
Applications of the Blockchain using
Cryptography

Patrick McCorry

School of Computing Science
Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

May 2018

This work is dedicated to my family Anne Haddad (Mother), James McCorry (Father),
James McCorry (Brother) and Brian McCorry (Uncle).

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Patrick McCorry
May 2018

iv

Acknowledgements

This research would not have been possible without my advisors Feng Hao and Siamak F.
Shahandashti who were willing to jump aboard this emotional roller-coaster with me. I thank
them for supporting me while I pursued researching Bitcoin which at the onset could have
easily failed, and alongside it my PhD. I also thank my colleagues Syed-Taha Ali and Peter
Hyun-Jeen Lee who listened to me ramble about Bitcoin when few others would.

Outside of Newcastle University, I am eternally grateful to Andrew Miller for inviting me
to visit University of Illinois at Urbana-Champaign to experience American-style research.
I’ll never forget how I felt when he acknowledged me as an Independent Researcher which
respectfully suggested that I should no longer consider myself a graduate student. I’m
grateful to Malte Möser for my first (and hopefully not last) collaborative experience. In
the Bitcoin community, I thank the participants of #bitcoin-dev and #bitcoin-wizards
as without their insightful discussions I would not comprehend or fully appreciate the
technology as I do today. I’d like to acknowledge some participants by their pseudonyms
(keeping with the community’s tradition). This includes sipa, gmaxwell, wumpus, hearn,
gavinandresen, andytoshi, waxwing, kanzure and many others. On the other hand, in the
Ethereum community, I want to thank Nick Johnson (and the Ethereum Foundation as a
whole) for patiently (and quickly) answering questions I had about Ethereum/Solidity.

Outside of the research community I thank my close friends Jack MacKenzie and Sam
Finnigan for the past seven years. I thank Melanie Smith, Gina Smith, Rebecca Smith and
Bill Robson for their friendship, and most importantly accommodating my precious puppies,
booshy boo and summer. I am grateful for the support of Dr Nigel Thompson and Elaine
Stoker (NHS Freeman Hospital) for diagnosing me with Crohn’s disease at the start of this
PhD and helping me towards remission. I would also like to acknowledge two teachers from
Christian Brothers School (Belfast), Paul Gault and Lawrence Watson, who mentored and
pushed me (e.g. provided me an office so I had solitude to study) towards university. It looks
like we achieved it - the first "sixth form" graduate with a PhD.

Finally I am grateful to have truly lived this topic and witness first-hand the rise of
cryptocurrency research from less than ten academic papers at the start of this PhD to more
than a thousand at the time of submission.

vi

Abstract

We have witnessed the rise of cryptocurrencies in the past eight years. Bitcoin and Ethereum
are the world’s most successful cryptocurrencies with market capitalisations of $37bn and
$21bn respectively in June 2017. The innovation behind these cryptocurrencies is the
blockchain which is an immutable and censorship resistant public ledger. Bitcoin intro-
duced the blockchain to trade a single asset (i.e. bitcoins), whereas Ethereum adopted the
blockchain to store and execute expressive smart contracts. In this thesis, we consider crypto-
graphic protocols that bootstrap trust from the blockchain. This includes secure end-to-end
communication between two pseudonymous users, payment protocols, payment networks
and decentralised internet voting. The first three applications rely on Bitcoin, whereas the
final e-voting application is realised using Ethereum.

First, it is important to highlight that Bitcoin was designed to protect the anonymity (or
pseudonymity) for financial transactions. Nakamoto proposed that financial privacy is achiev-
able by storing each party’s pseudonym (and not their real-world identity) in a transaction.
We highlight that this approach for privacy has led to real-world authentication issues as
merchants are failing to re-authenticate customers in post-transaction correspondence. To
alleviate these issues, we propose an end-to-end secure communication protocol for Bitcoin
users that does not require any trusted third party or public-key infrastructure. Instead, our
protocol leverages the Blockchain as an additional layer of authentication. Furthermore,
this insight led to the discovery of two attacks in BIP70: Payment Protocol which is a
community-accepted standard used by more than 100,000 merchants. Our attacks were
acknowledged by the leading payment processors including Coinbase, BitPay and Bitt. As
well, we have proposed a revised Payment Protocol that prevents both attacks.

Second, Bitcoin as deployed today does not scale. Scalability research has focused on two
directions: 1) redesigning the Blockchain protocol, and 2) facilitating ‘off-chain transactions’
and only consulting the Blockchain if an adjudicator is required. We focus on the latter
and provide an overview of Bitcoin payment networks. These consist of two components:
payment channels to facilitate off-chain transactions between two parties, and the capability
to fairly exchange bitcoins across multiple channels. We compare Duplex Micropayment
Channels and Lightning Channels, before discussing Hashed Time Locked Contracts which

viii

enable Bitcoin-based payment networks. Furthermore, we highlight challenges in routing
and path-finding that need to be overcome before payment networks are practically feasible.

Finally, we study the feasibility of executing cryptographic protocols on Ethereum. We
provide the first implementation of a decentralised and self-tallying internet voting protocol
with maximum voter privacy as a smart contract. The Open Vote Network is suitable for
boardroom elections and is written as a smart contract for Ethereum. Unlike previously
proposed Blockchain e-voting protocols, this is the first implementation that does not rely on
any trusted authority to compute the tally or to protect the voter’s privacy. Instead, the Open
Vote Network is a self-tallying protocol, and each voter is in control of the privacy of their
own vote such that it can only be breached by a full collusion involving all other voters. The
execution of the protocol is enforced using the consensus mechanism that also secures the
Ethereum blockchain. We tested the implementation on Ethereum’s official test network to
demonstrate its feasibility. Also, we provide a financial and computational breakdown of its
execution cost.

Table of contents

1 Introduction 1
1.1 Thesis Outline . 3
1.2 Collaborators and Publications . 4

2 Cryptocurrency Background 5
2.1 Bitcoin . 5
2.2 Ethereum . 11
2.3 Conclusion . 16

3 Authenticated Key Exchange over Bitcoin 17
3.1 Introduction . 17
3.2 Background . 19

3.2.1 Transaction Signature . 20
3.2.2 Authentication in Key Exchange Protocols 20

3.3 Key exchange protocols . 20
3.3.1 Setting the stage . 21
3.3.2 Authentication . 22
3.3.3 Diffie-Hellman-over-Bitcoin Protocol 23
3.3.4 YAK-over-Bitcoin Protocol . 23

3.4 Security Analysis . 25
3.4.1 Security of Diffie-Hellman-over-Bitcoin 27
3.4.2 Security of YAK-over-Bitcoin . 28
3.4.3 Security of ECDSA Signatures . 30

3.5 Implementation . 30
3.5.1 Time analysis . 31
3.5.2 Note about domain parameters . 32

3.6 Conclusion . 32

x Table of contents

4 Refund attacks on Bitcoin’s Payment Protocol 33
4.1 Introduction . 33
4.2 Background . 35

4.2.1 Payment Protocol . 35
4.3 Attacking the Payment Protocol . 38

4.3.1 Silkroad Trader Attack . 38
4.3.2 Marketplace Trader attack . 39

4.4 Real-world experiments . 41
4.4.1 Proof of concept wallet . 41
4.4.2 Simulation of attacks . 42

4.5 Solution . 43
4.5.1 Proposed Solution . 43
4.5.2 Discussion . 45
4.5.3 Inherent issues due to Bitcoin . 47
4.5.4 Solution performance . 47

4.6 Payment Processors Response . 49
4.7 Conclusion . 49

5 Towards Bitcoin Payment Networks 51
5.1 Introduction . 51
5.2 Background . 52

5.2.1 Time Locks in Bitcoin . 52
5.2.2 Payment Channel Establishment 53
5.2.3 Basic Payment Channels . 54

5.3 Proposed Payment Channel Protocols . 54
5.3.1 Duplex Micropayment Channels 55
5.3.2 Lightning Channels . 57
5.3.3 Comparison of Duplex Micropayment and Lightning Channels . . . 60

5.4 Routing Payments . 64
5.4.1 Hashed Time-Locked Contract (HTLC) 64
5.4.2 Routing Interruptions . 69
5.4.3 Challenges for Route Discovery 69

5.5 Conclusion . 71

6 A Smart Contract for Boardroom Voting with Maximum Voter Privacy 73
6.1 Introduction . 73
6.2 Background . 75

Table of contents xi

6.2.1 Self-Tallying Voting Protocols . 75
6.2.2 The Open Vote Network Protocol 76

6.3 The Open Vote Network over Ethereum 78
6.3.1 Structure of Implementation . 78
6.3.2 Election stages . 79

6.4 Design Choices . 80
6.5 Experiment on Ethereum’s Test Network 84

6.5.1 Timing Analysis . 85
6.6 Discussion on Technical Difficulties . 86
6.7 Conclusion . 88

7 Conclusion 89
7.1 Summary . 89
7.2 Future work . 90

References 93

xii Table of contents

Chapter 1

Introduction

Nakamoto posted the Bitcoin whitepaper [90] on The Cryptography Mailing list at metz-
dowd.com on 1st November 2008 [91]. Shortly afterwards on 9th January 2009, the source
code was published alongside connection instructions for the Bitcoin network [92]. The
motivation behind Bitcoin is famously captured in the genesis block of its public ledger:

The Times 03/Jan/2009 Chancellor on brink of second bailout for banks

After all, Bitcoin was born in the aftermath of the worst financial crisis since the Great
Depression in the 1930s that led to subsequent bailouts for both banks1 and governments2.
Thus, it is no surprise that Bitcoin is a global transaction system that provides its users with
full autonomy over their money. However, even in this financial climate, it is still remarkable
that Bitcoin has succeeded with a $37bn market capitalisation and generated over $1bn of
venture capitalist investment in Bitcoin/Blockchain FinTech startups [60], whereas most
e-cash protocols proposed in the past thirty-years failed to garner practical use.

With hindsight, these e-cash protocols failed for several reasons, including the need for
wide-spread acceptance from both customers and merchants3, reliance on banks (and not
private enterprise) to issue coins [13], and ultimately the banking infrastructure is increasingly
growing to support micropayments of $5 or less [96]. Remarkably, Nakamoto’s ingenuity
overcame these issues by introducing the Blockchain that stores every transaction in a

1Lehman Brothers filed for banksruptcy [80]. Other banks required a bailout including Goldman
Sachs, Morgan Stanley, Citigroup, Bank of America [87] and the Royal Bank of Scotland [121].

2Eurozone countries Greece, Portugal, Ireland, Spain and Cyprus were unable to finance their
government debt and required a bailout from other eurozone countires, the European Central Bank
and the International Monetary Fund [116].

3Chaum described this problem as the following: "It’s a chicken-and-egg sort of proposition. You
can’t sign merchants if you don’t have enough users. You can’t sign users if you don’t have enough
merchants. It takes efforts to build" [46].

2 Introduction

public ledger and the consensus mechanism, now known as Nakamoto consensus, provides
permissionless governance of the Blockchain. Both innovations facilitate peer-to-peer
transactions that are authorised by a decentralised network of peers and there is no barrier
to entry as users independently compute their pseudonymous credentials for sending and
receiving bitcoins.

Clearly, the envisioned application of Bitcoin is to provide a medium of exchange be-
tween two or more parties over the Internet. Today, merchants rely on e-mail addresses
to re-authenticate messages from customers once a payment is confirmed. Unfortunately,
there is no community-accepted standard to associate an e-mail address with the customer’s
pseudonymous credentials that authorised the payment. As such, the motivation for Chapters
3 and 4 is to overcome the inability that real-world merchants face when attempting to
re-authenticate messages from pseudonymous customers. The former proposes two authenti-
cated key exchange protocols for post-payment communication, whereas the latter proposes
new attacks on the community-accepted BIP70: Payment Protocol that is used by over
100,000 merchants alongside a proposed revision of the standard.

Chapter 5 focuses on the scalability issues that limit Bitcoin as a medium of exchange
due to the underlying Blockchain protocol. The Blockchain’s current parameters limit its
throughput to 3.3-7 transactions per second and simply re-parameterising can inadvertently
weaken its robustness and security [30]. This chapter provides an extensive survey for
off-chain transactions that facilitiates two or more parties to privately exchange thousands
of transactions and in the best case only two transactions are stored in the Blockchain.
Unfortunately, most of the state-of-the-art research is scattered across message boards,
chatrooms, mailing lists and private discussions. Thus, the motivation is to summarise this
emerging field to encourage other researchers to pursue further research.

Interestingly, the above scalability approach is an example of a smart contract that allows
the Bitcoin network to enforce the conditions of an agreement between two or more parties.
These smart contracts are heralded to revolutionise finance [98], asset management [68], and
government interaction with citizens [126]. Unfortunately, Bitcoin does not easily support
the creation of smart contracts due to its limited scripting facility.

This has led to the rise of Ethereum which is the second most popular cryptocurrency
with a market capitalisation of $21bn. Similarly to Bitcoin, Ethereum has a Blockchain that
is governed by a decentralised network of peers. Yet, it supplies an expressive programming
language for developers to write smart contracts and both the code and its execution transcript
are stored in the Blockchain. Most importantly, it introduces consensus computing as all
peers perform the same computation to enforce the contract’s correct execution and verify

1.1 Thesis Outline 3

the Blockchain’s contents. Unfortunately, the public verifiability of these contracts requires
all information to be publicly available.

The lack of privacy for smart contracts motivates the research in Chapter 5 that experi-
mentally tests the feasibility of implementing and executing cryptographic protocols on the
Ethereum network. It is important to note that cryptography has the capability to preserve
the confidentality of data while maintaining the contract’s public verifiability. This chapter
considers the application of e-voting on the Blockchain and provides an implementation
of the Open Vote Network which is a self-tallying internet voting protocol that guarantees
maximum voter privacy. The computation and financial breakdown derived from experiments
on the network highlights that Ethereum as deployed today can support cryptography, but it
is not yet ready for wide-spread use.

1.1 Thesis Outline

This thesis is outlined as follows:

• Chapter 2 presents background information and the inner workings of both Bitcoin
and Ethereum. We highlight how users compute their pseudonymous credentials,
the structure of a transaction, the underlying blockchain protocol and Nakamoto
Consenseus that permits the decentralised network of peers to achieve a consistent
view of the blockchain.

• Chapter 3 proposes the first two protocols to re-authenticate two pseudonymous parties
that share a transaction history for post-payment communication. This is not covered
in the community-accepted BIP70: Payment Protocol or IEEE, ISO/IEC security stan-
dards. Furthermore, there is currently no PKI-based or password-based authenticated
key exchange protocols that are suitable for this purpose.

• Chapter 4 highlights a flaw in BIP70: The Payment Protocol that introduces the
Silkroad Trader and Marketplace Trader attacks which are acknowledged by Coinbase,
BitPay and Bitt. These attacks rely on an underlying flaw in the protocol that does
not provide the merchant with publicly verifiable evidence that the refund address he
received during the protocol exchange was endorsed by the pseudonymous customer.
We amend the payment protocol to fix this flaw and prevent both attacks.

• Chapter 5 provides a survey for payment networks that facilitate off-chain transactions
between two or more parties. The survey presents technical descriptions of payment
channels, Duplex Micropayment Channels and Lightning Channels before discussing

4 Introduction

future problems that need to be solved before payment networks can become a reality.
Unfortunately, the only academic publication in this survey is Duplex Micropayment
Channels. Our contribution is gathering the information from private discussions,
mailing lists and public chatrooms to help other researchers in this field understand the
current progress for this scaling approach.

• Chapter 6 presents the first smart contract implementation of a boardroom voting
protocol. It investigates the feasibility of executing cryptographic protocols on the
Ethereum network and the benefits of consensus computing to self-enforce the correct
execution of the voting protocol. At the time of writing the voting protocol costs $0.73
per voter, and $31.98 for forty voters to participate in an election. We highlight the
technical difficulties of developing cryptographic protocols using the Solidity language
and subtle (and not immediately obvious) attack vectors that are unique to smart
contracts. Finally, we can conclude from the computational and financial breakdown
of our experiments that Ethereum can support cryptography, but it is not ready for
wide-spread use.

1.2 Collaborators and Publications

.
Chapters 3, 4, 5 and 6 reflect papers that we published in international conferences. A

list of these publlications with the co-authors and acknowledgements is provided below:

• Authenticated Key Exchange over Bitcoin, Patrick McCorry, Siamak F. Shahan-
dashti, Dylan Clarke, and Feng Hao, accepted by the 2nd Security Standardisation
Research Conference in Tokyo, Japan [77].

• Refund Attacks on Bitcoins Payment Protocol, Patrick McCorry, Siamak F. Shahan-
dashti, and Feng Hao, accepted at the 20th Financial Cryptography and Data Security
conference, Bridgetown, Barbados [78].

• Towards Bitcoin Payment Networks, Patrick McCorry, Malte Möser, Siamak F.
Shahandashti, and Feng Hao, invited paper for 21st Australasian Conference on
Information Security and Privacy , Melbourne, Australia [76].

• A Smart Contract for Boardroom Voting with Maximum Voter Privacy, Patrick
McCorry, Siamak F. Shahandashti, and Feng Hao, accepted at the 21st Financial
Cryptography and Data Security conference, Sliema, Malta [79].

Chapter 2

Cryptocurrency Background

2.1 Bitcoin

Bitcoin [90] is the world’s first cryptocurrency whose value is not endorsed by any central
bank, but is based on the perception of its users [70]. This cryptocurrency was created by
Satoshi Nakamoto whose real-world identity remains unknown. His vision was to introduce a
peer-to-peer electronic cash system that does not rely on a central authority to issue currency
or authorise transactions. Instead, he proposed that a decentralised network of peers can
provide the infrastructure to maintain an immutable, censorship-resistant and public ledger
that stores all transactions on the network.

In this section, we outline the inner-workings of Bitcoin. We focus on the concept of a
Bitcoin address which is effectively the user’s pseudonymous identity and transactions that
let users authorise the transfer of bitcoins to others. Afterwards we present the Blockchain
that stores all transactions on the network and Nakamoto consensus which is the first leader
election protocol that requires a distributed set of peers to compete in a probabilistic election.
The winner of this competition is elected as a one-time leader to authorise which transactions
should be accepted into the Blockchain. In fact, it is this probabilistic election that differs
from all previous consensus protocols as users are appointed based on their computational
power as opposed by an authority. Finally we highlight that the entire protocol is publicly
verifiable and this allows a peer-to-peer network operated by altruistic users to verify the
Blockchain’s correctness (and also propagate new transactions to all other peers). To finish
we discuss how Bitcoin has inspired the community to re-think how the Blockchain can be
applied to solve problems in other domains.

A Bitcoin address is a pseudonymous identity that is used to send and receive bitcoins.
An address can be described as the hash of an EC (Elliptic Curve) public key and the
accompanying private key is used to produce ECDSA (Elliptic Curve Digital Signature

6 Cryptocurrency Background

Script	Criteria	
Bitcoin	address	H(B),		

Total	number	of	bitcoins	sent.		
	
	
	
	

i.e.	50	BTC	to	Bob	

Output	Input	

Input	

Output	Input	

Redeem	Script		
Signature	from	public	key	B	

	
Other	informa3on	
Previous	transacAon,	

IdenAficaAon	hash,	output	index	
	

i.e.	Signature	from	Bob	

Output	

Block	1	 Block	2	 Block	n	…	

TransacAon	A	 TransacAon	B	

Figure 2.1 Transactions stored in the Blockchain

Algorithm) signatures to authorise payments. This approach is considered appropriate as
the probability that two users generate the same public key is negligible due to the high
number of possible ECDSA public keys. The corresponding private key for a new Bitcoin
address is computed using a random number generator or deterministically derived from a
pseudo-random seed [129]. In order to obfuscate the ownership of coins, the community
recommends using a new Bitcoin address when receiving coins on the network. However
this obfuscation only provides limited financial privacy if the user’s wallet software is not
careful when selecting which coins to spend [104, 9, 101, 82].

A Transaction consists of one or more inputs and one or more outputs as seen in Figure
2.1. Briefly, an input specifies the source of bitcoins being spent (the previous transaction’s
identification hash and an index to one of its output) and is accompanied with signature(s)
and public key(s) of the sender to authorise the payment. An output specifies the new owner’s
Bitcoin address and the number of bitcoins being sent. Strictly, these inputs and outputs
are controlled using a Forth-like scripting language to dictate the conditions required to
claim the bitcoins. The dominant script today is the pay-to-pubkey-hash which requires a
single signature from a Bitcoin address to authorise the payment. On the other hand, the
pay-to-script-hash approach enables a variety of transaction types and was introduced as a
soft-fork in BIP16 [5]. In practice, this pay-to-script-hash script is widely used1 to enable
escrow services and multi-signature authorisation (k of n keys required to claim bitcoins).

1Currently 10.8% of all bitcoins are stored using the pay-to-script-hash approach [2].

2.1 Bitcoin 7

		Block	#1	

Genesis	Block	(00000000019d668…)		

Previous	Block	

Root	Hash	

Nonce	

Timestamp	

		Block	#2	

Block	Header	(00000000839a8e…)		

Previous	Block	

Root	=	H(H1	||	H2)	

Nonce	

Timestamp	

H1	=	H(TxA	||	TxB)	

TxA	 TxB	 TxC	 TxD	

H2	=	H(TxC	||	TxD)	

Figure 2.2 Two blocks in the Blockchain

The Blockchain is a mechanism to synchronise a set of replicated databases and provide
a consistent view to all peers on the network. In the case of Bitcoin, it allows each peer to
compute an up to date list of spendable coins and the associated scripts that must be satisfied
in order to spend them. The network’s maintainers are responsible for creating a new block of
transactions approximately every ten minutes and once created the block is appended to the
Blockchain’s tip as seen in Figure 2.1. This append-only feature effectively creates a chain
of blocks resulting in the name Blockchain and all transactions are stored in chronological
order. The Blockchain is publicly verifiable which is reflected in the community’s motto,
Trust, but verify. This allows a peer who is receiving coins on the network to independently
verify whether the sender is authorised to spend the coins and crucially whether the network’s
maintainers are attempting to censor transactions or include invalid transactions.

Technically, there is no real concept of a coin in Bitcoin. Instead, the Bitcoin client
maintains a database of unspent transaction outputs (UTXO set) which states the bitcoins
that can be redeemed if the corresponding script is satisfied. Blocks of transactions are
responsible for updating this UTXO database and a block has two components. The first
component is a list of recent transactions and a coinbase transaction2 that sends the winning
miner their bitcoins. The second component is a block header as seen in Figure 2.2 which
contains the identification hash of the previous block and a merkle tree root that provides a
computationally binding commitment to the included set of transactions.3 Most importantly,
the identification hash of the block is also a proof of work that provides the computational
commitment to the entire block’s content. The purpose of this proof of work and how the
network reaches consensus on the list of unspent transaction outputs is discussed next.

2This transaction has no inputs and is the first item in the list.
3A merkle tree is constructed using the list of transactions in this block. The root of this tree is

stored in the block header.

8 Cryptocurrency Background

Block	 1	 Block	 2	 Block	 3	 Block	 4	

Block	 5a	 (orphan)	

Block	 5b	 Block	 6	 Block	 7	

Figure 2.3 Block 5a and 5b are competing to be accepted into the Blockchain.

Nakamoto consensus provides governance of the Blockchain such that it is possible to
synchronise a set of replicated databases that mutually distrust each other without a trusted
authority to appoint the maintainers. This is achieved by creating a competition amongst
pseudonymous peers to solve a computationally (and probabilistically) difficult puzzle.
Competing peers are called miners and anyone with significant computational resources can
participate. The first miner to solve the puzzle is elected as a one-time leader to create and
append a new block to the Blockchain. In return for solving this puzzle, the miner is rewarded
the sum of all transaction fees and a subsidy (i.e. 12.5 bitcoins in December 2016). A puzzle
solution is both a proof of work and a computational commitment to the block’s content.
All peers verify whether the proof of work is a valid solution to the network’s puzzle before
appending this block to the Blockchain and propagating the block to other peers. Finally the
miner’s reward is spendable once this block has achieved a sufficient depth in the blockchain
(i.e. it is the 100th block from the blockchain’s tip).

Figure 2.3 highlights how the probabilistic nature of the computational puzzle allows
two or more miners to simultaneously create blocks that compete for the same position
(i.e. block height) in the Blockchain. Only one block is appended to the Blockchain and
all other competing blocks are simply discarded (and become known as stale blocks). The
miner of a stale block receives no reward. To resolve a fork requires miners to select one
of the competing blocks before attempting to solve the next puzzle which can potentially
split the network’s computational power until a fork associated with the most proof of work
emerges and becomes the credible Blockchain. As such, it is recommend practice to wait for
a transaction to achieve a depth of six confirmations in the Blockchain4 before considering it
irreversible due to the risk of a fork. Fundamentally, the security of Nakamoto consensus
assumes that 51% or more of the network’s computation is honest 5 as this guarantees that
one chain will eventually emerge as the longest/heaviest.

4The sixth most recent block at the Blockchain’s tip.
5Rational miners with less than 51% of the network’s computational power can follow different

strategies to gain more bitcoins than they deserve [40][95][109].

2.1 Bitcoin 9

Both the concept of governance by a computational competition and proof of work
provides censorship resistance and immutability properties for the Blockchain. First, miner’s
can be located anywhere in the world and if less than 51% of the network’s miners are under
duress, then other miners can include censored transactions.6 Second, the computational
proof of work associated with each block increases the difficulty overtime for an attacker to
reverse transactions in the Blockchain. To perform a history-revision attack [14] requires
re-solving puzzles starting with the block that contains this transaction to the Blockchain’s
current tip. For example, if the transaction is in block 500, and the Blockchain’s tip is block
1000, then the attacker must re-solve all puzzles from block 500 to block 1000. A successful
attack requires more than 51% of the network’s computational power in order to create blocks
faster than all other honest miners.

Finally, the consensus protocol dictates the monetary policy of Bitcoin. The creation
of new bitcoins in each block is programmed to halve every four years7 until 21m bitcoins
exist. As such, the financial incentive for miners to continue maintaining the Blockchain is
expected to shift from the block reward to transaction fees.8 It is anticipated that a fee market
will emerge to cover the cost of mining and this will require users to bid for their transactions
to be accepted into the Blockchain [88]. However, selecting which transactions to include
in a block is an instance of the bin-packing problem and miners must also be cautious as
poorly packed blocks can directly impact the number of forks that occur on the network
[30]. Therefore, there is a trade-off between the sum of fees a miner can collect and which
transactions are accepted into the Blockchain.

The peer-to-peer network is open-membership as peers can participate at any time.
There are three roles as illustrated in Figure 2.1 which include miners who maintain the
Blockchain, volunteers who verify that new transactions (and blocks) satisfy the network’s
consensus rules before propagating the transactions/blocks to other peers, and users who
only store sufficient information to verify that transactions relevant to them are confirmed in
the Blockchain. To fulfil these roles, each peer operates a different type of node:

• Full node. Stores a full copy of the Blockchain and verifies all transactions.

• Pruned node. Stores a pruned copy of the Blockchain which is a list of transaction
outputs that are available to spend and verifies all transactions.

6We note that there is a feather-forking mining strategy to encourage other miners to enforce
censorship by attempting to discard their blocks [17].

7So far the reward has halved twice on the 28th November 2012 from 50 to 25 bitcoins and the
9th July 2016 from 25 to 12.5 bitcoins.

8There is potential instability without a block reward as miners may be incentivised to fork
"wealthy" blocks to steal their reward [23].

10 Cryptocurrency Background

Miners	 (Full/Pruned)	
Volunteers	 (Full/Pruned)	
Users	 (Simplified	 Payment	 Verifica;on)	

The	 Bitcoin	 Network	

Figure 2.4 Three type of nodes in the peer-to-peer network.

• Simplified Payment Verification (SPV) node. Stores the list of block headers, a list
of relevant transactions and a list of merkle tree branches that proves each relevant
transaction is stored in the Blockchain.

Both full and pruned nodes download and verify the full blockchain which at the time
of submission is over 100GB. On the other hand, pruned nodes only maintain a list of
transaction outputs that are available to spend and in June 2017 there was approximately
48 million spendable outputs. This type of node can independently verify blocks received
from other peers on the network, but there remains a subtle trust assumption in terms of
connectivity as this node must be connected to a single and honest peer in order to receive
all new blocks with the most proof of work. Otherwise, the full/pruned node may suffer an
eclipse attack [54] which allows an adversary to delay which blocks are received.

On the other hand, SPV is designed for embedded devices with low storage and bandwidth
capacity (i.e. mobile phones). An SPV node is not required to download or store a full copy
of the Blockchain, but will only download and store a chain of block headers (i.e. each
header is approximately 80 bytes). The block header allows an SPV node to verify the proof
of work associated with each block, verify if a transaction is confirmed in this block (i.e. a
merkle tree branch can be used as a proof of inclusion) and whether this block is associated
heaviest/longest chain. Similarly to full/pruned nodes, an SPV node must have multiple
connections to avoid eclipse attacks.

Applications of Bitcoin. Bitcoin was designed to provide a medium of exchange between
two or more parties. It has inspired the community to find new applications for both
Bitcoin and the Blockchain which includes exchanging assets [59], carbon dating [27]
and authenticating devices in the Internet of Things [58]. These applications leverage the
Blockchain as a global database to store data (and cryptographic commitments to data). We
highlight that the Bitcoin network cannot independently validate transactions that contain
application-specific data using the external application’s policy and instead must rely on a
third party to ensure the rules are enforced. As a result (and not surprisingly), it is not an
ideal platform for many of the desired applications in the community. In the next section, we

2.2 Ethereum 11

present Ethereum that is conceptually a global computer and unlike Bitcoin can enforce both
the validation of data and execution of external protocols.

2.2 Ethereum

Ethereum was created by Vitalik Buterin [20], formalised by Gavin Wood [128] and crowd-
funded to kick-start development [11]. Their vision was to introduce a global computer that
can store and execute programs. These programs are called smart contracts as the condi-
tions of an agreement between two or more parties is enforced using the same consensus
protocol that secures the Blockchain. Similarly to Bitcoin, it relies upon a decentralised
network of peers and governance by a computational competition to provide an immutable
and censorship-resistant Blockchain.9

In this section, we briefly outline the inner-workings of Ethereum. We summarise the
concept of smart contracts before discussing Ethereum accounts that represent the user’s
identity on the network. We focus on how a contract’s code and its execution instructions
are propagated throughout the network using transactions. We highlight that the consensus
protocol is claimed to be a variant of the GHOST protocol which is a tree-based blockchain.
Finally, we discuss the type of network nodes available on the peer-to-peer network.

Smart contracts are computer programs that are stored on the Blockchain and executed
by Ethereum’s peer-to-peer network. This concept was first envisioned by Szabo back in
1994 and he provides the following definition [118]:

A smart contract is a computerized transaction protocol that executes the terms of
a contract. The general objectives are to satisfy common contractual conditions
(such as payment terms, liens, confidentiality, and even enforcement), minimize
exceptions both malicious and accidental, and minimize the need for trusted
intermediaries. Related economic goals include lowering fraud loss, arbitrations
and enforcement costs, and other transaction costs.

Instead of the above definition, an easier mental model for understanding a smart contract
is to visualise it as a trusted third party that can only maintain public state. The code of a
contract is immutable once deployed, all state transitions are atomic and all function calls
are honestly executed. We call this paradigm consensus computing as to achieve the above
guarantees relies on all network nodes deterministically executing the contract using their

9In practice, the Ethereum Foundation has significant influence over Ethereum’s governance. For
example, a hard-fork recently changed the network’s consensus rules to reverse the theft of $40m
worth of ether from theDAO hack [24].

12 Cryptocurrency Background

Block	1	 Block	2	 Block	3	 Block	4	 Block	5	 Block	6	

From	 To	 Value	

2	*	10-8	

Gas	Price	

98,000	

Total	Gas	

0	eth	Contract	Alice	

101	

Nonce	

Contract	code	

Data	

Contract	Crea*on	Transac*on	
From	 To	 Value	

2	*	10-8	

Gas	Price	

900,000	

Total	Gas	

10	eth	Contract	Bob	

31	

Nonce	

FuncHon(param1,	param2)	

Data	

Call	Contract	Transac*on	

Figure 2.5 Alice creates a smart contract on the Blockchain and the contract code is sent in
the transaction’s Data field. The contract’s address is in the To field. Bob can also invoke a
function of the contract using a second transaction.

copy of the EVM (Ethereum Virtual Machine) in order to reach the same final state. This
repetition of computation permits the network to directly enforce the correct execution of a
contract and results in publicly verifiable contracts (i.e. any observer can verify a contract’s
final state by repeating this computation). Unfortunately, this public verifiability is also
Ethereum’s weakness as a contract’s computation must be deterministic and all data used in
a contract must be stored publicly [47].

Solidity is a popular high-level programming language for writing smart contracts. This
code is compiled into bytecode which is composed of Ethereum-specific opcodes (i.e. op-
eration codes) before it is stored in the Blockchain. The initial state of a contract is set at
the time of creation and all future updates to the contract’s state is stored in a persistent
memory area called storage.10 Finally contracts are event-driven programs and updating its
state requires a user to explicitly invoke one of its functions.11

An Ethereum account is the user’s pseudonymous identity on the network and there are
two types of accounts available:

• An externally owned account (user-controlled) is a public-private key pair controlled
by the user.

• A contract account defines an access-control policy using code that is enforced by
the network.

Unlike Bitcoin, all Ethereum accounts are directly associated with the in-built ether
currency and every payment simply increments the account’s balance (as opposed to generat-

10A keystore that maps 256 bits to 256 bits.
11An Application Binary Interface (ABI) defines how to call a contract’s function.

2.2 Ethereum 13

Transac'on	Receipt	

Intermediate	State	 Transac/on-specific	Logs	

Bloom	Filter	Logs	

		Key												Value	
				1																	abc			
				2																	def		
			… …		
			… … 	
256-bit							256-bit	

Bit	Array	

0 1 0 0 1 0
0	 1	 2	 3	 4	 5	

Event(value)	
Vote(Patrick,	yes)	
YesVotes(100)	
NoVotes(50)	

Cumula/ve	Gas	Used	 Gas	Used	

Figure 2.6 A list of fields in the transaction’s receipt.

ing a new unspent transaction output). Interestingly, a contract account allows the user to
explicitly define access control over their coins which is self-enforced by the network. For
example, the contract can establish an escrow service that requires two or more signatures
from externally controlled accounts, and require an authenticated data feed12 to prove an
external condition has been met before the ether is accessible.

An Ethereum Transaction facilitates sending payments and storing/executing a smart
contract on the network. Like Bitcoin, all miners are rewarded via a transaction fee. Figure
2.5 highlights the transaction structure and each field is described below:

• From: A signature from an user-controlled account to authorise the transaction.

• To: The receiver is either a user-controlled or contract address.

• Data: Contains the contract code or its execution instructions.

• Gas Price: The conversion rate of purchasing gas using the ether currency.

• Total Gas: The maximum amount of gas that can be consumed by the transaction.

• Nonce: A counter that is incremented for each new transaction from an account.

The above transaction format facilitates three types of transactions:

• A payment transaction allows two parties to send and receive coins.

• A creation transaction is responsible for creating the contract’s address13 and storing
the contract’s bytecode in the Blockchain.

• An execution transaction is used to invoke functions and execute the contract.
12Zhang et al have demonstrated that trusted hardware can provide trustworthy and authenticated

data feeds for smart contracts [132].
13This address is a hash of the sender’s Ethereum account and the creation transaction’s nonce [38].

14 Cryptocurrency Background

Block	1	 Block	2	 Block	3	 Block	4	 Block	5	 Block	6	

Uncle	Block	4b	 Uncle	Block	5b	Uncle	Block	2b	

		

0	Uncles	0	Uncle	1	Uncle	0	Uncles	0	Uncles	 2	Uncles	

Figure 2.7 Ethereum’s blockchain is tree-based as uncle blocks that were previously orphaned
are now included in the Blockchain.

All transactions depend on a gas metric which is self-enforced by the network’s consensus
rules and determines the exact cost of computation and storage. This gas can be purchased
using the network’s ether currency and the conversion rate for ether to gas is set by the user
in the gas price field. It is important the user selects a reasonable conversion rate as the
purchased gas is a transaction fee that rewards the miner for including this transaction in
their block. There is a subtle issue with Ethereum’s execution model (and the estimated gas
of execution) as there is no guarantee what computation will occur until the transaction is
accepted into the Blockchain. This is possible as the smart contract’s state may change after
the transaction has already been signed and published for inclusion in the Blockchain. As a
result, the exact gas that will be purchased is unknown in advance and the user must update
the total gas field with the maximum quantity of gas that the user is willing to purchase.

Figure 2.6 highlights that all transactions have a receipt that includes the contract’s
intermediate state, transaction-specific logs, a corresponding bloom filter for the logs and
gas statistics. A receipt can be used to convince a low-resourced client that a state transition
has occurred, but this assumes the verifier has access to the longest/heaviest chain of block
headers. Also, the receipt can be used to notify external protocols about meaningful events
that have occurred within the contract. For example, a voting event can trigger the front-end
interface to inform the user that their vote was recorded in the contract. Finally the cumulative
gas used field measures gas used throughout the contract’s history and the gas used field
states the quantity of gas used in this transaction.

Ethereum’s blockchain is an orderly-transaction based state machine. If multiple trans-
actions call the same contract, then the contract’s final state is determined by the order of
transactions that are stored in the block. Strictly, the consensus protocol is claimed to be a
variant of the GHOST protocol [112] which is a tree-based blockchain. Miners are rewarded
5 ether for new blocks that are appended to the main branch of the Blockchain and blocks
are created approximately every twelve seconds. Unlike Bitcoin and as seen in Figure 2.7, a
stale block can later be included in a future block as an uncle block (i.e. it is appended as

2.2 Ethereum 15

a leaf to the Blockchain’s main branch).14 An uncle block’s list of transactions is simply
discarded and have no effect on a contract/user account’s final state. Its sole purpose is to
provide a partial reward to miners and the final reward depends on when the uncle block is
accepted into the blockchain.

Figure 2.8 highlights that a block has a block header, a list of transactions and a list of
uncle block headers. This block header contains the block’s position in the Blockchain and
statistics on the quantity of gas consumed which must be less than the block’s gas limit.15

The header is also responsible for storing cryptographically binding commitments to the list
of transactions, each transaction’s receipt and the new global state of all contracts/accounts.
As well, here is a bloom filter in the block header to help low-resourced nodes detect if
this block contains a specific transaction log. Unlike Bitcoin, the proof of work is based on
a memory-hard problem16 and it is stored in the block header. The Ethereum Foundation
plan to eventually change the consensus protocol to a proof of stake protocol called Casper
[56]. If successful, then Casper will remove governance by a computational competition
and instead allow participants to compete based on their financial stake (i.e. share of the
network’s coins).

The peer-to-peer network is similar to Bitcoin with its open-membership policy as
anyone can join and leave the network. Unlike Bitcoin, there are multiple competing
implementations of the Ethereum protocol that validates the network as full nodes17 including
cpp-ethereum, Geth and Parity. This thesis focuses on the Geth client as it is used in the
proof of concept implementation for Chapter 6. This client is a daemon that runs in the
background that can support both full nodes and Light Ethereum Subprotocol (LES) nodes.18

Full nodes store a full copy of the Blockchain. Unlike Bitcoin Core, Geth does not offer a
pruned flag that discards historical blocks and instead it has a fast flag that bypasses verifying
historical blocks. This involves downloading a full copy of Blockchain, verifying each block’s
proof of work, downloading a global state of all contracts/accounts for a specified block

14Each block can reference up to two uncle blocks that are within six generations. i.e. Block 500
can accept up to two uncle blocks that were created after Block 404.

15Each block’s gas limit is computed based on the previous block’s gas consumption which is
defined as Equation 45-47 in [128].

16A seed based on each block header is used to compute a 16MB pseudorandom cache. A larger
dataset (1GB+) is computed using the cache. Mining involves hashing random slices of the data set.
Similarly to Bitcoin, the final solution must be below a desired target value (i.e. the solution will
begin with leading zeros.).

17Interestingly, Nakamoto’s warning about the dangers of multiple implementations [93] came
to pass as the Blockchain recently forked due to Geth and Parity failing to identically implement
consensus-critical code.

18Included in Geth 1.5 on 17th November 2016 [117]

16 Cryptocurrency Background

		Block	#202	

List	of	Transac3ons	
0x1b1ac692...	
0x63e55401...	

List	of	Uncle	Block	Headers	
0x168d6414...	
0x9e7385ce...	

Block	Header	

Proof	of	Work	

Difficulty	 Extra	Data	

Nonce	Mix	Hash	

Structure	of	Blockchain	and	Miner	Info	

Block	Height	Previous	Block	

Timestamp	

Beneficiary	

Uncle	Blocks	

Commitment	to	this	Block’s	Contents	

State	Root	

Log	Bloom	Filter	

TransacVon	Root	

Receipts	Root	

Gas	StaVsVcs	

Gas	Used	 Gas	Limit	

Figure 2.8 An Ethereum block has a list of transactions, a list of uncle block headers, and its
own block header.

height and verifying that the global state’s hash matches the block header’s corresponding
state root as seen in Figure 2.8. The downside of this flag is that it assumes the majority of
miners honestly enforced the consensus rules for historical blocks. Of course, once the node
is fully synchronised it will validate and store all newly created blocks.

LES nodes is designed for low-resourced devices to participate in the network. It involves
downloading and verifying only block headers before requesting relevant transactions and
receipts from the network. The node can verify that a transaction (or its receipt) is included
by checking the block header’s cryptographic commitments. It is claimed that the client only
requires 10MB (or more) storage, 1 MB/hour bandwidth while idling and 2-3KB bandwidth
for each state/storage request from the network [41]. This mode is still in its infancy, but
opens the possibility of mobile devices connecting to the peer-to-peer network and in fact
packages are readily available for both Android and iOS.

2.3 Conclusion

In this chapter, we presented background information for Bitcoin which is relevant for
Chapters 3, 4 and 5, and Ethereum for Chapter 6. We discussed their inner-workings including
how users independently compute their pseudonymous credentials, how transactions are
used to carry execution instructions to update each peer’s replicated database and how
their different Blockchain protocols reach consensus. In the next chapter, we study how
pseudonymous users in Bitcoin can re-authenticate using a shared transaction history.

Chapter 3

Authenticated Key Exchange over
Bitcoin

3.1 Introduction

Bitcoin is increasingly being accepted by many e-commerce websites as a form of payment.
For example, Dell, one of the largest computer retailers in the world, now allows customers
to use Bitcoin to pay for online purchases on the Dell website [113]. Recently, Paypal [15]
and Expedia [103] have also endorsed support for using Bitcoin. Similarly, many community-
driven organisations allow anonymous donations using Bitcoin. Examples include the TOR
project [120], Mozilla Foundation [89] and the Calyx Institute [83],

While Bitcoin is designed to support anonymity (or pseudonymity) in a transaction,
little attention has been paid to the anonymity in the post-payment scenario. As with
any on-line payment system, the payer and the payee may need to engage in follow-up
correspondence after the payment has been made, e.g., to acknowledge the receipt, to confirm
billing information, to amend discrepancies in the order if there are any and to agree on the
product delivery or pick-up. Such correspondence can involve privacy-sensitive information,
which, if leaked to a third party, may trivially reveal the identity of the user involved in the
earlier transaction (e.g., information about product delivery may contain the home address).

Currently, the primary mechanism to support follow-up correspondence after a Bitcoin
transaction is through email. The Dell website requires shoppers to provide their email
address when making a Bitcoin payment to facilitate post-payment correspondence. The
Calyx Institute, a non-profit research organization dedicated to providing “privacy by design
for everyone”, also recommends using e-mails for follow-up correspondence after a donation
is made in Bitcoin. On its website, the instruction is given as the following [83]:

18 Authenticated Key Exchange over Bitcoin

“Note that if you make a donation by Bitcoin, we have no way to connect the
donation with your email address. If you would like us to confirm receipt of the
donation (and send a thank you email!), you’ll need to send an email with the
details of the transaction. Otherwise, you have our thanks for your support in
advance.”

However, emails are merely a communication medium and have no built-in guarantees
of security. First of all, there is no guarantee that the sender of the email must be the same
person who made the Bitcoin payment. The details of the transaction cannot serve as a means
of authentication, since they are publicly available on the Bitcoin network. Furthermore,
today’s emails are usually not encrypted. The content of an email can be easily read by
third parties (e.g., ISPs) during the transit over the Internet. The leakage of privacy-sensitive
information in email can seriously threaten the anonymity of the user who has made an
“anonymous” payment in Bitcoin previously.

So far the importance of protecting post-payment communication has been largely
neglected in both the Bitcoin and the security research communities. To the best of our
knowledge, no solution is available to address this practical problem in the real world. This
is a gap in the field, which we aim to bridge in our work.

One trivial solution is to apply existing Authenticated Key Exchange (AKE) protocols
to establish a secure end-to-end (E2E) communication channel between Bitcoin users. Two
general approaches for realising secure E2E communication in cryptography include using
1) PKI-based AKE (e.g., HMQV), and 2) Password-based AKE (e.g., EKE and SPEKE).
The former approach would require Bitcoin users to be part of a global PKI system, with
each user holding a public key certificate. This is not realistic in current Bitcoin applications.
The second approach requires Bitcoin users to have a pre-shared secret password. However,
securely distributing pairwise shared passwords over the internet is not an easy task. Further-
more, passwords are a weak form of authentication and they may be easily guessed or stolen
(e.g. by shoulder-surfing). A solution that can provide a stronger form of authentication
without involving any passwords will be desirable.

Following the decentralised and anonymity-driven nature of the Bitcoin network [74],
we propose new AKE protocols to support secure post-payment communication between
Bitcoin users, without requiring any PKI or pre-shared passwords. Our solutions leverage
the transaction-specific secrets in the confirmed Bitcoin payments published on the public
blockchain to bootstrap trust in establishing an end-to-end secure communication channel.
Given each party’s transaction history and our AKE protocols, both parties are guaranteed to
be speaking to the other party who was involved in the transactions, without revealing their
real identities.

3.2 Background 19

Algorithm 1 ECDSA Signature Generation algorithm [49]
Input: Domain parameters D = (q,P,n,Curve), private key d, message m.
Output: Signature (r,s).

1: Select k ∈R [1,n−1].
2: Compute kP = (x1,y1) where x1 ∈R [0,q−1]
3: Compute r = x1 mod n. If r = 0, then go to Step 1.
4: Compute e = H(m).
5: Compute s = k−1(e+dr) mod n. If s = 0, then go to Step 1.
6: Return (r,s).

Contributions. Our contributions are summarised below.

• We propose two authenticated key exchange protocols – one interactive and the other
non-interactive – using transaction-specific secrets and without the support of a trusted
third party to establish end-to-end secure communication. These are new types of AKE
protocols, since they bootstrap trust from Bitcoin’s public ledger instead of a PKI or
shared passwords.

• We provide proof-of-concept implementations for both protocols in the Bitcoin Core
client with performance measurements. Our experiments suggest that these protocols
are feasible for practical use in real-world Bitcoin applications.

Organization. The rest of the chapter is organised as follows. Section 3.2 explains
ECDSA signatures that are used for authenticating Bitcoin transactions. Section 3.3 proposes
two protocols to allow post-payment secure communication between users based on their
transaction history. One protocol is non-interactive with no forward secrecy, while the
other is interactive with the additional guarantee of forward secrecy. Security proofs for
both protocols are provided in Section 3.4. Section 3.5 describes the proof-of-concept
implementations for both protocols and reports the performance measurements. Finally,
Section 3.6 concludes the paper.

3.2 Background

In this section, we provide brief background information about how transactions are signed
in Bitcoin, the underlying Elliptic Curve Digital Signature Algorithm (ECDSA) and how
implicit authentication for key exchange protocols allows each party to plausibly deny their
involvement. This information is required to understand the two key exchange protocols
presented in this chapter.

20 Authenticated Key Exchange over Bitcoin

3.2.1 Transaction Signature

Figure 2.1 demonstrates that the signature is stored in the input of a transaction. This
signature must be from the Bitcoin address mentioned in the previous transaction’s output.
Briefly, it is important to highlight that the user will create the transaction, specify the inputs
and outputs, hash this transaction and then sign it using their private key. This prevents an
adversary from modifying the contents of a transaction or claiming ownership of the bitcoins
before it is accepted into the Blockchain.

Bitcoin incorporates the OpenSSL suite to execute the ECDSA algorithm. The NIST-
P256 curve is used and all domain parameters over the finite field including group order
n, generator P and modulus q can be found in [25]. An outline of the signature generation
algorithm is presented in Algorithm 1 to highlight the usage of k as this will be required for
the authenticated key exchange protocols. The verification algorithm follows what is defined
in [64]. The notations and symbols used in this chapter are summarised in Table 3.1.

3.2.2 Authentication in Key Exchange Protocols

All key exchange protocols either explicitly or implicitly authenticate the long-term public
keys which are associated with each party’s identity. The subtle distinction between explicit
and implicit authentication will determine whether each party can deny their involvement in
the key exchange protocol if the transcript is leaked. For example, the Station-to-Station is
a popular key exchange protocol which provides explicit authentication. Each party must
digitally sign the ephemeral keys used to derive the shared secret κ using their long-term
public key. If this transcript is leaked, then the digital signature from their long-term keys
provides undeniable proof of involvement. Other key exchange protocols such as MVQ,
HMVQ and YAK do not require the parties to explicitly prove knowledge of their long-term
public key’s corresponding private key during the key establishment (i.e. no messages are
digitally signed). Again if the transcript is leaked, then each party can deny their involvement
as one party could have simulated the entire protocol without the counter-party’s assistance.
This plausible deniability property is why we rely on implicit authentication key exchange
protocols in the remainder of this chapter.

3.3 Key exchange protocols

Key exchange protocols allow two or more participants to derive a shared cryptographic key,
often used for authenticated encryption. In this section we will present two authenticated key
exchange protocols: Diffie-Hellman-over-Bitcoin and YAK-over-Bitcoin. These protocols

3.3 Key exchange protocols 21

ZKP{w} Zero knowledge proof of knowledge of w
(V,z) Schnorr zero knowledge proof values

KDF(.) Key derivation function
Uncompress(x,sign) Uncompresses public key using x co-ordinate and sign ∈ {+,−}

(x,y) Represents a point on the elliptic curve
P Generator for the elliptic curve

(r,s) Signature pair that is stored in a transaction
A, B Alice and Bob’s bitcoin addresses: H(dP)

dA,dB Alice and Bob’s private key for their Bitcoin address
kA,kB Alice and Bob’s transaction-specific private key
k̂A, k̂B Alice and Bob’s estimated transaction-specific private key

QA,QB Alice and Bob’s transaction-specific public key
Q̂A, Q̂B Alice and Bob’s estimated transaction-specific public key
wA,wB Alice and Bob’s ephemeral private keys used for YAK

κAB Shared key for Alice and Bob
Table 3.1 Summary of notations and symbols

will take advantage of a random nonce k from an ECDSA signature. Our aim is to achieve
transaction-level authentication by taking advantage of a secret that only exists due to the
creation of a transaction that is stored on the Blockchain.

Both of these protocols will use k as a transaction-specific private key and Q = kP as
a transaction-specific public key. Diffie-Hellman-over-Bitcoin will be a non-interactive
protocol without forward secrecy and YAK-over-Bitcoin will be an interactive protocol with
forward secrecy. All domain parameters D for both protocols are the same as the ECDSA
algorithm.

3.3.1 Setting the stage

We will have two actors, Alice and Bob. A single transaction TA is used by Alice to send
her payment (anonymously or not) to Bob. For our protocols, we will assume that Bob has
created a second transaction Tb using his ECDSA private key, so the Blockchain contains
both Alice and Bob’s ECDSA signature. This is a realistic assumption as Bob naturally
needs to spend the money or re-organise his bitcoins to protect against theft. In one possible
implementation, upon receiving Alice’s payment, Bob can send back to Alice a tiny portion
of the received amount as acknowledgement, so his ECDSA signature is published on the
blockchain (the signature serves to prove that Bob knows the ECDSA private key). This is
just one way to ensure that the Blockchain contains both actors’ signatures, and there may be
many other methods to achieve the same.

The owner of a transaction will be required to derive the transaction-specific private key
(random nonce) k from their signature before taking part in the key exchange protocols. For

22 Authenticated Key Exchange over Bitcoin

both protocols, we assume the transactions TA,TB between Alice and Bob have been sent
to the network and accepted to the Blockchain with a depth of at least six blocks, which is
considered the standard depth to rule-out the possibility of a double-spend attack.

In both protocols, each user will need to extract their partner’s signature (r,s) and attempt
to derive their partner’s transaction-specific public key Q = (x,y). Algorithm 1 demonstrates
that the r value from the signature is equal to the x co-ordinate modulo n (note that there is a
subtle difference in the data range, since r ∈ Zn and x ∈ Zq, but this has an almost negligible
effect on the working of the protocols as we will explain in detail in Section 3.5.2). However,
the y co-ordinate of Q is not stored in the transaction, and it can be either of the two values
(above/below the x axis).

We define the uncompression function as Uncompress(x,sign) by using the x co-ordinate
from their partner’s signature and the y co-ordinate’s sign ∈ {+,−}. Using point uncompres-
sion and assuming one of the two possible signs for the y co-ordinate, Alice or Bob will be
able to derive a value Q̂ which we call the estimated transaction-specific public key for their
partner. This Q̂ could be either Q = (x,y) or its additive inverse −Q = (x,−y). This Q̂ will
correspond to the estimated transaction-specific private key k̂, which could be either k or −k.

3.3.2 Authentication

Our definition of authentication will refer to data origin authentication and we will use the
Blockchain as a trusted platform for storing digital signatures. Knowledge of the private
key d for a bitcoin address or the random nonce k in a signature will prove the identities of
pseudonymous parties. We will define two concepts for authentication using Bitcoin:

1. Bitcoin address authentication. Knowledge of the discrete log d for a Bitcoin ad-
dress.

2. Transaction authentication. Knowledge of the discrete log k from a single digital
signature in a transaction.

Bitcoin address authentication is well-known in the community and has been used for
other protocols. However, transaction authentication is a special case that our protocols
will exploit. Although k and d are equivalent in proving ownership of a Bitcoin address or
transaction, k is randomly generated for every ECDSA signature and is unique for each new
transaction.

We will show that Alice and Bob can authenticate each other based on the knowledge of
the k. This relies on participants trusting the integrity of the Blockchain as the cornerstone
for authentication. For an adversary to mount a man-in-the-middle attack in this scene, he

3.3 Key exchange protocols 23

Blockchain contains (rA,sA) and (rB,sB) from TA and TB
Alice (A, dA) Bob (B, dB)

1. kA = (H(TA)+dArA)s−1
A kB = (H(TB)+dBrB)s−1

B
2. Q̂B =Uncompress(rB,+) Q̂A =Uncompress(rA,+)

3. kAQ̂B = (xAB,±yAB) kBQ̂A = (xAB,±yAB)
κ = KDF(xAB) κ = KDF(xAB)

Figure 3.1 The Diffie-Hellman-over-Bitcoin Protocol

would need to perform a history-revision attack to modify the ECDSA signatures stored in
the Blockchain.

3.3.3 Diffie-Hellman-over-Bitcoin Protocol

Based on the concept of transaction authentication, the first protocol that we present is ‘Diffie-
Hellman-over-Bitcoin’. The protocol is non-interactive; the shared secret is generated using
the signatures from two transactions and no additional information from the participants
is required. However, forward secrecy is not provided, as we will illustrate in the security
analysis.

Figure 3.1 presents an outline of the protocol. Initially, each user will derive the random
nonce k from their own signatures and fetch their partner’s transaction from the Blockchain.
Each user will gain an estimation of their partner’s public key Q̂ before using their own
transaction-specific private key k to derive the shared secret (xAB,±yAB). Regardless of
whether Q̂A = ±QA (or Q̂B = ±QB), the x co-ordinate of kBQ̂A will be the same as that
of kAQ̂B. Following the Elliptic Curve Diffie Hellman (ECDH) [85] approach, the xAB

co-ordinate will be used to derive the key KDF(xAB) = κ .

3.3.4 YAK-over-Bitcoin Protocol

The second protocol we present is ‘YAK-over-Bitcoin’. This is based on adapting a PKI-based
YAK key exchange protocol [50] to the Bitcoin application by removing the dependence on a
PKI and instead relying on the integrity of the Blockchain. We chose YAK instead of others
(e.g., station-to-station, MQV, HMQV, etc), as YAK is the only PKI-based AKE protocol that
requires each sender to demonstrate the proof of knowledge of both the static and ephemeral
private keys. This requirement is important for the security proofs of our system as we will
detail in Section 3.4.1. As well, we will show in the security analysis that the protocol allows
the participants to have full forward secrecy.

24 Authenticated Key Exchange over Bitcoin

Blockchain contains (rA,sA) and (rB,sB) from TA and TB
Alice (A, dA) Bob (B, dB)

1. kA = (H(TA)+dArA)s−1
A kB = (H(TB)+dBrB)s−1

B
2. QA = (rA,yA) = kAP QB = (rB,yB) = kBP
3. Q̂A =Uncompress(rA,+) Q̂B =Uncompress(rB,+)

If QA = Q̂A then k̂A = kA If QB = Q̂B then k̂B = kB

else k̂A =−kA else k̂B =−kB

4. Q̂B =Uncompress(rB,+) Q̂A =Uncompress(rA,+)
5. wA ∈R [1,n−1], WA,ZKP{wA}−−−−−−−−−→

wB ∈R [1,n−1],
WA = wAP WB = wBP

WB,ZKP{wB}←−−−−−−−−−6. Verify ZKP{wB} Verify ZKP{wA}
7. (xAB,yAB) = (xAB,yAB) =

(k̂A +wA)(Q̂B +WB) (k̂B +wB)(Q̂A +WA)
κ = KDF(xAB) κ = KDF(xAB)

Figure 3.2 YAK-over-Bitcoin Protocol

An outline of our protocol is presented in Figure 3.2. Initially, each user will follow the
same steps as seen in the previous ‘Diffie-Hellman-over-Bitcoin’ protocol to derive their
secret k and their partner’s estimated public key Q̂. However, a subtle difference requires each
user to compare their real public key Q with the estimation of their own key Q̂ to determine if
they are equal. If these public keys are different, then the user will use the additive inverse of
k as their estimated transaction-specific private key and we will denote this choice between
the two keys as k̂. This subtle change will allow both parties to derive the same shared secret
(xAB,yAB) which would be expected in an interactive protocol without exchanging their real
y co-ordinates.

Each user generates an ephemeral private key w and computes the corresponding public
key W = wP. As required in the original YAK paper [50], each user must also construct
a zero knowledge proof to prove possession of the ephemeral private key w. These zero
knowledge proofs can be sent over an insecure communication channel to their partners.
Here, we will use the same Schnorr signature as in [50] to realise the ZKP. Details of the
Schnorr ZKP are summarised in Algorithm 2 and 3. The definition of the Schnorr ZKP
includes a unique signer identity ID, which prevents an attacker replaying the ZKP back to
the signer herself [50]. In our case, we can simply use the unique r value from the user’s
ECDSA signature (r,s) in the associated Bitcoin transaction T as the user’s identity.

Once the ZKPs have been verified, each user will derive (xAB,yAB) using their secret
w, k̂, public value W and their partners’ estimated transaction-specific public key Q̂. It
should be easy to verify that although the shared secret has four different combinations

3.4 Security Analysis 25

Algorithm 2 Schnorr Zero Knowledge Proof Generation Algorithm
Input: Domain parameters D = (q,P,n,Curve), signer identity ID, secret value w and public
value W .
Output: (V,z)

1: Select v ∈R [1,n−1], Compute V = vP
2: Compute h = H(D,W,V, ID)
3: Compute z = v−wh mod n
4: Return (V,z)

Algorithm 3 Schnorr Zero Knowledge Proof Verification Algorithm
Input: Domain parameters D = (q,P,n,Curve), signer identity ID, public value W , Schnorr
zero knowledge proof values (V,z)
Output: Valid or invalid

1: Perform public key validation for W [64]
2: Compute partners h = H(D,W,V, ID)

3: Return V ?
= zP+hW mod n

(±k̂A +wA)(±k̂B +wB)P, the secret key derived between Alice and Bob will always be
identical (due to each participant predicting the estimated public key Q̂ that their partner will
choose).

3.4 Security Analysis

Our protocols are based on reusing the signature-specific random value k in ECDSA as
the transaction-specific secret on which the authenticated key exchange protocol is based.
Hence, the security of both the ECDSA signature and the key exchange protocols needs to
be analysed to make sure the reusing of k is sound in terms of security.

For the AKE protocols, following the security analysis of YAK [50], we consider three
security requirements, informally defined in the following:

• Private key security: The adversary is unable to gain any extra1 information about
the private key of an honest party by eavesdropping her communication with other
parties, changing messages sent to her, or even participating in an AKE protocol with
her.

1By “extra” information, we mean information other than what is derivable from the honest party’s
already available public key.

26 Authenticated Key Exchange over Bitcoin

• Full forward secrecy: The adversary is unable to determine the shared secret of an
eavesdropped AKE session in the past between a pair of honest parties, even if their
private keys are leaked subsequently.

• Session key security: The adversary is unable to determine the shared secret between
two honest parties by eavesdropping their communication or changing their messages.

Note that in our security arguments we consider the security of shared secrets (xAB in
Fig’s 3.1 and 3.2), as opposed to that of the subsequently calculated shared session keys (κ
in the same figures). We henceforth denote the shared secret by K, i.e., κ = KDF(K). We
require the shared secret to be hard to determine for the adversary in the full forward secrecy
and session key security requirements. A good key derivation function (KDF) derives from
such a shared secret a session key which is indistinguishable from random. Our security
proofs can be easily adapted to prove indistinguishability based on the decisional rather than
computational Diffie-Hellman assumption.

For ECDSA signature, we require that it remains unforgeable against chosen-message
attacks despite the randomness k being reused in subsequent AKE protocols. Although
ECDSA has withstood major cryptanalysis, the security of ECDSA has only been proven
under non-standard assumptions or assuming modifications (see [125] for a survey of these
results). In our analysis, we consider extra information available to an attacker as a result of
k being reused in AKE protocols, and show that it does not degrade the security of ECDSA.

We assume ECDSA to be a (non-interactive honest-verifier) zero-knowledge proof of
knowledge of the private key d. This is a reasonable assumption in the random oracle
model which follows the work of Malone-Lee and Smart [73]2. In practice, people accept
bitcoin transactions only when the ECDSA signatures are verified successfully. Verifying the
ECDSA signature is tantamount to verifying the knowledge of the ECDSA private key d that
should only be held by the legitimate bitcoin user.

We also note that given an ECDSA message-signature pair, m,(r,s), knowledge of the
private key d is equivalent to knowledge of the randomness k since given either the other can
be calculated from sk = H(m)+dr mod n.

2Note that the results apply to a slightly modified version of ECDSA in which e = H(r|m)
where | denotes concatenation. Although the Bitcoin Core implementation is based on the original
ECDSA standard, the above modification is included in more recent standards of ECDSA such as
ISO/IEC 14888 [63]. Furthermore, as another option for signing, the Bitcoin community is considering
including Schnorr signature [6], which is proven to be a zero-knowledge proof of knowledge of the
private key.

3.4 Security Analysis 27

TA TM· · · · · ·· · ·

Alice

kA

Mallory

kMK K

Bob

kB

Blockchain

i. private key security ii. session key security

TA TB· · · · · ·· · ·

Alice

kA K K

Blockchain

Figure 3.3 Security of Diffie-Hellman-over-Bitcoin. Light grey denotes what the adversary
(Mallory in (i), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory) chooses.

3.4.1 Security of Diffie-Hellman-over-Bitcoin

This protocol is an Elliptic Curve Diffie-Hellman key exchange and the public values are
bound to two transactions in the Blockchain. Private key security considers a malicious active
adversary “Mallory”, and session key security considers an eavesdropper adversary “Eve”.
The protocol does not provide full forward secrecy. We will provide a sketch of the proof
of security for each property in the following. In each proof, we follow the same approach
as in [50] to assume an extreme adversary, who has all the powers except those that would
allow the attacker to trivially break any key exchange protocol.

Theorem 1 (Private Key Security). Diffie-Hellman-over-Bitcoin provides private key security
under the assumption that ECDSA signature is a zero knowledge proof of knowledge of the
ECDSA secret key.

sketch. The goal of an adversary Mallory is to be able to gain some extra information on
Alice’s transaction-specific private key kA through the following attack. Mallory is given
the public parameters of the system and access to the Blockchain which includes Alice’s
transaction TA, then she provides a transaction TT which is included in the Blockchain, then
she carries out a Diffie-Hellman-over-Bitcoin protocol with Alice (which is non-interactive),
and eventually is able to calculate the shared secret K. The attack is depicted in Fig. 3.3(i).
Alice’s ECDSA signature in TA is assumed to be zero knowledge and hence does not reveal
any information about her private key. Furthermore, since Mallory’s transaction TT includes
an ECDSA signature by her, and ECDSA signature is a proof of knowledge of Mallory’s
ECDSA secret key dT, Mallory must know dT, and hence kT. Hence, Mallory does not
gain any extra knowledge from calculating K, since knowledge of kT and Alice’s public key
enables her to simulate K on her own.

Theorem 2 (Session Key Security). Diffie-Hellman-over-Bitcoin provides session key se-
curity based on the computational Diffie-Hellman assumption under the assumption that
ECDSA signature is a zero knowledge proof of knowledge of the ECDSA secret key.

28 Authenticated Key Exchange over Bitcoin

sketch. Assume there is a successful adversary Eve that is able to calculate the shared secret
K for a key exchange between two honest parties Alice and Bob, without knowing either
Alice or Bob’s transaction-specific secret keys, kA or kB. The attack is depicted in Fig. 3.3(ii).
Note that since the protocol is non-interactive, the adversary is reduced to a passive adversary.
A successful attack would contradict the computational Diffie-Hellman (CDH) assumption
since given an instance of the CDH problem (P,αP,βP), one is able to leverage Eve and
solve the CDH problem by setting up Alice and Bob’s transaction-specific secrets as kA = α

and kB = β , which results in K = αβP. A successful Eve implies that CDH can be solved
efficiently.

3.4.2 Security of YAK-over-Bitcoin

This protocol is an Elliptic Curve YAK key exchange and the public values are bound to
two transactions in the Blockchain. Private key security and session key security consider a
malicious active adversary “Mallory”, and full forward secrecy considers an eavesdropper
adversary “Eve”. Similar as before, we assume an extreme adversary who has all the powers
except those that would trivially allow the attacker to break any key exchange protocol.
Under this assumption, we provide a sketch of the proof of security for each property in the
following.

Theorem 3 (Private Key Security). YAK-over-Bitcoin provides private key security under
the assumption that ECDSA signature is a zero knowledge proof of knowledge of the ECDSA
secret key.

Proof (sketch). The goal of an adversary Mallory is to be able to gain some extra
information on Alice’s transaction-specific private key kA through the following attack.
Mallory is given the public parameters of the system and access to the Blockchain which
includes Alice’s transaction TA, then she provides a transaction TT which is included in
the Blockchain, then she carries out a YAK-over-Bitcoin protocol with Alice, in which
Alice sends the message (wAP,ZKP{wA}) and Mallory sends the message (wTP,ZKP{wT}).
Alice’s ephemeral secret wA is also assumed to be leaked to Mallory. The attack is depicted in
Fig. 3.4(i). Alice’s ECDSA signature in TA is assumed to be zero knowledge and hence does
not reveal any information about her private key. Furthermore, since the ECDSA signature
in Mallory’s transaction and her message in the protocol are proofs of knowledge of dT

(equivalently kT) and wT, respectively, Mallory must know both kT and wT. Note that she
receives (wAP,ZKP{wA}) and wA and hence will be able to calculate K = (kT +wT)(kAP+

wAP). Hence, Mallory does not gain any extra knowledge from the values she receives, since

3.4 Security Analysis 29

wAP,ZKP{wA}

wMP,ZKP{wM}

TA TM· · · · · ·· · ·

Alice

wAkA

Mallory

wMkM

wAP,ZKP{wA}

wBP,ZKP{wB}

TA TB· · · · · ·· · ·

wAP,ZKP{wA}

wMP,ZKP{wM}

TA TB· · · · · ·· · ·

Mallory

wM

Bob

kB

K K

Alice

wAkA K

Bob

wBkB K

Blockchain Blockchain

Blockchain

Alice

wAkA K

i. private key security ii. full forward secrecy

iii. session key security

Figure 3.4 Security of YAK-over-Bitcoin. Light grey denotes what the adversary (Mallory in
(i) and (iii), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory) chooses.

wA is independent of kA and knowledge of wA, kT, and wT enables Mallory to simulate all
the values she receives.

Theorem 4 (Full Forward Secrecy). YAK-over-Bitcoin provides full forward secrecy based
on the computational Diffie-Hellman assumption.

Proof (sketch). Assume there is a successful adversary Eve that is able to calculate the
shared secret K for a previous key exchange between two honest parties Alice and Bob
through the following attack. Both Alice and Bob’s transaction-specific secret keys kA and
kB are assumed to be leaked to Eve. Eve is also assumed to have access to all the protocol
messages exchanged between Alice and Bob, as well as the Blockchain of course. The attack
is depicted in Fig. 3.4(ii). Given an instance of the CDH problem (P,αP,βP) one is able to
leverage Eve and solve the problem as follows. The protocol is set up with the ephemeral
secret values wA = α and wB = β and all other parameters as per the protocol description.
When Eve calculates K, the value S = K− kAkBP− kA(βP)− kB(αP) is calculated and
returned as the solution to the CDH problem. Note that since K = (kA +wA)(kB +wB)P, we
have S = αβP. A successful Eve implies that CDH can be solved efficiently.

Theorem 5 (Session Key Security). YAK-over-Bitcoin provides session key security based on
the computational Diffie-Hellman assumption under the assumption that ECDSA signature is
a zero knowledge proof of knowledge of the ECDSA secret key.

Proof (sketch). Assume there is a successful adversary Mallory that is able to calculate
the shared secret K for a key exchange between two honest parties Alice and Bob through

30 Authenticated Key Exchange over Bitcoin

the following attack by impersonating Bob to Alice. Alice believes she is interacting with
Bob, whereas in reality she is interacting with an impersonator Mallory who replaces Bob’s
message in the protocol with her own (wTP,ZKP{wT}). Alice’s transaction-specific secret
key kA is assumed to be leaked to Mallory as well. However, Mallory does not know Bob’s
transaction-specific secret key kB. The attack is depicted in Fig. 3.4(iii). Given an instance
of the CDH problem (P,αP,βP) one is able to leverage Mallory and solve the problem as
follows. The protocol is set up with Alice’s ephemeral secret wA = α and Bob’s transaction-
specific secret kB = β and all other parameters as per the protocol description. When Mallory
calculates K, the value S = K−kAwBP−wA(βP)−wB(αP) is calculated and returned as the
solution to the CDH problem. Note that since K = (kA +wA)(kB +wB)P, we have S = αβP.
A successful Mallory implies that CDH can be solved efficiently.

3.4.3 Security of ECDSA Signatures

Diffie-Hellman-over-Bitcoin is a non-interactive protocol and the protocol participants do
not send any messages to each other that would potentially have an impact on the security of
ECDSA signatures.

In ‘YAK-over-Bitcoin’, the messages that the protocol participants send each other include
information about their ephemeral keys wA and wB only, which are chosen independently of
all the secret values related to the ECDSA signatures in TA and TB. As shown in Theorem
3 in Section 3.4.2, the protocol does not reveal any information about the static private key
(i.e., k), and hence not any information about the ECDSA private key (i.e., d) since the two
values are linearly related. One can compute d from k, or vice versa. The key element in
the proof of Theorem 3 is that each party is required to demonstrate knowledge of both the
static and ephemeral keys. This also explains our choice of the YAK protocol, as YAK is
the only PKI-based AKE protocol that has the requirement that each party must demonstrate
the proof of knowledge for both the static and ephemeral keys (the former is realized by the
Proof of Possession at the Certificate Authority registration while the later is achieved by
Schnorr Non-interactive ZKP).

3.5 Implementation

Our implementation is a modification of the Bitcoin Core client and is considered a proof of
concept. We have included three new remote procedure commands (RPC) that will allow the
client to perform a non-interactive Diffie-Hellman key exchange, generate a zero knowledge
proof to be shared with their partner and verify a partner’s zero knowledge proof before

3.5 Implementation 31

Step Description Time
Diffie-Hellman-over-Bitcoin

1-2 Compute kA and Q̂B 0.08 ms
3 Compute shared secret KAB and key κAB 0.51 ms

Total: 0.59 ms

YAK-over-Bitcoin
1-4 Compute kA,QA, Q̂A and Q̂B 0.53 ms
5 Compute wA,WA and ZKP{wA} 0.90 ms
6 Verify Bob’s ZKP{wB} 0.69 ms
7 Compute shared secret KAB and key κAB 0.43 ms

Total: 2.55 ms
Table 3.2 Alice performing YAK-over-Bitcoin

revealing the shared secret. Our modified implementation was executed using the -txindex
parameter which allows us to query the Blockchain and retrieve the raw transaction data.

Two transactions were created using a non-modified implementation on the 10th Decem-
ber, 2013 to allow us to test our key exchange on the real network. All tests were carried out
a MacBook Pro mid-2012 running OS X 10.9.1 with 2.3GHz Intel Core i7 and 4 cores and
16 GB DDR3 RAM. Each protocol is executed 100 times from Alice’s perspective and the
average times are reported.

3.5.1 Time analysis
Preliminary steps for both protocols involve fetching the transactions from the Blockchain
0.04 ms and retrieving the signatures (r,s) stored in the transaction 0.08 ms. Overall, these
steps on average require 0.12 ms.

This ‘Diffie-Hellman-over-Bitcoin’ protocol is non-interactive as participants are not
required to exchange information before deriving the shared secret. Table 4.1 demonstrates
an average time of 0.08 ms to derive Alice’s transaction-specific private key kA and Bob’s
estimated public key Q̂B and 0.051 ms to compute the shared key κAB. Overall, on average
the protocol executes in 0.59 ms which is reasonable for real-life use.

The ‘YAK-over-Bitcoin’ protocol is interactive as it requires each party to send an
ephemeral public key together with a non-interactive Schnorr ZKP to prove the knowledge
of the ephemeral private key. Table 4.1 shows that computing and verifying zero knowledge
proofs is the most time-consuming operation. However, a total execution time of 2.55 ms is
still reasonable for practical applications.

32 Authenticated Key Exchange over Bitcoin

3.5.2 Note about domain parameters

Our investigation highlighted that q > n as seen in [25] which could obscure the relationship
between k and r as the x co-ordinate can wrap around n. However, the probability that this
may occur can be calculated as (q−n)/q≈ 4×10−39 and is unlikely to occur in practice.
However, in the rare chance that this does happen then it is easily resolved by r′ = r+n. This
does not require any modification to the underlying signature code as it is simply an addition
of the publicly available r with the modulus n. Once resolved, both parties can continue with
the protocol. For reference, q and n are defined below:

q=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
n=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

3.6 Conclusion

We proposed two protocols to allow for interactive and non-interactive key exchange, the
latter offering an additional property of forward-secrecy. We encourage the community to try
our proof-of-concept implementation and to take advantage of this new form of authentication
to enable end-to-end secure communication between Bitcoin users. In the next chapter, we
explore how the community accepted standard BIP70: Payment Protocol does not rely on
Bitcoin address authentication. This results in two new attacks as the merchant cannot verify
if the pseuodnymous customer endorsed the refund address received during the protocol.

Chapter 4

Refund attacks on Bitcoin’s Payment
Protocol

4.1 Introduction

In the previous chapter, we considered the scenario where both parties (e.g. a customer
and merchant) require an authenticated and end-to-end communication channel to support
post-payment correspondence. This led us to evaluate how merchants were handling the
pre-payment correspondence to allow customers to authenticate the merchant’s payment
address and how the merchant authenticates the customers refund address in the event of a
dispute. We discovered in 2014 that more than 100,000 merchants used the infrastructure
provided by Payment Processors such as BitPay and Coinbase to receive bitcoin payments.

Both Payment Processors and all merchants implement the community accepted BIP70:
Payment Protocol standard that was proposed by Andresen and Hearn [8]. The motivation
for this protocol is to reduce the complexity of Bitcoin payments as customers are no longer
required to handle Bitcoin addresses1. Instead, the customer can verify the merchant’s
identity using a human-readable name before authorising a payment. At the time of a
payment authorisation, the customer’s wallet will also send a refund Bitcoin address to the
merchant that should be used in the event of a future refund.

The Payment Protocol provides two pieces of evidence that can be used in case of a
dispute with an arbitrator. The customer has evidence that they were requested to authorise a
payment if they keep a copy of the signed Payment Request message. This can be considered
evidence as the customer could not have produced the signature without the co-operation of

1A form of identity (26–35 alphanumeric characters) that is related to a public-private key pair
and is used to send/receive bitcoins.

34 Refund attacks on Bitcoin’s Payment Protocol

the merchant. The second piece of evidence for both the customer and the merchant is the
payment transaction as the payment is signed by the customer and time-stamped on Bitcoin’s
Blockchain, that is stored by most users of the network. In this chapter, we argue that a third
piece of evidence is required to authenticate the refund address sent from the customer as the
protocol recommends the customer’s payment and refund addresses not be the same. While
the authenticated key exchange protocols in the previous chapter could be used to receive
a refund address during post-payment correspondence, we propose that the third piece of
evidence can be incorporated in the pre-payment correspondence as desired by the Payment
Protocol. Without this evidence the following attacks are possible:

• The Silkroad Trader attack relies on a vulnerability in the Payment Protocol as the
customer can authenticate that messages originate from the merchant, but not vice-
versa. This allows a customer to route payments to an illicit trader via a merchant and
then plausibly deny their own involvement.

• The Marketplace Trader attack focuses on the current refund policies of Coinbase and
BitPay who both accept the refund address over e-mail [123][28]. This allows a rogue
trader to use the reputation of a trusted merchant to entice customers to fall victim to a
phishing-style attack.

Without the knowledge of our attacks, Schildbach asked the Bitcoin-Development mailing
list why the refund address in the Payment Protocol was currently unprotected [110] and one
of the original authors responded:

We talked about signing it with one of the keys that’s signing the Bitcoin trans-
action as well. But it seems like a bit overkill. Usually it’ll be submitted over
HTTPS or a (secured!) Bluetooth channel though so tampering with it should
not be possible. - Mike Hearn [53]

As seen above, a solution may involve the customer endorsing a refund address using one
of the public keys that authorised the transaction. However, the author stated this solution
was an overkill as the refund address is currently protected in an HTTPS communication
channel. We demonstrate that the HTTPS communication channel cannot protect the refund
address as it only provides one-way authentication, the customer can authenticate messages
originated from the merchant, but not vice-versa. At first glance, the ‘overkill’ solution
suggested by Hearn could provide the evidence required for the merchant. Unfortunately,
this solution opens the door to another attack which allows a malicious co-signer the sole
authority to endorse the refund address used by the merchant and thus steal the bitcoins of
other co-signers. We will discuss this in detail in Section 4.5.

4.2 Background 35

Contributions. Our contributions in this chapter are summarised below:

• We present new attacks on Bitcoin’s Payment Protocol and the current practice of both
the Payment Processors,

• We present real-world experiments that demonstrate how merchants today are vulnera-
ble to both attacks using a modified Bitcoin wallet.

• We propose a solution that removes the incentive to perform both attacks as the
merchant is provided with publicly verifiable evidence whose origin can be verified by
an arbitrator.

4.2 Background

Background information on Bitcoin can be found in Chapter 2.1. In this section we present
the community accepted Payment Protocol standard.

4.2.1 Payment Protocol

Andresen and Hearn proposed the Payment Protocol which has been accepted as a standard
in BIP70 [8] and is supported by several prominent wallets. The goal of this protocol is
described in the standard as the following:

“This BIP describes a protocol for communication between a merchant and their
customer, enabling both a better customer experience and better security against
man-in-the-middle attacks on the payment process.”

Communication between the customer and merchant is sent over HTTPS2 and importantly,
the customer is also responsible for broadcasting the payment transaction to the Bitcoin
network. In this HTTPS setting, the merchant must have an X.509 certificate issued by a
trusted Certificate Authority. This is necessary to let the customer authenticate messages
from the merchant.

Figure 4.1 outlines the messages exchanged and actions performed for the protocol. To
initiate, the customer clicks the ‘Pay Now’ button on the merchant’s website to generate
a Bitcoin URI. This URI opens the customer’s Bitcoin wallet and downloads the Payment
Request message from the merchant’s website. The wallet verifies the digital signature for

2The protocol specification allows messages to be sent over HTTP and for the merchant not to
have an X.509 certificate, but this is not considered secure.

36 Refund attacks on Bitcoin’s Payment Protocol

Figure 4.1 Overview of the Payment Protocol [8]

the message using the public key found in the merchant’s X.509 certificate (and checks the
merchant’s certificate for authenticity using the operating system’s list of root certificate
authorities). A human-readable name for the merchant3 and the number of requested bitcoins
is displayed on-screen and the customer must check this information before clicking ‘Send’.
Upon authorisation, the wallet performs two actions:

1. The customer’s wallet sends one or more payment transactions to the Bitcoin network.

2. The Payment message which includes the payment transactions and refund addresses
is sent to the merchant’s website.

The merchant responds to the customer’s Payment message with a Payment Acknowl-
edgement message which notifies the customer’s wallet to display a confirmatory ‘Thank
you’ message. Furthermore, once the merchant has detected the payment transaction on the
Bitcoin network, the customer’s web browser is refreshed to display a confirmation page. For
the rest of this chapter, we focus on messages sent over the HTTPS communication channel
as seen in Figure 4.1 and for simplicity we assume the customer only sends a single payment
transaction. The content for each message is the following:

• The Payment Request message contains a unique payment address B, requested
number of bitcoins B, creation time for request t1, expiry time for request t2, a
memo message mB, a payment URL uB and some merchant-specific data to link
any future payments zB. The contents of this message is signed using the private

3URL from the the X.509 certificate’s ‘common name’ field.

4.2 Background 37

Customer Merchant
Click ‘Pay Now’

Send Payment Request
B,B, t1, t2,mB,uB,zB,σB←−−−−−−−−−−−−−−−−−

Authorise?
Send Payment

zB,τC,((RC1,BC1), ...,(RCn,BCn)),mC−−−−−−−−−−−−−−−−−−−−−−−−−−→
Broadcast τC

Send Payment
Acknowledgement

Payment,m′B←−−−−−−−−
Notified

Figure 4.2 Message contents for the Payment Protocol

key xskB that corresponds to the merchant’s X.509 certificate public key such that
σB = SxskB(B,B, t1, t2,mB,uB,zB) where S is the signature algorithm.

• The Payment message contains a repeat of the merchant-specific data zB, a payment
transactions τC

4, a list of refund addresses (RC1, ...,RCn) and the number of bitcoins
B that should be refunded to each address such that ((RC1 ,B1), ...,(RCn,Bn)) and a
memo from the customer mC. There is no restriction to the number of refund addresses
sent to the merchant and the customer is responsible for deciding how the bitcoins
are refunded amongst the refund addresses provided. Merchants expect one or more
Payment messages until all requested bitcoins have been received.

• The Payment Acknowledgement message is a repeat of the customer’s Payment
message and includes an optional memo m′B from the merchant.

As seen in Figure 4.1, the refund address sent in the Payment message is not digitally
signed by the customer and its integrity relies on the HTTPS communication channel
established between the customer and the merchant to prevent man-in-the middle attacks.
This lack of mutual authentication in the Payment Protocol and the refund policy of both
Payment Processors to accept refund addresses over e-mail enables the attacks outlined in
the next section.

4A single payment transaction τC is considered for simplicity. The protocol supports one or more
payment transactions, and our results still apply in this case.

38 Refund attacks on Bitcoin’s Payment Protocol

Messages sent over an HTTPS communication channel
Silkroad Trader Customer Merchant

Send payment address T
T−→

Find Merchant
Click: Pay Now−−−−−−−−−−−→

Send Payment
Request

B,B, t1B, t2B,
mB,uB,zB,σB←−−−−−−−−−

Authorise?
Broadcast τC
Send Payment

zB,τC,(T,B),mC−−−−−−−−−−−→
Detect τC

Send Payment
Acknowledgement

Payment,m′B←−−−−−−−−
Cancel order

Refund request−−−−−−−−−−→
Broadcast τB

Detect τB Detect τB
Ships item

Figure 4.3 Silkroad Trader attack allows a customer to route bitcoins to an illicit trader via
an honest merchant and then plausibly deny their involvement.

4.3 Attacking the Payment Protocol

In this section, we outline attacks which are feasible due to an authentication vulnerability in
the Payment Protocol and the refund policy of both Payment Processors. Fundamentally, our
attacks rely on the merchant’s inability to distinguish if the refund address originated from
the same pseudonymous customer that authorised the payment. As well, these attacks are
successful even when all messages are sent over an HTTPS communication channel.

4.3.1 Silkroad Trader Attack

This attack allows a customer to route payments to an illicit trader via an honest merchant
and then plausibly deny their own involvement in the refund transaction. The main idea
behind this attack relies on the customer’s ability to swap the refund address in their Payment

4.3 Attacking the Payment Protocol 39

message with a Bitcoin address under the control of an illicit trader. Most importantly, the
customer is not required to endorse the illicit trader’s Bitcoin address with a digital signature.

Figure 4.3 is an outline of the Silkroad Trader attack. It begins with the customer finding
an ‘illicit good’ to purchase from a merchant on Silkroad and receiving the illicit trader’s
payment address T . Next the customer finds a merchant who supports the Payment Protocol
and has an item listed with approximately equal (or greater) in price. Once a merchant and
item is found, the customer clicks ‘Pay now’ to start the payment process and downloads
a Payment Request message from the merchant’s website. To commence the attack, the
customer’s wallet authorises the payment transaction τC and inserts the illicit trader’s payment
address T in the Payment message as the refund address (instead of their own refund address)
and then sends the message to the merchant.

The customer must request a refund to finish the attack once their Bitcoin wallet has
received the Payment Acknowledgement message alongside a confirmation e-mail from the
merchant. Assuming the merchant follows the Payment Protocol faithfully, the refunded
bitcoins in τB are sent to the illicit trader’s payment address T. Also, the customer can detect
the refund transaction (merchant sending bitcoins to the illicit trader) τB on the Bitcoin
network before contacting the illicit trader for an acknowledgement that the ‘illicit goods’
have been dispatched.

Ideally, if this attack happened in practice, the merchant could provide the Payment
message as publicly verifiable evidence that the bitcoins were sent to the refund address
provided by the pseudonymous customer. Unfortunately, the customer may plausibly deny
having supplied the illicit trader’s payment address due to their lack of endorsement, and
hence claim that the merchant has forged the message single-handedly.

4.3.2 Marketplace Trader attack

In practice, the policy of Coinbase and BitPay encourages customers to provide refund
addresses using an external method of communication such as e-mail [28][123] which
ignores the refund address sent in the Payment Protocol. This deviation from the protocol is
the basis of a new phishing style attack as a ‘rogue trader’ can use the reputation of a ‘trusted’
merchant to encourage potential customers to purchase an item from their website.

Figure 4.4 outlines this attack. It begins with the rogue trader establishing a website
that sells the latest products well below the market rate to attract customers to their store.
Most customers may be suspicious that the rogue trader can offer these prices and may
wisely think it is a scam. To encourage customers to proceed with a purchase, the rogue
trader can advertise that all payments are sent to a trusted merchant such as CeX and there
is little reason not to trust them. When a customer proceeds to checkout on the rogue

40 Refund attacks on Bitcoin’s Payment Protocol

Messages sent over an HTTPS communication channel
Merchant Rogue Trader Customer

Send Payment
Request

B,B, t1B, t2B,
mB,uB,zB,σB−−−−−−−−−→

Forward
Payment Request

B,B, t1B, t2B,
mB,uB,zB,σB−−−−−−−−−→

Authorise?
Send Payment

zB,τC,((RC1,BC1), ...,(RCn,BCn)),mC←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Broadcast τC

Detect τC Detect τC and
refresh customer’s

web browser
Fake

Confirmation Page−−−−−−−−−−−−−→
Send Payment

Acknowledgement
Payment,m′B−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Cancel order
(T,B) sent
over e-mail←−−−−−−−

Send Refund

Figure 4.4 Marketplace Trader attack involves a rogue trader using the reputation of a
‘trusted’ merchant to encourage customers to fall victim to a phishing-style attack.

trader’s website and clicks ‘Pay now’, the rogue trader’s website can automatically fetch
a Payment Request message from the trusted merchant’s website and forward this to the
customer. The customer’s wallet opens the genuine Payment Request message and displays a
human-readable name for the trusted merchant alongside the number of requested bitcoins.
This can boost the customer’s confidence that the rogue trader is legitimate as the payment is
sent to the ‘trusted’ merchant.

Unfortunately, the customer falls victim to the attack upon authorising the payment
as they are unwittingly paying for a purchase on behalf of the rogue trader to the trusted

4.4 Real-world experiments 41

merchant. The rogue trader detects the payment5 transaction on the Bitcoin network and
refreshes the victim’s web browser to display a fake confirmation page (remember, the
customer’s web browser is connected to the rogue trader’s website). The rogue trader can
proceed to cancel the order and send a new refund address over e-mail to the trusted merchant.
As the merchant’s policy is to use an external method of communication to authenticate
customers and deviate from the Payment Protocol standard - then the refund address sent by
the rogue trader over e-mail should receive the bitcoins.

Furthermore, the customer cannot be aware this attack has occurred as they lack enough
information to identify the refund transaction on the Bitcoin network. More importantly, this
attack is deployable single-handedly by a rogue trader and does not require the co-operation
of a ‘trusted’ merchant. In fact, the trusted merchant may only become aware of this scam if
contacted in the future by the customer.

4.4 Real-world experiments
Our experiments aim to verify the current practice of processing refunds by merchants, and
assess the feasibility of the attacks. We purchased items from real-life merchants using a
modified Bitcoin wallet before requesting for the order to be cancelled and a refund processed.
The attack is considered successful if the refunded bitcoins are received by the adversary’s
wallet. The merchants used during these experiments are based in the UK and are supported
by BitPay or Coinbase. The bitcoins used for the experiments are owned by the authors
and no money is sent to any illicit trader. All experiments have been ethnically approved by
Newcastle University’s ethical committee.

4.4.1 Proof of concept wallet

We have developed a wallet which supports the Payment Protocol and automates the Silkroad
Trader attack. We explain how our wallet works step-by-step:

1. The customer inserts the illicit trader’s Payment Request URI into the wallet which
stores both the request and Bitcoin address for later use.

2. The customer finds an item equal (or greater) in value as the ‘illicit goods’ and inserts
the merchant’s Payment Request URI into their wallet.

3. The wallet provides a list of refund addresses that can be chosen for the Payment
message that is sent to the merchant and the customer can choose the illicit trader’s
Bitcoin address.

5Currently 50% of nodes on the network receive a new transaction within 5 seconds [3].

42 Refund attacks on Bitcoin’s Payment Protocol

4. Assuming a refund has been authorised by the merchant, the wallet can detect the
merchant’s refund transaction on the network and include it in a Payment message that
is sent to the illicit trader.

5. The wallet is notified by a Payment Acknowledgement message from the illicit trader
that the payment has been received.

4.4.2 Simulation of attacks

We discuss our experience carrying out a simulation of both attacks against real world
merchants using arbitrary identities (i.e., random name, e-mail address, telephone number,
delivery/billing addresses created for experiments only). Only e-mail is used to communicate
with each merchant. Our results for the Silkroad Trader attack are as follows:

Cex refunded the bitcoins within 3 hours of cancelling the order and used the refund
address from the Payment Protocol.

Pimoroni Ltd refunded the bitcoins within a single business day and used the refund
address from the Payment Protocol.

Scan refunded the bitcoins after 26 days and used the refund address from the Payment
Protocol. The delay was due to Scan initially requesting us to provide a refund address over
e-mail, but we insisted using the one specified in the original payment message.

Dell were unable to process the refund due to ‘technical difficulties’ and requested our
bank details. We informed them that we did not own a bank account and Dell suggested
sending the refund as a cheque. While not the experiment’s aim, this potentially opens Dell
as an exchange for laundering tainted bitcoins.

To simulate the Marketplace Trader attacks we sent the refund address in an e-mail to
the merchants. Assuming the merchants accepted e-mail as a good form of authentication
and ignored the refund address sent in the Payment Protocol, then the phishing-style attack
we described earlier could happen in practice. Our results were the following:

Something Geeky refunded the bitcoins within a single business day to a refund address
sent over e-mail.

Girl meets dress refunded the bitcoins within 11 business days to a refund address sent
over e-mail. The delay was due to the merchant initially thinking we paid using a bank
transfer.

BitRoad refunded the bitcoins within a single business day to a refund address sent over
e-mail. In this experiment, we registered using a non-existing e-mail address and requested
for the order to be cancelled using a variant of the e-mail address. This demonstrates that
even the registered e-mail address to initiate the purchase is not being used to authenticate
the customer.

4.5 Solution 43

Refund	 Transac-on	

Output	 Input	

Payment	 Transac-on	

Output	 Input	

Input	

Mallory’s	 	
public	 key	 and	

signature	

Alice’s	 	
public	 key	 and	

signature	

Mallory’s	
refund	
address	

Figure 4.5 The malicious co-signer attack allows a co-signer the sole authority to endorse the
refund address used by the merchant and thus steal the bitcoins of other co-signers

4.5 Solution
We propose providing the merchant with publicly verifiable evidence that can cryptograph-
ically prove the refund address received during the protocol was endorsed by the same
pseudonymous customer who authorised the payment.

A solution proposed by Hearn [53] assumes the payment transaction is authorised by
a single customer and recommends endorsing the refund address using any key which
authorised the transaction. However, it is not valid to assume that a transaction has been
authorised by a single customer due to the nature of a Bitcoin transaction. If the adversary
is responsible for sending the Payment message to the merchant, then they have the sole
authority to endorse the refund address used by the merchant as seen in Figure 4.5.

Our proposed solution prevents this attack by requiring each key that authorised the
transaction to also endorse its own refund address. In the event of a refund the merchant
sends the same (or less) number of bitcoins received6 from each transaction input to an
associated refund address.

4.5.1 Proposed Solution

To achieve a signature solution requires changes to each message sent as part of the protocol.
We outline these changes in Figure 4.6 and explain each message separately before discussing
their implications.

The Payment Request message considers the memo mB as a mandatory parameter and
should contain enough information for the customer(s) to be aware that this payment request
is only for them, e.g. the registered e-mail address, delivery address, product information, etc.
This memo field should also include customer-specified instructions to provide evidence that
the merchant followed any instructions provided by the customer. The payment address B
should be unique for each Payment Request and like before, there should be no restriction on

6A transaction input does not record the number of bitcoins ‘sent’ and instead references an output
from a previous transaction which specifies the bitcoins.

44 Refund attacks on Bitcoin’s Payment Protocol

Messages sent over a secure HTTP communication channel
Customer Merchant

Click ‘Pay Now’
Send Payment

B,B, t1, t2,mB,uB,zB,σB←−−−−−−−−−−−−−−−−− Request

Send Payment
zB,τC,((RC1,BC1,mC1 ,σC1), ...,(RCn,BCn,mCn,σCn))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

where σCi = SskCi
(πCi,RCi,BCi,mCi,PaymentRequest) Broadcast τC

Send Payment
Acknowledgement

Payment,m′B,σ
′
B←−−−−−−−−−−−

Notified where σ ′B = SxskB(Payment,m′B)

Figure 4.6 A single customer sends a payment to the merchant

the number of times a customer can download the same Payment Request to support paying
from multiple devices or sharing with others.

The Payment message aims to associate each transaction input πCi with a refund address
RCi by endorsing the refund address using the same keys that authorised the transaction input.
We assume the customer is no longer responsible for broadcasting the payment transaction
τC to the Bitcoin network; instead, the responsibility of broadcasting the payment transaction
should fall on the merchant (as recommended by one of the original authors of the Payment
Protocol7). For simplicity, we describe our solution using a single Payment message and
payment transaction τC

8.
Each refund address endorsement signature is σCi = SskCi

(πCi,RCi,BCi,mCi Payment
Request), where S is the signature algorithm, skCi is the private key which corresponds to the
key that authorised the transaction input, πCi is a concatenation of the elements that constitute
the signed transaction input, RCi is the refund address, BCi is the number of bitcoins to refund,
mCi is an additional memo from the customer and Payment Request is the signed message
from the merchant. These parameters were chosen to clarify which transaction input is
associated with the endorsed refund address and to ensure this endorsement is only valid for
this Payment Request message. The concatenated information πCi is the data stored inside
the transaction input and includes: the previous transaction identification hash, an index for
the output in the referenced transaction and the script which contains a signature to authorise
the payment and its corresponding public key.

7https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/zANj2RpslCcJ
8Our solution continues to allow customers to send one or more Payment messages to the merchant

until all requested bitcoins have been received. Furthermore, these messages can contain a list payment
transactions.

https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/zANj2RpslCcJ

4.5 Solution 45

A new refund policy for the merchant is required as each transaction input is responsible
for endorsing a refund address. We propose the bitcoins associated with each refund address
must be equal to (or less than) the number of bitcoins sent in the respective transaction input.
The merchant must also check that the total number of bitcoins associated with all refund
addresses in this message is equal to (or less than) the number of bitcoins he received in
the payment transaction. These checks are necessary as the payment transaction can have
additional outputs for change and the merchant needs to ensure he does not refund more
bitcoins than he received from each transaction input. For example, if the transaction has a
single input of B5 (from the customer) and two outputs: B4 (to the merchant) and B1 (to the
customer as change), then the merchant must ensure the customer is only refunded B4 (and
not B5).

The message content sent to the merchant is outlined in Figure 4.6 and includes: the
merchant-specific data zB, the complete transaction τC and a list of refund addresses
alongside their associated endorsement signatures and the number of bitcoins to refund
((RC1,BC1,mC1,σC1), ...,(RCn ,BCn ,mCn ,σCn)).

The Payment Acknowledgement message is signed using the merchant’s X.509 private
key and repeats the customer’s Payment message alongside an additional memo m′B. The
signature is σ ′B = SxskB(Payment,m′B) where S is the signature algorithm and xskB is the
private key that corresponds to the merchant’s public key in their X.509 certificate.

We simplified the notation for σCi to only show the case when the customer endorses the
ith refund address using a single signing key. However, if the multi-signature approach is
used to authorise the transaction input, then a threshold of k signing keys should be used
to endorse the respective refund address. Each customer with control of 1 of k keys can
independently authorise the transaction input and the corresponding refund address. Both
signatures which endorse the refund address and authorise transaction input are sent to the
other co-signers to be included in the Payment message.

4.5.2 Discussion

Our solution provides a proof of endorsement as the refund address received by the merchant
is signed using the same set of keys used to authorise the transaction. This evidence removes
the customer’s plausible deniability for their involvement in the Silkroad Trader attack.
Crucially, this is a detective solution which allows a third party to determine whether the
customer was involved in supplying payment addresses for an illicit trader as opposed to
preventing it entirely. Furthermore it provides an incentive for the merchant to use the refund
address sent during the Payment Protocol which prevents the Marketplace Trader attack.
The merchant does not need to distinguish whether or not the payment has been split which

46 Refund attacks on Bitcoin’s Payment Protocol

preserves the customers privacy and prevents the malicious co-signer attack as co-signers
cannot endorse the refund addresses of others. These additional signatures are handled by the
wallet on behalf of the user. Also, no connection to the peer to peer network is required
for the customer as the merchant is responsible for broadcasting the payment transaction
τC and this prepares the Payment Protocol to support off-chain transactions such as the
Lightning Network [100].

Furthermore, we explored other potential solutions such as requesting the customer to
provide a signature from the refund address at the time of payment (instead of using the same
keys that authorised the transaction) or including secret data inside the merchant-specific data
field zB. The former is not satisfactory as proving ownership of the refund address does not
necessarily link the refund address to the same keys that authorised the transaction. Although
if it is used in combination with our solution then it may act as a preventive measure as it
would require the illicit trader’s co-operation which creates an additional barrier to perform
the attack. The latter remains vulnerable to the Marketplace Trader attack as the rogue
trader has access to the Payment Request message. As well, the attacks introduced in this
chapter also stem from the fact that merchants have no community-accepted refund protocol
today. While researchers have proposed secure post-payment communication protocols [77]
in the past which could conceivably be used to support arranging refund in a private and
authenticated manner, this remains a subject for further investigation in future work.

Payment Processors are expected to perform anti-money-laundering policies on behalf
of their merchants [43]. The state of New York recently released Bitlicense [115] to outline
regulation for Bitcoin businesses. Our solution enhances the book-keeping required for this
license as the signed Payment message is cryptographic evidence that the pseudonymous cus-
tomer has endorsed the transaction-related information required for auditing by investigators.
We improve the mandatory customer receipt which is currently a static web-page or an e-mail
by using the Payment Acknowledgement message as a cryptographic receipt as it is signed
by the merchant’s X.509 private key. Similar cryptographic evidence has been explored in
the Bitcoin research community and two examples include: providing a warrant to hold a
mixer accountable in the event of any wrongdoing with Mixcoin/Blindcoin [18][124], and
to compute a proof of solvency [44] that demonstrates the business is financially in good
standing to customers.

Clustering techniques have been demonstrated to link a group of Bitcoin addresses to
a single pseudonymous user [9]. Meiklejohn et al. [82] identified that 374.49 BTC stolen
from Betcoin in April 2012 and 4,588 BTC from the Bitcoinica theft in May 2012 were
sold at Bitcoin-24, Mt Gox, BTC-e, CampBX and Bitstamp. Also, Reid et al. [101] tracked
25k stolen bitcoins and deduced LulSec’s involvement in the theft. These analysis tech-

4.5 Solution 47

niques using the Blockchain are currently supporting criminal charges in the Silkroad Trial
[4]. However, privacy-enhancing protocols [75][105][81] and altcoins [84][86] are actively
reducing the effectiveness of these analysis techniques. Nevertheless, these techniques
provide a platform for the Silkroad Trader attack as independent observers may discover
merchants sending bitcoins to an illicit trader and then publicly release the ‘evidence’. Our
solution provides the merchant with publicly verifiable evidence to demonstrate a customer’s
deception.

4.5.3 Inherent issues due to Bitcoin
We outline four issues that are inherent due to Bitcoin that need to be considered for our
solution:

First, the proof of endorsement evidence can only authenticate pseudonymous customers
as the Payment Protocol lacks the type of real-life identity endorsement that comes with
banks. While protecting an honest merchant, our solution cannot prevent a malicious
merchant simulating both attacks and insisting they were tricked.

Second, in a similar way to the original protocol, an observer of the Blockchain may be
able to link the payment and refund transactions using the denominations of bitcoins sent
and received.

Third, customers can re-sign the transaction to change the identification hash and broad-
cast it to the network. We recommend the merchant keeps a copy of the payment transaction
received in the Payment message as a re-signed transaction cannot be used to verify the
endorsement in the future.

Fourth, we assume merchants maintain the UTXO (Unspent Transaction Output) set to
participate in the Payment Protocol. Without this list of spendable outputs, the merchant
cannot independently verify transactions or calculate the number of bitcoins to refund for
each transaction input. On the other hand, customers do not require the UTXO set and can
continue to use SPV (Simplified Payment Verification) wallets for the Payment Protocol.

4.5.4 Solution performance
All tests are carried out on a MacBook Pro mid-2012 running OS X 10.9.1 with 2.3GHz
Intel Core i7 and 16 GB DDR3 RAM. Time performance in Table 4.1 represents both the
current Payment Protocol implementation and our proposed modifications for the Bitcoin
Core Client while utilising 1 core. Furthermore, both signing operations in steps 3 and 8,
and the verification operation in step 9, are performed using the Secp256k1 implementation
which has recently replaced OpenSSL in Bitcoin Core [131]. Each step was executed 100
times and the reported times represent the average.

48 Refund attacks on Bitcoin’s Payment Protocol

Step Description Time
Customer in the current protocol

1 Verify merchant’s certificate and chain of certificates authenticity 0.83 ms
2 Verify merchant’s signature on the Payment Request message 0.08 ms
3 Sign a single transaction input 0.08 ms
4a Fetch a list of previously generated refund addresses RC1, ...,RCk 0.72 ms
4b Generate a new refund address RC from the wallet’s key pool 110.55 ms
5 Update wallet’s address book with the refund address RC 72.68 ms

Total without 4b: 74.39 ms
Total with 4b: 184.94 ms

Merchant in the current protocol
6 Verify the customer’s payment transaction 0.29 ms

Total: 0.29 ms
Additional changes proposed for the customer

7 Produce endorsement signature σC using the private key skC 0.11 ms
New Total without 4b: 74.49 ms
New Total with 4b: 185.04 ms

Additional changes proposed for the merchant
8 Fetch the transaction input’s referenced transaction output 0.01 ms
9 Verify the transaction input’s endorsement signature σC 0.13 ms

New Total: 0.43 ms
Table 4.1 Time performance for proposed changes to the Payment Protocol

Steps 1–5 represent the customer’s perspective in the current Payment Protocol’s im-
plementation. The wallet verifies the merchant’s certificate authenticity using the chain of
certificates that lead to a trusted root authority and verifies the merchant’s signature on the
Payment Request message before authorising at least one transaction input to authorise the
payment. Then, the wallet fetches a list of pre-generated refund addresses and Step 4b only
occurs if this list is empty as a new refund address must be generated. This refund address is
associated with the payment for future reference. These steps require 74.39 ms if the list of
pre-generated refund addresses is not empty, otherwise 184.94 ms is required. Our proposed
change in Step 7 takes 0.11 ms and requires the customer’s wallet to sign an endorsement
message for the refund address, obtaining the signature σC. In total, the time required for the
customer is 185.04 ms with Step 4b, and 74.49 ms without Step 4b.

Step 6 represents the merchant’s perspective in the current Payment Protocol’s imple-
mentation and requires 0.29 ms to check if the payment transaction with a single input is
valid. We propose in Steps 8–9 that the merchant fetches the transaction output referenced in
the payment transaction’s input to let the merchant check the number of bitcoins associated
with each refund address. Then, the transaction input’s public key C is used to verify the

4.6 Payment Processors Response 49

endorsement signature. These proposed changes require 0.14 ms, and in total the time
required for the merchant is 0.43 ms.

4.6 Payment Processors Response
We privately disclosed our attacks to the Payment Processors and received the following
response:

BitPay acknowledged “the researchers have done their homework" and that “refunds are
definitely a significant money laundering attack vector". They are now actively monitoring
for refund activity on behalf of their merchants. Furthermore, after we disclosed our results,
BitPay released a new refund flow [16] that recommends using the refund address provided
in the Payment Protocol rather than the one supplied by email.

Coinbase acknowledged the ‘Silkroad Trader’ attack as a good example of an authen-
tication vulnerability in the Payment Protocol. To prevent the Marketplace Trader attack,
Coinbase no longer provides merchants the API to change the refund address if it has been
supplied by the Payment Protocol. Also, they have updated their user documentation to
discourage merchants sending the refund using their own bitcoins to bypass the API changes.

Bitt is preparing to launch merchant services for the Caribbean and acknowledged both
attacks. They believe the endorsement evidence may support Payment Processors become
more ‘airtight’ for future regulation.

These temporary mitigation measures help to address the Marketplace Trader attack, but
not the Silkroad Trader attack. To fully address the latter, the BIP70 standard would need to
be revised, as we have discussed in Section 5.

4.7 Conclusion
This chapter presented two attacks that leverage an authentication vulnerability in Bitcoin’s
Payment Protocol and the refund policies of the two largest Payment Processors: Coinbase
and BitPay. We experimentally demonstrated both attacks on real-life merchants using a proof
of concept wallet before proposing a solution that provides the merchant with cryptographic
evidence that the refund address received during the Payment Protocol has been endorsed
from the same pseudonymous customer who authorised the transaction. In the next chapter,
we discuss the scalability issues facing Bitcoin and provide a survey on payment channels.
These protocols permit two users to privately transact and only the final aggregation of
payments is stored in the blockchain.

50 Refund attacks on Bitcoin’s Payment Protocol

Chapter 5

Towards Bitcoin Payment Networks

5.1 Introduction

The Bitcoin community fears that Bitcoin [90], the ‘Money for the Internet’ and currently the
most popular cryptocurrency, cannot scale to meet future demand. Today, the network can
process 3.3–7 tps (transactions per second) as each block is artificially capped at 1MB and
network measurements in 2015 [31] highlight that 90% of the network’s peer to peer network
can only support an effective throughput of up to 27 tps. This is dwarfed by established
payment providers such as Visa, which facilitates about 2,000 tps, with a peak capacity of
56,000 tps [122].

Bitcoin’s capacity limitations are increasingly felt by users in the form of delayed
transaction processing and rising transaction fees. Users currently pay about 3 to 7 US cents
per transaction (independent of the amount transferred). The costs of sending a transaction
could continue to rise as competition for space in the Blockchain increases and the protocol’s
monetary policy continually reduces the minting of new coins that rewards ‘miners’ for
securing the network.

A simple short-term fix to increase Bitcoin’s capacity would be to increase the maximum
block size, allowing more transactions to be included in each block. While multiple such
proposals exist [7][45][97], none have actively been adopted as the community cannot agree
if the size of blocks should be increased at all, incrementally, dynamically or whether an
artificial cap is required at all.

Long-term research has focused on two directions to improve scalability:

1. Redesigning the underlying Blockchain protocol to support more transactions per
second [12, 39, 69, 112], and

52 Towards Bitcoin Payment Networks

2. Facilitating ‘off-chain transactions’ where transactions are only committed to the
Blockchain if an adjudicator is required [32, 100].

In this chapter we explore the latter direction and provide an overview of payment
networks which are composed of two components; a payment channel and a mechanism to
route payments across a series of channels. This scaling approach bootstraps trust from the
blockchain in order to support local settlement of payments amongst the involved parties,
instead of publishing all transactions for global endorsement from the Bitcoin network.
Crucially, there are no trust-assumptions for the local settlement, payments are confirmed
immediately due to the nature of local settlement and all parties are guaranteed to receive
their fair share of a channel’s balance if they are on-line when the channel is closed.

With that said, we hope to provide a practical perspective in regards to the adoption of
payment networks by illustrating several caveats at the heart of this scaling approach. In
Section 5.2 we show the evolution of constructing payment channels to support a substantial
number of payments and remove the expiry time associated with a channel has so far been
hindered by Bitcoin’s transaction design. This is evident in Section 5.3 which presents
Duplex Micropayment Channels [33] and Lightning Channels [100] as both protocols require
a complex transaction structure and an elaborate ordering for signing transactions. Once
there is an existing network of channels, Section 5.4 highlights that this scaling approach
imposes an additional difficulty on sending a payment as the involved parties are responsible
for finding a route of on-line channels that connects them (and has sufficient capacity).
Finally depending on the channel construction, each party must be on-line at a specified
time or periodically monitor the blockchain, to avoid the counter-party effectively reversing
payments by closing the channel on a previously authorised balance for both parties.

5.2 Background

We first introduce the necessary background about Bitcoin’s lock time rules as used by
payment networks. Then, we present how to establish and send bitcoins in basic payment
channels with an untrusted counterparty.

5.2.1 Time Locks in Bitcoin

It is possible to lock coins for a specified duration of time using lock times in Bitcoin. A lock
time can be given as a future block height or time-stamp that is stored in a block’s header.
Most importantly, these lock times are specific to transaction outputs and not the entire
transaction. There are two types of lock time rules that are required for payment channels:

5.2 Background 53

Absolute Lock Time ensures an entire transaction1 or a child transaction that is spending an
output of a parent transaction2 cannot be accepted into the Blockchain until a specified
absolute block height k (or time) in the future,

Relative Lock Time ensures a child transaction that is spending an output of a parent
transaction cannot be accepted into the Blockchain until the parent transaction has
achieved a relative depth of λ blocks3.

5.2.2 Payment Channel Establishment

A payment channel allows two parties to send numerous payments to each other. Instead
of settling all transactions directly on the Blockchain, a payment channel only requires
two transactions: one to open the channel, and one to close it and settle the final balance.
The cornerstone of payment channels is depositing bitcoins into a multi-signature address
controlled by both parties and having the guarantee that all bitcoins are eventually refunded
at a mutually agreed time if the channel expires.

Spilman [114] proposed the first payment channel establishment protocol without the
need to trust the counterparty. This protocol has a Funding Transaction that stores the
depositor’s bitcoins and requires the authorisation of both parties to spend, and a Refund
Transaction that returns the funds to the depositor if no payments have been authorized or
the counterparty abandons the protocol. The lock time on the refund determines the lifetime
of the payment channel. To establish the channel, the Funding Transaction is created by
the depositor and remains unpublished until she received valid signatures for the Refund
Transaction from the counterparty.

Another possibility to realise refunds is through Non-Interactive Time-Locked Refunds,
that recently became available in Bitcoin with the activation of BIP 65 [119]. Non-Interactive
Time-Locked Refunds account for the channel timeout directly in the multi-signature output
of the Funding Transaction, which means that dedicated refund transactions are no longer
necessary. Once the Absolute Lock Time specified in the output’s script has expired, the
refund condition can be redeemed without the cooperation of the counterparty. While the
output can only refund a single party, refunding multiple parties is possible with dedicated
multi-signature outputs representing each participant’s deposit.

In practice, the use of payment channel protocols is currently hindered by the problem of
transaction malleability and the infeasibility to build upon unsigned transactions. Transaction

1The nLockTime field of the transaction
2The output’s script contains the OP_CHECKLOCKTIMEVERIFY opcode.
3The output’s script contains the OP_CHECKSEQUENCEVERIFY opcode.

54 Towards Bitcoin Payment Networks

malleability allows a co-signer or an external third party to change the identification hash of a
transaction before it is accepted into the Blockchain. This is a problem for contracts that sign
child transactions before the parent transaction, whose outputs are being spent, is included
in the Blockchain. If a modified parent transaction is accepted into the Blockchain, then all
pre-signed child transactions become invalid. Furthermore, it is impossible to build upon
unsigned transactions as adding signatures to a transaction changes its identification hash.
BIP 66 [130] has been deployed to prevent third-party signature malleability, but co-signer
and other types of malleability remain. BIP 141 [71], however, solves these malleability
issues and allows to build upon unsigned transactions, and is likely to be deployed soon.

5.2.3 Basic Payment Channels

We introduce unidirectional and bidirectional channels that leverage the Funding Transac-
tion’s multi-signature output. The establishment protocol in Section 5.2.2 is used to set
up both channels. Bitcoins are sent using subsequent Payment Transactions that have two
outputs to send each party their respective bitcoins.

Unidirectional channels were first implemented by Corallo in Bitcoinj [52] to allow a
customer to send incremental payments to a merchant. Each payment has two outputs: the
first increases the amount of bitcoins sent to the merchant, and the second returns change to
the customer. This introduces the Replace by Incentive rule as the merchant only signs and
broadcasts the latest Payment Transaction that sends them the most bitcoins. Payments can
be made until the channel expires or the whole deposit has been transferred to the merchant.

Bidirectional channels require the Payment Transaction to be associated with an Abso-
lute Lock Time. Each incremental payment decrements the lock time by a safety margin ∆

that represents the expected time for transactions to be accepted into the Blockchain. This
introduces the Replace by Timelock rule as the latest Payment Transaction is guaranteed to
be accepted into the Blockchain before any previously authorised transaction. Changing the
direction of payments (i.e. Alice sends coins to Bob, and then Bob sends coins to Alice)
requires both parties to sign a new transaction that decrement the channel’s lifetime.

5.3 Proposed Payment Channel Protocols

In this section, we outline two proposals for payment channels. The first one is called Duplex
Micropayment Channels, due to Decker and Wattenhofer [32]. It extends the number of
transactions that can occur within the lifetime of a bidirectional channel. The second one is

5.3 Proposed Payment Channel Protocols 55

Funding K=100

K=99

K=100

K=100

K=99

K=99

K=100

K=100

K=100

CAB

CBA

CAB

CBA

CAB

CBA

CAB

CBA

Setup Invalidation Tree, K is Absolute Time Lock
Unidirectional

 Channels

Signed by both parties

K

CAB

Transaction with an
Absolute Lock Time

Unidirectional Channel
(Payment Transaction)

Notation Legend

Figure 5.1 Duplex Micropayment Channels. A Funding Transaction is stored in the
Blockchain. All payments occur in the unidirectional channels. If either channel becomes
exhausted, then a new branch is created in the Invalidation Tree with a smaller Absolute Time
Lock k. This invalidates all previous branches, and resets the balance of both unidirectional
channels. For illustration ∆ = 1.

called Lightning Channels, proposed by Poon and Dryja [100], and allows the channel to
remain open indefinitely.

5.3.1 Duplex Micropayment Channels

Decker and Wattenhofer propose Duplex Micropayment Channels which enable bidirectional
payment channels with a finite lifetime [32]. Their scheme builds upon an initial Funding
Transaction with deposits from two parties A and B. It consists of two Unidirectional
channels CAB,CBA that together allow bidirectional payments, and an Invalidation Tree that
sets the minimum lifetime of the channel and is responsible for resetting the bitcoins available
to spend in both channels CAB,CBA. This reset is necessary as Alice may receive 1 BTC
from Bob in the unidirectional channel CBA, but her unidirectional channel to Bob CAB has
exhausted its supply of bitcoins. To continue bidirectional payments it is necessary to refresh
CAB with Alice’s 1 BTC.

The core idea of Duplex Micropayment Channels is to apply the Replace by Timelock
rule (cf. Section 5.2.3) using a tree of timelocked transactions instead of a single transaction.
This structure is called an Invalidation Tree, exemplarily shown in Figure 5.1. The nodes in
the tree represent Bitcoin transactions; each edge corresponds to the spending of the previous
node’s output and is signed by both parties. Each transaction Td,k has a depth d in the tree
and is associated with an Absolute Lock Time k. Nodes in the active branch (T1,k,T2,k, ...,Td,k)

56 Towards Bitcoin Payment Networks

have Absolute Lock Times that are less than previously authorised branches. This guarantees
that the active branch is accepted into the Blockchain before previously authorised branches.

The leaf node Td,k on the active branch has two outputs to represent each unidirectional
channel CAB and CBA. Each output can be spent if either of the following conditions is
satisfied:

1. The first condition requires the signature of both parties to authorise a Payment Trans-
action.

2. The second condition requires the signature of the depositor and that the current
Blockchain height is greater than an Absolute Lock Time kmax. This lock time kmax is
the maximum waiting time before the bitcoins can be returned to the depositor using a
Refund Transaction.

Payments are sent in the unidirectional channels CAB,CBA as the sender signs subsequent
Payment Transactions that have two outputs: the first sends bitcoins to the receiver, while the
second returns change to the sender. The Replace by Incentive rule implies that the receiver
will only sign the Payment Transaction that sends them the most bitcoins. If the receiver is
unresponsive, the depositor is guaranteed to have their bitcoins refunded once the maximum
lifetime of the channel kmax expires. It is possible to reset the balance of both unidirectional
channels once a channel has exhausted its supply of bitcoins. Resetting the channels requires
replacing the current active branch in the Invalidation Tree with a new branch whose leaf
node Td,k acts as an anchor for a new set of unidirectional channels.

In the following, we explain how to establish the channel, send bidirectional payments,
reset the balance of both Unidirectional channels and finally settle the payment channel on
the Blockchain.

Channel Establishment First, both parties combine their funds in an unsigned Funding
Transaction. Then, they build the first branch (T1,k,T2,k, . . . , Td,k) of the Invalidation Tree
and exchange signatures for the branch and the Payment Transactions that represent the
unidirectional channels CAB,CBA. Finally, both parties sign and broadcast the Funding
Transaction.

The Absolute Lock Time kmax of the Refund Transaction should exceed the Absolute Lock
Time of the leaf node Td,k by at least a safety margin ∆. This ensures that the unidirectional
channels have enough time to be accepted into the Blockchain before the Refund Transactions
become available to spend.

Send a Payment Each payment requires the sender to sign a new Payment Transaction.
The receiver only signs the transaction that sends them the most bitcoins if they want to settle
a dispute on the Blockchain. If either unidirectional channel has exhausted its supply of

5.3 Proposed Payment Channel Protocols 57

bitcoins, then both parties must cooperate to reset the balance of both channels before further
payments can be made.

Reset Balance Resetting the balance of the unidirectional channels requires both parties
to agree a new active branch in the Invalidation Tree. Figure 5.1 demonstrates several branch
replacements. An example includes the current active branch (T1,99,T2,99,T3,99) replacing
the previous branch (T1,99,T2,99,T3,100).

First, both parties find the first node Tα,k closest to the leaves that has a greater Absolute
Lock Time than it’s parent node by a safety margin of ∆, otherwise the root node T1,k is
chosen.

Second, a new branch is created, starting with the chosen node whose Absolute Lock
Time is decremented by the safety margin ∆ (i.e. Tα,k−∆). Each child node in this new branch
is given an Absolute Lock Time greater than k−∆ (e. g., the maximum value initially chosen
when the tree was established). As lock times are transitive, the reduced lock time of the
parent transaction automatically invalidates all previously authorised branches. Note, that
when the lock time of the root node T1,k−∆ is decremented, then the channel’s minimum
lifetime kmin is also reduced.

Third, both parties exchange signatures for the new active branch. The signatures for the
node Tα,k−∆ are only exchanged once both parties have successfully exchanged signatures
for the Payment Transactions that represent the unidirectional channels CAB,CBA and all of
its child nodes (Tα+1,k, ...,Td,k).

Settle Channel Both parties cooperate to sign and broadcast a transaction that has no
Absolute Lock Time and has two outputs to send each party their respective final balance.
If both parties cannot cooperate, then either party can broadcast the current active branch
for inclusion into the Blockchain once the Absolute Lock Times expire. If the receiver in a
unidirectional channel does not broadcast the Payment Transaction that sends them the most
bitcoins, then the depositor waits until kmax to broadcast the Refund Transaction.

5.3.2 Lightning Channels

Poon and Dryja propose bidirectional payment channels called Lightning Channels that can
remain open indefinitely [100]. Sending a payment requires the cooperation of both parties
to authorise a new channel state that represents each party’s new balance, before revoking
the channel’s current state. The revocation mechanism requires both parties to check the
Blockchain periodically to detect if a previously revoked channel state has been submitted.
If a revoked state is detected, the counterparty that did not broadcast the revoked state can
issue a penalty to claim all bitcoins in the channel. Initially, this revocation was performed
by exchanging signatures for the penalty transaction. An improvement proposed by Back is

58 Towards Bitcoin Payment Networks

A,
0.5 BTC

B, .
or

H(SB), A,
0.5 BTC

Input Output

A,
0.5 BTC

Input Output

B,
0.5 BTC

Input Output

B,
0.5 BTC

Input Output

A,
0.5 BTC

Input Output

Funding

B,
0.5 BTC

A, .
or

H(SA), B,
0.5 BTC

Input Output

AC

jT ,~
ARD

jT ,

,

BC

jT ,~

BD

jT ,

AD

jT ,

Revocable Delivery

Delivery

Revocable Delivery

BRD

jT ,

,

Delivery

Commitment

Commitment

B,
0.5 BTC

Input Output

BBR

jT ,
Breach Remedy

A,
0.5 BTC

Input Output

ABR

jT ,

Breach Remedy

Broadcast by:

Alice

Bob

50, A

B

50, B

A

ABS ,

BAS ,

BA ,

BA ,

Figure 5.2 Lightning Channels. Each party has a Commitment Transaction that only
they can broadcast. To settle a dispute on the Blockchain, either party can broadcast their
Commitment Transaction and Revocable Delivery Transaction to claim their share of bitcoins.
In response, the counterparty broadcasts their Delivery Transaction to receive their share of
bitcoins. If a Commitment Transactions has previously been revoked, the counterparty can
broadcast the Breach Remedy Transaction to steal all bitcoins in the channel.

outlined in [107] to use the pre-image S of a revocation hash H(S). This revocation hash is
used in our description of Lightning Channels.

To describe the protocol, we use the following notation: transactions are denoted as
T β ,X

j,λ , where β is an acronym for the transaction’s name, X is the party that can broadcast
the transaction (i.e. it requires party X’s signature to complete the transaction), j is the
number of updates that have occurred in the channel and λ is an optional Relative Lock Time.
Furthermore, T only requires the broadcaster to sign, T̃ requires both parties to sign and σ

β

X , j

represents party X’s signature for the jth transaction β .
Figure 5.2 presents the underlying transaction structure of Lightning Channels. The

channel relies upon an initial Funding Transaction T̃ F that is signed by both parties and
deposits bitcoins into a multi-signature address. The symmetric structure of the scheme
provides each party with the following transactions:

The Commitment Transaction T̃C,X
j spends the multi-signature output and therefore re-

quires signatures from both parties. Each party receives the counterparty’s signature in
advance. The first output sends bitcoins to the broadcaster, while the second outputs sends

5.3 Proposed Payment Channel Protocols 59

bitcoins to the counterparty. Spending the second output only requires the counterparty’s sig-
nature, but spending the first output is only possible if either of the following two conditions
is fulfilled:

1. The first condition requires a signature from the broadcaster and has a Relative Lock
Time such that the Commitment Transaction T̃C,X

j needs to achieve a depth of λ before
the output is spendable.

2. The second condition requires the pre-image SX , j of a revocation hash hX , j = H(SX , j)

and a signature from the counterparty.

These conditions allow Commitment Transactions to be revoked by revealing the pre-
image SX , j to the counterparty. The normal payout to the broadcaster is delayed by a Relative
Lock Time λ to allow the counterparty to claim the funds if the transaction has previously been
revoked. Revoking a Commitment Transaction allows both parties to update the channels
while ensuring that no revoked transaction will ever be published.

The Revocable Delivery Transaction T RD,X
j,λ requires the signature of the broadcaster, and

sends bitcoins to the broadcaster. It can only be broadcast once the broadcaster’s Commitment
Transaction has achieved a depth of λ in Bitcoin’s blockchain.

The Delivery Transaction T D,X
j,λ requires the signature of the counterparty that did not

broadcast the Commitment Transaction and immediately sends the counterparty their share
of bitcoins.

The Breach Remedy Transaction T BR,X
j requires the signature of the counterparty that

has not broadcast the revoked Commitment Transaction and the pre-image SX , j of the Com-
mitment Transaction’s revocation hash. It can only be broadcast once a revoked Commitment
Transaction has been accepted into the Blockchain. No Relative Lock Time is associated with
this transaction to allow the counterparty to issue the penalty immediately.

In the following and in Figure 5.3, we explain how to establish the channel, send
bidirectional payments, and finally settle the payment channel on the Blockchain.

Channel Establishment Alice sends Bob her revocation hash hA, j and a transaction input
πA for the Funding Transaction T̃ F . Bob responds with an unsigned Funding Transaction
T̃ F that includes inputs of both parties, a signature σC

B, j for Alice’s Commitment Transaction
TC,A

j and his revocation hash hB, j. Then, Alice sends a signature σC
A, j for Bob’s Commitment

Transaction TC,B
j and a signature σF

A for the Funding Transaction T F . Finally, Bob signs and
broadcasts the Funding Transaction T̃ F to the network.

Send a Payment Sending a payment requires the cooperation of both parties to authorise
a new set of transactions to represent the channel’s new balance before invalidating the
current set of transactions.

60 Towards Bitcoin Payment Networks

Channel Establishment:
A→ B: Revocation hash hA, j and her transaction input π

B→ A: Unsigned T̃ F , signature σC
B, j for TC,A

j , revocation hash hB, j

A→ B: Signature σC
A, j for TC,B

j , signature σF
A for T F

B→ N: Broadcast T̃ F to the Bitcoin network.
Send a Payment:
A→ B: New revocation hash hA, j+1

B→ A: Signature σC
B, j+1 for new TC,A

j+1 , new revocation hash hB, j+1

A→ B: Signature σC
A, j+1 for new TC,B

j+1 , pre-image SA, j of previous revocation hash hA, j

B→ A: Pre-image SB, j of previous revocation hash hB, j

Figure 5.3 Sequence of messages exchanged between two parties A and B to establish a
Lightning Channel and send payments.

Alice sends Bob a new revocation hash hA, j+1. Bob responds with a signature σC
B, j+1

for Alice’s new Commitment Transaction TC,A
j+1 , and his new revocation hash hB, j+1. Alice

checks that the bitcoins are correctly distributed to each party in TC,A
j+1 before sending her

signature σC
A, j+1 for Bob’s new Commitment Transaction TC,B

j+1 . Bob then also checks that
the bitcoins are correctly distributed to each party. Once the channel’s new state has been
authorised, Alice sends the pre-image SA, j of her revocation hash to Bob, and this pre-image
revokes her current Commitment Transaction TC,A

j . Bob checks if the pre-image correctly
revokes Alice’s current Commitment Transaction before sending Alice the pre-image SB, j

for his revocation hash hB, j. Finally, Alice checks if this pre-image revokes Bob’s current
Commitment Transaction TC,B

j .
Settle channel To settle the channel, both parties cooperate to sign and broadcast a

transaction that sends each party their share of bitcoins. If either party does not cooperate,
then the dispute is settled on the Blockchain. In a dispute, either party broadcasts their
most recent Commitment Transaction T̃C,A

j and Revocable Delivery Transaction T RD,A
j,λ . The

counterparty must then broadcast their Delivery Transaction T D,B
j to receive their share of

the coins.

5.3.3 Comparison of Duplex Micropayment and Lightning Channels

This section provides a comparison of Duplex Micropayment Channels and Lightning
Channels. We focus on the computation, storage and network access required for both
schemes before highlighting if resource-limited participants can outsource responsibility to a
trusted third party. Finally, we discuss the total number of transactions that can be facilitated.

Expiry time and channel throughput. Table 5.1 highlights that both channels support
a high-throughput compared to the earlier (and simpler) payment channels which have a

5.3 Proposed Payment Channel Protocols 61

Table 5.1 A comparison of the high-level properties of all payment channel constructions.
We consider whether a channel supports bi-directional payments, if the channel has an expiry
time, whether one or both parties have a copy of the latest state and if the channel can support
a high-throughput.

Bidirectional No Expiry Time Mutual Copy High Throughput
Unidirectional ✗ ✗ ✗ ✗

Bidirectional ✓ ✗ ✗ ✗

Duplex ✓ ✗ G# ✓

Lightning ✓ ✓ ✓ ✓

restricted throughput. In a unidirectional channel the coins can only be sent in one-direction
which restricts the total number of coins that can be sent and in a bi-directional channel
the throughput is restricted due to decrementing the channel’s expiry time when changing
payment direction. As a result there is a trade-off between small expiry times and increasing
the channel’s maximum throughput.

In Duplex Micropayment Channels, all payments are authorised within the pair of
unidirectional channels which effectively mimics a bi-directional channel and relies on
replace by incentive (i.e. the lock time is not decremented after every payment or when
payment direction is changed). The channel still has an expiry time due to its reliance on
an absolute lock time, but the expiry time is only reduced when resetting the balance of
both unidirectional channels and the invalidation tree is used to reduce the impact of this
reduction.

In Lightning Channel, all payments are replaced by revocation as both parties authorise
the new channel state (i.e.. balance of both parties) before revoking the previous state (i.e. old
balance of both parties). There is no requirement to decrement the lock time for a payment
due to the revocation, but it does rely on a relative lock time. This allows the network to
decide the final expiry time only when the channel is closed on the Blockchain without the
counterparty’s co-operation.

Mutual Copy of Latest State. Table 5.1 highlights whether one or both parties have a
copy of the latest authorised payment which determines who is responsible for publishing the
final payment during an uncooperative closure. All simple payment channels effectively rely
on replace by incentive where only the receiver can broadcast the latest authorised payment
and the sender must wait until the channel expires to close the channel (which may also
reverse payments). Duplex Micropayment Channels can be considered in-between as both
parties have a copy of the invalidation tree, but each party will only have a copy of the latest
authorised payment in the unidirectional channel where they receive coins. Unlike the other
payment channels, Lightning guarantees that both parties have a copy of the latest authorised

62 Towards Bitcoin Payment Networks

Table 5.2 The number of signatures required for each step in Duplex Micropayment Channels
and Lightning Channels. Also, d represents each node in the Invalidation Tree and α is the
number of replaced nodes in the Invalidation Tree.

Set up Payment Reset Settle (Co-op) Settle (Dispute)
Duplex (d +2)×2 1 (α +1)×2 1×2 1×2
Lightning 2×2 1×2 0 1×2 3

payment due to the nature of replace by revocation as each party only revokes the old state
after receiving a signed copy of the new state.

Blockchain privacy. A new pair of addresses A1,B1 is generated by both parties for the
Funding Transaction’s multi-signature output. If both channels are closed cooperatively, then
A1,B1 can be reused in the closing transaction that sends each party their final balance. In
terms of privacy, an external Blockchain observer can see the number of bitcoins each address
received, but not identify which receiving address A1,B1 corresponds to which depositing
address A0,B0.

Throughout the lifetime of both schemes, A1,B1 can be reused in each intermediary
transaction to minimise computing addresses. If a dispute is settled on the Blockchain, then
a Duplex Micropayment Channel achieves the same privacy as using a single transaction to
close the channel. While Lightning Channels also provide these privacy guarantees, they
allow to identify which address A1,B1 raised the dispute by identifying the address that
received bitcoins in the Revocable Delivery Transaction.

In Duplex Micropayment Channels, both parties can have a different pair of addresses
for each unidirectional channel. By inspecting the outputs of both Payment Transactions it
is not possible to derive which addresses belong to the same owner. It is also not possible
to determine which party raised the dispute using the transactions from the Blockchain
only. The parties in Lightning Channels can compute 3 addresses to be used for both sets
of Commitment Transactions. For example, Alice’s Commitment Transaction’s first output
sends bitcoins to either A1 or B1, and the second output sends bitcoins to B2. Her Revocable
Delivery Transaction sends bitcoins to A2 and Bob’s Delivery Transaction sends bitcoins to
B3. Here, it is still possible to determine which addresses raised the dispute and also the final
share of bitcoins each set of addresses received.

The number of signatures required in each payment channel is shown in Table 5.2.
To establish the channel, both schemes require each party to sign a Funding Transaction.
In Duplex Micropayment Channels each party must also sign d nodes in the Invalidation
Tree and a Payment Transaction representing the unidirectional channel, whereas Lightning
Channels require each party to sign an additional Commitment Transaction.

5.3 Proposed Payment Channel Protocols 63

To send a new payment, the Duplex Micropayment Channels require a single signature
from the sender. If either unidirectional channel has exhausted its supply of bitcoins, then
both parties cooperate to reset the balance of both channels. This reset requires each party to
sign α replacement transactions in the Invalidation Tree and an additional signature for the
new Payment Transactions that represent the unidirectional channels. Lightning Channels
always require a single signature from both parties to authorise a new pair of Commitment
Transactions. This has implications for popular hubs as Duplex Micropayment Channels do
not require the hub’s involvement to receive bitcoins (except to perform a reset), while the
hub must sign every payment in Lightning Channels.

In both schemes parties can cooperatively close the channel by signing a transaction that
settles the final balance. However, they must sign the remaining intermediary transactions if
the channel is not closed cooperatively. The unsigned transactions in Duplex Micropayment
Channels include the Payment Transaction, or a Refund Transaction if the counterparty does
not sign their Payment Transaction. In Lightning Channels, either party can broadcast their
Commitment Transaction and sign a Revocable Delivery Transaction to claim their bitcoins.
In response, the counterparty must sign the Delivery Transaction to receive their share of
bitcoins. If the Commitment Transaction was previously revoked, then the counterparty must
instead sign a Breach Remedy Transaction.

Local storage requirements. In Duplex Micropayment Channels, both parties store
d +1 transactions which include the current active branch in the Invalidation Tree and the
most recently received Payment Transaction from the counterparty. In Lightning Channels,
each party stores the pre-image for every revocation hash used by the counterparty and the
current Commitment Transaction. To prevent the need to brute-force the revocation hash
using all stored pre-images, parties should also store a mapping between each pre-image and
corresponding revocation hash.

Storage in the Blockchain. When both parties cooperate, both schemes only require
2 transactions, the Funding Transaction and a Settlement Transaction, to be committed to
the Blockchain. In the worst case, when parties do not cooperate, Duplex Micropayment
Channels require 1+d +2 transactions. The d transactions represent the Invalidation Tree’s
active branch, plus the Funding Transaction and 2 additional transactions representing either
Payment Transactions for the unidirectional channels or their Refund Transactions. Lightning
Channels always require 4 transactions. Besides the Funding Transaction, this includes
a Commitment Transaction, the corresponding Delivery Transaction and either a Breach
Remedy Transaction or a Revocable Delivery Transaction.

Frequency of access to the Blockchain. Duplex Micropayment Channels rely on the
Replace by Timelock rule to ensure that only the latest authorised branch in the Invalidation

64 Towards Bitcoin Payment Networks

Tree is accepted into the Blockchain. Therefore, after establishing the channel, neither party
needs to access the Blockchain until the channel has expired. Then, however, it is important
to push the d transaction in the latest branch and the Payment Transaction that sends the
party their bitcoins as soon as they become valid. Lightning Channels require both parties
to periodically scan the Blockchain for previously revoked transactions. The frequency of
monitoring is based on the mutually agreed Relative Lock Time that delays the Revocable
Delivery Transaction’s acceptance into the Blockchain.

Outsourcing responsibilities is possible in both schemes to reduce the burden for
resource-limited parties. In Duplex Micropayment Channels, a trusted third party can
be responsible for broadcasting the active branch of the Invalidation Tree and the Payment
Transaction that sends the party their bitcoins once the channel has expired. The branch
must be broadcast within the safety-margin ∆ time span, otherwise previously authorised
branches become spendable. In Lightning Channels, the trusted third party is provided with
signed Breach Remedy Transactions, pre-images of revocation hashes and the identification
hash of previously revoked Commitment Transactions. It is then responsible for monitoring
the Blockchain for the previously revoked Commitment Transactions and broadcasting the
corresponding Breach Remedy Transactions.

The total number of transactions that can occur in Duplex Micropayment Channels is
based on the number of bitcoins sent, the frequency of resets to replenish the unidirectional
channels, the depth of the tree, and the Absolute Lock Time associated with each node. In
comparison, the only limitation for Lightning Channels is the bidirectional activity between
both parties.

5.4 Routing Payments

We present how to fairly exchange bitcoins across several payment channels with Hashed
Time-Locked Contracts (HTLCs) before discussing how to mitigate routing interruptions
and the challenge of route discovery on the payment network.

5.4.1 Hashed Time-Locked Contract (HTLC)

Hashed Time-Locked Contracts fairly exchange bitcoins across several payment channels.
They allow two parties to open channels with separate Payment Service Providers (PSP), and
then construct a route of payment channels that connects both channels. If we have three
channels, Alice→Bob, Bob→Caroline and Caroline→Dave, then Alice can send bitcoins

5.4 Routing Payments 65

Dave	

Caroline	 Bob	

Alice	

3
),(

=K
RH

2),(=KRH

1
),(

=K
RH

)(RH

(a) Setting up HTLC

Dave	

Caroline	 Bob	

Alice	

R

R

R

(b) Synchronizing HTLC balances

Figure 5.4 (a) The final receiver provides the initial sender with the HTLC hash H(R). This is
shared along the HTLC route and the HTLC transfer’s Absolute Lock Time k is decremented
for each hop. (b) Outlines how the pre-image R is revealed in the reverse order for each hop
to claim their bitcoins once the final receiver is given H(R). For illustration the decrement
time is ω = 1.

to Dave, via Bob and Caroline. This fair exchange guarantees that intermediary hops receive
their bitcoins, once they have sent their bitcoins to the next hop.

Figure 5.4 outlines the exchange of messages required to fairly exchange bitcoins across
all intermediary channels. Once a route has been selected, the final receiver (Dave) provides
the initial sender (Alice) with an HTLC hash H(R). The initial sender commits bitcoins in a
payment channel shared with their PSP under the condition that the pre-image R is revealed
within k blocks. Each intermediary along the route decrements the lock time k and repeats
this commitment with the next hop. The lock time k is decremented by ω to provide the
intermediary a timespan for their bitcoins to be sent to the next hop and to allow them to
claim their bitcoins from the previous hop. The last hop is the final receiver, who receives
the payment amount contingent upon providing R.

The final receiver can claim the bitcoins by creating a transaction that reveals R and
spends the HTLC output. Revealing R then allows the next party to also claim the bitcoins
from their previous hop. However, it is not necessary to claim the outputs using Bitcoin’s
blockchain. Instead, both parties may simply agree to update their shared channel to reflect
the new balance. This can be done along the route: every pair of participants updates their
channels until the initial sender’s bitcoins are taken.

In Duplex Micropayment Channels a new HTLC output is either added as part of a
new Payment Transaction in the unidirectional channel or as an additional output to the leaf
node Td,k in the Invalidation Tree (cf. Figure 5.5). This HTLC output is claimable if either of
the following two conditions is satisfied:

1. The first condition requires a signature from both parties.

66 Towards Bitcoin Payment Networks

Funding

𝜎𝐴, 𝜎𝐵

Input HTLC Output

Active Branch
in the

Invalidation Tree

Leaf Node

𝐴1, 𝐵
or

𝐴2, 𝐵, 𝐻 𝑅
0.5 BTC

HTLC Refund

𝜎𝐴1, 𝜎𝐵, 𝐾refund = 100 𝐴, 0.5 BTC

HTLC Forfeiture

𝜎𝐴1, 𝜎𝐵, 𝐾forfeit = 0 𝐴, 0.5 BTC

Broadcast by:

Alice

Bob

Both

kdT ,

HTLC Settlement

𝜎𝐴2, 𝜎𝐵, 𝑅, 𝐾settle = 95 𝐵, 0.5 BTC

Figure 5.5 The HTLC is attached as an additional output to the Invalidation Tree’s leaf
node. We have omitted unidirectional channels for space. The HTLC Refund Transaction
guarantees that the bitcoins are returned to the sender if R is not revealed by block krefund, the
HTLC Settlement Transaction sends bitcoins to the receiver if the pre-image R of the HTLC
hash is revealed by block ksettle, and the HTLC Forfeiture Transaction can later be signed to
cancel the transfer.

2. The second condition requires a signature from both parties4 and the pre-image R of
the HTLC hash H(R).

This HTLC output can be spent using either of the following three transactions. The
HTLC Refund Transaction guarantees that the bitcoins are returned to the sender by krefund

and satisfies the first condition of the HTLC output. The HTLC Settlement Transaction
requires the pre-image R of the HTLC hash and sends bitcoins to the counterparty. This
transaction has an Absolute Lock Time ksettle to delay the receiver claiming the bitcoins to
ensure that the HTLC output can later be cancelled if both parties agree. This transaction
spends the second condition of the HTLC output. The HTLC Forfeiture Transaction has
no lock time and is signed by both parties to cancel the HTLC transfer. It spends the first
condition of the HTLC output and guarantees that the bitcoins are returned to the sender,
even if the pre-image R of the HTLC hash is revealed.

It is the responsibility of the initial sender to compute the lock time krefund for each hop
along the route. The sender needs to ensure that each hop’s krefund is greater than the hop’s
chosen ksettle (i.e. krefund > ksettle). Both lock times must also be greater than the hop’s leaf
node Td,k lock time kleaf (i.e. ksettle > kleaf). This is required as a refund or settlement cannot
happen until the leaf node Td,k is included in Bitcoin’s blockchain. Also, a timespan between
the leaf node’s lock time kleaf, and the settlement lock time ksettle is required to allow the
hop to cancel the HTLC transfer using a HTLC Forfeiture Transaction. This means that the
bitcoins are potentially locked for the entire lifetime of the channel.

The initial sender’s krefund is passed to the next hop on the route, who should decrement
krefund by ω for use in their channel. This repeats as each hop passes their krefund to the

4The sender must have a different Bitcoin address for each condition in the HTLC output, otherwise
the receiver can use the signature to satisfy either condition.

5.4 Routing Payments 67

𝜎𝐴, 𝜎𝐵

Input HTLC Output

Funding

𝜎𝐴, 𝜎𝐵

Input HTLC Output

Commitment (Sender)

Commitment (Receiver)

𝐵,𝐻 𝑅
or

𝐴, 𝜆, 𝐾refund

or
𝐵,𝐻(𝑆𝐴)
0.5 BTC

𝐵,𝐻 𝑅 , 𝜆
or

𝐴,𝐾refund

or
A, 𝐻(𝑆𝐵)
0.5 BTC

Broadcast by:

Alice

Bob

AC

jT ,~

BC

jT ,~

HTLC Refund Transaction

𝜎𝐴, 𝜆 = 5, 𝐾refund = 100 𝐴, 0.5 BTC

HTLC Delivery

𝜎𝐵, 𝑅 𝐵, 0.5 BTC

HTLC Breach Remedy

𝜎𝐵, 𝑆𝐴 𝐵, 0.5 BTC

HTLC Refund Transaction

𝜎𝐴, 𝐾refund = 100 𝐴, 0.5 BTC

HTLC Delivery

𝐵, 0.5 BTC

HTLC Breach Remedy

𝜎𝐴, 𝑆𝐵 𝐴, 0.5 BTC

BHD

jT ,

AHR

kjT ,

,,

BHBR

jT ,

BHD

jT ,

AHR

kjT ,

,,

AHBR

jT ,

𝜎𝐵, 𝑅, 𝜆=5

Figure 5.6 The HTLC is an additional output in both Commitment Transactions and we
have omitted the other outputs for space. The delivery sends bitcoins to the receiver if they
know R, the refund guarantees that the bitcoins are returned to the sender, and the breach
remedy sends bitcoins to the counterparty whom did not broadcast a revoked Commitment
Transaction.
next hop. The initial sender’s krefund must therefore take into account the largest leaf node’s
lock time kleaf in the route. In the worst case, if the largest kleaf is associated with the final
receiver’s channel, then the lock time krefund for all hops along the route must also be larger
than the largest kleaf.

Finally, the hash H(R) and the pre-image R can be discarded once the HTLC transfer has
been forfeited or a new active branch in the Invalidation Tree is mutually agreed to cancel
the HTLC transfer.

In Lightning Channels, a new HTLC output is associated with both Commitment Trans-
actions in a new channel state (cf. Figure 5.6). The broadcaster of a Commitment Transaction
is restrained by a Relative Lock Time λ before she can claim the bitcoins in the HTLC output.
This provides the counterparty an opportunity to claim the bitcoins. We explain the role of
λ once the commonality of the HTLC output’s redemption criteria for each Commitment
Transaction has been presented. The bitcoins can be claimed if either of the following three
conditions is satisfied:

1. The first condition requires a signature from the receiver and the pre-image R of the
HTLC hash H(R).

2. The second condition requires a signature from the sender once the Absolute Lock
Time krefund has expired.

68 Towards Bitcoin Payment Networks

3. The third condition requires a signature from the counterparty that did not broadcast the
revoked Commitment Transaction, and the pre-image S of the broadcaster’s revocation
hash H(S).

The broadcaster of a Commitment Transaction must consider both the Absolute Lock
Time krefund that dictates when the HTLC transfer expires, and the Relative Lock Time λ

which requires the broadcaster’s Commitment Transaction to achieve a depth of λ blocks in
the Blockchain before the broadcaster can claim their bitcoins. To illustrate the additional
burden of λ for either party’s redemption criteria, we consider the sender’s and receiver’s
Commitment Transaction in turn.

The sender only broadcasts their Commitment Transaction to claim a refund using the
HTLC Refund Transaction if the HTLC transfer expires, satisfying the second condition.
To take the delay caused by λ into account, the sender’s Commitment Transaction must be
accepted into the Blockchain at block height krefund−λ for the HTLC Refund Transaction to
become spendable at the correct time. If the refund is not claimed at the correct time, then
R might be later revealed, and the sender is not guaranteed to receive the bitcoins from the
previous hop. This λ provides a timespan for the counterparty to claim the bitcoins using the
pre-image R of the HTLC hash H(R), satisfying the first condition, or with the pre-image SA

of the revocation hash H(SA), satisfying the third condition.
The receiver only broadcasts their Commitment Transaction if they know the pre-image

R of the HTLC hash. The bitcoins are redeemed using the HTLC Delivery Transaction
that satisfies the first condition. To take the delay caused by λ into account, the receiver’s
Commitment Transaction must be accepted into Bitcoin’s blockchain at block height krefund−
λ − ∆. This makes certain that the HTLC Delivery Transaction has a safety margin ∆

timespan to be accepted into Bitcoin’s blockchain before the HTLC transfer expires. This λ

provides a timespan for the counterparty to claim the bitcoins if the transfer has expired or if
the pre-image SB of the receiver’s revocation hash H(SB) has been revealed.

The initial sender is responsible for computing the lock time krefund in advance for each
hop. This krefund is passed along the route, and each hop decrements krefund by ω for use in
their channel. However, the initial sender’s krefund must take into account the hop with the
largest Relative Lock Time λ . In the worst case, if the largest λ is associated with the final
receiver’s channel, then the lock time krefund for all channels must also include the largest
λ . This potentially locks the bitcoins for a long period of time as resource-limited parties
may require a large λ as it dictates the frequency in which each party must monitor the
Blockchain. Also, the pre-image R can be discarded once both parties have exchanged the
pre-images SA,SB of the revocation hashes H(SA),H(SB).

5.4 Routing Payments 69

5.4.2 Routing Interruptions

The routing is interruptible if an intermediary is unresponsive after accepting the HTLC
transfer. The initial sender and final receiver should wait until the HTLC transfer expires
before reattempting the transfer. To overcome this issue, Poon has proposed a rollback
protocol [99] that allows the final receiver to refund the initial sender using a second route.
This allows the initial sender to reattempt the HTLC transfer, and if the intermediary returns,
the initial sender’s bitcoins are refunded using the second route. This rollback is only
performed if the final receiver has not revealed the first route’s pre-image R1 of the HTLC
hash H(R1).

To perform the rollback, the initial sender provides the final receiver with a new HTLC
hash H(R2) and an Absolute Lock Time kexpire that represents the expiry time for the initial
sender’s HTLC transfer with their immediate hop in the first route. The final hop in the
second route sends the initial sender the refunded bitcoins and must have an expiry time
krefund that is greater than kexpire. This provides a timespan for the initial sender’s bitcoins to
be claimed in the first route, and for them to receive the refund in the second route.

Finally, the receiver commits bitcoins to the next hop under the condition that the pre-
images of the first route’s HTLC hash H(R1) and the sender’s HTLC hash H(R2) are revealed.
Each hop decrements the lock time kmax by ω , and commits bitcoins to the next hop if R1,R2

are revealed. The final hop is the sender who has knowledge of R2, but can only claim the
bitcoins if R1 is revealed from the first HTLC transfer.

5.4.3 Challenges for Route Discovery

We now discuss the challenges that payment networks face for route discovery. These
challenges include the type of connections available for routing bitcoins, the topology of the
network, the difficulty in building reputation systems to help assess the risk of other nodes
and the financial incentives for routing bitcoins.

Node connections on the network rely on the user’s role. End users might exclusively
connect to PSPs who are responsible for establishing channels with other PSPs to find routes
on the network. How these channels are funded will also differ as end users might fund the
channel with the PSP, while the PSP to PSP channels are mutually funded. Also, the total
number of bitcoins in a channel restricts the bitcoins an end user can receive. For example, if
the user and PSP share a channel U ↔ P in which the PSP has a balance of x bitcoins, then
the user can only receive up to x bitcoins without establishing a new channel. The receiver
must send bitcoins to the PSP to receive further payments.

70 Towards Bitcoin Payment Networks

Route planning methods include source-routing in which the sender pre-determines the
payment route, and per-hop routing where only the final destination is given to the network
and each hop finds the best route.

The former approach simplifies calculating the fee and lock time for the transfer. It is
compatible with onion-routing which only reveals the previous and next hop, and allows the
sender to enforce the order in which each node is visited. However, this does not prevent a
node using intermediaries to route the bitcoins to the next hop. It might also be possible to
identify that the next hop is the final recipient using the remaining fee and lock time.

Per-hop routing outsources the route finding to the network and can adapt to changing
network conditions. The final destination is revealed to each node to help them find a route,
offering less privacy than source-routing. Nodes could potentially offer low (or negative) fees
to encourage others to select them for routing and then sell the transaction data to interested
third parties. In per-hop routing, estimating the total fee and maximum lock time is difficult
as the route is not known in advance, and mechanisms must be put into place that prevent
nodes from taking excessive fees.

The topology of the network hinges on the ease of becoming a PSP and the potential
regulation as money transmitters.

A straightforward approach is a hub-and-spoke model [108] with thousands of well-
connected hubs who share route-finding information amongst themselves. In this model,
end users open channels with hubs, and it is the hub’s responsibility to find a route to the
receiver’s hub. These hubs are expected to be reliable and fast which potentially results in
negligible HTLC transfer halts. This is important for Duplex Micropayment Channels as
bitcoins can be locked for the channel’s remaining lifetime if a transfer halt occurs. Also, the
usage of Duplex Micropayment Channels reduces the computational overhead for hubs as
they are only required to sign HTLC transfers while sending bitcoins, and not to receive them.
In this model, end-users may not be responsible for computing or revealing the pre-image R
of the HTLC hash as it would allow them to halt transfers.

The fundamental issue with the hub-and-spoke model is that it may lack Bitcoin’s open-
membership property. Instead, the community’s vision for a payment network is to allow
anyone to become a PSP which requires a mesh network and gossip protocol to advertise
PSP services. Poon has proposed that Bitcoin’s blockchain can aid route discovery as the
user can identify which PSPs share channels [108]. If a route has been found, there is
no guarantee that the PSPs are reliable due to the nature of open-membership. Lightning
Channels are more suitable for unreliable transfers as a failure only temporarily locks the
bitcoins. However, the computation overhead increases as PSPs must sign both sending and
receiving HTLC transfers.

5.5 Conclusion 71

To prevent routing failures naturally leads to a reputation system to assess the risk of using
a PSP. However, in the event of a failure, it is arguably a non-trivial problem to determine the
reason behind the halt due to the private nature of routing and the inability to inspect other
payment channels. For example, if the hop C→D settles on the Blockchain, it is not possible
to determine if Dave had knowledge of the pre-image R, refused to disclose it, or simply
raised a dispute to tarnish the reputation of Caroline [106]. Also, it might not be possible
to identify which hop halted the transfer when disputes are not settled on the Blockchain.
Furthermore, revealing the internal channel state of intermediaries cannot always reveal the
reason behind a halt. For example, it is not possible to identify the duration of time before R
was disclosed.

Routing fees need to cover the costs for a PSP to operate a secure node. These costs
potentially include a ‘risk’ charge based on the number of bitcoins maintained in their hot
wallet5 to facilitate transfers. The PSP might charge if they are required to deposit bitcoins
into the channel for end-users (i.e. merchants) who expect to mostly receive bitcoins. Also,
negotiating a fee for routing is not straightforward as some PSPs may fluctuate fees to move
funds in a maxed-out channel in a certain direction [26]. How fees are negotiated depends
on the topology of the network as PSPs might have direct connections with each hop in the
route or rely on fees advertised via a gossip protocol. Finally, the fee structure for end-users
can be regular installments or on a per-transfer basis.

5.5 Conclusion

In this chapter, we presented an overview of payment networks in Bitcoin. We compared
two prominent proposals, Duplex Micropayment Channels and Lightning Channels before
discussing how to fairly exchange bitcoins across two or more channels using Hashed
Time-Locked Contracts. Finally, we highlighted challenges for route discovery in payment
networks. It is our hope that this chapter will motivate other researchers to begin tackling the
open problems associated with Blockchain-based payment networks.

It is important to note that this is the final chapter that focuses on Bitcoin. So far,
we have highlighted authentication and scalability issues that arise in Bitcoin due to its
decentralised nature and pursuit for financial privacy. The fact that these issues exist is
remarkable considering that Bitcoin’s sole (and simple) purpose is to trade a single asset (i.e.
bitcoins). Furthermore, it is unfortunate that some solutions to these issues (as seen in this
chapter) are complex due to their reliance on Bitcoin’s limited scripting facility.

5A wallet is frequently accessed and potentially connected to the internet.

72 Towards Bitcoin Payment Networks

In the next chapter, this thesis focues on Ethereum which is inspired by Bitcoin, but
supports expressive smart contracts. We empirically test whether cryptographic protocols
can be implemented as smart contracts and the feasibility of executing these protocols on the
Ethereum network. Remarkably, we will see that while Ethereum has significantly greater
scalability issues than Bitcoin, the expressiveness of its scripting facility simplifies protocols
that can be built and executed on Ethereum.

Chapter 6

A Smart Contract for Boardroom Voting
with Maximum Voter Privacy

6.1 Introduction

Ethereum is the second most popular cryptocurrency with a $870m market capitalisation
as of November 2016. It relies on the same innovation behind Bitcoin [90]: namely, the
Blockchain which is an append-only ledger. The Blockchain is maintained by a decentralised
and open-membership peer-to-peer network. The purpose of the Blockchain was to remove
the centralised role of banks for maintaining a financial ledger. Today, researchers are trying
to re-use the Blockchain to solve further open problems such as coordinating the Internet of
Things [58], carbon dating [27], and healthcare [34].

In this chapter, we focus on decentralised internet voting using the Blockchain. E-voting
protocols that support verifiability normally assume the existence of a public bulletin board
that provides a consistent view to all voters. In practice, an example of implementing the pub-
lic bulletin board can be seen in the yearly elections of the International Association of Cryp-
tologic Research (IACR) [62]. They use the Helios voting system [1] whose bulletin board is
implemented as a single web server. This server is trusted to provide a consistent view to all
voters. Instead of such a trust assumption, we explore the feasibility of using the Blockchain
as a public bulletin board. Furthermore, we consider a decentralised election setting in which
the voters are responsible for coordinating the communication amongst themselves. Thus,
we also examine the suitability of the Blockchain’s underlying peer-to-peer network as a
potential authenticated broadcast channel.

There already exist proposals to use a Blockchain for e-voting. The Abu Dhabi Stock
Exchange is launching a Blockchain voting service [57] and a recent report [19] by the

74 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

Scientific Foresight Unit of the European Parliamentary Research Service discusses whether
Blockchain-enabled e-voting will be a transformative or incremental development. In practice,
companies such as The Blockchain Voting Machine [55], FollowMyVote [10] and TIVI [127]
propose solutions that use the Blockchain as a ballot box to store the voting data.

These solutions achieve voter privacy with the involvement of a trusted authority. In
FollowMyVote, the authority obfuscates the correspondence between the voter’s real world
identity and their voting key. Then, the voter casts their vote in plaintext. In TIVI, the
authority is required to shuffle the encrypted votes before decrypting and counting the votes.
In our work, we show that the voter’s privacy does not need to rely on a central authority
to decouple the voter’s real world identity from their voting key, and the votes can be
counted without the cooperation of a central authority. Furthermore, these solutions only use
the Blockchain as an append-only and immutable global database to store the voting data.
We propose that the network’s consensus that secures the Blockchain can also enforce the
execution of the voting protocol itself.

To date, both Bitcoin and Ethereum have inherent scalability issues. Bitcoin only supports
a maximum of 7 transactions per second [30] and each transaction dedicates 80 bytes for
storing arbitrary data. On the other hand, Ethereum explicitly measures computation and
storage using a gas metric, and the network limits the gas that can be consumed by its users.
As deployed today, these Blockchains cannot readily support storing the data or enforcing the
voting protocol’s execution for national scale elections. For this reason, we chose to perform
a feasibility study of a boardroom election over the Blockchain which involves a small
group of voters (i.e. 40 participants) whose identities are publicly known before the voting
begins. For example, a boardroom election may involve stakeholders voting to appoint a new
director.

We chose to implement the boardroom voting protocol as a smart contract on Ethereum.
These smart contracts have an expressive programming language and the code is stored
directly on the Blockchain. Most importantly, all peers in the underlying peer-to-peer
network independently run the contract code to reach consensus on its output. This means
that voters can potentially not perform all the computation to verify the correct execution of
the protocol. Instead, the voter can trust the consensus computing provided by the Ethereum
network to enforce the correct execution of the protocol. This enforcement turns detection
measures seen in publicly verifiable voting protocols into prevention measures.

Our contributions. We provide the first implementation of a decentralised and self-
tallying internet voting protocol. The Open Vote Network [51] is a board-room scale
voting protocol that is implemented as a smart contract in Ethereum. The Open Vote Network
provides maximum voter privacy as an individual vote can only be revealed by a full-collusion

6.2 Background 75

attack that involves compromising all other voters; all voting data is publicly available; and
the protocol allows the tally to be computed without requiring a tallying authority. Most
importantly, our implementation demonstrates the feasibility of using the Blockchain for
decentralised and secure e-voting.

6.2 Background

6.2.1 Self-Tallying Voting Protocols

Typically, an e-voting protocol that protects the voter’s privacy relies on the role of a
trustworthy authority to decrypt and tally the votes in a verifiable manner. E-voting protocols
in the literature normally distribute this trust among multiple tallying authorities using
threshold cryptography; for example, see Helios [1]. However, voters still need to trust that
the tallying authorities do not collude altogether, as in that case, the voter’s privacy will be
trivially breached.

Remarkably, Kiayias and Yung [66] first introduced a self-tallying voting protocol for
boardroom voting with subsequent proposals by Groth [48] and Hao et al. [51]. A self-
tallying protocol converts tallying into an open procedure that allows any voter or a third-
party observer to perform the tally computation once all ballots are cast. This removes the
role of a tallying authority in an election as anyone can compute the tally without assistance.
These protocols provide maximum ballot secrecy as a full collusion of the remaining voters
is required to reveal an individual vote and dispute-freeness that allows any third party to
check whether a voter has followed the voting protocol correctly. Unfortunately, self-tallying
protocols have a fairness drawback as the last voter can compute the tally before anyone
else1 which results in both adaptive and abortive issues.

The adaptive issue is that knowledge of the tally can potentially influence how the last
voter casts their vote. Kiayias and Yung [66] and Groth [48] propose that an election authority
can cast the final vote which is excluded from the tally. However, while this approach is
applicable to our implementation discussed later, it effectively re-introduces an authority
that is trusted to co-operate and not to collude with the last voter. Instead, we implement
an optional round that requires all voters to hash their encrypted vote and store it in the
Blockchain as a commitment. As a result, the final voter can still compute the tally, but is
unable to change their vote.

1It is also possible for voters that have not yet cast their vote to collude and compute the partial
tally of the cast votes. For simplicity, we discuss a single voter in regards to the fairness issue.

76 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

The abortive issue is that if the final voter is dissatisfied with the tally, they can abort
without casting their vote. This abortion prevents all other voters and third parties from
computing the final tally. Previously, Kiayias and Yung [66] and Khader et al. [65] proposed
to correct the effect of abortive voters by engaging the rest of the voters in an additional
recovery round. However, the recovery round requires full cooperation of all the remaining
voters, and will fail if any member drops out half-way. We highlight that the Blockchain and
smart contracts can enforce a financial incentive for voter participation using a deposit and
refund paradigm [67]. This allows providing a new countermeasure to address the abortive
issue: all voters deposit money into a smart contract to register for an election and are
refunded upon casting their vote. Any voter who does not vote before the voting deadline
simply loses their deposit.

In the next section we present Open Vote Network[51] before discussing its smart
contract implementation on Ethereum. We chose to implement this protocol instead of others
(e.g., [66, 48]) because it is the most efficient boardroom voting protocol in the literature in
each of the following aspects: the number of rounds, the computation load per voter and
the bandwidth usage [51]. As we will detail in Section 6.3, the efficiency of the voting
protocol is critical as even with the choice of the most efficient boardroom voting protocol, its
implementation for a small-scale election is already nearing the capacity limit of an existing
Ethereum block.

6.2.2 The Open Vote Network Protocol

The Open Vote Network is a decentralized two-round protocol designed for supporting
small-scale boardroom voting. In the first round, all voters register their intention to vote
in the election, and in the second round, all voters cast their vote. The systems assumes an
authenticated broadcast channel is available to all voters. The self-tallying property allows
anyone (including non-voters) to compute the tally after observing messages from the other
voters. In this chapter, we only consider an election with two options, e.g., yes/no. Extending
to multiple voting options, and a security proof of the protocol can be found in [51].

A description of the Open Vote Network is as follows. First, all n voters agree on (G,g)
where G denotes a finite cyclic group of prime order q in which the Decisional Diffie-Hellman
(DDH) problem is intractable, and g is a generator in G. A list of eligible voters (P1,P2, ...,Pn)

is established and each eligible voter Pi selects a random value xi ∈R Zq as their private voting
key.

Round 1. Every voter Pi broadcasts their voting key gxi and a (non-interactive) zero
knowledge proof ZKP(xi) to prove knowledge of the exponent xi on the public bulletin board.

6.2 Background 77

ZKP(xi) is implemented as a Schnorr proof [111] made non-interactive using the Fiat-Shamir
heuristic [42].

At the end, all voters check the validity of all zero knowledge proofs before computing a
list of reconstructed keys:

Yi =
i−1

∏
j=1

gx j/
n

∏
j=i+1

gx j

Implicitly setting Yi = gyi , the above calculation ensures that ∑i xiyi = 0.
Round 2. Every voter broadcasts gxiyigvi and a (non-interactive) zero knowledge proof

to prove that vi is either no or yes (with respect to 0 or 1) vote. This one-out-of-two zero
knowledge proof is implemented using the Cramer, Damgård and Schoenmakers (CDS)
technique [29].

All zero knowledge proofs must be verified before computing the tally to ensure the
encrypted votes are well-formed. Once the final vote has been cast, then anyone (including
non-voters) can compute ∏i gxiyigvi and calculate g∑i vi since ∏i gxiyi = 1 (see [51]). The
discrete logarithm of g∑i vi is bounded by the number of voters and is a relatively small value.
Hence the tally of yes votes can be calculated subsequently by exhaustive search.

Note that for the election tally to be computable, all the voters who have broadcast their
voting key in Round 1 must broadcast their encrypted vote in Round 2. Also note that
in Round 2, the last voter to publish their encrypted vote has the ability to compute the
tally before broadcasting their encrypted vote (by simulating that he would send a no-vote).
Depending on the computed tally, he may change his vote choice. In our implementation,
we address this issue by requiring all voters to commit to their votes before revealing them,
which adds another round of commitment to the protocol.

The decentralised nature of the Open Vote Network makes it suitable to implement over a
Blockchain. Bitcoin’s blockchain could be used as the public bulletin board to store the voting
data for the Open Vote Network. However, this requires the voting protocol to be externally
enforced by the voters. Instead, we propose using Ethereum to enforce the voting protocol’s
execution. This is possible as conceptually Ethereum can be seen as a global computer that
can store and execute programs. These programs are written as smart contracts, and their
correct execution is enforced using the same network consensus that secures the Ethereum
blockchain. Furthermore, its underlying peer-to-peer network can act as an authenticated
broadcast channel.

78 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

6.3 The Open Vote Network over Ethereum

We present an implementation of the Open Vote Network over Ethereum. The code is publicly
available2. Three HTML5/JavaScript pages are developed to provide a browser interface for
all voter interactions. The web browser interacts with an Ethereum daemon running in the
background. The protocol is executed in five stages, and requires voter interaction in two
(and an optional third) rounds. We give an overview of the implementation in the following.

6.3.1 Structure of Implementation

There are two smart contracts that are both written in Ethereum’s Solidity language. The
first contract is called the voting contract. It implements the voting protocol, controls the
election process and verifies the two types of zero knowledge proofs we have in the Open
Vote Network. The second contract is called the cryptography contract. It distributes the
code for creating the two types of zero knowledge proofs3. This provides all voters with
the same cryptography code that can be used locally without interacting with the Ethereum
network. We have also provided three HTML5/JavaScript pages for the users:

• Election administrator (admin.html) administers the election. This includes estab-
lishing the list of eligible voters, setting the election question, and activating a list
of timers to ensure the election progresses in a timely manner. The latter includes
notifying Ethereum to begin registration, to close registration and begin the election,
and to close voting and compute the tally.

• Voter (vote.html) can register for an election, and once registered must cast their
vote.

• Observer (livefeed.html) can watch the election’s progress consisting of the elec-
tion administrator starting and closing each stage and voters registering and casting
votes. The running tally is not computable.

We assume that voters and the election administrator have their own Ethereum accounts.
The Web3 framework is provided by the Ethereum Foundation to faciltiate communication
between a user’s web browser and their Ethereum client. The user can unlock their Ethereum
account (decrypt their Ethereum’s private key using a password) and authorise transactions

2https://github.com/stonecoldpat/anonymousvoting
3We have included the code to create and verify the two types of zero knowledge proofs in the

cryptography contract. The code is independent of the Open Vote Network and can be used by other
smart contracts.

6.3 The Open Vote Network over Ethereum 79

SETUP	 SIGNUP	 COMMIT	 (Op/onal)	 VOTE	 TALLY	
Elec%on	

administrator	
updates	 list	 of	
eligible	 voters	

Voters	
register	 their	
vo%ng	 key	 gx	

Voters	 publish	
H(gxygv)	

Voters	 cast	
gxygv	

Ethereum	
computes	 the	

tally	

Elec%on	 progress	 in	 the	 Open	 Vote	 Network	

Round	 1:	 	
Voter	 registra%on	

Round	 2:	
Voter	 casts	 vote	

Figure 6.1 There are five stages to the election.

directly from the web browser. There is no need for the user to interact with an Ethereum
wallet, and the Ethereum client can run in the background as a daemon.

6.3.2 Election stages

Figure 6.1 presents the five stages of the election in our implementation. The smart contract
has a designated owner that represents the election administrator. This administrator is
responsible for authenticating the voters with their user-controlled account and updating the
list of eligible voters. A list of timers is enforced by the smart contract to ensure that the
election progresses in a timely manner. The contract only allows eligible voters to register for
an election, and registered voters to cast a vote. Furthermore, the contract can require each
voter to deposit ether upon registration, and automatically refund the ether when their vote is
accepted into the Blockchain. Each stage of the election is described in more detail below:

SETUP. The election administrator authenticates each voter with their user-controlled
account and updates the voting contract to include a whitelist of accounts as eligible voters.
He defines a list of timers to ensure that the election progresses in a timely manner:

• t f inishRegistration: all voters must register their voting key gxi before this time.

• tbeginElection: the election administrator must notify Ethereum to begin the election by
this time.

• t f inishCommit : all voters must commit to their vote H(gxiyigvi) before this time. This is
only used if the optional COMMIT stage is enabled.

• t f inishVote: all voters must cast their vote gxiyigvi before this time.

• π: a minimum length of time in which the commitment and voting stages must remain
active to give voters sufficient time to vote.

The administrator also sets the registration deposit d, the voting question, and if the
optional COMMIT stage should be enabled. Finally, the administrator notifies Ethereum to
transition from the SETUP to the SIGNUP stage.

80 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

SIGNUP. All eligible voters can choose to register for the vote after reviewing the voting
question and other parameters set by the election administrator. To register, the voter com-
putes their voting key gxi and ZKP(xi). Both the key and proof are sent to Ethereum alongside
a deposit of d ether. Ethereum does not accept any registrations after t f inishRegistration. The
election administrator is responsible for notifying Ethereum to transition from the SIGNUP to
either the optional COMMIT or the VOTE stage. All voter’s reconstructed keys gy0,gy1, ...,gyn

are computed by Ethereum during the transition.
COMMIT(Optional). All voters publish a hash of their vote H(gxiyigvi) to the Ethereum

blockchain. The contract automatically transitions to the VOTE stage once the final commit-
ment is accepted into the Blockchain.

VOTE. All voters publish their (encrypted) vote gxiyigvi and a one-out-of-two zero
knowledge proof to prove that vi is either zero or one. The deposit d is refunded to the voter
when their vote is accepted by Ethereum. The election administrator notifies Ethereum to
compute the tally once the final vote is cast.

TALLY. The election administrator notifies Ethereum to compute the tally. Ethereum
computes the product of all votes ∏i gxiyigvi = g∑i vi and brute forces the discrete logarithm
of the result to find the number of yes votes.

As mentioned before, Open Vote Network requires all the registered voters to cast a
vote to enable tally calculation. The deposit d in our implementation provides a financial
incentive for registered voters to vote. This deposit is returned to the voter if they follow
through with the voting protocol and do not drop out. The list of timestamps defined by the
election administrator determines if the voter’s deposit d is forfeited or refunded. There are
three refund scenarios if a deadline is missed:

• Registered voters can claim their refund if the election does not begin by tbeginElection.

• Registered voters who have committed can claim their refund if not all registered
voters commit to their vote by t f inishCommit .

• Registered voters can claim their refund if not all registered voters cast their vote by
t f inishVote.

6.4 Design Choices

In this section, we discuss the design choices we made when developing the implementation.
In particular, we elaborate on some attack vectors that are addressed in our smart contract
and clarify the trust assumptions that are required for our implementation to be secure.

6.4 Design Choices 81

Individual and public verifiability. We assume that the voter’s machine, including their
web browser, is not compromised. The voter has an incentive to ensure their machine is
secure. If the machine or web browser is compromised, the voter’s ether is likely to be
stolen. The voter can check that their vote has been recorded as cast and cast as intended
by inspecting the Blockchain and decrypting their vote using the key xi. Also, the voter, or
any observer for that matter, can independently compute the tally to verify that the cast votes
have been tallied as recorded. Unfortunately, this public verifiability does not provide any
coercion resistance as the voting is conducted in a “unsupervised” environment. The voter
may vote under the direct duress of a coercer who stands over their shoulder. The voter can
also reveal x to prove how their vote was cast to others. As such, in a similar fashion to
Helios [1], we note that our implementation is only suitable for low-coercion elections.

Voter authentication. Smart contracts can call other smart contracts. As a result,
there exist two methods to identify the caller. The first is tx.origin that identifies the
user-controlled account that authorised the transaction, and not the immediate caller. The
second is msg.sender that identifies the immediate caller which can be a contract or a user-
controlled address. Initially, a developer might use tx.origin as it appears the approppriate
choice to identify the voter. Unfortunately, this approach allows a malicious smart contract
to impersonate the voter and register for an election.

To illustrate, a voter is given the interface to a smart contract called BettingGame. This
lets the voter place a bet using BettingGame.placeBid(). Unknowingly to the voter, if
this function is called, then BettingGame will call TheOpenVoteNetwork.register() and
register a voting key on behalf of the voter. To overcome this issue, we recommend using
msg.sender as it identifies the immediate caller whose address should be in the list of
eligible voters.

Defending against replay attacks. All voting keys gxi and their zero knowledge proofs
ZKP(xi) are publicly sent to the Ethereum blockchain. A potential attack is that another
eligible voter can attempt to register the same voting keys by replaying gxi and ZKP(xi). This
would also let them later copy the targeted voter’s vote. We highlight that the commitment
(i.e., input arguments to the hash function) in the zero knowledge proof includes msg.sender
and Ethereum will not accept the zero knowledge proof ZKP(xi) if msg.sender does not
match the account that is calling the contract. As such, it is not possible to replay another
voter’s key gxi without their co-operation. This also applies to the one-out-of-two zero
knowledge proofs.

Blocking re-entrancy. A hacker recently exploited a re-entrancy vulnerability in theDAO
to steal over 3.6 million ether. Luu et al highlight [72] that 186 distinct smart contracts
stored on the Blockchain (including theDAO) are also potentially vulnerable. This attack

82 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

relies on the contract sending ether to the user before deducting their balance. The attacker
can recursively call the contract in such a way that the sending of ether is repeated, but the
balance is only deducted once. To prevent this attack, we follow the advice of Reitwiessner
[102] to first deduct the voter’s balance before attempting to send the ether.

The role of timers. The election administrator sets a list of timers to allow Ethereum
to enforce that the election progresses in a timely manner. A minimum time interval π

(unit in seconds) is set during the SETUP stage to ensure each stage remains active for at
least a time interval of length π . In particular, the rules t f inishCommit − tbeginElection > π and
t f inishVote− t f inishCommit > π are enforced to provide sufficient time for voters to commit to
and cast their vote. Also, it provides a window for the voter’s transaction to be accepted into
the Blockchain. This is necessary to prevent a cartel of miners (< 51%) attempting to censor
some transactions. Voters need to check that π is not a small value such as π = 1. In this
case, the voting stage can finish one second after the election begins. As a result, all voters
are likely to lose their deposits. Of course, both the COMMIT and VOTE stage can finish
early if all voters have participated.

The block’s timestamp is used to enforce the above timers. Ethereum has a tight bound on
the timestamp which must conform to the following two rules. First, a new block’s timestamp
must be greater than the previous block. Second, the block’s timestamp must be less than
the user’s local clock. Furthermore, the miner’s ability to drift a block’s timestamp by 900
seconds (15 minutes) as reported in [72] is no longer possible [35].

Ethereum miners. The tip of the Blockchain is uncertain and the state of a contract
at the time of signing a transaction is not guaranteed to remain the same. Furthermore,
miners control the order of transactions in a block, and can control the order of a contract’s
execution if there are two or more transactions calling the same contract. Although the order
of voting keys or casting a vote does not matter, the order of transactions is important if a
timer is about to expire. For example, if the voter attempts to register around the time that
t f inishRegistration expires, then the miner can prevent the registration in two ways. First, the
miner can choose a block timestamp that expires the t f inishRegistration timer. Second, if the
miner has the voter’s registration transaction and the election administrator’s begin election
transaction, he can order the transactions in the block such that the smart contract begins the
election before allowing the voter to register for the election. Unfortunately, in both cases,
the voter’s registration will fail.

It is important that voters authorise their transactions in good time before the stage is
destined to end. We must assume that the majority of miners are not attempting to disrupt
the election. A smaller cartel of miners (< 51%) can potentially delay transactions being
accepted into the Blockchain using techniques such as selfish mining [40][109] or feather

6.4 Design Choices 83

forking [94]. This ability of miners to delay a transaction is a fundamental problem for any
contract.

The election administrator. An election administrator is required to add voters to
the list of eligible voters, set the election’s parameters and to begin the registration stage.
Unfortunately, smart contracts cannot execute code without the notification of an external
user-controlled account. As such, a user is still required to notify the smart contract to begin
the election and compute the tally. Deciding who is responsible for notifying Ethereum
is an implementation trade-off and we have assumed it is the election administrator’s role.
If necessary, the contract can be modified to incorporate a time-out where if the election
adminstration does not complete their task (e.g. notify the contract to compute the tally)
within a time period, then any registered voter canperform the notification. However, in
that case it is possible that two or more voters attempt to notify Ethereum at the same time
and broadcast transactions to the network. If this happens, only one transaction can begin
the election or compute the tally. All unsuccessful transactions will still be stored in the
Blockchain and all the broadcasting users will still be charged transaction fees.

Removing the COMMIT stage. The COMMIT stage prevents the final voter computing
the tally and using this information to decide how to vote. It is possible to remove this stage
if we require the election administrator (or a separate external party) to perform some extra
tasks. In this case, the administrator is the first voter to register a voting key gx and deposit
of d ether before voter registration begins. Next, he is required to merely reveal his secret x
once all voters have cast their vote. Revealing x allows Ethereum to calculate a final dummy
vote and compute the tally. The administrator is now trusted not to collude with the last voter.
This approach removes the COMMIT phase but requires extra an trust assumption.

Do voters need to use Ethereum? Today, all voters need to download the full Ethereum
blockchain to confirm the voting protocol is being executed correctly. In the future, voters
will be able to use the Light Ethereum Subprotocol (LES) [36] which is similar to Bitcoin’s
simplified payment verification (SPV) protocol. In LES, voters will only verify the voting
protocol’s state and not be required to store the full Blockchain.

Most importantly, it is possible for the voter to participate in the voting protocol without
the full Blockchain. In this case, the voter merely broadcasts their transactions and trusts
the consensus mechanism of the Ethereum network to enforce the correct execution of the
protocol. This would enable voters who have devices with limited resources to vote in our
implementation. We have provided livefeed.html to allow voters to visit an external
website and confirm their registration or vote has been recorded in the Blockchain.

84 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

Entity: Transaction Cost in Gas Cost in $
A: VoteCon 3,779,963 0.83
A: CryptoCon 2,435,848 0.54
A: Eligible 2,153,461 0.47
A: Begin Signup 234,984 0.05
V: Register 763,118 0.17
A: Begin Election 3,085,449 0.68
V: Commit 70,112 0.02
V: Vote 2,490,412 0.55
A: Tally 746,485 0.16
Administrator Total 12,436,190 2.74
Voter Total 3,323,642 0.73
Election Total 145,381,858 31.98

Table 6.1 A breakdown of the costs for 40 participants using the Open Vote Network. We
have approximated the cost in USD ($) using the conversion rate of 1 ether = $11 and the gas
price of 0.00000002 ether which are the real world costs in November 2016. Also, we have
identified the cost for the election administrator ‘A’ and the voter ‘V’.

6.5 Experiment on Ethereum’s Test Network

Our implementation was deployed on Ethereum’s official test network that mimics the
production network. We sent 126 transactions to simulate forty voters participating in the
protocol. Each transaction’s computational and financial cost is outlined in Table 6.1. Each
transaction by the election administrator (denoted by the prefix ‘A:’ in the table) is broadcast
only once, and each transaction by a voter (denoted by the prefix ‘V:’ in the table) is broadcast
once per voter, i.e., a total of 40 times. Also, we have rounded the cost in US Dollars (denoted
by $) to two decimal places.

We had to split the Open Vote Network into two contracts as the code was too large to
store in an Ethereum block which has a capacity of approximately 4.7 million gas. The voting
contract VoteCon (80% of block capacity, and $0.83 transaction fee) contains the protocol
logic. The cryptography contract CryptoCon (52% of block capacity, and $0.54 transaction
fee) contains the code to create and verify the two types of zero knowledge proofs we have
in the protocol.

CryptoCon can be reused by other contracts requiring similar zero knowledge proofs. It
is important to note that the code for computing the zero knowledge proofs is run locally on
the voter’s machine, and no transactions are sent to the network. CryptoCon’s purpose is to
ensure that all voters have access to the same cryptography code.

6.5 Experiment on Ethereum’s Test Network 85

0.00

0.50

1.00

1.50

2.00

2.50

5 10 15 20 25 30 35 40 45 50 55 60

C
o

st
 (

$
)

Number of voters

Election administrator

Voter

Figure 6.2 The average cost for the election administrator and the voter based on the number
of voters participating in the election.

As the figures show, voter registrations and vote casting cost around 16% and 53% of
block capacity, respectively. This suggests that the current block sizes in Ethereum support
at most six voter registration per block and at most one vote casting per block. Recall that
blocks are currently generated in Ethereum at a rate of one block per 12 seconds.

Overall, running the election with 40 voters costs the election administrator $2.74. The
total election cost including the cost for the administrator and the voters is $31.98 which
breaks down to a reasonable cost of $0.73 per voter.

To see how the cost for the election administrator and the voter vary with different number
of voters we have carried out experiments with 5, 10, 15, . . . , 60 voters. Figure 6.2 highlights
the distribution of cost for the election administrator and the voter based on the number of
voters participating in the election. This shows that the election administrator’s cost increases
linearly based on the number of voters, and the voter’s cost remains constant.

All testing was performed on the test network due to an ongoing DoS attack, starting
from 22 September 2016, on Ethereum’s production network [22]. Miners set the block’s
gas limit to 1,500,000 gas to reduce the impact on the network and a hard fork [21] was
deployed on 18 October 2016 to prevent the attack. However, a second DoS attack began
on 19 October 2016. Ethereum developers have recommended a temporary gas limit of
2,000,000 until the next scheduled hard fork. As such, the Open Vote Network cannot run on
the production network at this time.

6.5.1 Timing Analysis

Table 6.2 outlines the timing analysis measurements for tasks in the Open Vote Network. All
measurements were performed on a MacBook Pro running OS X 10.10.5 equipped with 4
cores, 2.3GHz Intel Core i7 and 16 GB DDR3 RAM. All time measurements are rounded
up to the next whole millisecond. We use the Web3 framework to facilitate communication

86 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

Action Avg. Time (ms)
Create ZKP(x) 81
Register voting key 142
Begin election 277
Create 1-out-of-2 ZKP 461
Cast vote 573
Tally 132

Table 6.2 A time analysis for actions that run on the Ethereum daemon.

between the web browser and the Ethereum daemon. All tasks are executed using .call()
that allows us to measure the code’s computation time on the local daemon.

The cryptography smart contract is responsible for creating the zero knowledge proofs for
the voter. The time required to create the proofs is 81 ms for the Schnorr proof and 461 ms for
the one-out-of-two zero knowledge proof. These actions are always executed using .call()
as this contract should never receive transactions.

The voting smart contract is responsible for enforcing the election process. Registering a
vote involves verifying the Schnorr zero knowledge proof and in total requires 142 ms. To
begin the election requires computing the reconstructed public keys which takes 277 ms in
total for forty voters. Casting a vote involves verifying the one-out-of-two zero knowledge
proof which requires 573 ms. Tallying involves summing all cast votes and brute-forcing the
discrete logarithm of the result and on average takes around 132 ms.

We decided to distribute the cryptography code using the Ethereum blockchain to allow
all voters to use the same code. Running the code on the voter’s local daemon is significantly
slower than using a seperate library such as OpenSSL. For example, creating a Schnorr signa-
ture using OpenSSL on a comparable machine requires 0.69 ms [77]. This slowness is mostly
due to the lack of native support for elliptic curve math in Ethereum smart contracts. The
Ethereum Foundation has plans to include native support and we expect this to significantly
improve our reported times.

6.6 Discussion on Technical Difficulties

In this section, we discuss the difficulties faced while implementing the Open Vote Network
on Ethereum.

Lack of support for cryptography. Ethereum supports up to 256-bit unsigned integers.
For this reason, we chose to implement the protocol over an elliptic curve instead of a finite
field. However, Solidity does not currently support Elliptic Curve cryptography, and we had

6.6 Discussion on Technical Difficulties 87

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

5 10 15 20 25 30 35 40 45 50 55 60

G
as

Number of voters

Gas Limit

Compute Reconstructed Keys

Set Voters as Eligible

Compute Tally

Begin Registration

Figure 6.3 The gas cost for the election administrator based on the number of voters
participating in the election.

to include an external library to perform the computation. Including the library led to our
voting contract becoming too large to store on the Blockchain. As previously discussed, we
separated the program into two smart contracts: one voting contract and one cryptography
contract. The cryptographic computations are expensive and this results in a block only being
able to support six voter registrations, or a single vote.

Call stack issues. The call stack of a program has a hard-coded limit of 1024 stack
frames. This limits the amount of local memory available, and the number of function calls
allowed. These limitations led to difficulty while implementing the 1-out-of-2 ZKP as the
temporary variables typically required exceeded the hard-coded limit of 16 local variables
[61]. We had to use variables extremely sparingly to ensure that the 1-out-of-2 ZKP could be
implemented.

Lack of debugging tools. The Mix IDE that provides a solidity source code debugger
has been discountined [37] and could not be used for our work. Remix is the replacement
for the Mix IDE and it provides a debugger for contracts at the assembly level, but this is
too low for debugging Solidity contracts. Instead, we had to create Events that log data
along with the contract to help with debugging which is incorporated into the contract before
deployment.

Mitigate loss of voting key. The voting key is kept secret by the voter and needs to be
stored on their local machine. This is important to ensure that if the voter’s web browser
crashes or is closed, then the voting key is not lost. We provide a standalone Java program
votingcodes.jar to generate the voting key and store it in votingcodes.txt. The voter
is required to upload this file to their web browser.

Maximum number of voters. Figure 6.3 demonstrates the results of our experiment
and highlights the breakdown of the election administrator’s gas consumption. Except for
opening registration, the gas cost for each task increases linearly with the number of voters.
The gas limit for a block was set at 4.7 million gas by the miners before the recent DoS
attacks. This means that the smart contract reaches the computation and storage limit if it

88 A Smart Contract for Boardroom Voting with Maximum Voter Privacy

is computing the voter’s reconstructed keys for around sixty registered voters. This limit
exists as all keys are computed in a single transaction and the gas used must be less than the
block’s gas limit. To avoid reaching this block limit, we currently recommend a safe upper
limit of around 50 voters. However, the contract can be modified to perform the processing
in batches and allow multiple transactions to complete the task.

6.7 Conclusion

In this chapter, we have presented a smart contract implementation for the Open Vote Network
that runs on Ethereum. Our implementation was tested on the official Ethereum test network
with forty simulated voters. We have shown that our implementation can be readily used
with minimal setup for elections at a cost of $0.73 per voter. The cost can be considered
reasonable as this voting protocol provides maximum voter privacy and is publicly verifiable.
This is the first implementation of a decentralised internet voting protocol running on a
Blockchain. It uses the Ethereum blockchain not just as a public bulletin board, but more
importantly, as a platform for consensus computing that enforces the correct execution of the
voting protocol.

Chapter 7

Conclusion

7.1 Summary

This thesis explored bootstrapping trust from the blockchain in order to build and run
cryptographic applications. Remarkably, each application leveraged the blockchain in subtly
different ways. We provide a final summary on how the blockchain was used for each
cryptographic application before concluding.

Chapters 3 and 4 relied on the blockchain’s immutability for storing information. The
former chapter stored each party’s pseudonymous identity in the blockchain to bootstrap
authenticated key exchange. We proposed two protocols Diffie-Hellman over Bitcoin and
YAK over Bitcoin in response to observing that real-world merchants are unable to correctly
re-authenticate customers that used Bitcoin as a payment method. On the other hand, the
latter chapter relied on the blockchain for storing transaction information (i.e. origin/recipient
of coins). This transaction substantiates the publicly verifiable evidence that is privately
exchanged during the revised BIP70: Payment Protocol.

Chapter 5 re-purposed the blockchain to become an arbitrator for dispute resolution. This
re-purposing is heralded as a scaling approach for cryptocurrencies. It permits two parties
to store a depoist in the blockchain, privately transact (i.e. re-distribute each party’s share
of this deposit) and then confirm the aggregation of all payments in a single transaction. If
there is a dispute, both parties can submit transactions to the blockchain (i.e. cryptographic
evidence) within a grace period, and the blockchain will enforce the correct determination.
Remarkably, the only academically published protocol is Duplex Micropayment Channels
[33], whereas basic payment channels, Lightning Channels and Hashed Time-Locked Con-
tracts are scattered across mailing lists, chat rooms and forums. Unfortunately, this increases
the difficulty for researchers to find and comprehend this emerging field’s state-of-the-art.

90 Conclusion

As such, the contribution and motivation for our survey was to concisely summarise payment
channel protocols and provide future research directions.

Chapter 6 relied on the blockchain to enforce the cryptographic application’s correct
execution using the same consensus protocol that secures the blockchain. This allowed
us to demonstrate the first practical implementation of a self-tallying and decentralised
internet voting protocol as a smart contract for Ethereum. Most importantly, this research
also provided the first empirical study of executing cryptographic protocols on the Ethereum
network. This research concluded that the Etheruem network as deployed can support
cryptography, but it is not ready for wide-spread use. For example, each encrypted vote in
the Open Vote Network required 53% of a block’s capacity which effectively only allows
Ethereum to permit one vote every twelve seconds.

To conclude, our research focused on demonstrating the feasibility of running crypto-
graphic applications that bootstrap trust from the Blockchain. Both the secure end-to-end
communication protocols and the revised Payment Protocol relied on the blockchain’s im-
mutability for storing information in order to bootstrapping trust for the protocols. On the
other hand, payment networks re-purposed the blockchain to become an arbitrator that could
enforce the correct outcome for the protocol based on cryptographic evidence provided by
each party. Finally, the Open Vote Network relied on the Blockchain to bootstrap correct
enforcement of the protocol and to act as a central bulletin board that provides a consistent
view to all overs.

7.2 Future work

Future work is suggested as follows.

• In Chapter 3, it would be useful to investigate if the authenticated key exchange
protocols can be applied for decentralised marketplaces such as OpenBazaar1. The
only guaranteed form of identity for the seller or buyer in these marketplaces is
represented in terms of the bitcoin addresses involved in the transaction. Therefore,
it is likely that these marketplaces are ideal for relying solely on the blockchain for
authenticated and secure end-to-end communication.

• In Chapter 3 and 4, BIP70: Payment Protocol may require further revision before it
is suitable for a payment network as there is no guarantee that the bitcoin transaction
will be stored in the blockchain. However, the protocol execution transcript of a
payment channel should permit any observor to verify that it was executed correctly

1https://www.openbazaar.org/

7.2 Future work 91

(i.e. dispute-freeness). This might be satisfactory as a basis for linking the bitcoin
transaction to messages exchanged during the Payment Protocol.

• In Chapter 5, it appears possible to build an off-chain channel that maintains state
(i.e. a state channel). Conceptually, both parties can authorise a third layer on top of
Lightning Channels that represents a contract. Both parties can then co-operatively
execute this contract off-chain and once the contract reaches its final state both parties
can co-operatively reset the channel’s state. This reset will involve updating the lighting
channel to effectively invalidate the previous contract while atomically creating a new
one.

• In Chapter 6, it is worth attempting to build the Open Vote Network in an Ethereum
state channel. All parties can deposit coins into the state channel and perform the
self-tallying election off-chain. In the event a single party aborts the off-chain protocol,
then the election’s latest state can be broadcast and accepted into the blockchain/voting
contract. This triggers a timer that requires the aborted party to continue the protocol
before a time-out otherwise their deposit is forfeited. The benefit of this approach is
that the blockchain can be used as an arbitrator to enforce that all parties participate in
the election while avoiding the expensive gas costs of running the election on-chain.

92 Conclusion

References

[1] Adida, B. (2008). Helios: Web-based open-audit voting. In USENIX Security Symposium,
volume 17, pages 335–348.

[2] Alcio (2015). Monitor pay to script hash adoption. http://p2sh.info/, Accessed on
21/05/15.

[3] Ali, S. T., McCorry, P., Lee, P. H.-J., and Hao, F. (2015). Zombiecoin: Powering next-
generation botnets with bitcoin. In Bitcoin Workshop at Financial Cryptography and Data
Security. Springer.

[4] Allison, I. (2015). Silk Road prosecutors talk about Bitcoin, Ripple and money laundering.
International Business Times. http://www.ibtimes.co.uk/silk-road-prosecutors-talk-about-
bitcoin-ripple-money-laundering-1517414.

[5] Andresen, G. (2012). Pay to Script Hash. Bitcoin Improvement Process.
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki, Accessed on 07/12/15.

[6] Andresen, G. (2014). Conversation about OP_SCHNORRVERIFY. Freenode IRC
bitcoin-wizards. https://botbot.me/freenode/bitcoin-wizards/, Accessed on 10/05/15.

[7] Andresen, G. (2015). BIP 101: Increase maximum block size.
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki, Accessed on 19/04/16.

[8] Andresen, G. and Hearn, M. (2013). BIP 70: Payment Protocol. Bitcoin Improvement
Process. https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki, Accessed on
15/01/15.

[9] Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., and Capkun, S. (2013). Evaluat-
ing user privacy in bitcoin. In Financial Cryptography and Data Security, pages 34–51.
Springer.

[10] Aradhya, P. (2016). Distributed Ledger Visible To All? Ready for Blockchain?
Huffington Post. http://www.huffingtonpost.com/pradeep-aradhya/are-we-ready-for-a-
global_b_9591580.html, Accessed on 19/04/16.

[11] A.Tanzarian (2014). Ethereum Raises 3,700 BTC in First 12 Hours of Ether Pre-
sale. https://cointelegraph.com/news/ethereum-raises-3700-btc-in-first-12-hours-of-ether-
presale, Accessed on 30/12/16.

[12] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poelstra,
A., Timón, J., and Wuille, P. (2014). Enabling Blockchain Innovations with Pegged
Sidechains. https://blockstream.com/technology/sidechains.pdf, Accessed on 01/06/2017.

94 References

[13] Baddeley, M. (2004). Using e-cash in the new economy: An economic analysis of
micro-payment systems. Journal of Electronic Commerce Research, 5(4):239–253.

[14] Barber, S., Boyen, X., Shi, E., and Uzun, E. (2012). Bitter To Better: How To Make
Bitcoin a Better Currency. In Financial Cryptography and Data Security, pages 399–414.
Springer.

[15] BBC (2015). New Paypal partnership enables limited Bitcoin payments.
http://www.bbc.co.uk/news/technology-29341886, Accessed on 06/01/15.

[16] BitPay (2015). New Invoice Adjustment and Refund Flow. https://blog.bitpay.com/new-
refund-flow/, Accessed on 20/09/15.

[17] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E. W. (2015).
Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In Security
and Privacy (Oakland) 2015. Springer.

[18] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J. A., and Felten, E. W. (2014).
Mixcoin: Anonymity for bitcoin with accountable mixes. In Financial Cryptography and
Data Security, pages 486–504. Springer.

[19] Boucher, P. (2016). What if blockchain technology revolutionised vot-
ing? Scientific Foresight Unit (STOA), European Parliamentary Research
Service. http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/EPRS
_ATA(2016)581918_EN.pdf.

[20] Buterin, V. (2013). A Next-Generation Smart Contract and Decentralized Application
Platform. https://github.com/ethereum/wiki/wiki/White-Paper, Accessed on 30/12/16.

[21] Buterin, V. (2016a). Long-term gas cost changes for io-heavy operations to mitigate
transaction spam attacks. Ethereum Blog. https://github.com/ethereum/EIPs/issues/150,
Accessed on 01/11/16.

[22] Buterin, V. (2016b). Transaction spam attack: Next Steps. Ethereum Blog.
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/, Accessed on
01/10/16.

[23] Carlsten, M., Kalodner, H., Weinberg, S. M., and Narayanan, A. (2016). On the
instability of bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 154–167. ACM.

[24] Castillo, M. (2016). Ethereum Executes Blockchain Hard Fork to Return DAO
Funds. http://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-
investor-funds/, Accessed on 3/01/17.

[25] Certicom Research (2000). SEC 2: Recommended Elliptic Curve Domain Parameters.
Standards for Efficient Cryptography Group.

[26] CJP (2015). Routing on the lightning network?
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-July/000031.html, Accessed
on 19/04/16.

References 95

[27] Clark, J. and Essex, A. (2012). CommitCoin: Carbon Dating Commitments with
Bitcoin. In Financial Cryptography and Data Security, pages 390–398. Springer.

[28] Coinbase (2015). How do I do a customer refund with the API?
https://support.coinbase.com/customer/portal/articles/ 1521752-how-do-i-do-a-customer-
refund-with-the-api-, Accessed on 15/05/15.

[29] Cramer, R., Damgård, I., and Schoenmakers, B. (1994). Proofs of partial knowledge
and simplified design of witness hiding protocols. In Annual International Cryptology
Conference, pages 174–187. Springer.

[30] Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Saxena,
P., Shi, E., and Gün, E. (2016a). On scaling decentralized blockchains. In Proc. 3rd
Workshop on Bitcoin and Blockchain Research.

[31] Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A., Saxena,
P., Shi, E., Sirer, E. G., Song, D., and Wattenhofer, R. (2016b). On Scaling Decentralized
Blockchains. In 3rd Workshop on Bitcoin and Blockchain Research.

[32] Decker, C. and Wattenhofer, R. (2015a). A Fast and Scalable Payment Network with
Bitcoin Duplex Micropayment Channels. In Pelc, A. and Schwarzmann, A. A., editors,
Stabilization, Safety, and Security of Distributed Systems, volume 9212 of Lecture Notes
in Computer Science, pages 3–18. Springer International Publishing.

[33] Decker, C. and Wattenhofer, R. (2015b). A fast and scalable payment network with
bitcoin duplex micropayment channels. In Stabilization, Safety, and Security of Distributed
Systems, pages 3–18. Springer.

[34] Ekblaw, A., Azaria, A., Halamka, J. D., and Lippman, A. (2016). A case study for
blockchain in healthcare:“medrec” prototype for electronic health records and medical
research data. http://dci.mit.edu/assets/papers/eckblaw.pdf, Accessed on 26/10/2016.

[35] eth (2016). How do Ethereum mining nodes maintain a time consistent with the
network? Ethereum Wiki. https://github.com/ethereum/wiki/wiki/Light-client-protocol,
Accessed on 6/2/2017.

[36] Ethereum (2016a). Light client protocol. Ethereum Wiki.
https://github.com/ethereum/wiki/wiki/Light-client-protocol, Accessed on 01/06/16.

[37] Ethereum (2016b). The mix ethereum dapp development tool. GitHub.
https://github.com/ethereum/mix, Accessed on 10/10/16.

[38] Ethereum (2017). Code to create a contract address in Ethereum.
https://github.com/ethereum/pyethereum/blob/782842758e219e40739531a5e56fff6e63ca56
7b/ethereum/utils.py#L62, Accessed on 10/01/17.

[39] Eyal, I., Gencer, A. E., Sirer, E. G., and van Renesse, R. (2016). Bitcoin-NG: A Scalable
Blockchain Protocol. In Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2016, March 16-18, 2016, Santa Clara, CA, USA.

96 References

[40] Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. In
International Conference on Financial Cryptography and Data Security, pages 436–454.
Springer.

[41] Felfoldi, Z. (2017). Introduction of the Light Client for DApp develop-
ers. https://blog.ethereum.org/2017/01/07/introduction-light-client-dapp-developers/, Ac-
cessed on 23/01/17.

[42] Fiat, A. and Shamir, A. (1987). How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Odlyzko, A. M., editor, Crypto’86, volume 263 of LNCS,
pages 186–194. Springer.

[43] Fincen (2015). Request for Administrative Ruling on the Applica-
tion of FinCEN’s Regulations to a Virtual Currency Payment System.
http://www.fincen.gov/news_room/rp/rulings/pdf/FIN-2014-R012.pdf, Accessed
on 07/09/15.

[44] G. Dagher and B. Bunz and J. Bonneau and J. Clarke and D. Boneah (2015). Provi-
sions: Privacy-preserving Proofs of Solvency for Bitcoin Exchanges. In The 22nd ACM
Conference on Computer and Communications Security.

[45] Garzik, J. (2015). BIP 100: Making Decentralized Economic Policy.
http://gtf.org/garzik/bitcoin/BIP100-blocksizechangeproposal.pdf, Accessed on 19/04/16.

[46] Grassmuck, V. (1997). Money on the Internet Strong Privacy Protection vs. Data Trail.
http://waste.informatik.hu-berlin.de/grassmuck/Texts/ecash.e.html, Accessed on 20/12/16.

[47] Greenspan, G. (2016). Why Many Smart Contract Use Cases Are Simply Impossible.
http://www.coindesk.com/three-smart-contract-misconceptions/, Accessed on 30/12/16.

[48] Groth, J. (2004). Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In International Conference on Financial Cryptography, pages 90–104. Springer.

[49] Hankerson, D., Vanstone, S., and Menezes, A. (2004). Guide to Elliptic Curve Cryptog-
raphy. Springer Professional Computing. Springer.

[50] Hao, F. (2010). On robust key agreement based on public key authentication. In
Financial Cryptography and Data Security, pages 383–390. Springer.

[51] Hao, F., Ryan, P. Y., and Zielinski, P. (2010). Anonymous voting by two-round public
discussion. IET Information Security, 4(2):62–67.

[52] Hearn, M. (2011). bitcoinj. https://bitcoinj.github.io/, Accessed on 19/04/16.

[53] Hearn, M. (2014). Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-Development.
http://sourceforge.net/p/bitcoin/mailman/message/ 32157661/, Accessed on 01/02/15.

[54] Heilman, E., Kendler, A., Zohar, A., and Goldberg, S. (2015). Eclipse attacks on
bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security
15), pages 129–144.

References 97

[55] Hertig, A. (2015). The First Bitcoin Voting Machine Is On Its Way. Motherboard
Vice. http://motherboard.vice.com/read/the-first-bitcoin-voting-machine-is-on-its-way,
Accessed on 01/09/16.

[56] Hertig, A. (2017). Where’s Casper? Inside Ethereum’s Race to Reinvent its Blockchain.
http://www.coindesk.com/ethereum-casper-proof-stake-rewrite-rules-blockchain/, Ac-
cessed on 22/01/17.

[57] Higgins, S. (2016a). Abu Dhabi Stock Exchange Launches Blockchain Voting. Coin-
Desk. http://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/, Accessed on
12/10/16.

[58] Higgins, S. (2016b). IBM Invests $200 Million in Blockchain-Powered IoT. CoinDesk.
http://www.coindesk.com/ibm-blockchain-iot-office/, Accessed on 24/12/16.

[59] Higgins, S. (2016c). Russia’s Central Securities Depository Tests Blockchain Assets Ex-
change. http://www.coindesk.com/russia-central-securities-depository-blockchain-assets/,
Accessed on 10/01/17.

[60] Hileman, G. (2016). State of blockchain q1 2016: Blockchain funding overtakes bitcoin.
http://www.coindesk.com/state-of-blockchain-q1-2016/, Accessed on 3/01/17.

[61] Horrocks, R. (2015). Error while compiling: Stack too deep. Ethereum Stack Exchange.
http://ethereum.stackexchange.com/a/6065, Accessed on 01/09/16.

[62] International Association for Cryptologic Research (2016). About the helios system.
http://www.iacr.org/elections/eVoting/about-helios.html, Accessed on 09/10/2016.

[63] ISO/EIEC (2008). ISO/IEC 14888: Information technol-
ogy – Security techniques – Digital signatures with appendix.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=44226,
Accessed on 01/04/14.

[64] Johnson, D., Menezes, A., and Vanstone, S. (2001). The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1):36–63.

[65] Khader, D., Smyth, B., Ryan, P. Y., and Hao, F. (2012). A fair and robust voting system
by broadcast. In 5th International Conference on Electronic Voting, volume 205, pages
285–299. Gesellschaft für Informatik.

[66] Kiayias, A. and Yung, M. (2002). Self-tallying elections and perfect ballot secrecy. In
International Workshop on Public Key Cryptography, pages 141–158. Springer.

[67] Kumaresan, R. and Bentov, I. (2014). How to use bitcoin to incentivize correct
computations. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 30–41. ACM.

[68] Lemieux, V. L. and Lomas, E. (2016). Trusting records: Is blockchain technology the
answer? Records Management Journal, 26(2).

98 References

[69] Lewenberg, Y., Sompolinsky, Y., and Zohar, A. (2015). Inclusive block chain protocols.
In Böhme, R. and Okamoto, T., editors, Financial Cryptography and Data Security,
volume 8975 of Lecture Notes in Computer Science, pages 528–547. Springer Berlin
Heidelberg.

[70] Lo, S. and Wang, J. (2014). Bitcoin as Money? Current Policy and Perspectives.
http://www.bostonfed.org/economic/current-policy-perspectives/2014/cpp1404.pdf, Ac-
cessed on 01/10/14.

[71] Lombrozo, E., Lau, J., and Wuille, P. (2015). BIP 141: Segregated Witness.
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki, Accessed on 19/04/16.

[72] Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016). Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 254–269. ACM.

[73] Malone-Lee, J. and Smart, N. P. (2003). Modifications of ECDSA. In Nyberg, K.
and Heys, H., editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg.

[74] Maurer, B., Nelms, T., and Swartz, L. (2013). “When perhaps the real problem is
money itself!”: the practical materiality of Bitcoin. Social Semiotics, 23(2):261–277.

[75] Maxwell, G. (2013). CoinJoin: Bitcoin privacy for the real world.
https://bitcointalk.org/index.php?topic=279249, Accessed on 20/05/15.

[76] McCorry, P., Möser, M., Shahandasti, S. F., and Hao, F. (2016a). Towards bitcoin
payment networks. In Australasian Conference on Information Security and Privacy,
pages 57–76. Springer.

[77] McCorry, P., Shahandashti, S. F., Clarke, D., and Hao, F. (2015). Authenticated key
exchange over bitcoin. In Security Standardisation Research, pages 3–20. Springer.

[78] McCorry, P., Shahandashti, S. F., and Hao, F. (2016b). Refund attacks on bitcoin’s
payment protocol. Financial Cryptography and Data Security.

[79] McCorry, P., Shahandashti, S. F., and Hao, F. (2017). A smart contract for boardroom
voting with maximum voter privacy.

[80] McDonald, L. (2009). Crash of a titan: The inside story of the fall of Lehman Broth-
ers. http://www.independent.co.uk/news/business/analysis-and-features/crash-of-a-titan-
the-inside-story-of-the-fall-of-lehman-brothers-1782714.html, Accessed on 3/01/17.

[81] Meiklejohn, S. and Orlandi, C. (2015). Privacy-enhancing overlays in bitcoin. In
Bitcoin Workshop at Financial Cryptography and Data Security. Springer.

[82] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.,
and Savage, S. (2013). A fistful of bitcoins: characterizing payments among men with
no names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM.

References 99

[83] Merrill, N. (2015). The Calyx Institute: Privacy by design for everyone.
https://www.calyxinstitute.org/support-us/donate-via-bitcoin, Accessed on 06/01/15.

[84] Miers, I., Garman, C., Green, M., and Rubin, A. (2013). Zerocoin: Anonymous
Distributed E-cash from Bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 397–411. IEEE.

[85] Miller, V. (1986). Use of Elliptic Curves in Cryptography. In Advances in Cryptol-
ogy—CRYPTO’85 Proceedings, pages 417–426. Springer.

[86] Monero (2015). Monero is a secure, private, untraceable currency. It is open-source
and freely available to all. https://getmonero.org/home, Accessed on 08/12/15.

[87] Morgenson, G. (2011). Secrets of the Bailout, Now Told.
http://www.nytimes.com/2011/12/04/business/secrets-of-the-bailout-now-revealed.html,
Accessed on 3/01/17.

[88] Möser, M. and Böhme, R. (2015). Trends, tips, tolls: A longitudinal study of bitcoin
transaction fees. In International Conference on Financial Cryptography and Data
Security, pages 19–33. Springer.

[89] Mozilla (2015). Help protect the open Web.
https://sendto.mozilla.org/page/content/give-bitcoin/, Accessed on 06/01/15.

[90] Nakamoto, S. (2008a). Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, Accessed on 01/01/15.

[91] Nakamoto, S. (2008b). Bitcoin P2P e-cash paper. http://www.mail-
archive.com/cryptography@metzdowd.com/msg09959.html, Accessed on 20/12/16.

[92] Nakamoto, S. (2009). Bitcoin v0.1 released. http://www.mail-
archive.com/cryptography@metzdowd.com/msg10142.html, Accessed on 20/12/16.

[93] Nakamoto, S. (2010). Transactions and Scripts: DUP HASH160 ... EQUALVERIFY
CHECKSIG. https://bitcointalk.org/index.php?topic=195.msg1611, Accessed on 3/01/17.

[94] Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. (2016). Bitcoin
and cryptocurrency technologies. Princeton University Press.

[95] Nayak, K., Kumar, S., Miller, A., and Shi, E. (2016). Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 305–320. IEEE.

[96] Odlyzko, A. (2003). The case against micropayments. In International Conference on
Financial Cryptography, pages 77–83. Springer.

[97] Pair, S. (2016). A Simple, Adaptive Block Size Limit. https://medium.com/@spair/a-
simple-adaptive-block-size-limit-748f7cbcfb75, Accessed on 19/04/16.

[98] Peters, G. W. and Panayi, E. (2015). Understanding modern banking ledgers through
blockchain technologies: Future of transaction processing and smart contracts on the
internet of money. Available at SSRN 2692487.

100 References

[99] Poon, J. (2015). Payment Re-routing. http://lists.linuxfoundation.org/pipermail/lightning-
dev/2015-July/000018.html, Accessed on 19/04/16.

[100] Poon, J. and Dryja, T. (2016). The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments. https://lightning.network/lightning-network-paper.pdf, Accessed on
19/04/16.

[101] Reid, F. and Harrigan, M. (2011). An analysis of anonymity in the bitcoin system. In
Privacy, security, risk and trust (passat), 2011 IEEE Third International Conference on
and 2011 IEEE third international conference on social computing , pages 1318–1326.

[102] Reitwiessner, C. (2016). Smart contract security.
https://blog.ethereum.org/2016/06/10/smart-contract-security/ Accessed on 01/09/16.

[103] Rizzo, P. (2015). Expedia Exec Says Bitcoin Spending Has Exceeded Estimates.
http://www.coindesk.com/expedia-exec-bitcoin-payments-have-exceeded-estimates/, Ac-
cessed on 06/01/15.

[104] Ron, D. and Shamir, A. (2013). Quantitative Analysis of the Full Bitcoin Transaction
Graph. In Financial Cryptography and Data Security, pages 6–24. Springer.

[105] Ruffing, T., Moreno-Sanchez, P., and Kate, A. (2014). Coinshuffle: Practical decen-
tralized coin mixing for bitcoin. In Computer Security-ESORICS 2014, pages 345–364.
Springer.

[106] Russell, R. (2015a). Loop attack with onion routing..
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-August/000153.html,
Accessed on 19/04/16.

[107] Russell, R. (2015b). Reaching The Ground With Lightning (draft 0.2).
https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf,
Accessed on 19/04/16.

[108] Russell, R. (2015c). Routing on the lightning network?
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-July/000019.html, Accessed
on 19/04/16.

[109] Sapirshtein, A., Sompolinsky, Y., and Zohar, A. (2016). Optimal selfish mining
strategies in bitcoin. In Financial Cryptography and Data Security. Springer.

[110] Schildbach, A. (2014). Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-
Development. http://sourceforge.net/p/bitcoin/mailman/message/ 32157651/, Acccessed
on 01/02/15.

[111] Schnorr, C.-P. (1991). Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174.

[112] Sompolinsky, Y. and Zohar, A. (2015). Secure high-rate transaction processing in
bitcoin. In International Conference on Financial Cryptography and Data Security, pages
507–527. Springer.

References 101

[113] Sparkes, M. (2015). Britons can now buy Dell computers with Bit-
coin. http://www.telegraph.co.uk/technology/news/11425250/ Britons-can-now-buy-Dell-
computers-with-Bitcoin.html Accessed on 26/02/15.

[114] Spilman, J. (2013). Anti DoS for tx replacement.
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html, Accessed
on 19/04/16.

[115] State, N. Y. (2015). Chapter i regulations of the superintendent of financial services,
part 200. virtual currencies. Department of finance services.

[116] Stewart, H. (2013). Eurozone bailouts: which countries remain?
https://www.theguardian.com/business/2013/dec/13/eurozone-bailouts-greece-portugal-
cyprus-spain, Accessed on 3/01/17.

[117] Szilagyi, P. (2016). Whoa. . . Geth 1.5. https://blog.ethereum.org/2016/11/17/whoa-
geth-1-5/, Accessed on 23/01/17.

[118] Tapscott, D. and Tapscott, A. (2016). Blockchain Revolution: How the Technology
Behind Bitcoin Is Changing Money, Business, and the World. Penguin.

[119] Todd, P. (2014). OP_CHECKLOCKTIMEVERIFY.
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki, Accessed on 01/01/16.

[120] Tor (2015). Make A Donation. https://www.torproject.org/donate/donate.html.en,
Accessed on 06/01/15.

[121] Treanor, J. (2015). RBS sale: Fred Goodwin, the £45bn bailout and years
of losses. https://www.theguardian.com/business/2015/aug/03/rbs-sale-fred-goodwin-
bailout-years-of-losses, Accessed on 3/01/17.

[122] Trillo, M. (2014). Put to the Stress Test.
http://visatechmatters.tumblr.com/post/96025603185/put-to-the-stress-test-visanet-
gets-pushed-to-the, Accessed on 19/04/2016.

[123] Tur, M. (2015). Can BitPay refund my order? https://support.bitpay.com/hc/en-
us/articles/203411523-Can-BitPay-refund-my-order-, Accessed on 07/04/2015.

[124] Valenta, L. and Rowan, B. (2015). Blindcoin: Blinded, accountable mixes for bitcoin.
In Bitcoin Workshop at Financial Cryptography and Data Security.

[125] Vaudenay, S. (2002). The Security of DSA and ECDSA. In Public Key Cryptography —
PKC 2003, volume 2567 of Lecture Notes in Computer Science, pages 309–323. Springer
Berlin Heidelberg.

[126] Walport, M. (2016). Distributed ledger technology: Beyond blockchain. uk govern-
ment office for science. Technical report, Tech. Rep.

[127] Wire, B. (2016). Now You Can Vote Online with a Selfie. Business Wire.
http://www.businesswire.com/news/home/20161017005354/en/Vote-Online-Selfie, Ac-
cessed on 25/10/16.

102 References

[128] Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper.

[129] Wuille, P. (2012). BIP 32: Hierarchical Deterministic Wallets. Bitcoin Foundation.
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, Accessed on 10/05/15.

[130] Wuille, P. (2015a). BIP 66: Strict DER signatures.
https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki, Accessed on 19/04/16.

[131] Wuille, P. (2015b). Switch to libsecp256k1-based ECDSA validation. Bitcoin Github
Repository. https://github.com/bitcoin/bitcoin/pull/6954, Accessed on 31/12/15.

[132] Zhang, F., Cecchetti, E., Croman, K., Juels, A., and Shi, E. (2016). Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 23nd ACM SIGSAC
Conference on Computer and Communications Security.

	Table of contents
	1 Introduction
	1.1 Thesis Outline
	1.2 Collaborators and Publications

	2 Cryptocurrency Background
	2.1 Bitcoin
	2.2 Ethereum
	2.3 Conclusion

	3 Authenticated Key Exchange over Bitcoin
	3.1 Introduction
	3.2 Background
	3.2.1 Transaction Signature
	3.2.2 Authentication in Key Exchange Protocols

	3.3 Key exchange protocols
	3.3.1 Setting the stage
	3.3.2 Authentication
	3.3.3 Diffie-Hellman-over-Bitcoin Protocol
	3.3.4 YAK-over-Bitcoin Protocol

	3.4 Security Analysis
	3.4.1 Security of Diffie-Hellman-over-Bitcoin
	3.4.2 Security of YAK-over-Bitcoin
	3.4.3 Security of ECDSA Signatures

	3.5 Implementation
	3.5.1 Time analysis
	3.5.2 Note about domain parameters

	3.6 Conclusion

	4 Refund attacks on Bitcoin's Payment Protocol
	4.1 Introduction
	4.2 Background
	4.2.1 Payment Protocol

	4.3 Attacking the Payment Protocol
	4.3.1 Silkroad Trader Attack
	4.3.2 Marketplace Trader attack

	4.4 Real-world experiments
	4.4.1 Proof of concept wallet
	4.4.2 Simulation of attacks

	4.5 Solution
	4.5.1 Proposed Solution
	4.5.2 Discussion
	4.5.3 Inherent issues due to Bitcoin
	4.5.4 Solution performance

	4.6 Payment Processors Response
	4.7 Conclusion

	5 Towards Bitcoin Payment Networks
	5.1 Introduction
	5.2 Background
	5.2.1 Time Locks in Bitcoin
	5.2.2 Payment Channel Establishment
	5.2.3 Basic Payment Channels

	5.3 Proposed Payment Channel Protocols
	5.3.1 Duplex Micropayment Channels
	5.3.2 Lightning Channels
	5.3.3 Comparison of Duplex Micropayment and Lightning Channels

	5.4 Routing Payments
	5.4.1 Hashed Time-Locked Contract (HTLC)
	5.4.2 Routing Interruptions
	5.4.3 Challenges for Route Discovery

	5.5 Conclusion

	6 A Smart Contract for Boardroom Voting with Maximum Voter Privacy
	6.1 Introduction
	6.2 Background
	6.2.1 Self-Tallying Voting Protocols
	6.2.2 The Open Vote Network Protocol

	6.3 The Open Vote Network over Ethereum
	6.3.1 Structure of Implementation
	6.3.2 Election stages

	6.4 Design Choices
	6.5 Experiment on Ethereum's Test Network
	6.5.1 Timing Analysis

	6.6 Discussion on Technical Difficulties
	6.7 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Future work

	References

