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Abstract 

 

Ageing and disease can be understood in terms of a loss in biological homeostasis. This 

will often manifest as a constitutive elevation in the basal levels of biological entities. 

Examples include chronic inflammation, hormonal imbalances and oxidative stress. The 

ability of reactive oxygen species (ROS) to cause molecular damage has meant that 

chronic oxidative stress has been mostly studied from the point of view of being a 

source of toxicity to the cell. However, the known duality of ROS molecules as both 

damaging agents and cellular redox signals implies another perspective in the study of 

sustained oxidative stress. This is a perspective of studying oxidative stress as a 

constitutive signal within the cell. In this work a computational modelling approach is 

undertaken to examine how chronic oxidative stress can interfere with signal processing 

by redox signalling pathways in the cell. A primary outcome of this study is that 

constitutive signals can give rise to a ‘molecular habituation’ effect that can prime for a 

gradual loss of biological function. Experimental results obtained highlight the 

difficulties in testing for this effect in cell lines exposed to oxidative stress. However, 

further analysis suggests this phenomenon is likely to occur in different signalling 

pathways exposed to persistent signals and potentially at different levels of biological 

organisation. 
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Chapter 1 

 

 Introduction 

 

1.1 Biogerontology: What is biological ageing? 

 

What is ageing? A widely accepted definition for the ‘ageing’ phenomenon that takes 

place in most living organisms is  

‘the progressive loss of function accompanied by decreasing fertility and increasing 

mortality with advancing age’ (Kirkwood and Austad, 2000).  

This definition reflects the state of knowledge in the field that aims to elucidate the 

underlying molecular causes of ageing, that is, the field of biogerontology. This 

definition reflects the current state of the field of biogerontology in both what the 

definition says and what it does not say. As stated in the definition, ageing occurs over 

time and is therefore a process. Although this remark may seem trivial, it does imply a 

few features worth of note. Namely the fact that there is a time window to observe and 

probe the phenomenon and secondly, the fact that the phenomenon involves changes 

which are recognisable from a reference point. Related to this is the fact that ageing is 

currently understood as a continuous process. As implicitly stated by the word 

progressive in the definition, the fact that ageing is viewed as a continuous process 

means there is no defined boundary at which an organism starts to age.    

Within this setting, the definition talks about a loss of function. This is the very core of 

the definition and the understanding of the ageing process. The abstract nature of this 

phrase reflects the scope that is necessary to encompass the diverse observations that 

have been made on the ageing process. This is illustrated by the lack of a gold-standard 

ageing biomarker (Martin-Ruiz et al., 2011, Bürkle et al., 2015). The lack of 

specification regarding what function entails is a reflection of first of all the generality 

of the process. Secondly, this phrase states consequence, where the effect of the ageing 

process is an interference with the end purpose of a given biological system. Whatever a 

biological system has evolved to do to, it is somewhat less able to do it as the ageing 

process progresses. The effects of ageing could thus be viewed as a general dissipation 

of evolutionary strategies that ensure organism survival. 
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In an attempt to further contextualise the loss of function statement, two robust 

observations of the ageing process are more specifically defined. There is a decreased 

fertility and increased mortality. Note that the incorporation of these two specifications 

in the definition aims to make the ageing process measurable and quantifiable more than 

attempting to distinguish the ageing process from diseases and pathologies. It is the 

generality of the definition of ageing what makes this process distinguishable from 

diseases which may also increase mortality or decrease fertility with age. Indeed, 

diseases are distinguishable processes because they involve the loss of a specific set of 

functions. All humans will age, but not all humans will develop a particular disease. 

The last two important points to make are on the use of the words ‘accompanied’ and 

‘advancing’. The former implies uncertainty regarding the underlying causality of the 

recurrent observations of loss of fertility and increased mortality and furthermore the 

relative timing of such events. It is well established that the ageing process is highly 

heterogeneous in, firstly, the specific functional losses that may be observed and 

secondly, the timing at which such dysfunctionalities may occur (Kirkwood, 2005, 

Passos et al., 2008, Partridge, 2010, Bürkle et al., 2015). The use of the word 

‘advancing’ follows from the aforementioned principle of time-dependency of the 

process. However, there is a reason why the word ‘increasing’ may not be deemed a 

better choice.  The reason is the fact that mortality correlates better with ‘biological age’ 

than chronological age (Bürkle et al., 2015). The ageing process may not significantly 

‘advance’ even though time may ‘increase’. 

The current definition of ageing has classed some organisms as being “immortal” since 

they show no loss in functional markers, reproductive ability or any increase in 

mortality with chronological time (Archer and Hosken, 2016). Questions have been 

raised on whether the ageing process actually still occurs in these organisms, albeit 

really slowly, and whether this apparent immortality is an artefact of the current 

definition of ageing (Khokhlov, 2014,  Archer and Hosken, 2016,  Singer, 2016). In any 

case, the current dogmas on which the field of biogerontology rests state the dynamic 

nature of ageing, the overall generality of the process and the heterogeneity of 

underlying observations. Within this framework the field of biogerontology has 

attempted to shed light into the underlying process behind the ageing phenomenon by 

asking both why we age and how we age. 
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1.2 Theories of biological ageing 

 

To understand the historical and current development of the field of biogerontology, it 

is useful to understand how biological problems are addressed in the life sciences. 

Tinbergen’s four questions (Bateson and Laland, 2013), which are as pragmatic as they 

are logical, establish four facets to the investigation of a given biological problem (See 

Figure 1.1). Whilst a discussion on the universality of this paradigm (Bateson & Laland 

2013) is beyond the scope of this work, Tinbergen’s four questions provide a useful 

starting point to understand how evolutionary and mechanistic theories of ageing 

overlap with each other.  

 

 

 

 

 

 

 

 

Figure 1.1 Tinbergen’s four questions. A researcher can ask how a given biological 

phenomenon occurs (proximate) or alternatively the researcher may be interested in 

the end purpose of the biological phenomenon, that is, why it takes place (ultimate). 

Proximate questions are associated with enquiries on the nature of mechanistic 

causations in themselves, whether it is an acute response, or a developmental response 

taking place over an organism’s life. Ultimate questions are associated with enquiries 

on a broader (higher order) context, whether that context is a current context or part of 

a life history. Whilst a shift to the right on the table involves the contextualisation of the 

biological phenomenon in the context of time, a shift downwards involves the 

contextualisation of the phenomenon in the context of the environment. It goes without 

saying that the boundaries between the four questions are fuzzy and the questions, non-

exclusive. However, they provide a pragmatic approach to understand biogerontology.  
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1.2.1 Evolutionary theories of ageing 

 

Asking why implies a higher order question regarding the level of abstraction, and 

therefore a higher order (ultimate) answer, than asking how (proximate answer) 

(Bateson and Laland, 2013). In biology, the ultimate higher level entered when seeking 

an explanation to observed phenomena is evolution. In trying to understand why most 

living organisms age, biogerontologists therefore developed evolutionary frameworks to 

make sense of the experimental observations available at the time.  

Ageing was first expressed within an evolutionary framework by August Weismann in 

1882. Weismann viewed ageing as a process selected for by natural selection which 

would remove the old individuals from a population to free resources for the newer 

generations (Weismann et al., 1891). Within this context, ageing is the result of natural 

selection on the population scale rather than at the level of the individual and implies a 

‘programmed ageing’ process. 

The next major breakthroughs in the evolutionary thinking on ageing came in the mid 

twentieth century with Peter Medawar’s Mutation Accumulation (MA) theory of ageing 

(Medawar, 1952) and George William’s Antagonistic Pleiotropy (AP) theory of ageing 

(Williams, 1957). Later on, in 1977, Tom Kirkwood would propose the Disposable 

Soma theory (DST) of ageing (Kirkwood, 1977). These are the three main evolutionary 

theories of ageing within the field of biogerontology. Central to the development of all 

theories was the ‘Selection shadow’ concept put forward by John Haldane in 

1941(Haldane, 1941).  

The ‘selection shadow’ concept refers to the decline in evolutionary selection pressure 

with age once an organism has passed its reproductive window. In other words, the 

inability of evolution to select against late-onset, deleterious, traits that do not 

significantly affect an organism’s reproductive ability. The classical example for this 

phenomenon is Huntington’s Disease (HD). This disease is caused by a dominant 

negative mutation and so it would be expected that natural selection would have 

selected against individuals with such mutations, yet the disease prevalence in the 

population is relatively high (Bates et al., 2014). However the first symptoms of HD 

commonly start at the age of 40, giving the individual ample time to reproduce and pass 

down the HD alleles. Thus, natural selection is very weak against genotypic changes 

that result in adverse effects later on in organismal life. 
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Mutation accumulation theory is based on the ‘selection shadow’ concept in that 

because germline mutations with late-onset detrimental effects cannot be removed by 

natural selection, a mutational load would be established on the germline which would 

drive the development of a variety of dysfunctionalities at older age.  

Antagonistic pleiotropy theory more specifically builds from the abstract nature of the 

mutation accumulation theory. Williams proposed that natural selection against late-

onset traits is strong enough to provide a selection pressure. This is because more subtle 

phenotypic changes associated with senescence, like a slightly slower pace or slightly 

worse immune system, can occur earlier in the decline of physiological function and 

affect organism survival at a much earlier age than that at which the detrimental 

phenotype is established. Therefore, traits with late-onset detrimental effects must have 

a previous beneficial effect that associates with increased reproductive ability if they are 

to remain within the gene pool of the population.  

The Disposable Soma theory is the least abstract of all the theories in the sense that it 

narrows the causative molecular players to defined functional classifications. This 

theory argues that because organisms evolve in environments with a limited number of 

resources, evolution shapes a trade-off in the resource (energy) allocation between 

reproduction and maintenance and repair processes. The basic premise is that whilst 

reproduction is the ultimate goal of the evolutionary process, the organism has first to 

survive to the reproductive age, and perhaps a little beyond, to care for the new 

offspring until they become autonomous. The result of this evolved trade-off is damage 

accumulation throughout life history as determined by the evolved energy-allocation to 

maintenance and repair processes. The DST can be said to be an instance Life History 

Theory (Selman et al., 2012). 

These three main evolutionary theories of ageing view the ageing process as an 

epiphenomenon, whether arising from a weaker selection past the reproductive period or 

from the selection of traits which maximise reproductive fitness. This is in contrast to 

Weismann’s original view of ageing as a programmed process.   
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1.2.2 Mechanistic theories of ageing 

 

In the 90s, more than 300 theories of ageing had been identified (Medvedev, 1990) but 

only a handful have acquired a critical weight within the field of biogerontology. In the 

late 1950s a number of authors related somatic mutational load to lifespan (Failla, 1958, 

Szilard, 1959). This somatic mutation theory (Morley, 1995) gained strength from the 

observed correlations between DNA repair rates and lifespan, as well as from the aged-

like phenotypes of some strains of mutator mice (Promislow, 1994, Kennedy et al., 

2012).  

In the late 1960s the cross-linking theory of ageing (Bjorksten, 1968) proposed protein 

aggregation as the driving mechanism of loss of functional homeostasis with age. This 

theory would later be further generalised (Terman and Brunk, 2004). Around this time, 

Leonard Hayflick’s discovery of a limited capacity for cells to undergo division 

(Hayflick, 1965) led to the formulation of the telomere loss theory of ageing (Kim Sh et 

al., 2002) out of which would stem the idea that the gradual accumulation of senescent 

cells in tissues can drive a progressive functional loss (Campisi, 2003). Both the somatic 

mutation theory and the telomere loss theory placed the concept of genomic instability 

at the centre of the ageing process. 

By the turn of the century, the immune system and the dysregulation of inflammatory 

factors were introduced as the potential drivers of the ageing phenotype in the inflamm-

ageing theory of ageing (Franceschi et al., 2000). Shortly after, Mikhail Blagoskonny 

argues for a hypertrophy theory of ageing (Blagosklonny, 2006) where the ageing 

process arises as an epiphenomenon of organism developmental programs which 

continue to be  active in old age. The oldest and arguably the most influential theory of 

ageing, however, is the free radical theory of ageing. 

The free radical theory of ageing (FRTA) proposed by Denham Harman (Harman, 

1955) has arguably been the most influential mechanistic theory of ageing. His theory 

suggested that increased production of reactive oxygen species with age would drive the 

ageing process through increased molecular damage, with the end result of a loss of 

functional and structural integrity. This theory displayed the attractiveness of being 

based on a fundamental and irrefutable physical property of ROS molecules, their high 

reactivity, and the fact that they are unavoidably produced endogenously by metabolic 

processes. The concept that random molecular damage would drive the ageing process 
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intuitively fitted the observations on the variability of the ageing process and the 

required gradual loss of homeostasis of biological mechanisms.  

The discovery of superoxide dismutases in the late 1960s by Irwin Fridovich (McCord 

and Fridovich, 1969) proved the evolution of mechanisms against ROS molecules. The 

discovery of antioxidant proteins established a paradigm on the detrimental nature of 

ROS and gave momentum to the FRTA. However, the eventual discovery of the 

physiological functions of ROS and the establishment of the field of ‘Redox Biology’ 

broke the paradigm of ROS molecules being solely a detrimental by-product of 

metabolism. Since the conception of the FRTA, a wealth of correlative evidence has 

been established in various organisms between molecular oxidative damage and 

lifespan, although some strong criticism of this theory has also been established 

(Kirkwood and Kowald, 2012, Barja, 2013, Vina et al., 2013, Liochev, 2015, Sanz, 

2016). 

Returning to Tinbergen’s four questions, it is apparent that theories on the proximate 

causes of ageing are primarily concerned with mechanisms which may cause a systemic 

interference with cellular functions over a lifetime (Figure 1.2). Such theories originally 

arose as extrapolations of how lower-scale cellular observations could be relevant 

within a whole organism over a whole life time. Meanwhile, whilst the mutation 

accumulation and antagonistic pleiotropy theories arose from higher-scale observations 

of animal populations, the disposable soma theory emerged after a number of the main 

mechanistic theories of ageing had been put forwards. Consequently, DST seems more 

specific and refined regarding the cellular processes relevant to ageing and thus much 

easier to relate to experiments addressing how ageing occurs at the cellular scale.  
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Figure 1.2. A pragmatic classification of the main theories of ageing according to 

Tinbergen’s four questions. Most proximal theories of ageing refer to specific 

mechanisms occurring and being affected over a time scale of an individual life time, 

but only the Hypertrophy theory is an explicitly developmental theory. The most 

abstract evolutionary theories can explain why ageing occurs but are not explicit about 

the mechanism behind the homeostatic decline observed with age. Disposable soma 

theory predicts both why and how ageing occurs without explicitly necessitating a 

specific mechanistic theory since all of them except the Hypertrophy- theories of ageing 

are centred around the concept of random molecular damage. The Programmed theory 

is the only evolutionary theory that views ageing as an acute adaptive response but 

makes no predictions on what the mechanism might be. Notice that the rest of the 

theories account for the arrow of time in some way, consistent with the notion of ageing 

being a continuous dynamic process. Physical theories of ageing are the most abstract 

and encompass all classifications.  
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Whilst these are arguably the mechanistic theories of ageing that gained the most 

momentum, the list is by no means exhaustive (Medvedev, 1990, Tosato et al., 2007). 

The acknowledgement that no single mechanistic theory of ageing convincingly 

explained the plethora of available experimental observations led to the formulation of 

ageing as a network-scale phenomenon (Franceschi, 1989, Kowald and Kirkwood, 

1996, Kirkwood, 2005, Mitnitski et al., 2017). The network theory of ageing arose as a 

prediction from the DST which places random molecular damage as the driver of the 

ageing process and thus would be expected to affect multiple mechanisms 

heterogeneously.  Further attempts at the abstraction and unification of the theories of 

ageing materialised in the form of physical theories of ageing. The most notable 

examples are loss of complexity theory of ageing (Lipsitz and Goldberger, 1992), the 

entropic theory of ageing (Bortz, 1986) and the reliability theory of ageing (Gavrilov 

and Gavrilova, 2001). 

The different mechanistic theories argue for different drivers of the ageing process. 

However, none of these argued drivers of the ageing process has been unequivocally 

resolved into being causal or consequential of the ageing process. Indeed, each theory 

argues that the time-dependent change in the proposed ageing-driver underlies the 

progression of the ageing process. However, the only explanation as to why the ageing-

driver starts changing in the first place is the core concept behind both the MA and 

DST, which argue that random molecular damage can cause stochastic disruptions to 

the homeostatic organisms operating in cells. Reactive oxygen species, as argued by the 

FRTA, are the main molecular players with the physical properties required to cause 

molecular damage. Thus, exploring the mechanisms that underlie cellular redox 

homeostasis seems an intuitive way to understand how damage may accumulate in cells 

to potentially cause a functional decline.  

 

1.3 Understanding biological ageing as a network of hallmarks 

 

It is evident that the ageing phenomenon manifests at both the macroscopic (tissues, 

organ systems, life style, demographics…) and the microscopic levels (molecules and 

cells). All of the ageing theories explain macroscopic age-related changes in terms of 

microscopic age-related changes. This effectively means that the ageing phenomenon is 

best understood from a bottom-up approach. This does not at all dismiss the utility of 

top-down approaches, since these can direct and constrain research efforts directed at 
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the microscopic level. As a phenomenon, ageing displays a series of hallmarks that span 

multiple levels of biological organisation (Lopez-Otin et al., 2013). Therefore, any 

bottom-up approach to the study of biological ageing must eventually span multiple 

biological scales. 

The proposed hallmarks of ageing at the microscopic level, despite being arguably 

mammalian-centred, provide a good starting point to understand the causal 

interrelations between age-related phenomena observed at the molecular and cellular 

level. The currently proposed nine hallmarks of ageing can be organised into a 

hierarchical causation scheme where primary hallmarks will cause damage, antagonistic 

hallmarks arise as an initial biological response to the effect of primary hallmarks and 

integrative hallmarks are a phenotypic manifestation of chronic changes in antagonistic 

hallmarks. In this scheme, primary hallmarks are exclusively pathological in nature and 

include genomic instability, telomere attrition, epigenetic alterations and loss of 

proteostasis. Antagonistic hallmarks arise as an initial compensatory response to the 

accumulation of damage driven by the primary hallmarks. However, antagonistic 

hallmarks end up contributing to the ageing process when they remain active beyond a 

threshold magnitude and/or time.  Antagonistic hallmarks include deregulated nutrient 

signalling, mitochondrial dysfunction and cellular senescence. The sustained, 

deleterious state of antagonistic hallmarks over time translates into a loss of tissue 

homeostasis and function in the form of integrative hallmarks like stem cell exhaustion 

or altered intercellular communication. 

This framework for understanding the ageing process is undoubtedly useful to map and 

contextualise experimental results. However, it is an oversimplification which seems 

excessively centred in a unidirectional feeding of damage through the levels of 

biological organisation: from individual molecules to cellular pathways, to cellular 

states and up to tissue properties. As the authors themselves point out  (Lopez-Otin et 

al., 2013), the ageing hallmarks are better understood as an integrated interaction 

network across levels of biological organisation (Figure 1.3). With damage placed at the 

centre of any network perturbation in accordance with the current theories of ageing 

(Gladyshev, 2014). 
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Figure 1.3. Biological ageing as a network of hallmarks. The stochastic events of 

molecular damage have the potential to result in a transient or sustained network 

perturbation. In the case of a transient perturbation, the effect of molecular damage is 

diluted out by molecular turnover or cellular repair mechanisms. This perturbation will 

not contribute to the development of the ageing hallmarks. However, some effects of 

molecular damage may become permanent in the system if they are not repaired 

(genomic instability and telomere attrition). The robustness of the genomic structure 

and function allows for the effects of molecular damage to accumulate over time and 

gradually start feeding through the network in the form of altered protein and cellular 

function. When a threshold cell population becomes dysfunctional, this will become 

visible at the level of tissue structure, function and integrity. The interactions amongst 

hallmarks can be complex and self-amplifying/self-stabilising…(continues next page) 
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…For example, mutations or an altered local genomic structure can result in proteins 

being unable to perform epigenetic modifications which in turn increases genomic 

instability and promotes aberrant gene expression. Mitochondrial dysfunction can drive 

the cells into a senescent state which is stabilised through the constitutive generation of 

DNA damage foci by increased ROS production. Furthermore, interactions are not 

exclusively bottom-up. Altered tissue structure/function can result in an altered cell 

niche which can interfere with intercellular communication or stem cell differentiation. 

Another example could be an altered hormone secretion within an organ system which 

results in a deficient activation of the necessary responses within tissues of distal 

organs.   

 

But where do ROS and oxidative stress fit in this framework? As previously mentioned, 

ROS have the capacity to cause molecular damage due to their intrinsic reactivity. 

Therefore, oxidative stress would feed into the network at two levels: i) A transient 

stochastic occurrence (acute network perturbation) corresponding to the ‘Molecular 

Damage’ classification. ii) As a sustained input (chronic network perturbation) through 

self-amplifying or self-stabilising loops (Figure 1.3). Examples of the latter could be the 

ROS-mediated stabilisation of the senescent state or the promotion of mitochondrial 

damage by ROS generated by dysfunctional mitochondria.  The nature of both of these 

types of homeostatic interference are fundamentally different and indeed assume a role 

for ROS and oxidative stress to be as a primary causative agent (i) or a as a secondary 

consequence (ii). In any case, ROS molecules are not the only entity which can promote 

a self-feeding within the network (Figure 1.3). In fact, ROS molecules are not the only 

potential source of stochastic molecular damage (e.g. advanced glycation end-products, 

unfolded proteins, infections, toxic metabolites, radiation…). However, current thinking 

within the field of biogerontology do place ROS as the most plausible source for the 

majority of molecular damage associated with the progression of the ageing process. 
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1.4 Redox signalling 
 

Reduction/Oxidation (redox) reactions involve an electron transfer from a donor 

molecule to a recipient molecule resulting in the oxidation of the donor and the 

reduction of the recipient. In biological organisms there are few molecules that are 

nucleophilic enough to autonomously trigger a redox reaction. These molecules 

typically contain an oxygen atom which may have an unpaired electron (free radical) or 

may have a non-uniform distribution of paired electrons which results in partial changes 

within the molecule (Lushchak, 2014). The general term reactive oxygen species (ROS) 

encompasses small molecules that are autonomously involved in redox reactions 

mediated by the electronegative properties of the oxygen atom within them 

(Winterbourn, 2008).  

The main free radicals (FR) present in biological systems are the superoxide- (O2
.), 

nitric oxide- (NO.) , hydroxyl- (OH.) and peroxynitrite-  (ONOO.) radicals 

(Winterbourn, 2008, Marengo et al., 2016, Wang and Hai, 2016). Of these, only the first 

two are actively produced by the cell. OH. is produced as the accidental by-product of 

the reaction of free cellular iron with hydrogen peroxide (H2O2) and ONOO. is 

generated as an accidental by-product of the reaction of NO . with O2
. (Schieber and 

Chandel, 2014, Wang and Hai, 2016). H2O2 is the main non-FR ROS found within cells 

and is involved in two-electron transfer reactions as opposed to the single-electron 

transfer reactions of FRs (Winterbourn, 2008,Veal and Day, 2011, Marengo et al., 

2016). Due to the lack of an unpaired electron, H2O2 is less reactive than FRs and 

consequently has a longer half-live and diffusion distance (Winterbourn, 2008). These 

physical properties lie behind the association of FRs with unspecific molecular damage 

and the association of non-FR ROS molecules with physiological signalling functions.  

ROS have been long-known to be constitutively produced by the electron transport 

chain (ETC) during respiration as a result of an electron leak from the ETC to the high 

oxygen environment of the mitochondrial matrix ( Lushchak, 2014, Marengo et al., 

2016, Wang and Hai, 2016) .  However, the discovery of the ubiquity of NADPH 

oxidases across cell types and the evolutionary tree established that cells contain 

enzymes dedicated exclusively to the production of ROS, namely superoxide and 

hydrogen peroxide (Jiang et al., 2011, Holmstrom and Finkel, 2014). A paradigm shift 

occurred where ROS stopped being viewed as an inevitable and unwanted by-product of 

respiration (Veal and Day, 2011, Lushchak, 2014, Schieber and Chandel, 2014). It 
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became apparent that cells had evolved to use ROS as signalling molecules which can 

activate pathways and trigger cellular responses through the chemical modification of 

amino acid residues within target proteins. It is commonly cysteine residues within 

proteins which will react with ROS in the cellular environment, with a nucleophilic 

attack to the thiol/thiolate group resulting in the formation of a short-lived sulfenic 

group which will then resolve into a chemical bond (Holmstrom and Finkel, 2014, 

Schieber and Chandel, 2014). 

Despite the currently accepted role of ROS as signalling molecules, it is still established 

that excessive levels of these molecules can cause cellular damage and death  

(Lushchak, 2014, Wang and Hai, 2016,). This is in accordance with the observation that 

cells contain many families of abundant antioxidant proteins (Marengo et al., 2016, 

Wang and Hai, 2016). Catalase scavenges hydrogen peroxide as so do peroxidase 

enzymes such as peroxiredoxin isoforms and glutathione peroxidase isoforms. 

Peroxidases are electron donors that rely on their subsequent reduction by the concerted 

action of cellular reducing systems involving glutathione and NADPH molecules as 

well as thioredoxin and reductase proteins. Superoxide dismutase isoforms convert 

superoxide into the less reactive hydrogen peroxide molecule.  There are, additionally, 

non-enzymatic antioxidant compounds like Vitamins C/E or Coenzyme Q or uric acid. 

The variety of antioxidant protein families that have evolved within cells and the 

abundance at which they have evolved to be expressed reflects the importance of 

maintaining low basal ROS levels to maintain cellular function and survival.  Also 

emphasising this is the observation that a common downstream consequence of a redox 

signalling event is the overexpression of antioxidant proteins (Espinosa-Diez et al., 

2015, Marengo et al., 2016) . 

The double-edged nature of ROS molecules is reflected by both the number of 

processes these molecules regulate and the number of pathologies that are associated 

with deleteriously-elevated levels of these molecules (Holmstrom and Finkel, 2014), a 

state loosely referred to as oxidative stress (Sies, 2015).Whilst redox signalling 

modulates a wide variety of physiological processes including insulin signalling (Rains 

and Jain, 2011), the inflammatory response (Lei et al., 2015), apoptosis (Sinha et al., 

2013), vasodilation (Madamanchi and Runge, 2013), proliferation (Truong and Carroll, 

2012), migration (Schroder, 2014), the stress response (Jiang et al., 2011)… high basal 

ROS levels are associated with cancer (Manda et al., 2015), diabetes (Wang et al., 
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2013), cardiovascular disease (Madamanchi and Runge, 2013), neurodegenerative 

diseases (McBean et al., 2015), and ageing (Sanz, 2016). 

 

1.5 Redox signalling pathways in mammalian cells 

 

In mammalian cells, there are a variety of signalling pathways that have been shown to 

respond to changes in the intracellular levels of ROS. However, in most cases, the redox 

sensor molecule that acts as the starting point of the signal transduction process is not 

yet identified (Winterbourn, 2015). This is significant since the identification of the 

upstream ROS sensor clarifies whether the pathway in itself senses ROS molecules in 

the environment, and is therefore a redox signalling pathway, or alternatively if it is 

activated via crosstalk with other redox signalling pathways.  

Within pathways that directly sense changes in intracellular ROS levels through the 

direct oxidation of signalling molecules, a further distinction can be made between 

pathways that are redox-modulated and pathways that are redox-activated (Oliveira-

Marques et al., 2009).  In redox-activated pathways, changes in intracellular ROS levels 

are a sufficient stimulus to activate the pathway and trigger a response. In redox 

modulated pathways this same stimulus is not in itself enough to cause pathway 

activation but may facilitate or enhance signalling caused by a second stimulus. 

Changes in ROS levels are thus an insufficient requisite for signalling to occur in redox-

modulated pathways. 

In some cases, the redox sensor molecule is a signalling node, a protein which cannot be 

assigned to any one particular signalling pathway according to current knowledge but 

rather lies at the intersection of multiple signalling axes. Such would be the example of 

Ref-1 (Thakur et al., 2014). Without any canonical regulatory structure to associate 

these proteins to, it is not always feasible to investigate systemic properties involving 

signal processing and homeostatic disruption. 

The main redox signalling pathways in mammalian cells which are arguably redox 

activated and related to canonical structures with identified redox sensors can be said to 

be the ASK1-, NFκB-, HIF1- and Nrf2- signalling pathways. 
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1.5.1 ASK1 signalling pathway 

 

Apoptosis signal-regulating kinase 1 (ASK1) is a MAPKKK family cytosolic protein 

involved in cell-survival signalling (Hayakawa et al., 2012, Soga et al., 2012). ASK1 is 

able to homo-oligomerize into high molecular mass structures through homophilic 

binding between its C-terminal coiled-coil (CCC) domains and homophilic binding 

between N-terminal coiled-coil (NCC) domains to form the ASK1 signalosome.  

Although ASK1 is able to oligomerize constitutively, it can only do so through its CCC 

domains since the binding of thioredoxin molecules to the NCC domains prevents the 

alignment and oligomerisation at the N-terminal of the protein. Such binding provides 

steric hindrance to the activatory phosphorylation required to activate the ASK1 

signalosome.  

Upon a rise in intracellular oxidant levels, two active cysteines in the thioredoxin 

molecules will undergo oxidation to form a disulphide bond. The formation of this 

disulphide bond promotes the detachment of the thioredoxin molecules from the ASK1 

NCC domains which will now become free to align and homo-oligomerize. This 

activatory homo-oligomerisation event will promote further oligomerisation of ASK1 

molecules into more stable higher-mass signalosomes and furthermore result in the 

autocatalytic phosphorylation at the NCC domain throughout the ASK1 signaloso me.  

This active signalosome can then recruit a variety of proteins depending on the cellular 

context of the oxidative signal. For example, whether the oxidative stress is part of an 

inflammatory response or occurs in conjunction with calcium signalling. The outcome 

of ASK1 activation is the subsequent phosphorylation of stress-associated protein 

kinases (SAPKs) like JNK or p38 which then feed the signal through integrated kinase 

networks that ultimately result in a cell decision process of whether the cell survives or 

undergoes apoptosis.  

Once the oxidative stress disappears from the cellular environment through antioxidant 

scavenging, reduced thioredoxin molecules will be replenished by the action of 

reductases and will be able to bind the NCC domains to destabilise and disrupt the 

ASK1 signalosome so that it is no longer active. Additionally, a negative feedback loop 

has been identified where ASK1 activation by an oxidant stimulus results in a 

subsequent increase in protein phosphatase 5 (PP5) levels which actively 

dephosphorylates the activatory phosphor/threonine residue in the ASK1 NCC domain 

to destabilise and render the signalosome inactive (Morita et al., 2001). 
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1.5.2 NFκB signalling pathway 

 

The combinatorial binding between the members of the nuclear factor kappa-light-

chain-enhancer of activated B cells (NFκB) family of proteins gives rise to a variety of 

multi-protein complexes referred to as NFκB transcription factors. These transcription 

factors are involved in cellular responses to stress and inflammation (Hoesel and 

Schmid, 2013, Cildir et al., 2016). At rest, these transcription factors are kept inactive 

in the cytosol by the binding of members of the IκB protein family. Such binding event 

will not only sequester the nuclear localisation sequence (NLS) of the transcription 

factor but will also promote its ubiquitination and subsequent proteosomal degradation.  

Whilst the signalling pathway can be activated by a variety of stimuli through various 

growth factor and inflammatory receptors, activation signals will converge on the 

activation of the IKK protein complex in the canonical pathway of NFκB. The IKK 

complex is an IκB kinase which promotes the ubiquitination and subsequent 

degradation of its IκB substrate. The phosphorylation of IκB proteins will lead to the 

release of NFκB allowing the recognition of the NLS and its import into the nucleus. 

Amongst the transcriptional targets of NFκB are genes that encode IκB proteins, which 

become upregulated. The transcriptional upregulation of IκB genes by NFκB creates a 

negative feedback loop through the ability of IκB proteins to bind nuclear NFκB and 

sequester it back into the cytosol to reset the signalling system. The transcription of 

other proteins like A20 will also contribute to the strength of the negative feedback 

loop. 

This negative feedback produces NFκB oscillations which allows the pathway to 

encode information in the frequency domain as well as in the magnitude domain (Wang 

et al., 2012b). Whilst a non-canonical mechanism of NFκB signalling has been 

identified, it is comparatively less-well characterised (Cildir et al., 2016). 

There is abundant evidence in the literature that the NFκB pathway can be affected by 

H2O2 treatment. It is unclear, or at least context-dependent, whether increased oxidant 

levels have an inhibitory or activatory effect on the pathway (Morgan and Liu, 2011). 

Some authors argue the pathway not to be redox-activated but redox-modulated 

(Oliveira-Marques et al., 2009). ROS have been proven to be able to affect the 

phosphorylation status of IKK and IκB in addition to the binding affinity of the NFκB 

transcription factor to its target genes. It is thus apparent there remains substantial 
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uncertainty on how the oxidant signal feeds into the NFκB signalling network and what 

is the resulting outcome.  

 

1.5.3 Nrf2 signalling pathway 

 

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein is a basic leucine zipper 

domain transcription factor considered to be the master-regulator of the cellular 

detoxification response (Tebay et al., 2015, Loboda et al., 2016). In its basal state, it is 

bound by Keap1 molecules in the cytosol to form a protein complex which promotes the 

ubiquitination and proteosomal degradation of Nrf2. The Keap1 molecule has a high 

number of cysteine residues along the length of the protein that are prone to oxidation 

by intracellular ROS. 

An oxidation event causes a change in the conformation of the Nrf2-Keap1 complex so 

that Keap1 can no longer detach from Nrf2 after its ubiquitination. Consequently, under 

conditions of elevated oxidant levels in the cellular environment there is a lesser 

abundance of free Keap1 inhibitors to bind the constitutively – synthesized Nrf2 

protein. This will result in a greater proportion of free Nrf2 molecules in the cytosol 

which will be translocated into the nucleus through the recognition of the NLS sequence 

which has been argued to be facilitated by a prior phosphorylation event. Within the 

nucleus it will transcribe a plethora of genes coding for proteins with antioxidant and 

detoxifying functionalities.  

GSK3β has been established to be a negative regulator of nuclear Nrf2 levels via 

promoting its recognition and degradation by the TrCP protein (Hayes et al., 2015). It is 

still unclear, however, if this negative regulation via TrCP is mediated by GSK3β 

directly or through an intermediate molecule like Fyn (Cuadrado, 2015). Under 

conditions of oxidative stress, GSK3β is temporarily inhibited by a phosphorylation in 

its serine 9/serine 21 residues by activated Akt. It is hypothesized this inhibition may 

occur through the deactivation of PTEN by ROS (Cuadrado, 2015). This temporal 

deactivation facilitates the accumulation of Nrf2 in the nucleus. The eventual relief in 

the inhibition of GSK3β, presumably through a delayed phosphorylation in its tyrosine 

216 residue (Zhang et al., 2013), promotes the degradation of free Nrf2 through TrCP.  

Whilst Nrf2 has been reported to be able to increase the expression of Keap1 (Kaspar 

and Jaiswal, 2010), which in turn has been reported to translocate to the nucleus and 
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extract Nrf2 back into the cytosol (Niture and Jaiswal, 2009), the cell- and stimulus- 

specificity of these observations are still unclear. It is thus apparent that whilst the 

activation of the Nrf2 pathway is relatively well-characterised, there is still considerable 

uncertainty regarding the molecular basis and relative importance of the negative 

regulatory loops in this pathway. 

 

1.5.4 HIF1 signalling pathway 

 

Heat Inducible Factor 1 (HIF-1) is a transcription factor involved in the cellular 

response to hypoxia (Masoud and Li, 2015, Balamurugan, 2016). Under normal oxygen 

conditions (normoxia), the HIF1 alpha subunit is actively hydroxylated in its proline-

564 residue by prolyl-4-hydroxylase (PHD) protein isoforms 2 and 3. This post-

translational modification will be recognised by VHL proteins which will bind to HIF1a 

and promote its ubiquitination and subsequent proteosomal degradation. Furthermore, 

there is a second regulatory layer involving the hydroxylation of the TAD domain in 

HIF1a by FIH which prevents the binding of cofactors CBP and p300 to the HIF1 

protein. 

Both FIH and PHD2/3 are hydroxylase enzymes that contain a catalytic iron centre that 

reacts with the oxygen substrate. Under oxygen-limiting conditions (hypoxia), these 

reactions are believed to become substrate-limited to the point where HIF1a 

hydroxylation is relieved. It has additionally been suggested that the ROS generated by 

mitochondria under hypoxic conditions can react with the iron catalytic centres of the 

hydroxylase proteins to inhibit their activity (Chandel et al., 2000). Indeed, ROS 

generation by NOX proteins can be a positive feedback mechanism in HIF activation 

through the inhibition of the iron catalytic centres of hydroxylase proteins (Nanduri et 

al., 2015, Balamurugan, 2016). The reduced hydroxylation allows HIF1a proteins to 

escape VHL-binding and translocate to the nucleus. There, HIF1a will form a 

transcriptional complex with HIF1b, CBP and p300 and transcribe target genes. 

Amongst the genes transcribed by HIF1 are those coding for PHD2/3 proteins, thus 

creating a negative feedback loop (Bagnall et al., 2014). Additionally, HIF1 activation 

has been reported to increase the expression of a range of micro-RNAs which reduce the 

translation of HIF1 protein (Bartoszewska et al., 2015). Although a large number of 

positive and negative feedback loops have been reported in this pathway (Prabhakar and 
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Semenza, 2012), most of them remain to be established as conserved, canonical 

mechanisms which apply across cell lines and experimental contexts. Additional 

complexity arises from the observation that HIF1 may be activated in the absence of 

hypoxia through the mTOR pathway (Masoud and Li, 2015), which in itself can be 

modulated by ROS. This activation occurs through increased HIF1 protein expression 

by elF-4E which may also be induced through the MAPK pathway. 

 

1.5.5 Common features  

 

An apparent feature of all of the main redox signalling pathways (Figure 1.4) is that the 

oxidant signal results in the disruption of an inhibitor-activator complex that would 

otherwise result in the degradation of the activator molecule. The result of this 

disruption is an increased abundance of free activator which needs to be stabilised by a 

subsequent posttranslational modification and/or molecule binding. In most cases the 

executed function results in a delayed negative feedback loop through the increased 

transcription of the inhibitory molecule. In the case of Nrf2 signalling however, the 

main negative regulator acts through post-translational modification and is activated 

independently of Nrf2, in a negative feedforward loop (Figure 1.4a).  

It is useful to stress at this point that multiple post-translational feedback mechanisms 

have been reported for all pathways. Indeed, it has been argued that stress signalling 

pathways require both fast-acting post-translational feedback loops and late-acting 

transcriptional feedback loops for successful adaptation to the environmental conditions 

experienced by cells (Zhang et al., 2015b). However, these reported mechanisms have 

still not been established as part of the canonical signalling axis of these pathways. 

The fact that the signalling systems need to reset to pre-stimulus conditions in order to 

allow for the next signalling event in the cell requires that the inhibitor-activator 

complex is restored to basal levels. This can require the modification of the activator 

into a form that can be identified by the inhibitor (HIF1) or the regeneration of the 

inhibitor (ASK1, NFκB, Keap1). 

It is of interest to note that the HSF1 pathway which responds to cellular stress through 

the sensing of misfolded proteins or through its activation by other upstream pathways, 

follows similar conserved principles to the redox signalling pathways in Figure 1.4 

(Jiang et al., 2015b, Masoud and Li, 2015). Under unstimulated conditions HSF1 is also 
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kept within an inhibitory complex with HSP70/90 which promotes its degradation. 

Under the presence of unfolded proteins in the cellular environment, HSP70/90 

molecules will preferentially bind to them making HSF1 escape the HSP70/90-mediated 

degradation. After a subsequent phosphorylation, HSF1 translocates to the nucleus and 

will increase the expression of HSP70/90 inhibitor proteins. 
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Figure 1.4. (Previous page). Canonical interaction networks for four major redox 

signalling pathways in mammalian cells. AOX = Antioxidant. a) Nrf2 signalling 

pathway. b) NFκB signalling pathway. Note that asterisk indicates activated form of a 

molecule. c) HIF1 signalling pathway. Note that O = oxygen.  d) ASK1 signalling 

pathway.  

 

1.6 Redox homeostasis and ageing 

 

Whilst the loss of redox homeostasis manifested as oxidative stress has been proven to 

occur with age in a variety of tissues (Dai et al., 2014, Cunningham et al., 2015), the 

functionality of redox signalling within an ageing context has received scarce attention. 

Redox signalling, at least through some pathways, can be seen to become dysfunctional 

in multiple tissues with age (Zhang et al., 2015a). However, the most comprehensive 

investigations seem to have been performed in aged skeletal muscle tissue in the context 

of exercise and sarcopenia. 

 

1.6.1 ROS in exercise and skeletal muscle ageing 

 

A good physiological example of the complex role of ROS in health and ageing is seen 

in skeletal muscle during exercise and the process of sarcopenia. Physical exercise is a 

powerful, positive lifestyle intervention where ROS are thought to play a pivotal role in 

the resulting beneficial effects (Radak et al., 2008). Skeletal muscle produces ROS and 

reactive nitrogen species (RNS) during contraction (Powers and Jackson, 2008, Jackson, 

2015, Ji, 2015) which are not only necessary for force generation (Reid et al., 1993, 

Jackson, 2015) but also mediate an adaptive response involving the upregulation of 

antioxidants and heat shock proteins via redox-sensitive transcription factors (McArdle 

et al., 2001, Vasilaki et al., 2006b, Jackson and McArdle, 2011, Jackson, 2015).  The 

observation that elevated ROS have also been associated with muscle wasting during 

inactivity (Kondo et al., 1993, Powers et al., 2012) and ageing (Aoi and Sakuma, 2011), 

illustrates the recurring paradigm in redox biology regarding the double-edged nature of 

these molecules.  

The characterization of this behaviour is of special relevance to sarcopenia, a condition 

defined as the loss of muscle mass and function with age, which affects a very 
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significant proportion of the older population (Fielding et al., 2011). Such pathology is 

associated with several comorbidities and resulting high healthcare costs (Janssen et al., 

2004). Whilst on the one hand chronic oxidative stress is a hallmark of sarcopenia 

(Fulle et al., 2004), physical exercise is the only available intervention which to some 

degree ameliorates this condition (Fielding et al., 2011, Cobley et al., 2015, Joseph et 

al., 2016).  

Previous work on the redox-mediated adaptive responses during exercise in skeletal 

muscle revealed such signalling axes became aberrant with age in mice (Vasilaki et al., 

2006b, Jackson and McArdle, 2011, McDonagh et al., 2014b,  Ji, 2015) and humans 

(Cobley et al., 2015, Done et al., 2016). Although redox signalling dysfunctionality in 

skeletal muscle is well-established, the underlying mechanistic basis remains to be 

elucidated (Jackson, 2016). The reported redox signalling aberrancies in aged skeletal 

muscle and indeed many other tissues can be classed as a lack of response activation, 

reduced response activation or a constitutive response activation. However, the 

resolution provided by these observations is very limited since readings of redox 

activation are almost exclusively single time-point measurements. Thus, if a redox 

response is triggered more slowly but to the same magnitude, this will translate into a 

no-response or reduced-response conclusion if a single time-point measurement is taken 

(Figure 1.5). Conversely, studies reporting no change in response activation based on 

single time-point measurements could be misreporting an underlying stronger and faster 

activation that has decayed substantially by the time of measurement. In fact, the time of 

measurement itself is often arbitrarily chosen. Alas, there is a substantial uncertainty 

over the exact nature of the age-related redox dysfunctionalities.      
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Figure 1.5. Misleading conclusion derived from single time-point measurements. Redox 

activation in many aged tissues has been reported to be dampened or altogether 

abolished. However these readings are taken from single time-point measurements that 

could actually be reporting a fundamentally different behaviour, in this case, no change 

in activation magnitude but a delayed activation. Thus, current resolution into the 

nature of redox dysfunctionality is very limited. 

 

1.6.2 Redox homeostasis in cellular senescence 

 

Cells are the basic units of life, the most fundamental level at which life arises as a 

phenomenon (Mazzarello, 1999). It follows from this that the simplest model of the 

ageing phenomenon is the ‘ageing cell’. Cellular senescence, a state of irreversible cell-

cycle arrest induced under conditions of cellular stress, has been recurrently employed 

as a model of cellular ageing (Campisi, 2013, Bhatia-Dey et al., 2016, Lujambio, 2016). 

Not only have senescent cell populations been proven to display a gradual accumulation 

of damaging molecules and molecular damage (Lawless et al., 2012, Dalle Pezze et al., 

2014), but they have also been shown to display an increased heterogeneity in a variety 

of functional markers (Passos et al., 2007) . Cellular senescence has been linked to a 

number of age-related dysfunctionalities in a variety of tissues (Childs et al., 2015). 

However it was only recently that the accumulation of senescent cells was explicitly 

proven to actively promote the decline of physiological function and limit organism 
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life-span (Baker et al., 2011, Baker et al., 2016). As with any model, the question 

remains as to how representative it is of the process under study. It is important to note 

that non-dividing post-mitotic cells like neurons also undergo cellular ageing without 

entering a senescent state. Indeed, one can find in the literature references to a 

‘senescent-like state’ of post-mitotic cells (van Deursen, 2014).  

Being a stress-induced response, entry into cellular senescence can be promoted by 

elevated levels of ROS or DNA damage, amongst others (Campisi, 2013, Correia-Melo 

and Passos, 2015) . Thus, understanding cellular senescence as a simple model of 

cellular ageing requires a perspective that includes the maintenance and disruption of 

redox homeostasis (Correia-Melo and Passos, 2015, Chandrasekaran et al., 2016). 

Indeed, elevated ROS levels have been shown to be key drivers of the state of cellular 

senescence within a cell and the inter-cellular induction of senescence (Correia-Melo et 

al., 2014). In the former case, ROS can form a positive feedback loop through the 

constitutive induction of DNA damage that stabilises the senescent state of the cell. 

ROS are also part of the senescence-associated-secretory-phenotype (SASP) which can 

also form a positive feedback loop at the cellular scale through the senescence-induced 

senescence of bystander cells. Like with many aged tissues (Maher, 2005), senescent 

cells display a disrupted redox state (Correia-Melo and Passos, 2015, Chandrasekaran et 

al., 2016). However, how the cell transitions into a state of redox imbalance is unclear. 

Recent efforts to back-track this homeostatic disruption point towards mitochondria 

being the causal agents (Correia-Melo et al., 2016). Although the underlying question 

remains as to how mitochondria lose their functionality over time.  

In any case, cellular senescence is a consistent model of gradual homeostatic disruption, 

of relevance to the ageing process, which can be understood through the dysregulation 

of ROS levels. Unfortunately, the mechanistic resolution provided by experimental data 

so far does not allow the untangling of the chicken-or-egg conundrum of whether ROS 

are the driver or the result of the age-related loss or cellular homeostasis.  
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1.7 Understanding ageing through systems biology 

 

1.7.1 Systems biology 

 

Systems biology is a discipline that evolved around the concept that certain biological 

observations can only be explained by considering the interactions between the 

elements of the biological system. This is as opposed to the so-called reductionist 

approach that has predominated in biological research, involving the explanation of 

biological phenomena in terms of the activity of single molecular players. Systems 

biology is thus a contrasting holistic approach which arose when the reductionist 

approach had generated enough knowledge on the elements of biological systems to 

start linking them together into networks. Such networks were revealed to be able to 

display new properties that none of the individual constituent molecular entities 

displayed alone (Kitano, 2002b, ElKalaawy and Wassal, 2015). 

Biological systems tend to be intrinsically complex, involving a myriad of molecular 

interactions that ensure that a biological response occurs with the right strength, at the 

right place, the right time and with the right duration. Thus, the complexity of biological 

systems does not come exclusively from a complicated topology of interactions but also 

from a complicated behaviour of these interactions in time and space (Kholodenko, 

2006, Ganesan and  Zhang, 2012). Although there has been a long-standing appreciation 

of the necessity of studying biological systems holistically, it was not until 

computational methods evolved that systems biology was able to address this level of 

complexity as a discipline (Janes and Lauffenburger, 2013).  

The development of network inference algorithms allowed the analysis of medium- and 

high- throughput experimental data to establish statistical relationships between 

measured biological entities and shed light on the underlying interaction topology of 

biological systems (de Silva and Stumpf, 2005, Kirk et al., 2015). For the first time, a 

biological response could be studied comprehensively through ‘Omic’ technologies. To 

account for the dynamic properties of the system in addition to the underlying topology, 

a different type of methodology is required. Namely, one that allows the simulation of 

the biological system in time and space (Mast et al., 2014). Within systems biology, the 

adoption of these techniques is referred to as systems modelling (Aldridge et al., 2006, 

Ganesan  and  Zhang, 2012).   
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1.7.2 Systems modelling 

 

Systems modelling aims to reproduce the behaviour of the biological system being 

studied in an abstracted computational framework. This computational framework can 

be mathematical, where simulation involves solving the equations that model the 

biological system;  algorithmic, where simulation involves the execution of a set of 

rules aiming to represent causal elements of the biological system;  or a hybrid 

framework involving both of such approaches (Fisher and Henzinger, 2007). Within 

these classifications, there are a wide variety of modelling frameworks, each with 

specific conveniences and drawbacks (Machado et al., 2011, ElKalaawy and Wassal, 

2015). The evolution of both simulation platforms and computational performance has 

allowed for the simulation of increasingly complex biological systems, a notable 

example being simulation across levels of biological organisation in what is termed 

multi-scale modelling (Dada and Mendes, 2011).  

Any model, be it computational or not, is an abstraction of the real system under study 

and as such relies on a number of assumptions. In systems modelling these assumptions 

often abstract uncertainty on parameter values, topological arrangements or spatial 

distributions (Kirk et al., 2015). Whilst the first requirement for a computational model 

is that it reproduces the available experimental observations relevant to the biological 

system under study, it should additionally aim to provide an explanation for the data and 

ultimately generate novel predictions to be further tested experimentally. This iteration 

between experiments informing computer models which generate new predictions to be 

tested experimentally has been referred to as the systems biology cycle (Kitano, 2002b).  

 

1.7.3 Network motifs 

 

Pioneering work led by Uri Alon uncovered specific interaction patterns amongst 

network components which occurred at a much higher frequency than observed in 

randomly-generated networks (Milo et al., 2002, Alon, 2007). These ‘network motifs’ 

were not only seen in the E.coli transcriptional regulation map (Shen-Orr et al., 2002), 

but also in other biological and non-biological networks (Milo et al., 2002). This work 

shed light into the convergent evolution of “design principles” which mapped 

directional interaction topologies to specific dynamic, information-processing, 

properties. It furthermore suggested the possibility that the intricately complex 
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biological networks could be dissected and understood in terms of simple interaction 

circuits coupled together (Beber et al., 2012). 

Networks motifs were originally identified from the analysis of bacterial transcriptional 

networks and comprised simple regulations (SRs), feedforward loops (FFLs), single 

input modules (SIMs) and dense overlapping regulons (DORs). Simple regulations refer 

to auto-regulatory loops, i.e. self-activation or self-inhibition. This would be the case of 

a transcription factor that activates or inhibits its own transcription. Feedforward loops 

were identified as three-node motifs with an upstream network element which has a 

time-separated dual interaction with a downstream network element (Figure 1.6). 

Because of the each of the node-interactions in this network topology can either be 

activatory or inhibitory, eight-classes of FFLs can arise. Different types of FFL have 

been attributed different information-processing properties such as response 

acceleration, pulse generation and delay introduction to confer memory. SIMs and 

DORs refer to the regulation of a group of functionally-related target genes by a single 

transcription factor or a combinatorial set of transcription factors respectively. 

Because the initial analysis of network motifs took place in the transcriptional 

regulation network of E.coli, FFLs were formalised as three-node motifs. This is 

because interaction distance between gene regulatory elements in prokaryotes tends to 

be small. However, theoretical and experimental analysis has demonstrated such 

structures can still display the same information-processing properties when elongated 

to include more nodes (Sauro and Kholodenko, 2004, Alon, 2007, Ferrell, 2013, O'Hara 

et al., 2016). This is of particular relevance to protein-modification based signalling 

networks in cells (Cloutier and Wang, 2011, Kolch et al., 2015). Coupled motif 

structures (CMS) have also been identified to be overrepresented in biological networks 

and furthermore associated with biological status in case of cancer (Hsieh et al., 2015). 
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Figure 1.6. Types of feedforward loop (FFL) motifs. Adapted from Alon (2007). 

 

Whilst the work undertaken by Uri Alon was the first systematic identification of 

network motifs in biological networks, and it introduced the concept of FFLs, it was not 

the first identification of simple circuits underlying the functional dynamics observed in 

biological systems. Indeed, previous theoretical work on understanding biological 

systems as self-regulating cybernetic systems led to the prediction and subsequent 

validation of interaction circuits, the most notable example being the repressilator 

(Elowitz and Leibler, 2000). These types of circuits are based on the concept of 

feedback, a sequential and directional interaction of a downstream network element 

with the upstream input network element. Again, this interaction can be activatory 

(positive feedback) or inhibitory (negative feedback) and can give rise to a number of 

dynamic properties like oscillations, pulses, accelerators, amplifiers and bistability 

(Brandman and Meyer, 2008). Feedback loops underlie higher order network properties 

such as robustness, adaptive behaviour and memory (Brandman and Meyer, 2008, 

Ferrell, 2013, Kolch et al., 2015). 
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The concept of network motifs can be criticized for establishing an a priori causal 

relationship between topological structure and function based on an insulated network 

representation (Ingram et al., 2006, Beber et al., 2012). In this context, "insulated" refers 

to the fact that network motifs do not exist in isolation but as part of dense interaction 

networks with cross talk at multiple levels and timescales in addition to intrinsic and 

extrinsic noise in the signalling systems. Indeed, some of the functionalities attributed to 

some network motif structures depend on the underlying parameters (Ingram et al., 

2006), which are a significant source of uncertainty in themselves. In this context, the 

functionality attributed to a network motif, ex. response accelerator, can be altered or 

non-existent within the context of a larger network with multiple signals and noise 

(Ingram et al., 2006, Hsieh et al., 2015).  

It seems apparent that insights can be gained by abstracting complex processes into 

network motifs or motif-like structures despite their underlying uncertainties. An 

example is the abstraction of the entire mTOR network into a simple topology that 

retained the relevant dynamic observables (Dalle Pezze et al., 2014). Their employment 

is useful from a theoretical perspective in that they provide a good exploratory starting 

point to begin to answer questions which remain unaddressed due to the limited 

resolution of current experimental methodologies.   

 

1.7.4 Systems modelling of ageing processes 

 

The acknowledgement of the multi- factorial nature of the ageing process (Kirkwood, 

2011, Lopez-Otin et al., 2013, Gems, 2015) calls for methods that address this level of 

complexity. Namely, those that fall within the field of Systems Biology (Kitano, 2002a, 

Kirkwood, 2011, Kriete et al., 2011). Indeed, concepts like health, disease and ageing 

refer to homeostatic states which by definition encompass an interaction network. As 

previously discussed, ageing can only be understood as a time-evolving process, 

pointing to systems modelling as a potential approach to further our understand ing of 

the homeostatic dysfunctionalities observed to develop with age. 

There are a number of methodological advantages on adopting a systems modelling 

approach. The development of a computational model requires the researcher to be 

rigorous in the formalisation of the underlying biological knowledge and this often 

allows the identification of knowledge-gaps in the literature. By accounting for multiple 
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factors and making qualitative as well as quantitative predictions, computer models can 

potentially also inform experimental design and additionally provide a quick and low-

cost ‘exploratory-platform’ as an alternative to doing so through more costly and 

lengthy experimental protocols. Furthermore, some emergent system behaviours, such 

as oscillations, hysteresis or robustness, can only be explained through modelling 

formalisms (Janes and Lauffenburger, 2013, Mast et al., 2014).  

The main argument, however, for the employment of computational models is that there 

is no other methodological alternative that explicitly accounts for the complexity of 

system-level biological interactions in time and space. Indeed, it is notoriously difficult 

to keep track of so many molecular interactions and operating feedback mechanisms 

over time and space through experimental protocols or the human mind alone. 

Computer models provide a standardized and extendable method for formalising 

existing knowledge or mapping new information onto. Moreover, computational models 

do not only provide comprehensive simulation platforms to further our mechanistic 

understanding of biological systems, but can also advance our conceptual understanding 

of the biological problems and observations of interest (Mast et al., 2014, Mc Auley and 

Mooney, 2015, Mc Auley et al., 2017). The range of computational models of ageing 

processes developed to date reflects how systems modelling has found its place within 

biogerontological research (Kirkwood, 2011, Kriete et al., 2011, Mc Auley and 

Mooney, 2015, Mooney et al., 2016, Mc Auley et al., 2017).  

 

1.7.5 Computational models of redox signalling 

 

There are a number of computational models in the literature which explicitly model 

redox signalling processes in a variety of biological contexts (Pillay et al., 2013). The 

majority of these are kinetic models. These models represent reactions as a series of 

mathematical relationships between parameters like molecule abundances and kinetic 

constants (Km, Vmax, Kforwards, Kbackwards…). The mathematical relationships are usually 

established kinetic equations, or mathematical derivations thereof, of which the most 

known examples are the Michaelis Menten equation and the mass action equation 

(Sauro, 2011).  

Redox signalling models in the literature can be broadly divided into Ordinary 

Differential Equation (ODE) -based models (Adimora et al., 2010,Gauthier et al., 2013, 
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Benfeitas et al., 2014, Tomalin et al., 2016), which are the majority , and Partial 

Differential Equation (PDE) -based models (Sobotta et al., 2013, Lim et al., 2016), 

which are a substantial minority. Indeed, available computational models of the main 

mammalian redox signalling pathways are based on coupled ODEs (Bagnall et al., 

2014, Pronk et al., 2014, Williams et al., 2014, Khalil et al., 2015). This methodological 

bias is likely to reflect the computational limitations arising from the higher 

dimensionality of coupled PDEs as opposed to coupled ODEs (Materi and Wishart, 

2007).  

Computational models of redox signalling have benefited from the conserved kinetic 

properties of antioxidant enzymes across eukaryotes (Netto and Antunes, 2016), which 

allows for the cross-applicability of the computational models in different biological 

settings. Parameters derived from the work of Adimora et al (Adimora et al., 2010) have 

been used in almost a dozen redox signalling models. It is worth noting, however, that 

the abundances, interactions and rate constants of redox sensors are mostly unknown 

and likely to have a much higher variation between species and cell lines (Brito and 

Antunes, 2014, Netto and Antunes, 2016). Indeed, the kinetic rate constants of the 

oxidation of transcription factors and phosphatase enzymes are only crudely estimated 

(Brito and Antunes, 2014, Marinho et al., 2014).  

In fact, the oxidation rate constants of redox effectors by physiological oxidants is 

surprisingly low, most being within a range of 10-200 M/s (Brito and Antunes, 2014, 

Marinho et al., 2014, Winterbourn, 2015). If the calculated rate constants of redox 

effector oxidation hold true, then the question is immediately raised of how can an 

oxidant ever reach its redox effector target if it must survive scavenging by a much 

more abundant and faster-reacting antioxidant system. In other words, how can a redox 

effector activation reaction by an oxidant compete with oxidant scavenging reactions by 

an antioxidant system which is 102 –104 times more abundant and reacts 103 –106 times 

faster? (Marinho et al., 2014, Winterbourn, 2015, Pillay et al., 2016). 

Although it has been argued that effective redox signalling can still occur despite the 

competition with the antioxidant system (Marinho et al., 2014), from a kinetic 

perspective, this ‘competitive oxidation’ paradox seems difficult to reconcile as a 

generic signalling strategy by the cell.  Looking at redox computational models, it is 

evident that estimated redox effector oxidation parameters are likely to be an 

overestimation arising from the parameter estimation procedure. The fitting of 

simulation output to experimental data means that the estimated rate constant is 
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phenomenologically accurate but at the expense of losing mechanistic resolution. The 

underlying real reaction processes become encoded in an estimated rate constant which 

although models one reaction within the model, it does so at a rate which corresponds to 

multiple reactions in the real biological system. 

The literature has proposed as a solution to this “low reactivity paradox” two possible, 

but not mutually exclusive, explanations. The first one proposes the targeting of redox 

effector proteins to the vicinity of ROS generation sites (Winterbourn, 2015). The 

consequence of this is that at small cellular locations (for example the vicinity of 

NADPH Oxidases) there is a higher local concentration of reactants. Under these 

conditions, the reaction for the activation of the redox effector becomes more significant 

and can compete with oxidant scavenging. Whilst there is ample evidence of this 

localised redox signalling (Fisher, 2009, Woo et al., 2010) there are numerous proteins 

which are redox-regulated and yet show no sign of specific localisation within the cell.  

Another mechanism put forward as an explanation for this apparent paradox is the 

existence of redox-relays (Sobotta et al., 2015, Netto and Antunes, 2016) where 

peroxidases will oxidize a redox effector upon becoming oxidized themselves. In this 

case, these scavenging systems do not compete with redox effectors for a reaction with 

oxidants but rather facilitate these reactions. This is since such scavenging molecules 

are more abundant and more reactive with ROS and so act as better ROS sensors. This 

elegant mechanism has been known to occur in prokaryotes and recently proved to 

occur in mammalian cells (Sobotta et al., 2015). However, there is yet no proof for 

redox relays being responsible for the oxidation of most of mammalian transcription 

factors. This may be due to the experimental difficulty of stabilising and isolating 

unstable oxidation intermediates which are involved in such redox relays. 

It is thus evident that redox signalling models encode a substantial uncertainty regarding 

both the parameter values and the topological structure of the network. Although this 

uncertainty can be reduced through the use of parameter estimation procedures, in both 

parameter calibration and model structure selection, it does render the models specific 

to the experimental setup the data was derived from. In this context, there are no 

published models of redox signalling that explicitly deal with an ageing system.  
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1.8 Aims 
 

It is evident that within the field of biogerontology, available experimental data does not 

provide a high enough resolution to separate many observations into primary or 

secondary causality and break the chicken-and-egg conundrum.  At the very limit of 

experimental resolution, computational simulation can be used as an explanatory and 

exploratory tool of rational scientific enquiry that draws on available knowledge to 

provide new insights.  

A theoretical effort could provide a means to educate our intuition on the ageing process 

and make sense of current experimental data, as well as potentially direct new 

experimental efforts. The critical question at the cornerstone of ageing research 

concerns why do biological homeostatic systems fail with age. Current ageing theories 

point towards the abstract concept of stochastic damage as the cause, but this 

generalisation may prove too vague to understand ageing at a higher mechanistic 

resolution (Gladyshev, 2014). 

Oxidative stress has the potential to drive a loss of system homeostasis, whether as a 

primary cause or as a secondary consequence of the ageing process. It is the main line 

of enquiry of this work to theoretically examine mechanisms in which oxidative stress 

might interfere with the regulatory machinery of cells. Further to this, an examination of 

the ability of any identified molecular dysregulations to percolate through levels of 

biological organisation would provide an important contextualisation. Furthermore, it is 

an aim of this work to test, once interferences with homeostatic function have been 

characterised, whether such dysfunctionalities can be fully or partially reversed in 

principle. The objectives of this work are thus as follows: 

i) Investigate how oxidative stress can feed into biological networks to disrupt 

homeostatic function. 

 

ii) Investigate how such loss of homeostatic function could percolate across 

biological scales (molecules to pathways to cells to tissue). 

 

iii)  Investigate whether such homeostatic disruptions could be, to some degree, 

reversed. 
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The work undertaken as part of this thesis has been organised into the following 

structure. After the introductory Chapter 1, Chapter 2 presents the Materials and 

Methods used and developed to perform the research presented in the thesis. Chapter 3 

presents the main theoretical observation from which all other work in the thesis stems 

from. Chapter 4 presents work that theoretically aims to test for the generality of the 

observation. Chapter 5 presents work that aims to experimentally validate the 

observation. Chapter 6 presents work that aims to theoretically contextualise the 

observation in the complexity of in vivo biology. Chapter 7 and Chapter 8 are a 

discussion and conclusion, respectively, on all of the presented work. The entirety of the 

work presented in this thesis, both experimental and theoretical, has been carried out by 

the author although there is once instance of published work being used in this thesis as 

indicated in the supplementary text  (Section 9.3). 
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2 . Chapter 2 

 

  Materials and Methods 

 

2.1 Computational Methods  

 

2.1.1 Cellular Automaton (CA) framework 

3 .  

4 . When modelling the interactions between biological entities, be it molecules or cells, it 

is often informative to capture the inherent stochasticity in the system. This uncertainty 

at a given point in time often arises from the probabilistic nature of the interaction 

between system components in a spatial context. For example, there is stochasticity in 

reactant A and reactant B colliding together due to random motion and there is a 

separate source of stochasticity on whether they will react together once they collide. At 

the cellular level, a cell might undergo a state-change with differing probabilities 

depending on its spatial position within a lattice or depending on the nature of 

neighbouring cells. Cellular automata have been successfully used in the past to 

stochastically model both molecular and cellular interactions (Schnell and Turner, 2004, 

Dada and Mendes, 2011). Furthermore, this methodology is intuitive to couple to a 

system of differential equations in order to create a multi-scale model (Dada and 

Mendes, 2011). 

5 .  

Molecular simulations were carried out in a purpose-built simulator named CASSMI 

(Cellular Automaton – based Spatial Simulator of Molecular Interactions). However, 

both the molecular dynamics simulations and the cellular population simulations were 

modelled through the use of a core cellular automaton framework. Such framework is 

implemented as follows. 

Grid definition. An initial grid of three dimensions is specified as a three-dimensional 

matrix of zeroes with each dimension defined by vectors of length N where the number 

of total cells in the grid corresponds to N3. This three dimensional matrix is the grid 

structure of the cell automaton (CA matrix). In CASSMI, the N-value is derived so that 

a user-defined spatial occupancy is reached by the total number of molecules to be 

simulated. In the multi-scale model, N is manually assigned. 
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Cell assignation. When the modelled entities are to be distributed uniformly across the 

CA grid, they are encoded as vectors of a length corresponding to their initial amount, 

with all entries in each vector being the corresponding unique entity identifier. In all 

cases an identifier of zero corresponds to empty space. Random seeding of entities into 

the N3 zeroes matrix is performed via Matlab’s  randperm  function which allows the 

random permutation of a target matrix A using the elements of a given matrix B in the 

following form: 

A(randperm(numel(A), numel(B))) = B 

The localised assignation of entities within the CA grid requires the definition of a 

constraining factor C, where C<N , to define the spatial constraint in the seeding to 
𝐶

𝑁
 

over one dimension. This results in a localisation defined by 
𝐶3

𝑁3
 corresponding to the 

fraction of the total space in the CA grid where the entity can be found at generation = 

0. CASSMI automatically derives C from the user-defined percentage localisation for 

the relevant species. It is important to note that in all cases of localised assignation, the 

randomly selected matrix coordinate has to be unoccupied. Thus, no explicit 

overwriting is allowed within the initial cell assignation steps.  

The main loops. Once the starting grid structure of the CA has been defined, the 

simulation proceeds to enter the main loop (termed ‘Generation loop’) which defines the 

rule-updating iterations in the model. The generation loop models time implicitly. In 

CASSMI, each iteration corresponds to one movement (rule-defined update) for all 

molecules in the grid. In the multi-scale model, the generation loop corresponds to days. 

The generation loop contains in its structure a second loop which allows for the 

selection of each individual cell to apply the update rules. At the end of each generation 

loop, a complete scan of the whole CA grid is performed and the counters for each 

identifier updated and stored. 

Neighbour selection. As in all CA models, the update of the state of each individual 

cell is dependent, in one way or another, on neighbouring cells. With regards to the 

definition of which cells are classed as being ‘neighbours’, Moore’s neighbourhood 

with an 𝑟 = 1 distance was adopted in the CA, where any neighbouring cell in touch 

with the reference cell is considered a neighbour. In a two dimensional matrix 

represented as a grid this would mean a given selected cell would have 8 neighbours as 

shown in Figure 2.1. This number would be 26 in a 3D matrix (See Figure 2.2). 
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Figure 2.1. 2D representation of cell neighbourhoods most commonly employed in Cell 

Automaton models. Left Panel shows the von Neumann neighbourhood which defines as 

neighbours (blue) the cells with significant contact with the reference cell (pink). Right 

panel shows the Moore neighbourhood which defines as neighbours any cell which is in 

contact with the reference cell.  

 

The Moore neighbourhood was adopted over the von Neumann neighbourhood to allow 

for a wider range of potential interactions between individual entities and their 

surroundings. The greater degree of interaction freedom makes the simulation of the 

random motion of particles more realistic in CASSMI. Furthermore, with regards to the 

multi-scale model, cells in such close proximity should be expected to influence each 

other despite having a minimal surface-surface contact.  

If a given cell in a 3D CA is defined by coordinates CA(h, i, j) any neighbour will be 

defined by CA(h  s, i  s, j  s) where s is a coordinate translation that can be a 0 or a 

1. This geometric relation arises because a neighbour cell has to be in contact with the 

reference cell so it can only have a maximal coordinate separation of 1 coordinate unit 

in any given dimension. Because the neighbour cell may be on the same plane as the 

reference cell, the coordinate shift in a given dimension can be 0. The plus and minus 

signs of s represent any two opposite arbitrary planes in which a neighbour cell can be 

located with respect to a reference cell. These geometrical relations are illustrated in 

Figure 2.2. 
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On every iteration of CASSMI’s generation loop, after a random cell is selected, a 

random neighbour of the selected reference cell is then chosen. This is achieved by 

creating an array with all possible coordinate updates, CA(h   s, i   s, j   s)  which 

define the neighbour coordinates as a translation from the coordinates of the reference 

cell (as shown in Figure 2.2). Such matrix would contain 26 coordinate updates that 

define Moore’s neighbourhood in a 3D space and thus be as follows: 

 

Neighbour=  [-1 -1 -1;  0 -1 -1;   1 -1 -1;  1 0 -1  ; 1 1 -1;  

                        0 1 -1;  -1 1 -1;   -1 0 -1;   0 0 -1;  -1 -1 0;  

   0 -1 0;  1 -1 0;    1 0 0;     1 1 0;     0 1 0; 

 -1 1 0; - 1 0 0;   -1 -1 1;   0 -1 1;   1 -1 1;  

  1 0 1;  1 1 1;    0 1 1;    -1 1 1;   -1 0 1;  0 0 1]; 

 

The selection of a random neighbour thus simply involves selecting a random set of 

coordinate updates (±s ±s ±s) from the Neighbour matrix and transforming the reference 

cell coordinates by the s translation values contained within. The selection of a random 

neighbour simulates the random movement of a randomly selected molecule in 

CASSMI. Once the neighbour is known then a set of rules are applied to update the 

state of the reference cell and/or the neighbour cell depending on their respective states 

(identifiers). In the multi-scale model, each cell has the potential to affect all of its 

neighbours and so instead of selecting a single neighbour coordinate at random, all 

coordinates are iterated through. 
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Figure 2.2. Moore Neighbourhood defined in 3D space. The translation of the reference 

cell (pink) into any of the 26 neighbouring (white) cells is defined by a fixed set of 

coordinate updates (s s s) specified in the individual grids. Hence, a cell movement 

would be modelled as the random selection of one of the 26 possible coordinate 

transformations to then update the reference cell location from CA(h ,i , j) to CA(h±s 

,i±s , j±s).  
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Neighbour-dependent rules. These rules are commonly applied as a function of the 

states of neighbouring cells after a specific cell has been randomly selected. In 

CASSMI, which simulates Brownian motion of particles, there are three general rules 

that can be applied once a reference cell and a neighbouring cell have been randomly 

selected.  

i) If the neighbour cell is empty, the molecule moves into neighbour cell. This 

rule is executed by the swapping of identifiers between the neighbouring cell 

and the reference cell. This models molecule movement in space. 

 

ii) If the neighbouring cell is not a reactant, there will be a 180o collision ҂ 

 

iii)  If the neighbouring cell is a reactant, a reaction will occur with a probability 

defined by the corresponding rate constant.  

 
҂ This collision is modelled through a 180° change in direction by multiplying the 

selected neighbour update coordinates s by -1. This can be readily seen by choosing any 

set of coordinate updates (±s ±s ±s) from Figure 2.2 and multiplying them by -1. The 

resulting coordinate updates will correspond to a neighbouring cell on the opposite side 

of the 3D square. A collision thus  results in the selection of another neighbouring cell, 

non-randomly this time, and applying the same set of rules with the only change that 

should the new neighbour cell still be a non-reactant, the reference cell would retain its 

identifier (i.e. the selected molecule would not change position) for that generation. 

Because the distance moved by a particle is always 1 grid, there is a perfect momentum 

conservation upon collision. 
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Neighbour-independent rules. These rules are applied independently of the states of 

neighbouring cells. In CASSMI, there are three main general rules which fall under this 

category. 

 

i) Zero-order reactions. Involve the seeding of new molecules into empty 

spaces of the CA grid every iteration with a user-defined probability. These 

rules are executed at the start of the generation loop.  

 

ii) First order reactions. Executed after a cell has been randomly selected. 

Involve the conversion of the selected cell into a single, multiple or no 

products with a given probability.  

 

iii)  Events. The alteration of molecular abundances or reaction rate constants 

(probability of occurrence) to model an acute perturbation of the system at a 

user-defined generation. 

 

Note that for any reaction that produces products, these can take the place of the 

neighbouring cell, the reference cell, both or alternatively a randomly chosen empty 

space in the CA grid in the case of zero-order reactions or Events. If no products result 

from a reaction then the reactant cell(s) are assigned a state of 0 (empty space). The 

rules of the multi-scale model are manually specified (see Section 6.2.2).  

 

Other rules. It is important to note that CASSMI models molecules in a closed system. 

That is, upon reaching the edges of the 𝑁3  space that defines the CA grid, if a molecule 

moves outside the grid, it will undergo a 180o collision. Molecular simulations in 

CASSMI are thus simulated as an ideal gas enclosed in a container. In the multi-scale 

model, cells outside the CA grid are simply ignored as neighbours.  
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Random selection.  There are five main settings in which CASSMI will perform a 

random selection: 

  

1. To select the indices of a reference cell. 

 

2. To select a random neighbour of a given reference cell.           

 

3. To select the random indices for the seeding of new molecules produced by 

zero-order reactions and Events.        .    

 

4. To establish whether a molecule moves at any given iteration. 

 

5. To establish whether two neighbouring cells will affect each other (i.e. 

whether molecules react at any given collision). 

 

Settings 1, 2 and 5 also apply to the multi-scale model.  

 

In setting number 1) a ‘Reference Matrix’ of ascending numbers with the same 

dimensions as the CA (N3) is created and permutated with a zeroes matrix of the same 

dimensions using Matlab’s  randperm  function  as described. The objective of this was 

to create a matrix of unique, randomly distributed, integers. On a further step Matlab’s  

datasample  function would be used to randomly select numbers, without replacement, 

from the ‘Random Matrix’ created and the  find  and  ind2sub  functions used to retrieve 

the indices of the selected number from the original ‘Reference Matrix’. This last test 

was iterated in a loop to generate a matrix of randomly selected indices that would 

encompass all the coordinates of the CA and not repeat. The resulting ‘Random Indices’ 

matrix is generated inside the generation loop of the CA and thus changes in each 

simulation iteration. The secondary, cell-selection loop just involved iterating through 

the elements of this generated matrix of random indices. This method was also 

employed to randomly select seeding indices within constrained regions of the CA grid. 

In setting number 2), Matlab’s  rand  function is used to allow for a uniform probability 

of selection amongst all possibilities. A random number q would be generated between 

0 and 1.  Because there are 26 different neighbours in a Moore neighbourhood, different 

conditions are specified: 
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.
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.
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≤ 𝑞 <   

26

26
, 𝑛𝑒𝑖𝑔ℎ = 26

 

 

Where the value for the neigh  parameter is the array entry of the aforementioned 

Neighbourhood  matrix. 

For setting number 3) if the molecules were being seeded uniformly this would simply 

involve performing a random permutation of the already generated ‘Random Indices’ 

matrix and sampling from the resulting permuted matrix. Such a permutation would be 

performed every iteration of the main generation loop to vary the location of the ROS 

seeding. Otherwise, the same method as setting 1) is used. 

In CASSMI, settings number 4 and 5 aim to model the relative mobility and reactivity 

of the molecules involved in the simulation. The upper reference value for mobility is 

one movement with probability 𝑝 = 1 every generation iteration. The upper reference 

value for reactivity is instantaneous reaction (rule-update) with probability 𝑝 = 1 upon 

collision between reactant molecules. Relative probabilities for molecule mobility Pm 

and reactivity Pk  are derived from the normalisation of user-defined rate constants. 

Thus, for any given molecule, at any particular iteration, a movement or a reaction upon 

molecule encounter in space is modelled through a uniform random number generator 

function rand producing a number 𝑀 such that a movement event or a reaction event 

will occur if: 

 

 0 < 𝑀 ≤ 𝑃𝑚 

 0 < 𝑀 ≤ 𝑃𝑘 
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In the case of the multi-scale model, this format of uniform random number generation 

will also determine the occurrence of interactions (the execution of rules) between cells 

(if neighbour dependent) or within cells (if neighbour- independent). 

 

2.1.2 CASSMI – Cellular Automaton based Spatial Simulator of Molecular 

Interactions 

CASSMI is a 3D Lattice Gas Cellular Automaton (LGCA) simulator developed in 

Matlab (MathWorks Inc., Natick, MA, 2016) which simulates biochemical reactions as 

the result of the Brownian motion of reactant species. Equal-sized molecules are 

simulated by a single-unit step-size random walk in a Moore neighbourhood under 

perfect elasticity within closed boundaries. Upon encounter in space molecules react 

with a probability derived from the normalisation of rate constants. Encounter of non-

substrate molecules results in 180o
 collision. Input arguments allow for the individual or 

combined simulation of relative movement speed, percentage overcrowding, and 

percentage spatial localisation. 

 

CASSMI Input 

CASSMI is called as a seven-argument function from the Matlab command window 

(Figure 2.3). Following this, further interfacing is required with CASSMI through the 

command window to specify the number of molecular movements to be run in each 

simulation and whether visualisation of the simulated molecules is desired (Figure 2.4). 

The simulator requires a template excel file as an input specifying: 

Mandatory information (columns A to J) 

i) Molecule names 

ii) Initial abundances 

iii) Diffusion constant 

iv) Diffusion normalisation 

v) Reactants ( max: 2) 

vi) Rate constant 

vii) Rate constant normalisation 

viii) Products (max: 2) 
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‘Molecule names’ must be consistent throughout the simulation information template. 

CASSMI is case-sensitive to this input and errors may arise from the presence of blank 

spaces. ‘Initial abundances’ refers to particle numbers and so must be zero-inclusive 

integers. Diffusion normalisation intakes a numerical input [1|2|3] where [1] will 

normalise the values by the diffusion rate of an “average protein”, 10μm2/s (Schnell and 

Turner, 2004), [2] will normalise the values to the highest diffusion constant provided 

and [3] will intake the provided values directly without any normalisation. The resulting 

diffusion constants become the probabilities that the specified molecules will move on a 

particular generation. Rate constant normalisation has the same normalisation format as 

the diffusion normalisation with the sole difference that for input [1], the provided rate 

constant values are normalised by a diffusion- limited rate (108 M-1 s-1).  Note that to 

employ normalisation type [1] the defined constants should be of the same units as 

specified. A maximum of two reactants and two products are allowed, with first and 

zeroth order reactions requiring empty cells to be defined as 0 (See Figure 2.5 for an 

example). 

Optional information (columns K to P) 

i) Localised species 

ii) Percentage localisation 

iii) Spatial end (max: 2) 

iv) Events  

v) New Value for Event 

vi) Generation of Event 

 

The percentage localisation of the defined localised species refers to an axial percentage 

so that the initial position of such molecules will be randomly assigned to indices within 

the grid enclosed by (C·N)3 ; where C is the user-defined percentage localisation and N 

is the axial length of the entire grid. Note that the default setting involves molecules 

having a random uniform distribution across the entire CA grid. ‘Spatial End’ requires a 

numerical input [1|2] which correspond to opposite but symmetrical ends of the lattice. 

The last three columns correspond to information on ‘Events’ within the simulation 

settings. CASSMI only supports Events in the format of an addition of molecules of a 

given species into the grid or the alteration of a rate constant value. The alteration of a 
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rate constant value in an Event must be referenced through the reaction number  (Figure 

2.6), where the reaction number is the row number in the excel sheet minus one.  

Note that even if information is provided within the input excel template on relative 

diffusion speeds, localised molecules or Events, these will not be incorporated into the 

simulation settings unless the corresponding input arguments on calling the CASSMI 

function activate these settings (ie; are defined as 1). By default, the probability of a 

one-step movement for a molecule in any given generation is 1 and molecules are 

seeded with uniform probability across all the possible sites within the entire grid. 

 

 

Figure 2.3. CASSMI input arguments. ‘Filename’ must be a string referring to the 

name of the template excel file containing information on all the reactions to be 

simulated. This file must be located in the same directory. ‘PercentageOccupancy’ 

intakes a numerical input in the range [0< x ≤100] and determines the size of the 3D 

lattice relative to the total number of molecules to be simulated. 

‘PercentageOvercrowding’ intakes a numerical input in the range [0 ≤ x < 100] and 

determines what percentage of the resulting 3D lattice will be occupied by non-reactant 

(overcrowding) molecules. ‘RelativeMovement’ intakes a numerical input [0|1] for the 

respective deactivation/activation of heterogenous probabilities of molecule movement 

every generation. ‘Localisation’ intakes a numerical input [0|1] for the respective 

deactivation/activation of constrained initial molecule distributions as defined in the 

input file. ‘Simulations’ intakes a non-zero integer as a numerical input to set the 

number of repeats of each simulation to be run. ‘Events’ intakes a numerical input [0|1] 

for the respective deactivation/activation of generation-dependent changes defined in 

the input file.  
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 Figure 2.4. An example of a 

CASSMI run. In this case, 

CASSMI will read the 

reactions specified in the 

template excel file 

‘GenericRedox’ and simulate 

them100 times with each 

individual molecule 

undergoing 100 random movements at a 25% percentage occupancy, 50% molecular 

overcrowding, no relative diffusion, accounting for initial spatial localisation defined in 

the input file without taking into account any Events.  

 

Figure 2.5. Example of mandatory input required for a simulation in CASSMI. 

 

 

 

 

 

 

Figure 2.6. Example of optional input required for a simulation in CASSMI. 
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CASSMI Output 

CASSMI saves the simulated time courses for all user-defined species as both a matlab 

figure (.fig) and a .jpeg file. Default plots display the mean molecule abundance ± 

standard deviation for each generation. However, commenting-out line 308 in the 

CASSMI.m file and uncommenting line 309 in the same file will plot individual 

simulation trajectories. Eight output arguments can be obtained from CASSMI. 

 

CASSMI Output Arguments 

 

[1] Mapped Identifiers 

[2] Raw Simulation Data 

[3] Abundances 

[4] De Novo Reactions 

[5] Second Order Reactions 

[6] Localised Molecules 

[7] First Order Reactions 

[8] All Reactions 

 

The first CASSMI output argument is an array listing the molecules in the model with 

the corresponding unique numerical identifiers automatically assigned by CASSMI. 

These identifiers will be used in the rest of the function output. The second output 

argument is a Matlab structure containing the raw simulation data for all species for 

each individual run. For each individual simulation, columns correspond to individual 

generations and rows correspond to individual species in the same order as specified by 

the user  (can be seen in Output argument [1]). The third function output provides the 

starting abundances for each individual species. Outputs 4, 5, and 7 are matrices which 

list reactions as partitioned into zeroth order-, second order- and first order- reactions 

respectively. The column format of Outputs 4, 5 and 7 is as follows: [Reactant1, 

Reactant2, Output1, Output2, Rate Constant, Reaction Number] . Output 6 lists the 

identifiers of the molecules defined by the user to be seeded locally within the grid 

along with the corresponding initial abundance and percentage localisation. Output 

argument 8 lists all of the reactions simulated. Note that whilst output argument 2 is 

provided to facilitate any further analysis of the simulation data, the remaining of the 

output arguments intend to facilitate troubleshooting. 
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CASSMI validation tests 

The random movement of particles within the simulation can be visually appreciated by 

plotting the trajectories of the first 100 movements in space of 10 given molecules 

(Figure 2.7). This was followed by the tracking of a molecule over 1 · 106 movements 

within the CA grid to confirm that every point in the CA grid was reachable by a 

particle given enough random movements (Figure 2.8). A further test was performed to 

assess if the random movement simulated in the CA script could represent simple 

particle spreading and equilibration over a container when particles are localised in 

space at the start of the simulation (Figure 2.9). Confirmation that the CA model could 

reproduce recognisable kinetic profiles for different order reactions was undertaken 

Figure 2.10). Overcrowding, localisation and relative diffusion was confirmed visually 

and through simulation  (Figure 2.11). An example of the logic processing behind the 

simulation of a simple CASSMI model is illustrated in Figure 2.12. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Trajectories for the first 100 movements of 10 different particles in an N3 

space where N=10. 
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Figure 2.8.  All spaces in the grid are reachable for a randomly moving particle given 
enough movements. Simulation parameters are N=10 and 1 000 000 movements for a 

single particle. 
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Figure 2.9.  Cellular automaton model reproduces equilibration behaviour of a perfect 

gas in an enclosed container. Time corresponds to arbitrary units. 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

Figure 2.10. (Next page). Validation of CASSMI simulation output for elementary 

kinetic reaction profiles. a) Zero-order reaction  / → A . b) First-order reaction A → B. 

c) Second-order reaction A + B → C + D. 
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b) 

c) 



55 

 

Figure 2.11. Visual validation of localisation and overcrowding of molecules during a 

CASSMI simulation. a) Localisation of molecules at separate ends of the grid. b) 

Inclusion of overcrowding molecules (brown) amongst reactant molecules (blue). 
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The following is a simplified pseudocode of CASSMI  

 

Create a N x N x N matrix (grid with N3 cells)  

 

Assign a defined number of unique identifiers to randomly selected cells in the grid 

(seeding) 

 

FOR generations: 

 

       FOR all cells in the grid: 

 

Choose a random cell 

 

IF cell is > 0 (not empty space – a molecule) 

 

        Choose a random neighbour 

 

        IF neighbour is 0 then neighbour switches    

       identifier with the cell (movement) with corresponding probability 

 

         IF neighbour is not a reactant then collision occurs  

 

        IF neighbour is a reactant react with corresponding probability 

 

Choose another random cell until all cells have been chosen.  

 

        Seed new molecules in the grid from Events or zero-order reactions 

 

       Scan CA grid and update counters of all identifiers in the grid 

       

       Next generation   
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Figure 2.12. (Next page) Simplified logic flowchart representing how a simple redox 

signalling model can be simulated by CASSMI. Main loops in the script structure are 

shown in blue. CA(h,i,j) is the individual cell defined by coordinates h, i, j within the 

cell automaton (CA) grid. (s) corresponds to a coordinate translation value for each 

h,i,j coordinate which defines the neighbouring cell coordinates with respect to the 

moving cell coordinates as defined in Figure 2.2. Identifiers: Empty space=0, ROS=1, 

antioxidants=2, glutathione=3, redox sensor=4. In this example the number of 

oxidation events is being tracked. Note that scavenge involves the updating of the ROS 

identifier from 1 to 0 (empty space). 
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2.1.3 Ordinary differential equation (ODE) – based simulations 

 

Ordinary-differential equation-based models are commonly employed to model systems 

of biochemical reactions (Aldridge et al. 2006). The connectivity and structure of a 

biological network arises from the fact that the product of one reaction will often be the 

substrate or modifier for another reaction. In such a way, the different elements of a 

biological system are coupled to each other. This is modelled by the coupling of 

variables in a system of coupled differential equations. The use of the ODE modelling 

framework thus intuitively fits the nature of the system being modelled when it comes 

to biochemical networks.  

 

Constructing an ODE-model of a biochemical network firstly requires the identification 

of the key components in such a system of interest. Once the relevant molecular 

interactions are defined, these can be formalised into a static SBGN network (Sorokin et 

al., 2015) and an SBML model (Hucka et al., 2003) through CellDesigner 4.4 

(Funahashi et al., 2003). The resulting interaction network can then be imported into 

COPASI (Hoops et al., 2006) where kinetic equations are assigned to each molecular 

interaction and preliminary values for abundance and kinetic parameters are specified. 

Note that all molecular interactions in the model follow elementary mass action 

kinetics. The resulting model is thus a system of coupled ordinary differential equations 

where the rate of change in a given molecule abundance 𝐴 at a given time point is 

determined by the sum of the rates of the reactions 𝑅𝑖 which involve that given molecule 

as a substrate (𝑣−𝐴) or as a product (𝑣𝐴 ). The latter two rates are themselves the product 

of individual abundances (𝐴𝑖) of the reactants (𝑟) involved in the reaction. 

 

𝐴 = ∑ 𝑣𝐴

𝑅=𝑁

𝑅=1

− ∑ 𝑣−𝐴

𝑅=𝑁

𝑅=1

 

 

where 𝑁 = total number of reactions and the rate of a given reaction (𝑣𝑅) corresponds to 
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𝑣𝑅 = 𝑘∏𝐴𝑟
𝑠

𝑟=𝑛

𝑟=1

 

 

where 𝑛 = total number of reactants, r= reactants, k = rate constant for reaction R, s = 

stoichiometric amount. 

Simulation involves the solving of the system of coupled differential equations that 

constitute the model through the LSODA algorithm within COPASI. The equations are 

solved for a given time interval with a configuration for Relative Tolerance of 1𝑒−6, 

Absolute Tolerance of 1𝑒−12  and maximal internal steps of 10000. Before the 

simulation, initial molecule abundance parameters were fixed to values which resulted 

in a steady state at 𝑡 = 0 that otherwise would have been reached at 𝑡 > 0 as the 

simulated reactions equilibrated. Signals are introduced into the model as ‘Events’ that 

act on a signalling system that is already at a homeostatic steady state. Stochastic 

simulations were performed using the direct Gillespie algorithm in the Matlab R2017a 

(Mathworks, Natick, MA) SimBiology toolbox.  

 

2.1.4 Sensitivity analysis  

 

Local sensitivity analysis was carried out in COPASI. This method systematically and 

sequentially alters parameter values by a user-defined magnitude (as a percentage of the 

parameter value) and examines how simulation output is changed by such alteration. 

Sensitivity analysis indicates which model parameters the simulation output is sensitive 

to. This indicates which elements of a biological system may be tightly regulated to 

provide a robust response and/or to furthermore establish at which points in the model 

can parameter uncertainty affect simulation output and the conclusions derived thereof. 

Sensitivity analysis was performed on the Time Series of non-constant concentration of 

species and configured with parameter values of 0.001 and 1e-12 for the delta factor and 

the delta minimum respectively. Sensitivity analysis was performed on all parameters 

and initial values. 

Local sensitivity analysis suffers from the limitation that it does not comprehensively 

explore the parameter space since the perturbations used to probe model behaviour only 

involve varying the values of one parameter at a time. To explore perturbations of 
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groups of parameters in different combinations a global sensitivity analysis would be 

required (Saltelli et al., 2008). Such methods resemble optimisation algorithms in that 

they are a heuristic approach to a combinatorial problem and thus tend to be 

computationally intense. Emulators can be used as an alternative to local or global 

sensitivity analysis where a function is derived that reproduces the simulation output of 

the model (i.e. a meta-model) (Ratto et al., 2012). However, because the sensitivity 

analysis is carried out on models that already represent abstractions of signalling 

pathways in themselves, the use of emulators seems a too-far a departure from the 

original biological system. Amongst all the alternatives, local sensitivity analysis was 

undertaken for convenience, since it is already embedded in the COPASI environment 

and it is not computationally intense.  

 

2.1.5 Information theoretic analysis 

 

When investigating the function (or loss of function) of signalling pathways it is 

necessary to consider what their function is. A signalling pathway can be said to 

function to transmit information from the cellular environment, whether it’s the internal 

or external environment. But what exactly is meant by information? Can it be 

systematically quantified?  

 

Information has been defined by Claude Shannon as being a function dependent on a 

probability of occurrence (Shannon, 1997). Intuitively, if one is certain about the 

outcome of an event, nothing would be learnt once that event takes places.  If an event 

outcome has very low probability of happening, and it does, one would expect surprise 

at the outcome and new information on the uncertain state of the event outcome would 

have been gained. This conceptual relationship between the information content HX  of 

event X and the probability of occurrence p(X)  of event X can be formalised into the 

following axioms: 

1. Information content, HX , is a decreasing function of the p(X). i.e. More unlikely 

events provide more information than more likely events. 

 

2. HX = 0 when p(X) = 1 . No information will be gained if there is certainty on the 

outcome of the event. 
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3. 𝐻(𝑋∩𝑌) = 𝐻𝑋+ 𝐻𝑌  . If two events X and Y are independent of each other, their 

combined information content should be the sum of their individual information 

contents.  

 

Shannon’s information content equation, also termed Shannon’s entropy equation, 

satisfies all of these axioms in the following format. 

 

                                                          𝐻𝑋 = log 
1

𝑝(𝑋) 
                                                       (1) 

 

Thus, information is intrinsically linked to uncertainty. Upon a closer examination of 

axiom 3, it becomes apparent that if two events are dependent on each other, then 

𝐻(𝑋∩𝑌) < 𝐻𝑋+ 𝐻𝑌 since there would be an expected overlap in information content 

between both events if knowing the outcome of one provided information on the likely 

outcome of the other. This is intuitive since, for example, whilst the event probability of 

a randomly drawn card being a king of hearts is 
1

52
 , this probability would increase if 

the outcome of the event of the card being red was known to be true.  In this case, 

knowing about event Y reduces the information needed to describe X. This reduction in 

information content is actually information gained on the state of X by narrowing down 

the state probabilities when knowing state Y. The information event Y provides on event 

X can therefore be said to be: 

𝐼(𝑌 → X) = 𝐻𝑋 −𝐻(𝑋|𝑌) 

Shannon proved this through formal mathematical derivation to provide the mutual 

information equation between two discrete random variables X and Y. 

                                        

                          𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥,𝑦) · 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥) · 𝑝(𝑦)
𝑦∈ 𝑌𝑥∈ 𝑋

                                  (2) 

 

However, in practice, the joint distribution 𝑝(𝑥, 𝑦) is not a direct observable. Thus we 

can derive: 
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𝑝(𝑥|𝑦) =
𝑝(𝑥 ∩ 𝑦)

𝑝(𝑥)
 

 

 

     𝑝(𝑥, 𝑦) =  𝑝(𝑥 ∩ 𝑦) = 𝑝(𝑥) · 𝑝(𝑦|𝑥) 

 

 

Substitute into equation (2) so then mutual information becomes: 

 

 

 

 

In this format, equation (3) can be used to quantify how much information can 

downstream molecule 𝑦 provide about upstream molecule 𝑥. If 𝑥 is a signalling 

molecule and 𝑦 is downstream enough, the mutual information between both random 

variables would correspond to the information flow through the signalling pathway. 

Note that both 𝑥 and 𝑦 can be considered random variables due to the inherent 

stochasticity in biomolecular signalling pathways. The corresponding probabilities 

would thus be derived theoretically through the stochastic simulation of a given kinetic 

model.  

For any given abundance value of  𝑥 in a model simulation, a probability distribution 

can be derived for molecule 𝑦 through the running of a large number of stochastic 

simulations to derive 𝑝(𝑦|𝑥 = 𝑥𝑖). From the latter distributions it is possible to derive 

𝑝(𝑦) by obtaining the marginal probabilities of 𝑦 over all values of 𝑥. Whilst 𝑝(𝑥) is 

usually unknown, if assumed to be uniformly distributed, then the mutual information 

becomes systematically normalised (Uda and Kuroda, 2016). This means that 𝐼(𝑋; 𝑌) 

values cannot be interpreted in absolute terms (i.e. in terms of the number of signal 

states that the pathway can distinguish between) but still allows for the relative 

comparison of information flow across a signalling pathway under different simulated 

conditions but the same underlying topological structure.  Figure 2.13 shows a 

simplified flowchart of the algorithm developed in Matlab to calculate the theoretical 

mutual information between molecular species in signalling pathways simulated in 

SimBiology. 

                   𝐼(𝑋;𝑌) = ∑∑ 𝑝(𝑥) · 𝑝(𝑦|𝑥) · 𝑙𝑜𝑔
𝑝(𝑦|𝑥)

𝑝(𝑦)
𝑦∈ 𝑌𝑥∈ 𝑋

                              (3) 



64 

 

Figure 2.13. (Next page).  Logic flowchart of the developed algorithm for the 

calculation of the mutual information between model species. The algorithm is 

composed of four modules. The first module generates p(x) by creating a uniform or 

normal distribution around an inputted mean value for x. The second module generates 

data through the iterative stochastic simulation of the model for each value of the user-

defined range of x. The third module tabulates the data generated from the second 

module to derive p(y) across all values of x. The final module draws from the derived 

p(y) and p(x) generated from the previous modules to compute the local mutual 

information for each value of x which is then summated to derive the global mutual 

information between the two variables x and y. 
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2.1.6 Random network generation algorithm 

 

The properties of mathematical models often exist in a finite area of the parameter 

space. Stochastically probing the parameter space can provide a heuristic approximation 

of how robust the model-derived observations are to the underlying parameters. 

However there still remains an uncertainty regarding the accuracy of the model structure 

and whether model-derived observations might depend on a specific model architecture. 

In this case, testing for alternative topologies alongside the parameter space will probe 

the main sources of uncertainty which the model behaviour depends on. Stochastically 

generating an entirely new model architecture and parameter set is an “extreme” 

example of the heuristic exploration of the combined  parameter-topological space. This 

approach can be useful to test for the overall generality of an observation  if it is 

suspected to occur as a general property of a given type of systems. 

 

An algorithm was developed in Matlab for the systematic exploration of model 

topologies. This algorithm requires the specification of 15 input parameters. Seven of 

these parameters must be defined as scalar values: Repetitions, Basal level of 

constitutive signal, Simulation Time, Signal Strength, Signal Time and Minimum Relay 

Length. The latter specifies the minimum number of activation profiles that must be 

identified within a simulated network in order to be taken forward for further analysis. 

This is to discard cases where the signal feeds directly to downstream network 

elements. The rest must be defined as vectors defining the lower and upper boundaries 

between which the algorithm will randomly sample a value with a uniform probability. 

Should any of these parameters be desired to be clamped to a specific value, both the 

lower and upper bounds should be assigned to the desired value. Input parameters 

specified as vectors include: 

 Number of reactions (Rn) 

 Range of initial abundances 

 Number of positive auto-regulation loops 

 Number of positive feedback loops 

 Percentage inhibitory reactions 

 Percentage of competing reactions 

 Percentage of degradation reactions 
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 Range of rate constant values 

  

A reaction stoichiometric matrix is specified as a zeroes matrix of dimensions (Rn x 

Rn). To this matrix, an additional row (rd) and a column (cd) are further added for the 

incorporation of a generic degradation reaction. The algorithm randomly selects a row i 

and a column j of the reaction matrix. Both of these random selections are performed 

using the datasample function without replacement. To maximise uncertainty over 

which element of the reaction matrix will be selected by the randomisation procedure, 

the randomly selected row and column will be accepted with a probability of 0.5, else 

another column will be randomly selected without replacement. If a set of coordinates 

from a matrix are accepted, the zero-entry will be changed to  a value of ±1 with the 

value sign randomly assigned with probability of 0.5 but restricted by counters in the 

case of (-1) assignations. Once a single assignation has taken place, the algorithm then 

moves to the next randomly selected row. This first round of interaction definitions 

ensures every reaction (row) will uniquely feed into another reaction (column). Thus, 

the directionality of the interactions follows the rows in the matrix. 

A positive value indicates a network interaction where the product of the reaction 

defined by row i feeds into the reaction defined by column j. Therefore, all values of 

row rd will remain as zero since the degradation reaction is an end-point in the network 

(Figure 2.14). A negative value within the reaction matrix indicates a network 

interaction where the product of the reaction defined by row i will inhibit the substrate 

of the reaction specified by column j without being itself utilised by the reaction. 

Modelling of inhibition in this way requires of three further specifications be included 

in the algorithm. Firstly, that if an inhibitory interaction arises there must be a substrate 

feeding into the reaction (i.e. at least one positive value in the column for reaction j). If 

none have yet been assigned, then a row within the reaction column is randomly 

selected and its value changed from zero to one. Secondly, the inhibitor must undergo a 

first-order degradation. Thirdly, the number of inhibitory reactions that are randomly 

assigned cannot surpass the randomly chosen percentage from the user-defined input 

range.   

The algorithm will then move on to scan the created reaction matrix. It will firstly scan 

the diagonal of the reaction matrix where i=j. In this case, a positive matrix  entry would 

correspond to a self-activation reaction where the product of the reaction denoted by 

row i will feed as a substrate into the same reaction denoted by a column with the same 
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identifier value for j. The number of self-activating reactions can be user-defined. If the 

first round of interaction definitions did not randomly create a number of self-activation 

reactions that matches those specified by the user then indices where i=j will be selected 

in a random order and be removed (assigned to 0) or incorporated (assigned to 1) to 

match the counter. 

At this point, the reaction matrix encodes an interaction network where every reaction 

uniquely feeds into another reaction. The algorithm then undergoes a second round of 

defining interactions. The procedure of this round is identical to the first one except that 

conditions are set so that i) only matrix entries with a value of 0 which are not part of 

the diagonal can be changed into a 1 ii) the maximum number of new interactions 

included is limited by a counter determined by the user-defined input on percentage 

competing reactions. The result of this second round is that the products of some 

reactions (rows) will feed into multiple other reactions (columns), creating a branching-

off scenario of competition between two reactions for the same substrate.  

Further additions to the reaction matrix are made where entries in cd are randomly 

selected to be assigned a value of 1 for a number of reactions constrained by the user-

defined percentage of reactions whose products are degraded. Note that substrates that 

are not assigned to be degraded are assumed to have a half-life substantially longer than 

the time-scale of the simulation. At this point the algorithm performs various scans of 

the reaction matrix. The first one ensures that there is at least one column in the matrix 

with all-zero elements. This means no reaction feeds into that particular reaction and 

thus it is an input point in the network. If no input reactions are found, a column (not cd) 

is selected at random and assigned all-zero values. A second scan is then performed that 

looks for the occurrence of positive feedback loops (PFLs) in the generated reaction 

matrix. A PFL is defined as the condition where matrix(i,j) and matrix(j,i) are both 1. 

The number of PFLs can be user-defined.  

If the first round of interaction definitions did not randomly create a number of PFL s 

that matches the minimum number specified by the user then indices will be selected in 

a random order and PFLs will be incorporated to match the specified minimum value. 

To avoid PFLs to be defined at the ends of the network, when these have been identified 

or defined, one of the two reactions involved in the PFL will be selected at random 

along with another reaction not involved in the PFL and a positive interaction link will 

be established between them. This is to ensure the PFL product feeds into the network 

and will only be incorporated if it does not already exist in the network topology. An 



69 

 

additional condition was introduced that a positive feedback loop must contain an 

inhibitory reaction that feeds into one of the two reactions. If this condition was not 

satisfied it was added through the random selection of a zero-entry of a randomly 

selected row in the reaction column. This inhibition would feed into one of the two 

reactions involved in the positive feedback loop selected at random. 

Once the reaction matrix has been defined, a product matrix of size (Rn x Rn) is defined 

where rows correspond to species and columns correspond to reactions. The same 

procedure will be employed as in the first round of defining interactions in the reaction 

matrix to assign species as products of randomly selected (without replacement) 

reactions. The only difference being that such assignation involves only positive values 

within the matrix.  

In the next step the algorithm iterates through every reaction and its product, then 

extracting its substrates from the products of the reactions that feed into the given 

reaction. This involves cross-checking between the reactions and products matrices. 

Unique reactions are defined because the algorithm generates a list of species names Si 

where i is the number of unique products. Thus, the extraction of the reactant and 

products of each reaction can be sequentially mapped to a species name and a string 

created in the form ‘S3 + S7 -> S2’ using the function strcat.  

In addition to unique species names, unique rate constant names Kr are defined for each 

reaction r in the network. A randomly chosen value constrained by the user-defined 

input will be assigned to every rate constant and every species initial abundance. It is 

worth noting that inhibitory reactions are generated separately so that when the 

algorithm encounters an interaction defined as -1 in the matrix it will retrieve the 

product of that reaction and a randomly selected a substrate of the reaction it feeds into 

and define two reaction strings in the form: ‘NegReg + Si -> NegReg’ and ‘NegReg -> 

Degraded’. Where NegReg is the negative regulator species performing the inhibitory 

interaction. Species that are substrates for the degradation reaction are defined in a 

format ‘Si -> Degraded’ thus following first- order kinetics.   

The nature of the algorithm makes it possible that multiple input reactions (reactions 

with no other reactions feeding into them) may arise. A scan is performed to locate 

these input reactions in the reaction matrix and to randomly select one and assign a 

‘Signal’ species to the reaction so that the reaction string becomes ‘Signal -> Si’. The 

Signal species is the variable that will be altered in strength and timing according to 
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user-defined inputs to simulate a stimulus going through the network architecture. 

Because only one signal is simulated through one input network branch, large parts of 

the network may remain unused/unaltered by the stimulus.  

Once the reactions have been defined as strings, in addition to species names and initial 

abundances and alongside rate constant names and values, a simbiology model can be 

created through the addspecies, addparameter and addreactions functions. Models are 

simulated deterministically using the ODE15s solver. Note that the simulation time is 

set to be determined by 1/Ks , where Ks is the slowest rate constant in the model. The 

acute stimulus is introduced at 1/2Ks in order to allow for the equilibration of the 

system. If the simulation of the generated model yields a minimum user-defined number 

of activation curves within the network species, a new reaction will be incorporated into 

the model for the constitutive synthesis of the Signal. The rate constant for the 

constitutive synthesis is set to a default of double that of the rate constant of the reaction 

of the Signal with the sensor molecule in the network.  

Once this modification is introduced into the model, an identical acute stimulus will be 

fed through and the resulting activation profiles will be compared with those previously 

generated by the acute stimulus alone. This comparison is made through the use of the 

findpeaks function.  

If the peak identified in the constitutive signal model displays a smaller magnitude than 

the peak identified in the simulations without a constitutive signal, that species will be 

catalogued as ‘blunted’ if this reduction in magnitude is at least 10%. If a defaulted 

minimum of three species in the network display a reduced activation magnitude in the 

presence of a constitutive signal (Blunted) then the model information will be extracted 

and stored for further analysis of its structural properties. Conversely, if the peak 

identified in the constitutive signal model displays a larger magnitude than the peak 

identified in the simulations without a constitutive signal, that species will be 

catalogued as ‘additive’ if this increase in magnitude is at least 10%. If a defaulted 

minimum of three species in the network display an increased activation magnitude in 

the presence of a constitutive signal then the model information will be extracted and 

stored for further analysis of its structural properties. 

The number of conditions in the network generation procedure, both user-defined and 

otherwise, means that the smaller the network being simulated, the less random its 

underlying architecture will be. This is why the minimum number of reactions within 
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the randomly-generated networks is set to 50. All reactions are simulated following 

first-order kinetics with the exception of inhibitory reactions which will follow second 

order kinetics. The ‘standard’ run of the algorithm refers to configuration settings for a 

minimum network size of 50 reactions with percentage inhibitory reactions, percentage 

degradation reactions and percentage competing reactions assigned through the uniform 

random sampling from value vectors [25-50], [10-25] and [10-25] respectively. Initial 

abundances were assigned to 10 (AU) and the basal signal was set to arise from a 

synthesis reaction of the signal following a zero-order rate constant of twice the value of 

the rate constant for signal reaction with its sensor. Standard algorithm settings were 

used throughout.  

The node connectivity of the resulting networks was tested (Figure 2.15). The 

distributions reveal low connected nodes (1-3 degrees) with a relatively high occurrence 

and the presence of high connected nodes (10-15 degrees), also called hubs, with a 

relatively high occurrence. This is a feature of scale-free network topologies that have 

been argued to realistically represent biological networks (Barabasi and Oltvai, 2004). 

 

 

 

Figure 2.14. (See next two pages). Illustration of the generation of a biochemical 

interaction network. a) Reaction matrix. 0 = no interaction, 1 = product of row reaction 

feeds as a substrate to the column reaction, -1 = inhibitory interaction. Note that there 

is one self-activation reaction (blue) and one positive feedback loop arising from the 

mutual activation of reactions 3 and 7 (green). Reactions with no other reactions 

feeding into them (Inputs) are all-zero columns (R1, R6 and R8). Reactions are selected 

at random to feed into an added reaction column that corresponds to a degradation 

reaction (red). Because the degradation reaction is an end-point, it will not feed into 

any reactions (all-zeros in R9 row). However, should recycling occur as a result of the 

degradation process, this could be included into the network by allowing 1s to be 

seeded into the last row of the reaction matrix. b) Interaction network topology 

corresponding to the reaction matrix in A. c) Product matrix. Every reaction generates 

one unique product. d) Bipartite network representation of the network corresponding 

to the reaction matrix and the product matrix. Red= degradation reactions. 
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Figure 2.15.  Node degree distribution for networks displaying a) ‘Additive’ behaviour, 

b) ‘Blunting’ behaviour and c) under conditions of no model selection criteria. Data 

shown for 10 models. K = node degree, P(k) = probability of observing a degree k in 

the model. Additive behaviour refers to an increased network activation by an acute 

stimulus in the presence of a basal signal. Blunting behaviour refers to a decreased 

network activation by an acute stimulus in the presence of a basal signal. 
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2.1.7 Multi-scale simulations 

 

The maintenance of biological homeostasis often involves processes encompassing 

multiple levels of organisation. For example, damaged mitochondria are kept in check 

by mitophagy in order to avoid damage accumulation. However, if this mechanism fails, 

mitotic cells can arrest their cell cycle and enter a state of senescence which can be 

recognised and cleared by immune cells. By taking into account both levels of 

organisation, an intuition can be developed as to how biological dysfunctionality may 

be compensated or propagated across scales. Furthermore, it potentially allows the 

mechanistic bridging between molecular alterations during age and loss of tissue 

homeostasis. 

 

The multi-scale model of senescent cell populations was developed as a Matlab script 

that simulates cells as interacting agents within a cellular automaton framework. 2D and 

3D multi-scale models were constructed to simulate a regular lattice occupied by resting 

cells at 100% confluency. All cells thus begin in a resting state (R). Other states the grid 

cells can enter include; pre- senescent (PS), senescent (S) and empty (E). A single 

simulation of the model will involve a probabilistic updating of cell states according to 

defined rules. A single simulation, referred to as a generation, corresponds to a unit time 

of 24hrs. At each generation, each randomly-selected cell will be mapped to the 

following rules: 

i) If state is (R) then transition to (PS) with probability Pind 

ii) If state is (PS) and has been for <10 days then state is retained  

iii)  If state is (PS) and has been for 10 days then transition to (S) 

iv) If state is (S) then neighbouring (R) agents transition to (PS) with probability 

PBys 

v) If state is (S) then transition to (E) with probability Pclr 

vi) If state is (E) then transition to (R) with probability Pnew 

 

Note that neighbouring agents are defined as those within the Moore neighbourhood of 

the selected agent. This corresponds to 26 neighbours in a 3D grid and 8 neighbours in a 

2D grid. Rule i) models the entering of a cell into the senescence program whilst rules 

ii) and iii) correspond to the progression of the senescent phenotype. Rule iv) models 

the senescent-induced-senescence bystander effect. Rule v) models senescent cell 
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clearance by the immune system. Rule vi) models the replacement of empty spaces with 

new cells.  

The model becomes multi-scale in the definition of the probability of induction, Pind. 

Instead of assigning a numerical value to Pind , whenever rule i) is applied a single 

stochastic run of the Dalle Pezze model  (Dalle Pezze et al., 2014) of cellular 

senescence induction is performed. The end-level of four variables is then collected: 

ROS, p21, DNA damage and SA-β-GAL. If the levels of these four molecules are above 

their average end-levels derived from a previous deterministic simulation of the model 

then the transition defined by rule i) will take place. Thus, the Dalle Pezze model can be 

said to be employed to gain a sneak-peak into the future as to whether a cell will 

become senescent or not. 

When the multi-scale model simulates irradiation- induced senescence, rule i) is only 

applied at day 1. When the multi-scale model simulates the stochastic induction of 

senescence it does so by running a single molecular dynamics simulation in CASSMI 

for every resting cell at every generation. The CASSMI run simulates an actively 

inhibited positive feedback loop that has the potential to undergo a runaway process 

with a low probability (conceptually explained in Section 6.2.1). In the cases when a 

runaway process occurs it is detected when the damaging molecule reaches a spatial 

occupancy of >50% of the total space in the grid. If this occurs it will be interpreted as a 

substantial amount of damage having taken place in the cell and the Dalle Pezze model 

will be run stochastically once to determine if that single cell will undergo senescence 

as a result of this damage perturbation. 

The multi-scale model can thus be summarised as a macro-solver (i.e. the resolving of 

the states of the cells in the model) coupled to a micro-solver (an ODE-model) that 

simulates a timescale which is fast compared  to the macro-solver. The micro-solver is 

the Matlab SimBiology toolbox simulating the Dalle Pezze et al. (2014)  model to 

capture molecular changes that are fast compared to the cell transitions modelled in the 

cellular automaton generations. Model simulation involves a grid with 10 arbitrary units 

in any dimension simulated (103 cells in a 3D model and 102 cells in a 2D model). The 

arguably low number of cells simulated aims to represent an arbitrary section of an 

arbitrary tissue and was limited by computational time. The simulation time of the 

multi-scale model was approximately 1.2 days in the case of a 30 day simulation of 

irradiation-induced senescence and approximately 3.9 days in case of a 30 day 

stochastic-induced senescence.  
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2.2 Experimental methods 

 

2.2.1 General information on cell culture 

 

C2C12 myoblasts are a mouse skeletal muscle cell line commonly employed as an in 

vitro model of skeletal muscle (Burattini et al., 2004, Manabe et al., 2012). The culture 

of these cells involves their maintenance in a 5 % CO2 humidified incubator (Thermo 

FormaTM Steri-CycleTM CO2 Incubator) at 37ºC.  All references to incubation 

throughout this work will involve these same conditions. Undifferentiated, mitotic, 

C2C12 myoblasts are grown in high glucose Dulbecco’s Modified Eagles Medium 

(Sigma Aldrich - D5671), supplemented with 10 % fetal calf serum (Sigma Life 

Sciences – F9665). This growth medium will be referred to as ‘non-differentiating’ 

medium. Note that all media used in cell culture procedures contains 1% 

Penicillin/Streptomycin (Sigma Life Science P4333) and 1% L-Glutamine (Sigma Life 

Science G7513). Furthermore, all cell culture reagents are previously warmed up to 

37ºC in a water bath (Grant OLS200). All cell culture work takes place in an alcohol-

treated, sterile tissue culture hood (CAS BioMet2 TriPASS CII). Additionally, serum 

free medium also refers to the high glucose DMEM (D5671) medium with P/S and L-

Glutamine but without serum supplementation. 

 

2.2.2 C2C12 differentiation 

 

To trigger C2C12 myoblast differentiation into post-mitotic myocytes and then 

myotubes (Manabe et al., 2012), cells are plated on 0.1% gelatin-coated dishes. Their 

culture medium is modified to High Glucose DMEM (D5671) supplemented with 2% 

Horse Serum (Sigma Aldrich – H1270). This medium will be referred to as 

‘differentiating’ medium. Differentiation is started at 80% cell confluency and lasts for 

7 days. Such a prolonged differentiation period aims to promote homogeneity at the 

population level since there is a high variation in the time taken by each cell to 

differentiate into myotubes.  

The dishes are coated through the addition of Attachment Factor Protein (Life 

Technologies S-006-100) to cover the whole plate surface and left in the incubator for 

30 minutes. Any medium is changed every two days and 2·105 C2C12 myoblasts 

seeded per 75cm2 flask (CellStar) or 5·104 myoblasts seeded per well in a 6-well plate 
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(Thermo Fisher Scientific -130184). The apparent low seeding density in the 25cm2 

flask is necessary since differentiation in C2C12 myoblasts is triggered by cell-cell 

contacts and so splitting has to be performed at roughly 60% confluency. 

 

2.2.3 Cell splitting 

 

Cell splitting involves a series of steps, the first one being the removal all of the 

medium in the flask followed by washing the cells in serum-free medium in order to 

remove any serum which may quench the trypsin. Cells are then trypsinized by covering 

the surface of the flask with Trypsin-EDTA (Sigma Life Science – T3924) and left in 

the incubator for 5 minutes. Following this, the trypsin is quenched by the addition of an 

equal volume of non-differentiating medium. The resulting mixture containing the 

trypsinised cells is then transferred into a centrifuge tube (Starlab) and centrifuged 

(Eppendorf Centrifuge 5804R) at 900rpm for 5 minutes. 

After the centrifugation step, all the cells are found as a pellet at the bottom of the 

falcon tube. The medium is removed and the pellet re-suspended in non-differentiating 

medium. A volume of 10L of the re-suspended cells is taken for a cell count in the 

haemocytometer (Assistent®). The number of cells within the central grid corresponds 

to roughly 1/10000th of the number of cells per ml of the re-suspended pellet mixture. 

The volume of this mixture added to each plate/flask is then calculated so that an 

aforementioned corresponding number of cells are seeded. After such a volume of re-

suspended cells is added it is important to mix well the flask/plate contents to ensure an 

even seeding of the cells across the plate, especially since differentiation is triggered by 

cell-cell contact. 

 

2.2.4 Cell cryopreservation 

 

Cryopreservation of cells involved the centrifugation (900rpm for 5 min) of a volume of 

re-suspended cells that corresponds to 1·106 cells. The resulting pellet is re-suspended 

in 1ml of ‘freezing’ medium. Such medium consists of 60% serum free medium, 30% 

FCS, and 10% DMSO (Sigma Life Science – D8418). The resulting cell suspension is 

then transferred to a cryotube (Thermo Scientific CryotubeTM 1.8ml vial) and kept in a -

20ºC freezer for two hours. Then its transferred to a Mr FrostyTM freezing container 
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(Nalgene – 5100) and kept in a -80ºC freezer for two days. Following this period, the 

cryotube is then transferred to liquid nitrogen storage (CBS Isothermal V3000-AB). 

Such a step-wise freezing protocol ensures gradual freezing and improved preservation 

of the cryopreserved cells. Note that cryopreservation of C2C12 cells can only be 

undertaken in their mitotic myoblast form. 

 

2.2.5 Cell defrosting  

 

Defrosting of cells involves a brief (approx. 30sec) warming up in a 37ºC water bath 

and a quick transfer to a centrifuge tube containing non-differentiating medium. After a 

gentle mixing, centrifugation at 900rpm for 5min follows and then the resulting pellet is 

re-suspended again in non-differentiated medium and ready for seeding. These steps 

ensure the quick removal of DMSO which can be toxic to cells.  

 

2.2.6 General information on cell treatments 

 

In all cases, upon completion of a treatment, the plate surface is covered in ice-cold 

1xPBS (98085 Cell Signalling) and cells are scraped off the surface through the use of a 

cell scraper (Sarstedt – 83.1830) and transferred to ice-cold micro-centrifuge tubes 

(Starlab – S1615) kept on ice. During time course measurements in 6-well plates, all 

cells are scraped at the same time so that later time points are subjected to the treatment 

the earliest and the earliest time points are treated last.  

Note that in all cases where an H2O2 treatment was performed on cells, be it in the form 

of an acute bolus addition or a steady state treatment for 24 hours, cells had their 

medium changed into high glucose DMEM (Life Technologies – 21063-029) serum free 

medium with no phenol red. This ‘treatment’ medium avoids H2O2 scavenging by 

serum factors or the phenol red present in the other media used in cell culture. All H2O2 

treatments occurred in 6-well plates where 1ml of the treatment media is added to each 

well, including in the control well. This ensures a medium depth is established that 

allows enough oxygen to be dissolved in the medium to be used by the cells and also act 

as an abundant substrate for the GOX/CAT system. 
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2.2.7 Acute H2O2 treatment  

 

For acute H2O2 bolus treatments, the desired H2O2 concentration is achieved via the 

dilution of a 1M stock (Sigma Aldrich - 323381) in sterile H2O (MilliQ® - Thermo 

Scientific BarnsteadTM NanopureTM - 7146) to a concentration that accounts for the 

volume of medium in the plate the cells are being grown in.  

 

2.2.8 Sustained H2O2 treatment  

 

For steady state H2O2 treatments the GOX/CAT enzymatic system is used  (Mueller et 

al., 2009, Sobotta et al., 2013). Such a system involves the enzyme glucose oxidase 

from Aspergillus niger (Sigma – G0543-50KU) and catalase from bovine liver (Sigma – 

C1345-10G). The relative concentrations of these two enzymes in the medium will 

determine the steady state concentration of H2O2.  

Glucose oxidase converts glucose and oxygen in the medium to H2O2 and 

gluconolactone. The catalase in the medium will then scavenge some the H2O2 

produced (depending on the relative level) to produce water and oxygen. Because 

oxygen is a substrate of the glucose oxidase enzyme the cycle adjusts to a given flux. It 

is important that the medium employed is high glucose to ensure that this substrate is in 

abundance for both the cells and the enzymatic system. The choice of medium, steady 

state H2O2 concentrations and treatment duration are in line with previously 

characterised treatments based on the GOX/CAT system (Mueller et al., 2009). 

Different steady states of H2O2 production were established as described previously 

(Mueller et al., 2009) with glucose oxidase being kept at a constant concentration and 

catalase concentrations being altered by different dilutions in PBS. The highest rate of 

steady state H2O2 generation used, 0.1M/sec, caused no cell death after 24hr treatment 

compared to controls. However, this steady state concentration did trigger redox 

signalling as so did all of the lower steady state concentrations used. The steady state 

concentrations of H2O2 produced by the GOX/CAT system were thus deemed to be 

physiological. 
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2.2.9 GOX/CAT preconditioning 

 

The preconditioning of cells for 24 hours with a given steady state level of H2O2 

precedes a given treatment at the 24hr time point. Prior to the addition of the treatment 

agent, the preconditioned cells are thoroughly washed with ‘treatment’ medium to 

remove the glucose oxidase and catalase enzymes. This is especially since the catalase 

in the medium can scavenge the posterior H2O2 bolus treatment. 

 

2.2.10 Urotensin II treatment 

 

Mouse Urotensin II (071-08  - Phoenix Pharmaceuticals) was diluted in sterile H2O to a 

stock concentration of 100µM. The treatment concentration used is 500nM achieved 

through dilution in ‘treatment’ medium. Treatment duration is 1hr for all experiments. 

 

2.2.11 Nuclear fractionation 

 

Note that all steps in this procedure must take place within ice-cold micro-centrifuge 

tubes. Defined volumes in this protocol are for 1.5ml micro-centrifuge tubes containing 

cells scraped from a well in a 6-well plate. Thus the volumes detailed can be scaled 

according the surface area of the plate on which cells are treated. Following a given 

treatment, cells in 500L ice-cold 1xPBS are scraped into micro-centrifuge tubes. To 

obtain the nuclear fraction of the scraped cells, the first step requires a pop spin 

involving a 20 second centrifugation at 4ºC (Eppendorf centrifuge 5415R) to collect the 

cell pellet. Following this the PBS is discarded with care not to disrupt the pellet.  

The pellet is re-suspended in 0.1% NP-40 detergent (Sigma-Aldrich IGEPAL® CA-

630) in PBS at a volume of roughly 200L per micro-centrifuge tube if cells were 

treated on a 6 well plate. Resuspension involves constant up-and-down pipetting for 5 

minutes per sample with a P200 pipette. After resuspension each sample should be 

maintained at rest for at least 10 minutes to allow the mild NP-40 detergent to disrupt 

the cell membranes and allow for a better separation of the nuclear fraction. Next, 75L 

of each resuspension is transferred to a separate micro-centrifuge tube to be used as a 
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sample for the whole cell lysate. These ‘whole cell’ samples can be left on ice until the 

final stages of the protocol. The re-suspended samples can then be centrifuged for 20sec 

at 4ºC (pop-spin) to collect the nuclear pellet.  

The supernatant corresponds to the cytosolic fraction and can be collected (150L) 

into separate tubes at this point if desired. The nuclear pellet is then gently washed in 

500L of 0.1% NP-40 by detaching the pellet as a whole from the tube by jetting the 

500L of NP-40 into the side of the tube. Once the whole pellet is suspended in the 

detergent, gently tilt the tube 3-5 times.  After this step the nuclear samples are pop 

spinned and the supernatant is discarded. For the resulting samples, the cytoplasmic 

fractions and the whole cell lysates are mixed in one volume of 4 x sample buffer (SDS 

plus 10% -mercaptoethanol [Sigma – M6250]) per three volumes of sample. In the 

case of the nuclear pellets, these are re-suspended in 100L of 1 x sample buffer 

(diluted in MilliQ water).  

The samples for the nuclear fractions and the whole cell lysates are then sonicated 

(Microson ultrasonic cell disruptor XL, MISONIX Inc.) for 2 x 5sec intervals per 

sample at 2 watts (RMS) whilst ensuring the sonicator tip is wiped in ethanol and dried 

between the sonication of different samples. The use of the sonicator aims to disrupt the 

nuclear membranes. The final step involves the boiling (Grant QBD1) of all samples at 

100ºC for 5 minutes to allow for the denaturation of proteins in the samples and their 

thorough reduction by the sample buffer added. Samples are then chilled on ice for 5-10 

minutes and stored in the -80ºC freezer for further use or directly run on acrylamide gels 

for western blotting. 

 

2.2.12 Western immunoblotting 

 

This technique is based on polyacrylamide gel electrophoresis (PAGE) where proteins 

are separated by size as determined by their migration distance over an acrylamide gel 

at a constant voltage. The higher the percentage of acrylamide in the (running) gel 

through which proteins in each sample migrate, the slower the protein migration will be 

for a given voltage. Thus, lower percentage acrylamide gels (ex. 6.5% PAGE) are used 

to separate high molecular weight proteins since at such low percentage acrylamide low 

molecular weight proteins run over the gel quickly and the slower moving proteins are 

separated over the whole gel. Conversely, 15% PAGE allows for a good separation of 
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low molecular weight species but not high molecular weight species which will not 

migrate great distances over the running gel. In this work, all gels were SDS-PAGE gels 

unless otherwise stated. Thus proteins are separated solely by size and not their native 

conformation. 

The reagent proportions used in the formation of the PAGE gels are defined in Tables 

2.1 and 2.2. Note that in the making of the gels, the running gel is introduced into an 

upright standing 1.5mm cassette (ThermoFisher Scientific Novex® - NC2015) which is 

toped up with sterile H2O and left to polymerise for approximately 30 minutes. The H2O 

is then discarded by tipping over the cassette with the solidified gel and the stacking gel 

is added to fill up the cassette to the top. The comb to define the wells within the 

stacking gel is added into the cassette so that a slight excess of stacking gel overflows 

the cassette. This is left for 15 minutes to allow for the polymerisation of the stacking 

gel. 

Gels were run on an XCell SureLockTM (Invitrogen) tank at 125V and 29mA for 90 

minutes on Tris-Glycine running buffer. Precision Plus ProteinTM Dual Color Standards 

ladder (BioRad – 161-037LI) was used as a reference of protein molecular weight. The 

running buffer was made by making a 3% and 14.4% dilution of Tris (Sigma Life 

Science – T1503) and Glycine (Sigma Life Science - G8898) respectively in sterile H2O 

with a further addition of 1:200 volume of 20% SDS. The gels were then laid on a 

methanol-activated nitrocellulose membrane (Merck Millipore - IPVH00010) and 

‘sandwiched’ in between blotting pads (VWR® - 28298) in a semi-dry transfer tank 

(Trans-Blot SD – BioRAD). The blotting pads, membranes and gels had been 

previously soaked in transfer buffer, which is a running buffer without any SDS 

addition. Protein transfer from the gel to the membrane is performed at 17V for 60 

minutes. 

After the transfer step the membrane is washed in PBS to remove any transfer buffer 

and washed for two minutes in Ponceau reagent (Sigma Life Science 78376). The latter 

will stain protein bands in the membrane in red, thus facilitating the trimming of the 

membrane to blot different membrane sections with different antibodies. The membrane 

sections are then washed for 10 minutes in PBS-T (PBS with 0.1% TWEEN®20 Sigma 

Aldrich -P1379) to remove the Ponceau staining. Membrane strips are then washed in 

5% Milk (Marvel original dried skimmed milk diluted in PBS-T) for 60 minutes in 

order to block protein binding sites that may promote non-specific binding of 

antibodies. After this time period, membranes are rinsed with PBS and incubated on a 
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see-saw rocker with the target primary antibody in a 4ºC cold room overnight. 

Following incubation with the primary antibody, the membranes undergo a triple 

sequential wash of PBS, PBS-T and PBS for 5 minutes each wash before being 

incubated with the secondary antibody for 60 minutes. The secondary antibody consists 

of a species-specific anti-Horse Radish Peroxidase (HRP) antibody diluted in 5% Milk. 

Following this incubation period another triple wash follows. The membranes are then 

kept in the dark with the chemiluminescence ECL mixture (Immun-StarTM WesternCTM 

kit BioRad 170-5070) for 5-10 minutes. The membranes are then ready for exposure in 

a Fujifilm LAS-4000 Raytech developer machine. Image processing and quantifications 

were performed with ImageJ software (Schneider et al., 2012).  

Note that throughout this protocol all ‘washing’, ‘blocking’ and ‘incubation’ procedures 

involve the incubation of the membranes inside a petri dish with the desired reagent, at 

room temperature, on a see-saw rocker (Stuart SSL4) unless otherwise specified. 

To blot for more than one protein in the same membrane when the migration distance 

between proteins is too small to physically separate them by trimming the membrane, a 

stripping buffer is used (Blot Stripping Buffer RestoreTM PLUS Western 46430 

Thermo Scientific) to ensure there is no chemiluminescence signal overlap between two 

proteins sequentially blotted for. After developing the latest protein of interest, 

membranes are washed in PBS for an hour and then incubated for 1hr in stripping 

buffer. The next steps involve the blocking of the membranes in 5% milk for one hour 

before rinsing with PBS and re-incubating with another primary antibody overnight in 

the 4ºC cold room see-saw rocker. 
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Table 2.1. Running gel reagents 

 

Reagent* 6.5% 

PAGE 

8% 

PAGE 

10% 

PAGE 

12% 

PAGE 

15% 

PAGE 

Sterile distilled H2O 4.5ml 4.6ml 3.4ml 2.9ml 2.0ml 

30% Acrylamide 

(Severn Biotech Ltd  

20-2100-10) 

2.0ml 2.4ml 3.0ml 3.6ml 4.5ml 

1.5M Tris, pH 8.8 

(Sigma Aldrich T6066) 

2.3ml 2.4ml 2.4ml 2.4ml 2.4ml 

10% SDS 

(Sigma Aldrich L4390) 

90.0l 90.0l 90.0l 90.0l 90.0l 

10% Ammonium Persulphate  

(Sigma Aldrich 215589) 

90.0l 90.0l 90.0l 90.0l 90.0l 

TEMED 

(Sigma Aldrich T9281) 

7.2l 3.6l 3.6l 3.6l 3.6l 

*Volumes correspond to one (9ml) gel 
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Table 2.2. Stacking gel reagents 

 

Reagents* 5% PAGE 

Sterile distilled H2O 1.4ml 

30% Acrylamide 

(Severn Biotech Ltd  

20-2100-10) 

0.43ml 

1.5M Tris, pH 8.8 

(Sigma Aldrich T6066) 

0.33ml 

10% SDS 

(Sigma Aldrich L4390) 

26.5l 

10% Ammonium Persulphate  

(Sigma Aldrich 215589) 

26.5l 

TEMED 

(Sigma Aldrich T9281) 

2.65l 

*Volumes correspond to one (2ml) gel 
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2.2.13 Antibodies 

 

The antibodies used in this work are listed in Table 2.3 (next page). Note that 5% milk 

refers to Marvel Original Dried Skimmed milk diluted in PBS-T and 5% BSA refers to 

Bovine Serum Albumin (Sigma Life Science - 05482) diluted in PBS-T. All antibody 

dilutions contain 1:500 concentration of sodium azide (NaN3) for antibody 

conservation. All antibodies are stored in a -20ºC freezer. 
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Table 2.3. List of antibodies used. 

Antibody Species Concentration Company Catalogue 

Number 

Anti- 

Nrf2 

(D1Z9C) 

Rabbit 1:500 

in 5% BSA 

Cell Signalling 

Technology 

 

#12721 

Anti-GAPDH 

(D16H11) 

Rabbit 1:10000 

in 5% BSA 

Cell Signalling 

Technology 

 

#5174 

Anti- 

Lamin B1 

Rabbit 1:1000 

in 5% milk 

Abcam ab16048 

Anti- 

Keap1 

Rabbit 1:500 

in 5 % BSA 

Abcam ab66620 

Anti-Phospho 

GSK3ß-Ser9 

Rabbit 1:500 in 5% BSA Cell Signalling 

Technology 

 

#9336 

Anti-GSK3ß 

(27C10) 

Rabbit 1:1000 in 5% 

BSA 

Cell Signalling 

Technology 

 

#9315 

Anti-Akt Rabbit 1:1000 

in 5% BSA 

Cell Signalling 

Technology 

 

#9272 

Anti-Phospho 

Akt (Ser473) 

Rabbit 1:1000  

in 5% BSA 

Cell Signalling 

Technology 

 

#9271 

Anti- 

PrxSO3 

Rabbit 1:2000 

in 5% milk 

Abcam ab16830 

Anti-Catalase Rabbit 1:1000 

in 5% milk 

Genetex GTX110704 
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Anti-SOD1 Rabbit 1:5000 

in 5% BSA 

Abcam Ab13498 

Anti-β-actin Rabbit 1:1000 Cell Signalling  

#4967 

Anti- 

HRP 

Rabbit 1:5000 in 5% 

milk 

Sigma A0545 
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2.2.14 Protein quantification  

 

The BioRad DC Protein Assay (BioRad – 500-0113 [Reagent A] – 500-0114 [Reagent 

B] – 500-0115 [Reagent S]) was employed following the instructions provided by the 

manufacturer. Absorbance values as measured through by a Fluostar Omega plate 

reader (BMG Labtech) were recorded for each cell lysate sample and for four known 

concentrations of BSA diluted in sterile H2O. A standard curve is made out of the 

absorbance values of the known protein concentrations and the protein concentration of 

each sample calculated by mapping the absorbance value into the standard curve. A 

desired uniform protein concentration across samples was then achieved by performing 

the appropriate dilution of the sample with loading buffer (2xLaemmli buffer [BioRad – 

161-0737] with 10% -mercaptoethanol added to the final mixture). Samples are then 

boiled at 100ºC for 5 minutes in a heating block (Grant QBD1 Boiler) and then chilled 

on ice for 5-10 minutes. The samples can be then taken straight to western blotting 

analysis or frozen at a -80ºC freezer (Eppendorf New BrunswickTM– U725-G). 

 

2.2.15 X-ray irradiation 

 

Differentiated C2C12 myotubes were irradiated with a 20 Grey (225kV) X-ray dosage 

through the use of an XRAD-225 X-ray irradiator. The media was immediately replaced 

after irradiation to avoid secondary damage by chemical species that may form during 

the irradiation of the medium. Cells were then cultured for 15 days post-irradiation. 

 

2.2.16 Hyperoxia exposure 

 

C2C12 myotubes were cultured (HERAcellTM 150i incubator – Thermo Scientific) at 

40% Oxygen / 5% CO2 at 37oC. Incubation period under hyperoxic conditions was of 7 

days with the ‘differentiation’ medium renewed every 2 days. 
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2.2.17 Reverse Protein Phase Array (RPPA) measurements 

 

Samples were sent to the Newcastle University Protein and Proteome Analysis 

(NUPPA) facility for the systematic quantification of protein abundances through RPPA 

(Charboneau et al., 2002, O'Mahony et al., 2013). Sample preparation for this procedure 

involves the scraping of cells grown in a six-well plate into 40μL of lysis buffer (1.5% 

SDS) after a double wash in PBS. Samples are then frozen and sent to the NUPPA 

facility. The basic RPPA procedure involves the sonication of samples in a rotatory 

sonication bath followed by a centrifugation step to collect the supernatant. A sample 

processing step follows involving the quantification of protein abundance through the 

use of the Bradford assay and appropriate volume dilutions to an optimised protein 

concentration of 0.2mg/ml in each sample. Alkaline phosphatase treatment is then 

employed to remove phosphate groups from proteins in the samples in order to validate 

any phospho-antibodies to be employed during the procedure.   

Samples are then ready to be robotically printed in quantities of 400pL into a chip at 

four different dilutions. The printing procedure involves the printing of multiple repeats 

of the same sample dilution in different “seals” within the chip that will allow the 

washing with different primary antibodies after a previous blocking step with vaporised 

blocking agent. The secondary antibodies are coupled to an Alexa-647 fluorescent dye. 

Measurements are taken by the excitation of samples with four different laser intensities 

and readings involve the integration of the four different laser intensities over all sample 

dilutions. Output readings are thus relative fluorescence intensity (RFI) values. 
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Chapter 3  

 

‘Molecular habituation’ as a potential mechanism of 

gradual homeostatic decline with age  

 

3.1  Introduction 

 

The chemical properties of reactive oxygen species confers these molecules the ability 

to cause molecular damage, but despite this, they also participate in essential cellular 

signalling functions (Winterbourn, 2015, Wang and Hai, 2016). For example, redox 

signalling has been established to be involved in the modulation of insulin signalling 

(Besse-Patin and Estall, 2014), the stress response (Jiang et al., 2011), cell survival 

(Trachootham et al., 2008) and tissue regeneration (Sen and Roy, 2008), to name but a 

few. The dual nature of ROS as signalling molecules and damaging agents is thought to 

depend on abundance, where low levels of these molecules will perform signalling 

functions and higher levels will promote molecular damage (Schieber and Chandel, 

2014). Indeed, various pathologies (Barbieri and Sestili, 2012, De Marchi et al., 2013, 

Sosa et al., 2013, Besse-Patin and Estall, 2014, Kim et al., 2015, Brioche and Lemoine-

Morel, 2016, Lepetsos and Papavassiliou, 2016) and the ageing process itself 

(Kirkwood and Kowald, 2012, Sanz, 2016,) display increased markers of oxidative 

stress. The nature of the homeostatic dysregulation that causes cells to transition from a 

state of controlled ROS production that serves essential signalling functions to a state of 

oxidative stress that causes molecular damage over time remains to be elucidated. 

Oxidative stress is defined as a cellular state involving a mismatch between the 

abundance of oxidant molecules and the antioxidant capacity of the cell, favouring the 

former (Sies, 2015). Oxidative stress is thus characterised by an increase in the basal 

levels of ROS. This increase can be transient or constitutive (Pickering et al., 2013). 

Whilst transient (acute) oxidative stress is associated with controlled ROS generation 

during redox signalling, constitutive (chronic) oxidative stress is commonly viewed as 

an uncontrolled process that drives molecular damage. Chronic oxidative stress thus 

involves longer time-scales of cellular exposure to ROS. As such, chronic oxidative 

stress becomes relevant to chronic diseases, age-related diseases and the ageing process. 

Oxidative stress shall hereon refer to chronic oxidative stress. The intrinsic reactivity of 
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ROS has made oxidative stress a very attractive research target when trying to explain a 

variety of homeostatic disruptions in terms of the unspecific molecular damage caused 

by these molecules (Winterbourn, 2015). It is thus of interest to explore weak points in 

the mechanisms that maintain redox homeostasis in the cell in order to examine how 

such mechanisms may become dysfunctional so that intracellular oxidant levels 

increase.  

The role of ROS as potential causal agents of homeostatic disruption through molecular 

damage has meant that chronic oxidative stress has been studied almost exclusively as a 

source of toxicity to the cell. However, the established function of ROS molecules as 

cellular redox signals points towards a largely neglected perspective in the study of the 

consequences of chronic oxidative stress. That is, studying sustained oxidative stress as 

a constitutive signal within the cell.  Examples of this perspective include the study of 

chronic oxidative stress as a constant inhibitory signal in both calcium signalling 

(Roedding et al., 2013, Gorlach et al., 2015) and T cell activation (Fulop et al., 2014). 

With regards to redox signalling, however, the potential consequences of an oxidant 

signal being constantly present are unclear. The following enquiry could be formalised 

when addressing this gap in the literature: how are redox signalling pathways likely to 

respond to an acute ROS signal when in the presence of a constitutively elevated 

oxidant level in the cellular environment? The physiological significance of such an 

enquiry becomes apparent when considering that redox signalling pathways have been 

shown to become dysfunctional in a variety of tissues in contexts where oxidative stress 

is also present in the cell (Vasilaki et al., 2006b, Sohal and Orr, 2012, McDonagh et al., 

2014a, Claflin et al., 2015, Cobley et al., 2015, Zhang et al., 2015a, Done et al., 2016, 

Jackson, 2016).  

One could further abstract the enquiry into the following form: does the constitutive 

presence of a signal in the environment affect a signalling pathway’s ability to transduce 

a subsequent acute pulse of the same signal? In the case of ROS monitoring, current 

experimental methods have a limited molecular resolution (Woolley et al., 2013, Ribou, 

2016). Moreover, most studies on redox signalling have focused on acute ROS stimuli 

rather than treatments involving the long-term exposure of cells to controlled oxidant 

levels (Millonig et al., 2012, Covas et al., 2013, Sobotta et al., 2013, Tan et al., 2015a). 

It is thus unsurprising that very few studies explicitly examine the consequences of a 

long-term oxidant exposure on redox signalling processes.  A notable exception is the 

work undertaken by Pickering et al. who demonstrate that a sustained oxidant treatment 
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can affect the activation of redox-mediated adaptive responses in the cell (Pickering et 

al., 2013).  

When a scientific enquiry becomes as general as that postulated here, it becomes 

challenging to address it by experimental means alone. Computational simulation can 

provide a means to explore the ‘mechanistic space’ as to how oxidative stress may 

interfere with redox signalling processes within the cell. This work reports that a 

constitutive signal in the cellular environment can potentially reduce the responsiveness 

of a given signalling pathway via the sustained activation of negative regulators. This 

phenomenon seems to occur in a variety of signalling pathways and potentially at 

different levels of biological organisation. 

 

3.2  Rationale for a generic model of redox signalling 

 

The main challenge regarding the study of how oxidative stress may affect redox 

signalling concerns the variety of different redox signalling pathways there are in a cell. 

Different pathways will have different regulatory structures and will be likely to display 

different dynamics to the same stimulus. Hence, it would be informative to study the 

effect of oxidative stress on individual pathways one at a time. However, an alternative 

and less time-consuming approach would be an attempt to abstract the conserved 

regulatory features of such pathways. This is the most appropriate approach if any 

phenomenon is suspected to be generalizable. A close inspection of the major redox 

stress response pathways in mammalian cells, i.e. NFκB, Nrf2, ASK1, HIF1 and HSF1, 

reveals a number of conserved regulatory features. In all of these cases pathway 

activation involves the interference of the cellular stress with an inhibitor-activator 

complex (Soga et al., 2012, Hoesel and Schmid, 2013, Jiang et al., 2015a, Masoud and 

Li, 2015, Tebay et al., 2015).  

The disrupted complexes are IκB – NFκB in the NFκB  pathway (Hoesel and Schmid, 

2013), Keap1 – Nrf2 in the Nrf2 pathway (Tebay et al., 2015), Thioredoxin1 – ASK1 in 

the ASK1 pathway (Soga et al., 2012), VHL – HIF1α in the HIF1α pathway (Masoud 

and Li, 2015) and the HSP70/90 – HSF1 complex in the HSF1 pathway (Jiang et al., 

2015a). Whilst the disruption of the IκB – NFκB inhibitory complex by oxidant 

molecules to activate the NFκB response has been called into question (Oliveira-

Marques et al., 2009, Morgan and Liu, 2011) the notion of an oxidant-mediated 
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disruption of an inhibitory complex is well established for the ASK1, Nrf2 and HIF1 

pathways (Chandel et al., 2000, Nanduri et al., 2015). The activation of the HSF1 

pathway by oxidative stress is different to the other pathways in that oxidants are 

thought not to be sensed directly but rather through changes in the abundance of 

misfolded folded proteins or alternatively the activation of other upstream pathways 

(Yoo et al., 2014, Swan and Sistonen, 2015).  

The disruption of the inhibitor-activator complex by oxidants in these pathways results 

in an increase in the levels of free activator. In all cases, the free activator undergoes a 

post-translational modification or a binding event with a second molecule. This 

stabilising step involves the binding to other co-factors in the case of the Nrf2, NFκB, 

HIF1 and HSF1 pathways or the dimerization of ASK1 molecules upon the activation of 

the pathway. Furthermore, in all the redox signalling pathways the activated molecules 

have been reported to undergo phosphorylation upon pathway activation.  

The mechanistic basis of the resetting of the different signalling pathways has been 

elucidated to different extents. However, in all cases, the signalling pathway must return 

to the starting point, i.e. an activator being actively bound by a protein to form an 

inhibitory complex. This necessitates the complex to be regenerated. This may require 

the re-activation of the inhibitor molecule through a post-translational modification or 

alternatively the de novo synthesis of the inhibitor molecule.  

These conserved features were formalised into a core generic redox model (Figure 3.1), 

hereafter referred to as Model 1. Missing from this model are mechanisms of negative 

regulation that promote the disruption of the activator stability so that the system can be 

reset. However, as mentioned previously, there is considerable variation regarding the 

number of elucidated mechanisms of negative regulation in each pathway and their 

relative importance. Another common feature arises in all pathways, however, and that 

is the existence of a transcriptional negative feedback loop resulting from the activity of 

the activator which results in an increased expression of the inhibitor molecules. The 

resetting of the redox signalling pathways can thus be said to follow a common two-step 

process involving an initial destabilisation of the activator molecule followed by the 

subsequent formation of the inhibitor-activator complex.  
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Figure 3.1. Generic redox signalling Model 1. Basal oxidant levels are modulated 

through the value of k1 which defines the flux of oxidant generation. The pathway is 

activated by an oxidation reaction of the inhibitor-activator complex that acts as a 

redox sensor. This oxidation reaction will result in an increase in the free levels of 

activator molecules which will further go on to perform a function after being stabilised 

by a binding event with a relay molecule. The initial redox-sensing reaction will result 

in the modification of the inhibitor that makes it unable to continue inhibiting the 

activator. The inhibitor must undergo a two-step regeneration process to be returned to 

a chemical state that allows its binding to the activator molecule to recreate the 

inhibitory complex (Sensor). AOX=Antioxidant. OX = oxidized. Dashed circle = 

degradation. 
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The activator destabilisation step would refer to the transcriptional complex disruption 

and subsequent nuclear export of the NFκB, Nrf2, HSF1 and HIF1 transcription factors 

or the disruption of the ASK1 signalosome. Model 2 expands on Model 1 by including 

such an element negative feedback (Figure 3.2a). Despite negative feedback being a 

common means for the shutdown of biological responses, it is not the only regulatory 

mechanism that allows for this. This is exemplified by the Nrf2 signalling pathway, 

which is deactivated by the delayed action of GSK3β (Cuadrado, 2015, Tebay et al., 

2015). Because the delayed activation of GSK3β is ROS-dependent but Nrf2-

independent (Kaspar et al., 2009, Cuadrado, 2015), this is an example of an incoherent 

feedforward loop or negative feedforward loop.  

A negative feedforward loop requires an upstream branching point where further 

downstream one arm of the network will feed back into the other arm. Such a parallel 

topology introduces negative regulation independently from the levels of the activator 

molecule. This contrasts with the in-series structure of negative feedback loops where 

the introduction of negative regulation is dependent on the state of the activator. Model 

3 expands on Model 1 to include a system in which negative regulation occurs primarily 

through a negative feedforwards loop (Figure 3.2b). Models 2 and 3 thus aim to be 

abstract representations of redox signalling pathways. These are employed to explore 

how the presence of a constitutive signal in the form of oxidative stress can affect the 

ability of these pathways to transduce an acute redox signal.  

It is worth noting that Models 2 and 3 are extensions from the core Model 1. The main 

difference between Models 2 and 3 with Model 1 is that the former two involve the 

introduction of a negative feedback molecule (NegReg) after a time delay which is 

modelled by reactions involving ‘Relay’ molecules. In Model 2, ‘NegReg’ molecules 

are introduced downstream of the ‘Function’ molecule. In Model 3, ‘NegReg’ 

molecules are introduced independently of the activation of the ‘Activator’ and 

‘Function’ molecules. Therefore, the activation dynamics of the three models are 

directly comparable through the ‘Activator-Function’ branch, which is conserved across 

models, when investigating different topologies of negative regulation. 

The mathematical formalisation of Models 1- 3 can be found in Supplementary Tables 

1-9. Note that in all of the ODE-based models in this work, the parameter k1 will 

correspond to a zero-order rate constant for the synthesis of the Signal molecule in the 

model. Simulation of the models is carried out in COPASI through the LSODA 

algorithm under default settings. The largest model simulated was the Schilling et al. 
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(2009)  model which consists of 33 species participating in 42 reactions. The simulation 

of such a network of 33 nodes and 42 edges took less than two seconds to simulate. 

Model 1 consists of 12 species and 9 reactions. Model 2 consists of 15 species and 12 

reactions. Model 3 consists of 17 species and 14 reactions. Models 1 – 3 took less than 2 

seconds to simulate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. (Next page). Network representations of a genetic redox signalling model 

incorporating a) a negative feedback loop (Model 2) or b) a negative feedforward loop 

(Model 3). Basal oxidant levels are modulated through the value of k1 which defines the 

flux of oxidant generation. AOX=Antioxidant. OX = oxidized. Dashed circle = 

degradation.  
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3.3  Results 

 

3.3.1 Oxidative stress reduces the magnitude of pathway activation in response to 

an acute redox signal 

 

When the basal rate of oxidant generation (k1) is increased in both Model 2 and Model 

3, the activation profiles display a significantly reduced peak stimulation magnitude 

(Figure 3.3). This observation was systematically explored in a parameter scan for a 

range of values of k1 (Figure 3.4). Of note is the observation that the negative regulator 

species in Model 3 actually displays an increased magnitude of activation at increasing 

values of k1. Another consequence of increasing the value of k1 is an observed increase 

in the steady-state levels of the activator, function and negative regulator molecules 

(Figure 3.3). The reduction in the activation magnitude of Model 2 and Model 3 at 

higher k1 values contrasts with the saturation profiles obtained in Model 1 under the 

same parameter changes (Figure 3.5). In these saturation profiles, the peak activation 

magnitude reached by the species within the pathway actually increases with increasing 

values of k1.  

 

Figure 3.3. Simulated profiles for Models 2 and 3 for different k1 values. OS = 

oxidative stress where k1 = 1 (else k1 = 0). Stimulus strength = 100 at time point 

marked by black arrow.  
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Figure 3.4. Parameter scans of Models 2 and 3 for k1 values. Scan involves a regular 

step-wise increase for 1000 intervals between 0 and 1. Colour-bar = arbitrary units of 

molecular abundance. Stimulus strength = 100 at time point marked by black arrow. 
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Figure 3.5. Parameter scans for k1 values in Model 1. Parameter scan involves a 

regular step-wise increase for 1000 intervals between 0 and 1. Colour-bar = arbitrary 

units of molecular abundance. Stimulus strength = 100 at time point marked by black 

arrow. 

 

The stable elevation in the levels of the pathway species indicates that the continuous 

oxidant flux is stabilising a new steady state in both models. It is thus a possibility that 

the reduced responsiveness of the pathway is the result of a network-wide loss in 

sensitivity (Dalle Pezze et al., 2014). To examine the effects of the k1 value on the 

network-wide sensitivity of Models 2 and 3, sensitivity analysis was performed on all 

three models (Figure 3.6). The sensitivity analysis reveals some conserved gains in 

sensitivity across all three models under conditions of oxidative stress. These include an 

increase in the overall network sensitivity to the rate of oxidized inhibitor reduction (k6 

in Model 2 and k7 in Models 1&3). It is of interest that oxidative stress seems to 

increase the sensitivity of Activator and Function molecules to parameters that directly 

control the negative regulator entities (k10 / k12 in Model 2 and k10 / k11 / k12 in 

Model 3). Oxidative stress thus causes a shift in the model sensitivities rather than an 

network-scale reduction in sensitivity.  
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Figure 3.6. Sensitivity analysis heat maps for Models 1, 2 and 3 in the presence (k1 = 

1) and absence (k1 = 0) of oxidative stress (OS). Delta factor = 0.001, Delta minimum 

= 1e-12. Analysis run in COPASI and plotted in Matlab. 
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3.3.2 A sustained increase in the basal levels of negative regulators causes a loss 

of pathway responsiveness under conditions of oxidative stress  

 

The fact that Model 1 displays a saturation pattern under increasing levels of signal 

(oxidative stress) and Models 2 and 3 display a blunted response suggests that their 

main topological difference, i.e. the presence of a negative regulator, lies behind such 

difference in behaviour. The basally increased level of negative regulator molecules in 

the new steady state promoted by oxidative stress appears as a potential source of 

dampening of the acute redox signal. If this possibility holds true, then a gradual 

increase in the basal levels of the negative regulator molecules should result in a loss in 

pathway responsiveness to an acute redox signal even in the absence of oxidative stress. 

This in silico experiment was carried out by clamping the negative regulator levels at 

increasing values, which resulted in a subsequent reduction in pathway activation 

(Figure 3.7). The robustness of these observations was tested by re-running the 

simulations at different values of the parameter defining the strength of inhibition by the 

negative regulator molecules (Figure 3.8). Furthermore, to confirm that this behaviour 

was not an artefact of how inhibition by the negative regulator was modelled (second-

order mass-action degradation reaction) the in silico experiment was repeated with the 

negative regulator acting through competitive inhibition (Figure 3.9).  

 

Figure 3.7. Simulated profile for ‘Activator’ molecules in Models 2 and 3 under 

increasing resting levels of negative regulator molecules. k1=0 and stimulus strength 

=100. Arrows illustrate curve shifts with increasing negative regulator basal levels. 
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Figure 3.8. Parameter scan for k1 at different inhibition strengths. k inh = inhibition rate 

constant. Green = negative regulator, Blue = Function, Red = Activator. Scan is 10 

intervals between 0 and 1.Time courses shown for k inh values10000 orders of magnitude 

apart. 
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Figure 3.9. Parameter scan for k1 with negative regulator molecules acting on 

activator molecules through competitive inhibition kinetics. Inhibition parameters:  

Km=10, Ki=10, Vmax=10. Green = negative regulator, Blue = Function, Red = 

Activator. Scan is 10 intervals between 0 and 1. 

 

The generic redox models employed to explore the effects of oxidative stress are kinetic 

models based on ordinary differential equations. This modelling framework effectively 

simulates the signalling pathways as molecular fluxes being distributed across reaction 

branches. However, this is not the only way these biological systems could be modelled. 

To gain confidence that the theoretical observations are not an artefact of the modelling 

framework employed, Models 2 and 3 were simulated using a Molecular Dynamics 

approach. Models 2 and 3 were simulated in a three-dimensional cellular automaton 

simulator (CASSMI – See Section 2.1.2) as equal-sized particles undergoing Brownian 

motion within an enclosed container. Simulations in this modelling framework confirms 

the existence of a reduced pathway activation under conditions of oxidative stress which 

is caused by an elevation in the resting levels of negative regulator molecules (Figure 

3.10).    
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Figure 3.10. ‘Activator’ profiles for Models 2 and 3 simulated through a Molecular 

Dynamics framework. Averages computed from 1000 model runs. Initial molecule 

species match the values defined in Supplementary Tables 6 and 9. For reactions of 

order greater than one, the probability of the reaction firing upon the encounter of 

substrates in space was set to 1. First order reactions were set to fire every generation. 

The probability of firing for first order reactions was set to 0.1, 0.01 and 0.05 for the 

resolving of the ‘Intermediate’ species, degradation of the negative regulator and the 

degradation of ‘Function’ respectively (latter reaction unique to Model 3).  Spatial 

occupancy by the simulated molecules was set to 50% and the stimulus strength set to 

100. 
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3.3.3 Constitutive signals reduce pathway responsiveness across multiple model 

topologies 

 

The formalisation of in silico models of biological systems always involves a degree of 

uncertainty with regards to how representative the network structure is of the underlying 

modelled process. If a given theoretical observation is specific to a given model 

topology then the more weighting the structural uncertainty will have on the acquired 

insights. Testing for the robustness of theoretical observations against model topology 

can also be viewed as testing for the generality of an observation. To this end, the 

effects of a constitutive signal were investigated in models with both simpler and more 

complex topologies.  

Models 2 and 3 were further abstracted to Models 4 and 5 respectively (Figure 

3.11a&c). Models 4 and 5 are thus network motif-like structures which could 

correspond to an interaction pattern within any biological system. Model 4 consists of 6 

species and 9 reactions. Model 5 consists of 8 species and 13 reactions. Both  Models 4 

and 5 showed a loss in the magnitude of pathway activation by an acute signal when in 

the presence of basally elevated levels of the same signal (Figure 3.11). The observation 

was once again back-tracked  to the constitutive elevation of the resting levels of 

negative regulator N. Models 4 and 5 also display a similar shift in network-sensitivities 

in response to a constitutive signal as do Models 2 and 3  (Figure 3.12).  
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Figure 3.11. Simulated activation profiles of Models 4 and 5 at different values of k1. a) 

Model 4 topology. b) Simulation output of Model 4 at k1 = 0 (continuous line) and k1 = 

0.02 (dashed line). c) Model 5 topology. d) Simulation output of Model 5 at k1 = 0 

(continuous line) and k1 = 0.02 (dashed line). CS = constant signal (k1 = 0.02). k1 is 

the parameter for O generation. Dashed circle = degradation. Stimulus strength =100. 
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Figure 3.12. Sensitivity analysis heat maps for Models 4 and 5 in the presence 

(k1=0.02) and absence (k1=0) of a constitutive signal (CS).  

 

When testing for the effects of a constitutive signal on a more complex model topology, 

a published model was chosen of a non-redox signalling pathway which has been 

calibrated with experimental data. Such model also satisfies a requisite of requiring just 

minor alterations to the published structure (i.e. the incorporation of an input reaction to 

provide a steady-state for the signal). The ERK signalling model published by Schilling 

et al. (Schilling et al., 2009) was selected for this purpose and slightly modified by 

adding two reactions, one for Epo synthesis following zero-order kinetics (k1) and 

another for Epo degradation (first order kinetics with rate constant value of 0.1). The 

incorporation of these two reactions increases the steady state level of Epo in the model, 

on top of which the same published acute addition of Epo is then introduced. Once 

again, negative regulator molecules are observed to enter steady state of higher resting 

abundance and this is accompanied with a reduced magnitude of activation of the ERK 

pathway to the same Epo stimulus (Figure 3.13). 
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Figure 3.13. Simulated activation profiles of the Shilling et al ERK signalling model 

(Schilling et al., 2009) when subjected to an acute Epo stimulus in the presence or 

absence of a sustained Epo signal. a) Pathway species that can be classed as 

‘Activators’. b) Pathway species that can be classed as ‘Inhibitors’. CS = constitutive 

signal (k1 = 0.1).  

 

3.3.4 The sustained presence of a signal leads to a diminished information flow 

through the signalling pathway 

 

What does it mean to the cell that a pathway is activated at a reduced magnitude? What 

are the functional consequences? Is the reduced magnitude still enough to trigger the 

desired response? When there is not enough experimental data available, these questions 

are non-trivial to answer theoretically. It can be conceived that a requirement for a cell 

to trigger a response to a stimulus is that the most downstream species of the stimulus-

sensing pathway experiences a sufficient enough change from its basal state. The 

functional cellular response to the signal can thus be said to depend on how reliable the 

most downstream species in the sensing-pathway (Y) is in reflecting any alterations in 

the state of the most upstream species (X) that senses the stimulus.  

It is possible to quantify the amount of information that the state of species Y would 

provide on the state of species X via the calculation of the mutual information between 

both variables (Shannon, 2001). In the case of Models 4 and 5, species X would be the 

O signal the system is responding to and species Y could be any species downstream of 



113 

 

it. Analysing the mutual information between these variables reveals a reduction in 

information flow through both Models 4 and 5 at increasing levels of the constitutive 

signal (Figure 3.14). A reduction in information flow of the same nature is also 

observed when the same mutual information analysis is repeated for Models 2 and 3 

(Figure 3.14).  

 

 

 

Figure 3.14. Mutual information analysis in Models 2-5  for different values of k1. 

Mutual information was derived from the molecular abundance distributions at the time 

point of the maximal response peak. Mutual information value derived from 1000 

stochastic simulations. Stimulus strength =100. 
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A reduction in mutual information between molecules X and Y translates into a greater 

uncertainty on whether a change in the levels of stimulus X will be reflected by changes 

in downstream molecule Y so that the cell can mount a response. This uncertainty will 

thus manifest at the cell population level, where a greater proportion of the cells will not 

display a phenotype associated with the stimulus they have been exposed to. Indeed if 

one were to observe the cells and guess whether they have been treated or not it will be 

more difficult to do so. Such a consequence of sustained cellular signals resulting in 

reduced information flow is evidenced in the dose-response profiles of Models 4 and 5 

(Figure 3.15). It can be appreciated in these dose-response curves that at higher levels of 

the constitutive signal the magnitude of stimulation maps to a larger range of possible 

abundance values of molecule F.  

 

Figure 3.15. Simulated dose-response profiles of molecule F in the presence and 

absence of a constitutive signal. Mean (blue) and standard deviation (shaded) are 

derived for the time point of maximal response peak of molecule F. Data derived from 

1000 stochastic simulations. CS=constant signal (k1 = 0.02). Stimulus strength =100. 



115 

 

3.3.5 Reduced responsiveness can occur across levels of biological organization  

 

The observation that the ‘blunting’ phenomenon is robust to the complexity of the 

underlying network structure hints at the possibility that this behaviour could occur 

beyond the level of intracellular signalling. Indeed, the abstract nature of Models 4 and 

5 could well refer to animal or cellular populations. To test this possibility, a cellular 

automaton framework was employed to define a three-dimensional agent-based model 

formalised as follows. 

Agents were randomly seeded across a regular lattice to account for a final 50% 

occupancy. The initial state of all agents is resting state (R). Simulation involves the 

probabilistic transition of agents to a number of potential other states, namely, to a 

perturbed state (P), to a negative regulator state (N) or to a state of non-existence (E).  

Agents are selected in a random order each generation and run through the following 

update rules: 

i) If state is (R) then transition to (P) with probability Pind 

ii) If state is (P) then ni neighbouring (E) agents transition to (N) with 

probability Prec 

iii)  If state is (N) then neighbouring (P) agents transition to (R) with probability 

Pres 

iv) If state is (N) and state has existed for Gi generations then (N) transitions 

back to (E) 

 

Note that neighbouring agents are defined as those within the Moore neighbourhood of 

the selected agent. Also of note is that rule Gi represents the duration of the presence of 

a negative regulatory state and ni encodes the strength of negative regulation. 

The model can be thus summarised as follows. The transition of agents from resting 

state (R) to perturbed state (P) leads to the recruitment of negative regulator agents 

agents (N) that will promote the transition back to the resting state and subsequently 

disappear after a certain number of generations (Figure 3.16a). The lifetime of the N 

state is the only model parameter that is not probabilistic in nature. A stimulus is 

modelled as a transient change in Pind which results in a shift in the agent populations. 

The magnitude of such a shift in the agent populations is seen to be smaller when the 

basal Pind  probability is elevated (Figure 3.16). This observation is seen alongside an 
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increase in the steady state population of N agents. These results provide further 

evidence for the robustness of our observations to the underlying modelling framework 

and topology. Furthermore, they suggest that the blunting phenomenon could be 

observed at higher biological scales, such as intercellular interactions.  

 

 

 

Figure 3.16. Agent-based simulation in three dimensional space. a) Diagram of agent 

interactions. b) Simulated profile for R agents. c) Simulated profile for P gents. d) 

Simulated profile for N agents. CS=constant signal (Pind = 0.01). Stimulation length = 1 

generation. Stimulation strength: Pind = 0.05. No CS:  Pind = 0. Plotted averages derived 

from 1000 simulation run at Gi=10, ni=1, Prec=1, Pres=0.9.  
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3.4  Discussion 

 

Both ageing and disease conceptually involve a departure from an optimal functional 

state, i.e. a loss of biological homeostasis. It can thus be argued that research into ageing 

and disease is essentially a quest for the causation and reversal of such homeostatic 

disruptions.  But how is such loss of homeostasis recognised in the first instance? It 

commonly manifests as the constitutive elevation or reduction in the levels of a given 

biological entity. Most theories of ageing argue for stochastic damage as the cause of 

homeostatic loss during age, without specifying mechanistically how stochastic 

perturbations may weaken the robust biological systems. The perspective of considering 

the ageing process as a network-phenomenon suggests that loss of homeostasis in one 

cellular process could feed into other cellular sub-systems, potentially priming for a 

larger scale homeostatic loss. For example, age-related frailty has been described in 

terms of damage propagation across  a biological network (Mitnitski et al., 2017). 

In the process of biological ageing, it is not established how cells transition from a state 

of being able to control proposed molecular drivers of ageing like ROS, damaged 

proteins or inflammatory factors, to being in a state where such molecular entities are 

constitutively present. However, in this work we show that regardless of the underlying 

cause of the constitutive signal, it can potentially make biological systems more 

vulnerable to suffer a more widespread homeostatic dysregulation by reducing the 

responsiveness of signalling pathways that control regulatory responses. Work by Dalle 

Pezze et al. (Dalle Pezze et al., 2014) demonstrates how a system-wide loss in 

sensitivity can lead to a loss in biological functionality without the need for damage or 

mutation since ‘the global decrease in sensitivity upon kinetic rate constants indicated 

that the semantics of these model parameters, e.g. promoter or inhibitor, became more 

uncertain. As a consequence, this uncertainty increased system noise and decreased 

network robustness, which, in the context of a cell, translated into weak signalling 

regulations and therefore poor intervention effectiveness’.  

Furthermore, a case is made for constitutive signals potentially being able to drive a 

homeostatic imbalance at the cellular level. We observe that constitutive signals do not 

result in a homeostatic collapse, but a rather more subtle loss in responsiveness. This 

can mean that, at the tissue level, cellular populations would mount physiological 

responses of weaker strength, at an altered time or even an altered duration. Such a 
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quasi-functional state can be expected to prime a tissue for a gradual accumulation of 

damage and a functional decline.  

The reported loss in pathway responsiveness under the presence of a constitutive signal 

can be back-tracked to a sustained elevation in the basal levels of negative regulator 

molecules. Previous work has demonstrated that cells can actively modulate the 

responsiveness of their signalling pathways via the steady state levels of negative 

regulator entities (Toyoshima et al., 2012). In fact, the prolonged elevation of negative 

regulators has been long argued to be a mechanism of physiological habituation to an 

environmental signal (Grissom and Bhatnagar, 2009, Herman, 2013, Lee et al., 2013, 

Ramaswami, 2014).  

Further to this, the sustained activation of SAPKs in Candida albicans has been recently 

shown to result in a sustained elevation in the basal levels of the PTP negative 

regulators which stabilise a state of constitutive low-level Hog1 activation which 

promotes the survival of the organism under stressful conditions (Day et al., 2017). 

Additionally, a systematic testing of stress-resistance during the life cycle of C. elegans 

revealed a loss in the responsiveness of all organismal stress responses, although not 

caused by an increased activation with age (Dues et al., 2016). The idea of the observed 

blunting effect of constitutive signals being an adaptive response would mean that a 

homeostatic disruption arising from such signals could be a pleiotropic effect.  

It is interesting to note that the reduction in information flow observed in Models 2-5 

when in the presence of a constitutive signal (Figure 3.14) follows a very similar profile 

to a previously reported reduction in synaptic transmission efficacy during habituation 

(Prescott and Chase, 1999). At the cellular scale, the prolonged presence of negative 

regulators in the cellular environment has been characterised as a refractory mechanism 

to further stimuli (Vizan et al., 2013, Adamson et al., 2016). Such body of evidence 

gives support to the possibility that cells may have adapted to enter a state of reduced 

sensitivity.  

Further evidence for the biological plausibility of a dampening effect caused by basally 

elevated levels of negative regulators comes from computational simulations of the cell 

cycle which indicate that the weak activation of negative feedback can lock the cell 

cycle an a stable intermediate state which needs of a stronger signal to induce a 

response (Rahi et al., 2016). An interesting observation from the mutual information 

analysis is that the negative regulator molecules can provide the highest amount of 
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information on the state of the environmental stimulus. This seems in line with the 

observation that negative regulators can display a better correlation with lifespan than 

the regulated activating molecules (Lewis et al., 2015).  

It is interesting that the sustained presence of a stimulus can be a source of response 

heterogeneity within a cell population. It could be expected that pre-conditioning cells 

with the same stimulus would synchronise cells or even prime them for a response. 

However, different cells could also become desensitized to the signal at different rates. 

The interplay between habituation and sensitisation has been long known to affect 

response plasticity (Prescott and Chase, 1999). At least theoretically, a chronic signal in 

the cellular environment can be a source of uncertainty to a cell or tissue when 

discerning the presence of an acute stimulus and whether a consequential response 

should be mounted. This would translate into an increased percentage of cells that do 

not respond to a physiological stimulus. This illustrates the potential of a signalling 

dysregulation at the molecular level to percolate into the tissue scale in the form of 

populations of cells that fail to mount an appropriate response to a given physiological 

signal. 

It is unlikely that the reported effect of constitutive signals is the sole driver of loss of 

responsiveness in biological systems. Factors such as altered binding affinity due to 

genetic mutation or a sub-optimal cellular environment, altered gradients across cellular 

compartments or altered basal levels of sensor molecules could also play major 

contributions to a loss in pathway responsiveness. For instance, a beneficial redox 

signal produced in the mitochondria (Scialo et al., 2016) would experience a decreased 

driving force as a result of a reduced gradient between the mitochondrion and an 

increasingly oxidized cytoplasm with age. This would be expected to manifest in a 

reduced flux of H2O2 across the mitochondrial membrane and consequently a reduced 

mitohormetic response. Alternatively, a sustained low-level hyperoxidation of cysteine 

residues in redox sensor proteins would also be expected to reduce the responsiveness 

of redox signalling pathways to acute ROS stimuli. 

Dynamic computational models can often be criticised for being overly-simplistic 

representations of biological systems, which are known to have a much higher 

complexity than that represented in the model structure. This is apparent upon 

comparison of the dense interaction networks generated by bioinformatics approaches 

and the “insulated” chains of reactions that compose dynamic models. Such 

comparative simplicity is the result of the parsimonious approach to the construction of 
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dynamic models that need to be smaller than static models since they require many 

more parameters to capture the temporal dimension of the modelled system. 

Additionally, wherever model structure is related to function, there remains the 

uncertainty of whether any observed model behaviour is constrained to a small region of 

the parameter space. Such are the criticisms of network motifs (Ingram et al., 2006). It 

is likely that, in the same way as network motifs, some cases of signalling 

dysfunctionality will possibly be mapped onto constitutively elevated levels of negative 

regulators and others will not. 

 

3.5  Concluding Remarks 

 

Overall this work proposes that, at least in principle, sustained signals in the cellular 

environment can promote a state of unresponsiveness arising from an increase in the 

basal abundance of negative regulators. It is likely this will be a useful concept for 

researchers to bear in mind when coming across biological systems displaying aberrant 

signalling in the context of ageing and disease. 
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Chapter 4 

 

A systematic exploration of network structures that display 

an altered activation in the presence of constitutive signals 

 

4.1  Introduction 

 

A criticism of the bottom-up approach to modelling biological systems is that the model 

structures are often too simplistic. These model structures contrast with the complexity 

of top-down interaction networks of biological systems which define statistical 

relationships between biological entities (de Silva and Stumpf, 2005, Gunawardena, 

2014, Villaverde and Banga, 2014). A contrast between the network structures created 

by these two complementary approaches highlights that kinetic models are often 

simulated in “insulation” from  the actual interaction network they are embedded in 

through multiple crosstalk points. This is the result of the modelling parsimony required 

to capture the temporal dimension of a biological system through the use of a more 

computationally- intense framework, i.e. the solving of systems of coupled differential 

equations.  

The attempt to reproduce in silico the time-evolution of a biological system thus 

conveys i) an uncertainty regarding the consequences of simplifying the network 

complexity and ii) an uncertainty regarding the values of the model parameters. In both 

of these cases it is of interest to systematically test the robustness of model predictions 

to unbiased but realistic changes in both its structure and underlying parameter values. 

The systematic generation of pseudo-random network structures would provide an 

unbiased method to explore the generality of an observed system behaviour and 

furthermore the structural properties that support the behaviour of interest. This 

approach would aim to establish a relationship between structure and function. 

The use of random number generators in establishing the network structure and 

parameter values not only reduces the bias in the model-construction process, but also 

accounts for structural and parametric uncertainty. Bias in this context refers to the 

subjective choices the modeller must undertake in the formalisation of the model. 

However, the exploratory space resulting from the random assignation of both structural 

interactions and parametric values is vast. Furthermore, it is well established that 
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biological networks are not random (Barabasi and Oltvai, 2004). It is thus necessary to 

account for prior biological information to some degree in order to not only constrain 

the exploratory space, but to create a more realistic model of a potential biological 

system.  

For instance, should a positive-feedback loop arise in a randomly generated model it 

would be expected that a negative interaction should feed into at least one of the species 

involved since otherwise a runaway process would arise. Furthermore, a signal being 

fed through the network should result in a minimum number of recognisable 

activation/inhibition profiles in the form of peaks and/or troughs easily identifiable from 

the background pre-stimulation levels. Such conditions will reduce the computational 

search time and increase the biological relevance of a systematic analysis of these 

characteristics. 

An algorithm was developed that permits a systematic analysis of pseudo- randomly-

generated model structures (see Supplementary Figure 1) with the aim to explore the 

topological features that might promote a ‘blunting’ effect and to furthermore assess the 

generality of this observation. The algorithm was run under ‘standard’ settings (see 

Section 2.16) throughout unless otherwise indicated. The execution of the algorithm for 

random network generation involved a parallelisation of the algorithm work flow so that 

1000 jobs would be run each creating and simulating 1000 models. Algorithm running 

time under standard settings involving the generation of networks with >50 nodes was 

3.3 hours in a Sungrid Engine computer cluster.  

 

4.2  Results 

 

4.2.1 Response ‘blunting’ by constitutive signals requires inhibitory interactions 

to be activated  

 

Randomly generated networks were examined for both ‘additive’ and ‘blunting’ 

behaviour in the presence of a constitutive signal (Figure 4.1). In this work, the 

magnitude of such additive/blunting effects was respectively quantified as the 

percentage increase/decrease in peak magnitude under the presence of a constitutive 

signal.  The generation and simulation of one million networks yields models with 

recognisable activation profiles for a minimum of three species for ~42% of them. Of 
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these, ~1% displayed a blunting behaviour and ~63% displayed an additive response. A 

10% minimum departure from the peak response magnitude was set as the threshold to 

define whether ‘blunting’ or ‘additive’ effects occurred. This arbitrary value was chosen 

to be the minimum change in responsiveness that could conceivably be expected to be 

measured through experimental methods. Frequency analysis of the generated networks 

that display a blunted response in the presence of a constitutive signal reveals that the 

extent of blunting can be quite severe for a substantial number of model topologies, 

especially with increasing the basal levels of the signal (Figure 4.2).   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Representation of an ‘additive’ behaviour (red) and a ‘blunting’ behaviour 

(blue) for a species activation in the presence of a constitutive signal. Note that both 

effects usually arise from an elevated basal level of the molecule. 
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Figure 4.2. Distributions of the extent of the ‘blunting’ effect for different levels of the 

constitutive signal. ‘Basal’ refers to the value of the zero-order rate constant of the 

synthesis of the constitutive signal. k refers to the rate constant of signal utilisation. 

Blunting magnitude refers to the percentage reduction in peak response abundance 

under the presence of a constitutive signal.   
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When looking at the distribution of inhibitory properties displayed by the networks 

shown to become blunted, a number of features arise. Firstly, that the inhibitory 

properties of the activated portions of the networks are normally distributed, indicating 

that entropy has been maximised. However, upon the examination of the distribution of 

the number of activated reactions in the network, it becomes apparent that there is a 

pronounced departure from the normal distribution at lower values of this variable 

(Figure 4.3). Although this distribution also showed a departure from Gaussian for 

networks displaying an ‘additive’ behaviour (Figure 4.4), it is visibly a more substantial 

deviation in the case of networks displaying ‘blunting’ behaviour.  

Another noticeable feature is the fact that the networks that display ‘blunting’ behaviour 

will always have a minimum of one activated inhibitory interaction whilst when 

analysing networks displaying an ‘additive’ behaviour there is an overrepresentation of 

networks with no activated inhibitory interactions. This would seem to suggest that 

negative regulators are a requirement for the ‘blunting’ effect to occur. Interestingly, 

networks displaying an ‘additive’ effect tend to have more positive feedback loops than 

networks displaying blunting behaviour, with more than half of the networks displaying 

‘additive’ behaviour containing one or more positive feedback loops (Figure 4.4). The 

algorithm for random network generation involves a process of model-selection where 

only models displaying recognisable activation profiles in response to an acute stimulus 

are taken forwards for further analysis. To examine whether this selection process was 

shaping the distributions of network properties these were re-derived with such model 

selection being abolished. The distributions obtained (Figure 4.5) still display a slight 

departure from a normal distribution with regards to the number of activated reactions. 

This seems to suggest that the algorithm implementation results in a slight bias towards 

the analysis of smaller activated sub-networks. 
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Figure 4.3. Distributions for models that display a ‘blunting’ behaviour in the presence 

of a constitutive signal. Percentage inhibitory interactions refers to the number of 

inhibitory interactions in the portion of the network that was activated by a stimulus. 

Inhibitory interaction strength refers to the second-order rate constant of the reaction 

between the inhibitor and its target. PFL= Positive feedback loop defined as a topology 

where the product of a given reaction acts as a substrate for the reaction that 

synthesised its substrate. 
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Figure 4.4. Distributions for models that display ‘additive’ behaviour in the presence of 

a constitutive signal. Percentage inhibitory interactions refers to the number of 

inhibitory interactions in the portion of the network that was activated by a stimulus. 

Inhibitory interaction strength refers to the second-order rate constant of the reaction 

between the inhibitor and its target. PFL= Positive feedback loop defined as a topology 

where the product of a given reaction acts as a substrate for the reaction that 

synthesises its substrate. 
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Figure 4.5. Distributions for all simulated models without being selected for the display 

of recognisable activation profiles upon an acute stimulation. Percentage inhibitory 

interactions refers to the number of inhibitory interactions in the portion of the network 

that was activated by a stimulus. Inhibitory interaction strength refers to the second-

order rate constant of the reaction between the inhibitor and its target. PFL= Positive 

feedback loop defined as a topology where the product of a given reaction acts as a 

substrate for the reaction that synthesises its substrate. 
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4.2.2 A ‘blunting’ phenomenon is more likely to be observed in smaller networks  

 

As specified in Section 2.1.6, a set of configuration parameters for the random network 

generation algorithm was established as the reference setting. This configuration 

involved input ranges for percentage inhibitory reactions, percentage competing 

reactions and percentage degradation reactions of [25-50], [10-25] and [10-25] 

respectively. Initial abundances were set to 10 (AU) for all molecules, rate constants 

sampled from a value range of [0.001 to 1] and networks were set to have a minimum 

number of 50 reactions. The basal level of the signal was set to arise from a zero-order 

rate constant of value 2k where k is the rate constant of utilisation of the signal. The 

algorithm was then run under different variations of these parameters (ceteris paribus) 

to examine changes in the frequency of occurrence of the ‘blunting’ phenomenon. 

Increasing the degradation reactions in the network by shifting the sampling range to 

[25-50] markedly decreases the number of networks displaying the blunting behaviour, 

whilst this is not obviously seen for networks displaying an ‘additive’ behaviour (Figure 

4.6). Increasing the number of competing reactions within the network to [25-50] 

results in a small increase in the occurrence of ‘blunting’ but a more pronounced 

increase in the occurrence of ‘additive’ behaviours. Increasing the basal level of the 

constitutive signal to 4k results in a large increase in the networks identified to display 

both behaviours. The parameter with the largest effect on the number of retrieved 

networks displaying ‘blunting’ behaviour is network size.  

A reduction in the size of the randomly generated networks from a minimum of 50 

reactions to a minimum of 20 reactions results in an almost three-fold increase in the 

number of networks displaying a ‘blunting’ effect. This confirms the previous 

observation regarding the pronounced bias of networks displaying a ‘blunting’ 

behaviour towards smaller sub-networks (Figure 4.3) and hints at the possibility that 

such an effect would be most likely be observed in smaller and possibly simpler 

biological sub-systems. Interestingly, decreasing the number of inhibitory reactions in 

the network actually increased the instances in which the generated models displayed 

any of both behaviours. The number of positive feedback loops in the network did not 

seem to affect the frequency of occurrence of any of the two effects of the constitutive 

signal. The data does not seem to suggest that a reduced occurrence of the ‘blunting’ 

phenomenon in the randomly generated networks translates into an increased 
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occurrence of networks displaying an ‘additive’ effect in the presence of a constitutive 

signal or vice versa. 

It is worth noting that a substantial number of simulated networks displayed a ‘blunting’ 

behaviour for all simulation settings. Again, indicating the robustness of the ‘blunting’ 

observation. Interestingly, when all of the rate constant parameters are set to be 0.1 in 

the network, the generation of a million model structures does not retrieve any 

‘blunting’ behaviour. This seems to suggest it is not a phenomenon that arises solely 

from the network topology alone but by a combination between model structure and the 

parameter space. In order to confirm that the algorithm bias towards smaller networks 

would not influence these results, the data was cropped for networks containing less 

than 20 reactions. The same overall pattern of behaviour occurrence under different 

algorithm settings was observed with the exception of a reduction in the occurrence of 

‘additive’ behaviour when the algorithm was run under increased basal level of the 

signal (Figure 4.7).  
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Figure 4.6. Effects of the configuration parameters for random network generation on 

the frequency of occurrence of the ‘blunting’ (a) and ‘additive’ (b) effects. ‘ Reference’ 

refers to configurations settings of initial abundance = 10, rate constant range = 

[0.001-1], percentage inhibitory interactions range = [25-50], percentage degradation 

reactions range = [10-25], percentage competing reactions range = [10-25], minimum 

network size = 50 reactions and Basal = 2k where Basal refers to the value of the zero-

order rate constant of the synthesis of the constitutive signal. k refers to the rate 

constant of signal utilisation. PFL= Positive feedback loop defined as a topology where 

the product of a given reaction acts as a substrate for the reaction that synthesises its 

substrate. Configuration parameter changes undertaken ceteris paribus. Error bars 

correspond to standard deviation of the data. N=3.  
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Figure 4.7. Effects of the configuration parameters for random network generation on 

the frequency of occurrence of the blunting (a) and additive (b) effects using the dataset 

cropped for networks displaying less than 20 activated reactions.  Reference refers to 

configurations settings of initial abundance = 10, rate constant range = [0.001-1], 

percentage inhibitory interactions range = [25-50], percentage degradation reactions 

range = [10-25], percentage competing reactions range = [10-25], minimum network 

size = 50 and Basal = 2k where Basal refers to the value of the zero-order rate constant 

of the synthesis of the constitutive signal. k refers to the rate constant of signal 

utilisation. PFL= Positive feedback Loop defined as a topology where the product of a 

given reaction acts as a substrate for the reaction that synthesises its substrate.  

Configuration parameter changes undertaken ceteris paribus. Error bars correspond to 

standard deviation of the data. N=3. 
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4.2.3 The magnitude of ‘blunting’ does not correlate with network inhibitory 

properties 

 
Upon examination of the relationship between the extent of the ‘blunting’ or ‘additive’ 

responses in a network and the inhibitory properties of the network it becomes apparent 

that there is no correlation between these variables as determined by a two-tail 

Spearman correlation analysis (Figure 4.8). This also holds true when both inhibitory 

properties are combined into a single metric (data not shown) and for when the 

‘blunting’ magnitude of individual variables are plotted against the strength or distance 

of the nearest inhibitory reaction in the network (Figure 4.9). Thus, the activation of an 

inhibitory reaction is required for ‘blunting’ to occur but the number or collective 

strength of negative interactions in the network will not provide an indication of the 

extent of the loss of pathway responsiveness. As evidenced in the hex plots of Figures 

4.8 and 4.9, there is a wide value range of network inhibitory properties that allow for a 

wide range of blunting-extents to occur. This reinforces the observation that a blunting 

phenomenon arising from a constitutive signal is a well-supported behaviour within the 

network “possibility-space”. The plots for networks displaying an ‘additive’ behaviour 

again reveal the overrepresentation of models where inhibitory interactions are not 

activated, with no cases of this feature being observed for models displaying a 

‘blunting’ behaviour (Figure 4.8).  

 

 

 

 

 

 

Figure 4.8. (next page) Relationships between the extent of a blunting/additive effect 

and the inhibitory properties of the network.  Percentage inhibitory interactions refers 

to the number of inhibitory interactions in the portion of the network that was activated 

by a stimulus. Inhibitory interaction strength refers to the second-order rate constant of 

the reaction between the inhibitor and its target. The magnitude of an additive/blunting 

effect respectively corresponds to the percentage increase/decrease in response peak 

magnitude in the presence of a constitutive signal.   
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Figure 4.9. Relationship between the change in response magnitude displayed by a 

given variable and the inhibitory properties (distance and strength) of the nearest 

inhibitory reaction. Hex plots show ‘blunting’ magnitude data for 18229 variables 

derived from 3429 networks and additive data  for 17907 variables derived from 4685 

networks. Interaction ‘strength’ refers to the reaction rate constant. Network distance 

refers to the number of reactions (nodes) between two given variables.  
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A comparison of the collective inhibitory properties between models that display a 

‘blunting’ behaviour and those that display an ‘additive’ behaviour reveals that models 

that display a ‘blunting’ behaviour consistently have a slightly higher median inhibitory 

strength across the network than those displaying an ‘additive’ behaviour, whilst the 

reverse situation is true regarding the percentage inhibitory reactions (Figure 4.10). The 

differences in these inhibitory metrics between networks that display both types of 

behaviour seems too small to use any of them as an a priori predictor of the effects of a 

constitutive signal on a given biological network. At the level of individual variables, 

however,  molecules that display a ‘blunted’ response are more likely to be found closer 

to an inhibitory reaction that is also more likely to be stronger compared to if the 

variable displays an ‘additive’ response (Figure 4.11). It is thus apparent that the 

presence of an inhibitory reaction is the sole and sufficient requirement for a wide range 

of networks to be potentially able to display a reduced response to an acute stimulus 

when in the presence of a constitutive signal. 
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Figure 4.10. Comparison of network properties between models displaying a ‘blunting’ 

behaviour and models displaying an ‘additive’ behaviour in the presence of a 

constitutive signal using the dataset cropped for networks displaying less than 20 

activated reactions. Inhibitory interaction strength refers to the second-order rate 

constant of the reaction between the inhibitor and its target. Percentage inhibitory 

interactions refers to the number of inhibitory interactions in the portion of the network 

that was activated by a stimulus. PFL= Positive feedback loop defined as a topology 

where the product of a given reaction acts as a substrate for the reaction that 

synthesises its substrate. Error bars correspond to standard deviation of the data. N=3. 
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Figure 4.11. Distributions for the strength and distance of the nearest inhibitory 

reaction to variables displaying a ‘blunting’ or ‘additive’ effect. Blunting data 

displayed for 18229 variables derived from 3429 networks. Additive data displayed for 

17907 variables derived from 4685 networks. Interaction ‘strength’ refers to the 

reaction rate constant. Network distance refers to the number of reactions (nodes) 

between two given variables.  
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4.2.4 Examining the tendency of networks to lose responsiveness under 

constitutive signals 

 

The random network generation algorithm can allow for the systematic testing of in 

silico interventions that aim to restore system responsiveness. This involves simulating 

a series of network perturbations on those randomly generated models that are identified 

to display a ‘blunting’ behaviour. But what interventions should be systematically 

tested? The generated results suggest the blunting phenomenon is a network behaviour 

that cannot be solely mapped to inhibitory properties and that is indeed affected by 

systemic features like network branching or the number of degradation reactions. 

Indeed, it is not even clear from the data what would be required to transition from a 

‘blunted’ response to an ‘additive’ response.  

Other than the trivial observation of lowering the basal level of the constitutive signal to 

rescue the ‘blunting’ effect, it is of interest to explore the possibility of whether 

introducing a second constitutive signal into the network could potentially rescue 

network responsiveness. In an ideal setting, the signalling cascade that is experimentally 

seen to be unresponsive would be examined for crosstalk with other secondary 

pathways in order to rationally select a secondary pathway component to 

inhibit/overexpress or an appropriate secondary signal input to feed in in order to 

attempt to increase the responsiveness of the target pathway.  

The obvious caveat of this approach is that introducing another constitutive signal into 

the network could rescue some parts of the network from a lack in responsiveness but 

decrease the responsiveness in other parts. To examine the proportional effects that a 

second constitutive signal might have on variables displaying ‘blunting’ and ‘additive’ 

effects within networks, the algorithm was run under standard settings and programmed 

to introduce a second constitutive signal after the variables displaying such behaviours 

had been located. A second simulation runs at this point where an acute signal pulse of 

the same magnitude is used to stimulate the network under the constitutive presence of 

the same signal and of a different signal (See Figure 4.12c). 
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Figure 4.12. The three systematic network interventions used to examine the occurrence 

of ‘additive’ and ‘blunting’ effects within the network. a) Examining changes in 

response magnitude to an acute signal under the presence of a constitutive basal 

elevation of the same signal. b) Examining changes in response magnitude to an acute 

signal under the presence of a constitutive basal elevation of a different signal. c) 

Examining changes in response magnitude to an acute signal under the presence of a 

constitutive basal elevation of both the same and a different signal. Vertical arrow = 

acute stimulus, horizontal arrow = constitutive signal. 
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The simulation of a million models yielded 1424781 molecules displaying an ‘additive’ 

effect and 94179 molecules displaying a ‘blunting’ effect. Whilst 42.3% of the variables 

displaying an ‘additive’ effect displayed an increased activation magnitude when a 

second constitutive signal was introduced, only 10.1% had an increased activation 

above 0.1 arbitrary units (minimum peak magnitude for analysis is 1 a.u). In the case of 

variables displaying a ‘blunting’ effect , whilst 26.8% of the variables displaying an 

‘blunting’ effect displayed an increased activation magnitude when a second 

constitutive signal was introduced, only 3.5% had an increased activation above 0.1 a.u. 

These statistics contrast with the 22.0% and 28.3% percentage of ‘additive’ and 

‘blunted’ variables (respectively) that displayed at least a 0.1 reduction in activation 

magnitude in the presence of a second constitutive signal. The distribution of values for 

the change in peak magnitude upon the introduction of a second constitutive signal 

illustrates how such a perturbation tends to favour a further reduction in responsiveness 

in the network rather than a rescuing effect (Figure 4.13).  

When the data are pooled together and normalised by the relative occurrence of both the 

‘additive’ and ‘blunting’ effects, the tendency of the introduction of a second 

constitutive signal to further exacerbate the loss in network responsiveness can be 

appreciated (Figure 4.14). Almost two thirds of all the variables examined display a 

reduced responsiveness as a result of the introduction of a second constitutive signal. 

Only 1.1% of variables that displayed a ‘blunting’ effect transitioned into an ‘additive’ 

effect upon the introduction of a second constitutive signal. This is in contrast to the 

6.8% of variables that displayed an ‘additive’ effect and then transitioned into a 

‘blunting’ effect upon the introduction of a second constitutive signal. 

An interesting observation arose when the algorithm was run under standard settings but 

with only one constitutive signal being introduced into the network through a different 

node to the acute stimulus as illustrated in Figure 4.12b. Out of a million models 

simulated under these settings, 7.9% displayed a ‘blunted’ response and only 2.1% 

displayed an ‘additive’ response. This is a stark contrast to the 0.45% and 30.5% 

respective occurrence of these effects when the constitutive signal is of the same nature 

of the acute signal (Figure 4.7). This seems to suggest that a loss in pathway 

responsiveness is more likely to occur if the constitutive signal is feeding into the 

pathway through crosstalk interactions than if feeds in through the same sensor that the 

acute signal is stimulating through. As opposed to constitutive signals of the same 
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nature of the signal, those that enter the pathway through crosstalk interactions are more 

likely to promote a ‘blunting’ effect than an ‘additive’ effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Distributions of changes in peak response magnitude in response to a 

second constitutive signal feeding into the network for variables displaying an 

‘additive’ effect (a) and variables displaying a ‘blunting’ effect (b). N = 1424781 

molecules displaying an ‘additive’ effect and N = 94179 molecules displaying a 

‘blunting’ effect.  



143 

 

Worsened Blunting

Lessened Blunting

Increased Additive

Lessened Additive

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Changes in the response magnitude of variables displaying an ‘additive’ 

or ‘blunting’ behaviour as a result of the introduction of a second constitutive signal 

into the network. 
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4.3  Discussion 

 

A fundamental question in biology asks how structure relates to function. At the 

molecular scale, a substantial amount of research has been undertaken to establish 

structure-function relationships in biological networks (Barabasi and Oltvai, 2004, Ma 

and Gao, 2012, Mitra et al., 2013) . One of the most successful examples of such efforts 

was the identification of network motifs (Milo et al., 2002). Network motifs are small 

network sub-structures seen to be overrepresented in biological networks and are 

associated with a set of dynamic properties that serve specific biological functions 

(Alon, 2007). Functional associations in biological networks has furthermore been 

extended to Coupled Motif Structures (CMSs), which have been analysed in relation to 

biological conditions such as cancer (Hsieh et al., 2015). Whilst the statistical analysis 

of the over- or under-representation of structures within a network will identify relevant 

structures, the mapping of dynamic data to such structures is required to capture 

function (Beber et al., 2012).  

The a priori investigation of whether a given structure supports a target function 

requires the consideration of how much of the possible parameter space supports such 

function. Furthermore, depending on the specificity of the structure being investigated, 

different structural arrangements between the network elements will need to be 

considered. This results in a vast ‘possibility space’ (search space) to explore. Ma et al. 

simulated 16038 three-node circuits, sampling 10000 parameter combinations for each, 

effectively exploring 1.6x108 combinations to investigate which circuit structures are 

most likely to display an adaptive behaviour (Ma et al., 2009). Faucon et al. also 

investigated functional properties of three-node motifs but narrowed down the search 

space by considering only fully connected triad (FCT) structures (Faucon et al., 2014). 

The topological equivalencies arising from the symmetry of FCTs allowed for the 

further narrowing of the search space in the look for circuits that produced multi-

stability. The authors tested  421,875 parameter sets for each of the 104 resulting 

structures, effectively requiring ~4.4x107 simulations.  

Such high-throughput computation required to establish circuit-function maps in three-

node circuits exemplifies the size of the search space where a function of interest can 

exist in. The so-called enumeration method used by Ma et al. (2009) is a brute force 

approach involving the exploration of all possible network structures for a large set of 

parameters (Xi and Ouyang, 2016). However, such an approach is only feasible for 
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small network motifs since the consideration of all possible structures of a three node 

network already involves 39 combinations. For a four-node network this number 

ascends to 316  
, which has been estimated would take current computational systems 10 

years to analyse (Xi and Ouyang, 2016).  

Such figures serve as an indication of the size of the search space that needs to be 

explored. For large networks of at least 50 nodes, the enumeration method is simply not 

feasible. Heuristic methods like evolutionary algorithms have been developed in order 

to sample possible models from the high-dimensional search space and navigate 

towards functional properties of interest through model selection criteria (Warmflash et 

al., 2012). The adopted methodology in this work is heuristic in the sense that it makes 

use of random sampling in an attempt to capture a somewhat unbiased sample of the 

search space. It further makes use of a selection criterion to analyse the networks that 

display a minimum number of activation profiles of a minimum magnitude in response 

to an acute signal. However, the developed algorithm contrasts with evolutionary 

algorithms in that it stochastically samples the search space instead of stochastically 

navigating it through local search (Warmflash et al., 2012). 

The consideration of 106 models per run of the algorithm is indeed a small sample of a 

search space encompassing both topological and parametric combinations. The use of 

one randomly-generated parameter set per randomly-generated model means that large 

numbers of model structures that could display the properties of interest would be 

discarded. Despite this, it is a surprisingly high frequency that ~0.5% of the generated 

structures displayed a ‘blunting’ behaviour when the constitutive signal was of the same 

nature as the acute signal, with this number ascending to ~8% when the constitutive 

signal was of a different nature to the acute signal. These results being under the 

algorithm configuration settings used. The substantially higher frequency of models 

displaying a ‘blunting’ behaviour when the constitutive signal feeds into the network as 

crosstalk suggests that although cross-talk may be a mechanism for complex signal 

processing (Hart et al., 2013) and robust signal transmission (Uda et al., 2013), it may 

be a weak-point in signalling processing when a signal is constantly present in the 

cellular environment. 

The fact that a substantial number of the models displaying a ‘blunting’ effect had a loss 

in peak response of over 20% (Figure 4.2) emphasises that such an effect by constitutive 

signals is not only common, but should be experimentally-noticeable. The introduction 

of a second constitutive signal is more likely to further reduce the responsiveness of 
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variables in the networks to an acute signal but more likely to do so if the network 

already displays a ‘blunting’ behaviour (Figure 4.13). This observation emphasises how 

networks seem to be prone to lose responsiveness in the presence of a constitutive 

signal, but with some network structures being more prone than others. 

Whilst it is a clear outcome of the undertaken exploration of the ‘search space’ that 

networks seem to be susceptible to losing responsiveness in the presence of a 

constitutive signal, no relationship was found between inhibitory properties of the 

network and the occurrence or extent of loss in responsiveness. This is in agreement 

with previous observations on the robustness of the ‘blunting’ observation against 

variations in model topology and inhibition parameters (Section 3). Indeed, the results 

obtained show how a wide range of ‘blunting’ magnitudes and occurrences are 

supported by a wide range of network inhibitory properties encompassing the number of 

inhibitory reactions in the network, their median strength and the maximum inhibitory 

strength present (Figure 4.8). 

A flaw with the approach of trying to establish correlations between network-wide 

inhibitory properties and the presence or extent of the ‘blunting’ effect is the arbitrary 

definition of what constitutes inhibition. A local definition for inhibition was adopted, 

where an inhibitory reaction is one that reduces the availability of a reaction substrate 

though a second order reaction. The caveat of this definition is apparent when one 

considers that a double inhibition is in effect an activatory mechanism relative to the 

most downstream molecule involved. Thus, a theoretical arrangement of the network 

structure could mean that the network has more inhibitory reactions than another one, 

but yet be more excitable by an acute stimulus. Such a consideration could have 

dissipated any correlations between inhibitory strength and inhibitory presence in the 

network and any observed ‘blunting’ effect. 

However, when molecules are considered individually within the networks, still no 

correlation is seen between the distance or strength of the nearest inhibitory reaction and 

the loss in responsiveness observed in the presence of a constitutive signal (Figure 

4.11). Interestingly, such metrics of the distance and strength of the nearest inhibitory 

interaction were the only ones that allowed a discernment between variables displaying 

a ‘blunting’ effect and those displaying an ‘additive’ effect. This hints towards the 

importance of negative regulators in stabilising the loss in responsiveness. This 

importance is further confirmed by the observation that there are no retrieved instances 
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of models displaying a reduced responsiveness when there are no inhibitory interactions 

being activated by the acute signal (Figures 4.3 and 4.4). 

Because of the relative nature of what constitutes inhibition, i.e. what is inhibitory for 

one variable can be activatory for another, it could be expected that feeding a second 

constitutive signal through the network should rescue some of the responsiveness of 

half of the variables and worsen the other half. However there seems to be a clear bias 

towards the worsening of the effect (Figure 4.14). When taken together with the high 

occurrence of ‘blunting’ in the generated networks, especially when the constitutive 

signal feeds into the network as crosstalk, it seems that biological networks that 

function to relay signals tend to be prone to lose their responsiveness in the presence of 

constitutive signals.  

This last observation is perhaps not entirely surprising considering that the requisite for 

a biological system to return to its pre-stimulation state in the presence of a continued 

signal is that it displays perfect adaptive behaviour (Shankar et al., 2015). Adaptive 

behaviour allows for the sensing of fold-changes, rather than absolute changes, in the 

level of the signal (Goentoro et al., 2009). Although perfect adaptive behaviour has been 

reported for a number of biological systems (Shankar et al., 2015, Ferrell, 2016), the 

behaviour is usually supported by just a portion of the parameter space (Chang and 

Levchenko, 2013, Ferrell, 2016) . This is exemplified by the minority (365 out of 

16038) of three-node structures that are able to display an adaptive behaviour (Ma et al., 

2009).  

Adaptive behaviour has so far been mapped to a few basic interaction structures mainly 

including incoherent feedforward loops (IFFLs) and negative feedback loops (NFLs) 

(Ferrell, 2016). However, some complex eukaryotic pathways have been indicated to be 

able to display adaptive behaviour (Cohen-Saidon et al., 2009, Lee et al., 2014, Thurley 

et al., 2014, Thurley et al., 2015, Frick et al., 2017). This suggests that even complex 

pathways might be able to be abstracted into simplified structures that concisely capture 

the network behaviour at least under certain circumstances. The study of perfect 

adaptation in E.coli chemotaxis is the prime example of this (Tu, 2013). Perfect 

adaptation is not established as a property of many biological systems. The generality of 

perfect adaptation needs to be known in order to appreciate the vulnerability of 

biological networks to constitutive signals. Another possibility is that initially perfectly 

adaptive systems could lose such ability during the ageing process and thus become 

vulnerable to the constitutive signals that may arise. 
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The inability to locate structure-function relationships in the exploration of the search 

space where networks display a ‘blunting’ behaviour raises the issue of whether the 

adopted methodology was a suitable search strategy. The networks generated by the 

algorithm follow mass action kinetics where most reactions are first-order. This 

effectively restricts system dynamics to the relaying of acute peaks. The representation 

of a biological system as mostly behaving like a signalling cascade does not capture the 

richness and complexity of behaviour commonly seen in biological systems. This 

simplicity results from a parsimonious exercise of model definition aimed to facilitate 

the back-tracking of the ‘blunting’ behaviour to network structure without the 

confounding effects of more complex mathematical functions. 

However, this level of simplicity means that any claim made on the generality of the 

obtained results is thus questionable. For example, such dynamic simplicity exclusively 

examines negative feedback as displaying an analogue behaviour in relation to an input 

signal. This means that switch-like (digital) mechanisms of negative feedback are not 

considered. The latter would not necessarily promote a state of imperfect adaptation 

under conditions of a constant input signal. 

The generation of random networks is an unbiased method for systematically assessing 

the generality of an observation and to look for recurrent properties that might be 

associated with the function the networks are being selected for. Indeed, it has been 

argued to be a useful method for exploring potential structure-function relationships in 

biological systems (Aho et al., 2007, Bois and Gayraud, 2015). However, an argument 

against this strategy of search space exploration is that biological networks do not 

display random architectures (Barabasi and Oltvai, 2004). It could be argued that since 

the ‘blunting’ effect is observed in random structures then such a phenomenon could 

transcend the case of biological networks alone and thus their use is a more-

encompassing testing for generality. In any case, it is worth noting that the networks 

generated by the algorithm are pseudo-random in the sense that a number of rules are 

applied that aim to: 

i) Retain biological realism of the network. For instance, positive feedback 

loops need to have an inhibitory reaction regulating the loop. 

 

ii) Allow a directed exploration of the search space. Through the random or 

non-random user-defined assignation of the number of degradation reactions, 

competing reactions, inhibitory reactions, positive feedback loops… 
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The algorithm selection criterion of networks based on their display of suitable 

activation properties would be expected to introduce a departure from purely random 

architectures. Indeed, the distribution of the node degrees across the simulated models 

reveals they do not correspond to those of a random network (See Figure 2.15 in 

Materials and Methods). This corresponds to a scale-free degree distribution reflected 

by most nodes having a low degree with a few nodes with a higher number of degrees, 

referred to as hubs (Jeong et al., 2000, Barabasi and Oltvai, 2004).  

The random number generators employed by the algorithm sample with a uniform 

probability in order to provide an unbiased generation of models. When a node is 

randomly chosen as an input for the acute signal, the signal will feed through part of the 

network, but rarely the entire network. This is why the distributions seen in Figures 4.3 

to 4.5 tend towards a Gaussian distribution. Within a large network, an acute stimulus is 

expected to be less likely to stimulate just a few of the constituent nodes or most of the 

constituent nodes, whilst the stimulation of an intermediate number of nodes is more 

likely. However, a clear bias is seen within the algorithm that favours the activation of a 

smaller subset of nodes. The observation that such bias is seen in all models generated 

(Figure 4.5) indicates it originates from the algorithm workflow, although the origin 

could not be located. However, such bias seems to not change the observations derived 

from the data (Figures 4.6 and 4.7).  

The fact that such bias in our algorithm was most readily apparent in models displaying 

a ‘blunting’ behaviour is suggestive of the increased occurrence of this phenomenon in 

smaller networks. This idea is reinforced by the increase in the retrieval of models 

displaying a ‘blunting’ behaviour when minimum network size was decreased to 20 

reactions (Figure 4.6). Despite having an equal value for the median number of 

activated reactions, models displaying a ‘blunting’ behaviour had a median path length 

between the altered variable and the nearest inhibition reaction that was half of the that 

of models displaying ‘additive ‘behaviours. Such observations seem to indicate that the 

‘blunting’ effect is more likely to be relevant to small biological sub-networks or 

circuits than as a whole-network effect. This could be because within a larger network 

there may be more opportunities for compensatory effects that might dilute out its 

occurrence.  

It is of interest to note that the only network generation parameter that reduced the 

frequency of models displaying a ‘blunting’ effect was the number of degradation 

reactions (Figures 4.6 and 4.7). The presented results suggest that increasing network-
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wide turnover would dissipate any ‘blunting’ effects stabilised by a constitutive signal. 

This possibility seems in line with the pro-longevity effects of increasing macro-

autophagy activity in a number of model organisms (Martinez-Lopez et al., 2015). It 

could be argued that under conditions of increased degradation, fewer variables reach 

stimulation magnitudes over the threshold required by the algorithm. If this held true 

then increased degradation would be expected to also reflect as a decrease in the number 

of models retrieved to display ‘additive’ behaviour, which it does not to the same extent 

(Figures 4.6 and 4.7).  

A striking observation in this analysis was the rarity of occurrence of models which 

displayed instances of both ‘additive’ and ‘blunting’ behaviour. Such occurrences where 

counted but discarded from further analysis in order to ease the discernment between 

network structure and ‘blunting’ occurrence and magnitude. However, such low 

occurrence suggests that although the generated network structures are large and 

complex, the network portions that are activated by the acute stimulus may not 

necessarily be so. This possibility reinforces the idea that the generated network 

structures are more relatable to signal-relaying cascades that follow simple kinetics than 

to more complex homeostatic networks in the cell. 

 

4.4  Concluding remarks 

 

The random sampling of a model ‘search space’ encompassing both topological and 

parametric combinations has revealed that the loss in network responsiveness as a result 

of a constitutive signal can occur in a wide range of networks. No association was 

established between the strength of the ‘blunting’ effect and the underlying inhibitory 

properties but its occurrence might be favoured in smaller biological systems rather than 

large-scale networks. Whilst concerns remain over the methodological strategy adopted, 

namely the generation of network structures that follow simple mass action kinetics, this 

work reinforces previous results on the potential ability of a wide range of biological 

systems to display a loss in responsiveness in the presence of constitutive signals. 
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Chapter 5  

 

Sustained oxidative stress treatments do not reduce the 

activation response of the Nrf2 signalling pathway to an 

acute redox stimulus in C2C12 myotubes 

 

5.1  Introduction 

 

The main predictions from the theoretical exploration carried out in this work can be 

summarised as follows. Firstly, that a biological system exposed to a constitutive signal 

for a sufficiently long period of time can become less responsive to a posterior acute 

addition of the same signal. Secondly, that consequential to such exposure to a 

constitutive signal, there will be a constitutive elevation in the basal levels of negative 

regulator molecules which will actively promote the loss in system responsiveness. The 

next step is to test these predictions experimentally.  

Redox signalling underlies a number of beneficial responses triggered by skeletal 

muscle during a period of exercise (Cobley et al., 2015, Jackson, 2015, Ji, 2015). Aged 

skeletal muscle is associated with a state of damage and oxidative stress where the 

protective responses triggered by an exercise stimulus are blunted (Cobley et al., 2015, 

Jackson, 2015, Ji, 2015). However, it is mechanistically unclear if oxidative stress is the 

direct causative agent of the impaired redox signalling (Jackson, 2015). The elucidation 

of the nature of this signalling dysfunctionality in skeletal muscle is a step towards 

improving the efficacy of exercise as a lifestyle intervention for the elderly.  

Redox signalling in aged skeletal muscle thus seems an intuitive physiological context 

to investigate the potential occurrence of a reduced activatory response stemming from 

the presence of a constitutive signal (a.k.a. oxidative stress). With the aim to circumvent 

the impractical use of skeletal muscle biopsies to explore this redox signalling 

dysfunctionality, we attempt to establish an in vitro model that reproduces the stressed 

conditions observed in aged skeletal muscle. Such an in vitro model consists on the use 

of the C2C12 mouse myotube cell line.  

There are a variety of ways in which oxidative stress may be induced in vitro. Perhaps 

the most popular is to expose cells to an extracellular concentration (usually ≥100µM) 

of H2O2. This is an acute treatment, since H2O2 scavenging by the cell culture will 
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reduce the extracellular levels of H2O2 quite rapidly (Gulden et al., 2010, Kaczara et al., 

2010, Wagner et al., 2013) and is usually referred to as a ‘bolus’ treatment. Another 

approach that has been used in the past is to treat cells with paraquat. Paraquat is a 

molecule that induces oxidative stress by producing superoxide molecules, which will 

also further form H2O2 and hydroxyl radicals, whilst utilising reducing equivalent 

molecule NADPH (Dou et al., 2016). Cell exposure to ionizing radiation has also been 

used to indirectly induce oxidative stress (Passos et al., 2010, Azzam et al., 2012, 

Szumiel, 2015). 

Hypoxia refers to the sustained incubation of cells under low oxygen conditions (<5%) 

and has been shown to be able to increase ROS production in some tissues including, 

but not limited to, heart and muscle tissue (Turrens, 2003, Clanton, 2005,  Bell et al., 

2007, Clanton, 2007, Klimova et al., 2009, Cervellati et al., 2014). Hyperoxia, the 

sustained incubation of cells under high oxygen conditions (>20%), is well established 

to result in increased ROS production in a variety of tissues (von Zglinicki et al., 1995, 

Turrens, 2003, Flandin et al., 2005, Papaiahgari et al., 2006, Klimova et al., 2009, Baez 

and Shiloach, 2014). 

More recently, an enzymatic system was developed which involves the mixing of 

specific unit stoichiometries of glucose oxidase and catalase (GOX/CAT) enzymes in 

the cell culture medium (Mueller et al., 2009). This enzymatic system will use glucose 

and oxygen in the media to produce a steady state level of H2O2 (ssH2O2) for 24hr. Such 

system allows a controlled and sustained exposure of cells to H2O2 which is not possible 

with acute bolus treatments. Consequently, the cellular responses triggered by both 

types of H2O2 treatments are significantly different (Chandra, 2009, Miguel et al., 2009, 

Covas et al., 2013, Marinho et al., 2013, Sobotta et al., 2013). 

The somewhat abstract definition of what constitutes oxidative stress allows for a 

variety of possibilities regarding the nature of the treatment that can be used to induce 

oxidative stress. Should the stress be reflected by a certain response magnitude of 

stress-sensitive proteins? Should the exposure to the stress have a minimum duration? 

Should it be a specific, mechanistically-defined stress or a non-specific stress? Should it 

cause a minimal amount of cell death? Even if there was a standardization of what 

constitutes oxidative stress, it would still be arbitrary and perhaps not very useful 

considering the cell-specificity of stress responses. All of the aforementioned 

experimental strategies can induce ROS production but not in the same way, with the 



153 

 

same specificity or to the same extent. Indeed, the exact nature of the stress observed in 

skeletal muscle remains undefined (Jackson, 2015). 

In this work the effects of oxidative stress on redox signalling through the Nrf2 

signalling pathway is examined via the use of three stress regimes. Namely, a steady 

state H2O2 treatment for 24hrs, incubation under hyperoxic (40% oxygen) conditions for 

a week and x-ray irradiation. These three stress regimes aim to model different 

scenarios on the nature of the stress that may be present in aged skeletal muscle. The 

steady state H2O2 treatment aims to model a stress caused by a mechanistically-defined 

interaction between elevated levels of H2O2 and target molecular processes. Hyperoxic 

incubation aims to model a longer-term, sustained exposure to high oxygen conditions 

and allow for more systemic changes to occur within cells. X-ray irradiation aims to 

model a state of generic, non-specific damage within cells. 

With these defined stress regimes we model a “standard” redox signalling event to be 

the response produced by a 50µM H2O2 bolus treatment. Thus, we employ extracellular 

H2O2 boluses to investigate potential effects that the stress regimes may have on the 

ability of such boluses to trigger a redox response. However, this method has the caveat 

that although it examines changes in redox signal transduction, it overlooks the cells 

ability to generate the redox signal in the first place. In order to account for potential 

interferences of the stress regimes on redox signal generation we use a 0.5µM Urotensin 

II treatment as a proxy. This is because there are many potential sites for ROS 

production in skeletal muscle during a period of exercise (Jackson, 2015), however, 

recent evidence points towards NADPH oxidases being the major source of ROS 

production during muscle contraction (Sakellariou et al., 2014).  Urotensin II has been 

shown to increase ROS levels through the induction of NADPH oxidases (Djordjevic et 

al., 2005, Yu et al., 2015) including in the C2C12 mouse skeletal muscle cell line (Wang 

et al., 2013). 

The question remains as to how to optimise the ROS treatments so the experimental 

setup remains physiologically relevant and not arbitrarily high. There is evidence in the 

literature that ROS levels at rest in aged skeletal muscle roughly double those measured 

in young skeletal muscle as indicated by direct ROS measurements (Vasilaki et al., 

2006a, Miller et al., 2012, Palomero et al., 2013)  and by markers of protein damage 

(McDonagh et al., 2014b). Furthermore, it seems that the magnitude of ROS generation 

in young skeletal muscle during a period of contractions is 0-50% greater than the ROS 

levels measured at rest in aged skeletal muscle (Vasilaki et al., 2006a, Palomero et al., 
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2013) and 2-3 times higher than basal ROS levels in resting young muscle (Close et al., 

2005, Vasilaki et al., 2006a, Palomero et al., 2013, Pearson et al., 2014). These relative 

magnitudes can be used as a guideline to ensure a certain degree of proportionality in 

the choice of ssH2O2 concentrations relative to the bolus H2O2 concentrations (Figure 

5.1). 

 

5.2  Results 

 

5.2.1 Sustained oxidative stress promotes sustained peroxiredoxin 

hyperoxidation 

 

It is well established that different cell types can have different susceptibilities to the 

same stress regime. It is thus of interest to examine whether the chosen stress conditions 

induced changes in a molecular marker sensitive to intracellular oxidant levels. Western 

blot measurements were performed on the levels of hyperoxidized peroxiredoxin 

(PrxSO3) levels in C2C12 myotubes subjected to each different stress condition (Figure 

5.2). All pre-conditionings induced a statistically-significant increase in the levels of 

PrxSO3 with respect to non-conditioned controls. The 24hr treatment with a ssH2O2 

production rate of 0.1µM/s resulted in a 5 fold increase in PrxSO3 levels with respect to 

controls. Hyperoxia and irradiation treatments both resulted in a roughly two-fold 

increase in PrxSO3 levels. Such changes in the oxidative marker indicate the presence of 

increased levels of intracellular oxidants in C2C12 myotubes exposed to all pre-

conditionings. Perhaps unsurprisingly, the 24hr ssH2O2 treatment resulted in 

significantly higher levels of PrxSO3 than the other two stress regimes. This could be 

due to the conditioning being shorter term or more likely due to the fact that it is the 

only stress regime that involves the direct and controlled generation of ROS. Note that 

no stress regime resulted in a significant increase in cell death (data not shown). 
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Figure 5.1. Characterisation of Nrf2 activation by the GOX/CAT enzymatic system. a) 

Comparison of Nrf2 activation by an acute H2O2 bolus and by 24hr treatment with 

different ssH2O2 concentrations as produced by the GOX/CAT enzymatic system (N=4). 

B=Bolus=50µM H2O2 treatment collected at 60min. # = ssH2O2 production rate 

(µM/s). b) Time course profile of Nrf2 activation by 0.1µM/s ssH2O2 treatment for 

24hrs (N=4). AU= Arbitrary Units, # = hours. C=Control, Error bars = standard 

deviation. * = p<0.05, **=p<0.01, ***=p<0.001. 
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Figure 5.2. All pre-conditionings induce peroxiredoxin hyperoxidation (N=6), C = 

Control, # = ssH2O2 production rate (µM/s), Hyp = 40% Hyperoxia, Irr = X-ray 

irradiation at 20G.  * = p<0.05, **=p<0.01, ***=p<0.001.. Error bars = standard 

deviation. (AU) = Arbitrary Units. 

 

5.2.2 Sustained oxidative stress does not result in reduced Nrf2 activation by 

Urotensin II  

 

In order to examine whether the elevated oxidant levels interfered with redox signal 

generation within the cells they were treated with 0.5µM of Urotensin II (UII) after they 

had been subjected to each stress regime. The lowest ssH2O2 treatment used in the 24hr 

pre-conditioning induced a similar level of Nrf2 activation as the UII treatment alone 

(Figure 5.3a). Interestingly, there was no additive effect on Nrf2 activation when cells 

preconditioned with higher rates of ssH2O2 were further treated with UII.  

In stark contrast, myotubes pre-conditioned under hyperoxic conditions or irradiation 

displayed a statistically significant increase in Nrf2 activation after treatment with UII 

relative to non-preconditioned cells treated with UII (Figure 5.3b&c). For hyperoxia-

conditioned cells, UII treatment caused a three-fold higher increase in Nrf2 than that 

induced by UII treatment alone (Figure 5.3b). This increase was four fold-higher in 

irradiated cells treated with UII than in non-irradiated cells treated with UII (Figure 

5.3c). Note that neither hyperoxia nor irradiation induced an increase in nuclear Nrf2 

levels at rest (Figure 5.5a&b).  A possibility immediately arises from this data that the 
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longer term stress regimes of hyperoxia and irradiation may result in increased cellular 

levels of NADPH oxidases at rest in C2C12 myotubes, although this was not tested for. 
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Figure 5.3. (previous page). Nuclear Nrf2 levels in response to Urotensin II treatment. 

a) Nrf2 activation in ssH2O2 preconditioned cells treated with urotensin II (N=4). # = 

ssH2O2 production rate (µM/s). b) Nrf2 activation by urotensin II in cells subjected to 

Hyperoxia (N=5). # = biological repeats. c) Nrf2 activation by urotensin II in 

irradiated cells (N=5). # = biological repeats. C= Control, UII = 0.5µM urotensin II 

collected after 60min., * = p<0.05, **=p<0.01, ***=p<0.001. Error bars = standard 

deviation. (AU) = Arbitrary Units. 

 

5.2.3 Sustained H2O2 treatment, but not X-ray irradiation or hyperoxia, alters 

Nrf2 activation dynamics to an acute H2O2 stimulus 

 

To explore whether any of the stress pre-conditionings could interfere with redox signal 

transduction, time course measurements were taken of nuclear Nrf2 levels after a bolus 

H2O2 treatment. Firstly, the activation magnitude of the Nrf2 response was examined in 

cells preconditioned at different ssH2O2 concentrations. Interestingly, when myotubes 

are pre-conditioned for 24hrs in 0.025µM/s ssH2O2 and a subsequent 50µM H2O2 bolus 

is added, an additive effect in Nrf2 activation is observed at the 60min time point 

(Figure 5.4a). This observation seems to imply that the lack of additive effect of UII 

treatment on Nrf2 signalling following the same preconditioning could be the result of a 

reduced ability of UII to trigger a redox signal under such conditions. However, when 

ssH2O2 pre-conditioning rates are increased, the additive effect gradually fades away 

(Figure 5.4a). This could well suggest a saturation point of the Nrf2 pathway or 

potentially the activation of a negative feedback loop which dampens down the 

response. To further confirm this observation, the same ssH2O2 pre-conditionings were 

repeated but with a subsequent doubling of the concentration of the H2O2 bolus to 

100µM. A disappearing additive effect at higher concentrations of ssH2O2 was still 

observed (Figure 5.4b). 

To further examine whether the ssH2O2 stress regimes could be affecting the Nrf2 

response duration, time course measurements were performed following the treatment 

of ssH2O2-preconditioned cells with a 50µM H2O2 bolus. The only significant 

difference between the Nrf2 time courses obtained was a shift in the maximum peak of 

the response from 30min in non-preconditioned cells (Figure 5.4c) and 0.025µM/s 

ssH2O2 preconditioned cells (Figure 5.4d) to 60min in 0.1µM/s ssH2O2 preconditioned 

cells (Figure 5.4e). Otherwise, all responses were roughly half-maximal by 90min and 
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back to basal after 240min. The time courses generated for ssH2O2 –preconditioned cells 

are lower in magnitude than those produced for non-preconditioned cells.  Because no 

reduction in Nrf2 activation levels at the 60min time point was observed in 

preconditioned cells (Figure 5.4a), which is very apparent if the AU quantifications 

from the time courses are compared, this magnitude difference can be attributed to inter-

experiment variability.  

When time course measurements were performed on hyperoxic or irradiated cells 

treated with a subsequent 50µM H2O2 bolus, no difference in the Nrf2 activation 

profiles was observed compared to those of non-preconditioned cells (Figure 5.5a&b). 

 

 

 

 

 

 

 

 

Figure 5.4 (next page). Measuring the effect of 24hr ssH2O2 treatments on the 

magnitude and duration of Nrf2 activation by an H2O2 bolus. a) Nrf2 activation by 

bolus treatment on cells preconditioned at different ssH2O2 production rates (N=4). 

B=Bolus=50μM H2O2 collected after 60min,  # = ssH2O2 production rate (μM/s). b) 

Nrf2 activation by a doubly concentrated bolus treatment on cells preconditioned at 

different ssH2O2 production rates (N=4). B=Bolus=100μM H2O2 collected after 60min, 

# = ssH2O2 production rate (μM/s). c) Time course of Nrf2 activation by a 50μM H2O2 

bolus in non-preconditioned cells (N=8). # = minutes. d) Time course of Nrf2 activation 

by a 50μM H2O2 bolus in 0.025μM/s ssH2O2 preconditioned cells (N=4). 0.025 = 

ssH2O2 production rate (μM/s), # = minutes. e) Time course of Nrf2 activation by a 

50μM H2O2 bolus in 0.1μM/s ssH2O2 preconditioned cells (N=4). 0.1 = ssH2O2 

production rate (μM/s), # = minutes. AU= Arbitrary Units, C= Control, Error bars = 

standard deviation, * = p<0.05. 
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Figure 5.5. Nrf2 activation profiles of hyperoxic and irradiated cells. a) Nrf2 activation 

profile by a 50μM H2O2 bolus treatment on cells cultured in hyperoxia for a week 

(N=4). b) Nrf2 activation profile by a 50μM H2O2 bolus treatment on irradiated cells 

(N=4). AU= Arbitrary Units, C= Control, error bars = standard deviation. 

 

5.2.4 Antioxidants could be the main negative regulators of Nrf2 activation under 

conditions of oxidative stress 

 

A time course of Nrf2 activation during a 24hr steady state treatment with H2O2 reveals 

a peak in nuclear Nrf2 after 4hrs which gradually decays over the following 20hrs 

(Figure 5.1b). Considering the GOX/CAT system has been proven to sustain a constant 

H2O2 flux over 24hrs (Mueller et al., 2009), it is apparent that the Nrf2 system is being 

reset despite the ROS signal still being present in the cellular environment. The 

resetting of the Nrf2 signalling system to (or close to) its original state suggests the 

system could be displaying adaptation.  

To investigate whether the basal levels of the main negative regulators of Nrf2 would 

remain elevated after a 24hr exposure to a steady state level of a signal, a titration 
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experiment was carried out with different ssH2O2 levels. Protein levels were measured 

via Reverse Protein Phase Array (RPPA) to obtain a finer resolution. The obtained 

results (Figure 5.6) show that a 24hr incubation with increasing concentrations of steady 

state hydrogen peroxide will increase the levels of both the activatory (pY216) and 

inhibitory (pS21/pS9) phosphorylation-modifications in GSK3β. However, the 

inhibitory phosphorylation in residue S9 has been shown to override the activatory 

effect of the Y216 phosphorylation (Bhat et al., 2000). Although the activation of Akt 

promotes the inhibitory phosphorylation of GSK3β (Cuadrado, 2015), there is no 

obvious relationship between the levels of activated Akt and the inhibitory/activatory 

phosphorylation group in GSK3β. This might not be entirely unexpected considering 

the complexity of the regulation of Akt activation by H2O2 at least in the C2C12 cell 

line (Tan et al., 2015b).  

No significant change was seen in the basal levels of Keap1 after any of the 24hr 

treatments which is surprising when one considers the reported decrease in Keap1 half-

life under oxidative conditions (Taguchi et al., 2012). Upon examination of intracellular 

levels of antioxidant enzymes (Figure 5.7) it is seen that upon a 24hr exposure to 

0.1μM/s ssH2O2, C2C12 myotubes strongly upregulate intracellular protein levels of the 

catalase enzyme. It thus seems that the negative regulators most likely to reset the Nrf2 

pathway under conditions of sustained oxidative stress are antioxidant enzymes through 

the scavenging of intracellular ROS molecules. 
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Figure 5.6. Dose-response curves for 24hr ssH2O2-treated C2C12 myotube cells. (AU) 

= Arbitrary Units. Error bars = Standard deviation. (N=6).  
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Figure 5.7. Changes in antioxidant abundance upon a 24hr treatment with 0.1μM/s 

steady state (ss) H2O2 in C2C12 myotubes. a) Western blot image. C = Control. 0.1 = 

24hr treatment with 0.1μM /s steady state (ss) H2O2. b) Immunoblot quantification. 

N=5. Error bars = Standard deviation. * = p<0.05, **=p<0.01, ***=p<0.001. AU = 

Arbitrary Units. 
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5.3  Discussion 

 

It is not entirely surprising that the hyperoxic and irradiation pre-conditionings did not 

affect the time course of Nrf2 activation (Figure 5.4). Skeletal muscle is known to have 

a high resistance to ionizing radiation (Jurdana et al., 2013, Hardee et al., 2014) and 

whilst there are very few studies involving hyperoxic incubation of skeletal muscle 

cells, they utilize 95% oxygen incubation for a shorter period of two days (Flandin et 

al., 2005, Barreiro et al., 2009). The fact that a statistically significant elevation of 

hyperoxidized peroxiredoxin was observed (Figure 5.2) after a week (hyperoxia regime) 

and 15 days (irradiation regime) indicates that cells were being successfully exposed to 

oxidative stress for a prolonged period of time in an attempt to more faithfully 

reproduce the time scale of the molecular stress present in aged skeletal muscle.  

More surprising was the observation that both hyperoxia and irradiation increased the 

magnitude of Nrf2 activation after Urotensin II treatment (Figure 5.3). Although this 

observation was not further pursued, it seems likely that during the long time scales of 

these stress regimes, the expression of NADPH oxidases may have increased to provide 

for a stronger ROS signal upon activation by UII treatment (Collins-Underwood et al., 

2008, Pendyala et al., 2009, Wang et al., 2017). If this observation was found to be true, 

it would have interesting physiological implications since NADPH-oxidase mediated 

signalling is an important mediator of variety of stress responses (Jiang et al., 2011). 

It is difficult to infer the effect that the 24hr ssH2O2 preconditioning regime may be 

having on the activation of the Nrf2 in response to an H2O2 bolus addition. Initial 

experiments looking at the nuclear Nrf2 levels at the 60min time point reveal a response 

saturation pattern (Figure 5.4a). The lowest ssH2O2 preconditioning displays an additive 

effect in the levels of nuclear Nrf2 when an H2O2 bolus is added. As the ssH2O2 

preconditioning concentration gradually increases however, nuclear Nrf2 levels at 

60min post-stimulation do not increase beyond the Nrf2 levels triggered by the bolus 

alone. This pattern is also seen in the ssH2O2 titration (Figure 5.1) and when the H2O2 

bolus concentration was doubled to 100μM (Figure 5.4b).  

Because the nuclear Nrf2 levels at the 60min time point in ssH2O2 preconditioned cells 

never seem to go significantly below the levels triggered by a bolus alone, it can be 

concluded there are no indications of a blunting of the redox response under these 

conditions. An interesting observation is that the steady state H2O2 flux produced by the 
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GOX/CAT system results in a bolus-like profile of Nrf2 activation over the 24hr 

preconditioning (Figure 5.1b). There is a strong possibility that over this time period the 

cells are adapting to the new steady state level of intracellular oxidant by increasing 

antioxidant levels. This possibility is supported by the observation of a strong increase 

in intracellular catalase levels after a 24hr exposure to 0.1μM/s ssH2O2 (Figure 5.7). 

Such an adaptive response would mean the apparent saturation pattern observed for 

Nrf2 activation could actually reflect a dampened redox response by increased 

antioxidant levels. This is hinted at by the fact that the bolus addition seems to have a 

(non-significant) decreasing activation trend in the levels of nuclear Nrf2 with higher 

ssH2O2 preconditioning concentrations (Figure 5.4a). The lack of a ‘blunting’ effect is 

in accordance with the observation of a lack of an obvious increase in the basal levels of 

the main negative regulators of Nrf2 (Figure 5.6). However, the Nrf2 system does seem 

to be reset to pre-stimulus levels even in the presence of a constant signal (Figure 5.1b). 

It could be that the increased expression of antioxidants is facilitating this resetting and 

preventing an additive response without causing a ‘blunting’ effect. 

Having failed to observe an obvious effect of the ssH2O2 preconditioning on the 

magnitude of the Nrf2 response, time courses were performed to examine potential 

interferences with the response duration and the activation profile. The levels of nuclear 

Nrf2 at 30min relative to 60min do not reach a statistically significant difference under a 

stress regime of 0.025μM/s ssH2O2 and under no preconditioning. However, the 

0.1μM/s ssH2O2 preconditioning does result in a statistically significant difference in the 

levels of nuclear Nrf2 in the 60min time point with respect to the 30min time point. This 

could be due to a slower response, with fewer nuclear Nrf2 at 30min compared to 

60min. In any case, the nuclear Nrf2 decay from its peak seems to be happening more 

quickly on the 0.1μM/s ssH2O2 preconditioned cells.  

An Nrf2 response which not only is mounted more slowly, but decays more quickly 

could be hinting towards some signalling abnormality in this pathway at higher levels of 

oxidative stress. If the activation magnitude experiments (Figure 5.4a&b) had been 

performed at the 30min time point instead of the 60min time point, a blunting effect 

may have been observed. It thus becomes a question of how the genetic programme 

triggered by Nrf2 is affected by both the magnitude of the response and the duration of 

the response. It is thus a possibility that a blunting of this redox response may be to 

some extent occurring within this altered time course profile of Nrf2 activation under 

0.1μM/s ssH2O2 preconditioning. Mechanistically speaking, an adaptive response 
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resulting in increased antioxidant expression could explain a redox response which 

takes more time to mount and lasts for a lesser time. 

Equally as unclear is the effect of the ssH2O2 preconditioning regimes on redox signal 

generation by urotensin II. Experiments involving an H2O2 bolus addition on top of 

0.025μM/s ssH2O2 preconditioned cells (Figure 5.4a) show an additive effect, indicating 

the Nrf2 system has still a margin to be further activated at the 60min time point. This is 

also indicated by the levels of nuclear Nrf2 reached by higher ssH2O2 pre-conditionings 

(Figure 5.3a). However, no additive effect is seen when 0.025μM/s ssH2O2 

preconditioned cells are treated with UII. Admittedly, the magnitude of Nrf2 activation 

after 60min caused by UII treatment is roughly half than that triggered by a bolus since 

it triggers the same level of nuclear Nrf2 translocation as the 0.025μM/s ssH2O2 

preconditioning alone. If the cells adapt over the 24hr ssH2O2 treatment by increasing 

antioxidant levels, it may be a possibility that the redox signal triggered by UII 

treatment may not be strong enough to cause an increase in Nrf2 translocation 

discernible by western blotting. Another plausible possibility is that elevated H2O2 

levels inside the cells is actively inhibiting the activation of NADPH oxidases which 

mediate the UII-activated signalling (Kovacic et al., 2001, Desai et al., 2014, Kovac et 

al., 2015).  

There are a number of reasons why a reduced responsiveness in the Nrf2 pathway might 

not have been observed when C2C12 cells were exposed to a steady state flux of H2O2. 

As mentioned previously, this cell line is known to have a high resistance to stressors. 

The very use of an immortalised cell line implies that the cells used for the study are 

stress resistant since they are able to thrive under the non-physiological conditions of in 

vitro tissue culture.  

Secondly, the exposure of cells to a steady state flux of H2O2 for 24hrs resulted in a 

three-fold increase in the intracellular catalase levels. This means that the system is 

responding to the constitutive signal by reducing the levels of the signal itself. This 

would be predicted to substantially alleviate any underlying blunted response that could 

arise. Looking at the standard deviations of the data obtained through immunoblotting it 

is necessary to consider what magnitudes of loss in system responsiveness would be 

necessary to occur in order to be able to be confidently discerned using this 

experimental technique. The observed resetting of the Nrf2 system under conditions of a 

constant ROS flux indicates that this pathway could be capable of perfect adaptation. 
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Another possibility could be that the redox signal is not being properly elicited in aged 

tissues as has been shown in skeletal muscle (Palomero et al., 2013). 

 

5.4 Concluding remarks  

 

None of the presented data conclusively demonstrates that oxidative stress 

mechanistically interferes with redox signalling through the Nrf2/Keap1 pathway. 

Indeed, a lot of molecular changes are likely to be occurring over the large time periods 

of the adopted oxidative stress regimes. This means a very substantial amount of work 

would be required to dissect the reasons behind the observed changes in the Nrf2 

activation profile in response to a bolus upon a 0.1μM/s ssH2O2 preconditioning regime 

and the lack of an additive effect on ssH2O2 preconditioned cells by Urotensin II 

treatment. Rather, this work provides hints as to the nature of a potential interference of 

elevated oxidant levels with redox signalling. It is evident that there are statistically 

insignificant trends in our data such as the decreased nuclear Nrf2 levels in ssH2O2 plus 

bolus combined treatments (Figure 5.4a). Increasing the number of repeats should help 

discern whether these patterns have an underlying physiological importance. This work 

seems to provide the first evidence of the ability of the Nrf2 pathway to undergo near-

perfect adaptation and thus potentially be able to sense fold-changes in ROS rather than 

absolute levels. It seems of particular interest the possibility that chronically elevated 

levels of oxidant in aged skeletal muscle might be actively inhibiting redox signal 

production by NADPH oxidases during a period of exercise. 
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Chapter 6  

 

Testing the multi-scale robustness of biological systems to 

constitutive signals: A case study on cellular senescence 

 

6.1  Introduction 

 

Living organisms have evolved a wide range of mechanisms to maintain a tight 

homeostatic control over their internal environment. Negative regulators operate at 

different levels of biological organisation to maintain a desired homeostatic state. This 

includes negative regulation at the molecular level, cellular level and organ level. This 

multi-scale cybernetic property of living organisms makes them robust to perturbations, 

allowing them to maintain function in a wide range of suboptimal environments. A 

question then arises regarding whether any potential effects of a perturbation at the 

molecular level in the form of a constitutive signal can be buffered by regulatory 

interactions at a higher level of biological organisation i.e. cell to cell. Agent-based 

simulations (Section 3.3.5) have indicated that populations can be stabilised by a 

constitutive input in the environment. However such agent-based model is an abstract 

toy model with arbitrarily-assigned parameters and is therefore hardly relatable to a 

biological process. 

The progression of cellular senescence is an example of a biological process relevant to 

ageing which is regulated across levels of biological organization. At the molecular 

level, cells will enter a senescent state if an environmental stress causes unresolvable 

DNA damage (Lujambio, 2016). If a ROS-mediated positive feedback loop is triggered, 

the senescent state can be stabilised (Passos et al., 2010). Defective mitochondria, the 

main source of senescence-inducing ROS, are kept in check by mitophagy. At the 

cellular level, a senescent cell can be recognised and destroyed by the immune cells, but 

also induce neighbouring cells to become senescence in a bystander-effect (Lujambio, 

2016). The fact that the maintenance of senescence homeostasis involves regulatory 

layers at different levels of biological organisation signifies that such regulatory 

processes also occur at different time scales. It is thus difficult to keep track of the 

interplay of these processes experimentally.  
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Multi-scale computational models have been able to capture such level of complexity in 

a number of biological settings including tumour growth (Wang et al., 2015), plant 

development (Muraro et al., 2016), bone remodelling (Colloca et al., 2014) and heart 

function (Quarteroni et al., 2017). The development of a multi-scale model commonly 

involves the use of separate computational frameworks to model different levels of 

biological organisation which are then coupled together through formal methodologies 

(Dada and Mendes, 2011).  

The theoretical work undertaken seems to suggest that constitutive signals are likely to 

promote network dysfunctionality at the molecular scale. However, quality-control 

mechanisms span levels of biological organisation. This means that there may be 

mechanisms at the cellular level that can compensate against the presence of 

constitutive signals driving a loss in homeostasis. To explore the extent to which 

constitutive signals like stress can drive a loss of homeostasis when considering 

different levels of biological organisation, a multi-scale model of a tissue undergoing 

cellular senescence was formalised. The aim of such a model would be to provide an 

exploratory platform to observe how system homeostasis may be perturbed by 

constitutive signals when regulation spans multiple levels of biological organisation. 

This is most likely to represent a more realistic view of how the ageing process might 

occur in vivo.  To understand whether constitutive signals can result in the stabilisation 

of a senescent cell population within a tissue a multi-scale model of cellular senescence 

progression was developed. In this biological scenario, the constitutive signal feeding 

into the system will be stress. 

 

6.2   Results 

 

6.2.1 Understanding stochastic damage as the stochastic occurrence of runaway 

processes 

 

The first issue encountered when formalising such multi-scale model is that ‘stress’ is a 

too abstract term. Of relevance to the ageing context, senescence is induced when 

environmental stress translates into stochastic damage. But how to model stochastic 

damage? If one is interested in a significant homeostatic disruption within the cell as a 

result of stochastic damage, the following rationale can be developed. 
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Let’s consider a regulated molecular entity which could be a damaging agent or an 

activator molecule (A). Such a species will be actively degraded or inhibited by a 

protective or regulatory entity (N) to maintain a low-level homeostatic state of molecule 

A. The effective regulation of A is ensured by a much higher abundance of N. This is 

because effective regulation requires that entity N encounters entity A in three 

dimensional space through random motion and so a higher abundance of the negative 

regulator ensures more of the search space is covered at a given time. The robustness of 

biological systems to external perturbations suggests that a collapse of a homeostatic 

state by a stochastic event requires a failure in the regulatory mechanisms so that i) 

Entity N becomes less effective or ii) A escapes or overrides N.  

Stochastic genetic mutations that result in changes to the binding affinity between N and 

A would satisfy both scenarios. Beyond genetic mutations as the sole explanation of 

homeostatic failure, A could be able to override the action of N should it have the ability 

to trigger a runaway process. In such a case, the homeostatic maintenance relies on the 

effectiveness of N in counteracting the self-amplifying property of A. Biological 

examples of such positive feedback loops include ROS-induced ROS generation 

(Passos et al., 2010, Zorov et al., 2014), chain reactions of free radical molecules with 

lipids (Pratt et al., 2011), protein aggregation processes (Holmes and Diamond, 2012), 

calcium-induced calcium release (Endo, 2009) and other molecules which participate in 

positive feedback loops for the purpose of robust signalling within cells (Mitrophanov 

and Groisman, 2008). Such biological entities are tightly regulated by protective 

molecules or negative regulators such as antioxidants, protein degradation machinery, 

calcium pumps or others.  

At any given point, it is expected that the negative regulator is performing its function 

effectively, as it has evolved to. However, does the self-sustaining structure of the 

positive feedback provide a means for a regulatory-overriding albeit with a low 

probability? Does this regulatory structure provide an intrinsic reliability limit?   To 

begin to explore the answers to such questions the interplay between a self-amplifying 

property that promotes accumulation and a counteracting negative regulation activity 

must be further formalised into a computational model. Entities A and N can be 

modelled as equal-sized molecules undergoing Brownian motion in three dimensional 

finite space. A simple molecular dynamics simulation based on a cellular automaton 

framework is used to model this system (Figure 6.1a).  
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Entities N are modelled as perfect negative regulators, meaning that upon encounter of 

entities A and N in space, entity A will disappear with a probability of one. In this 

setting, the effectiveness of negative regulation by entity N is limited by its abundance. 

Amongst the most abundant negative regulators operating within cells are antioxidant 

proteins limiting the intracellular levels of ROS molecules. Their abundance can thus be 

used as working value for the simulated number of N entities. The combined abundance 

of the main antioxidant proteins operating in mammalian cells derived from the PaxDB 

database (Wang et al., 2012a) yields a value of approximately 31000ppm. This value 

combines the abundance of all the peroxiredoxin isoforms, catalase and SOD1 and 

translates into a 3% percentage occupancy of the cellular space simulated in the model. 

The derivation of such a proxy value is in the scale indicated by abundance 

measurements for the peroxiredoxin 1 isoform, which reportedly accounts for 0.1-1% of 

the total soluble protein in the cell (Perkins et al., 2015).  

Model simulation settings were configured to a 5% occupancy of N entities, with no A 

entities at the start of the simulation. The production of entities A is modelled by the 

random introduction of a single entity with a probability of 0.1 every generation. The 

self-amplifying ability of the A entities was formalised as a reaction 𝐴+ 𝐴 → 4𝐴 

occurring with a probability of 0.5 upon the encounter of the two substrates in space. 

1000 generations were run for 1000 cells. 

The simulated profiles indicate that for a small percentage of the cells, entity A is able to 

override its negative regulation by entity N and cause a runaway-process that stabilises a 

new steady state level of the entity (Figure 6.1b). This indicates that the uncertainty 

arising from the encounter of molecules in space can potentially be sufficient for 

negative regulation to be overridden by a self-amplifying process. Following this, 

should both entities be segregated in space, the regulation of runaway processes would 

be more ineffective, with a greater percentage of cells experiencing such dysregulations. 

Intracellular overcrowding has been proved to be able to promote reactant segregation 

through volume exclusion (Schnell and Turner, 2004). Intracellular overcrowding will 

thus promote a spatial heterogeneity in the distribution of molecules where reactants 

may be transiently shielded. Such an effect could insulate the initialising steps of a 

runaway process so that it is more difficult to abolish by a negative regulator. When 

overcrowding molecules are introduced into the simulation as equal-sized molecules 

serving the sole purpose of providing a source of molecular collisions, there is a clear 

increase in the occurrence of runaway events (Figure 6.1c).  
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The fact that entity N is modelled as a perfect regulator highlights the ability to 

encounter regulatory targets in space as a limiting factor for system reliability. This 

observation is especially relevant to regulatory entities which are large macromolecules, 

such as SOD or catalase, which will have slow diffusion speeds and their movement 

will be heavily influenced by intracellular overcrowding (Papadopoulos et al., 2000). It 

could thus be speculated that some antioxidant proteins may have evolved to such high 

abundances in biological systems to retain an effective space-search for their substrates 

despite having hindered diffusion. It is of interest to note that the simulated profiles 

shown in Figure 6.1 show close resemblance to the simulated stochastic appearance of 

β-amyloid plaques during the progression of Alzheimer’s Disease (Proctor et al., 2012). 

This model will hereafter be referred to as the ‘runaway’ model. 
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Figure 6.1. Molecular dynamics simulation of the inhibition of a runaway process. a) 

Diagram representing the negative regulation of a self-amplifying molecule A by 

molecule N. b) Abundance of A molecules for 1000 simulations of 1000 molecular 

movements in the absence of overcrowding molecules. c) Abundance of A molecules for 

1000 simulations of 1000 molecular movements in the presence of a 50% occupancy of 

overcrowding molecules. Dashed circle = degraded. Simulations run at 5% percentage 

occupancy with initial abundances A=0 and N=100.  
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6.2.2 Senescence-induced-senescence can be estimated to occur with a high 

probability within cell populations 

 

Having defined a toy model that represents molecular damage arising as a result of a 

stochastic homeostatic perturbation, it is necessary to establish a computational 

framework to simulate a cell population within an arbitrary tissue. A cellular automaton 

framework can be employed to this end where cells at rest can transition between 

different states, i.e. resting, pre-senescent, senescence or empty space, with different 

probabilities (Figure 6.2). However, such probabilities must be derived. The probability 

of senescence induction Pind can be derived from the stochastic simulation of the 

experimentally-calibrated model of irradiation- induced senescence developed by Dalle 

Pezze et al. (Dalle Pezze et al., 2014). This model captures the molecular changes that 

occur during the progression of cellular senescence and is calibrated on data derived 

from human MRC5 fibroblast cells grown as a monolayer in vitro and x-ray irradiated 

at 20G. The stochastic simulation of such model reveals that not all cells will follow the 

molecular progression displayed on average by the population (Figure 6.3).  
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Figure 6.2.(previous page) State transitions in the cellular automaton model of 

senescence progression within a tissue. R= Resting, PS=Pre- Senescence, S= 

Senescence, E=Empty, t=time (days), Pind= Probability of senescence induction, Pbys= 

Probability of bystander effect, Pclr=Probability of clearance, Pnew= Probability of new 

cell appearing in the tissue. Model simulation involves a grid with 10 arbitrary units in 

any dimension simulated (103 cells in a 3D model and 102 cells in a 2D model). The 

arguably low number of cells simulated aims to represent an arbitrary section of an 

arbitrary tissue and was limited by computational time. The simulation time of the 

multi-scale model was approximately 1.2 days in the case of a 30 day simulation of 

irradiation-induced senescence and approximately 3.9 days in case of a 30 day 

stochastic-induced senescence.  
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Figure 6.3. Simulation of the Dalle Pezze et al. model of irradiation-induced cellular 

senescence. Individual stochastic runs (N=10) for four representative molecules are 

displayed as different-coloured trajectories with the deterministic simulation being 

overlaid in black. 

 

Whether a cell becomes senescent or not is a binary outcome requiring an arbitrary 

threshold. Such a threshold was defined as being the average molecular abundance for 

four molecular markers of senescence, namely, p21, DNA damage foci, SA-β-GAL and 

ROS. Should a single stochastic simulation result in time course profile where all four 

molecules display above-average levels at the 21 day time-point, the cell will be classed 

as having entered a senescent state. Stochastic runs of the Dalle Pezze model indicate 

that under such definition of a senescent state, 20G irradiation will result in a Pind  of 

~0.12 (Figure 6.4). The stochastic running of the Dalle Pezze model was embedded into 

the cellular automaton framework so that at day 1 of the simulation, all cells are 

irradiated (i.e. undergo a single stochastic simulation of the Dalle Pezze model) and 
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those that meet the senescence threshold transition into a pre-senescent state within the 

cellular automaton grid. Note that apoptosis was not included as a potential transition 

state resulting from 20G X-ray irradiation since such a treatment does not induce a 

measurable increase in apoptotic levels in MRC5 cells (Bluwstein et al., 2013, Dalle 

Pezze et al., 2014). 

 

Figure 6.4. Stochastic convergence of the Dalle Pezze et al model to the probability of 

senescence induction. 

 

It is next necessary to derive the probability of senescence-induced-senescence Pbys. 

This can be achieved through an exercise of parameter estimation using data derived 

from Passos et al. (Passos et al., 2010) on the time course of percentage senescence 

cells in 20G X-irradiated human MRC5 cells (Supplementary Figure 1A in Passos et al 

2010). Not only is data obtained under identical conditions to that used to calibrate the 

Dalle Pezze model, but because it is performed in vitro, the computational model can be 

run as a 2D monolayer with parameters for the immune clearing of senescence cells Pclr  

and the renewal of the tissue Pnew being set to zero. Under these conditions a scan can 

be undertaken for different values of Pbys to search for a value that minimises the 

discordance between the simulated data and the experimental data as quantified by the 

chi-squared metric.  Such a parameter estimation yields multiple minima where different 

values of Pbys  will give very similar best fits to the experimental data (Figure 6.5a). 
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Simulations with the derived best-fitting values for Pbys fail to capture the short-term 

dynamics of senescence induction in the population of cells. This is most likely due to 

the stringent definition of senescence adopted in our model as opposed to the sole 

requisite of SA-β-GAL staining in the experimental data. Running the irradiation 

simulations in a 3D cell grid gave a faster change in cellular populations than when the 

model was simulated for a 2D monolayer (Figure 6.6) with the same parameter set. This 

is expected since the bystander effect caused by senescent cells has more neighbours to 

act upon in a three-dimensional tissue. Interestingly, the 2D model displayed an 

oscillatory transition which was not displayed by the 3D model.  

 

Figure 6.5. Pbys parameter 

fitting to experimental data 

derived from Passos et al. 

(2010). a) Parameter fitting 

landscape for Pbys. b) Best-

fitting time course for the 

number of senescence cells 

after irradiation. Simulated 

populations were derived 

from a Pbys value of 0.4 for  

a simulated 10 x 10 grid of 

cells.  
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Figure 6.6. Simulation of the cellular automaton model of irradiation-induced 

senescence as a) a 10x10 two-dimensional cellular monolayer and b) a 10x10x10 three-

dimensional cellular grid. Pbys = 0.4. 
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Hints as to the possible values of Pbys can be obtained by attempting to obtain an 

estimate for Pclr from the literature. Data obtained from the in vitro co-culture of 

senescent cells with natural killer cells at a 1:10 ratio suggest an upper value of 40% 

cytotoxicity of the immune system for the senescent cells (Krizhanovsky et al., 2008). 

When considering that senescent cells are rare in the tissues of young individuals it 

seems likely that arising senescent cells are effectively cleared by the immune system 

before they induce any spreading of senescence across the tissue. It can thus be assumed 

that 𝑃𝑏𝑦𝑠 ≤ 𝑃𝑐𝑙𝑟 under fully functional physiological conditions. A gradual increase in 

Pind/Pbys and/or a decrease in Pclr could be envisioned to drive the observed 

accumulation of the senescent population with age. With a working value of 0.4 for Pclr, 

the potential values for Pbys are thus constrained to ~0.2 or ~0.4. Work published by 

Nelson et al (Nelson et al., 2012) shows that the 1:1 co-culture of senescent and non-

senescent MRC5 cells resulted in an ~10% increase in the number of senescent cells (as 

assessed by SA-β-Gal staining) after 20 days, suggesting a Pbys value within the lower 

range of our estimates. Even the lowest estimation for Pbys seems high when considering 

it is the probability of a positive feedback loop, (i.e. a potential runaway process) being 

activated by strong cellular damage.   

 

6.2.3 A decline in immune function may be the main driver of senescent cell 

accumulation in tissues during ageing 

 

With the established parameter set, the value for Pnew was assigned to 0.5 to maximise 

tissue renewal uncertainty at any given time point. Since large-scale senescent-cell 

clearance does not result in tissue atrophy (Baker et al., 2011), it is expected that cleared 

senescent cells can be effectively replaced by new non-senescent cells even at old age. 

In order to make the senescence model more relevant to physiological ageing, the 

‘runaway’ process simulation (Figure 6.7) was embedded into the multiscale model so 

that the occurrence of a runaway process would cause the molecular damage equivalent 

to an irradiation treatment (and so would trigger a single stochastic simulation of the 

Dalle Pezze model with the same threshold for senescence progression). Thus, the 3D 

multiscale model was simulated so that any given cell could enter senescence 

stochastically at any time point in the simulation. The simulated profiles for stochastic-

induced senescence reach the same steady-state populations as those of simulated 

irradiation-induced senescence even for different values of Pbys  (Figure 6.8). For 
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simulations of irradiation- induced senescence it can be seen that the initial irradiation 

treatment results in ~10% of cells entering senescence, but this proportion of the cellular 

population is enough to eventually drive the whole population into senescence. 

 

 

 

 

Figure 6.7. Diagram of the multi-scale model of senescence induction by stochastic 

damage.   



183 

 

 

Figure 6.8. Population dynamics of irradiation-induced senescence and stochastic 

senescence entry. a) Irradiation-induced senescence in a 10x10x10 three dimensional 

grid of resting cells simulated at a Pbys value of 0.2. b) Irradiation-induced senescence 

in a 10x10x10 three dimensional grid of resting cells simulated at a Pbys value of 0.4. c) 

Stochastic entry into senescence in a 10x10x10 three dimensional grid of resting cells 

simulated at a Pbys value of 0.2. d) Stochastic entry into senescence in a 10x10x10 three 

dimensional grid of resting cells simulated at a Pbys value of 0.4. Parameter values for 

all simulations are Pclr = 0.4, Pnew =0.5 and Pind corresponds to a single stochastic run 

of the Dalle Pezze et al model.  
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During the ageing process, where senescent cells are known to accumulate within 

tissues, the immune system function is also known to decline. This could translate into a 

lower value for Pclr. Simulations of irradiation- induced senescence and stochastic 

senescence at a Pclr value of 0.1 show a higher steady state population of senescent cells 

arises in the 3D tissue (Figure 6.9). This is suggestive that Pclr bears more weight in 

establishing the steady state levels of senescent cells than Pbys.  

 

Figure 6.9. Simulation of 

senescence induction in a 

tissue with a less effective 

immune system. a) 

Simulation of irradiation-

induced senescence in a 

10x10x10 three 

dimensional grid of cells. 

b) Simulation of 

stochastic senescence-

entry in a 10x10x10 three 

dimensional grid of cells. 

Parameter values for 

both simulations are 

Pbys=0.4, Pclr=0.1, 

Pnew=0.5 and Pind 

corresponds to a single 

stochastic run of the 

Dalle Pezze et al model. 
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To formally establish this observation in the adopted model topology for intercellular 

interactions, the model structure was translated into an ODE-framework simulated in 

COPASI where probability values where used as rate constants to maintain relative 

fluxes. Simulations of such deterministic model follow similar transition dynamics and 

steady state population values as the multi-scale model simulations (Figure 6.10). 

Parameter scans for the state transition values confirm Pclr as the main determinant of 

the senescent cell population, with Pbys not affecting the senescence cell attractor for 

multiple values of Pclr or Pnew  (Figure 6.11). Interestingly, altering Pind in conjunction to 

Pbys did not result in a change in the attractor state for the senescent population. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Deterministic simulation profile of the intercellular interaction model 

(depicted in Figure 6.2). All reactions follow first order mass action kinetics except for 

that modelling the bystander effect, which follows second order kinetics. Rate constant 

values correspond to Kind = 0.12, Kclr=0.4, Kbys=0.4, Knew=0.5 and Ktrans=1 where the 

latter parameter corresponds to the transition rate from PSt=i to PSt=i+1. 
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Figure 6.11. (Next page). Parameter scan effects on the attractor state of senescent cell 

populations. a) Deterministic simulation output of a three interval parameter scan of 

Pclr on top of a 100 interval scan of parameter Pbys. b) Stochastic simulation output of a 

three interval parameter scan of Pclr on top of a 100 interval scan of parameter Pbys. c) 

Deterministic simulation output of a five interval parameter scan of Pnew on top of a 100 

interval scan of parameter Pbys. d) Stochastic simulation output of a five interval 

parameter scan of Pnew on top of a 100 interval scan of parameter Pbys. e) Deterministic 

simulation output of a ten interval parameter scan of Pind on top of a 100 interval scan 

of parameter Pbys. f) Stochastic simulation output of a ten interval parameter scan of 

Pind on top of a 100 interval scan of parameter Pbys. g) Deterministic simulation output 

of a 100 interval scan of parameter Pbys. h) Stochastic simulation output of a 100 

interval scan of parameter Pbys. When not being scanned, rate constant values 

correspond to Kind = 0.12, Kclr=0.4, Kbys=0.4, Knew=0.5 and Ktrans=1 where the latter 

parameter corresponds to the transition rate from ESt=i to ESt=i+1. Intervals in 

parameter scan are regular across the value range of 0 to 1. 
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The lower weight of the bystander effect relative to senescence clearing could be an 

artefact of an overly-simplified model topology. The multi-scale model was adapted to 

more realistically represent immune cell clearance where immune cells are likely to be 

recruited by a group of senescence cells rather than an individual cell within a whole 

tissue. This was done through a statement where a senescent cell could only be cleared 

with probability Pclr if a minimum of half of the cells in the Moore neighbourhood are 

in a senescent state. In this setting, parameter Pclr is much less determinant of the 

senescent cell population level but is still the main determinant of the steady state 

population of pre-senescent cells in the tissue (Figure 6.12). 

The closed model structure underlying the interaction topology at the cellular level 

(Figure 6.2) could lie behind the relative insensitivity of the final steady state of the 

senescent cell populations to the values of Pbys and Pind. However, when the topology of 

the deterministic intercellular model was opened as illustrated in Figure 6.13, the same 

relative insensitivity of these parameters was seen, with Pclr being the most sensitive 

parameter. This was observed whether immune cell recruitment was incorporated into 

the opened model structure or not.  
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Figure 6.12. Population dynamics of stochastic senescence entry for different values of 

Pclr and Pbys in a model of neighbour-dependent immune cell recruitment by senescent 

cells. a) Simulation at a Pbys value of 0.2 and Pclr value of 0.4. b) Simulation at a Pbys 

value of 0.4 and  Pclr value of 0.4. c) Simulation at a Pbys value of 0.2 and  Pclr value of 

0.1. d) Simulation at a Pbys value of 0.2 and Pclr value of 0.4 with a ten-fold increase 

(0.01 to 0.1) in the probability of seeding an A molecule in a given generation during 

the simulation of the runaway model. All simulations were run on a 10x10x10 three 

dimensional grid of resting cells with the parameter value for P ind corresponding to a 

single stochastic run of the Dalle Pezze et al model. 
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Figure 6.13. State transitions in 

the deterministic model of 

senescence progression within a 

tissue. R= Resting, PS=Pre-

senescence, S= Senescence, 

E=Empty, N=Negative regulator, 

t=time (days), Pind= Rate of 

senescence induction, Pbys= Rate 

of bystander effect, Pclr=Rate of 

senescent cell clearance, Pnew= 

Rate of new cell appearance. 

Black outline = ‘open’ structure 

of deterministic senescent model 

which was simulated alone or 

with the addition of with immune 

cell recruitment outlined in blue. 
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6.3   Discussion 

 

As is frequently said in Systems Biology lectures, a model must be ‘as simple as 

possible and as complex as necessary’. Various clues in the simulations of the 

developed multi-scale senescent model suggest that such model is likely to be too 

simple to capture the complexity of the senescent cell accumulation process. All of the 

simulations show an inevitable transition of all of the cells at rest into a state of 

senescence or pre-senescence. Whilst this might be more relatable to the population 

dynamics seen upon the use of a strong acute stress in vitro (Passos et al., 2010, 

Marazita et al., 2016), it is not relatable to the in vivo accumulation of senescence cells, 

where only a fraction of the cells in a tissue are observed to display markers of cellular 

senescence (Nelson et al., 2012, Jurk et al., 2014, Bhatia-Dey et al., 2016).  

The first difficulty arises from the discrete definition of senescence employed in the 

multi-scale model. A cell that has undergone significant molecular damage will enter a 

pre-senescent state that will not be able to induce a bystander effect or recruit immune 

cells for the first ten days, after which the senescence programme has been fully 

completed. Depending on the cell type and the stress used to induce senescence, the 

senescence-associated secretory phenotype (SASP) has been observed as soon as five 

days after senescence induction (Kabir et al., 2016, Marazita et al., 2016). Furthermore, 

many molecular changes associated with cellular senescence are already clearly seen 

before the ten day time-point in irradiated human fibroblasts (Dalle Pezze et al., 2014).  

The choice of a ten day time-lag before a cell becomes senescent was based on the 

observation in human fibroblasts that this is the earliest time-point at which the main 

molecular makers of cellular senescence (p21, DNA damage, ROS and SA-β-Gal) reach 

a steady state (Dalle Pezze et al., 2014). This steady state is associated with the new 

cellular state of cellular senescence and not the initial shock response from the stress 

treatment used to induce senescence. The time lag introduced by the 10-day rule in the 

cellular scale is the reason why the simulated in vitro senescence cell dynamics 

corresponded poorly with experimental data at early time points (Figure 6.5). Instead of 

modelling senescence as a step-entry, further work into the model would involve 

approaching a time-continuous increase in the Pbys and Pclr probabilities as the cells 

approach their maximal level of SASP release over simulated time. 
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The poor fit at early time points is also likely to arise due to the stringent definition of a 

senescence cell at the molecular level. The fact that the experimental data on the 

percentage senescence cells after a 20G irradiation is based on SA-β-Gal staining only 

(Passos et al., 2010), means that the adopted definition of a senescence cell as one that 

contains above average levels for four senescent markers will result in a gross 

underestimation of the number of senescent cells at any given time point. The problem 

thus lies not necessarily in an overly stringent definition of cellular senescence, but in a 

disagreement in the definition of senescence between the experimental dataset and the 

simulated model.  

The aforementioned difficulties in the definition of a senescent state at both the 

molecular level and cellular level lies behind the inability to capture the dynamics of 

senescence progression at the shorter time scales as seen in Figure 6.5. However, the 

good fit seen at later time-points would suggest that the parameter estimation procedure 

has resulted in a gross-overestimation of the value of Pbys in order to achieve a good fit 

at later time points. In other words, the underestimation of senescent cells at early time-

points would lead to an overestimation of their propagation to fit later time points. Thus 

Pbys is likely to be much smaller than Pclr in a non-aged individual.  

On top of the unreliability of the estimated value for Pbys , the fitting landscape for this 

parameter seems to suggest its non-identifiability from the experimental data used for 

the parameter estimation process. With the exception of the Pbys parameter regions 

around 0.1 and 0.25, all of the parameter values tested resulted in very similar fits to the 

experimental data (Figure 6.5b). The fitting landscape in Figure 6.5b could well be 

viewed as a large basin with an anomalous peak at Pbys ≈ 0.25. This suggests that the 

model parameter is non-identifiable, meaning that unique parameter values cannot be 

identified through an optimisation procedure utilising a given dataset (Raue et al., 2009, 

Chis et al., 2011).  

Whether such a non-identifiability could be resolved by the use of a more extensive 

dataset (practical non-identifiability) or is inherent in the model structure (structural 

non-identifiability) is unclear. However, insensitivity of the simulated output to 

variations in the values for Pind and Pbys suggest a lack of identifiability originating from 

model structure, or potentially an instance of model sloppiness (Chis et al., 2016). With 

regards to the ODE-based model of cell-to-cell interactions, alterations to model 

structure did not resolve the lack of influence of the Pbys value on the simulation output.  
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The conserved element in all of the different intercellular ODE models simulated is the 

structural relationship between resting cells and senescent cells (and thus Pind and Pbys). 

Both these cellular populations are related by a linear cascade where any change 

through Pind will proportionally feed through Pbys after a time lag arising from the 

progression of cells through pre-senescent (PS) states. This simple structure is likely to 

result in a strong positive correlation between the Pind and Pbys parameters, rendering 

them non-identifiable.  

In the formalisation of the ODE-based model of intercellular interactions, the 

probabilities used in the cellular scale model were used as rate constants in order to 

model the transition of cellular populations as fluxes following mass action kinetics. 

The fact that such model reproduced to a good extent the steady state cell populations of 

the multi-scale model suggests that treating cells in a lattice as entities that will 

invariably (homogenously) undergo a set of rules with probabilistic outcomes will result 

in a largely deterministic behaviour. This is especially true for a large cell lattice as that 

simulated in this study. The multi-scale model indeed treated each type of cell as being 

part of a perfectly homogenous population that uniformly underwent the same set of 

rules. This is the reason why, even in the simulations for stochastic senescence-entry, 

the entirety of the resting cell population quickly disappeared. An extra layer of 

uncertainty could be added where any given cell at any given time may or may not 

undertake its relevant rule as defined by another probabilistic parameter. This level of 

uncertainty is already provided for the Pind parameter in the model by its coupling to the 

simulation of the ‘runaway’ model. 

Upon a closer inspection of the chain of causality within the model it can be appreciated 

that the causal flow is unidirectional from the lower biological scales (‘runaway’ and 

Dalle Pezze et al. model) to the cellular scale. However, both the bystander effect and 

the immune-clearance of senescent cells are able to induce cellular damage. Thus, 

parametric relationships should exist between the number of senescence cells at the 

cellular scale and the lower scale levels of the multi-scale model. The sort of 

experimental data that would inform these parameters and how they feed across scales 

would need careful consideration. 

Even the smallest seeding probability of A molecules (1%) in the ‘runaway’ model, as 

determined by an otherwise prohibitive simulation time, resulted in a steady state with 

no resting cells. This did not allow the testing of acute perturbations to this parameter 

under different baseline values to examine the feeding of any effects to the cellular 
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scale. In addition to the aforementioned limitations, the context-specificity of the 

adopted parameter values renders them valuable for little more than as working proxies 

for a posterior iteration exercise of model calibration and validation.   

 

6.4  Concluding remarks 

 

Overall, it is evident from the simulated output of the developed multi-scale model that 

it is yet of an insufficient complexity to capture any behaviour beyond a simple 

transition to a steady state cell population. This work has nonetheless helped identify 

important issues with the development of an effective multi-scale model and provided 

groundwork for further model development to capture the complexity of senescent cell 

progression within ageing tissues. Such a model could capture some facets of the 

alteration of tissue homeostasis with ageing through time-dependent changes in 

parameter Pclr to model immune-decline or through modelled age-related changes at the 

molecular level percolating to the cellular scale through cell-heterogeneous changes in 

Pind. The main problem identified in the formalisation of what would be the first multi-

scale model of cellular senescence progression within a tissue is the over-simplicity of 

the model structure that mostly arises from: i) the lack of relevant biological 

information and ii) the definition of a senescent cell (Matjusaitis et al., 2016). Other 

than outlining the current areas of difficulty in establishing what would be the first 

multi-scale model of cellular senescence, another important insight is gained from this 

analysis. Namely, that the magnitude of the effect of constitutive signals at the 

molecular level on cellular interaction networks will depend on the sensitivity of the 

parameter at the higher level of biological organisation through which the effect would 

percolate. 
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Chapter 7 

 

General discussion 

 

It is apparent from the undertaken analysis that constitutive signals in the cellular 

environment should be viewed as a potential source of reduced signalling 

responsiveness. The reason for this being that a constant signal feeding into the cell has 

the potential to result in a sustained activation of negative regulators that will provoke 

the damping of the response to subsequent acute physiological signals. This observation 

of a ‘blunting’ effect by constitutive signals seems to be able to occur in different 

biological signalling pathways of varying complexities and across different modelling 

frameworks (Section 3). Indeed, this phenomenon is predicted to be able to arise in a 

wide variety of possible network structures (Section 4).   

Initial work (Section 3) on abstract network structures and agent-based models suggests 

such a phenomenon could potentially apply to higher levels of biological organisation 

such as intercellular signalling. However, an attempt to further explore this possibility 

in the context of biological ageing through the use of a multi-scale model of cellular 

senescence progression in a tissue proved to require extensive further work (Section 6). 

Experimental work on the effect of a constitutive signal in the form of oxidative stress 

on the activation of the Nrf2 signalling pathway by an acute redox signal yielded no 

indications of a ‘blunting’ phenomenon (Section 5).  

Importantly, the theoretical analysis undertaken establishes that the ‘blunting’ effect can 

occur in a wide range of possible networks. However, another outcome of such analysis 

is that there are plenty of possible model structures that will not necessarily display a 

reduced responsiveness in the presence of a constitutive signal. The Nrf2 pathway might 

thus be a system that does not display this behaviour in the presence of a constitutive 

signal. 

Whilst many studies might have involved the direct or indirect generation of 

constitutive signals in a biological system, for example through gene knockout or gene 

overexpression, it is of most physiological relevance to investigate such constitutive 

signals as arising spontaneously in vivo. Whilst this can be done for a number of 

conditions such as cancer, the focus of this work will be on studies relevant to the 

ageing process. Physiological signals such as intracellular calcium, inflammatory 
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factors, ROS and symphathoadrenal signals have all been reported to become elevated 

with age in multiple tissues and thus could provide hints as to the potential underlying 

occurrence of a ‘blunting’ effect. 

Intracellular calcium is a secondary messenger molecule involved in a plethora of 

conserved cellular functions and also cell-specific functions  like the excitable 

properties of cells such as neurons, cardiomyocytes or skeletal myotubes (Berridge, 

2016). Calcium signalling dysregulations have been identified in all these types of 

excitable cells in aged tissues (Toescu and Verkhratsky, 2007, Weisleder and Ma, 2008, 

Zhao et al., 2008, Supnet and Bezprozvanny, 2010, Dai et al., 2012, Herraiz-Martinez et 

al., 2015).  

In the aged brain, increased basal levels of intracellular calcium has been reported for 

some neurons (Kirischuk et al., 1992, Verkhratsky et al., 1994,Raza et al., 2007, 

Hajieva et al., 2009) but not others (Murchison and Griffith, 1998,  Thibault et al., 2001, 

Xiong et al., 2002). Observations on the basal levels of intracellular calcium along with 

its spiking and buffering in aged neurons are highly cell-specific (Murchison and 

Griffith, 1998, Kumar et al., 2009). 

One of the physiological roles of calcium during an action potential is to create a 

refractory period through a transient neuronal hyperpolarisation generated via the 

calcium-mediated shuttling of K+ and Cl- ions (Thibault et al., 2001, Lima and Marrion, 

2007). Interestingly, hippocampal neurons have been shown to become more 

hyperpolarised and thus lose excitability during the ageing process, resulting in a loss in 

synaptic plasticity and learning ability (Oh et al., 2010). The fact that that basal 

intracellular calcium levels have been shown to increase with age in hippocampal 

neurons (Hajieva et al., 2009) and that calcium chelators or calcium channel blockers 

can rescue some of these age-related effects (Moyer et al., 1992, Norris et al., 1998) 

hints at the possibility that the constitutively elevated levels of intracellular calcium 

may be stabilising a state of reduced neuronal responsiveness. However, the importance 

of basally elevated levels of intracellular calcium to the ageing of the brain has been put 

into question (Toescu and Verkhratsky, 2004, Kumar et al., 2009). 

Both cardiac and skeletal muscle tissue have been reported to display aberrant 

excitation-contraction coupling (ECC) with age (Fares and Howlett, 2010, Delbono, 

2011). Calcium plays a key role in ECC since an initial calcium signal arising from the 

action potential at a neuromuscular junction triggers further sarcoplasmic calcium 
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release to activate Troponin C in myofilaments and activate the kinetics of the 

contraction machinery (Dai et al., 2012). In cardiac muscle ageing, changes in the 

calcium signal and the levels of calcium-regulating proteins have been reported to be 

heterogeneous and seemingly sex-specific (Feridooni et al., 2015) whilst skeletal 

muscle ageing has the added complexity of fibre-type specificity (Narici and Maffulli, 

2010).  

Whilst no substantial body of work seems to have explicitly tested for increased basal 

levels of intracellular calcium in aged skeletal muscle, a mouse model of muscular 

ageing has been reported to have leaky sarcoplasmic ryanodine receptors (RyRs) 

resulting from their constitutive oxidation (Andersson et al., 2011). Because the altered 

calcium signalling in the aged skeletal muscle was able to be rescued through RyR1 

stabilisation, it is apparent that oxidative stress could be feeding in as a constant signal 

to actively maintain a state of calcium dysregulation and over-excitability (Andersson et 

al., 2011).  

Interestingly, the same mouse model has been reported to have basally elevated levels 

of sarcoplasmic calcium that stabilises a p38 MAPK-mediated constitutive activation of 

NFκB and increased nitric oxide expression (Altamirano et al., 2012). Although these 

studies exemplify the ability of constitutive signals to propagate and cause substantial 

network disruption through pathway crosstalk, there seems to be no studies testing for a 

reduced responsiveness of p38 or NFκB to an acute stimulus in such mouse model.   

In the case of aged cardiomyocytes, a number of studies report an increase in resting 

calcium levels (Xiao et al., 1994, , Isenberg et al., 2003, Ren et al., 2007, Qin et al., 

2013) with others reporting a decrease (Grandy and Howlett, 2006) or no change 

(Howlett et al., 2006, Howlett, 2010, Ceylan-Isik et al., 2013, Mellor et al., 2014). There 

is evidence that an increase in the basal level of cardiomyocyte calcium levels can result 

in the chronic activation of a number of pathways (Yuan et al., 2014) and potentially the 

subsequent stabilisation of an aged phenotype through the chronic suppression of 

autophagy mediated by a sustained activation of Akt (Hua et al., 2011). However, no 

studies were found that examined the responsiveness of such pathways in aged vs young 

cardiomyocytes.  

Chronic, low-level, inflammation is a wide spread observation in many aged eukaryotes 

which is thought to be largely mediated by the chronic activation of NFκB by a wide 

variety of factors (Chung et al., 2009, Tilstra et al., 2011, Balistreri et al., 2013, Jurk et 
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al., 2014). This chronic activation has been shown to be reduced by antioxidant 

treatment (Spencer et al., 1997, Kim et al., 2006), suggesting that such a state is 

reversible and likely to be at least partially promoted by oxidative stress. Kim et al. 

examined the basal levels of the main NFκB negative regulator, IκBα, in old rat kidneys 

that displayed chronic activation of NFκB and reported no evidence of increased levels 

of this molecule with age (Kim et al., 2006).  

Work on aged rodent skeletal muscle has reported the stabilisation of a state of chronic 

sub-maximal NFκB activation that could not be further increased by a contraction 

protocol (Vasilaki et al., 2006a). However, the authors do not report an increase in the 

basal levels of the IκBα unit associated with the negative regulation of NFκB. Other 

studies that have examined the acute activation of NFκB in old vs young cells have 

reported a reduced activation magnitude in old cells but without observing any increase 

in the basal level of IκBα  (Helenius et al., 1996, Trebilcock and Ponnappan, 1996, 

Helenius et al., 1999, Xiao and Majumdar, 2000,Helenius et al., 2001). A study by Tan 

et al. reported the opposite effect, where the constitutive activation of NFκB was 

actually more sensitive to TNFα stimulation in aged vs new-born smooth muscle cells 

(Yan et al., 1999). Other studies have shown that constitutive activation of NFκB in the 

rat brain is region-dependent and not associated with any change in IκBα levels 

(Korhonen et al., 1997).  

It thus seems that the observation of a constitutive activation of NFκB in ageing is 

widely conserved and can potentially display a reduced responsiveness to acute stimuli. 

However, there is no evidence for this constitutive activation being accompanied by an 

increase in the basal level of the negative regulators of this pathway. It is worth noticing 

that IκBα is the only negative regulator that seems to be investigated alongside the 

constitutive activation of NFκB. This leaves out many other negative regulators such as 

A20 or miRNAs that might become chronically activated under conditions of 

constitutive NFκB activation. 

The increase in oxidative stress observed in a number of tissues with age suggests that 

oxidant-sensitive redox signalling pathways would be expected to become chronically 

active with age. This has indeed been shown in mouse skeletal muscle for NFκB and 

AP-1 (Vasilaki et al., 2006a), for Nrf2 in mice cerebellum, liver and lungs (Zhang et al., 

2012) and HSF1 in rat hepatocytes (Heydari et al., 2000). Whilst all of these studies 

reported a reduced activation of the redox-activated transcription factors to an acute 
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stimulus alongside their constitutive activation, none of them looked at the basal levels 

of negative regulator molecules.  

Whilst there is consensus on the tendency of Nrf2 to become less responsive with age, 

age-related changes in its basal levels seem to be cell and tissue-specific (Zhang et al., 

2015a). Safdar et al. examined the basal levels of both Nrf2 and its main inhibitor 

Keap1 in the vastus lateralis muscle of old individuals and reported that basal Keap1 

levels decreased with age, with the Nrf2:Keap1 ratio not changing significantly (Safdar 

et al., 2010). Other studies have reported a reduced Nrf2 activation to an acute stimulus 

alongside no change (Ungvari et al., 2011a, Done et al., 2016) or even a reduction 

(Ungvari et al., 2011b, Gounder et al., 2012) in the basal levels of Nrf2. Evidence thus 

suggests that the constitutive activation of Nrf2 is not ubiquitous and not necessary to 

observe a reduced activation of the pathway. This could hint at the possibility that Nrf2 

is being actively inhibited through crosstalk by another pathway with age (Wardyn et 

al., 2015). Another possibility could be that the redox signal is not being properly 

elicited in aged tissues as has been shown in skeletal muscle (Palomero et al., 2013).  

The expression and inducibility of HSP70 has been shown to decrease with age by 

various studies (Kregel, 2002, Kayani et al., 2008). This might suggest a decrease in the 

transcriptional activity of HSF-1 with age but also an increase in the HSF1 basal levels, 

since HSP70 is one of its main negative regulators. In accordance with this, Lee et al. 

report a constitutive elevation in the basal levels of HSF-1 in aged human fibroblasts 

which are less responsive to an acute stimulation by heat shock conditions (42oC) (Lee 

et al., 2009). In contrast, aged rat skeletal muscle displayed low basal levels of HSP70 

and a blunted activation of this molecule by a muscular contraction protocol but showed 

no change in HSF1 activation between young and old rats (Vasilaki et al., 2002, 

Vasilaki et al., 2006a).  A study in senescent fibroblasts revealed these to have a blunted 

HSF1 activation but no difference in the basal levels of this molecule was seen between 

senescent and pre-senescent cells (Lu et al., 2000). 

Beyond the cellular level, hormonal imbalances have also been reported to occur with 

age (Chahal and Drake, 2007, Jones and Boelaert, 2015). There is a large body of work 

that has reported the sympathetic nervous system (SNS) to become persistently elevated 

in aged individuals, albeit in a tissue-specific manner (Seals and Esler, 2000, Pascale 

and Govoni, 2016). Whilst some studies report a decrease in the responsiveness of the 

SNS to acute stressors in rats (Margiocco et al., 2010) and humans (Grassi et al., 2003), 

these observations seem to be stimulus-specific (Grassi et al., 2003, Greaney et al., 
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2014, Gagnon et al., 2015).  The age-related loss in responsiveness of the skin 

sympathetic nerve traffic (SSNA) activation by cold stress has been reported in a 

context where its basal levels are decreased in aged individuals (Grassi et al., 2003). In 

contrast, the constitutive elevation of muscle sympathetic nerve traffic (MSNA) was not 

associated with a reduced responsiveness to heat stress by Greaney et al. (Greaney et 

al., 2014). In fact, some authors report no changes in the basal levels of MSNA between 

young and old individuals (Gagnon et al., 2015). 

The Hypothalamic-Pituitary-Adrenal (HPA) axis is a major hormonal stress system in 

vertebrates primarily mediated by cortisol (Gaffey et al., 2016). Cortisol levels fluctuate 

during the day through the activation of a negative feedback loop primarily mediated by 

glucocorticoid receptors at various anatomical sites (Herman et al., 2012). However, 

cortisol levels have been proved to become constitutively elevated under conditions of 

chronic stress (Miller et al., 2007). Evidence exists that chronic stress can result in a 

reduced HPA sensitivity to a posterior acute stress due to the constitutive activation of 

negative feedback mechanisms that induce a stress-habituation response (Mizoguchi et 

al., 2001, Jaferi et al., 2003). However, the reduced sensitivity of HPA to acute stress 

does not always map to a prolonged suppressive state (Ostrander et al., 2006). In fact, 

chronic stress has also been associated with the sensitisation of the activation of the 

HPA pathway to a posterior acute stress (McGuire et al., 2010). A number of studies 

have related elevated cortisol levels under conditions of chronic stress to weakened 

feedback mechanisms whilst others, mainly from models of post-traumatic stress 

disorder, report a decrease in the basal cortisol levels due to the permanent activation of 

negative feedback  (Herman et al., 2012). 

The levels of cortisol release have been reported to increase with age whilst the strength 

of the glucocorticoid-mediated negative feedback has been reported to be diminished 

with age (Gupta and Morley, 2014). However, studies in primates seem to show a 

lowering of cortisol levels with age accompanied with an increased sensitivity to acute 

stress (Goncharova, 2014). Interestingly, Goncharova et al. still reproduced a chronic 

cortisol activation under constitutive stress in primates, evidencing the disparity 

between the ageing process and chronic stress (Goncharova, 2014). The collation of 

studies examining changes in the HPA axis with age reveals inconsistent results which 

are furthermore gender-specific (Goncharova, 2013, Gaffey et al., 2016).  

The literature seems to balance in favour of increased cortisol levels with age in mice 

and humans, with dysfunctional negative feedback evidenced by flattened diurnal 
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fluctuations in cortisol levels and reduced sensitivity to glucocorticoid-mediated 

negative feedback (Goncharova, 2013, Gaffey et al., 2016). However, there is 

conflicting evidence on whether the HPA system might be less responsive to an acute 

stimulus in older individuals (Goncharova, 2013). It should be noted that there is a 

substantial difficulty in separating intrinsic biological changes in the HPA components 

with age from life history. Namely, the individual-specific history of extrinsic stress 

factors concerning the nature and timing of the stress on the particular state of the 

individual organism at the time of the stress (Miller et al., 2007). 

Overall, it is apparent that the presence of different constitutive signals in the context of 

biological ageing and their association with a reduction in system responsiveness is 

highly tissue- and cell- specific. This is in line with the established heterogeneous 

nature of ageing as a biological process. Whilst examples can be found where there is a 

‘blunted’ activation of signalling systems, many of them occur in a context where there 

is no underlying constitutive activation. This is expected since, as mentioned 

previously, the persistent activation of negative regulators can only be one of multiple 

mechanisms of reduced pathway responsiveness. However, of the pathways that did 

display a constitutive activation but reduced response to an acute stimulus, few could be 

related to an increase in the basal levels of negative regulators.  

This is likely to be due to two main reasons. Firstly, it seems likely that the pathways 

are constitutively active in the first place due to a decrease in the basal levels of the 

negative regulators (although most studies did not explicitly test for this). Secondly, 

many studies did not look at the levels of negative regulator molecules when they 

reported the constitutive activation of pathways alongside their reduced responsiveness. 

Those that did, examined the levels of the main negative regulator of the pathway, 

without examining alternative routes of response dampening like the chronic elevation 

of inhibitory miRNA molecules. Thus, whilst mechanistic evidence exists for the 

persistent activation of negative regulators driving a loss in pathway responsiveness, 

current experimental data does not provide any conclusive evidence that such a 

phenomenon may indeed be occurring in aged tissues. 

Investigating the relevance of the reported ‘blunting’ effect of constitutive signals to the 

ageing process thus requires of a yet lacking experiment that directly tests this 

hypothesis. The constitutive activation of the NFκB pathway seems to be well 

conserved across ageing tissues. The use of the literature to identify in what tissue this 

pathway has been reported to lose responsiveness in addition to being chronically 
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activated will lead the way to the testing for the basal levels of a wider number of 

potential inhibitory molecules of this pathway. If any was found to be elevated, the 

rescuing of pathway responsiveness could be attempted through the targeted inhibition 

of the main negative regulator entities identified. 

A finding of particular interest is the ability of constitutive signals to reduce information 

flow through signalling pathways. This means that downstream effectors in signalling 

pathways will be less able to accurately reflect changes in the upstream signalling 

molecules. This translates into an increased heterogeneity in the cellular responses to 

physiological signals and therefore a greater proportion of cells that fail to respond 

appropriately. This increase in heterogeneity has been associated with a reduced system-

level responsiveness and reduced effectiveness of interventions in senescent cells (Dalle 

Pezze et al., 2014). The ability of constitutive signals to reduce information flow across 

signalling pathways is a new perspective on how signalling dysfunctionality may 

propagate across biological networks. 

Importantly, a loss in information flow through signalling pathways means that cells 

will likely respond to signals with an altered magnitude, duration and/or timing. This 

state of quasi-functionality will likely be sufficient to maintain function, but sub-

optimal responses will also be likely to prime the cell for further damage and 

dysregulation and potentially drive a gradual loss of function typical of ageing 

processes. Such a state of quasi-functionality can result in subtle cellular- and tissue- 

level changes in the short term that only develop into an obvious loss of homeostasis in 

the long term.  

Other age-related changes that may affect the cellular regulatory machinery, such as 

altered expression of key sensor molecules or altered intermolecular binding affinities, 

are also likely to reduce information flow through signalling pathways. This suggests 

that information theory is an intuitive framework from which to understand loss of 

function and regulation during the process of biological ageing. Such a perspective has 

so far been overlooked and seems likely to apply to a wide range of biological systems 

that display age-related alterations. It is thus a possibility that a loss in information flow 

through regulatory pathways is a yet unrecognised hallmark of the ageing process.  

Such a conceptual framework based on information theory could mechanistically bridge 

the gap between the concept of stochastic damage during organism lifetime and the 

gradual homeostatic decline observed with age.  
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A clear limitation of the presented work is the use of abstract models to represent ‘a 

given biological network’ whether redox or otherwise. The aim of this approach was to 

test for the generality of an observation which in its abstract nature lent itself to such an 

analysis. That is, that constitutive signals can promote a submaximal activation of 

negative feedback loops and promote a loss in system responsiveness. However, when 

models are not calibrated with experimental data and validated through experimentation 

or other procedures such as identifiability analysis, they remain mathematical 

constructs. In such a way, this work has examined the property of mathematical objects 

(aka. Networks), not “grounded” or “mapped” to a real system by experimental data. 

This is also applicable to our simulations that do not explicitly involve mathematical 

objects in the form of differential equations, since the undertaken Molecular Dynamics 

simulations and the Agent-based models are themselves virtual objects with statistical 

dependencies between the underlying components. 

An attempt was made to validate the theoretical observation through experimentation 

although this proved to be challenging (Section 5). Further work to be undertaken 

would require the formalisation and calibration of a model of a specific cellular 

signalling system. As previously mentioned, the NFκB system could be a good model 

system of relevance to ageing. Time course measurements with a stimulant like TNF in 

a healthy system would be needed to obtain the activation dynamics of the system 

components. Such experimental data would then be used to calibrate the model through 

a parameter estimation procedure. The derivation of model parameters from 

experimental data will mean the mathematical object has been mapped onto the 

biological system of interest. If the developed model displays the same ‘blunting’ 

behaviour under the presence of a constitutive signal, it will provide a powerful 

explanation for the clinical observations of constitutive inflammation in aged tissues 

alongside a loss in responsiveness to infection.  

Theoretical perturbations in the model, like the alteration of species abundances by 90% 

could be validated through knockout/over-expression experimental studies not only to 

validate model behaviour but to confirm any theoretical model predictions on the 

alteration of model parameters that could alleviate the effect of constitutive signals. In 

such a way, the model would act as an exploratory platform to attempt to reverse any 

identified homeostatic dysregulation. It can be anticipated that for the NFκB system this 

methodology is likely not to be a simple task since the system oscillates in response to 

stimulation. This means that the measurement time points need to be chosen carefully 
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and changes in signal transduction may affect the information transmitted in the 

frequency domain as well as the time domain. 

The field of biogerontology ultimately has to provide an explanation that bridges two 

observations. On the one hand, a healthy and tightly regulated biological system. On the 

other hand, a loss of homeostasis. It is evident that this loss of homeostasis is gradual 

and current thinking places the concept of stochastic damage as the cause of this 

observation. But what is the mechanistic basis via which stochastic damage promotes a 

gradual homeostatic decline? The answer to this question remains unclear. However, 

this work sheds light as to how the observed decline may evolve. Biological systems do 

not suddenly collapse during ageing. Rather, different subsystems may be 

heterogeneously affected by the stochastic nature of damage. Since homeostasis is 

defined as a property where an internal state can be maintained in spite of perturbations 

then if homeostasis fails, even in a sub-system, there should be a constitutive elevation 

or decrease in the level of biological entities involved in the system. These are changes 

recognisable by baseline measurements. Constitutively elevated or diminished 

biological entities will be likely to serve as inputs or signals to other cellular pathways 

through cross-talk. This work establishes that if this is the case, dysfunctionality can 

propagate from the disrupted network sub-system to other biological pathways by 

interfering with their information-processing capabilities. This would be expected in 

turn to prime for further damage to occur, as the cell loses its ability to accurately sense 

and respond to its environment. A gradual functional decline arising from diminished 

information processing capabilities of cells with age intuitively bridges the molecular 

with the cellular scale. The importance of constitutive signals in other homeostatic 

dysregulations such as cancer suggests this work might be applicable to other diseases. 

Should an attempt be made to further bridge the concept of damage and the proposed 

mechanism of dysfunctionality propagation, the question would remain as to how 

exactly does damage result in the constitutive signals. One possibility is that damage to 

the genome results in a mutation or set of mutations that causes the loss of system 

homeostasis. However, such a simple explanation as proposed by the somatic mutation 

theory of ageing has not been proven to be the main driver of the ageing process. The 

simulation of a ‘runaway’ process in this work suggests that positive feedback loops can 

potentially provide an architectural weak point in biological networks. Positive 

feedback loops often display a threshold activation and stochastic perturbations to the 

parameters of the system by random damage might promote their stochastic activation 
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with a certain frequency. In such a way, stochastic damage manifests as a substantial 

homeostatic perturbation to the system in the form of a constitutive signal.  

To confirm such a hypothesis one could take a signalling system that employs positive 

feedback loops such as calcium signalling (calcium-induced calcium release) and 

perform single cell live microscopy using a fluorescent probe for calcium. It would be 

expected that older cells, or cells exposed to a damaging environment should display a 

greater frequency of fluorescence sparks when at resting conditions. Such sparks would 

be spontaneous and unpredictable.  Other published work has been able to measure 

information transmission in mammalian signalling pathways (Uda et al., 2013). An 

important validation of the ideas put forward in this work would involve repeating those 

experiments in aged mammalian cells to confirm that there is a generalised loss of 

information transmission in most pathways. Due to the predicted generality of the 

hypothesis, a large collective effort would be needed to test for this loss in information 

transmission with age in different pathways and in different cell types.  
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Chapter 8 

 

Conclusion 

 

Aberrant signalling in the form of reduced pathway responsiveness to physiological 

stimuli is a common observation in many aged biological systems. A number of 

mechanisms could underlie such a state. For example, a reduction in the expression of 

key sensor molecules or altered intermolecular binding affinities. This work proposes 

another possible mechanism via which such system-level loss in responsiveness may 

arise. Namely that constitutive signals in the cellular environment can actively maintain 

a state of reduced responsiveness through the persistent, sub-maximal, activation of 

negative regulators within a signalling system.  This effect would exist as a sustained 

habituation response or a constant semi-refractory period within a signalling pathway in 

a manner similar to those of antagonistic hallmarks of ageing (Lopez-Otin et al., 2013). 

The reported phenomenon should be easily identifiable experimentally since it predicts 

a seemingly paradoxical observation of signalling pathways being constitutively active 

but also displaying basally elevated levels of at least some of the pathway’s negative 

regulators. The theoretical analysis undertaken predicts such an effect to be able to 

occur in a wide variety of biological systems. This suggests its relevance transcends the 

field of ageing biology alone and is in principle likely to occur in other homeostatic 

dysregulations such as cancer. This is especially since constitutive signals are hallmarks 

of a loss of homeostasis. The generality of the observation in pseudo-randomly 

generated networks raises the possibility that this phenomenon could potentially be 

applicable to non-biological systems. It is important to highlight at this point that whilst 

this work has focused on the potential disruptive effects of constitutive signals in aged 

systems, genetic and dietary interventions proved to increase the lifespan in various 

organisms can be viewed as being constitutive signals in themselves.  

It is worth of mention that the mechanism put forward in this work is not the only way 

constitutive signals could maintain a state of reduced responsiveness in a biological 

system. Persistent signals can make biological systems enter a new steady state through 

the chronic activation of network sub-structures, like positive feedback loops, that 

display a bistable behaviour (Shiraishi et al., 2010). Such structures have been shown to 

be able to be stochastically activated and could well serve as the sources of the 
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constitutive signals themselves (Faucon et al., 2014). It would be an interesting 

possibility that these structures could provide an architectural weak-point within 

biological networks. This is especially since our simulations of a stochastic ‘runaway’ 

process indicate that intracellular overcrowding may prime for such homeostatic 

dysregulations to occur. 

Biological ageing is a process that encompasses observations often too heterogeneous to 

draw coherent conceptual frameworks that may shed light into the generality of the 

underlying gradual loss of function. How a widespread loss of biological homeostasis is 

triggered and evolves lies as a core question in biogerontology and is of great relevance 

to addressing age-related diseases. Computational modelling provides a means for the 

theoretical formulation of novel ideas to educate our intuition on how the ageing 

process may unfold. This work has made use of this methodology to examine how 

constitutive signals, exemplified by oxidative stress, can promote states of quasi-

functionality in cellular signalling systems which would be expected to prime for a 

gradual loss in homeostasis.  

Theoretical findings were tested across different model topologies, parameter values 

and modelling frameworks. Multiple examples are drawn from the literature to put 

forward that constitutive signals, as manifestations of homeostatic disruptions in 

biological systems, should be viewed as potential sources of wide-spread network 

dysfunctionality. This can be deemed to be a useful concept to bear in mind for any life 

science researcher that encounters a phenotype of dysregulated signalling in their 

studies of ageing and disease. In summary, this work reports a process of ‘molecular 

habituation’ within biological signalling pathways as a potential mechanism of 

signalling dysregulation during biological ageing. 
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Chapter 9 

 

Appendix 
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9.1 Supplementary Figures 

 
Supplementary Figure 1 (S1). (Next page). Sample network topologies produced by the 

random network generation algorithm under constant configuration settings. Grey 

arrows correspond to the utilization of the product synthesized by a reaction node by 

another reaction node. Red arrows correspond to inhibitory interactions where the 

product synthesized by a reaction node promotes the degradation of the substrate of 

another reaction node. Network size = 20. 
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9.2 Supplementary tables 

 

Supplementary Table 1 (ST1).  Ordinary differential equations in Model 1. 

 

Supplementary Table 2 (ST2). Kinetic parameters in Model 1 
 

 

 

  

Variable Equation 

𝑑(Oxidant)/𝑑𝑡 𝑘1 −𝑘2 · 𝐴𝑂𝑋 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(Sensor)/𝑑𝑡 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 − 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 )/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡  

𝑑(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟)/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 

𝑑(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)/𝑑𝑡 𝑘4 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 · 𝑅𝑒𝑙𝑎𝑦 − 𝑘5 · 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡)
/𝑑𝑡 

𝑘9 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋 − 𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡   

𝑑(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒)
/𝑑𝑡 

𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡 − 𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  

𝑑(𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)/𝑑𝑡 𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋)
/𝑑𝑡 

𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘9 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋  
 

Rate Constant Value  Reaction 

𝑘1 0 Oxidant generation 

𝑘2 0.1 Oxidant scavenging 

𝑘3 0.1 Sensor oxidation 

𝑘4 0.1 Relay reaction 

𝑘5 0.1 Function decay 

𝑘6 0.1 Sensor reduction 

𝑘7 0.01 Resolving of intermediate 

𝑘8 0.1 Inhibitory complex formation 1 

𝑘9 0.1 Reductant reduction 
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Supplementary Table 3 (ST3).  Species initial abundances in Model 1 

Name Initial abundance (AU) 

Oxidant 0 ǂ 
Sensor 10 

SensorOX 0 

Activator 0 

Function 0 

Reductant 100 

Intermediate 0 

Inhibitor 0 

ReductantOX 0 

AOX 100 (fixed) 

Relay 10 (fixed) 

ǂ Value raised to 100 during acute stimulus 

 

Supplementary Table 4 (ST4). Ordinary differential equations in Model 2 

 

  

Variable Equation 

𝑑(Oxidant)/𝑑𝑡 𝑘1 −𝑘2 · 𝐴𝑂𝑋 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(Sensor)/𝑑𝑡 𝑘7 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 + 𝑘11 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑘3
· 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 )/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘5 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡  

𝑑(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟)/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘7 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 

𝑑(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)/𝑑𝑡 𝑘4 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 · 𝑅𝑒𝑙𝑎𝑦 − 𝑘9 · 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 · 𝑅𝑒𝑙𝑎𝑦2  

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡)
/𝑑𝑡 

𝑘8 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋 − 𝑘5 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡   

𝑑(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒)

/𝑑𝑡 

𝑘5 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡 − 𝑘6 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  

𝑑(𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)/𝑑𝑡 𝑘6 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘7 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 − 𝑘11
· 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋)
/𝑑𝑡 

𝑘6 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘8 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋  
 

𝑑(𝑁𝑒𝑔𝑅𝑒𝑔)/𝑑𝑡 𝑘9 · 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 · 𝑅𝑒𝑙𝑎𝑦2 − 𝑘12 · 𝑁𝑒𝑔𝑅𝑒𝑔 

𝑑(𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒)/𝑑𝑡 𝑘10 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 · 𝑁𝑒𝑔𝑅𝑒𝑔 − 𝑘11 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒  
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Supplementary Table 5 (ST5). Kinetic parameters in Model 2 

 

 

 

 

Supplementary Table 6 (ST6).  Species initial abundances in Model 2. 

Name Initial abundance (AU) 

Oxidant 0 ǂ 

Sensor 10 

SensorOX 0 

Activator 0 

Function 0 

Reductant 100 

Intermediate 0 

Inhibitor 0 

ReductantOX 0 

NegReg 0 

Inactive 0 

AOX 100 (fixed) 

Relay 10 (fixed) 

Relay2 10 (fixed) 

ǂ Value raised to 100 during acute stimulus  

Rate Constant Value  Reaction 

𝑘1 0 Oxidant generation 

𝑘2 0.1 Oxidant scavenging 

𝑘3 0.1 Sensor oxidation 

𝑘4 0.1 Relay reaction 

𝑘5 0.1 Sensor reduction 

𝑘6 0.1 Resolving of intermediate 

𝑘7 0.01 Inhibitory complex formation 1 

𝑘8 0.1 Reductant reduction 

𝑘9 0.1 Relay reaction 2 

𝑘10 0.1 Inactivation of activator 

𝑘11 0.1 Inhibitory complex formation 2 

𝑘12 0.1 Degradation of negative regulator 
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Supplementary Table 7 (ST7) . Ordinary differential equations in Model 3 

 

  

Variable Equation 

𝑑(Oxidant)/𝑑𝑡 𝑘1 −𝑘2 · 𝐴𝑂𝑋 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(Sensor)/𝑑𝑡 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 + 𝑘14 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑘3
· 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 

𝑑(𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 )/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡  

𝑑(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟)/𝑑𝑡 𝑘3 · 𝑆𝑒𝑛𝑠𝑜𝑟 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 − 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 − 𝑘11
· 𝑁𝑒𝑔𝑅𝑒𝑔 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟  

𝑑(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)/𝑑𝑡 𝑘4 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 · 𝑅𝑒𝑙𝑎𝑦 − 𝑘5 · 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡)
/𝑑𝑡 

𝑘9 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋 − 𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡   

𝑑(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒)
/𝑑𝑡 

𝑘6 · 𝑆𝑒𝑛𝑠𝑜𝑟𝑂𝑋 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡 − 𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  

𝑑(𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟)/𝑑𝑡 𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘8 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 − 𝑘14
· 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 

𝑑(𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋)
/𝑑𝑡 

𝑘7 · 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 − 𝑘9 · 𝑅𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡𝑂𝑋  
 

𝑑(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙)/𝑑𝑡 𝑘10 · 𝑂𝑥𝑖𝑑𝑎𝑛𝑡 · 𝑆𝑒𝑛𝑠𝑜𝑟2 − 𝑘13 · 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 · 𝑃𝑎𝑟𝑅𝑒𝑙𝑎𝑦 

𝑑(𝑁𝑒𝑔𝑅𝑒𝑔)/𝑑𝑡 𝑘13 · 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 · 𝑃𝑎𝑟𝑅𝑒𝑙𝑎𝑦 − 𝑘12 · 𝑁𝑒𝑔𝑅𝑒𝑔 

𝑑(𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒)/𝑑𝑡 𝑘11 · 𝑁𝑒𝑔𝑅𝑒𝑔 · 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟 − 𝑘14 · 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 · 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 
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Supplementary Table 8 (ST8). Kinetic parameters in Model 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Rate Constant Value  Reaction 

𝑘1 0 Oxidant generation 

𝑘2 0.1 Oxidant scavenging 

𝑘3 0.1 Sensor oxidation 

𝑘4 0.1 Relay reaction 

𝑘5 0.1 Function decay 

𝑘6 0.1 Sensor reduction 

𝑘7 0.01 Resolving of intermediate 

𝑘8 0.1 Inhibitory complex formation 1 

𝑘9 0.1 Reductant reduction 

𝑘10 0.1 Sensor2 oxidation 

𝑘11 0.1 Inactivation of activator 

𝑘12 0.1 Degradation of negative regulator 

𝑘13 0.1 Parallel relay reaction 

𝑘14 0.1 Inhibitory complex formation 2 
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Supplementary Table 9 (ST9).  Species initial abundances in Model 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ǂ Value raised to 100 during acute stimulus 

 

 

Supplementary Table 10 (ST10). Ordinary differential equations in Model 4 

 

 

 

 

 

 

  

Name Initial abundance (AU) 

Oxidant 0 ǂ 

Sensor 10 

SensorOX 0 

Activator 0 

Function 0 

Reductant 100 

Intermediate 0 

Inhibitor 0 

ReductantOX 0 

Parallel 0 

NegReg 0 

Inactive 0 

AOX 100 (fixed) 

Relay 10 (fixed) 

Sensor2 10 (fixed) 

ParRelay 10 (fixed) 

Variable Equation 

𝑑O/𝑑𝑡 𝑘1 − 𝑘2 · 𝑂 

𝑑S/𝑑𝑡 𝑘3 − 𝑘4 · 𝑆 − 𝑘5 · 𝑂 · 𝑆 

𝑑𝐴/𝑑𝑡 𝑘5 · 𝑂 · 𝑆 − 𝑘6 · 𝐴 − 𝑘8 · 𝐴 · 𝑁 

𝑑𝐹/𝑑𝑡 𝑘6 · 𝐴 − 𝑘7 · 𝐹 

𝑑𝑁/𝑑𝑡 𝑘7 · 𝐹 − 𝑘9 · 𝑁 
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Supplementary Table 11 (ST11). Kinetic parameters in Model 4 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 12 (ST12).  Species initial abundances in Model 4 

 

 

  

  

  

  

  

  

  

ǂ Value raised to 100 during acute stimulus  

  

Rate Constant Value  

𝑘1 0 

𝑘2 0.1 

𝑘3 0.1 

𝑘4 0.01 

𝑘5 0.1 

𝑘6 0.1 

𝑘7 0.01 

𝑘8 0.1 

𝑘9 0.01 

Name Initial abundance (AU) 

O 0 ǂ 

S 10 

A 0 

F 0 

N 0 
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Supplementary Table 13 (ST13). Ordinary differential equations in Model 5 

 

 

 

 Supplementary Table 14 (ST14). Kinetic parameters in Model 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Equation 

𝑑O/𝑑𝑡 𝑘1 − 𝑘2 · 𝑂 

𝑑S/𝑑𝑡 𝑘3 − 𝑘4 · 𝑆 − 𝑘5 · 𝑂 · 𝑆 

𝑑𝐴/𝑑𝑡 𝑘5 · 𝑂 · 𝑆 − 𝑘6 · 𝐴 − 𝑘8 · 𝐴 · 𝑁 

𝑑𝐹/𝑑𝑡 𝑘6 · 𝐴 − 𝑘7 · 𝐹 

𝑑𝑆2/𝑑𝑡 𝑘12 −𝑘13 · 𝑆2 − 𝑘10 · 𝑂 · 𝑆2 

𝑑𝑅/𝑑𝑡 𝑘10 · 𝑂 · 𝑆2 − 𝑘11 · 𝑅 

𝑑𝑁/𝑑𝑡 𝑘11 · 𝑅 − 𝑘9 · 𝑁 

Rate Constant Value  

𝑘1 0 

𝑘2 0.1 

𝑘3 0.1 

𝑘4 0.01 

𝑘5 0.1 

𝑘6 0.1 

𝑘7 0.1 

𝑘8 0.1 

𝑘9 0.01 

𝑘10 0 

𝑘11 0 

𝑘12 0 

𝑘13 0.01 
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Supplementary Table 15 (ST15).  Species initial abundances in Model 5 

 

 

 

 

 

 

 

ǂ Value raised to 100 during acute stimulus 

 

9.3 Supplementary text 

 

The model published by Schilling et al. (Schilling et al., 2009) was used for the testing 

of the hypothesis on a model developed independently by a third party not involved in 

the work being undertaken. Such a model of Epo signalling was originally developed to 

map cell proliferation states to underlying network dynamics regarding the 

phosphorylation state of ERK1 and ERK2 molecules. This published model displayed 

the following features which led to its selection as an independent testing platform for 

our hypothesis: 

 

-It was available as an SBML file online through the BioModels database 

-It is published in a reputable, peer-reviewed journal 

-Its an ODE-based model of a signalling system which is different to our redox 

signalling models in its overall topology (phosphorylation cascades) and its 

physiological role 

-The system was modelled in a way that the basal level of the signal can be altered by 

the introduction of two simple synthesis/degradation reactions without modifying the 

reactions calibrated and originally established by the authors 

 

  

Name Initial abundance (AU) 

O 0 ǂ 

S 10 

A 0 

F 0 

S2 10 

R 0 

N 0 
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