analysis for Lee at Feildes Weir

The simulated discharge from SHETRAN in Lee sub-catchment is calibrated and
validated for 1991-2001 and 1961-1990 respectively. Because there is a gap in discharge
records from 1.6.1976 to 30.4.1978, the time series from 1.1.1976 to 31.12.1978 are
excluded from the analysis.

The daily comparison between simulated and observed values for validation and
calibration period are plotted in Figure 3.21. From the figure, it can be seen that in
both the calibration and validation periods the simulated flow mimics a similar trend
as observed flows. Also, the low flows are reasonably well captured by the model.
Interesting to note that, despite the gap in the observed records (between years 1976-
1978), the drought of 1976-77 well captured by simulation.

Table 3.5 shows the metrics used for evaluation the performance of SHETRAN in
this catchment. As it can be seen, in calibration period (1991-2001) the comparison
between daily observed and simulated discharge gives NSE of 0.67, Modified NSE of
0.56 and RMSE of 0.66 which are all in the acceptable range.

Time period NSE Modified NSE RMSE

Calibration 1.1.1991-31.12.2001 0.67 0.56 0.66 (<2.09/2)

Validation 1.1.1961-31.12.1990 0.65 0.49 0.68 (<1.86/2)

Table 3.5: Calibration and validation for Lee sub-catchment

As it can be seen in Table 3.5, the validation for 1961-1990 gives NSE of 0.65,
modified NSE of 0.49 and RMSE of 0.68. So, similar to Kingston, in this catchment the
NSE for the calibration period is higher than the validation period. More investigations
show that in calibration period, the winter was wetter than validation period (except
of December) and also there is more rainfall during April and June compared to the
validation period. In addition, the mean PET for 1990-2001 is more than baseline,
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Figure 3.21: Calibration and validation for Lee sub-catchment.

which shows that it was warmer in 1990-2001 compared to validation period. Mean
monthly flow has similar trend as rainfall and as it is expected during the winter,
with more rainfall and less PET, the flow in calibration period is less than validation
period. During warm months (from June to September) the measured flow for both
time periods are similar. The annual mean total rainfall, PET and runoff for validation
and calibration period are listed in Table 3.6.

Rainfall (mm) PET (mm) Runoff (mm)

1961-1990 (excluding 1976-1978) 630.85 597.53 156.90

1991-2001 668.35 650.04 172.86

Table 3.6: Annual mean total rainfall, PET and run-off in Lee sub-catchment

Figure 3.22 compares the historical and simulated mean flow in each month, for
calibration and validation period. The comparison between observed and simulated
flows shows that, for calibration period, in March, September and October the flows
simulated by SHETRAN are perfectly match the historical values. While from April
to August the simulated discharge is slightly underestimated. In validation period,
the underestimation in simulated flow is limited in 3 months of April, May and June.
While the simulated flow is overestimated for the rest of the months. Overall, the
mean simulated flow for validation period is overestimated (+4.8%) and for calibration
period is underestimated (-4.0%). More details about the monthly comparison between
observed and simulated flows are listed in Table A.6.
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As previously mentioned, the reason for the underestimation of simulated values
in spring is due to the nature of the chalk (covers 71.5% of the Lee sub-catchment) and
inability of SHETRAN to adequately model the dual porosity mediummatrix in Chalk
aquifers.

For the validation period the percentage of error between observed and simulated,
ranges between -17.6% to +19.5%. The maximum overestimation, with +19.5%,
happens in December, while May with -17.6% has the highest underestimation. For
the calibration period, percentage of difference between simulated and observed flow
ranges between -18.4% and 19.7%. In this period, June with -18.4% and November
with +19.7% have the greatest under and overestimation respectively.

(a)

(b)

Figure 3.22: Mean flow comparison between historical and simulated values for calibration and

validation period, Lee sub-catchment.

3.5.4 Integrating SHETRAN with spatial UKCP09 WG

In this section, the outputs of SWG are integrated using hydrological model of
SHETRAN. The climate outputs from SWG are 100 runs with 100-year-long time series
for control scenario (1961-1990). Hence, simulated flows given are generated for 100
runs of SHETRAN for Kingston and compared with the historical flows for 1961-1990.

Figure 3.23 compares the observed discharge (QObs), simulated discharge with
observed meteorological inputs (QObs

S ) and the average of simulated discharge with
SWG meteorological inputs (QSWG

S ) for Kingston. Although, there is a similar trends in
simulated flows, underestimation in spring flows simulated by SHETRAN with SWG
is slightly more than QObs

S . This underestimation eventually leads to a lower annual
average in simulated discharge in the Kingston sub-catchment.
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The comparison between QObs
S and QObs, shows the uncertainty caused either by

hydrological model of SHETRAN or uncertainty in observed data measurements.
While, comparing QObs

S and QSWG
S , shows the errors caused by SWG simulations.

Finally, comparison between QSWG
S and QObs, shows the accumulated uncertainty

from SWG modelling and SHETRAN together and observed data. For the Kingston
sub-catchment, the annual mean flow given from SHETRAN with observed input
data (QSWG

S ), is 5.6% less than historical flow (QObs). This comparison quantifies
the uncertainty caused by either SHETRAN or error in historical data measurement
(including measuring rainfall, flow and PET calculation- individually or combination).
Mean annual flow given by SHETRAN with simulated input (QSWG

S ) is 5.9% lower than
mean annual flow given from SHETRAN with observed input (QObs

S ) which shows
the overall tolerance of hydrological modelling. While the simulated flow driven with
synthetic meteorological data (QSWG

S ) is 10.7% lower than historical value (QObs) which
in fact shows the combined uncertainty caused by SWG and SHETRAN hydrological
model together. This shows that the overall tolerance of the integrated modelling
is nearly 11.0% of observed annual flow which is nearly twice the uncertainty from
UKCP09 SWG or SHETRAN hydrological modelling.

As it can be seen in Figure 3.23, in winter, summer and autumn QSWG
S better

simulated the observed data. Even in February, there is less difference between QSWG
S

and QObs
S . More details about the comparison between simulated and observed flows

are listed in Table A.7.

Figure 3.23: Mean flow comparison between observed historical and simulated flow with observed and

modelled (SWG) input data, in Kingston sub-catchment.

Figure 3.24 illustrates the seasonal histograms of the 100 runs of SHETRAN for
1961-1990 against historical discharge in Kingston. As it can be seen, in winter (DJF),
summer (JJA) and autumn (SON), the histogram of measured flow fall within the
range of histograms of simulated flows. But for spring (MAM), the graph shows that
the simulated flows are skewed to the lower values, which means that most of the
simulated discharges are clustered towards the lower flows than observed values. This
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is the reason that the average of simulated flows are less than the measured.
The comparison between monthly average observed discharge (QObs) against

simulated discharge with observed inputs (QObs
S ) and the average of simulated

discharge with SWG inputs (QSWG
S ) for Lee is illustrated in Figure 3.25. As it can be

seen, in contrast with the QObs
S , the simulated flow by SHETRAN with SWG input

(QSWG
S ) either matches or underestimates the observed values.
In July, August, September and December, the simulated flows of QSWG

S , better
match the observed values. In winter and autumn QSWG

S better simulates the observed
data. However, underestimation in spring flows simulated by SHETRAN with SWG
is slightly more than QSWG

S . This underestimation eventually leads to a lower annual
average (-10.0%) in simulated discharge in Lee sub-catchment. More details about the
comparison between simulated and observed flows are listed in Table A.8.

Figure 3.25: Comparison between mean flow of simulated and historical flow in Lee sub-catchment.

Figure 3.26 shows the seasonal histograms of 100 runs of simulated flow by
SHETRAN against historical discharge in Lee, for 1961-1990. As it can be seen, similar
to Kingston, the histogram of measured flow falls within the range of histograms of
simulated flows in winter (DJF), summer (JJA) and autumn (SON). However, for spring
(MAM) the graph shows that the simulated flows are skewed to the lower values,
which means that most of the simulated discharges are clustered towards the lower
flows than observed values. This results in the average of simulated flows being less
than the measured.

3.5.5 Sensitivity of SHETRAN to meteorological input data

To assess the sensitivity of SHETRAN to meteorological input data, SHETRAN is
run for control scenario (1961-1990) with rainfall and PET inputs from following
approaches:

1. SWG-mean: in this approach, first the daily time series of rainfall and PET given
from SWG (discussed in section 3.4.1) are averaged over each sub-catchment and
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then used uniformly as a daily time series in all the grids over that sub-catchment.

2. SSWG: in this approach, the rainfall and PET time series given from SSWG
(discussed in section 3.4.1) are used as input to SHETRAN. (It is assumed that
whole catchment has an equal amount of evapotranspiration and rainfall as the
centroid grid in the catchment.)

In reality the distribution of rainfall varies spatially in the catchment depending
on underlying mechanisms but in both of these approaches the assumption is that
the daily rainfall distributed equally over the catchment to investigate the impacts
of different type of precipitation distributions on catchment response. After running
SHETRAN with these two approaches, the simulated discharges are compared with
simulated flow by SHETRAN with spatial temporal distributed (SWG) PET and
rainfall discussed in section 3.4.1 and historical discharge for 1961-1990.

Figure 3.27 shows boxplots of historical and simulated flows for Kingston sub-
catchment. As it can be seen, SHETRAN with SWG input data gives the better simula-
tion. Although, SHETRAN with SWG-mean input data gives a better simulations for
February and November, the overall simulation is not as good as SWG. The simulated
flow by SHETRAN with input data from SSWG is very biased and the values of
discharge are considerably different from historical values. For SWG, the range of
difference between the observed and simulated monthly flows ranges from -27.7% to
-6.6%. For SWG-mean, this difference ranges between -33.1 to 14.3% while for SSWG
ranges between -43.9% and -8.8%.

Figure 3.27: Boxplots of historical flow with simulated flow using SWG, SWG-mean and SSWG,

Kingston sub-catchment.
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Figure 3.28 compares the daily average of the historical and simulated flows for
each month. The detailed comparison are listed in Table A.9. Table 3.7 also shows
the daily average of flows in different seasons. As it can be seen, SHETRAN with
SWG, gives the best simulation for winter, autumn and summer. However, SHETRAN
with SWG-mean inputs, slightly better simulates the spring flows, while overestimates
the winter flows. Finally, the SHETRAN with inputs from SSWG underestimates the
flow almost in all of the seasons, for instance the simulated flow for summer is 37.3
% underestimated compared to the measured historical values. Based on the results,
the SSWG causes the greatest underestimation in average of annual flow 23.8%, while
with the SWG-mean and SWG the underestimation is 9.3% and 9.0% respectively.
The comparison show that in overall SSWG better simulates the flow in Lee sub
catchment. Moreover, in overall, the simulated flow with the SWG weather variables
better represents the hydrological characteristics of the Kingston sub-catchment.

Figure 3.28: Mean flow comparison between historical and simulated with SWG, SWG-mean and SSWG,

Kingston sub-catchment.

The boxplots of historical and simulated flows for Lee sub-catchment are illustrated
in Figure 3.29. As it can be seen, in December, January, February and March,
SHETRAN with SWG-mean input data better simulates the flow. From April to
December, the average of simulated flow with SWG and SWG-mean are very similar.
SHETRAN with SSWG input mostly overestimates the flow, except for April, July,
October and November which gives the best fit between simulated and historical
values. The daily average of the historical and simulated flows for each month, are
illustrated in Figure 3.30 and listed in Table A.10.

The seasonal values of the daily mean flows in the Lee sub-catchment are listed
in Table 3.8. The seasonal comparison shows that SHETRAN integrated with SWG
better simulates the autumn flows, while SHETRAN with the SWG-mean input better
simulates the flows in spring and winter. The summer flows simulated by SHETRAN
with SSWG better match the historical values. Annually, the difference between
average of historical and the simulated flows for SWG and SWG-mean is -11.5% and
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Figure 3.29: Boxplots of historical flow with simulated flow using SWG, SWG-mean and SSWG, Lee

sub-catchment.

-10.2% respectively. While SSWG overestimate the annual average by 9.2%. The results
show that in Lee sub-catchment, the SHETRAN with SSWG input weather variables,
slightly better simulates the hydrological characteristics of the basin. It is important for
this study to use SWG, given the scenarios included the spatial changes in land cover
in the SHETRAN model.

Figure 3.30: Mean flow comparison between historical and simulated with SWG, SWG-mean and SSWG,

Lee sub-catchment.
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3.6 Water resources management model

In order to predict the availability of water in the catchment and also estimate the
uncertainty distributions for water resources management options, the time series of
river flows (simulated by hydrological model) are used to drive a water resources
management model. In this project, the water resources model of London Area Rapid
Water Resources Model (LARaWaRM) are used to simulate water resources system for
the Thames catchment.

3.6.1 The London Area Rapid Water Resources Model (LARaWaRM)

To enable rapid analysis of climate and socio-economic scenarios a rule-based water
resources management model of The London Area Rapid Water Resources Model
(LARaWaRM) was developed in the MATLAB programming language. This water
resources management model simulates water flow, water consumption, water stor-
ages, single and joint reservoir releases in surface and ground water in the Thames
basin water system.

The model simulates the basin as a network consist of nodes and links. Lakes,
reservoirs, aquifers, inflow gauge sites are represented by nodes in this model. The
surface and groundwater conveyance between the nodes are represented by links
which can be unidirectional or bidirectional. The requested water, in each demand
node, are provided by either reservoir (surface storage) or inflow points.

The release from reservoirs can be either demand driven or can be based on
reservoir rules and storage control curves which regulate release of reservoirs based
on its storage volume. This storage volume can be based on an individual or a group
of reservoirs. Water release from reservoirs and aquifers is calculated as a function of
current capacity, available river flow and time of year:

∆ReservoirVolume = ΣIn f lows− ΣDemands (3.4)

The model simulates a 100-year time series of inflow in approximately 1 second on
a PC with an Intel Core2. By using this model, probabilistic climate change scenarios
and different population demand assumptions can be analysed and also the benefits
of different decision adaptation options such as no adaptation, new reservoir, desali-
nation plant, demand management and reducing leakage are quantified. Schematic of
the LARaWaRM water resources model for Thames catchment is displayed in Figure
3.31.

In the Thames catchment, approximately 80% of water is supplied from surface
water and the remaining 20% is abstracted from groundwater (Thames Water 2013).
Surface water enters the system at Days Weir and the Lower Thames for the River
Thames and at Feildes Weir on the River Lee. During droughts, when the surface
water is limited, groundwater aquifers in this area have an important role in supplying
water. The groundwater in this area yields from boreholes distributed over the basin.
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Figure 3.31: Schematic of water resources model (LARaWaRM).

This groundwater is modelled as an inflow of 467.4 Ml/day which contributes to meet
the water demand.

Demand nodes are water consumption points that represent urban demand regions
or bulk supply transfer that calls for allocation of water to meet their demand. The
demand nodes for Thames catchment are listed in Table 3.9. Input data used in
LARaWaRM are taken from Thames water reports (Thames Water 2013). The allocation
for demand is also reduced to account for demand saving measures put in place by
utility companies when reservoir levels pass certain capacity thresholds.

Demand Nodes Ml/day

London 2000.00

Three Valleys Water Abstraction 414.00

Essex and Suffolk Water (ESW Bulk Supply) 91.00

Veolia Three Valleys Bulk Supply (TVW raw) 2.00

Veolia Three Valleys Bulk Supply (TVW treated) 12.00

Sutton and East Surrey Water (SESW BS) 5.00

Table 3.9: Demand nodes in the Thames catchment.

The London Aggregate storage (LAgS) used in LARaWaRM, represents the total
storage capacity of the Thames and Lee reservoirs which provides just over 208 Mm3

storage capacity. In LARaWaRM, the water is pumped first from River Lee and then
from lower River Thames and diverted to LAgS. This diversion is subject to meet the
minimum environmental flows and maximum daily abstraction in the river. Reservoir
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trigger thresholds used in LTCD for demand saving measures are dynamic and vary
monthly (see Figure 3.3). Table 3.10 lists the thresholds used by LARaWaRM to invoke
the different levels of restriction (Levels of services and water use restrictions have
been listed in Table 3.1).

Level of services
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

level 1 69.5 82 89.5 92.1 92.1 90.9 86 74.9 64.8 61 59.8 61

level 2 42.2 47.8 55.3 65.2 74 76.5 74.7 67.7 55.7 46.2 41.1 40

level 3 33.6 37.3 43.4 52.1 60.9 65.9 67.2 62.4 51.2 41.2 34.9 32

level 4 17.4 19.8 24.8 29.8 34.8 38.6 39.8 39.8 37.4 31.2 25 20

Table 3.10: Percentage of reservoir total storage capacity that invokes the different levels of restrictions

(Thames Water 2013).

In the Thames basin, there are backup storages used when flow crosses certain
thresholds, during dry periods. These backup storages include North London
Artificial Recharge Scheme (NLARS) and the West Berkshire Ground Water Scheme
(WBGW). The NLARS is an aquifer storage which has a capacity of 64.4 Mm3 and
refilled when LAgS is full, and by excess treated water that is pumped to the ground
in north London (at the rate of 35 to 40 Ml/d). The WBGW with a capacity of 40.7
Mm3 is another aquifer storage which is only available during extreme droughts. The
WBGW is refilled by small daily inflows but cannot be counted as an unlimited sources
of water. Both of these aquifer storages are modelled as storage nodes in LARaWaRM.
Flow from NLARS goes directly to main LAgS reservoir whilst WBGW is added onto
available flow. These backup storages are activated when reservoir storage drops
below Level 4 of the control diagram threshold and target flow reaches below 400
Ml/d.

There is a Water Treatment Work (WTW) in the Thames basin that supplies treated
water for London and other utility companies (TVW BS and SESW BS). A part of
the inflow into the WTWs leaks out and because many WTWs are located near the
river, most of the leakage (equivalent to 12% of demand) returns to the Thames and is
modelled as a contribution to the minimum environmental flow.

Total demand is a function of population, residential and non-residential consump-
tion and leakage. In LARaWaRM, based on 2010 data, it has been assumed that per
person residential demand is 168 l/person/day, non-residential demand is 370 Ml/day
and leakage is 670 Ml/d (425 Ml/d for distribution loss and 165 Ml/d for other losses).

By running LARaWaRM, at each time step (daily), water moves in the system
according to the input data and connectivity between components. In fact, there are
five calculation steps in the model:

1. Catchment add water to river flows. In this case the model reads in river
flows directly from observed data (naturalised flow 1889-2005) (for the validation
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process) or SHETRAN hydrological model simulations for scenario testing.

2. Environmental flow regulation is tested according to LTCD which may dictate
augmenting river flows, or limiting abstractions.

3. Demand for water is satisfied by drawing water from any or all available supplies,
such as river abstractions, groundwater abstractions and reservoirs, etc.

4. Reservoirs refill as necessary from their available supplies according to abstraction
limits and refill rate rules.

5. At the end of the day, any reservoir which has had excess water pushed into it will
spill into its attached river spillway, or another reservoir.

3.6.2 Validation of water resources management model

For validation, LARaWaRM was run with observed input data, naturalised inflows
from Kingston and Lee sub-catchments for period between 1989 and 2005. In order
to check how good the water resources model simulates the water system, the results
given from LARaWaRM are compared with the daily total measured reservoir levels
in the Thames catchment.

In previous studies in Thames catchment (e.g. Matrosov & Harou 2010), the
validation was conducted with comparing the modelled results with EA Thames water
resources system model of AQUATOR. But in this study, the results of LARaWaRM
water resources model are compared with actual reservoir levels reported by Thames
Water for the Thames catchment. For this aim, the daily Reservoir levels in the Thames
catchment are obtained from Thames Water website 3. The Thames Water reports daily
reservoir levels since 1889 as percentage of usable or deployable capacity in the Lower
Lee Group and Lower Thames Group reservoirs. For validation the total reservoir level
was required. For this aim, the total reservoir level in London is calculated manually
by aggregating the measured levels from Thames group and Lee group reservoirs,
with the assumption that the contribution of Thames Group reservoirs and Lee group
reservoir are 80% and 20% respectively. Figure 3.32 compares the total measured and
simulated reservoir level in Thames catchment, and also shows the observed flow in
Kingston and Lee for validation period (1889-2005).

As it can be seen from Figure 3.32, LARaWaRM correctly simulates reservoir level
for Thames catchment, especially during the droughts. Based on this figure, the major
droughts of 1990-92, 1995-97 and 2003-05 are well captured by the model. Based
on the given results, the difference between measured and simulated reservoir level
are smaller in drought events. The Water resources model simulates the reservoir
full when the measured storage is higher than 90%. This difference can be due
to uncertainty in measured data as well as manually calculating the total reservoir
level from the measured levels taken from the Thames Water. Moreover, number

3https://data.london.gov.uk/dataset/london-reservoir-levels/
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Figure 3.32: Details of the model validation, total reservoir level and observed flow data from 1989-2005.

of population and the water regulation used at the time in Thames catchment can
contribute to this difference.

Figure 3.33 illustrates the total simulated and measured reservoir level and simu-
lated NLARS storage for the period of 1989-2005. As it has been mentioned before,
NLARS is a backup storage used in case of drought and then recharged with excess
treated water. The plot shows that, in case of drought the NLARS level drops and by
the end of droughts it starts to recover. For period between 1997 and 1998, the NLARS
level drops to the minimum level and remained empty for a while. This is consistent
with the NLARS recharge scheme operation reported by Environment Agency (EA
2016) which shows that in 1997 the abstraction from NLARS was very high, and the
recharge was very small. After 1998, there was not any abstraction from NLARS and
the backup storage recharged to its maximum level. As it can be seen, NLARS storage
modelled by LARaWaRM (see Figure 3.33), in 1997 is almost empty for nearly 220
days, and then by increasing the reservoir level, it starts to recover and reaches to the
maximum level. These show that the modelled storage perfectly matches the historical
evidence.

To measure the correlation between measured and simulated reservoir levels, two
metrics of Spearman’s Rank Correlation and Pearson’s Correlation Coefficient are used
(Naghettini 2016). The Spearman correlation is a non parametric measure which
evaluate the monotonic relationship (linear or non linear) between the ranking of two
variables (continues or ordinal). In a monotonic relationship the variables change
together, whether with a constant rate or not. The Spearman Rank Correlation is
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Figure 3.33: Details of the model validation, total observed and simulated reservoir and NLARS level

for 1989-2005.

calculated with the following equation (Spearman 1904):

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(3.5)

Where ρ is Spearman Rank Correlation, di is the difference between the ranks of
corresponding values xi and yi and n is number of value in each dataset. The Spearman
correlation lies between -1 and 1. The correlation of 1 indicates that there is a perfect
correlation between simulated and measured values, while the correlation coefficient
of zero shows that there is no relationship between the values.

Pearson Correlation coefficient is another non parametric measure that provides
a measure for the linear relationship between two continuous variables. In a linear
relationships, a change in one variable is correlated with a proportional change in other
variable. In contrast with Spearman, the Pearson evaluates the correlations between
the raw values, not the ranks. The Pearson correlation Coefficient is calculated as:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(3.6)

Where r is the Pearson Correlation Coefficient, n is the number of values, xi and
yi are datasets and x̄ and ȳ are the means. The Pearson correlation coefficient ranges
between -1 and 1 where correlation coefficient of 1 indicates that there is a perfect
linear relationship between the datasets values while zero implies that there is no linear
correlation.
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Coefficient of Determination (R2) is another metric to measure the correlation
between simulated and measured datasets. The R2 ranges between 0 and 1, when
values greater than 0.5 implies strong correlation between the values (Moriasi et al.
2007). Figure 3.34 shows the correlation between mean monthly reservoir levels,
measured and simulated, for Thames catchment. The values given for Pearson
Coefficient, Spearman Rank Coefficient and R2 are 0.9, 0.97 and 0.82 respectively. All
of these measures prove that there is a very strong correlation between measured and
simulated reservoir level in the Thames catchment. Not to mention that the high value
given from Pearson implies the linear relationships between the values.

Figure 3.34: Mean monthly observed and modelled total reservoir storage for 1998-2005.

3.7 Summary

This chapter presented the novel integrated systems framework developed in this
study to assess the implications of long-term uncertainties in water resources man-
agement. This chapter also outlined the characteristics of the Thames catchment,
which was used as a real world case study. The proposed integrated system model
was constructed for the Thames catchment. In this study the latest version of spatial
UKCP09 WG has been used which unlike its previous version, is fully consistent with
national gridded rainfall data set from the Met Office. In order to provide a wider range
of information about possible range of climate and their impacts, 100 ensembles of 100-
year long future climate scenarios were used. In addition, for the first time in Thames
catchment impact studies, the physically based hydrological model of SHETRAN was
used to simulate the hydrological characteristics of the basin. A rule-based water
resources model of LARaWaRM was also used to simulate the potential future water
resources risks and possible demand and supply adaptation options to manage the
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potential risks in Thames basin.

The given results for validation showed that in overall SWG reasonably well
reproduced the observed rainfall and PET statistics across the Thames catchment.
The given results for validation of SWG showed that, for both sub-catchments, there
was a slightly underestimation (9.0%) in monthly mean rainfall in July and 5.0%
overestimation in October, which may be due to exist of rare extreme total daily
rainfalls in the basin. The SWG also well simulated the PET for the Thames catchment.
The PET is slightly better simulated for larger catchment as for Kingston there is only
0.5% difference between annual mean of observed and simulated values, while this
difference for Lee is around 3.5%. Therefore, SWG provides a suitable platform for
uncertainty analysis and also coupling with physically based hydrological model.

To simulate the hydrological characteristics of this catchment, the SWG was in-
tegrated to physically-based spatially-distributed hydrological model of SHETRAN.
The given results for calibration and validation showed that SHETRAN integrated
with SWG, well simulated the historical discharges, especially the low flows during
historical droughts were well captured. The NSE for calibration and validation
of Kingston sub-catchment were 0.90 and 0.78 respectively, and for Lee they were
around 0.67 and 0.65 respectively. For Kingston sub-catchment, the annual mean flow
given from SHETRAN with observed input data, was 5.6% less than historical flow.
This comparison quantifies the uncertainty caused by either SHETRAN or error in
historical data measurement (including measuring rainfall, flow and PET calculation-
individually or combination). Mean annual flow given by SHETRAN with simulated
input is 5.9% less than mean annual flow given from SHETRAN with observed input
which shows the uncertainty from hydrological modelling. The simulated flow driven
with synthetic meteorological data is 10.7% less than historical value which is in
fact the combined uncertainty caused by SWG and SHETRAN hydrological model
together. For the Lee, similar to Kingston, the combined uncertainty is around -
10.0%, while the uncertainty from SWG increased further to -16.0%, and also there was
5.3% overestimation caused by modelling with SHETRAN. Hence, the results show
that the uncertainty from combination of SWG and SHETRAN leads to nearly 10.0%
underestimation in the annual mean flows in the Thames catchment.

In order to investigate the sensitivity of the SHETRAN hydrological model to
the meteorological variables, three different distributions of rainfall and PET (spatial
(SWG), mean spatial (SWG-mean) and Single-site (SSWG)) were tested over the
Thames catchment. The comparison between historical and simulated flows showed
that SHETRAN with SWG input data better represents the hydrological characteristics
of the catchment. Although, SHETRAN with SWG-mean input data gives a better
simulations for some of the months (e.g. February and November), the overall
simulation is not as good as SWG one. The simulated flow by SHETRAN with input
data from SSWG are very biased and the values of discharge are considerably different
from historical values.
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To simulate the water storage and frequency of water shortage in Thames catch-
ment, a rule-based water resources management model of LARaWaRM are used.
For validation, LARaWaRM was run with observed input data, naturalised observed
inflows from Kingston and Lee sub-catchments for period between 1989 and 2005. In
order to check how good the water resources model simulates the water system, the
results given from LARaWaRM are compared with the daily total measured reservoir
levels in the Thames catchment. Based on the results, the LARaWaRM correctly
simulates reservoir level for Thames catchment, especially during the droughts as the
major droughts of 1990-92, 1995-97 and 2003-05 are well captured by the model. The
difference between the simulated and observed data can be due to the uncertainty
in measured data as well as manually calculating the total reservoir level from the
measured levels taken from the Thames Water. Moreover, the size of population and
the water regulation used at the time in Thames catchment can also contribute to this
difference.
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Chapter 4

Climate Change Impact Assessment

4.1 Overview

This chapter discusses the impacts of climate change on water resources availability in
the Thames catchment. The analysis mainly compares the changes in rainfall, PET and
flow and water storage between the control (1961-1990) and future climate scenarios
(2020s, 2050s and 2080s). For both the Lee and Kingston sub-catchments, the spatial
UKCP09 WG (SWG) at 5 km resolution and under medium emission scenario, is used
to drive 100 runs for the control period and 100 runs for future time periods. This
is followed by projecting the possible change in reservoir storage and frequency of
drought days in four time slices of the control, 2020s, 2050s and 2080s and proposing
different adaptation options to tackle the projected deficiency of water supplies.

4.2 Climate change impact assessment for Thames catchment

This section discusses the impacts of climate change on rainfall, PET and flow. For this
aim, for each of the Lee and Kingston sub-catchments, 100 runs of 100 years daily
synthetic time series for control (1961-1990) and future scenarios (2020s, 2050s and
2080s) are considered.

4.2.1 Climate change impacts on the Kingston sub-catchment

4.2.1.1 Rainfall

Figure 4.1 shows boxplots1 of projected daily rainfalls in the Kingston sub-catchment.
The boxplots show the changes in distribution of daily mean rainfall between control
and future climates. Uncertainty in rainfall projections are larger for further future
climate scenarios. For example, the longer boxes for 2080s implies that variation in

1Each of the boxplots indicates the median, 25th, and 75th percentile values. Whiskers show the 1.5 times of inter quartiles

(IQRs), the difference between 25th and 75th percentile values. The small crosses are outliers, which are any points of data that

lies below (25th percentile - 1.5 IQRs) or above (75th percentile + 1.5 IQRs).
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daily rainfall in this time period is greater than the other time slices. Compared to the
control scenario, there is less rainfall in spring and summer (from April to September)
whilst in autumn and winter more rainfall is expected to occur. Based on the given
results, in all future climates, August and February are expected to be the driest and
wettest month respectively.

Figure 4.1: Boxplots of rainfall in Kingston sub-catchment.

Figure 4.2: Mean rainfall in Kingston sub-catchment.

The percentage changes from mean daily rainfall in the control scenario are plotted
in Figure 4.3. This figure highlights that all the time slices have a similar increasing
trend from November to February and decreasing trend from May to October. The
magnitude of change in 2080s is much greater than the other time slices, except for
August 2050s in which the percentage of change in rainfall is the largest (-28.0%).
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Figure 4.3: Change in mean rainfall relative to control period for the Kingston sub-catchment.

For 2080s, there is a decreasing trend in rainfall from May to October, ranging from
-3.0% to -24.0%. From November mean rainfall increases until February, when the
mean rainfall is 32.0% higher than the control scenario. In fact, May and November
represent the turning points for rainfall trend in this catchment. Table B.2 lists the
detailed change in the mean, 90th and 10th percentile of rainfall for future climate,
compared to control scenario. As it is seen in this table, in February, there is a 64.0%
increase in 90th percentile rainfall whiles 60.0% reduction in 10th percentile in August.

4.2.1.2 PET

Daily time series of potential evapotranspiration (PET) are generated by the spatial
UKCP09 WG (SWG), with 5 km gridded climate variables using the FAO Penman-
Monteith method. Figure 4.4 compares the boxplots of PET for control and future
scenarios in the Kingston sub-catchment.

For all future climate scenarios, the PET is always higher than control scenario.
The distribution of uncertainty in PET prediction is higher for 2080s. The range of
uncertainty is expected to be higher during the summer (June, July and August) and
lower during the winter. The results show that the average of projected PET are closer
to the control scenario in winter.

Figure 4.6 reflects the percentage of change in PET for future scenarios compared to
mean of 100 runs of control climate in Kingston catchment. The maximum difference
from control scenario occurs in August 2080s, where there is 44.6% increase in PET
compared to control scenario. Table B.4 lists the percentage of change in quantity of
predicted PET from mean of 100 runs of control scenario. Based on the given results,
by 2080s, between +24.5% and +73.8% in 90th percentile and -3.5% to 15.7% change in
10th percentile of PET are expected.
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Figure 4.4: Boxplots of PET in Kingston sub-catchment.

Figure 4.5: Mean PET from 100 runs of 100 years of control and future scenarios in Kingston sub-

catchment.
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Figure 4.6: % change in man PET relative to control period in Kingston sub-catchment.

4.2.1.3 River flows

Boxplots of mean discharge in the Kingston sub-catchment are shown in Figure 4.7.
This figure highlights that in all the months, the mean projected flow for future
scenarios are less than control scenario. Figure 4.8 compares the daily average of flow
in the control and future scenarios in all months. The control scenario has a decreasing
trend from January to August, and increasing trend from September to December.
Flows in January and August is maximum and minimum respectively.

In all the future scenarios, flows have a similar increasing trend from November to
February and decreasing trend from March to August. Therefore, the maximum flow
in future scenarios occurs in February while in control scenario this occurs in January.
But similar to control scenario, the minimum flow is expected to be in August. This
trend in flow projections is consistent with the previous section. As described before,
the projected decrease in rainfall and increase in PET lead to lower flows in spring and
summer.

The percentage change from mean of 100 runs for future and control scenarios are
plotted in Figure 4.9. It can be seen that projected flows for 2080s are smaller than
the other time slices. Based on the given results, this reduction in mean flow is much
higher in 2080s, ranging from -3.6% in March and 44.5% in November. Further monthly
statistics for percentage change from mean of 100 runs of control scenario are given in
Table B.6.

In this table, Q10 (90th percentile) represents the high flow, which means only 10%
of the time, the flow is equal or greater than this value. Also, Q90 (10th percentile)
represents the low flow, which means 90% of the time, the flow is equals or greater
than this value.

Based on the results of high flow (Q10) illustrated in Table B.6, in 2020s, there is an
increase in high flows from January to December. There is an exception for October that
the reduction of 4.8% is projected to occur. In 2050s, between 8.1% and 9.5% increase in
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Figure 4.7: Boxplots of flow in Kingston sub-catchment.

Figure 4.8: Mean flow in Kingston sub-catchment.
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high flow in February, March and April are projected, while between 14.3% and 1.6%
reduction in high flow occurs for the remaining months. Maximum changes in high
flow (Q10) is expected to occur by 2080s, which ranges from -29.2% in November to
+19.6% in February.

Based on the given results, the low flow (Q90) is projected to reduce in all future
scenarios. The low flow reduces to its minimum level by September, in all future
scenarios. These reductions in Q90 is higher for 2080s, ranging from -22.4% in March
to -60.1% in November.

Figure 4.9: Change in mean flow relative to control period in Kingston sub-catchment.

To assess the range of possible changes in flow in Kingston catchment a range of
flow duration curves for control and future scenarios are plotted. The flow duration
curves for 100 runs of 100 years of control and future scenarios in Kingston are
presented in Figure 4.10. In each of the plots in this figure, the comparison between
control and future projections shows that the frequency of occurrence of all the possible
range of flow increases for future scenarios. This wider range of possible frequencies,
indicates that the uncertainty in projected flows in future scenarios, spatially for 2080s,
are higher relative to the control. This is in consistent with the results showed in
previous section about projected drier summers and wetter winters for Kingston sub-
catchment. For flows lower than Q50, there is a reduction in projected flow which is
a function of reduced summer and spring rainfall. There is a slight projected increase
in flows higher than Q10 which is a consequence of increase rainfall in winter. The
percentage change in flow quantiles from mean control to mean future are summarised
in Table 4.1. As it can be seen, on average, in all of the future scenarios there is a
reduction in flow relative to the control scenario.

4.2.1.4 Subsurface storage

Based on the results so far, climate change is likely to change precipitation and
PET regimes and consequently alter flow distribution in the Kingston sub-catchment.
Considering the importance of the knowledge about the future potential changes for
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Figure 4.10: Range of flow duration curves for 100 runs of 100 years of control and future scenarios in

Kingston sub-catchment.
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Flow Quantiles 2020s 2050s 2080s

Q1 -0.08 -3.27 -2.72

Q5 -5.46 -10.87 -13.87

Q10 -8.50 -15.53 -20.09

Q50 -13.64 -23.00 -27.69

Q90 -12.65 -24.00 -30.42

Q95 -13.95 -26.21 -33.19

Q99 -16.90 -30.26 -37.64

Table 4.1: % change in mean flow quantiles from control to future scenarios, Kingston sub-catchment.

decision makers and water resources managers, it is therefore of interest to assess
potential changes in subsurface storage in this sub-catchment.

The projected subsurface storage in the Kingston sub-catchment are presented in
Figure 4.11. Analysing the 100 runs of 100 years simulated flow in Kingston, shows
that in future there is a decreasing trend in projected subsurface storage relative to
control. The size of the boxplots gets larger for further time slices. As for 2080s, the
boxplots are the largest amongst the other future time slices, which indicates that the
uncertainty in projecting the subsurface is the greatest in 2080s.

Figure 4.11: Boxplots of subsurface storage in Kingston sub-catchment.

Figure 4.12 shows a comparison of mean subsurface storage between control and
the future scenarios. The curves illustrate that in future the mean projected subsurface
storage is always lower than the control scenario. During winter, because of a higher
amount of rainfall and lower PET, the subsurface storage is at its highest level.
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While by reducing rainfall, increasing the temperature, and consequently increase of
PET during spring and summer, the subsurface storage drops to its lowest level by
September. The percentage of change in mean subsurface storage from control scenario
are plotted in Figure 4.13. More details about mean, 90th and 10th percentiles of
subsurface projections from control in the Kingston sub-catchment are listed in Table
B.7 and Table B.8. By 2080s subsurface storage is projected to be between 0.41% and
1.9% less than control scenario. Overall, a 1.1% reduction in mean subsurface storage
is expected to occur by 2080s. While the projected difference between 2020s and 2050s
and control are expected to be around -0.42% and -0.82% respectively.

Seasonal comparison between subsurface values are listed in Table 4.2. The sub-
surface storage in summer and winter are at the lowest and highest level respectively.
The percentage of difference between future and control in winter and autumn are the
greatest. The given results show that in spite of projected rainfall increase in winter and
spring, the flow is always lower than the control scenario. This shows that in future,
as a result of higher temperature and consequently higher PET, the soil is always very
dry and never get saturated enough to create surface run-off. The subsurface storage
reduces the most by 2080s, which is in consistent with the projected rainfall, PET and
flow presented in the previous sections.

Figure 4.12: Subsurface storage in the Kingston sub-catchment.

4.2.2 Climate change impacts on the Lee sub-catchment

4.2.2.1 Rainfall

Figure 4.14 shows boxplots of rainfall in the Lee catchment. Rainfall has an increasing
trend from September to January and decreasing trend from March to August. The
given results show that, for all time slices the projected rainfall in April and October
are similar to the control scenario. Generally, the distribution of uncertainty in 2080s is
considerably larger than the other climate scenarios.

Figure 4.15 compares the mean rainfall in control and future scenarios. This plot
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Figure 4.13: % change in mean subsurface storage relative to control period in the Kingston sub-

catchment.

Season

Average (mm) Change (%)

Control

(1961-190)
2020s 2050s 2080s

Control

(1961-190)
2020s 2050s 2080s

Spring 4859.88 4848.86 4839.56 4831.78 - -0.23 -0.42 -0.58

Summer 4842.76 4831.05 4820.34 4812.08 - -0.24 -0.46 -0.63

Fall 4789.38 4760.56 4732.28 4713.88 - -0.60 -1.19 -1.58

Winter 4821.66 4792.91 4764.13 4745.37 - -0.60 -1.19 -1.58

Annual 4828.42 4808.34 4789.08 4775.78 - -0.42 -0.82 -1.09

Table 4.2: Seasonal subsurface storage in Kingston sub-catchment

Figure 4.14: Boxplots of rainfall in the Lee sub-catchment.

92



highlights that from November to March, the projected rainfall for the future climates
are higher than control scenario, while from April to October rainfall is lower than the
control scenario. This implies wetter winter and drier spring, summer and autumn in
future. Details about the values of mean rainfall in control and future scenarios are
shown in Table B.9.

The percentage of change in rainfall from the mean of 100 runs for control scenario
are plotted in Figure 4.16. The maximum growth in the increase of rainfall are expected
to occur in February. More detailed results about the percentage changes from mean
of 100 runs of control scenarios are shown in Table B.10. In 2080s, in February, the 90th
percentile of rainfall is expected to increase by 64.0% compared to the control scenario.
August with 23.6% decrease in mean rainfall and 58.3% reduction in 10th percentile, is
the driest month.

Figure 4.15: Mean rainfall in the Lee sub-catchment.

Figure 4.16: Change in mean rainfall relative to control period in Lee sub-catchment.
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4.2.2.2 PET

Figure 4.17 illustrates the boxplots of daily PET in the Lee sub-catchment. Similar to
the Kingston sub-catchment, there is an increasing trend in PET projections. From
September to December there is a decreasing trend in PET. The minimum change in
PET is expected to occur in January while the maximum change occurs in August.
This figure shows a wider range of uncertainty in projected PET for future scenarios,
especially in the2080s. Figure 4.18 compares mean PET for control and future
scenarios. The quantity of mean, 10th and 90th percentile PET for control and future
climates are tabulated in Table B.11.

Figure 4.17: Boxplots of PET in the Lee sub-catchment.

Figure 4.18: Mean PET in the Lee sub-catchment.
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Figure 4.19: Change in mean PET relative to control period in Lee sub-catchment.

Figure 4.19 and Table B.12 also provide further details about percentage of change
in mean PET of future scenarios from mean of 100 runs for control scenario. Based on
the given results, in 2020s, there is a slight decrease (-1.4%) in PET in January, relative
to control scenario.

There is an increase in PET in all future scenarios, except for 2020s in which the
PET decreases by 1.4% relative to the control scenario. The range of increase in PET is
greater for 2080s, which is between 8.3% in January and 44.5% in August. In addition,
for 2080s, between 23.1% and 73.9% increase in 90th percentile and between 3.9% and
15.7% reduction in 10th percentile are expected to occur.

4.2.2.3 River flows

Figure 4.20 shows the boxplots of flow for control and future scenarios. The projected
flow is always lower than the control scenario. It also illustrates that the spread of
uncertainty in flow projections for future scenarios, especially 2080s, is higher than
the control scenario. This uncertainty in winter and autumn is greater than in other
seasons, which is consistent with the higher uncertainty in rainfall projections in these
seasons (explained in previous section). The quantity of mean, 10th and 90th percentile
flows are listed in Table B.13.

Figure 4.21 compares the mean of 100 runs of simulated flows of control and future
scenarios. In all future scenarios, February has the highest flow, while in control
scenario flow in January is higher than the other months. It can also be seen that in
May, the difference between mean flows are minimum. In February and March the
projected mean flow for 2050s and 2080s are very similar.

Figure 4.22 and Table B.14 also provide more details on percentage of change in
mean flow from mean of 100 runs of control scenarios. Based on this figure, in
all the future climate scenarios, the projected flow is always lower than the control
scenario. This reduction is higher for 2080s, which ranges from 11.9% in May to 37.3%
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in September. For 2050s and 2020s, the maximum reduction in flow occurs in October
by 19.2% and 30.8% respectively. In 2080s, between -24.7% and 9.2% change in Q10
and between 19.2% and 53.4% reduction in Q90 is expected to occur.

Figure 4.20: Boxplots of flow in Lee sub-catchment.

Figure 4.21: Mean flow in Lee sub-catchment.

Flow duration curves for 100 runs of 100 years of control and future scenarios are
plotted in Figure 4.23. This is to assess the range of possible changes in future flow in
the Lee sub-catchment. The plotted flow duration curves show that the frequency of
occurrence of all the possible ranges of flows increases for future scenarios. Similar to
the Kingston sub-catchment, the range of possible frequencies for future scenarios gets
wider which shows that the range of uncertainty in projected flows in future scenarios,
spatially for 2080s, are higher relative to the control scenario. This is consistent with the
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Figure 4.22: Change in mean flow relative to control periods in Lee sub-catchment.

Quantiles 2020s 2050s 2080s

Q1 -6.65 -11.40 -11.32

Q5 -15.53 -23.11 -25.75

Q10 -17.38 -25.65 -29.27

Q50 -9.54 -15.61 -19.13

Q90 -15.59 -27.48 -33.67

Q95 -16.76 -29.03 -35.34

Q99 -17.46 -30.13 -36.97

Table 4.3: % change in mean flow quantiles from control to future scenarios in Lee sub-catchment.

results showed in previous section about predicting drier summers and wetter winters
in Lee basin.

Similar to Kingston, there is a reduction in projected flow lower than Q50. This
reduction is a result of a decrease of the amount of precipitation in summer and
spring. For flows higher than Q10, a slight increase is predicted. The wider range
of frequencies in higher flows is a consequence of increased winter rainfalls. Table 4.3
shows the percentage change in mean flow quantiles from control to future scenarios.
As it can be seen, flow quantiles of future scenarios are always lower than control
period. This reduction is greater for low flows. The prediction shows that by 2080s,
in average, between 33.7% and 37.0% reduction in low flows (Q90, Q95 and Q99) are
expected to occur (35.3% reduction in Q95).

4.2.2.4 Subsurface storage

The boxplots of subsurface storage for control and future scenarios of the Lee sub-
catchment are presented in Figure 4.24. Analysing the 100 runs of 100 years of
simulated subsurface storage, shows a decreasing trend in projected future subsurface
storage relative to the control scenario. As it can be seen in Figure 4.24, size of the
boxplots gets larger for further time slices, especially for 2080s.
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Figure 4.23: Range of flow duration curves for 100 runs of 100 years of control and future scenarios, Lee

sub-catchment.
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Figure 4.24: Boxplots of subsurface storage in Lee sub-catchment.

Figure 4.25: Mean subsurface storage in Lee sub-catchment.

99



Plots of mean subsurface storage of the control and the future scenarios are
presented in Figure 4.25. Based on this figure, in future, the mean projected subsurface
storage is always lower than the control scenario. Due to the increase in projected
winter rainfall, the subsurface storage is at the highest level in this season. In line with
projected rainfall, the subsurface storage drops to the lowest level by September. All
of these results for Lee sub-catchment are in consistent with the change in projected
rainfall, PET and flow which were discussed earlier. Figure 4.26 illustrates the change
in mean subsurface storage from the control scenario.

More details about mean, 90th and 10th percentiles of subsurface projections and
percentage of changes from control scenario are listed in Table B.15 and Table B.16
respectively. Based on the results presented in these tables, for all future scenarios, the
maximum and minimum change in subsurface storage is expected to occur by March
and October respectively.

Seasonal comparison between subsurface values are listed in Table 4.4. As it can
be seen, among the studied future time slices, the maximum reduction in annual
mean subsurface storage is expected to occur by 2080s (-1.5%). In future scenarios,
the average of subsurface storage is expected to be lower than the control scenario
in all seasons. The minimum change in subsurface storage occurs in spring, while the
percentage of change from control scenario is the greatest in winter, especially by 2080s
which the mean subsurface storage is expected to be 1.8% lower than control scenario.

Figure 4.26: Change in future subsurface storage relative to control period in Lee sub-catchment.

4.2.3 Summary of the results for climate change impact assessment of flow for the

Thames catchment

The 2080s is the most uncertain time slice, and the projection for 2080s represents the
most severe possible impacts of climate change in the future. Hence, this time slice
is used as a representative of the future impacts scenarios to summarize the impacts
of climate change in the Thames catchment. Table 4.5 and Table 4.6 summarise the
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Season

Average (mm) Change (%)

Control

(1961-190)
2020s 2050s 2080s

Control

(1961-190)
2020s 2050s 2080s

Spring 6598.44 6556.27 6531.61 6517.48 0.00 -0.64 -1.01 -1.23

Summer 6582.15 6539.81 6513.18 6498.03 0.00 -0.64 -1.05 -1.28

Fall 6512.72 6455.70 6416.76 6395.31 0.00 -0.88 -1.47 -1.80

Winter 6540.14 6482.28 6443.45 6422.60 0.00 -0.88 -1.48 -1.80

Annual 6558.36 6508.51 6476.25 6458.35 0.00 -0.76 -1.25 -1.53

Table 4.4: Seasonal subsurface storage in Lee sub-catchment.

ranges of changes in mean rainfall, PET, flow and subsurface storage in Kingston, for
each season by 2080s relative to the control scenario. Rainfall is projected to increase in
spring and winter. The annual mean daily rainfall is projected to have a slight increase
(+0.09%) by 2080s, which shows that total amount of rainfall is almost the same as the
control scenario.

For the Kingston catchment, the given results from simulations show that by 2080s,
PET is expected to increase in all the seasons and the annual mean daily PET is
projected to increase by 26.6%. Because PET is more affected by the temperature,
it can be concluded that by 2080s the overall temperature is expected to increase in
all of the seasons. Another interesting results given from this study is that there is a
reduction in flow and subsurface storage in all the seasons, which indicates that they
are more influenced by temperature and consequently the PET. The given results show
that, 24.1% and 1.1% reduction in annual mean daily flow and subsurface storage is
projected to occur respectively.

Seasonal

Spring Summer Autumn Winter Annual

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall (mm) 2.28 1.62 1.43 2.51 1.96

PET (mm) 0.97 3.20 3.59 0.89 2.16

Flow (m3/s) 73.11 29.69 30.46 95.62 57.22

Subsurface storage (mm) 4831.78 4812.08 4713.88 4745.37 4775.78

Table 4.5: Summary table of mean seasonal rainfall, PET flow and subsurface storage for 2080s, Kingston

sub-catchment.

The given results for Lee sub-catchment are summarised in Table 4.7 and Table 4.8.
These tables show the range of changes in mean rainfall, PET, flow and subsurface
storage for each season by 2080s relative to the control scenarios. The analysed results
show that, similar to Kingston, there is an increase in spring and winter and a decrease
in summer and autumn rainfalls in the Lee sub-catchment. The annual mean daily
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Seasonal

Spring Summer Autumn Winter Annual

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall +17.8% -8.44% -19.22% +10.23% +0.09%

PET +16.72% +27.68% +37.29% +24.86% +26.64%

Flow -8.76% -20.31% -42.60% -24.63% -24.08%

Subsurface storage -0.58% -0.63% -1.58% -1.58% -1.09%

Table 4.6: Summary table of % change in mean seasonal rainfall, PET, flow and subsurface storage from

control to 2080s, Kingston sub-catchment.

rainfall is projected to have slight increase (0.19%) by 2080s.

For Lee sub-catchment, the results from simulations illustrate that by 2080s, the PET
is expected to increase in all the seasons and the annual mean daily PET is projected
to increase by 26.6% (higher than Kingston sub-catchment). Another interesting result
given from this study is that despite of increasing rainfall, flow and subsurface storage
are predicted to reduce in all the seasons. This reduction indicates that both flow and
subsurface storage are more affected by temperature and consequently the PET. Based
on the results, the annual mean daily flow and subsurface storage are projected to drop
by 23.2% and 1.5% by 2080s respectively.

Seasonal

Spring Summer Autumn Winter Annual

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall (mm) 1.88 1.49 1.34 2.13 1.71

PET (mm) 0.97 3.24 3.67 0.90 2.20

Flow (m3/s) 5.36 3.64 2.22 3.43 3.66

Subsurface storage (mm) 6517.48 6498.03 6395.31 6422.60 6458.35

Table 4.7: Summary table of mean seasonal rainfall, PET for 2080s, Lee sub-catchment.

Seasonal

Spring Summer Autumn Winter Annual

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

Rainfall +17.8% -8.36% -18.82% +10.13% +0.19%

PET +16.31% +27.79% +37.52% +24.78% +26.60%

Flow -20.71% -14.33% -28.92% -28.82% -23.19%

Subsurface storage -1.23% -1.28% -1.80% -1.80% -1.53%

Table 4.8: Summary table of % change in mean seasonal rainfall, PET and flow from control to 2080s,

Lee sub-catchment.

102



4.3 Water resources availability in Thames catchment

LARaWaRM was used in this study to discover the potential impacts of climate change,
socio economic drivers and supply and demand changes on the availability of water
resources in Thames catchment. To assess the impact of climate change on availability
of water resources, the 100 runs of 100 years simulated river flows generated by
SHETRAN for the four time slices of control (1961-1990), 2020s, 2050s and 2080s are
input into LARaWaRM.

To investigate the impacts of population growth on water resources, population
and employment growth has been used to estimate the demand for water in the
future. The population projections are based on Greater London Authoritys strategic
plan for London (GLA 2014a). The population growth of London are projected up to
2040, which is expected to be around 10.0 to 10.7 million. Therefore, the population
projections for 2050s and 2080s are calculated by an extrapolation technique and listed
in Table 4.9.

The projections for employment growth in Thames catchment is based on GLA
economics which is based on ONS data (GLA 2014b). Five different main employment
sectors are considered in LARaWaRM: Primary and Industry, services, Construction,
Finance and Professional, public and other. The employment growth projection by
GLA is only up to 2036, therefore the projections for 2050s and 2080s are calculated by
extrapolation. The actual and projected populations works in different employment
sectors, for years between 2010 and 2080s are listed in Table 4.9.

Year Population
Employment

Primary &

Industry
Services Construction

Finance &

Professional

Public &

others

2010 8,107,073 411,000 1,030,000 238,000 1,854,000 1,211,000

2020 9,127,567 346,499 1,178,973 255,516 2,125,988 1,283,002

2050 10,776,890 171,492 1,355,850 239,840 3,104,601 1,397,247

2080 12,183,948 82,000 1,532,000 221,000 4,102,000 1,503,000

Table 4.9: Population and employment projections for London

4.3.1 Impacts of climate and population change on total reservoir storage

By using synthetic flow time series, generated by SHETRAN, as input to drive
LARaWaRM the total reservoir storage in Thames catchment are generated. Figure
4.27 shows boxplots of daily mean total reservoir storage, for 100 runs of 100 years,
simulated for different climate and population projections. In each of these four sub-
figures, it has been assumed that population is constant over the time and only climate
scenarios are changed. By comparing these sub-figures, the impact of population
change on total reservoir storage in Thames catchment are analysed.
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Figure 4.27(a) illustrates the impact of climate change on reservoir level if the
population remains constant at its current number. Results given by water resources
model shows that for control scenario, there is substantial amount of water in the
reservoir throughout the year. Even by the end of the summer, when the storage
in reservoir is normally low, there is nearly 90.0% water in the reservoir. While, as
it can be seen, the total reservoir level drops for all future climate scenarios, as for
2080s the reservoir is much lower than the one for control scenario. Comparing all
four population projections show that by increasing the population, as the demand
for water increases, the reservoir level reduces. More details about the mean reservoir
levels for all these population and climate change scenarios are listed in Table B.17 and
Table B.18.

For each population projection, the uncertainty in reservoir storage estimation is
getting larger for further future climate scenarios. For example, the longer boxes for
2080s implies that variation in mean reservoir level in this time period is greater than
the other time slices. Moreover, the figure compares the distribution of change in total
reservoir levels in each month. From March to June the uncertainty in projections of
reservoir level is smaller than other months. For instance, for current population, by
2080s, in May between 80.0% and 100% water is expected to be in the reservoir, while
the total reservoir level in November can range between 98.0% to 18.0%. Therefore,
especially during autumn and winter, there is a larger range of possibility in reservoir
storage, which indicates that uncertainty in prediction of water storage is very large.
By keeping the population at current level, in 2080s there is 14.0% reduction in annual
mean reservoir level compared to the control climate. If population changes to 2080s,
for control climate the annual mean reservoir is 12.0% less than that from control
climate with current population.

In all population scenarios, compared to control scenario there is always less water
in the reservoir in future time slices. Based on the given results, in all future climates,
in April and October the reservoirs is expected to be at the highest and lowest level
respectively. For all climate scenarios, from beginning of summer (June) the reservoir
storage reduces until October which it reaches to its minimum level. From October,
by start of the rainy seasons, the reservoir level increases. For the control scenario, the
reservoir storage fully recovers by January and stays full until June. While for future
climate projections, compared to control scenario the recovery process takes longer and
the full reservoir lasts for fewer months.

If population grows and climate changes as they are projected for 2080s (see Figure
4.27(d)), the water storage in reservoir is expected to be nearly 26.0% in October. This
shows that by 2080s, the projected minimum reservoir storage in Thames catchment is
expected to be 70.0% lower than the reservoir level for current population with control
climate. This minimum reservoir storage is also 54.0% less than current population
with 2080s climate and 57.0% lower than reservoir level with 2080s population and
control climate. These are all show that in future as a result of population growth and
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climate change, water resources in the study area could be under greater pressure.

If the population remained as it is projected for 2080s, the annual mean water
storage for climate of 2080s, is 24.0% less than control climate with same population.
Which is also 22.0% lower than 2080s climate with current population, and 33.0% lower
than control climate with current population. Despite previous studies (Walsh et al.
2016, Borgomeo et al. 2014), these results indicate that by 2080s, the climate could
have a greater impact on water supply security than population. The combination of
population and climate change could have a greater impact on water supply security
than each of them as individual drivers.

4.3.2 Impacts of climate and population change on number of drought days

Number of drought days is the frequency of the days that the demand saving
restrictions are imposed on water use. The level of services and their Demand saving
(DS) restrictions are listed in Table 3.1 and has been described in details in section
3.3. In this section, the projected number of drought days in Thames catchment, for
different population and climate change scenarios, are presented and analysed. These
numbers are from 100 years of 100 runs given by LARaWaRM.

Figure 4.28 illustrates the number of days that DS restrictions were applied for
climate change projections runs (control, 2020s, 2050s and 2080s) with four population
growth scenarios (current , 2020s, 2050s and 2080s). More details about the impact of
climate change on number of drought days, for different population and also their %
of change compared to their control scenario are listed in Table B.19.

From the given results shown in Figure 4.28 and Table B.19, it can be seen that
the minimum total number of drought days is for control scenarios with current
population. The number of drought days increases for future climate projections. In
fact, future climate projections implies a greater range of uncertainty in the estimation
of drought days, especially for level 4 as the size of boxplots are larger for 2080s
compared to other climate scenarios.

For all population growth, there is an increasing trend in number of drought days
for future climate scenarios, as the number of drought days for climate scenario of
2080s is always greater than the others. For the current population, the total number
of drought days for climate projection of 2080s is 541.0% greater than that from
control scenario. By increasing the population, the range of uncertainty and variability
in number of drought days gets larger. For a single climate scenario of 2080s, by
comparing the total number of drought days for the current population with that from
population growth of 2080s, it can be seen that for population growth of 2080s the
total number of drought days is 84.0% greater than current population. This shows the
contribution of population growth in number of drought days.

Moreover, contribution of combination of population growth and climate projection
is much higher than that from climate or population scenarios alone. Combination of
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climate and population growth scenarios show that, for example, if both the climate
change and population growth are as expected for 2080s, there is 1083.0% increase in
total number of drought days compared to current population with control climate.

4.3.3 Adaptation options

The computational efficiency of water resources management model of LARaWaRM
is very advantageous to enable a range of different adaptation options to be tested.
For this aim, by altering the existing properties of models and also adding new links
and nodes, different adaptation options are tested for different climate and population
scenarios (from 2020s onward). The adaptation options considered are as follows:

• Desalination plant (D): represents the Thames Water desalination plant in Beckton
which supplies capacity of 150 Ml of drinking water per day.

• Leakage reduction (L): represents the linear reduction in leakage (8.5% by 2020s,
23.0% by 2050s, 40.0% by 2080s). As it is noted by Thames Water (2013) compared
to 2010, there could be 17.0% reduction in leakage by 2040s (Leakage is expected
to be around 556 Ml/d by 2040s).

• New reservoir (R): is another supply option to construct a new reservoir with 100
million m3 capacity which only applies for 2050s onward as it would take 30 years
to construct such a reservoir.

• Different combinations of supply options such as Desalination and Reduced
leakage (D+L); Desalination and New reservoir (D+R), Reduced leakage and New
reservoir (L+R), Desalination and Reduced leakage and New reservoir (D+L+R).

• Demand reduction: represents reducing per person water demand from 168
l/p/d to 125 l/p/d, which is the target water consumption for all new properties
in Thames area (Thames Water 2013).

The number of drought days given from different supply adaptation options,
without demand reduction, are compared in Figure 4.29. More details about mean
number of drought days and also % change compared to No adaptation scenario are
presented in Table B.20 and Table B.21.

As it can be seen, the overall reduction in number of drought days shows the
benefits of these adaptation options on managing water resources in Thames area.
When both climate and population projections are for 2020s, three adaptation options
of Desalination plant, Reduced leakage and Desalination and leakage are tested.
Based on the given results, by using these adaptation options, the number of drought
restrictions, Level 1 to Level 4, are reduced.

In 2020s, combination of desalination plant and reduced leakage has a greater
impact than the desalination plant or reduced leakage. Combination of desalination
plant and reduced leakage is the most effective adaptation option in the 2020s, which
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leads to 56.7% reduction in number of drought Level 4. Desalination plant alone with
48.0%, and reduced leakage with 15.0% drop in number of drought Level 4, are ranked
as second and third best options.

For 2050s, increasing the storage capacity of London by 100 million m3 has the
greatest impact on reducing the frequency of drought Level 1 and 2. Based on the
results, adding the new reservoir reduces the drought Level 1 and 2 by 53.0% and 34.0%
respectively. While, combined contribution from desalination plant, leakage reduction
and new reservoir with 88.0% reduction is the most effective option on reducing the
frequency of drought Level 4. In 2050s, combination of Leakage and reservoir as
well as desalination and new reservoir can be categorised as second and third most
effective options for drought Level 4. Interestingly, combination of desalination plant
and reduced leakage, which was the most effective option in 2020s, is less effective in
2050s as it only reduces the number of drought Level 4 by 58.0%.

In 2080s, same as 2050s, although all adaptation options have substantially con-
tributed in reducing the number of drought days, still the combination of three
adaptation options of desalination, leakage and new reservoir with 74.0% reduction
is the most effective option to reduce frequency of drought Level 4. Interesting to note
that, although this combination effectively reduces the frequency of drought Level 4,
it also increases the frequency of drought Level 1 by 26.0%. This shows that by using
this combination, the supplied water in the system contributes to avoid the occurrence
of Level 4 but still reservoir is not full enough to prevent the drought Level 1.

In addition to supply adaptation options, a demand option was also tested in this
study. The proposed demand saving option is to reduce the per person demand by
25.0% from 168 l/p/d (current) to 125 l/p/d. Figure 4.30 shows the impact of 25.0%
reduction in per person water consumption in number of drought days in Thames
catchment. In this figure, the No adaptation option illustrates the impact of demand
reduction itself and the others show the impact of combination of demand and supply
options on water shortage in the Thames catchment. More details about mean number
of drought days, after 25.0% reduction in per person demand, are presented in Table
B.22 and % change compared to No adaptation scenario are listed in Table B.23.

As it can be seen in this figure, by reducing the demand to 125 l/p/d, the chance of
having DS restrictions for 2020s and 2050s is zero. For 2080s, the demand reduction
itself, without considering any supply adaptation options, reduces the number of
drought days at Level 4 by 64.0% compared to no demand reduction (presented as no
adaptation option in Figure 4.29). In fact, the given results show that a 25.0% reduction
in demand has the greatest contribution in reducing the number of drought days
compared to any of the individual or combined adaptation options with no demand
reduction.

Moreover, as it can be seen, all supply options have a positive impact in reducing
number of drought days at Level 4. A combined contribution of construction new
reservoir, leakage reduction and desalination plant with 91.5% reduction compared to
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no adaptation option is the most effective. In fact, based on the given results, using
these combined contributions in conjunction with 25.0% demand reduction is the most
effective adaptation option to tackle the negative impacts of climate and population
change in the Thames catchment.

4.4 New insights gained from this study

It was stated previously that in this study the newly updated version of the spatial
UKCP09 weather generator (discussed in section 3.4), and the hydrological model of
SHETRAN are used. Hence, comparing the findings of the present research with re-
sults obtained previously for the Thames catchment show how using different versions
of UKCP09 and different hydrological models can affect the research outcomes. For
instance, in the studies demonstrated by Walsh et al. (2016) and Borgomeo et al. (2014)
for the Thames Catchment, the previous version of spatial UKCP09 weather generator
and the conceptual hydrological model CATCHMOD were adopted. The overall
conclusion from both of these studies was that population growth has a greater impact
on future drought risk than climate projections. While in contrast, the findings of the
present research indicate that climate change has a greater contribution to drought risk
and water supply security than the population growth. This significant difference in
the results is not surprising, given that the previous version of UKCP09 overestimated
the baseline rainfall.

In addition, Walsh et al. (2016) noted that an extreme reduction of 35.0% in daily
per capita demand by 2020s could eliminate the risk of drought level 4, and by 2050s a
combination of demand and supply adaptation options need to be considered. While,
in the present study, the results show that only 25.0% reduction in per person water
demand could offset the risk of having drought orders by 2020s and 2050s, and lead
to a 64.0% drop in number of drought Level 4 by 2080s. This study also shows that
by 2080s, using combined contribution of D+L+R in conjunction with 25.0% demand
reduction, contributes to 91.5% reduction in number of drought days Level 4, and
is the most effective adaptation option to tackle the negative impacts of climate and
population change in the Thames catchment.

4.5 Summary

This chapter presented future impacts of climate change on Thames catchment for
four representative time slices Control (1961-1990), 2020s, 2050s and 2080s. The given
results indicated that proportion of uncertainty in projected rainfall, PET and discharge
in 2080s is much greater than the other time slices. The comparison between projected
values with the control scenario showed that the maximum changes are expected to
occur by 2080s. Based on the results, by 2080s, rainfall is projected to increase in
spring and winter and decrease during summer and autumn. However, a very small
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projected increase in annual mean rainfall (+0.09% and +0.19% for Kingston and Lee
respectively) shows that in overall, there could not be a considerable change in total
amount of rainfall compared to control scenario (modelled). While, for both Kingston
and Lee sub-catchments, the given results from simulations show that by 2080s, the
PET is expected to increase in all the seasons and the annual mean daily PET is
projected to increase by 26.6%. Because PET is more affected by the temperature, it
can be concluded that by 2080s the overall temperature is expected to increase in all
the seasons. Moreover, based on the given results, there is a reduction in flow and
subsurface storage in all the seasons in both sub-catchments. The results also showed
24.0% and 1.3% reduction in annual mean daily flow and subsurface storage in the
Thames catchment respectively. This indicates that flow and subsurface storage in
the Thames catchment are more influenced by temperature and consequently the PET,
rather than rainfall.

In this chapter, by running water resources management model of LARaWaRM, the
impacts of different climate change scenarios and different population and demand
projections for four representative decades of 2010s (current), 2020s, 2050s and 2080s,
on total reservoir level and drought frequencies in Thames catchment have been
simulated. For this aim, the synthetic input flows (generated by SHETRAN) are
used as input to LARaWaRM. This is to simulate the water storage and frequency of
water shortage in Thames catchment. Despite the limitation in projecting the size of
populations and climate projections which lead to a large uncertainty in estimating
the reservoir storage in future, using water resources model of LARaWaRM made
it possible for the decision makers to have a broader understanding of sensitivity of
water resources in Thames basin. The given results indicate that the general trend in
water storage is a continual decrease. This is a consequence of increase in demand for
water which is due to the climate change, growth in population, and increase of living
standards. It is also illustrated that by 2080s, the climate could have a greater impact on
water supply security than population. Moreover, the combination of population and
climate change projections have a greatest impact on reducing the water storage and
increasing the frequency of drought incidents than climate change only or population
change only scenarios.

Testing different decision adaptation options such as new reservoir, desalination
plant, leakage reduction and multiple combinations of them shows that without
further demand and supply adaptation options, the available water resources cannot
meet the customers water demand in the area. Based on the given results, with no
demand reduction, the combination of constructing new reservoir, desalination plant
and leakage reduction is the most effective adaptation option which can contribute to
reduce the number of drought days Level 4 in 2080s by 74.0%. While a 25.0% reduction
in demand reduces the number of drought by 100% in 2020s and 2050s and leads to -
64.0% drop in number of drought days Level 4 by 2080s. This shows that by 2050s,
a 25.0% reduction in demand has the greatest contribution in reducing the number of
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drought days compared to any of the individual or combined adaptation options with
no demand reduction. In 2080s, using combined contribution of D+L+R in conjunction
with 25.0% demand reduction, contributes to 91.5% reduction in number of drought
days Level 4, and is the most effective adaptation option to tackle the negative impacts
of climate and population change in the Thames catchment.

114



Chapter 5

Structured Uncertainty Analysis

5.1 Overview

This chapter presents structured uncertainty analysis conducted to assess the sensitiv-
ities of water resources in the Thames catchment. Impacts of uncertainties caused by
socio economic drivers such as land cover, population change, per capita consumption
and leakage on availability of water resources, in the 3 time slices of 2020s, 2050s and
2080s, are discussed.

5.2 Uncertainty analysis for Thames catchment

For uncertainty analysis socio economic parameters such as land use, population,
per person demand (PCC) and leakage have been chosen to be analysed. For this
aim, two scenarios for land use, nine scenarios for population, 15 scenarios for PCC
and ten scenarios for leakage have been considered. Considering 4 different time
slices (control, 2020s, 2050s and 2080s) for each of these possibilities, there are 10800
different combinations to be analysed. Since analysing this amount of data in terms of
simulation time, is extremely expensive, only a few critical combinations are discussed
here. For understanding the impacts of these parameters, each time only one of them
is changed while the other parameters are kept constant. All the abbreviations used in
following sections are described in Table 5.1.

5.3 Uncertainty in land use change

Based on GLA (2014a), under medium growth scenario, population in London is
expected to be around 12 million by 2080s which shows 50.0% growth in population
compare to 2010. This population growth may lead to an increase the need for housing
and urbanization development in the area. So it would be of interest to understand
how urbanization growth would affect the water availability in the Thames catchment.

115



U
ncertainty

Scenarios
A

daptation
O

ptions

(A
)

Population

(P)

Per
Person

D
em

and

(D
)

(l/p/d)

Leakage

(L)

(M
l/d)

Land
C

over

(U
)

A
1-P

(0%
)-D

(0%
)-L

(0%
)-U

1
N

o
adaptation

8,107,073
168

670
C

urrent

A
1-P

(A
ll)-D

(0%
)-L

(0%
)-U

1
N

o
adaptation

A
llpopulation

scenarios
168

670
C

urrent

A
1-P

(0%
)-D

(A
ll)-L

(0%
)-U

1
N

o
adaptation

8,107,073
A

lldem
and

scenarios
670

C
urrent

A
1-P

(0%
)-D

(0%
)-L(A

ll)-U
1

N
o

adaptation
8,107,073

168
A

llleakage
scenarios

C
urrent

A
1-P

(0%
)-D

(0%
)-L

(0%
)-U

2
N

o
adaptation

8,107,073
168

670
N

ew

Table
5.1:A

bbreviation
description

for
uncertainty

analysis
scenarios.

116



Current land cover map with 1 km (provided by LCM2007) and 5 km resolutions are
illustrated in Figure 5.1.

For uncertainty analysis it was decided to explore the impact of urbanisation
in Thames catchment but unfortunately there is no clear information about future
expansion of urban area. In order to understand the impact of urban expansion in this
catchment, it is assumed that number of grid cells with urban land cover doubles. Also
there is an assumption that this urbanisation expansion is mostly take place around the
current areas with urban land cover. Therefore, at first the number of urban grids with
1 km resolution are doubled, by converting the land cover of non-urban grids to urban
land cover. Then new land cover map (with 1 km resolutions) is aggregated to 5 km
resolution.

For increasing the urbanized area, it is assumed that first grids with the shrubs,
then bare grounds and finally arable areas are converted to urban areas. In converting
the land cover of the grids, from non-urban to urban, based on screen belt policy
preserving green areas such as grass, deciduous forests and evergreen forests is of
the essence. However, in some of the areas within the Thames catchment changing
grass cells to urban is inevitable, but is tried to preserve them as much as possible. By
increasing the urban developments (in 1km map) and reducing the resolution to 5 km,
the number of urban cells in Kingston is increased from 30 to 87, and in Lee catchment
increased from 10 to 15 cells. Figure 5.2 show the land cover maps for 1 km and 5 km
resolutions after increasing the urban areas. Table 5.2 summarizes the number of cells
with different land covers for current and increased urban developments in the Lee
and Kingston sub-catchments, with 5 km resolution.

Vegitation type
Lee Kingston

Current New land cover Current New land cover

1. Arable 29 24 247 222

2. Bare 0 0 1 0

3. Grass 1 1 101 71

4. Deciduous Forest 0 0 14 14

5. Evergreen Forest 0 0 3 3

6. Shrub 0 0 1 0

7. Urban 10 15 30 87

Total number of cells 40 397

Table 5.2: Number of cells for different land cover, in Lee and Kingston sub-catchments with 5 km

resolution.
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5.3.1 Land cover change and flow

5.3.1.1 Thames sub-catchment

The increase of urbanization in 1 km land cover map in Kingston sub-catchment,
led to a 190.0% rise in number of the urban cells with 5 km resolution. In order to
investigate the impacts of urbanisation expansion in this catchment, SHETRAN was
run with the new land cover map at 5 km resolution. Figure 5.3 illustrates total annual
flow in the Kingston sub-catchment before and after increasing urbanization in the
area for years between 1991 and 2002 (the calibration period). The results show that
due to the urbanisation, the annual discharge in Kingston increases. This increase in
discharge show that, although the majority of Kingston catchment is arable, as a result
of urbanisation, there are more impermeable areas in this catchment which leads to
an increase in surface water run-off. The detailed percentage of changes in the annual
flow are shown in Table C.1. Based on the results, a 190.0% increase in urban area in
Kingston catchment raises the annual discharge by 3.4% to 20.1%.

Figure 5.3: Impacts of increasing urban area on total annual flow in Kingston sub-catchment (1991-2001).

SHETRAN was run for control and future scenarios with new land cover grids.
Figure 5.4 illustrates the boxplots1 of mean flow at Kingston after increasing the
urbanization and the results are compared with the current land cover in Table 5.3. In
all of the time slices, the projected flow with new land cover is more than the current
one. Urbanization expansion in this area, led to increase the mean flow by 4.5% to
24.0% in 2020s, and 5.9% to 29.4% in 2050s. This increase is projected to be greater
by 2080s, as between 6.4% to 31.0% increase in mean flow is expected to happen. In
all of the future time slices, the minimum increase in mean flow occurs during spring,

1Each of the boxplots indicates the median, 25th, and 75th percentile values. Whiskers show the 1.5 times of inter quartiles

(IQRs), the difference between 25th and 75th percentile values. The small crosses are outliers, which are any points of data that

lies below (25th percentile - 1.5 IQRs) or above (75th percentile + 1.5 IQRs).
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Figure 5.4: Boxplots of mean flow in Kingston sub-catchment after increasing urban area.

especially in April. The maximum increase in mean flow occur during autumn and
winter, when there is more precipitation and the soil, as a result of urbanization, is less
permeable.

5.3.1.2 Lee sub-catchment

The Lee catchment is mostly, regarded as an arable area. By increasing the urban cells
and running SHETRAN for the calibration period an increase in peak flows and annual
discharges is observed. Figure 5.5 compares the total annual flow in Lee catchment
before and after increasing urbanization in the area. The detailed percentage of annual
changes are shown in Table C.2. As a result of urbanisation, there is more impermeable
area in the catchment which also lead to an increase in surface water in case of rainfall.
Based on the results, a 50.0% increase of urban area in the Lee catchment increasing the
annual discharge by 2.9% to 25.0%.

For control and future scenarios, the mean flow in each months are illustrated in
Figure 5.6 and Table 5.4. As it can be seen, similar to the Kingston sub-catchment, in all
of the time slices, the projected flow with new land cover is greater than the current.
The urbanization expansion in this area, led to an increase in the mean flow by 4.3%
to 25.2% in 2020s, by 3.3% to 22.3% in 2050s and by 3.3% to 19.8% in 2080s, compared
to the current land cover. However, unlike Kingston, for Lee the range of projected
change in mean flow is greater for 2020s. In all of the future time slices, the rate of
change in mean flow during spring and summer is less than autumn and winter, when
there is more precipitation and the soil, as a result of the urbanization is less permeable.
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Figure 5.5: Impact of increasing urban area on total annual flow in Lee sub-catchment (1991-2001).

Figure 5.6: Mean flow in Lee sub-catchment after increasing urban area.
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For the Lee sub-catchment, it is expected to have more than 25.0% increase in
discharge by December in control and 2020s, while in 2050s the maximum increase
is expected to occur in January (22.2%). By 2080s the maximum rise in mean flow
occurs in February by 19.8%, compared to the current land cover.

5.3.2 Land cover change and water resources availability

After running SHETRAN for the new land cover, the water resources model of
LARaWaRM was run with new sets of inflow modelled by SHETRAN for the Thames
catchment. Figure 5.7 shows the impact of urbanization growth on number of demand
saving days (demand saving days have been discussed in section 3.3 and Figure 3.3)
for control, 2020s, 2050s and 2080s in the Thames catchment. This figure compares the
number of drought days before and after increasing the urban area. The mean number
of demand saving days and the percentage of change compared to the current land
cover are listed in Table C.3.

The results show that after increasing urbanisation, in all of the time slices there is a
decreasing trend in number of the drought days. In control scenario, the urbanization
expansion reduces the number of days with demand saving Level 4 by 100%. This
is also leads to a significant reduction in number of days with demand saving Level
1, 2 and 3. In 2020s, the number of drought days at Level 1 reduces by 42.5%. Also,
compared to the current land cover, there is an 81.0% reduction in mean number of
drought days at Level 4. In 2050s, the number of drought days at Level 3 and 4 are
reduced by 62.0% and 75.0% respectively.

By 2080s, as a result of increasing the urbanization, similar to other time slices,
number of days in Level 1 has the maximum reduction. Level 2 and 3 are reduced
by 42.0% and 52% respectively. The results also show that the mean number of Level 4
drought days are expected to reduce by 66.0%.

Figure 5.8 presents the total reservoir storage in Thames catchment after increasing
the urbanization in this area. The monthly boxplots illustrate an increase of uncertainty
in variation of reservoir level during summer, fall and especially winter. Table C.4
compares the total reservoir level before and after increasing the urbanized area. The
comparison shows that urbanization development increases the total reservoir storage
in all of the time slices and reduces the size of the boxplots and distributions in range
of the uncertainty in reservoir storage projection compared to the current land cover
(see Figure 4.27 (a)).

In the control scenario, the total reservoir storage is estimated to increase by 0.01%
to 6.5%. The maximum rise of 6.5% is expected to occur in October. While in 2020s the
percentage of changes range from 0.30% to 11.0%, maximum rise in reservoir storage
is expected to occur in November and December. Also in 2050s, the total reservoir
storage is expected to have the minimum raise of 0.30% in March and the maximum
raise of 17.9% in November. Likewise, these changes are estimated to be even greater
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Figure 5.8: Boxplots of the total reservoir storage in Thames catchment after increasing the urbanization

in this area (A1-P (0%)-D (0%)-L (0%)-U2).

in 2080s, as the reservoir storage is expected to increase by 0.68% to 22.0%, compared
to the current land cover. Except the control scenarios, in all other future time slices,
as a result of increasing the urbanized area, October, November and December are
expected to have the highest rise in total reservoir storage compared to the current
conditions while March is predicted to be the least impacted month.

5.4 Uncertainty in population change

Based on GLA (2014a), the population of London is expected to reach to 10.0 to
10.7 million by 2041. The London population projections for low, medium and
high scenarios are illustrated in Figure 5.9. Table C.5 lists the actual and projected
population between 2010 and 2080s. After 2040, the population projections are
calculated by an interpolation technique. Note that, year 2010 has been chosen as a
base scenario to make the comparison in this chapter. Figure 5.10 shows the percentage
of change in London population relative to 2010.

Based on Figure 5.10, the London population is expected to rise by 41.0 to 60.0% by
2080s, compared to 2010 population. For uncertainty analysis, in order to cover all the
possibilities, a wider range of changes in population is considered. Table 5.5 shows the
range of change in population (between -15.0% and +75.0%) considered for this study.
The Population (0.0%) indicates the population in year 2010.
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Figure 5.9: London population projections based on GLA (2013).

Figure 5.10: Percentage of change in population projections compared to 2010.

Percentage of change

-15% -10% -5% 0% 5% 10% 25% 50% 75%

Population 6,891,012 7,296,366 7,701,719 8,107,073 8,512,427 8,917,780 8,613,765 12,160,610 14,187,378

Table 5.5: Percentage of change in population for uncertainty analysis (relative to 2010).
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5.4.1 Population change and drought frequency

In this section, to understand the impacts of population change on water resources
in the Thames catchment, the leakage and demand are considered constant at their
current level and water resources model of LARaWaRM is run for nine different
population scenarios (see Table 5.5). Figure 5.11 presents the number of demand saving
days for each population change scenario, for control, 2020s, 2050s and 2080s. In this
figure, population changes by -15.0% to +75.0% relative to the population of London
in 2010 (P (0.0%)). The mean number of demand saving days are shown in Table C.6.

As it is shown in Figure 5.11, for all of the climate projections, change in population
clearly affects the number of demand saving days. Based on the results, a 15.0%
reduction in population of the Thames catchment, reduces the mean number of days
with demand saving Level 4 by 72.0% by 2050s, and 61.0% by 2080s. On the other hand,
increasing population significantly increases the demand saving Level 4 days. For
instance, given a 5.0% increase in population, the number of Level 4 demand saving
days increases by 50.0% in 2020s and if the population growth raised by 75.0%, the
mean number of Level 4 demand saving days is 43 times more than that with P(0.0%).

Similarly, in 2080s, a decrease of 15.0% in population reduces the mean number of
Level 1 demand saving days by 11.0%, Level 2 by 30.0%, Level 3 by 42.0% and more
importantly Level 4 by 61.0%. In addition, if the population growth continued by
75.0%, in 2080s, the number of Level 4 drought days is expected to be 10 times more
than the number of drought Level 4 of 0.0%. This means that impact of population
change on Level 4 demand saving days is more significant than the other demand
saving levels. Table C.7 shows percentage of change in mean number of drought days
compared to current population (P (0.0%)).

Based on the results, for each of the time slices, there is a clear relationship between
population change and number of demand saving days. Both population growth and
climate projections increase the number of drought saving days in Thames catchment.
These impacts are more significant in 2080s than the other time slices. In fact, if
demand and leakage remain at their current level, by reducing the population, there
is a decreasing trend on the number of demand saving days. On the other hand,
increasing the population led to higher number of drought days. Therefore, when
the growth of population and climate scenarios align together, they lead to a bigger
variation and uncertainty on demand saving levels, especially at Level 4.

5.5 Uncertainty in per capita demand

Despite the growing population, there has always been an attempt to reduce the
demand for water. To achieve that, water companies try to increase peoples awareness
about the importance and limitation of natural water resources. This reduction can
be gained by reducing per capita consumption (PCC), through promoting use of water
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efficient appliance as well as technological advances, installing meters and reduction in
leakage. The annual average of household demand reported by Thames Water (2013)
are shown in Table 5.6.

2011/12 2039/40

Measured Unmeasured Average Measured Unmeasured Average

PCC (l/p/d) 139.78 171.07 164 141.16 174.21 165.95

Table 5.6: Annual average per person demand for London (Thames Water, 2013).

As shown in Table 5.6, in 2011/12 the annual average per person demand for
London was 164 l/p/d which based on Thames Water prediction, will rise to nearly
166 l/p/d by 2040. On the other hand, the standard per head water consumption for
new built houses in this area, subject to the Building Regulations Part G, are expected
to be 125 l/p/d (Defra 2008). Based on a code for sustainable homes level 5, this even
can be reduced to 105 and 80 l/p/d. It has also noted by Thames Water that with
effective measures and development of new technologies PCC in this area can drop to
average 130 l/p/d by 2030 and remains at 125 l/p/d by 2040. There is also another
possibility that PCC reduces to 120 l/p/d but as Thames Water noted there is still not
enough evidence available to set the target demand on a lower level as 125 l/p/d in
this area (Thames Water 2012).

Therefore, according to Thames Water (2013) PCC, in this area, is forecasted to range
between 125 and 166 l/p/d by 2040s. Compared to 2011/12 (164 l/p/d), -24.0% to
+1.2% changes in PCC might happen by 2040s. Consequently, compared to 2010 (168
l/p/d), there could be -25.6% to +2.8% changes in PCC by 2080s.

The aim of uncertainty analysis in this chapter is to test a rigorous range of possible
changes that might occur in demand by 2080s. As a result, to cover all the possible
ranges, it has been decided to extend the range of per capita demand from -50.0% to
+20.0%. Percentage of changes and range of the predicted demands are illustrated in
Table 5.7. In this table, PCC (0.0%) is the per person demand of water in 2010 which
has been chosen as a baseline to make the comparison.

Percentage of change

-50% -40% -38% -30% -25% -20% -15% -10% -5% 0% 0.50% 5% 10% 15% 20%

PCC (l/p/d) 84 101 105 118 126 134 143 151 160 168 169 176 185 193 202

Table 5.7: Percentage of change in per person consumption for uncertainty analysis (relative to 2010).

5.5.1 Demand change and drought frequency

In this section the impacts of household demand change on water resources are
discussed. To achieve that, the water resources model of the Thames catchment has
been run for 15 different PCC scenarios while leakage and population have remained
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constant at their current level. Figure 5.12 illustrates the impact of PCC change on
number of demand saving days for control, 2020s, 2050s and 2080s. In this figure,
PCC changes between -50.0% to +20.0% relative to PCC in 2010 (D (0.0%)). The mean
number of demand saving levels are demonstrated in Table C.8.

The boxplots in Figure 5.12, indicate that in each of the time slices, there is a
direct link between the PCC and the number of demand saving days. In the control
scenario, any change in PCC mostly affects the drought level 1, while in other climate
projections, the PCC changes affect almost all of the drought levels. As it can be seen,
increasing the PCC not only increases the median number of the drought days but also
it leads to a larger variability and uncertainty in estimating the number of demand
saving days.

By reducing the demand by 50.0%, there could be a 98.0% reduction in mean
number of demand saving Level 4 in 2080s. On the other hand, by increasing the
PCC by 20.0% there could be a significant rise in all demand saving days, especially in
mean number of drought Level 4 which is estimated to increase by 147.0%.

Comparing different time slices shows that the impacts of PCC change in 2080s is
more significant than the 2020s and 2050s. As Figure 5.12 indicates, the uncertainty in
estimating number of Level 4 drought days in 2080s is much larger than control, 2020s
and 2050s. Based on the data given in Table C.8, this happens because the impacts of
increasing demand magnified more severely by climate projection in 2080s. Table C.9
shows percentage of change in mean number of drought days compared to the current
demand (D (0.0%)).

5.6 Uncertainty in leakage trends

The growth of population and impacts of climate change on water resources urge the
need to save water and reduce the wastage as much as possible. The Office of Water
Services (Ofwat) set out targets for water utility companies to reduce leakage and
wastage of water in their supplying area. For this aim, Ofwat monitors the companies
to quantify their performance in reducing leakage to a sustainable level and achieving
water efficiency target to save 1 litter per property per day (Ofwat 2009).

In the Thames Water supply area, 72.0% of leakage are from distribution loss which
is happening in Thames Water distribution network and other 28.0% loss is happening
in customers pipes which are the customers responsibility to fix them (Thames Water
2012). Thames Water supply infrastructure dates back to Victorian time, therefore age
more than 100 years old (33.0% of them are more than 150 years old). Annual average
leakage in Thames catchment which are reported by Thames Water, are tabulated in
Table 5.8 (Thames Water 2017).

As illustrated in Table 5.8, the annual average leakage for 2010 was 670 Ml/d while
the target leakage was set by Ofwat to be 685 Ml/d. Thames Water reduced the leakage
by managing pressure in older water networks, detecting leaks, fixing and replacing
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Figure 5.12: Boxplots of demand saving days (in 100 years), when only PCC is changed and population

and leakage are constant at their current level (A1- P (0%)-D (All)- L (0%)- U1) : (a) Control, (b) 2020s,
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old leaky water pipes. In 2013, the leakage rate in this area was reduced to 644 Ml/d
(about 25.8% of supply) (Thames Water 2017).

It has also been noted in the Thames Water Annual Report (for 2014/15) (Thames Wa-
ter 2017) that in 2015, due to the colder winter and higher rate of pipe burst, the annual
average leakage in Thames catchment increased to 665 Ml/d. Although the leakage
increased in this year, it was still below the target of 673 Ml/d set by Ofwat.

Year

2010/11 2011/2012 2012/2013 2013/14 2014/15

Leakage target (Ml/d) 685 673 673 673 673

Annual average Leakage (Ml/d) 670 639 646 644 665

Table 5.8: Annual Average leakage reported by Thames Water (2013).

It is also highlighted by the Thames Water that the leakage in the Thames catchment
is projected to reduce by 10.0% (59Ml/d) between 2015-20 (Thames Water 2012).
Moreover, the target leakage for Thames Water is to reduce the leakage to 556 Ml/d
by 2040s. Therefore, compared to 2010 it is expected to reduce the leakage by 17.0% by
2040s (3.8 Ml reduction each year). After the 2040s, the leakage might be maintained at
this level, increase or reduce. As a result, it has been decided to consider a wider range
of possibilities in the amount of leakage by 2080s. Table 5.9 shows the percentage
of changes in leakage used for uncertainty analysis in this chapter. Leakage (0.0%)
indicates the leakage in 2010 reported by Thames Water (2013).

Percentage of change

-40% -20% -17% -15% -10% -5% 0% 5% 10% 15%

Leakage (Ml/d) 404 536 556 569 603 636 670 703 737 770

Table 5.9: Percentage of change in leakage for uncertainty analysis (relative to 2010).

5.6.1 Leakage change and drought frequency

This section shows how leakage changes may affect water resource availability in the
Thames catchment. To analyse the impact of leakage change, water resources model
of the Thames catchment has been run for 10 different leakage scenarios while PCC
and population have remained constant at their current level. Figure 5.13 shows the
impact of leakage change on number of demand saving days for control, 2020s, 2050s
and 2080s. In this figure, leakage changes between -40.0% to +15.0% of the average
leakage in London in 2010 (L (0.0%)). The mean number of demand saving levels are
tabulated in Table C.10.

In all of the time slices, the median number of days with drought Level 1 are
significantly higher than the other drought saving days. In the control scenario,
number of the days with drought Level 2, 3 and 4 are very low. While in 2020s, in
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addition to drought Level 1, higher number of drought Level 2, 3 and 4 are expected to
occur. By increasing leakage, there is a slight increasing trend in all levels of demand
saving days. This trend is the same in 2050s and 2080s as well. In 2080s, by increasing
the leakage by 10.0%, there is nearly 35.0% increase in number of drought days Level
4, while by reducing the leakage to 5.0% and even 10.0% , only a 10.0% reduction in
Level 4 demand saving days is expected. But when 40.0% leakage reduction happens,
the mean number of drought Level 4 estimates to reduce by 38.0%.

In fact, the results show +34.5% and -20.0% difference regarding 15.0% positive and
15.0% negative uncertainties respectively. This indicates that the positive uncertainty
manifest itself to a bigger rate difference compared to the negative one. Table C.11
shows percentage of change in mean number of drought days compared to the current
leakage (L (0.0%)).

5.7 Summary

In this chapter, for uncertainty and sensitivity analysis, different range of possible
changes in socio-economic drivers such as population, per capita consumption,
leakage and land cover as well as their impacts on availability of water, for the 3
time slices of interest (2020s, 2050s and 2080s), in Thames catchment were tested. The
analysis indicated that increase of population, PCC and leakage have direct impact
on water availability which eventually lead to increase in number of Level 4 demand
saving days.

Based on the results, in all of the future time slices, increasing the urban develop-
ment in Thames area increases the flow in the catchment which eventually led to a
reduction in number of demand saving days compared to the current land cover in
this catchment. Based on the results, by 2080s, a 190.0% increase in urban area in the
Kingston sub-catchment led to an increase in the mean flow by 6.4% to 31.0% and a
50.0% increase in urbanized area in Lee sub-catchment, increases the mean flow by
3.3% to 19.8%, compared to the current land cover. In all of the future projections,
the rate of change in mean flow during spring and summer is less than autumn and
winter, when there is more precipitation and the soil as a result of urbanization, is less
permeable.

The results also show that the mean number of Level 4 drought days are expected
to reduce by 65.0% compared to the current land cover. The comparison between total
reservoir level before and after increasing the urbanized area, shows that urbanization
development increases the total reservoir storage in all of the time slices. Also for the
new land cover, the size of the boxplots and uncertainty, distributions in range of the
reservoir storage projections, are smaller relative to the current land cover. In all of the
future time slices, as a result of increasing the urbanized area, October, November and
December are expected to have the highest raise in total reservoir storage compared to
the current conditions while March is predicted to be the least impacted month. The

135



(a)
(b)

(c)
(d)

Figure
5.13:Boxplots

ofdem
and

saving
days

in
100

years,w
hen

only
leakage

is
changed

and
population

and
dem

and
are

constantattheir
currentlevel(A

1-P
(0%

)-

D
(0%

)-L
(A

ll)-U
1):(a)C

ontrol,(b)2020s,(c)2050s),(d)2080s

136



range of changes in the reservoir storage by 2080s, is expected to be between 0.68% and
22.0%, compared to the current land cover.

The analysis show that, due to a linear relationship between population and PCC,
once one of them is changed and the other one considered constant, the overall effects
on number of demand saving days is the same. For instance, when demand and
leakage are constant at their current level, -10.0% reduction in population leads to
44.6% drop in number of Level 4 demand saving days for 2080s, which is exactly
the same as the time when there is 10.0% reduction in demand while population and
leakage are kept at their current level. The results also show that change in PCC
and population directly affects the number of drought days. In fact, by reducing the
population and PCC, there is a decreasing trend on the number of demand saving days.
On the other hand, increasing the population and PCC lead to increase the number of
drought days. These impacts are more significant in 2080s than the other time slices.
In fact, when the growth of population or demand, align with the climate scenarios,
they lead to a greater variation and uncertainty on demand saving levels estimations,
especially at Level 4.

The uncertainty analysis also indicated that the number of demand saving days are
significantly affected by the amount of leakage in this catchment. When population
and PCC are constant at their current level, by increasing the leakage, there is an
increasing trend in number of demand saving days, and by decreasing the leakage
there is a reduction in number of drought days. The impacts of leakage change
on number of demand saving days are more significant for 2080s which shows that
the impacts of change in leakage magnifies more severely by the climate projection
for further time slices. In the 2080s, the results show +34.5% and -20.0% difference
regarding 15.0% positive and 15.0% negative change in leakage respectively. This
indicates that the 15.0% increase in leakage manifest itself to a bigger rate of change
in number of demand days compared to the 15.0% reduction in leakage. The results
also show that reducing leakage by 10.0% lead to 10.2% drop in number of drought
days at Level 4 by 2080s, while a 10.0% reduction in population/PCC leads to 44.6%
drop in number of Level 4 demand saving days. This comparison shows that for a
similar amount of change, the impacts of population or PCC on number of demand
saving days are more significant than the leakage.

137



Chapter 6

Reliability and Robustness Analysis

6.1 Overview

This chapter discusses the implications of the results presented in Chapter 5. This is
presented by considering two combinations of uncertainties that are at the low and
high plausible extremities of water availability. The robustness of different adaptation
options, under current and future climate changes, against these extremities are
considered. Sensitivity testing of the water resource model is used to help explain
the results.

6.2 Analysis of combined uncertainties

In order to analyse the impacts of combined uncertainties, many different combination
of population, demand (PCC) and leakage could be considered. Since analysing all of
the possible combinations in terms of simulation runs, is computationally expensive,
two water use scenarios are considered here. These two scenarios are constructed by
taking the combination of uncertainties in population change, leakage and per person
water demand (PCC), that give the lowest (Low Scenario) and highest (High Scenario)
water use. The range of plausible changes in these parameters are discussed in Chapter
5. These two extreme water scenarios are illustrated in Figure 6.1 and the percentage
changes in their components, relative to their current values, are listed in Table 6.1.

Population Demand (PCC) Leakage

High scenario +75% +20% +15%

Low scenario -15% -50% -40%

Table 6.1: High and low water use scenarios
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Figure 6.1: High and Low water use scenarios with no adaptation options

6.2.1 High Scenario: population, demand and leakage are at maximum levels

In this combination it is assumed that all of the parameters including population,
demand and leakage are at their maximum possible levels. In fact, it is assumed
that the population increases by 75.0% to 12.1 M, the PCC increases by 20.0% to 202
l/p/d, and at a same time, as a result of increasing the demand and ageing the water
supply networks, the leakage increases by 15.0% to 770 Ml/d. Figure 6.2 shows how
the number of drought days would be affected if the High water use scenario occur.
The difference in mean number of drought days for current and the high scenario are
tabulated in Table D.1.

Based on the boxplots1 illustrated in Figure 6.2, by increasing the population,
leakage and demand to their maximum levels, there would be a huge difference in
number of drought days compared to the current situation. In all the time slices there
is a significant increase in the number of droughts at Levels 2, 3 and 4. In 2050s and
2080s, there is a reduction in number of days with drought Level 1 while a considerable
jump in number of droughts in Levels 2, 3 and especially 4 are predicted. Based on
the given results, by 2080s, the number of Level 4 drought days is expected to be 14
times greater than current numbers. In other words, High water use scenario leads
to 1318.0% increase in the number of days with drought. In all of the time slices, the
variability in the number of Level 4 demand saving days is much larger than the other
demand saving days. This indicates a higher uncertainty in prediction of long-term
impacts of socio economic drivers in availability of water in Thames catchment.

1Each of the boxplots indicates the median, 25th, and 75th percentile values. Whiskers show the 1.5 times of inter quartiles

(IQRs), the difference between 25th and 75th percentile values. The small crosses are outliers, which are any points of data that

lies below (25th percentile - 1.5 IQRs) or above (75th percentile + 1.5 IQRs).
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6.2.2 Low Scenario: population, demand and leakage are the minimum levels

This combination is one of the best case scenarios, that is within the range of plausible
uncertainties, that could occur in Thames catchment for water demand. In this
scenario, all of the parameters including population, demand and leakage would be
at their minimum levels. It is assumed that population reduces by 15.0% to 6.8 M, PCC
reduces by 50.0% to 84 l/p/d, and leakage decreases by 40.0% to 404 Ml/d. Figure
6.3 shows the impact of Low water use scenario on mean number of the drought days
compared to current scenario. More details are listed in Table D.2.

Results in Figure 6.3 and Table D.2, show that by reducing the population, leakage
and demand to their minimum levels, in all of the time slices there would be a
significant drop in number of drought days compare to the current situation. In the
control scenario, number of drought days are estimated to be almost zero and in 2020s
there is 96.9% reduction in number of droughts at Level 1, while there is not any Level
2, 3 or 4. In the 2050s and 2080s, there is a huge reduction in number of drought days,
especially Level 4 which has 100.0% reduction. In all of the time slices, the number
of Level 4 drought days is zero which indicates the importance of these three socio
economic drivers in availability of water in the Thames catchment.

The mean reservoir level for the Low, current and the High water use scenarios in
Thames catchment are illustrated in Figure 6.4. In this figure, there is a plot for each of
the water use scenarios, which presents the mean, 10th and 90th percentile of reservoir
storage for each month. More details are listed in Table D.7. As it can be seen, for the
Low case scenario, the reservoir is almost full at the beginning of each year and by the
end of summer there is a drop in the reservoir level. Even in October of 2080s, when
the storage of water is expected to be at its lowest level, the reservoir is almost 80.0%
full. After October, the reservoir starts to recover until April when it gets to its fullest
condition. In contrast, for the High water use scenario, the reservoir is never 100.0%
full. By 2050s, when the water storage is normally at its minimum level in October, the
reservoir storage is only 7.5%. This gets even worse for the 2080s as there is only 5.4%
storage in October. Table D.8 shows the percentage of change in mean reservoir level
in High and Low water use scenarios compared to current scenario for control, 2020s,
2050s and 2080s.

6.2.3 Effectiveness of supply adaptation options

In this section the impacts of different adaptation options on the frequency of drought
days, under the High water use scenario (with current land cover and also increased
urbanization scenarios) are presented. For this aim, different supply adaptation
options such as a desalination plant (D) with the capacity of 150 Ml per day, New
reservoir (R) with capacity of 100 million m3, and a combination of desalination and
new reservoir (D+R) are considered.

The impacts of different adaptation options on the frequency of demand saving
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Figure 6.4: Mean total reservoir storage for: (a) Low water use scenario (b) current (1961-1990) (c) High

water use scenarios.
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days for High water use scenario with current land cover and increased urbanization
scenarios, under different climate scenarios are illustrated in Figure 6.5. In this figure,
each of the pie charts shows the proportion of mean number of days with drought
Level 1, Level 2, Level 3 and Level 4. The diameter of the pie charts indicates the total
number of the drought days. From this figure it is clear that the size of the pie charts
increases for future time series which shows that there is an increasing trend in total
number of drought days from current climate to 2080s. It is also seen that the number
of drought Level 4 increases for further time slices.

It is also shown that for each climate scenario, the adaptation options reduce the
number of Level 4 drought days. However, the change in total number of drought
days is not significant. From the pie charts, it can be seen that for different adaptation
options, the proportion of drought days Level 2 and 3 are similar. Also there is a
reduction in number of drought days Level 4, while there is an increase in number
of drought days Level 1. This shows that the amount of supplied water provided
by adaptation options contribute in reducing the Level 4, but they are not sufficient
to prevent incidence of drought. Based on the results, for High water use scenario,
generally the combination of desalination and new reservoir is the most effective
adaptation options in reducing the number of Level 4 drought days, while desalination
can be categorised as the least effective options among the other levels.

Figure 6.5: Mean number of drought days in 100 years, for different adaptation options, for High water

use scenario with current land cover and increased urbanization. Each of the pie charts shows the

proportion of mean number of Level 1, Level 2, Level 3 and Level 4 demand saving days. The diameter

of pie charts indicates the total number of the demand saving days.
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In addition, it can be seen that with current land cover, in 2020s, desalination plant
and constructing a new reservoir reduces the mean number of drought Level 4 by
14.8% and 29.3% respectively. Consequently, combination of desalination plant and a
new reservoir the number of drought Level 4 by 34.5%. However, this combination is
less effective in 2050s as it only reduces the number of drought Level 4 by 31.0% but still
is the most effective option in reducing the frequency of drought days. In 2080s, same
as other time slices, although all adaptation options have substantially contributed
to reducing the number of drought days, still the combination of desalination and
new reservoir with 24.7% reduction in number of drought Level 4 is the most effective
option.

Moreover, from comparing the pie charts for High scenario with current land
cover and the increase urbanization scenario, it is explored that contribution of the
adaptation options on reducing number of drought days with increased urbanisation
is greater than the current land cover scenario. For example, in 2020s the combination
of desalination and new reservoir may lead to 57.0% reduction in number of drought
Level 4 while this reduction, for current land cover, was about 43.5%. Similarly for
2050s and 2080s, for combination of these adaptation options, the reduction in number
of drought Level 4 are 45.3% and 36.7% respectively which are approximately 45.0%
and 40.0% less than the number of the drought days for High scenario with current
land cover for the similar time slices.

The spread and range of uncertainty in projecting the mean number of drought days
for current and increased urbanization scenarios are presented in Figure 6.6 and Figure
6.7 respectively. The larger boxplots for 2080s indicates that the spread of uncertainty
for further time slices, especially 2080s is greater than the others. As it can be seen the
change in magnitudes of uncertainty through different time slices is non-linear which
indicates that prediction for further time slices carry a higher rate of uncertainty.

More detailed results for the High water use scenario with current land cover
are listed in Table D.3 and Table D.4. Results the for High scenario with increased
urbanization are listed in Table D.5 and Table D.6.

6.3 Stress testing of water resources in London

The uncertainty analysis, one at a time and in combination, shows a non-linear system
response. To understand this further, the water resources model (LARaWaRM) was
stress-tested to explore how water resource responds to different long-term trends in
flows. Two tests were undertaken, in both it has been assumed that input flows to the
catchment were constant over 100 years. For the first test the LARaWaRM included the
standard demand savings rules, the second removed demand savings from the system
operation.
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6.3.1 Stress testing: current demand saving measures

In this stage it has been assumed that inflows from Kingston and Lee sub-catchments
are constant every day, for 100 years and the demand saving levels are considered in
the system. All other parameters such as population, demand and leakage are kept
constant at their current levels. Just the response of the water resource system to
different flows is considered. A range of possible input flows to the Thames catchment,
at Kingston and for the River Lee for the minimum, mean, maximum and different
quantiles (Q5, Q10, Q50, Q90, Q95) is calculated. The range of input flows from each
sub-catchment, and also total flows to the Thames catchment are listed in Table 6.2. The
input flows used for stress testing the Thames catchment in this study ranged between
a minimum flow of 0 m3/s and maximum flow of 633 m3/s (Figure 6.8).

Statistics Kingston Lee Total input flow (m3/s)

Minimum 15.87 1.14 17.01

Q99 21.58 1.57 23.15

Q95 25.74 1.92 27.67

Q90 28.54 2.16 30.70

Q50 52.95 3.52 56.47

Average 74.11 4.73 78.84

Q10 149.99 8.48 158.47

Q5 183.59 11.76 195.34

Maximum 528.46 105.40 633.85

Table 6.2: Statistics of input flows in the Thames catchment.

Figure 6.10 shows the relationship between flow and mean reservoir level in the
Thames catchment. As it can be seen, by increasing the long-term input flow, the
reservoir level (averaged over the year) increases gradually. For flows less than 19.54
m3/s the reservoir is almost empty, but by increasing the flow, the reservoir storage
increases too. Based on the given results, for flows more than 39 m3/s (Q70) the
reservoir is always full.

Figure 6.11 shows how long takes for the water system to empty. According to the
following graph, by increasing the input flow, it takes longer to empty. For instance,
in worst situation when there is no rainfall and there are not any flows in Thames
catchment (input flow= 0 m3/s), it takes 88 days for the reservoir to reach the lowest
level. By increasing the input flow to 19.5 m3/s it takes nearly 2 years (663 days) for
the system to empty and for flows bigger that 19.5 m3/s the reservoir never empties.

Figure 6.12 shows the number of days that reservoir levels drop below service
level thresholds over a 100 year time series. The results are also listed in Table D.9.
According to the analysis, for low flows, the number of Level 4 demand saving days
is very high. By increasing the input flow, the number of Level 4 demand saving days
reduces and eventually, if the inputs flow reaches to 27.66 m3/s, it drops to zero. As
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Figure 6.8: Input flows for stress testing the water resources system in Thames catchment.

Figure 6.9: Total reservoir storage in the Thames catchment.
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Figure 6.10: Relationship between flow and mean reservoir level.

Figure 6.11: Time for the water system to empty.
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a result of reduction in Level 4 demand saving days, number of the days for Level 1
to 3 demand saving increases. For flows more than 30.7 m3/s the frequency of Level
4 demand saving days drops to zero and for flows greater than 33.94 m3/s, Level 2
demand saving days reduces to zero. While, number of the Level 1 demand saving
days increases by the time and reaches to the peak if the flow reaches to 30.70 m3/s.
After that, there is a negative slope in number of the demand saving days until it drops
to zero for flows bigger that 36.78 m3/s. It can be concluded that for flows bigger than
36.78 m3/s there is no concern about the drought risk as reservoir contains enough
water to meet all the demand.

Figure 6.12: Number of drought days.

6.3.2 Stress testing: no demand saving measures

The analysis was repeated, but in this instance the demand saving levels have been
removed from water resources model. The relationship between flow and mean
reservoir level in the Thames catchment, after eliminating the level of services, is
shown in Figure 6.13. As can be seen, by increasing the input flow, the average of
reservoir level increased gradually. For flows less than 30.70 m3/s the reservoir is
almost empty, but by increasing the flow, the reservoir storage increases dramatically.
For flows greater than 39.10 m3/s the reservoir reaches its maximum level and
remains 100.0% full. Removing the demand saving levels, higher flows are required
to replenish the reservoir, showing the importance of considering demand saving
measures in preserving water in the Thames catchment.

Figure 6.14 compares the time taken for the reservoir to empty, over 100 years,
before and after eliminating the level of services. When there is no input flow, without
demand saving measures it takes 68 days for the water system to empty, if river flow
is 22.11 m3/s it takes 6 months (183 days) for the reservoir to empty. When there are
no demand savings levels, the flow needs to exceed 30.70 m3/s to ensure the water

151



Figure 6.13: Relationship between flow and mean reservoir level (no demand saving measures)

system does not empty. Therefore by comparing the two analyses, it can be seen
that the maximum flow that required for the system to never empty, is 57.00% higher
when there are no demand savings measures, which shows the importance of demand
management in the Thames catchment.

Figure 6.14: Time for the water system to get empty, before and after eliminating demand saving

measures from the system

Based on Figure 6.15, there is a reverse relationship between inflow and number of
drought days. By increasing the flow, the number of drought days Level 4 reduces, as
for flows greater than 37.50 m3/s there is no drought. This shows that the maximum
flows required for the system to eliminate the drought is 2.0% higher when there are
no demand saving measures.
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Figure 6.15: Number of drought days (no demand saving measures)

6.4 Summary

This chapter discussed the implications of the results presented in Chapter 5. There
are many different combinations of water use scenarios to be tested. Two extreme,
but plausible, scenarios of Low and High water consumption were considered. The
High scenario incorporated a 75.0% increase in population, a 15.0% increase in leakage
and a 20.0% increase in PCC. The results indicated that by 2080s the High water use
scenario led to an increase in the number of drought Level 4 by 1318.0%, compared
to the current scenario. While the Low scenario which represented 15.0% reduction in
population, 40.0% reduction in leakage and 50.0% reduction in PCC, led to a reduction
in the number of drought days by 100.0%. These results implied that availability of
the water in the system is highly affected not only by the climatic drivers but also by
the socio-economic drivers that influence demand for water. Moreover the variation in
the range of possible drought incidence are larger for future time slices. Also, in all of
the time slices variability in estimating the number of drought Level 4 is much bigger
than the other demand saving days. This indicates a higher uncertainty in prediction
of long-term impacts of climatic and non-climatic drivers in predicting the drought,
especially Level 4 demand savings, and also availability of water resources in Thames
catchment.

The robustness of different adaptation options, under current and future climate
changes, against High water use scenario also showed that for all the time slices,
a combination of a desalination plant and constructing a new reservoir, is the
most effective option in reducing the number of Level 4 drought days. By 2080s,
combination of desalination plant and constructing new reservoir, reduces the number
of Level 4 demand saving by 24.7%. Moreover, for High scenario with current land
cover and the increase urbanization scenario, it is explored that contribution of the
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adaptation options on reducing number of drought days with increased urbanisation
is greater than the current land cover scenario. Results for High water use with
increased urbanisation show that by 2080s, the combination of desalination and new
reservoir led to approximately 40.0% drop in Level 4 demand saving days relative to
High scenario with current land cover for the similar time slice. It is worthy to note
that, in order to to check the feasibility of these adaptation options and choose the
most sustainable one, calculating the cost and also comprehensive research about other
socio-economic aspects of the proposed options are necessary.

To understand further about the non-linear response of water system in Thames
catchment, the water resources model (LARaWaRM) was stress-tested to explore
how water resource was respond to different long-term trends in flows. For this
aim, two analyses were undertaken. In both analyses, it was assumed that input
flows to the catchment were constant over 100 years, in first stage the LARaWaRM
was run including the current demand saving measures while in second one they
were eliminated from the system. According to the results given from stress testing,
by increasing the input flows (constant over the 100 years), the average reservoir
level increases gradually. Based on this result, with considering the demand saving
measures, there were thresholds for flows less than 19.54 m3/s and greater than 39.00
m3/s which means that for the input flows less than 19.54 m3/s the reservoir is always
empty while for flows greater than 39.00 m3/s the reservoir is full over 100 years.
While, after eliminating the demand saving measures from the model, the required
flow for the system to never empty, is 39.10 m3/s which is 57.0% greater than when
having demand saving measures. From a drought risk point of view, when demand
saving measures are considered, there is no drought risk for flows greater than 36.78
m3/s. While after eliminating the demand saving measures, the maximum required
flow for the system to eliminate the drought increases by 2.0% to 37.5 m3/s. This shows
the importance of considering demand saving measures for water supply security in
Thames catchment.
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Chapter 7

Conclusion

7.1 Review of key findings

Managing water resources under uncertainty is an ongoing challenge for water
companies and decision makers. This research has provided insights into a number
of uncertainties in the long-term management of water resources to aid more robust
planning and decision making. These are reviewed against the original objectives set
out in Chapter 1.

7.1.1 Objective 1: Develop a systems model that couples rainfall, catchment

hydrology, water resources and consumption for the Thames catchment.

In order to achieve Objective 1, a novel integrated systems model has been developed.
The constructed integrated systems model coupled simulations of weather under
current and future climates, catchment hydrology, and the water resources system.
These models can be implemented on any catchment, nationally and internationally,
to assess the likelihood and magnitude of water scarcity. In addition, this integrated
systems model can be adapted to incorporate other weather generators, hydrological
and water resources models. More details about constructing this integrated systems
model were presented in Chapter 3.

In this study, this integrated systems model was demonstrated on the Thames
catchment, a region which is pressured by population growth, climate change and
other socio economic drivers. In order to construct the integrated systems model for
the Thames catchment, the latest version of spatial UKCP09 WG (SWG) was used
which unlike its previous version, is fully consistent with national gridded rainfall
data set from the Met Office. In addition, for the first time in the Thames catchment
impact studies, the physically based hydrological model of SHETRAN was used to
simulate the hydrological characteristics of the basin. This model was coupled with
a rule-based water resources model of LARaWaRM to simulate the potential future
water resources risks and possible demand and supply adaptation options to manage
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the potential risks in the Thames catchment. In order to provide a wider range of
information about possible range of climate impacts, 100 ensembles of 100-year long
future climate scenarios simulated.

Through the validation it became apparent that SWG reasonably reproduced the
observed rainfall and PET statistics across the Thames catchment and provides a
suitable platform for uncertainty analysis in this study. To simulate the hydrological
characteristics of this catchment, the SWG fed input to physically-based spatially
distributed hydrological model, SHETRAN. Calibration and validation results showed
that SHETRAN integrated with SWG, simulated the historical river flows, especially
the low flows during historical droughts well. The comparison between historical flow,
SHETRAN driven with observed rainfall and PET, and SHETRAN with synthetic time
series of rainfall and PET simulated by SWG, showed the quantities of the uncertainty
caused by the SWG or SHETRAN as well as the combined uncertainties from both .
This comparison showed that the uncertainty from SWG aggregated with uncertainties
from SHETRAN led to an approximately 10.0% underestimation in the annual mean
flows in the Thames catchment (projected changes that are smaller than these error
bounds are within the noise of model error). Through the sensitivity analysis of
SHETRAN with the input meteorological variables, it was found that SHETRAN with
SWG input data better represents the hydrological characteristics of the catchment.
To simulate the water storage and frequency of water shortage in Thames catchment,
a rule-based water resources management model of LARaWaRM was used. Based
on the results given for validation, LARaWaRM with historical river flows, correctly
simulated the total reservoir storage in the Thames catchment, particularly during the
droughts, especially the major droughts of 1990-92, 1995-97 and 2003-05 which were
well captured by the model.

Chapter 4 demonstrated how the proposed integrated systems model can be used
for climate change impact studies, on the Thames catchment. Results were given for
three representative future time slices of 2020s, 2050s and 2080. Results indicated
that the proportion of uncertainty in projected rainfall, PET and discharge in 2080s is
much greater than the other time slices. The comparison between projected values
with the control scenario also showed that the maximum changes are expected to
occur by 2080s. Results also indicated that by the 2080s, when accounting for all
uncertainties considered here, there would not be a considerable change in total
amount of rainfall relative to the control period (1961-1990). However as a result of
an increase in temperature, the annual mean PET is expected to increase by 26.6%. The
results also showed that the river flow and subsurface storage were more influenced
by temperature and consequently the PET, rather than rainfall. Hence, based on the
results, a 24.0% and 1.3% reduction in annual mean daily flow and subsurface storage
are projected to occur in the Thames catchment respectively.

From a water resources management point of view, it is important to estimate
the frequency of time that a system fails to meet the demand under climate change.
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Therefore, it is interesting to discover how the number of system failures changes in
future, compared to the control scenarios. To simulate the water storage and frequency
of water shortage in Thames catchment, the synthetic time series of flows, simulated
by SHETRAN for control and future time slices, were used as input to water resources
management model of LARaWaRM. Limitations in projecting the size of populations
and climate projections led to a large uncertainty in estimating the reservoir storage in
future. In this study, use of the water resources model LARaWaRM, made it possible
to have a broader understanding of sensitivity of water resources in the Thames
catchment. The analysis showed that, as a consequence of an increase in demand
for water (due to the climate change, growth in population, and increase of living
standards), the general trend in future water storage is a continual decrease. Moreover,
analysing the uncertainties caused by climate and population change scenarios on
total reservoir level and drought frequencies in Thames catchment, illustrated that
by 2080s, the climate change could have a greater impact on water supply security
than population growth. The uncertainty from combination of population and climate
change projections have a greatest impact on water scarcity in the Thames catchment,
than climate change only or population change only scenarios. Based on the results,
under current population and climate trends by 2080s, relative to the control period
(1961-1990), a 1083.0% increase in the total number of drought days are expected to
happen. Hence investment in monitoring to reduce these uncertainties would help
improve the robustness of investment decisions.

7.1.2 Objective 2: Identify and quantify key uncertainties in long-term water

resources management.

To address objective 2, a range of key uncertainties in long-term management of water
resources have identified via an extensive literature review, conducted in the UK and
globally. Based on the literature, natural variability in hydrological processes, as
well as future changes in climate, land use, demography and other socio economic
factors were highlighted as increasing pressure on water resources and posing a
threat to water security. The potential approaches to handling these uncertainties
were outlined in Chapter 2 and quantified through the modelling approach in the
subsequent chapters.

7.1.3 Objective 3: Test a range of adaptation options and assess their robustness to

these uncertainties.

In order to address Objective 3, the constructed integrated system’s model was used to
assess the effectiveness of different demand and supply decision adaptation options
and their robustness on water security in the Thames catchment. These analysis
were presented in Chapter 4. Analysing the impacts of climate change on water
resources, indicated that without further demand and supply adaptation options, there
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would not be enough water available to meet the customers demand in this area.
Moreover, based on the results, in order to reduce the drought risks in this catchment,
a portfolio of supply adaptation measures, that includes different combinations of
desalination plant with capacity of 150 Ml, constructing a new reservoir with 100
Mm3 capacity and linear reduction in leakage to 40.0% by 2080s, was tested. The
sensitivity testing showed that measures taken to reduce per capita water demand by
25.0% was more robust to future uncertainties than any of the individual or combined
supply adaptation options, especially for 2020s and 2050s as the risk for drought
could be reduced to zero. However, for 2080s, a combined contribution of demand
and supply adaptation options could reduce number of Level 4 demand saving days
in this catchment by 97.0%. This shows that implementation of combined supply
and demand management options, is the most effective adaptation option to reduce
the risk of failures in meeting the future water demand in the Thames catchment.
However, from a financial and environmental point of view, the combination of all
adaptation options is not always the best option. For instance, demand saving options
may be more flexible and less controversial than supply options such as constructing a
new reservoir or desalination plant which are more costly than demand management
options such as water meter installation, grey water recycling, rainwater collection
and use of water efficient appliances. Hence, in order to check the feasibility of these
adaptation options and choose the most sustainable one, calculating the cost and also
comprehensive research about other socio-economic aspects of the proposed options
are necessary.

7.1.4 Objective 4: Stress test the system model to analyse the impacts of uncertain-

ties and sensitivities of water resources in Thames catchment.

The proposed integrated model and its ability for sensitivity analysis, led to improved
understanding of the potential impacts of climactic and socio-economic changes,
such as population, per capita water consumption (PCC), leakage and land use, on
managing water resources in Thames catchment. This analysis addressed Objective 4
and was presented in Chapter 5. In this study, a different range of possible changes in
socio-economic drivers such as population, per capita consumption, leakage and land
cover for the 3 time slices of interest (2020s, 2050s and 2080s) as well as their impacts
on availability of water in Thames catchment were tested. The analysis indicated that
an increase of population, PCC and leakage have direct impact on water availability.
In fact, the growth of these parameters, aligned with the climate scenarios, led to a
greater variation and uncertainty on demand saving levels estimations, especially at
Level 4. In contrast, based on the results, increase of urbanization led to a reduction in
number of drought days and an increases in the total reservoir storage in all of the time
slices. In all of the future projections, the rate of change in mean flow during spring
and summer was lower than autumn and winter, when there is more precipitation and
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the soil as a result of urbanization, is less permeable.

In this study, uncertainty and sensitivity analyses were undertaken to assess the
implications of uncertainties on water scarcity, and to subsequently identify water
resources management options that are robust to these uncertainties. This part of
analysis also addressed Objective 4 and was presented in Chapter 6. In this study,
two extreme, but plausible, scenarios of Low and High water consumption were
considered. The High scenario incorporated a 75.0% increase in population, a 15.0%
increase in leakage and a 20.0% increase in PCC, while the Low scenario which
represented 15.0% reduction in population, 40.0% reduction in leakage and 50.0%
reduction in PCC. The analysis of these two water consumption scenarios implied that
availability of the water in this system is highly affected by not only the climatic drivers
but also by the socio-economic drivers which affect demand for water. Moreover, the
analysis showed that the variation in the range of possible drought incidence are larger
for future time slices. Also, in all of the time slices, variability in estimating the number
of drought Level 4 was much larger than the other demand saving days.

This indicated a higher uncertainty in the prediction of long-term impacts of
climatic and non-climatic drivers in predicting the drought, especially Level 4 demand
savings, and also availability of water resources in the Thames catchment. The
robustness of different adaptation options, under current and future climate changes,
against High water use scenario also showed that for all the time slices, a combination
of a desalination plant and constructing a new reservoir, was the most effective option
in reducing the number of Level 4 drought days. Moreover, for High scenario with
current land cover and the increased urbanization scenario, the contribution of the
adaptation options on reducing number of drought days with increased urbanisation
was greater than the current land cover scenario. Results for High water use with
increased urbanisation indicated that by 2080s, the combination of desalination and
new reservoir led to approximately 40.0% drop in Level 4 demand saving days relative
to High scenario with current land cover by the similar time slice.

In order to understand further about the non-linear response of water system in
the Thames catchment, the integrated systems model constructed for the Thames
catchment were stress-tested which showed how water resource responded to different
long-term trends in the river flows. Based on these results, with considering the
demand saving measures, for the input flows less than 19.54 m3/s the reservoir is
always empty while for flows greater than 39 m3/s the reservoir is full over 100 years.
While, after eliminating the demand saving measures from the model, the required
flow for the system to never empty, is 39.10 m3/s which is 57.0% greater than when
having demand saving measures. From a drought risk point of view, when the demand
saving measures are considered, there is no drought risk for flows greater than 36.78
m3/s. While after eliminating the demand saving measures, the maximum required
flow for the system to eliminate the drought increases by 2.0% to 37.5 m3/s. This shows
the importance of considering demand saving measures for water supply security in
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the Thames catchment.

7.2 Future work

7.2.1 Further development of existing framework

The integrated systems’ model developed in this study provides a practical insight
into multiple sources of uncertainties in the simulation of the future impacts (e.g.
model structure, inputs, outputs etc) which can be very beneficial for robust water
resources management decision making. Demonstrating the proposed integrated
systems model has provided a comprehensive understanding about uncertainties in
long-term management of water resources in the Thames catchment, an area which is
highly pressured to supply London’s water demand. However, there are some future
research directions to improve the current framework application.

The constructed integrated model can be used for any catchment, from across the
UK and internationally, and also can be adapted to include any weather generator,
hydrological and water resources model. In this study the most recent version of
spatial UKCP09 WG was used to simulate the future climate projections for the Thames
catchment. This version is not freely available. However, CEH GEAR (Tanguy et al
2014) is a 1 km gridded rainfall dataset released by CEH which unlike UKCP09 WG, is
a freely available dataset. Hence, coupling the integrated model presented in this study
with CEH GEAR, would also provide a valuable comparison for Thames catchment
studies.

Although physically based hydrological models such as SHETRAN is very data
intensive, it is more suitable for uncertainty analysis, as it better captures the spatial
characteristics of the catchment compared to the conceptual models (Beven 2012).
Moreover, SHETRAN hydrological model has the ability that it can to easily expand to
the neighbour catchments, so expanding this study to the South East, or even whole
UK which would be of value when considering supply options such as inter-basin
transfers.

For simulating Thames catchment, first 1 km resolution was used, but because
of very long run times, the resolution were decreased to 5 km. Therefore, running
SHETRAN at a finer resolution (e.g. 1 km) would be of interest (in case of having time
and access to high speed hardware/computers) to better capture the physical processes
occurring in the catchment given for example land use change.

During this study, in simulating the hydrological characteristics of the Thames
catchment, there was a limitation in representing the groundwater aquifers using
SHETRAN. Providing more comprehensive groundwater studies and groundwater
models for Thames catchment could help better representing the real subsurface
mechanisms and improve the accuracy of the simulation in this area. This is important
given groundwater contributes to 20.0% London’s supply (Thames Water 2013).
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In addition, for land cover sensitivity analysis there was a need to find areas
most likely considered for land cover change for expanding the urbanization in
future. But unfortunately there was not enough information available. The given
information from local authority plans were mostly about the increasing housing but
not specifically about the land cover changes. As new houses can be constructed
either on brownfield or greenbelt, increasing the housing does not necessarily mean
the converting non-urban land to urban area and expanding the extent of urbaniza-
tion. Therefore, inevitably for sensitivity analysis in choice of areas for urbanization
expansion an assumption had to be made.

As a result of inability to fully represent the real water system, the models are
mostly based on assumptions and simplifications of the real world. For running
LARaWaRM some assumptions were also made. For instance, in demonstrating the
case study of the Thames catchment, there was not enough information available about
the artificial influences of stakeholders on hydrological cycle in Thames catchment.
Hence, it was not clear how much water is abstracted from the River Thames in
reality. For better simulating the hydrological cycle of Thames catchment, more data
about actual abstraction from River Thames is required. Moreover, there were some
difficulties in finding the range of future forecast for leakage and demand as there
were confusion about the projections of these parameters in reports related to Thames
area (e.g. Thames Water (2013)).

7.2.2 Consideration of other hazards

The water resources model of LARaWaRM, simulates the water system based on a
simple aggregated model. In case of using LARaWaRM for more complex projects,
some other performance metrics such as flood risks management measures or hydro-
electronic schemes could be included in the model. In this work, the integrated systems
model was constructed for drought management study. This integrated systems model
can also be developed to study other hazards such as heat waves and flooding. For
instance, the simulated river flows from SHETRAN can be used for flood risk studies.
LARaWaRM can also be adapted for flood risk by changing performance metrics (e.g.
flood alteration).

7.2.3 Adaptation economics

In this study, different demand and supply adaptation options were tested. Analysing
the cost of the proposed adaptation options are not in the scope of this research. So in
order to find the most sustainable option, calculating the cost and also comprehensive
research about other socio-economic aspects of the proposed adaptation options are
necessary. In order to evaluate the cost and benefits of water resources management
options in the catchment, the integrated systems’ model could be coupled with hydro-
economic models (Harou et al. 2009). In addition, testing other possible adaptation
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options such as inter basin water transfer and also altering the demand saving curves
would be of value.

7.2.4 Alternative approaches to uncertainty analysis

In order to analyse the uncertainty and sensitivity of the integrated systems’ model,
One-at-a-time and All-at-a-time methods (Pianosi et al. 2016, Hamby 1994) have been
used during this study. However, other uncertainty and sensitivity methods e.g.
Information-Gap (Info-Gap) (Hipel & Ben-Haim 1999) and Variance-Based Sensitivity
Analysis (VBSA) can also be adapted (Saltelli et al. 2010, Hamm et al. 2006). Fur-
thermore, since, during this study, more emphasis has been placed on uncertainty
and sensitivity analysis of the integrated model, no formal decision making analysis
has been conducted. Hence, more formal decision making approaches e.g. Robust
Decision Making (RDM) (Lempert et al. 2006, Lempert & Groves 2010) and decision-
scaling method (Brown et al. 2012) can be tailored to this approach.

7.2.5 Adaptation pathways

Given the difficulty of predicting the future climate conditions, and the fact that
investing in supply adaptation options, such as constructing a new reservoir is costly,
it becomes crucial for decision makers to consider the uncertainty in future changes,
and evaluate their decisions over the time (Hallegatte 2009, Curry & Webster 2011).
Hence, adapting the dynamic approaches such as those proposed by Haasnoot et al.
(2013), and Ranger et al. (2013) could be of interest to provide a more robust decision
making framework. This would involve dynamically identifying a wider range of
uncertainties, and by the timing and sequencing of options as adaptation pathways,
exploring more flexible and profitable short-term and long-term adapting plans for
the Thames catchment.

7.3 Implications for decision makers

Drought can have significant environmental, agricultural, social and economic conse-
quences that are of relevance to a wide range of stakeholders. The key implications of
this work for a range of stakeholders are now summarised:

Consumers: The results indicate that reducing per person water demand by 25.0%
could reduce the incidence of drought significantly. Changes in water consumption
are therefore recommended. These could be stimulated by demand management
approaches such as efficient appliances, rainwater collection and grey water recycling
systems as well as educating people to monitor and report water leakage.

Utilities: Water utility companies play a key role in managing demand for water.
This could be achieved by constructing new reservoir and desalination plant, monitor-
ing and maintaining infrastructure to minimise network leakage, investment in smart

162



meters for households, implement demand management through mechanisms such as
education and variable tariffs.

City planners: One of the key findings of this research is the inverse relationship
between urbanization and drought frequency. This implies that city planners should
adopt policies in which sustainable urbanization is considered to be the goal. One
key challenge, however, is to keep the size of urbanization to an optimum level for
which the risk of drought, as well as floods are minimized. Another key policy for
city planners is to provide regulations for retrofitting of existing buildings to achieve
higher energy efficiency, lower CO2 emission and lower water consumption. In line
with above policies, public engagement in order to increase the awareness regarding
the condition of water resources is vital.

Environment Agency: According to this study, the volume of flow in the River
Thames and its sub-catchments could reduce by up to roughly 24.0% by 2080. This,
therefore, reduces the volume of water abstracted from River Thames in order to
protect the environment. The EA need to pose strict regulations to reduce the amount
of abstracted water from the River Thames.

Central Government: During the course of this study, it was found that the climate
change and increase in population are threatening the water availability in Thames
catchment. As mentioned by Arnell et al. (2014) the ultimate strategy for reducing
uncertain impacts on water resources is to mitigate future climate change. In order to
mitigate these threats, governments should adopt long-term policies to reduce carbon
footprint by shifting the energy consumption from fossil fuel to renewable energy and
distribute economic activities outside London.
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Table
A

.5:M
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flow
com
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C
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M
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74.33
-7.37
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Table
A

.7:M
ean

flow
com

parison
betw

een
historical(1961-1990)and

sim
ulated

values
in

K
ingston

sub-catchm
ent.
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M
onths

Flow

(m
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s)
C

hange
(m

3/
s)

change
(%

)

H
istorical

(1961-1990)
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G
SW

G
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ean
SSW

G
SW

G
SW

G
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SSW

G
SW

G
SW

G
-m
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SSW

G

Jan
138.03

139.51
145.52

113.75
1.48

7.49
-24.27

1.1
5.4

-17.6

Feb
135.52

128.12
129.83

103.60
-7.40

-5.69
-31.92

-5.5
-4.2

-23.6

M
ar

123.22
108.83

108.25
89.98

-14.39
-14.97

-33.24
-11.7

-12.1
-27.0

A
pr

95.62
77.66

75.34
64.17

-17.96
-20.28

-31.45
-18.8

-21.2
-32.9

M
ay

74.51
53.90

49.90
41.80

-20.60
-24.61

-32.71
-27.7

-33.0
-43.9

Jun
57.85

42.87
38.70

37.01
-14.98

-19.14
-20.83

-25.9
-33.1

-36.0

Jul
40.83

35.53
31.78

30.38
-5.29

-9.05
-10.45

-13.0
-22.2

-25.6

A
ug

37.99
33.37

30.01
29.05

-4.61
-7.97

-8.94
-12.1

-21.0
-23.5

Sep
39.99

36.78
33.87

33.27
-3.21

-6.12
-6.72

-8.0
-15.3

-16.8

O
ct

54.18
49.24

48.11
43.36

-4.94
-6.07

-10.82
-9.1

-11.2
-20.0

N
ov

76.64
73.18

76.78
63.56

-3.45
0.15

-13.07
-4.5

0.2
-17.1

D
ec

105.99
112.96

121.13
96.62

6.97
15.14

-9.38
6.6

14.3
-8.8

A
verage

81.70
74.33

74.10
62.21

-7.37
-7.59

-19.48
-9.0

-9.3
-23.8

Table
A

.9:M
ean

flow
com

parison
betw

een
historical,SW

G
,SW

G
-m

ean
and

SSW
G

,in
K

ingston
sub-catchm

ent.
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Supporting documents for Chapter 4

192



M
on

th
s

A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

2.
24

2.
24

2.
47

2.
48

2.
32

2.
65

3.
12

3.
41

2.
15

1.
92

1.
95

1.
81

Fe
b

1.
69

1.
86

2.
00

2.
22

1.
77

2.
18

2.
42

2.
89

1.
59

1.
54

1.
65

1.
70

M
ar

1.
89

2.
00

2.
03

2.
14

1.
98

2.
29

2.
37

2.
45

1.
81

1.
66

1.
73

1.
79

A
pr

1.
70

1.
71

1.
75

1.
74

1.
78

1.
86

1.
90

1.
90

1.
63

1.
56

1.
55

1.
57

M
ay

1.
80

1.
83

1.
70

1.
62

1.
88

2.
19

2.
04

1.
93

1.
73

1.
54

1.
33

1.
33

Ju
n

1.
81

1.
71

1.
62

1.
52

1.
94

2.
18

2.
04

2.
31

1.
70

1.
32

1.
13

0.
95

Ju
l

1.
43

1.
39

1.
27

1.
24

1.
54

1.
76

1.
68

1.
77

1.
33

0.
97

0.
80

0.
72

A
ug

1.
86

1.
71

1.
34

1.
42

1.
98

2.
28

1.
90

2.
23

1.
75

1.
27

0.
85

0.
72

Se
p

2.
02

1.
92

1.
80

1.
63

2.
14

2.
35

2.
36

2.
11

1.
89

1.
46

1.
18

1.
15

O
ct

2.
20

2.
10

2.
13

2.
13

2.
27

2.
41

2.
49

2.
49

2.
11

1.
85

1.
75

1.
84

N
ov

2.
24

2.
37

2.
49

2.
54

2.
34

2.
79

3.
03

3.
24

2.
14

1.
99

1.
91

1.
85

D
ec

2.
37

2.
56

2.
74

2.
85

2.
48

3.
07

3.
20

3.
51

2.
25

2.
09

2.
32

2.
24

Ta
bl

e
B.

1:
M

ea
n,

90
th

an
d

10
th

pe
rc

en
ti

le
of

ra
in

fa
ll,

fo
r

co
nt

ro
la

nd
fu

tu
re

sc
en

ar
io

s
in

K
in

gs
to

n
su

b-
ca

tc
hm

en
t.

193



M
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90th
Percentile

10th
Percentile

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
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-8.97

-15.52

Feb
0.00

10.56
18.82

31.82
0.00

23.40
37.26

63.39
0.00

-2.87
3.93

6.86

M
ar

0.00
5.71

7.19
13.47

0.00
15.95

19.57
24.07

0.00
-8.00

-4.14
-0.78

A
pr

0.00
0.50

2.89
1.89

0.00
4.23

6.79
6.55

0.00
-4.24

-4.81
-3.39

M
ay

0.00
1.79

-5.93
-10.11

0.00
16.56

8.56
2.98

0.00
-10.64

-22.73
-23.10

Jun
0.00

-5.99
-10.86

-16.47
0.00

12.54
5.07

19.02
0.00

-22.21
-33.29

-43.85

Jul
0.00

-2.93
-10.91

-13.08
0.00

14.55
9.66

15.40
0.00

-27.41
-39.65

-46.00

A
ug

0.00
-8.10

-28.15
-23.95

0.00
15.24

-3.85
12.84

0.00
-27.64

-51.27
-59.08

Sep
0.00

-5.19
-11.07

-19.22
0.00

9.69
10.34

-1.34
0.00

-22.83
-37.49

-39.28

O
ct

0.00
-4.51

-3.41
-3.33

0.00
6.01

9.70
9.44

0.00
-12.27

-17.20
-12.75

N
ov

0.00
5.80

10.71
13.20

0.00
19.12

29.11
38.20

0.00
-7.03

-10.89
-13.56

D
ec

0.00
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41.40
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-0.39

Table
B.2:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

rainfallfrom
m

ean
controlin

K
ingston

sub-catchm
ent.
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50
s

20
80

s

Ja
n

0.
57

0.
56

0.
61

0.
62

0.
57

0.
60

0.
67

0.
71

0.
56

0.
52

0.
54

0.
54

Fe
b

0.
71

0.
74

0.
77

0.
81

0.
71

0.
78

0.
82

0.
89

0.
70

0.
69

0.
71

0.
74

M
ar

1.
22

1.
34

1.
41

1.
48

1.
23

1.
39

1.
52

1.
63

1.
22

1.
28

1.
32

1.
34

A
pr

1.
84

2.
00

2.
14

2.
24

1.
85

2.
14

2.
34

2.
54

1.
83

1.
85

1.
97

2.
00

M
ay

2.
61

2.
87

3.
14

3.
30

2.
62

3.
17

3.
56

3.
84

2.
59

2.
58

2.
81

2.
84

Ju
n

3.
08

3.
55

3.
77

4.
07

3.
10

3.
97

4.
25

4.
84

3.
06

3.
16

3.
25

3.
49

Ju
l

3.
27

3.
70

4.
07

4.
42

3.
29

4.
19

4.
80

5.
44

3.
25

3.
28

3.
37

3.
63

A
ug

2.
74

3.
22

3.
64

3.
96

2.
75

3.
66

4.
26

4.
78

2.
72

2.
85

3.
13

3.
15

Se
p

1.
83

2.
02

2.
20

2.
38

1.
83

2.
27

2.
54

2.
85

1.
82

1.
75

1.
80

1.
90

O
ct

1.
02

1.
12

1.
23

1.
30

1.
02

1.
20

1.
35

1.
45

1.
01

1.
04

1.
12

1.
18

N
ov

0.
61

0.
69

0.
74

0.
78

0.
62

0.
73

0.
82

0.
88

0.
61

0.
65

0.
66

0.
67

D
ec

0.
51

0.
53

0.
56

0.
59

0.
51

0.
57

0.
60

0.
65

0.
50

0.
49

0.
52

0.
52

Ta
bl

e
B.

3:
M

ea
n,

90
th

an
d

10
th

pe
rc

en
ti

le
of

PE
T,

fo
r

co
nt

ro
la

nd
fu

tu
re

sc
en

ar
io

s
in

K
in

gs
to

n
su

b-
ca

tc
hm

en
t.
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A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-0.87
6.53

9.22
0.00

5.27
16.66

24.54
0.00

-6.93
-3.62

-3.49

Feb
0.00

4.55
8.46

14.63
0.00

9.34
14.80

25.09
0.00

-1.61
1.68

4.63

M
ar

0.00
9.80

15.24
21.42

0.00
13.50

23.72
33.23

0.00
5.47

8.33
10.33

A
pr

0.00
8.84

16.21
21.64

0.00
15.84

26.62
37.37

0.00
1.24

7.71
9.12

M
ay

0.00
10.02

20.48
26.57

0.00
20.95

35.78
46.42

0.00
-0.44

8.43
9.47

Jun
0.00

15.20
22.45

32.21
0.00

28.09
37.14

56.20
0.00

3.16
6.00

13.89

Jul
0.00

13.20
24.53

35.16
0.00

27.44
45.91

65.30
0.00

0.96
3.80

11.67

A
ug

0.00
17.58

33.00
44.60

0.00
32.91

54.68
73.77

0.00
4.67

14.89
15.74

Sep
0.00

10.65
20.44

30.13
0.00

23.88
38.41

55.73
0.00

-3.64
-1.10

4.54

O
ct

0.00
10.54

21.22
28.28

0.00
18.20

32.08
42.13

0.00
2.46

10.22
16.23

N
ov

0.00
12.06

20.31
27.02

0.00
18.34

32.46
43.10

0.00
6.42

8.34
10.81

D
ec

0.00
4.96

10.21
15.41

0.00
10.78

16.78
26.02

0.00
-1.72

3.01
4.35

Table
B.4:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

PET
from

m
ean

controlin
K

ingston
sub-catchm

ent.

196



A
ve

ra
ge

90
th

Pe
rc

en
ti

le
(Q

10
)

10
th

Pe
rc

en
ti

le
(Q

90
)

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

13
9.

51
12

2.
17

11
1.

16
10

1.
70

14
6.

60
15

2.
83

14
3.

63
13

5.
83

13
2.

70
91

.4
5

80
.9

1
72

.4
6

Fe
b

12
8.

12
12

0.
43

11
7.

06
11

4.
18

13
4.

21
14

3.
23

14
5.

15
16

0.
50

12
2.

20
98

.4
0

93
.7

0
81

.5
4

M
ar

10
8.

83
10

6.
59

10
3.

27
10

4.
92

11
3.

45
12

2.
80

12
4.

22
13

0.
02

10
4.

30
89

.2
9

85
.1

4
80

.9
3

A
pr

77
.6

6
73

.5
3

71
.4

6
69

.2
2

80
.7

6
86

.6
0

87
.2

3
85

.8
6

73
.8

3
63

.3
1

59
.4

0
56

.4
2

M
ay

53
.9

0
50

.7
4

47
.7

6
45

.1
8

56
.2

2
58

.5
5

55
.3

0
53

.0
7

51
.3

7
43

.0
4

41
.1

0
38

.4
4

Ju
n

42
.8

7
40

.3
9

37
.5

7
35

.9
5

44
.6

4
46

.0
2

43
.5

9
43

.1
9

41
.2

4
34

.9
3

32
.1

3
30

.0
9

Ju
l

35
.5

3
32

.8
7

30
.1

6
28

.5
5

37
.0

9
37

.4
4

35
.2

5
33

.9
7

34
.1

8
27

.8
4

25
.6

4
23

.1
9

A
ug

33
.3

7
30

.2
2

26
.0

8
24

.5
8

34
.8

6
37

.0
8

33
.7

3
32

.2
7

31
.9

8
23

.9
3

21
.0

9
17

.4
7

Se
p

36
.7

8
31

.3
7

25
.6

7
23

.2
7

39
.2

3
40

.2
8

34
.9

4
32

.1
3

34
.9

2
23

.8
5

19
.1

8
15

.6
2

O
ct

49
.2

4
38

.3
2

31
.1

7
27

.5
1

52
.8

7
50

.3
3

45
.3

0
37

.4
5

46
.0

0
28

.0
4

23
.1

7
19

.2
9

N
ov

73
.1

8
57

.2
8

45
.9

1
40

.6
1

78
.1

2
80

.3
4

67
.5

8
55

.6
7

68
.5

3
40

.1
0

32
.5

8
27

.3
1

D
ec

11
2.

96
95

.0
3

78
.7

7
70

.9
6

11
8.

79
12

9.
42

11
7.

54
10

1.
08

10
4.

71
68

.5
1

54
.9

3
45

.9
7

Ta
bl

e
B.

5:
M
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n,

90
th

an
d

10
th

pe
rc

en
ti

le
pr

oj
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ti
on

s
of

flo
w

,f
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nt
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la

nd
fu
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sc
en
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s
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K
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to

n
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A
verage

90th
Percentile

(Q
10)

10th
Percentile

(Q
90)

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-12.43
-20.32

-27.10
0.00

4.25
-2.03

-7.34
0.00

-31.08
-39.03

-45.40

Feb
0.00

-6.01
-8.64

-10.88
0.00

6.73
8.15

19.60
0.00

-19.48
-23.32

-33.27

M
ar

0.00
-2.06

-5.11
-3.59

0.00
8.25

9.50
14.61

0.00
-14.39

-18.36
-22.41

A
pr

0.00
-5.32

-7.98
-10.87

0.00
7.23

8.02
6.31

0.00
-14.24

-19.53
-23.57

M
ay

0.00
-5.86

-11.39
-16.18

0.00
4.14

-1.64
-5.61

0.00
-16.20

-19.98
-25.16

Jun
0.00

-5.78
-12.35

-16.14
0.00

3.10
-2.34

-3.24
0.00

-15.30
-22.08

-27.04

Jul
0.00

-7.48
-15.12

-19.66
0.00

0.92
-4.97

-8.42
0.00

-18.56
-24.99

-32.14

A
ug

0.00
-9.44

-21.85
-26.36

0.00
6.38

-3.23
-7.41

0.00
-25.17

-34.05
-45.39

Sep
0.00

-14.71
-30.20

-36.74
0.00

2.66
-10.93

-18.10
0.00

-31.70
-45.07

-55.26

O
ct

0.00
-22.17

-36.69
-44.14

0.00
-4.80

-14.32
-29.17

0.00
-39.05

-49.63
-58.06

N
ov

0.00
-21.73

-37.27
-44.51

0.00
2.83

-13.50
-28.75

0.00
-41.48

-52.46
-60.15

D
ec

0.00
-15.88

-30.27
-37.18

0.00
8.94

-1.06
-14.91

0.00
-34.57

-47.54
-56.09

Table
B.6:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

flow
from

m
ean

controlin
K

ingston.
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A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

48
56

.2
5

48
41

.9
9

48
29

.0
4

48
18

.4
1

48
59

.7
8

48
61

.9
6

48
56

.9
7

48
50

.1
3

48
51

.9
6

48
20

.7
2

48
04

.9
7

47
88

.3
4

Fe
b

48
61

.5
5

48
51

.0
0

48
42

.7
4

48
35

.1
1

48
64

.5
2

48
68

.4
1

48
63

.6
7

48
60

.4
6

48
58

.0
6

48
30

.6
0

48
20

.9
5

48
10

.9
8

M
ar

48
61

.8
4

48
53

.5
9

48
46

.9
0

48
41

.8
2

48
65

.0
7

48
69

.2
6

48
65

.5
7

48
63

.4
5

48
58

.1
2

48
36

.8
5

48
27

.7
0

48
21

.8
6

A
pr

48
57

.1
5

48
48

.7
9

48
42

.0
5

48
36

.9
4

48
60

.3
4

48
62

.0
2

48
60

.9
6

48
56

.5
6

48
53

.6
5

48
31

.9
5

48
23

.1
8

48
16

.4
6

M
ay

48
44

.9
1

48
34

.0
5

48
23

.7
6

48
16

.2
6

48
47

.8
3

48
47

.5
3

48
43

.7
5

48
39

.6
7

48
41

.3
2

48
16

.5
0

48
05

.5
2

47
94

.6
9

Ju
n

48
26

.2
3

48
10

.3
1

47
95

.2
1

47
83

.0
4

48
29

.5
3

48
27

.6
6

48
19

.8
4

48
13

.7
5

48
22

.4
5

47
90

.8
4

47
73

.7
3

47
53

.3
3

Ju
l

48
01

.3
4

47
78

.8
5

47
58

.3
5

47
41

.5
3

48
05

.5
4

47
99

.9
5

47
94

.5
8

47
80

.7
8

47
96

.6
0

47
54

.1
6

47
31

.2
0

47
03

.5
2

A
ug

47
83

.3
1

47
53

.7
8

47
24

.8
0

47
06

.2
2

47
88

.7
0

47
84

.6
8

47
73

.9
4

47
59

.5
6

47
78

.0
7

47
18

.6
5

46
89

.9
2

46
59

.2
6

Se
p

47
83

.5
0

47
49

.0
4

47
13

.7
0

46
93

.8
9

47
88

.7
6

47
87

.4
1

47
70

.4
0

47
49

.4
0

47
77

.5
3

47
10

.6
3

46
73

.1
1

46
40

.3
8

O
ct

48
00

.7
4

47
65

.5
3

47
30

.7
9

47
08

.9
4

48
06

.4
5

48
01

.3
9

47
86

.3
2

47
66

.2
2

47
94

.7
4

47
28

.3
4

46
87

.7
9

46
49

.3
4

N
ov

48
22

.2
4

47
92

.3
1

47
62

.4
7

47
42

.8
7

48
27

.0
9

48
23

.0
7

48
11

.6
7

47
96

.1
9

48
16

.7
8

47
58

.6
7

47
24

.0
6

46
88

.8
5

D
ec

48
42

.0
0

48
20

.8
9

47
99

.1
5

47
84

.2
9

48
46

.3
7

48
46

.6
2

48
41

.1
0

48
27

.8
8

48
37

.6
0

47
94

.5
3

47
68

.1
3

47
40

.3
7

A
ve
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ge

48
28

.4
2

48
08

.3
4

47
89

.0
8

47
75

.7
8

48
32

.5
0

48
31

.6
6

48
24

.0
6

48
13

.6
7

48
23

.9
1

47
82

.7
0

47
60

.8
6

47
38

.9
5

Ta
bl

e
B.
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M
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n,

90
th

an
d
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th

pe
rc
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ti

le
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su
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fa

ce
st
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ag
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fo

r
co

nt
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nd

fu
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en
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io
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K
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gs
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en
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A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-0.29
-0.56

-0.78
0.00

0.04
-0.06

-0.20
0.00

-0.64
-0.97

-1.31

Feb
0.00

-0.22
-0.39

-0.54
0.00

0.08
-0.02

-0.08
0.00

-0.57
-0.76

-0.97

M
ar

0.00
-0.17

-0.31
-0.41

0.00
0.09

0.01
-0.03

0.00
-0.44

-0.63
-0.75

A
pr

0.00
-0.17

-0.31
-0.42

0.00
0.03

0.01
-0.08

0.00
-0.45

-0.63
-0.77

M
ay

0.00
-0.22

-0.44
-0.59

0.00
-0.01

-0.08
-0.17

0.00
-0.51

-0.74
-0.96

Jun
0.00

-0.33
-0.64

-0.89
0.00

-0.04
-0.20

-0.33
0.00

-0.66
-1.01

-1.43

Jul
0.00

-0.47
-0.90

-1.25
0.00

-0.12
-0.23

-0.52
0.00

-0.88
-1.36

-1.94

A
ug

0.00
-0.62

-1.22
-1.61

0.00
-0.08

-0.31
-0.61

0.00
-1.24

-1.84
-2.49

Sep
0.00

-0.72
-1.46

-1.87
0.00

-0.03
-0.38

-0.82
0.00

-1.40
-2.19

-2.87

O
ct

0.00
-0.73

-1.46
-1.91

0.00
-0.11

-0.42
-0.84

0.00
-1.38

-2.23
-3.03

N
ov

0.00
-0.62

-1.24
-1.65

0.00
-0.08

-0.32
-0.64

0.00
-1.21

-1.92
-2.66

D
ec

0.00
-0.44

-0.88
-1.19

0.00
0.01

-0.11
-0.38

0.00
-0.89

-1.44
-2.01

A
verage

0.00
-0.42

-0.82
-1.09

0.00
-0.02

-0.18
-0.39

0.00
-0.86

-1.31
-1.77

Table
B.8:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

subsurface
storage

from
controlin

K
ingston

sub-catchm
ent.
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A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

1.
80

1.
80

1.
99

1.
98

1.
87

2.
13

2.
51

2.
63

1.
72

1.
54

1.
58

1.
47

Fe
b

1.
42

1.
56

1.
69

1.
87

1.
49

1.
86

2.
04

2.
45

1.
32

1.
29

1.
37

1.
42

M
ar

1.
58

1.
67

1.
70

1.
79

1.
66

1.
94

1.
98

2.
04

1.
52

1.
40

1.
44

1.
49

A
pr

1.
62

1.
63

1.
67

1.
65

1.
70

1.
79

1.
82

1.
80

1.
55

1.
47

1.
50

1.
52

M
ay

1.
53

1.
54

1.
43

1.
37

1.
60

1.
83

1.
69

1.
68

1.
46

1.
29

1.
14

1.
11

Ju
n

1.
75

1.
63

1.
56

1.
46

1.
86

2.
05

1.
98

2.
17

1.
63

1.
26

1.
11

0.
92

Ju
l

1.
51

1.
47

1.
34

1.
31

1.
63

1.
86

1.
80

1.
87

1.
39

1.
04

0.
86

0.
78

A
ug

1.
71

1.
58

1.
24

1.
30

1.
82

2.
11

1.
72

2.
07

1.
61

1.
14

0.
80

0.
67

Se
p

1.
74

1.
64

1.
55

1.
41

1.
86

2.
05

2.
06

1.
83

1.
61

1.
26

1.
01

0.
99

O
ct

1.
92

1.
83

1.
85

1.
86

2.
01

2.
10

2.
14

2.
17

1.
83

1.
61

1.
51

1.
59

N
ov

1.
99

2.
10

2.
19

2.
24

2.
08

2.
51

2.
68

2.
86

1.
91

1.
77

1.
65

1.
62

D
ec

1.
90

2.
05

2.
20

2.
28

1.
99

2.
47

2.
56

2.
79

1.
79

1.
68

1.
87

1.
81

Ta
bl

e
B.

9:
M

ea
n,

90
th

an
d

10
th

pe
rc

en
ti

le
s

of
ra

in
fa

ll,
fo

r
co

nt
ro

la
nd

fu
tu

re
sc

en
ar

io
s

in
Le

e
su

b-
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201



A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

0.10
10.80

10.57
0.00

14.32
34.32

40.96
0.00

-10.65
-8.40

-14.70

Feb
0.00

10.41
19.07

32.01
0.00

24.93
36.52

64.06
0.00

-2.46
3.68

7.09

M
ar

0.00
5.68

7.22
13.28

0.00
16.67

19.31
23.11

0.00
-7.89

-5.25
-1.54

A
pr

0.00
0.53

3.19
1.88

0.00
5.52

7.16
5.97

0.00
-5.12

-3.02
-1.56

M
ay

0.00
1.18

-6.05
-10.31

0.00
14.48

5.95
5.04

0.00
-11.61

-21.61
-23.82

Jun
0.00

-6.80
-10.80

-16.17
0.00

10.37
6.63

16.37
0.00

-23.17
-32.21

-43.77

Jul
0.00

-2.78
-11.66

-13.35
0.00

14.26
10.34

14.85
0.00

-25.09
-38.45

-44.02

A
ug

0.00
-7.67

-27.55
-23.58

0.00
16.06

-5.47
13.93

0.00
-29.51

-50.13
-58.30

Sep
0.00

-5.26
-10.61

-18.90
0.00

10.20
10.60

-1.86
0.00

-21.50
-37.39

-38.84

O
ct

0.00
-4.53

-3.56
-3.05

0.00
4.80

6.47
8.33

0.00
-11.85

-17.40
-13.18

N
ov

0.00
5.78

10.57
13.03

0.00
20.45

28.57
37.20

0.00
-7.10

-13.32
-15.16

D
ec

0.00
7.95

15.79
20.40

0.00
24.07

28.73
40.36

0.00
-6.12

4.06
0.80

Table
B.10:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

rainfallfrom
m

ean
controlin

Lee
sub-catchm

ent.
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A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

0.
57

0.
56

0.
61

0.
62

0.
58

0.
61

0.
67

0.
71

0.
57

0.
52

0.
55

0.
54

Fe
b

0.
70

0.
73

0.
76

0.
80

0.
71

0.
77

0.
81

0.
89

0.
70

0.
68

0.
71

0.
72

M
ar

1.
24

1.
36

1.
43

1.
50

1.
24

1.
41

1.
54

1.
65

1.
23

1.
29

1.
33

1.
36

A
pr

1.
85

2.
01

2.
15

2.
25

1.
85

2.
15

2.
35

2.
55

1.
84

1.
86

1.
98

2.
01

M
ay

2.
63

2.
90

3.
18

3.
34

2.
65

3.
21

3.
60

3.
89

2.
62

2.
61

2.
84

2.
87

Ju
n

3.
13

3.
61

3.
84

4.
14

3.
15

4.
04

4.
32

4.
92

3.
12

3.
20

3.
30

3.
53

Ju
l

3.
31

3.
75

4.
13

4.
49

3.
33

4.
25

4.
88

5.
53

3.
29

3.
32

3.
42

3.
68

A
ug

2.
82

3.
31

3.
74

4.
07

2.
83

3.
77

4.
38

4.
92

2.
80

2.
93

3.
21

3.
24

Se
p

1.
88

2.
09

2.
27

2.
46

1.
89

2.
35

2.
63

2.
95

1.
88

1.
80

1.
86

1.
97

O
ct

1.
05

1.
17

1.
28

1.
35

1.
06

1.
25

1.
40

1.
50

1.
05

1.
08

1.
16

1.
22

N
ov

0.
61

0.
68

0.
73

0.
77

0.
61

0.
72

0.
81

0.
88

0.
60

0.
64

0.
65

0.
67

D
ec

0.
51

0.
53

0.
56

0.
58

0.
51

0.
57

0.
60

0.
64

0.
50

0.
49

0.
52

0.
52

Ta
bl

e
B.

11
:M

ea
n,

90
th

an
d

10
th

pe
rc

en
ti

le
s

of
PE

T,
fo

r
co

nt
ro

la
nd

fu
tu

re
sc

en
ar

io
s

in
Le

e
su

b-
ca

tc
hm

en
t.
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A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-1.37
5.97

8.30
0.00

4.84
16.17

23.12
0.00

-7.74
-3.84

-3.93

Feb
0.00

4.32
8.19

14.27
0.00

9.31
14.67

25.51
0.00

-1.73
1.28

3.88

M
ar

0.00
9.66

15.13
21.18

0.00
13.11

23.62
32.74

0.00
5.05

8.22
10.69

A
pr

0.00
8.86

16.35
21.81

0.00
16.06

26.76
37.64

0.00
1.14

7.84
9.33

M
ay

0.00
10.13

20.69
26.85

0.00
21.34

36.02
47.05

0.00
-0.57

8.44
9.58

Jun
0.00

15.12
22.35

32.10
0.00

28.16
37.21

56.13
0.00

2.64
5.80

13.37

Jul
0.00

13.34
24.80

35.55
0.00

27.71
46.60

66.23
0.00

0.97
4.06

11.86

A
ug

0.00
17.46

32.81
44.47

0.00
33.19

54.75
73.92

0.00
4.52

14.31
15.67

Sep
0.00

10.79
20.75

30.57
0.00

24.13
38.91

56.22
0.00

-3.85
-0.84

4.84

O
ct

0.00
10.70

21.43
28.52

0.00
18.31

32.16
42.17

0.00
2.71

10.31
16.34

N
ov

0.00
12.07

20.29
26.90

0.00
18.40

32.12
43.44

0.00
6.57

8.27
10.75

D
ec

0.00
4.70

9.73
14.48

0.00
10.92

16.16
24.06

0.00
-1.86

3.31
4.08

Table
B.12:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

PET
from

m
ean

controlin
Lee

sub-catchm
ent.
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A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

7.
17

5.
81

5.
39

5.
10

7.
68

7.
20

6.
95

6.
78

6.
67

4.
34

4.
14

3.
80

Fe
b

6.
81

5.
91

5.
64

5.
67

7.
26

7.
29

6.
98

7.
37

6.
23

4.
66

4.
58

4.
28

M
ar

6.
29

5.
65

5.
36

5.
30

6.
66

6.
83

6.
61

6.
30

5.
91

4.
64

4.
42

4.
38

A
pr

5.
13

4.
68

4.
56

4.
35

5.
41

5.
51

5.
36

5.
03

4.
88

4.
06

4.
02

3.
77

M
ay

3.
95

3.
74

3.
64

3.
47

4.
10

4.
17

4.
12

3.
92

3.
79

3.
34

3.
19

3.
06

Ju
n

3.
66

3.
43

3.
19

3.
09

3.
83

4.
10

3.
87

4.
01

3.
50

2.
87

2.
51

2.
35

Ju
l

3.
27

2.
99

2.
66

2.
51

3.
47

3.
80

3.
30

3.
49

3.
07

2.
31

2.
07

1.
84

A
ug

2.
98

2.
73

2.
27

2.
20

3.
20

3.
68

3.
59

3.
49

2.
80

1.
88

1.
54

1.
37

Se
p

3.
11

2.
65

2.
21

1.
95

3.
38

3.
48

3.
17

2.
60

2.
90

1.
92

1.
51

1.
35

O
ct

3.
59

2.
90

2.
48

2.
27

3.
83

3.
47

3.
24

2.
88

3.
33

2.
28

1.
87

1.
67

N
ov

4.
61

3.
91

3.
46

3.
27

4.
86

5.
10

4.
55

4.
40

4.
27

2.
98

2.
51

2.
16

D
ec

6.
27

5.
40

4.
92

4.
76

6.
70

7.
26

6.
38

6.
36

5.
73

4.
11

3.
71

3.
51

Ta
bl

e
B.

13
:M

ea
n,

90
th

an
d

10
th

pe
rc

en
ti

le
s

of
flo

w
,f

or
co

nt
ro

la
nd

fu
tu

re
sc

en
ar

io
s

in
Le

e
su

b-
ca
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hm
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t.
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A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-19.02
-24.82

-28.82
0.00

-6.23
-9.51

-11.65
0.00

-34.85
-37.90

-43.09

Feb
0.00

-13.25
-17.14

-16.74
0.00

0.32
-3.91

1.45
0.00

-25.25
-26.57

-31.36

M
ar

0.00
-10.17

-14.79
-15.75

0.00
2.49

-0.81
-5.45

0.00
-21.52

-25.21
-26.01

A
pr

0.00
-8.79

-11.01
-15.24

0.00
1.88

-0.92
-6.89

0.00
-16.79

-17.70
-22.84

M
ay

0.00
-5.25

-7.87
-11.94

0.00
1.63

0.42
-4.56

0.00
-11.92

-15.87
-19.22

Jun
0.00

-6.16
-12.92

-15.62
0.00

7.15
1.15

4.80
0.00

-17.97
-28.25

-32.89

Jul
0.00

-8.52
-18.69

-23.24
0.00

9.73
-4.73

0.60
0.00

-24.91
-32.74

-40.16

A
ug

0.00
-8.58

-24.01
-26.37

0.00
15.26

12.20
9.18

0.00
-32.73

-44.98
-51.02

Sep
0.00

-14.74
-29.02

-37.34
0.00

2.87
-6.18

-22.92
0.00

-33.69
-48.03

-53.42

O
ct

0.00
-19.16

-30.82
-36.82

0.00
-9.46

-15.51
-24.73

0.00
-31.39

-43.72
-49.99

N
ov

0.00
-15.25

-25.03
-29.01

0.00
4.90

-6.42
-9.49

0.00
-30.27

-41.23
-49.43

D
ec

0.00
-13.82

-21.52
-24.11

0.00
8.42

-4.74
-5.07

0.00
-28.30

-35.28
-38.79

Table
B.14:%

change
in

m
ean,90th

and
10th

percentile
ofprojected

flow
from

m
ean

controlin
Lee

sub-catchm
ent.
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A
ve

ra
ge

90
th

Pe
rc

en
ti

le
10

th
Pe

rc
en

ti
le

M
on

th
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

C
on

tr
ol

(1
96

1-
90

)
20

20
s

20
50

s
20

80
s

Ja
n

65
88

.7
3

65
42

.1
7

65
13

.7
3

64
97

.1
1

65
97

.4
2

65
84

.1
0

65
69

.8
9

65
46

.1
5

65
80

.9
8

64
98

.6
3

64
75

.0
7

64
57

.5
4

Fe
b

66
01

.1
7

65
59

.4
3

65
35

.7
0

65
21

.3
4

66
08

.3
3

65
96

.8
5

65
85

.6
5

65
65

.4
8

65
93

.9
6

65
17

.0
8

64
98

.9
9

64
85

.0
7

M
ar

66
05

.4
3

65
67

.2
1

65
45

.4
0

65
33

.9
8

66
11

.9
0

66
04

.1
2

65
88

.3
8

65
72

.6
7

65
98

.4
7

65
27

.1
7

65
09

.6
3

64
99

.6
4

A
pr

66
01

.3
2

65
63

.1
5

65
41

.0
2

65
29

.3
8

66
07

.9
1

66
00

.0
7

65
84

.0
7

65
68

.1
0

65
94

.9
8

65
24

.4
5

65
05

.4
2

64
94

.7
6

M
ay

65
85

.3
4

65
43

.9
9

65
17

.4
8

65
02

.8
0

65
91

.7
0

65
81

.2
3

65
64

.5
9

65
43

.5
8

65
78

.6
6

65
03

.4
4

64
80

.6
4

64
67

.5
0

Ju
n

65
59

.7
9

65
12

.2
9

64
81

.0
4

64
61

.9
0

65
66

.1
5

65
51

.3
7

65
37

.9
3

65
15

.5
1

65
53

.0
6

64
69

.3
1

64
42

.9
8

64
21

.2
8

Ju
l

65
30

.0
0

64
76

.6
7

64
42

.0
5

64
20

.2
0

65
37

.3
8

65
20

.7
7

65
04

.1
9

64
79

.1
4

65
23

.1
5

64
30

.1
9

64
01

.6
1

63
77

.4
8

A
ug

65
07

.2
0

64
49

.6
6

64
10

.0
5

63
88

.7
8

65
14

.5
3

65
02

.1
4

64
82

.5
2

64
45

.8
7

64
99

.5
0

63
98

.9
4

63
68

.2
5

63
42

.1
0

Se
p

65
00

.9
6

64
40

.7
6

63
98

.1
9

63
76

.9
6

65
09

.7
2

64
95

.4
0

64
73

.1
1

64
28

.4
8

64
92

.6
2

63
90

.1
6

63
52

.7
4

63
29

.1
9

O
ct

65
14

.7
4

64
53

.2
5

64
11

.3
3

63
88

.8
6

65
24

.1
6

65
02

.9
0

64
84

.9
7

64
43

.7
4

65
06

.8
5

63
99

.0
4

63
68

.1
3

63
38

.3
5

N
ov

65
39

.3
9

64
80

.3
0

64
40

.8
0

64
19

.5
5

65
49

.1
3

65
29

.4
0

65
14

.9
5

64
75

.7
3

65
31

.3
7

64
29

.9
6

63
98
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4

D
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.3
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62

.6
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.9
3

65
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5
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2

A
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ra
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.3
6
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08

.5
1
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76

.2
5
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58

.3
5
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66

.1
7

65
52

.5
8

65
36

.1
8
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.9
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.5
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6
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e
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A
verage

90th
Percentile

10th
Percentile

M
onths

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

C
ontrol

(1961-90)
2020s

2050s
2080s

Jan
0.00

-0.71
-1.14

-1.39
0.00

-0.20
-0.42

-0.78
0.00

-1.25
-1.61

-1.88

Feb
0.00

-0.63
-0.99

-1.21
0.00

-0.17
-0.34

-0.65
0.00

-1.17
-1.44

-1.65

M
ar

0.00
-0.58

-0.91
-1.08

0.00
-0.12

-0.36
-0.59

0.00
-1.08

-1.35
-1.50

A
pr

0.00
-0.58

-0.91
-1.09

0.00
-0.12

-0.36
-0.60

0.00
-1.07

-1.36
-1.52

M
ay

0.00
-0.63

-1.03
-1.25

0.00
-0.16

-0.41
-0.73

0.00
-1.14

-1.49
-1.69

Jun
0.00

-0.72
-1.20

-1.49
0.00

-0.23
-0.43

-0.77
0.00

-1.28
-1.68

-2.01

Jul
0.00

-0.82
-1.35

-1.68
0.00

-0.25
-0.51

-0.89
0.00

-1.43
-1.86

-2.23

A
ug

0.00
-0.88

-1.49
-1.82

0.00
-0.19

-0.49
-1.05

0.00
-1.55

-2.02
-2.42

Sep
0.00

-0.93
-1.58

-1.91
0.00

-0.22
-0.56

-1.25
0.00

-1.58
-2.15

-2.52

O
ct

0.00
-0.94

-1.59
-1.93

0.00
-0.33

-0.60
-1.23

0.00
-1.66

-2.13
-2.59

N
ov

0.00
-0.90

-1.51
-1.83

0.00
-0.30

-0.52
-1.12

0.00
-1.55

-2.03
-2.47

D
ec

0.00
-0.81

-1.34
-1.63

0.00
-0.20

-0.48
-0.95

0.00
-1.43

-1.85
-2.19

A
verage

0.00
-0.76

-1.25
-1.53

0.00
-0.21

-0.46
-0.88

0.00
-1.35

-1.75
-2.06

Table
B.16:%

change
in

m
ean,90th

and
10th

percentiles
ofprojected

subsurface
from

controlin
Lee

sub-catchm
ent.
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Population
Scenarios

C
lim

ate
scenarios

M
onth

A
nnual

Jan
Feb

M
ar

A
pr

M
ay

Jun
Jul

A
ug

Sep
O

ct
N

ov
D

ec

C
urrent(2010)

C
ontrol

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00

2020s
-3.21

-1.03
-0.37

-0.24
-0.53

-1.31
-3.15

-6.30
-10.39

-13.75
-13.32

-8.25
-4.94

2050s
-7.69

-2.28
-0.72

-0.39
-0.93

-2.61
-6.11

-12.32
-20.92

-27.54
-27.54

-18.68
-10.22

2080s
-12.33

-4.41
-1.62

-0.94
-1.58

-3.92
-8.81

-16.74
-26.79

-35.49
-36.35

-26.40
-14.09

2020

C
ontrol

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00

2020s
-4.57

-1.56
-0.58

-0.38
-0.77

-1.84
-4.01

-7.40
-11.82

-16.00
-16.25

-10.78
-6.00

2050s
-10.34

-3.27
-1.10

-0.62
-1.35

-3.58
-7.64

-14.28
-23.52

-31.45
-32.50

-23.28
-12.09

2080s
-15.71

-5.91
-2.23

-1.34
-2.20

-5.19
-10.73

-19.10
-29.87

-40.01
-41.91

-31.69
-16.36

2050

C
ontrol

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00

2020s
-7.18

-2.69
-1.06

-0.70
-1.33

-2.82
-5.45

-9.16
-14.33

-20.02
-21.29

-15.26
-7.81

2050s
-15.14

-5.33
-1.93

-1.19
-2.31

-5.36
-10.23

-17.53
-28.29

-38.50
-40.73

-30.84
-15.23

2080s
-21.45

-8.79
-3.51

-2.19
-3.50

-7.47
-13.87

-22.96
-35.39

-47.83
-50.75

-39.98
-20.01

2080

C
ontrol

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00

2020s
-10.94

-4.55
-1.93

-1.32
-2.25

-4.16
-7.20

-11.41
-18.03

-25.68
-27.73

-20.85
-10.07

2050s
-21.47

-8.65
-3.38

-2.22
-3.84

-7.77
-13.41

-21.79
-35.27

-47.86
-50.35

-39.45
-18.90

2080s
-28.50

-13.04
-5.58

-3.62
-5.51

-10.50
-17.78

-28.13
-43.27

-57.71
-60.57

-48.96
-24.13

Table
B.18:%

change
in

m
ean

totalreservoir
storage

for
differentpopulation

and
clim

ate
change

scenarios.
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C
lim

ate

&

population

scenarios

Levelofservices
A

daptation
options

N
o

adaptation
D

esalination

plant

R
educed

leakage

N
ew

reservoir

D
esalination

&

leakage

D
esalination

&

N
ew

reservoir

Leakage

&

N
ew

reservoir

D
esalination

&
Leakage

&
N

ew
reservoir

2020s

Level1
41.55

39.74
40.09

-
38.19

-
-

-

Level2
7.98

6.55
7.44

-
5.99

-
-

-

Level3
8.18

5.61
7.30

-
4.90

-
-

-

Level4
2.57

1.34
2.18

-
1.11

-
-

-

2050s

Level1
56.58

58.39
55.56

37.28
56.62

64.70
60.88

60.51

Level2
18.41

17.26
16.33

10.52
14.92

16.26
15.01

12.99

Level3
27.74

24.32
22.76

14.03
19.01

16.86
15.32

11.53

Level4
21.02

14.25
13.81

9.78
8.83

4.85
4.63

2.50

2080s

Level1
54.45

57.24
56.16

44.38
58.76

68.38
66.63

68.62

Level2
22.07

21.95
20.77

17.62
20.51

25.92
23.47

22.06

Level3
41.32

40.13
36.52

30.65
34.18

40.53
34.31

30.28

Level4
64.00

52.16
43.02

42.87
33.02

30.82
23.67

16.55

Table
B.20:N

um
ber

ofdem
and

saving
days

(in
100

years)for
differentadaptation

options,under
clim

ate
and

population
scenarios

(w
ithoutdem

and
reduction).
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Impacts of different adaptation option on number of drought days, for different
combinations of population and climate scenarios:

(a) (b)

(c)

Figure B.1: Boxplots of number of demand saving days for different adaptation options, population

scenario of 2020s and climate change scenarios: (a) 2020s, (b) 2050s, (c) 2080s.
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(a) (b)

(c)

Figure B.2: Boxplots of number of demand saving days for different adaptation options, population

scenario of 2050s and climate change scenarios: (a) 2020s, (b) 2050s, (c) 2080s.
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(a) (b)

(c)

Figure B.3: Boxplots of number of demand saving days (in 100 years) for different adaptation options,

population scenario of 2080s and climate change scenarios: (a) 2020s, (b) 2050s, (c) 2080s.

223



C
lim

ate

scenarios

Levelof

services

A
daptation

options

N
o

adaptation
D

esalination

plant

R
educed

leakage

N
ew

reservoir

D
esalination

&

leakage

D
esalination

&

N
ew

reservoir

Leakage

&

N
ew

reservoir

D
esalination

&
Leakage

&
N

ew
reservoir

2020s

Level1
57.69

58.60
53.59

-
53.46

-
-

-

Level2
17.95

16.63
14.21

-
12.86

-
-

-

Level3
27.63

24.44
19.80

-
16.39

-
-

-

Level4
22.79

16.06
11.54

-
7.28

-
-

-

2050s

Level1
57.19

59.23
57.09

43.72
58.96

69.52
66.06

66.97

Level2
21.30

21.01
19.41

15.65
18.81

23.65
20.53

18.73

Level3
37.81

35.91
31.45

25.36
28.27

32.73
26.21

21.61

Level4
46.04

35.56
27.77

27.40
19.77

17.23
12.05

7.57

2080s

Level1
54.45

57.24
56.16

44.38
58.76

68.38
66.63

68.62

Level2
22.07

21.95
20.77

17.62
20.51

25.92
23.47

22.06

Level3
41.32

40.13
36.52

30.65
34.18

40.53
34.31

30.28

Level4
64.00

52.16
43.02

42.87
33.02

30.82
23.67

16.55

Table
B.28:N

um
ber

ofdem
and

saving
days

(in
100

years)for
differentadaptation

options,population
scenario

of2080s.

224



C
lim

at
e

sc
en

ar
io

s

Le
ve

lo
f

se
rv

ic
es

A
da

pt
at

io
n

op
ti

on
s

N
o

ad
ap

ta
ti

on
D

es
al

in
at

io
n

pl
an

t

R
ed

uc
ed

le
ak

ag
e

N
ew

re
se

rv
oi

r

D
es

al
in

at
io

n

&

le
ak

ag
e

D
es

al
in

at
io

n

&

N
ew

re
se

rv
oi

r

Le
ak

ag
e

&

N
ew

re
se

rv
oi

r

D
es

al
in

at
io

n

&
Le

ak
ag

e

&
N

ew
re

se
rv

oi
r

20
20

s

Le
ve

l1
0.

00
1.

57
-7

.1
1

-
-7

.3
4

-
-

-

Le
ve

l2
0.

00
-7

.3
2

-2
0.

85
-

-2
8.

37
-

-
-

Le
ve

l3
0.

00
-1

1.
54

-2
8.

35
-

-4
0.

70
-

-
-

Le
ve

l4
0.

00
-2

9.
55

-4
9.

38
-

-6
8.

06
-

-
-

20
50

s

Le
ve

l1
0.

00
3.

57
-0

.1
7

-2
3.

55
3.

10
21

.5
7

15
.5

2
17

.1
2

Le
ve

l2
0.

00
-1

.3
6

-8
.8

6
-2

6.
53

-1
1.

66
11

.0
4

-3
.6

2
-1

2.
05

Le
ve

l3
0.

00
-5

.0
2

-1
6.

81
-3

2.
93

-2
5.

22
-1

3.
44

-3
0.

67
-4

2.
84

Le
ve

l4
0.

00
-2

2.
77

-3
9.

69
-4

0.
49

-5
7.

06
-6

2.
57

-7
3.

83
-8

3.
55

20
80

s

Le
ve

l1
0.

00
5.

12
3.

13
-1

8.
49

7.
90

25
.5

8
22

.3
7

26
.0

1

Le
ve

l2
0.

00
-0

.5
1

-5
.8

9
-2

0.
15

-7
.0

6
17

.4
6

6.
35

-0
.0

4

Le
ve

l3
0.

00
-2

.8
7

-1
1.

62
-2

5.
81

-1
7.

28
-1

.9
0

-1
6.

96
-2

6.
73

Le
ve

l4
0.

00
-1

8.
51

-3
2.

78
-3

3.
02

-4
8.

40
-5

1.
85

-6
3.

02
-7

4.
15

Ta
bl

e
B.

29
:

%
ch

an
ge

in
nu

m
be

r
of

de
m

an
d

sa
vi

ng
da

ys
(i

n
10

0
ye

ar
s)

fo
r

di
ff

er
en

t
ad

ap
ta

ti
on

op
ti

on
s

(c
om

pa
re

d
to

no
ad

ap
ta

ti
on

op
ti

on
),

po
pu

la
ti

on
sc

en
ar

io
of

20
80

s.

225



Appendix C

Supporting documents for Chapter 5

Year
Flow (mm/year)

Change (%)
Current land cover Increased urban developments

1991 46841.03 55225.24 17.90

1992 83344.21 92200.86 10.63

1993 96238.65 104716.76 8.81

1994 101132.50 108245.51 7.03

1995 94821.27 102341.87 7.93

1996 56707.68 63879.56 12.65

1997 44632.45 53610.23 20.11

1998 102264.09 113207.27 10.70

1999 102750.07 111355.58 8.38

2000 151618.68 162571.37 7.22

2001 138512.23 143178.86 3.37

Table C.1: Total annual flow before and after increasing the urban area in Kingston sub-catchment.
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Year
Flow (mm/year)

Change (%)
Current land cover Increased urban developments

1991 3617.96 3724.49 2.94

1992 4909.06 6041.10 23.06

1993 6370.31 7833.07 22.96

1994 6475.43 6951.08 7.35

1995 5907.04 6635.13 12.33

1996 3056.84 3197.74 4.61

1997 2787.29 2936.46 5.35

1998 5187.93 6483.89 24.98

1999 5196.45 6493.21 24.95

2000 11293.68 12533.68 10.98

2001 12922.47 13412.23 3.79

Table C.2: Total annual flow before and after increasing the urban area in Lee sub-catchment.

Climate scenario
Mean No drought days

Change (%)
Level of services New land cover Current land cover

1970

Level 1 4.98 14.43 -65.48

Level 2 0.15 0.62 -75.25

Level 3 0.04 0.30 -86.71

Level 4 0.00 0.02 -100.00

2020

Level 1 20.20 35.10 -42.47

Level 2 2.02 5.67 -64.34

Level 3 1.31 4.74 -72.45

Level 4 0.23 1.19 -81.05

2050

Level 1 35.14 49.68 -29.27

Level 2 5.43 11.51 -52.84

Level 3 4.68 12.45 -62.41

Level 4 1.13 4.63 -75.62

2080

Level 1 42.17 53.78 -21.59

Level 2 8.45 14.69 -42.47

Level 3 9.00 19.09 -52.84

Level 4 3.71 11.06 -66.43

Table C.3: Mean number of demand saving days (in 100 years) for increased urban development and

the percentage of change compared to the current land cover .
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)
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M
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C
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2020s

2050s
2080s

C
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2050s
2080s

C
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2020s

2050s
2080s
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99.64
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97.41
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98.06

97.29
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1.02
1.57

2.14
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97.24

94.18
91.3

88.67
98.47

96.44
94.44

92.46
1.27
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3.44

4.28

A
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92.75
86.91

81.32
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91.07

86.57
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6.46
7.66
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64.18
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10.41
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O
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10.65
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17.62

N
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79.96

66.84
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88.74
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71.66
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10.98

17.90
22.04

D
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97.73
89.67

79.47
71.93
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90.36
84.86
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6.92

13.70
17.98

Table
C

.4:Totalreservoir
levelfor

currentand
new

land
cover

[A
1-P

(0%
)-D

(0%
)-L

(0%
)-U

2
vs
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Population % Change (Relative to 2010)

Year Low Central High Low Central High

2010 8,107,073 8,107,073 8,107,073 - - -

2011 8,217,475 8,217,475 8,217,475 1.36 1.36 1.36

2020 9,071,303 9,127,567 9,184,047 11.89 12.59 13.28

2030 9,571,176 9,782,155 9,997,220 18.06 20.66 23.31

2040 9,976,895 10,307,871 10,649,201 23.06 27.15 31.36

2050 10,342,890 10,776,890 11,228,103 27.58 32.93 38.50

2060 10,708,886 11,245,909 11,807,006 32.09 38.72 45.64

2070 11,074,881 11,714,929 12,385,909 36.61 44.50 52.78

2080 11,440,877 12,183,948 12,964,812 41.12 50.29 59.92

Table C.5: Population projections (GLA 2014a).
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3.45
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5.67
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15.45

28.24
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47.26

49.68
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7.78
9.92

12.45
15.18

18.21
26.93

38.20
44.20

Level4
1.26

2.05
3.16

4.63
6.58

8.98
19.57

47.55
82.44

2080

Level1
47.89

50.23
52.10

53.78
54.96

55.68
56.14

53.71
50.49

Level2
10.23

11.86
13.39

14.69
15.88

17.10
19.94

22.05
22.86

Level3
11.10

13.54
16.26

19.09
22.02

24.92
32.78

41.57
45.73

Level4
4.35

6.13
8.34

11.06
14.33

18.11
32.80

65.61
102.27

Table
C

.6:M
ean

num
ber

ofdem
and

saving
days

in
100

years
[A

1-P
(all)-D

(0%
)-L

(0%
)-U

1].

230



Ti
m

e

sl
ic

e

Le
ve

lo
f

se
rv

ic
es

Po
pu

la
ti

on
sc

en
ar

io
s

P
(-

15
%

)
P

(-
10

%
)

P
(-

5%
)

P
(0

%
)

P
(+

5%
)

P
(1

0%
)

P
(2

5%
)

P
(+

50
%

)
P

(+
75

%
)

19
70

Le
ve

l1
-5

6.
91

-4
1.

30
-2

2.
05

-
24

.5
8

51
.9

0
13

9.
37

26
3.

37
33

0.
60

Le
ve

l2
-7

3.
80

-5
8.

54
-3

6.
79

-
59

.9
4

14
2.

32
59

1.
71

17
67

.9
6

28
79

.8
5

Le
ve

l3
-8

9.
68

-6
9.

44
-4

3.
39

-
63

.0
9

15
4.

81
83

1.
16

42
46

.6
6

91
72

.6
5

Le
ve

l4
-1

00
.0

0
-9

7.
32

-6
7.

11
-

14
8.

32
49

6.
64

30
88

.5
9

26
27

6.
51

11
56

77
.1

8

20
20

Le
ve

l1
-3

0.
41

-2
0.

17
-9

.8
8

-
9.

85
19

.3
2

42
.4

4
63

.7
8

68
.5

5

Le
ve

l2
-5

5.
52

-3
9.

04
-2

1.
02

-
22

.3
3

43
.7

4
11

5.
77

22
1.

65
29

0.
91

Le
ve

l3
-6

5.
37

-5
0.

15
-2

8.
17

-
34

.2
6

76
.0

5
22

5.
81

49
5.

69
72

8.
51

Le
ve

l4
-7

7.
98

-6
0.

48
-3

5.
16

-
51

.2
1

12
0.

96
50

6.
51

18
98

.1
7

41
65

.5
9

20
50

Le
ve

l1
-1

7.
30

-1
0.

70
-4

.8
8

-
4.

34
7.

65
12

.9
1

13
.8

5
9.

70

Le
ve

l2
-4

0.
93

-2
8.

84
-1

4.
35

-
12

.4
3

23
.9

4
57

.6
5

85
.2

6
10

3.
43

Le
ve

l3
-5

3.
55

-3
7.

53
-2

0.
31

-
21

.9
3

46
.2

6
11

6.
21

20
6.

76
25

4.
92

Le
ve

l4
-7

2.
78

-5
5.

72
-3

1.
71

-
42

.0
2

93
.6

9
32

2.
17

92
6.

14
16

78
.9

3

20
80

Le
ve

l1
-1

0.
95

-6
.6

1
-3

.1
3

-
2.

18
3.

54
4.

39
-0

.1
2

-6
.1

3

Le
ve

l2
-3

0.
36

-1
9.

25
-8

.8
2

-
8.

13
16

.3
9

35
.7

8
50

.1
0

55
.6

5

Le
ve

l3
-4

1.
82

-2
9.

09
-1

4.
79

-
15

.3
4

30
.5

5
71

.7
3

11
7.

76
13

9.
58

Le
ve

l4
-6

0.
69

-4
4.

61
-2

4.
56

-
29

.5
9

63
.7

4
19

6.
56

49
3.

28
82

4.
78

Ta
bl

e
C

.7
:%

ch
an

ge
in

m
ea

n
nu

m
be

r
of

dr
ou

gh
td

ay
s

re
la

ti
ve

to
P

(0
%

)[
A

1-
P

(a
ll)

-D
(0

%
)-

L
(0

%
)-

U
1]

.

231



Tim
e

slice

Levelof

services

PC
C

scenarios

D

(-50%
)

D

(-40%
)

D

(-38%
)

D

(-30%
)

D

(-25%
)

D

(-20%
)

D

(-15%
)

D

(-10%
)

D

(-5%
)

D

(0%
)

D

(+0.5%
)

D

(+5%
)

D

(+10%
)

D

(+15%
)

D

(+20%
)

1970

Level1
0.29

0.84
1.06

2.02
3.01

4.39
6.22

8.47
11.25

14.43
14.78

17.98
21.92

26.13
30.37

Level2
0.00

0.00
0.00

0.02
0.03

0.09
0.16

0.26
0.39

0.62
0.65

1.00
1.51

2.15
3.09

Level3
0.00

0.00
0.00

0.00
0.00

0.01
0.03

0.09
0.17

0.30
0.32

0.49
0.77

1.24
1.89

Level4
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.02
0.02

0.04
0.09

0.17
0.29

2020

Level1
4.90

8.80
9.99

14.21
17.42

20.88
24.43

28.02
31.64

35.10
35.46

38.56
41.89

44.85
47.52

Level2
0.11

0.38
0.47

0.83
1.22

1.76
2.52

3.45
4.48

5.67
5.78

6.93
8.15

9.55
11.01

Level3
0.02

0.12
0.18

0.45
0.72

1.10
1.64

2.36
3.41

4.74
4.89

6.37
8.35

10.52
12.87

Level4
0.00

0.00
0.00

0.03
0.07

0.14
0.26

0.47
0.77

1.19
1.24

1.80
2.64

3.79
5.29

2050

Level1
14.25

21.50
23.40

29.48
33.46

37.36
41.09

44.36
47.26

49.68
49.92

51.84
53.48

54.75
55.62

Level2
0.56

1.54
1.91

3.18
4.28

5.52
6.80

8.19
9.86

11.51
11.65

12.95
14.27

15.68
17.00

Level3
0.17

0.61
0.83

1.83
2.85

4.15
5.78

7.78
9.92

12.45
12.72

15.18
18.21

21.18
24.10

Level4
0.02

0.08
0.10

0.23
0.41

0.75
1.26

2.05
3.16

4.63
4.81

6.58
8.98

11.89
15.42

2080

Level1
22.89

30.67
32.66

38.34
41.83

45.07
47.89

50.23
52.10

53.78
53.92

54.96
55.68

56.07
56.21

Level2
1.93

3.67
4.20

6.10
7.46

8.81
10.23

11.86
13.39

14.69
14.80

15.88
17.10

18.29
19.24

Level3
1.05

2.52
3.04

5.04
6.75

8.75
11.10

13.54
16.26

19.09
19.39

22.02
24.92

27.70
30.33

Level4
0.13

0.43
0.57

1.25
1.99

3.01
4.35

6.13
8.34

11.06
11.35

14.33
18.11

22.44
27.35

Table
C

.8:M
ean

num
ber

ofdem
and

saving
days

in
100

years
[A

1-P
(0%

)-D
(A

ll)-L(0%
)-U

1].

232



Ti
m

e

sl
ic

e

Le
ve

lo
f

se
rv

ic
es

PC
C

sc
en

ar
io

s)

D

(-
50

%
)

D

(-
40

%
)

D

(-
38

%
)

D

(-
30

%
)

D

(-
25

%
)

D

(-
20

%
)

D

(-
15

%
)

D

(-
10

%
)

D

(-
5%

)

D

(0
%

)

D

(+
0.

5%
)

D

(+
5%

)

D

(+
10

%
)

D

(+
15

%
)

D

(+
20

%
)

19
70

Le
ve

l1
-9

7.
98

-9
4.

20
-9

2.
66

-8
5.

97
-7

9.
11

-6
9.

60
-5

6.
91

-4
1.

30
-2

2.
05

-
2.

39
24

.5
8

51
.9

0
81

.0
9

11
0.

44

Le
ve

l2
-1

00
.0

0
-1

00
.0

0
-9

9.
77

-9
7.

21
-9

5.
09

-8
5.

73
-7

3.
80

-5
8.

54
-3

6.
79

-
4.

38
59

.9
4

14
2.

32
24

5.
11

39
6.

64

Le
ve

l3
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-9

8.
90

-9
5.

26
-8

9.
68

-6
9.

44
-4

3.
39

-
5.

54
63

.0
9

15
4.

81
31

1.
02

52
6.

45

Le
ve

l4
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-1

00
.0

0
-9

7.
32

-6
7.

11
-

10
.0

7
14

8.
32

49
6.

64
10

00
.6

7
18

35
.5

7

20
20

Le
ve

l1
-8

6.
05

-7
4.

93
-7

1.
53

-5
9.

52
-5

0.
37

-4
0.

51
-3

0.
41

-2
0.

17
-9

.8
8

-
1.

01
9.

85
19

.3
2

27
.7

5
35

.3
6

Le
ve

l2
-9

8.
04

-9
3.

35
-9

1.
69

-8
5.

43
-7

8.
51

-6
9.

01
-5

5.
52

-3
9.

04
-2

1.
02

-
2.

05
22

.3
3

43
.7

4
68

.4
6

94
.2

7

Le
ve

l3
-9

9.
62

-9
7.

41
-9

6.
17

-9
0.

56
-8

4.
84

-7
6.

85
-6

5.
37

-5
0.

15
-2

8.
17

-
3.

17
34

.2
6

76
.0

5
12

1.
80

17
1.

49

Le
ve

l4
-1

00
.0

0
-1

00
.0

0
-9

9.
90

-9
7.

69
-9

4.
50

-8
8.

33
-7

7.
98

-6
0.

48
-3

5.
16

-
4.

24
51

.2
1

12
0.

96
21

7.
99

34
3.

97

20
50

Le
ve

l1
-7

1.
32

-5
6.

72
-5

2.
89

-4
0.

66
-3

2.
65

-2
4.

80
-1

7.
30

-1
0.

70
-4

.8
8

-
0.

47
4.

34
7.

65
10

.2
0

11
.9

4

Le
ve

l2
-9

5.
15

-8
6.

59
-8

3.
39

-7
2.

40
-6

2.
86

-5
2.

06
-4

0.
93

-2
8.

84
-1

4.
35

-
1.

20
12

.4
3

23
.9

4
36

.1
4

47
.6

3

Le
ve

l3
-9

8.
61

-9
5.

13
-9

3.
33

-8
5.

29
-7

7.
13

-6
6.

68
-5

3.
55

-3
7.

53
-2

0.
31

-
2.

16
21

.9
3

46
.2

6
70

.0
6

93
.5

4

Le
ve

l4
-9

9.
61

-9
8.

27
-9

7.
78

-9
5.

06
-9

1.
07

-8
3.

90
-7

2.
78

-5
5.

72
-3

1.
71

-
3.

82
42

.0
2

93
.6

9
15

6.
55

23
2.

69

20
80

Le
ve

l1
-5

7.
45

-4
2.

97
-3

9.
27

-2
8.

72
-2

2.
22

-1
6.

19
-1

0.
95

-6
.6

1
-3

.1
3

-
0.

27
2.

18
3.

54
4.

25
4.

52

Le
ve

l2
-8

6.
86

-7
4.

99
-7

1.
43

-5
8.

50
-4

9.
23

-4
0.

03
-3

0.
36

-1
9.

25
-8

.8
2

-
0.

78
8.

13
16

.3
9

24
.5

3
31

.0
0

Le
ve

l3
-9

4.
52

-8
6.

82
-8

4.
05

-7
3.

61
-6

4.
64

-5
4.

15
-4

1.
82

-2
9.

09
-1

4.
79

-
1.

59
15

.3
4

30
.5

5
45

.1
4

58
.8

9

Le
ve

l4
-9

8.
82

-9
6.

11
-9

4.
84

-8
8.

73
-8

2.
02

-7
2.

81
-6

0.
69

-4
4.

61
-2

4.
56

-
2.

68
29

.5
9

63
.7

4
10

2.
88

14
7.

33

Ta
bl

e
C

.9
:%

ch
an

ge
in

m
ea

n
nu

m
be

r
of

dr
ou

gh
td

ay
s

re
la

ti
ve

to
D

(0
%

)[
A

1-
P(

0%
)-

D
(A

ll)
-L

(0
%

)-
U

1]
.

233



Tim
e

slice

Levelof

services

Leakage
scenarios

L

(-40%
)

L

(-20%
)

L

(-17%
)

L

(-15%
)

L

(-10%
)

L

(-5%
)

L

(0%
)

L

(+5%
)

L

(+10%
)

L

(+15%
)

1970

Level1
8.45

9.66
10.32

10.75
11.94

13.15
14.43

15.74
17.13

18.56

Level2
0.26

0.31
0.34

0.36
0.44

0.52
0.62

0.74
0.90

1.07

Level3
0.09

0.13
0.14

0.16
0.19

0.24
0.30

0.37
0.44

0.53

Level4
0.00

0.00
0.00

0.00
0.01

0.01
0.02

0.02
0.03

0.04

2020

Level1
27.99

29.66
30.49

31.04
32.42

33.73
35.10

36.45
37.80

39.11

Level2
3.45

3.90
4.13

4.29
4.75

5.20
5.67

6.13
6.64

7.10

Level3
2.35

2.80
3.05

3.22
3.68

4.18
4.74

5.32
5.97

6.65

Level4
0.47

0.59
0.67

0.72
0.85

1.01
1.19

1.40
1.65

1.92

2050

Level1
44.33

45.70
46.40

46.83
47.84

48.78
49.68

50.54
51.40

52.14

Level2
8.18

8.95
9.30

9.55
10.25

10.89
11.51

12.08
12.64

13.12

Level3
7.76

8.71
9.21

9.54
10.46

11.40
12.45

13.47
14.53

15.66

Level4
2.04

2.51
2.77

2.95
3.47

4.02
4.63

5.32
6.10

6.92

2080

Level1
50.20

51.11
51.52

51.79
52.49

53.16
53.78

54.30
54.75

55.08

Level2
11.85

12.58
12.92

13.16
13.73

14.22
14.69

15.11
15.60

16.07

Level3
13.51

14.74
15.39

15.81
16.87

17.94
19.09

20.24
21.36

22.48

Level4
6.11

7.07
7.58

7.93
8.92

9.94
11.06

12.23
13.54

14.88

Table
C

.10:M
ean

num
ber

ofdem
and

saving
days

in
100

years
[A

1-P
(0%

)-D
(0%

)-L(A
ll)-U

1].
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Appendix D

Supporting documents for Chapter 6
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Water use scenarios

Climate

scenario

Level of

services
Current High Difference (%)

1970

Level 1 14.43 64.79 349.00

Level 2 0.62 27.17 4282.26

Level 3 0.30 46.47 15390.00

Level 4 0.02 62.47 312250.00

2020

Level 1 35.10 55.48 58.06

Level 2 5.67 27.51 385.19

Level 3 4.74 51.11 978.27

Level 4 1.19 105.17 8737.82

2050

Level 1 49.68 47.52 -4.35

Level 2 11.51 26.94 134.06

Level 3 12.45 52.93 325.14

Level 4 4.63 137.95 2879.48

2080

Level 1 53.78 43.04 -19.97

Level 2 14.69 25.31 72.29

Level 3 19.09 52.54 175.22

Level 4 11.06 156.64 1316.27

Table D.1: Impact of High water use scenario on mean number of demand saving days (in 100 years)

with current land cover.
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Water use scenarios

Climate

scenario

Level of

services
Current Low Change (%)

1970

Level 1 14.43 0.03 -99.82

Level 2 0.62 0.00 -100.00

Level 3 0.30 0.00 -100.00

Level 4 0.02 0.00 -100.00

2020

Level 1 35.10 1.27 -96.37

Level 2 5.67 0.00 -99.99

Level 3 4.74 0.00 -100.00

Level 4 1.19 0.00 -100.00

2050

Level 1 49.68 5.25 -89.44

Level 2 11.51 0.07 -99.42

Level 3 12.45 0.02 -99.87

Level 4 4.63 0.00 -100.00

2080

Level 1 53.78 11.10 -79.36

Level 2 14.69 0.40 -97.30

Level 3 19.09 0.12 -99.36

Level 4 11.06 0.00 -99.98

Table D.2: Impact of Low water use scenario on mean number of demand saving days (in 100 years)

with current land cover.
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C
lim

ate
scenarios

Levelofservices
A

daptaion
options

N
o

adaptation
D

esalination
plant

N
ew

R
eservoir

D
esalination

and
N

ew
reservoir

1970

Level1
-

2.07
21.01

21.02

Level2
-

-5.87
14.60

3.22

Level3
-

-7.21
-6.24

-20.94

Level4
-

-24.27
-54.39

-69.51

2020

Level1
-

3.72
21.42

24.87

Level2
-

-2.66
24.02

18.42

Level3
-

-3.19
16.31

7.19

Level4
-

-14.84
-29.30

-43.47

2050

Level1
-

4.96
19.24

25.73

Level2
-

-1.86
26.38

24.35

Level3
-

-1.74
28.98

23.12

Level4
-

-10.82
-19.00

-31.48

2080

Level1
-

5.79
18.24

25.23

Level2
-

-0.79
24.08

24.24

Level3
-

-1.30
31.08

26.87

Level4
-

-9.13
-13.69

-24.74

Table
D

.4:%
change

in
m

ean
num

ber
ofdem

and
saving

days
(in

100
years)for

H
igh

w
ater

use
scenario

w
ith

currentland
cover,relative

to
N

o
adaptation

option.
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C
lim

ate
scenario

Levelofservices
A

daptation
options

N
o

adaptation
D

esalination
plant

N
ew

R
eservoir

D
esalination

and
N

ew
reservoir

1970

Level1
0.00

-0.77
13.40

9.87

Level2
0.00

-9.47
-0.56

-16.62

Level3
0.00

-14.38
-27.02

-44.41

Level4
0.00

-31.11
-68.80

-81.55

2020

Level1
0.00

2.15
18.89

19.99

Level2
0.00

-4.27
16.44

7.35

Level3
0.00

-7.88
1.37

-11.34

Level4
0.00

-19.13
-41.70

-56.89

2050

Level1
0.00

3.78
20.37

24.53

Level2
0.00

-2.43
25.02

20.05

Level3
0.00

-4.29
19.01

9.21

Level4
0.00

-14.51
-31.07

-45.34

2080

Level1
0.00

4.72
19.45

24.86

Level2
0.00

-1.50
25.22

23.19

Level3
0.00

-3.34
23.34

15.60

Level4
0.00

-12.20
-23.61

-36.74

Table
D

.6:%
change

in
m

ean
num

ber
ofdem

and
saving

days
(in

100
years)for

H
igh

scenario
w

ith
increased

urbanization,relative
to

N
o

adaptation
option.
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Flow (m3/s)
Level of services

Total number of drought days
Level 1 Level 2 Level 3 Level 4

0.00 0.19 0.07 0.14 368.06 368.46

7.23 0.26 0.09 0.18 367.90 368.43

12.52 0.33 0.13 0.25 367.69 368.40

14.41 0.36 0.14 0.29 367.58 368.38

16.80 0.41 0.15 0.34 367.46 368.37

17.01 0.43 0.17 0.36 367.39 368.36

22.11 0.63 0.22 78.60 288.85 368.30

23.15 0.67 0.49 155.02 212.10 368.28

27.66 191.91 57.77 118.22 0 367.90

28.77 206.07 100.45 36.46 0 342.97

30.70 239.07 27.29 0 0 266.36

33.94 95.24 0 0 0 95.24

36.00 22.47 0 0 0 22.47

36.52 2.57 0 0 0 2.57

36.78 0 0 0 0 0

37.03 0 0 0 0 0

37.30 0 0 0 0 0

37.50 0 0 0 0 0

37.80 0 0 0 0 0

37.90 0 0 0 0 0

37.95 0 0 0 0 0

37.99 0 0 0 0 0

38.00 0 0 0 0 0

38.07 0 0 0 0 0

38.58 0 0 0 0 0

38.89 0 0 0 0 0

39.00 0 0 0 0 0

39.10 0 0 0 0 0

41.16 0 0 0 0 0

43.23 0 0 0 0 0

Table D.9: Number of demand saving days in 100 years (stress test, including demand saving measures).
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Flow (m3/s)
Level of services

Total number of drought days
Level 1 Level 2 Level 3 Level 4

0.00 0.17 0.06 0.11 368.13 368.47

3.40 0.19 0.06 0.12 368.08 368.45

7.23 0.21 0.08 0.13 368.01 368.43

12.52 0.27 0.09 0.17 367.87 368.40

14.41 0.30 0.10 0.19 367.80 368.39

16.80 0.32 0.11 0.20 367.74 368.37

17.01 0.34 0.12 0.21 367.70 368.37

19.54 0.38 0.14 0.26 367.55 368.34

22.11 0.45 0.16 0.32 367.37 368.31

23.15 0.47 0.17 0.35 367.29 368.29

27.66 0.65 0.24 0.68 366.64 368.20

28.77 0.70 0.27 0.87 366.32 368.16

30.70 1.68 1.04 1.32 364.06 368.10

33.94 10.60 6.58 20.65 328.28 366.11

36.00 160.84 0 0 0 160.84

36.52 103.11 0 0 0 103.11

36.78 73.85 0 0 0 73.85

37.03 46.51 0 0 0 46.51

37.30 17.33 0 0 0 17.33

37.50 0 0 0 0 0

37.80 0 0 0 0 0

37.90 0 0 0 0 0

37.95 0 0 0 0 0

37.99 0 0 0 0 0

38.00 0 0 0 0 0

38.07 0 0 0 0 0

38.58 0 0 0 0 0

38.89 0 0 0 0 0

39.00 0 0 0 0 0

39.10 0 0 0 0 0

41.16 0 0 0 0 0

43.23 0 0 0 0 0

Table D.10: Number of demand saving days in 100 years (stress test, without demand saving measures).
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