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Abstract  

The sea surface microlayer (SML; depth < 400 µm) is a physically and biogeochemically 

distinct interface covering the entire ocean surface. Biologically-derived surfactants are 

ubiquitous in the SML, where they limit air-sea gas exchange and the formation of marine 

boundary layer aerosols that impact atmospheric chemistry and climate. 

 

Total surfactant activity (SA) and chromophoric dissolved organic matter (CDOM) were 

measured in the SML, in depth profiles (≤ 100 m) and semi-continuously in sub-surface water 

(SSW: 7 m non-toxic seawater supply) on Atlantic Meridional Transect (AMT) cruises 24 

(2014) and 25 (2015), from 50°N to 50°S. On-board estimates of the gas transfer velocity (kw) 

of CH4 (custom gas exchange tank) were related to SA distributions in the SML to evaluate 

surfactant control of air-sea gas exchange. 

SML and SSW SA (mg L-1 eq. T-X-100) was always higher in the Northern Hemisphere than 

in the Southern Hemisphere (0.10 - 1.76 in the Northern Hemisphere; 0.08 - 0.63 in the Southern 

Hemisphere).  

A constant enrichment of SA in the SML was observed at all wind speeds encountered. SA 

enrichment factors (EF = SASML/SASSW) ranged between 0.95 – 4.25 in the Atlantic Ocean, 

higher in the Northern Hemisphere than in the Southern Hemisphere. EF >1 up to the maximum 

mean wind speed recorded (~13 m s-1) challenges the idea that high latitude wind speeds > 12 

m s-1 preclude high EFs and implies that the SML is self-sustaining concerning SA.  

CDOM absorption coefficient (a300) in general was higher in the Northern Hemisphere (range 

0.10 - 1.52 m-1) than in the Southern Hemisphere (range 0.17 - 0.82 m-1). CDOM spectral slope 

(S275-295) showed an inverse correlation with CDOM (a300) and was significantly lower (t-test, 

p < 0.001) in the SML than in the SSW (SML; 0.033 ± 0.005 nm-1, SSW; 0.038 ± 0.007 nm-1) 

suggesting in-situ CDOM production in the SML and more refractory CDOM in the SSW.  

CH4 k660 (kw for CO2 in seawater at 20°C) derived from the gas exchange tank (6.9 - 9.8 cm h-

1) gave film factors (R660´; sample kw / surfactant-free MilliQ kw) that strongly correlated with 

SML SA (r2 = 0.63, p = 0.001, n = 13). Corresponding R660´ suppressions ~ 25% imply a strong 

control of Atlantic Ocean gas exchange by surfactant.
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% percentage 
°C degree in Celsius 
°N     north 
°S     south 
µg L-1 microgram per litre 
µL microlitres = 1 x 10-6 litres 
µm  micrometre 
µM micromolar = 1 x 10-6 mols 
µmolL-1 micromole per litre 
a275 absorption coefficient at 275 nm 
a295 absorption coefficient at 295 nm 
a300  absorption coefficient at 300 nm 
a350  absorption coefficient at 350 nm 
a400 absorption coefficient at 400 nm 
a440  absorption coefficient at 440 nm 
AC Azores current 
Ag/AgCl silver/silver chloride 
AMT Atlantic meridional transect 
Ar arsenic 
ASUW Atlantic Subarctic Upper Water 
AUs absorbance unit 
aλ absorption coefficient at λ nm 
BC Brazil current 
BenC Benguela current 
BODC British oceanography data centre 
C     carbon 
Ca calcium 
CC Canary current 
CCi                                                       capacitive current 
Cd cadmium 
CDOM chromophoric dissolved organic matter  
cells ml-1 cells per millilitre 
CH4 methane 
cm h-1 centimetre per hour 
cm2 cubic centimetre 
cm3 cubic centimetre 
CO2         carbon dioxide  
Cr chromium 
CSEC central south equatorial current 
CTD conductivity, temperature and density 
Cu copper  
CZCS coastal zone colour scanner  
Da dalton 
DCM deep chlorophyll maximum 
DOC dissolved organic carbon 
DOM dissolved organic matter  
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DON dissolved organic nitrogen 
DOP dissolved organic phosphorous 
DS drop size 
E east 
EF enrichment factor 
ENACW eastern north Atlantic central water 
ETRA eastern tropical Atlantic 
F flux 
FC Falklands current 
Fe iron 
FKLD southwest Atlantic continental shelf (Falkland Islands) 
GC Guinea current 
H     hydrogen 
h hour 
HCHs hexachlorocyclohexane 
HCl hydrochloric acid 
HDPE high-density polyethylene 
He helium  
HMDE                         hanging mercury drop electrode 
HWU Heriot Watt university 
Hz hertz  
K potassium 
KCl potassium chloride 
kg L-1 kilogram per litre 
Km  kilometre 
km kilometre 
L litre 
LCW liquid core waveguide 
LN natural logarithm 
LPU Liverpool university 
m s-1  meter per second 
m metre 
m-1 per meter 
mg C m-2 mth-1 milligram carbon per cubic meter per month 
mg C m-3 d-1 milligram carbon per cubic meter per day 
mg L-1 milligram per litre 
mg m-3 milligram per cubic meter 
Mg magnesium 
ml min-1  millilitre per minute 
ml/cm2 millilitre per square centimetre 
ml/dip millilitre per dip 
MLD mixed layer depth 
mm millimetre 
MODIS  moderate resolution imaging spectroradiometer 
mol L-1 mol per litre 
MW molecular weight 
N     nitrogen 
n sample number 
N2O        nitrous oxide 
Na sodium  
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NaCl sodium chloride 
NACW north Atlantic central water 
NADR north Atlantic drift region 
NAG northern Atlantic subtropical gyre 
NAST (E) north Atlantic sub-tropical (Eastern) 
NAST (W) north Atlantic sub-tropical (Western) 
NATR north Atlantic tropical  
NBC north Benguela current 
NEC north equatorial current 
NECC north equatorial counter current 
ng L-1 nomogram per litre 
NH3

  ammonia 
NH4+ ammonium 
Ni nickel 
nm  nanometre 
nM nanomolar = 1 x 10-9 mols 
NO2

-      nitrite 
NO3

-      nitrate 
O2 oxygen 
P     phosphorous 
p probability 
PAHs polycyclic aromatic hydrocarbon 
Pb lead 
PC Portugal current 
PCBs polychlorinated biphenyls 
PCP     pentachlorophenol 

PML Plymouth marine laboratory 
PO4

3-        phosphate 

RAGNARoCC  radiatively active gases from the north Atlantic region and climate   
change                              

ref reference 
RI refractive index 
RRS Royal research ship 
S salinity 
S sulphur 
SA surfactant activity 
SAC south Atlantic current 
SACW south Atlantic subarctic central water 
SAG southern Atlantic subtropical gyre 
SAR synthetic aperture radar 
SASW sub-Antarctic surface waters 
SATL south Atlantic gyral 
Sc  Schmidt number 
SEC  south equatorial current 
SF6  sulphur hexafluoride  
SiO4

2-      silicate     

SML sea surface microlayer 
Sr strontium 
SSTC south sub-tropical convergence 
SSW sub-surface water 
TDC total dissolved carbohydrates 
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TEP transparent exopolymer particles 
TOC total organic carbon 
Tp total phosphorous 
T-S temperature-salinity 
t-test student’s T-test 
V voltage 
W west 
WNACW western north Atlantic central water 
WPI world precision instruments  
WTRA western tropical Atlantic 
Zn zinc 
λ wavelength 
σt  The density of a seawater sample determined from its in situ 

temperature and salinity 
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Chapter 1. General Introduction 

1.1 Sea Surface MicroLayer (SML) 

The sea surface microlayer (SML) is the boundary between the surface ocean and the 

atmosphere with strong gradients in physical and biogeochemical characteristics due to reduced 

mixing with the underlying water (Hardy, 1982; Williams et al., 1986; Liss et al., 2005; Cunliffe 

et al., 2013). It is ubiquitous in the oceans and covers ~70% of the Earth’s surface (Liss et al., 

2005). 

The SML contains a heterogeneous mixture of organic compounds including high-molecular-

weight (HMW) polysaccharides (extracellular phytoplankton products) (Sieburth et al., 1976; 

Plavšić and Ćosović, 2000; Gogou and Repeta, 2010), lipids (Gašparović et al., 1998; Gogou 

and Repeta, 2010), proteins and amino acids (Gašparović et al., 1997; Kuznetsova et al., 2004; 

Gogou and Repeta, 2010) and humic substances (Hunter and Liss, 1981; Barger and Means, 

1985; Williams et al., 1986; Frew and Nelson, 1992) with surface active properties and different 

degrees of solubility. 

Flagellates and virus-like particles (Joux et al., 2006), archaea (Cunliffe and Murrell, 2010), 

bacteria (Bezdek and Carlucci, 1972; Cunliffe and Murrell, 2010), zooplankton (Passow and 

Alldredge, 1999; Kujawinski et al., 2002) and protists (Kujawinski et al., 2002) are also 

abundant in the SML, as are zooplankton grazing products (Kujawinski et al., 2002; Cunliffe 

and Murrell, 2010), bacterially produced refractory material (Jiao et al., 2010) and 

anthropogenic pollutants (Wurl and Obbard, 2004). 

The SML retains its integrity even at high surface turbulence (Wurl et al., 2011b; Sabbaghzadeh 

et al., 2017) and recovers within seconds following physical disturbance. Cunliffe et al. (2013) 

conducted tank experiments that showed reformation of the SML and its components within 

seconds following physical disruption.  

When the concentration of surface active compounds (surfactants) exceeds some threshold 

value (i.e. more than two or three times higher than concentrations in the corresponding 

underlying waters), the SML becomes visibly distinguishable from the surrounding waters 

(Romano, 1996). This monomolecular surface film of ~ 2 – 3 nm thickness is usually referred 

to as a ‘‘visible slick’’ and frequently as a surface nano layer (SNL). It has a similar composition 
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to the SML and persists under low to moderate wind speed conditions (Williams et al., 1986; 

Hühnerfuss, 2006; Cunliffe et al., 2013) (Figure 1.1). 

Figure 1.1. Visible slicks on the sea surface. Photograph adapted from Engel et al. (2017). 

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

3 
 

Visible slicks can be identified as dark (grey) areas (Figure 1.1). For example, synthetic aperture 

radar (SAR) detects visible oil spills based on physical characteristics such as film thickness 

and its effect on damping sea surface roughness. It has been shown that nearly 75% of the sea 

surface may be covered by visible slicks at wind speeds between 2 and 3 m s-1 (Romano, 1996; 

Gade et al., 2006). Liss (1983) previously established that visible slicks do not persist beyond 

light winds.  

As well as visible slicks, there is a ubiquitous, dynamic, “invisible” SML with a typical 

thickness between 150 µm and 400 µm (Liss et al., 2005; Cunliffe et al., 2013). It is this 

component that persists at high surface turbulence, routinely being detectable at wind speeds 

higher than the global oceanic average of 6.6 m s-1 (Archer and Jacobson, 2005) and even up to 

~12 m s-1 (Wurl et al., 2011b; Sabbaghzadeh et al., 2017). This invisible SML is studied further 

during this thesis with respect to its persistence at high wind speeds, its broad chemical 

composition, selected chemical enrichment factors relative to the underlying water and its 

control on gas transfer velocity (kw) in the open ocean. 

The SML is also defined operationally by its thickness as determined using various samplers 

(Cunliffe et al., 2013; Cunliffe and Wurl, 2014). Zuev et al. (2001) described the SML as 

varying from ~ 30 µm to 300 µm. Later, Zhang et al. (2003) described the SML as a “layer of 

sudden change” in physiochemical properties with a thickness of 50 ± 10 µm. 

The SML is enriched or depleted in a range of organic and inorganic components, controlled 

by several mechanisms (Figure 1.2). 
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Figure 1.2. The dynamics of organic and inorganic compounds in sea surface microlayer (SML). 
Adapted from Hunter (1980) and Engel et al. (2017). 
 
Materials are transported from deep waters to the SML mainly by bubble scavenging and 

turbulence, driven by wind and wave action (Ẑutić et al., 1981; Hunter, 1997; Gašparović et 

al., 1998; Stefan and Szeri, 1999; Wurl et al., 2011b; Cunliffe et al., 2013). The SML materials 

are dispersed in the presence of breaking waves at high wind speeds. However, these materials 

are reabsorbed at the surface of the rising bubbles generated by the same breaking waves and 

released back to the SML or to the atmosphere as aerosols via bubble bursting (Hunter, 1975; 

Gao et al., 2012; Cunliffe et al., 2013; Sabbaghzadeh et al., 2017). The foamy patches 

frequently observed after breaking waves are a consequence of surfactant scavenging by 

bubbles rising towards the SML (Wurl et al., 2011b). 

Bubbles increase the surface area available for surfactants to be accumulated. Tseng et al. 

(1992) studied the transfer of surfactants from seawater to the atmosphere by bursting bubbles 

and concluded that small bubbles are more effective in transporting surfactants to the air-sea 

interface. Based on a dimensional analysis of bubbles they proposed that the amount of 

surfactants scavenged by bubbles rising to the surface is proportional to the number of bubbles 

and the average bubble surface area (Tseng et al., 1992). 

Eddy diffusion 

 

Sinking/Sedimentation 

 

Bubble bursting 

 

Wet and Dry deposition (e.g. rain, dust) 

 
Wind and wave action 

 

Buoyant gel particles 
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Other mechanisms including upwelling, convection, direct deposition from the atmosphere 

(MacIntyre, 1974; Hunter, 1975; Dragcevic and Pravdic, 1981; Hardy, 1982), molecular 

diffusion, the formation of Transparent Exopolymer Particles (TEP), zooplankton grazing, 

bacterial degradation, UV irradiation (photochemical reactions), sea spray formation and 

sedimentation mediates enrichment and depletion of compounds in the SML (Cullen et al., 

1989; Azetsu-Scott and Passow, 2004; Wurl et al., 2009; Russell et al., 2010) (Figure 1.2). 

The SML controls the exchange rates of heat, gas and momentum between the oceans and the 

atmosphere. Thus, the SML influences the biogeochemical cycling of compounds in the short 

term and global climate regulation in the long term (Cunliffe et al., 2013).  

1.1.1  Historical perspective: The development of early models of the SML 

Several conceptual models have been proposed to help describe the SML structure based on its 

biological and chemical characteristics. 

The very first concept of the SML introduced the ‘neuston’; a layer containing small organisms 

at the sea surface (Naumann, 1917). Later research led to the identification of three categories 

of organisms in the SML: bacteria (bacterioneuston), phytoplankton (phytoneuston) and 

zooplankton (zooneuston). For all, their abundance in the SML is higher than in underlying 

water, as a result of, for example, diurnal vertical migration and positive photo taxis (Hardy, 

1971; Marumo et al., 1971; Hardy, 1973; Kjelleberg and Håkansson, 1976; Wandschneider, 

1979). 

The classical description of surfactant characteristics in the SML was the “wet dry” model 

(Hardy, 1982). This model defines two different surfactant layers: an uppermost defined as “dry 

surfactant”, containing lipids and fatty acids and accounting for the bulk of total surfactant, and 

a lower, “wet surfactant” layer consisting of proteins and polysaccharides (Hardy, 1982).  

Later, Sieburth (1983) proposed another layered model to characterize the SML as a more 

complicated structure based on its components. In this model an extra layer of neuston 

(Naumann, 1917) containing bacterioneuston, phytoneuston and zooneuston underlies the two 

layers defined by Hardy (1982). It was also hypothesized that carbohydrates were the main 
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component of  marine surfactants, with smaller contributions from proteins and lipids (Sieburth, 

1983).  

This model has recently been further revised (Cunliffe and Murrell, 2009), supported by the 

characterization of enriched microgel particles in the SML (Wurl and Holmes, 2008; Cunliffe 

et al., 2013). In this “hydrated gelatinous matrix model” the SML is enriched in polysaccharides 

in the form of Transparent Exopolymer Particles (TEP) which assist the formation and stability 

of the SML, plausibly by forming metal ion bridges and hydrogen bonds (Berman and Passow, 

2007; Wurl and Holmes, 2008; Cunliffe and Murrell, 2009; Cunliffe et al., 2009b; Frka et al., 

2009) (Figure 1.3). 

 
Figure 1.3. Schematic of SML structure from Cunliffe et al. (2011), as adapted from the ideas of 
Sieburth (1983), Maki (1993) and Hardy (1982)  

1.1.2 SML sampling techniques 

Renewed interest in studying the SML has focused attention on the various available samplers, 

which collect samples of varying thickness and composition. The most commonly used 

methods for SML sampling include the mesh screen (Garrett, 1965), rotating drum, membrane 

filters and glass plate (Harvey, 1972; Hatcher and Parker, 1974).  

Other methods, including the floating tray, freezing probe and polyvinyl chloride (PVC) film 

(Hamilton and Clifton, 1979) have been much less frequently used and are now out of favour 

for sampling the SML. For example, floating trays were used to collect thicker samples 
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especially suitable for diverse downstream analyses. However, such samples might not be 

suitable for determination of chemical and biological compound enrichments in the SML due 

to dilution by subsurface waters (Hatcher and Parker, 1974). Thus, floating trays are now 

deemed impractical for SML sampling. 

One common sampler in use is the glass plate (Figure 1.4), first described by Harvey and 

Burzell (1972). It is one of the most efficient techniques but collects relatively “thin” samples 

(i.e. 20 – 150 µm) compared to other commonly used samplers such as the Garrett screen (~150 

– 400 µm; see below) (Harvey and Burzell, 1972; Cunliffe et al., 2009a; Cunliffe and Wurl, 

2014). 

  
Figure 1.4. Some typical SML samplers: Garrett screen (left), membrane filter (middle) and 
glass plate (right). Adapted from Cunliffe and Wurl (2014). 
 
Samples collected with the glass plate are suitable for biological composition studies and for 

determining chemical and microbial enrichment in the SML (Hatcher and Parker, 1974; 

Cunliffe and Wurl, 2014). Glass plates are also hydrophobic, which means that dissolved 

organic matter components of low hydrophilic nature such as amino acids and lipids can be 

collected efficiently (Momzikoff et al., 2004). Frka et al. (2009) suggested that the glass plate 

is particularly appropriate for less productive oligotrophic oceanic regions since it collects a 

relatively thin SML. 

However, it is impractical to use glass plate samplers on a large vessel as the glass plate needs 

to be deployed by hand and because it is impossible to reach the water surface. In addition, 

sample volumes are relatively small (~ 22 ml min-1), which limits the number of subsequent 

analyses, especially in multidisciplinary studies and for biological products with high 

degradation rates. The sampling needs to be short enough in duration to prevent sample 

degradation prior to biological analyses (Guitart et al., 2004; Cunliffe and Wurl, 2014). 
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Another important issue in the use of glass plates is that plate withdraw rates are both user-

specific and vary with weather conditions such as wind speed that influence the SML thickness 

collected (Cunliffe and Wurl, 2014). Therefore, it is recommended that glass plates are used 

only at low wind speeds (i.e. below 5 m s-1) (Guitart et al., 2004). 

Single use membrane filters are the most efficient means of collecting small volume samples 

(sampling depth ~ 6 – 42 µm) that are exclusively SML, i.e. with minimal dilution by 

underlying water (Franklin et al., 2005; Cunliffe and Murrell, 2009; Cunliffe and Wurl, 2014) 

(Figure 1.4). 

The two most common filter membranes in use are polycarbonate (sampling depth 35 – 42 µm) 

(Franklin et al., 2005) and polytetrafluoroethylene (PTFE) (sampling depth ~ 6 µm) (Cunliffe 

et al., 2009a). These are the most appropriate for molecular analyses of bacterial communities, 

bacterioneuston studies and microbiological research (Franklin et al., 2005; Cunliffe et al., 

2009a; Cunliffe and Wurl, 2014). The filters are deployed by floating them directly on the 

surface waters and then collecting the filters using forceps (Figure 1.4).  

However, such small sample volumes may limit the number of analyses in multidisciplinary 

biological studies (Hamilton et al., 2014). Their use is also limited to conditions of negligible 

waves and light winds, and like glass plates their use is not practical on large vessels (Cunliffe 

et al., 2009a; Cunliffe and Wurl, 2014). 

The mesh screen (Garrett screen) sampler, first described by Garrett (1965), collects a relatively 

large sample volume, sampling a depth ~150 – 400 µm, and is therefore of most use for multiple 

subsequent analyses (Garrett, 1965; Carlson, 1982; Cunliffe et al., 2009a). 

The Garrett screen can be used to routinely collect ~ 2.5 litres hr-1 (Schneider-Zapp et al., 2014), 

which is more than can be collected with a glass plate, especially at relatively high sea states 

(Momzikoff et al., 2004). The SML sample thickness collected with a Garrett Screen is also 

more consistent than that collected with a glass plate (Carlson, 1982; Cunliffe and Wurl, 2014). 

The Garrett screen is one of the most suitable samplers for multidisciplinary biological studies 

and is also beneficial for some specific components like amino acids with high degradation 

rates (Kuznetsova and Lee, 2001). Consequently, Garrett screens have been widely used in 

recent years for successfully determining the spatial and temporal variability of a range of the 
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SML components (Frka et al., 2009; Salter et al., 2011; Cunliffe and Wurl, 2014; Pereira et al., 

2016).  

The Garrett screen has been shown to be especially suitable for characterizing suspended 

organic matter (Momzikoff et al., 2004), large phytoplankton cells such as diatoms and 

heterotrophic nanofelagellates, viruses and bacteria, and chlorophyll (Agogué et al., 2004). 

However, it has been suggested that the large sample volumes collected with a Garrett screen 

could be diluted by a factor of six to eight with underlying water (Yang et al., 2001), which 

may compromise its ability to accurately define SML composition. This potential for 

“contamination” with bulk seawater is the major drawback of using the Garrett screen.  

Taking account of the advantages and disadvantages of the several SML samplers available, 

and in order to maintain consistency with previous research to enable data comparison, the 

Garrett screen was selected for exclusive use during the work described in this thesis. 

Additionally, the Garrett screen is the best and most practical sampler for deployment from a 

large vessel. In a previous study at Newcastle University the Garrett screen and glass plate 

samplers were compared for collecting SML surfactants in the River Tyne estuary. The two 

samplers had a statistically similar performance as determined by subsequent surfactant 

measurements (t-test; p = 0.15, n = 16) (Salter, 2010).  

1.1.3 SML composition 

Defining the chemical composition of the SML remains a controversial subject due to the lack 

of a single standardized sampling method and subsequent analytical procedures (Frka et al., 

2009). Even so, the SML appears to be a complex matrix of polymeric molecules with a wide 

range in solubility, surface active properties, molecular weights and sources (Mazurek et al., 

2008). These properties reflect the origin of these individual components in deep water, in the 

terrestrial domain and their deposition from the atmosphere (Wurl et al., 2009; Cunliffe et al., 

2013). 

The chemical matrix of the SML includes various organic and inorganic compounds. For 

example, total (including dissolved and particulate) organic carbon, nitrogen and phosphorous, 

dissolved ammonia and nitrate, metals (Barker and Zeitlin, 1972) including copper, iron and 
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zinc, heavy metals (Hardy et al., 1990) and marine pollutants of both natural and anthropogenic 

origin (Cunliffe et al., 2013) are enriched in the SML (Goering and Menzel, 1965; Williams, 

1967; Barker and Zeitlin, 1972; Williams et al., 1986) (Table 1.1). 
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For total dissolved organic compounds, SML enrichment factors of up to 103 have been 

recorded relative to underlying water (Liss et al., 2005). For some individual components, 

enrichments may be smaller but still important. For example, Frew et al. (1990) found that 

extracellular production of dissolved carbohydrates during the stationary phase 1 of 

phytoplankton growth led to their enrichment in the SML by up to 47% (Frew et al., 1990). 

One recent comprehensive study of SML chemical composition was conducted by Gade et al. 

(2006) who investigated surface film elasticity in the Southern California Bight and U.S. 

Middle Atlantic Bight. The SML was sampled in eutrophic coastal and oligotrophic waters, 

representing various enrichments of surfactants including lipids, biopolymers, synthetic 

polymers and humic materials. The relative proportions of these compounds within the SML 

was shown to influence SML elasticity (Gade et al., 2006).  

The enrichments of some important classes of compounds in the SML, along with some details 

of their sources and cycling, is reviewed below. 

1.1.3.1 Marine pollution 

The SML is a source and/or sink for a range of marine pollutants deriving from terrestrial 

sources, transported via rivers, and atmospheric deposition (Cincinelli et al., 2001; Wurl and 

Obbard, 2004; Guitart et al., 2007; Cunliffe et al., 2013) (Table 1.2). 

  

                                            
1 The growth dynamics of phytoplankton is characterized by four phases according to cell density, including a lag 
or induction phase in which little increase in cell density occurs. The next stage is the exponential phase in which 
cell density increases over the time. In the stationary phase the cell density is relatively constant and in the final, 
death phase, it decreases rapidly.      
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Many of the marine pollutants previously studied are no longer in use and more recent research 

is tending to focus on microplastics in the SML, both in situ (Collington et al., 2012) and more 

recently in artificial SMLs in the laboratory (Guo et al., 2016). 

  

The concentrations of pollutants in the SML is often elevated near to the source of the pollution. 

For example, the typical concentration range for total seawater hydrocarbons is 1 to 50 µg L-1 

but this rises to mg L-1 levels in the SML close to pollution sources such as oil discharge or 

terrestrial runoff (Saliot, 1981).  

One of the most abundant classes of anthropogenic pollutants in the marine environment, 

distributed in the water column, sediments, atmosphere and the SML are phthalate esters, which 

may be very harmful to biota both in the SML and in water column (Giam et al., 1978; Murray 

et al., 1981b; Turner and Rawling, 2000).  

Some other hydrophobic marine pollutants such as polychlorinated biphenyls (PCBs), pesticide 

DDT and pentachlorophenol (PCP) have a strong tendency to accumulate in the SML, although 

their concentrations are typically less than 10 ng L-1 even close to the source of pollution. Even 

so, these concentrations are still toxic to SML organisms (Murray et al., 1981a; Murray et al., 

1981b; Duinker and Boon, 1986).  

1.1.3.2 Dissolved Organic Matter (DOM) 

In aquatic environments, organic matter exists in dissolved, colloidal and particulate forms 

(Mopper et al., 1996; Patel-Sorrentino et al., 2002). Dissolved organic matter (DOM) is the 

dominant organic carbon reservoir in the oceans (~ 97% of total organic carbon) (Hansell, 2013; 

Kowalczuk et al., 2013). Figure 1.5 represents DOM in the SML. Surfactants are an important 

DOM fraction so the study of total DOM or selected DOM fractions such as chromophoric 

dissolved organic matter (CDOM) can provide insights into surfactant both in the SML and in 

SSW, which may have differing DOM and surfactant compositions and behaviour.   
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Figure 1.5. Schematic of Dissolved organic matter (DOM) pools adapted from Hansell and Carlson 
(2014).The numbered boxes and circles represent different subsets of compounds of DOM including 
dissolved organic nitrogen (DON), dissolved organic phosphorous (DOP), dissolved organic carbon 
(DOC), fluorescent dissolved organic matter (FDOM) and chromophoric dissolved organic matter 
(CDOM). DOM is primarily composed of carbon (C), oxygen (O), nitrogen (N), hydrogen (H) 
phosphorous (P) and sulphur (S).  
 

DOM is primarily composed of carbon, oxygen, nitrogen, hydrogen, sulphur and phosphorous. 

A variable fraction of DOM, chromophoric dissolved organic matter (CDOM), is light 

absorbing which has led to the use of absorbance spectrophotometry to estimate the total 

concentration of marine DOM and broadly characterize its composition (Korshin et al., 1997). 

A part of CDOM can fluoresce if excited by light of particular wavelengths (fluorescent 

dissolved organic matter: FDOM) (Hansell and Carlson, 2014). Varieties of DOM including 

dissolved organic nitrogen (DON), dissolved organic phosphorous (DOP) and dissolved 

organic carbon (DOC) also have a light absorbing fraction which can fluoresce (Figure 1.5).  

DOM is a heterogeneous mixture of different molecular weight organic compounds such as 

carbohydrates, fatty acids, amino acids, their polymers and various complexes, e.g. with trace 

metals (Kowalczuk et al., 2013; Hansell and Carlson, 2014). Even so, more than 85% of oceanic 

DOM has yet to be characterized due to its chemical complexity (Benner, 2002).  

The primary sources of DOM in the marine environment are autochthonous (i.e. formed in situ) 

and allochtonous (i.e. originating outside the system). The relative contributions of each to total 

DOM are dependent upon specific location and environmental conditions (Kowalczuk et al., 

2013). Autochthonous DOM dominates in the open ocean and comprises of material deriving 

Surfactants 
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from phytoplankton, bacteria and their degradation products and material arising via 

photochemical activity. Allochtonous DOM is more abundant in coastal waters due to their 

proximity to terrestrial source areas (Nagata, 2000; Carlson, 2002; Hudson et al., 2007; 

Kowalczuk et al., 2013; Hansell and Carlson, 2014). 

Kowalczuk et al. (2013) studied the composition of DOM in the Atlantic Ocean using 

Fluorescence Excitation Emission Matrix spectroscopy along with Parallel Factor Analysis 

(PARAFAC) modelling. They suggested that DOM composition varies in relation to dominant 

water masses. The analyses revealed six different DOM components including two-humic like 

compounds with a terrestrial origin and microbial production, one marine humic-like 

component and three protein-like components (Kowalczuk et al., 2013). 

The dynamics of humic-type materials are maintained by microbial production and recycling 

in deep waters below the base of the mixed layer in the vast region of the Atlantic Ocean and 

removal in the mixed layer in subtropical and tropical regions due to their susceptibility to high 

solar radiation (Stedmon and Markager, 2005; Omori et al., 2010; Kowalczuk et al., 2013). 

Protein-like components with similar optical characteristics to tyrosine, tryptophan and 

phenylalanine were found to be dominant in the mixed layer of oligotrophic gyres, suggestive 

of in-situ biological DOM production, and were low on the coastal western European 

continental shelf. 

The ratio of the intensity of protein-like components to corresponding humic-like components 

is also indicative of the modification of DOM composition (Kowalczuk et al., 2013).  

1.1.3.2.1 Chromophoric Dissolved Organic Matter (CDOM) 

As mentioned briefly above, chromophoric dissolved organic matter (CDOM) is an optically 

active fraction of the seawater DOM pool (filtrate < 0.2 µm) (see Figure 1.5) and the major 

contributor to the attenuation of solar irradiation in seawater. CDOM absorbs light in the UV 

range (100 – 400 nm; responsible for ~ 90% of UV attenuation) (Johannessen et al., 2003; 

Smyth, 2011; Zepp et al., 2011) and in the visible range (400 – 700 nm), (Bricaud et al., 1981; 

Siegel and Michaels, 1996; Blough and Del Vecchio, 2002; Siegel et al., 2002; Coble, 2007; 

Hansell and Carlson, 2014). CDOM can be a substantial fraction (up to 90%) of the total DOM 

pool in natural waters (Thurman, 1985). CDOM also reduces the availability of 

photosynthetically active radiation (PAR), particularly important in the surface layers of the 
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euphotic zone (Ferrari et al., 1996; Nelson and Siegel, 2013) and modifies the light available 

for ocean color remote sensing (Smith et al., 1992; Siegel et al., 2002; Twardowski et al., 2004; 

Siegel et al., 2005b). 

In the open ocean away from coastal influence, CDOM is mainly produced in-situ (Bricaud et 

al., 1981), such as by direct excretion by zooplankton and cyanobacteria (Steinberg et al., 

2004), sloppy feeding by zooplankton and leaching from zooplankton faecal pellets (Siegel and 

Michaels, 1996; Nelson et al., 1998; Nelson and Siegel, 2002; Nelson et al., 2004), and as a by-

product of the microbial degradation of DOC (Nelson et al., 1998). In coastal waters, additional 

sources are terrestrially derived material of varying reactivity (Meyers-Schulte and Hedges, 

1986; Nelson et al., 1998). Some plant degradation products such as lignin and tannins are also 

introduced as primary sources of CDOM in rivers and estuaries (Coble, 2007; Stubbins et al., 

2010). 

Considering the various origins of CDOM in the marine environment prompts the idea that 

CDOM production is a depth-related process that thus varies throughout the water column. 

While CDOM dynamics in surface waters is facilitated by high solar radiation (i.e. 

photochemical production and destruction), microbial activity is thought to be responsible for 

considerable CDOM production in deep waters with low light availability (Siegel et al., 1995; 

Nelson et al., 1998). This is supported by the observed similarity between profiles of CDOM 

and heterotrophic bacterial abundance below 50 m in the Sargasso Sea (Carlson et al., 1996). 

Laboratory experiments with Sargasso Sea water also showed bacteria consume DOM and 

produce CDOM simultaneously in dark cultures (Nelson et al., 1998).  

Research has also been carried out to investigate CDOM production in the Atlantic and Pacific 

Oceans. For example, Yamashita and Tanoue (2008) and Yamashita et al. (2010) suggested 

CDOM production in the Pacific Ocean by in-situ oxidation of organic matter. This agreed with 

the conclusions of Swan et al. (2009) and Nelson et al. (2010) that CDOM production in the 

oceans is facilitated by in-situ oxidation of particulate organic matter, a conclusion reached via 

relationships between CDOM absorbance at 325 nm (a325) and apparent oxygen utilization 

(AOU). On the other hand, Murphy et al. (2008) suggested that terrestrial deposition of humic-

like materials might make a significant contribution to CDOM production across the Atlantic 

and Pacific Oceans close to the continental shelves. Andrew et al. (2013) also suggested that 

CDOM optical changes in the Equatorial Atlantic Ocean are indicative of chemical or microbial 

modification of humic-like materials with terrestrial sources. 



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

19 
 

Table 1.3 summarizes the ranges of average CDOM absorbance (m-1) in various aquatic 

environments with different trophic levels. 
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CDOM vertical distributions (excluding the SML) typically show a surface-minimum and 

subsurface-maximum, with subsurface CDOM production during the summertime. CDOM 

production in the summertime is also balanced by CDOM photooxidation (photobleaching) due 

to high solar radiation, water stratification and a shallower mixed layer depth (Siegel et al., 

1995; Siegel and Michaels, 1996; Nelson et al., 1998). However, the magnitude of this pattern 

is location-dependent and varies with environmental conditions. 

In the wintertime, CDOM is suggested to distribute more homogenously throughout the water 

column because of deepening of the mixed layer resulting from a well-mixed water column 

(Hansell and Carlson, 2014).  

There are several reports on CDOM dynamics in the marine environment. For example, Siegel 

and Michaels (1996) proposed the vertical CDOM distribution in the Atlantic Ocean to be 

controlled by CDOM production around the Deep Chlorophyll Maximum (DCM) depth and 

upward transport via diffusion and by biological transport through the diurnal migration of 

plankton, with its removal mostly by photooxidation in summer. In-situ CDOM microbial 

production (using DOM as the substrate), CDOM removal by photodegradation (mainly in 

surface waters) and microbial consumption were also proposed to contribute to CDOM 

dynamics in the Sargasso Sea (Nelson et al., 1998).  

Photodegradation as the major removal pathway of CDOM in mostly surface waters including 

the SML. Photodegradation causes CDOM to lose its absorption capacity and become modified 

to optically inactive DOM following prolonged light exposure (photobleaching or 

photodegradation). Photodegradation also facilitates the formation of lower molecular weight 

organic matter with more absorption at shorter wavelengths from higher molecular weight 

CDOM components with higher longer wavelengths absorption (Siegel et al., 1995; Nelson et 

al., 1998; Del Castillo and Coble, 2000; Stedmon and Markager, 2001; Twardowski and 

Donaghay, 2002; Nelson et al., 2004; Helms et al., 2008; Kowalczuk et al., 2013; Galgani and 

Engel, 2016). It was shown that 96% of allochthonous and almost 100% of autochthonous 

CDOM removal occurring in the oligotrophic gyres of the South Pacific Ocean is due to 

photobleaching (Swan et al., 2009). On the other hand, photochemical breakdown may increase 

the biological availability of carbon and ease bacterial carbon uptake from refractory materials 

(Mopper, 1989), thereby increasing heterotrophic respiration and CO2 exchange with the 

atmosphere (Blough and Del Vecchio, 2002; Loiselle et al., 2012; Nelson and Siegel, 2013).  
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By contrast there is no published information specifically on the degradation rates of surfactants 

in the SML or in SSW.  

CDOM minima were observed in near surface waters of the Mid Atlantic Bight (MAB) during  

summer, with CDOM turnover times of between 1 and 3 months (Siegel and Michaels, 1996; 

Nelson et al., 1998; Boss et al., 2001). A reduction in the CDOM/DOC ratio due to CDOM 

photochemical degradation was also reported in the Western North Atlantic (Vodacek et al., 

1997; Del Vecchio and Blough, 2004). Therefore, the size of the marine CDOM pool reflects a 

balance between its biological sources and photooxidation removal (DeGrandpre et al., 1996; 

Siegel and Michaels, 1996; Hansell and Carlson, 2014).  

Galgani and Engel (2016) proposed a model to describe CDOM dynamics based on CDOM 

absorption and fluorescence in the ocean and particularly in the SML of the upwelling region 

off the coast of Peru.  

According to this model, in-situ biological CDOM produced in underlying water is scavenged 

to the SML by upwelled waters, resulting in CDOM accumulation in the SML (Galgani and 

Engel, 2016). Also, there is some contribution from in-situ microbial fresh2 CDOM production 

in the surface waters (Galgani and Engel, 2016). The accumulation of CDOM in the SML is 

balanced by microbial and photochemical degradation.  

1.1.3.2.2 Fluorescent Dissolved Organic Matter (FDOM) 

Fluorescent dissolved organic matter (FDOM; see Figure 1.5) is a CDOM fraction that is 

excited by light in the UV-blue region of the spectrum (i.e. excitation step) and releases the 

absorbed energy as fluorescence (i.e. emission step) (Lakowicz, 1999; Coble, 2007). The 

wavelength at which the fluorescence occurs depends upon FDOM composition. For example, 

two major FDOM components including humic and fulvic-like materials3 are blue fluorescent 

whereas proteins are UV fluorescent (Mopper and Schultz, 1993; Coble, 1996; Baker, 2001; 

Chen et al., 2003; Stedmon et al., 2003; Baker and Spencer, 2004). 

                                            
2 According to Kitidis et al. (2006) fresh and old CDOM refers to history of CDOM, while fresh materials are 
recently produced, the old CDOM has a history of exposure to light and/or bacterial degradation. 
  
3  Detailed compositions of the CDOM and FDOM pools are poorly characterized. Therefore, their broad 
compositional characteristics are often described based on similarity to known compound groups such as humic 
and fulvic acids, hence the terms “humic-like” and fulvic-like. 
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Fluorescence Excitation-Emission Matrices (EEM) are valuable for characterizing DOM based 

on excitation/emission intensity maxima that identify different types of fluorophores, which are 

characteristic of classes of compounds that absorb and release the energy (Coble et al., 1990; 

Green, 1992; Coble, 1996). CDOM in oceanic samples tends to have a fluorescence maximum 

at shorter wavelengths (UV region) than CDOM of terrestrial origin (Coble, 1996; Stedmon et 

al., 2003). 

The characterization of FDOM in Horsens fjord, Denmark, revealed five different fluorescent 

DOM fractions, including four allochtonous fluorophores of terrestrial origin and one 

autochthonous fluorophore from marine production (Stedmon et al., 2003). In natural 

freshwaters, FDOM characterization also revealed that humic type materials released by the 

breakdown of organic matter in water and soil are dominant (Hudson et al., 2007). 

Kowalczuk et al. (2013) identified six distinct DOM components in the Atlantic Ocean in the 

SML and throughout the water column to 300 m depth based on fluorescence spectroscopy and 

PARAFAC. Of these components two were “humic-like”, associated with microbial 

remineralization and DOM production by marine phytoplankton (Kowalczuk et al., 2013). The 

two common humic substances in marine environments are humic and fulvic acids with 

different chemical and optical properties (Harvey et al., 1983; Carder et al., 1989). Three 

“protein-like” components had fluorescent spectral characteristics similar to tryptophan and 

tyrosine (Kowalczuk et al., 2013).  

1.1.3.3 Surface active compounds (Surfactants) 

Surface active compounds or surfactants are a subgroup of the DOM pool with surface active 

properties. They are amphiphilic molecules consisting of a hydrophilic (polar) head (such as 

polysaccharides) and a hydrophobic (non-polar) tail (such as lipids) within the same molecule. 

As a result of this structure, surfactants partition preferentially at the interface between fluid 

phases with different degrees of polarity and hydrogen bonding, such as water boundaries with 

the atmosphere, bubbles, particles and sediments (Lang and Wullbrandt, 1999; Gade et al., 

2006; Hühnerfuss, 2006) (Figure 1.6). 
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Figure 1.6. Schematic of surfactant arrangements at the air-water interface. 
The hydrophobic tail is directed into the air while the hydrophilic head is in 
the water phase. Adapted from Hühnerfuss (2006). 
 

The tail structures of different surfactants are similar, containing hydrocarbon chains; however, 

the polar head could have different characteristics. Non-ionic surfactants for example have 

neutral groups whereas ionic surfactants carry an electrical charge in the head part of the 

molecule. Surfactants with positive charge are known as cationic such as bromide compounds 

whereas anionic surfactants like phosphate esters have a negatively charged polar head. Typical 

surfactants are relatively insoluble and the degree of their surface active properties depends on 

their solubility (Tsai and Yue, 1995).  

Pollard et al. (2006) reported that anionic surfactants have especially high solubility, being 

soluble in all solvents tested, whereas cationic surfactants had limited solubility in most 

solvents.  

For a gas/liquid binary system, changes in the concentration of a dissolved component (e.g. a 

surfactant) in contact with the gas-liquid interface are related to changes in the surface tension 

(γ), which is influenced by the surface excess of the dissolved component in question, and 

which results in a corresponding change in surface energy. This is described by the Gibbs 

adsorption equation. The accumulation or depletion of a dissolved component towards the 

interface (i.e. adsorption) thus influences γ. A large amount of energy is required to increase 

the surface area when γ is high. Surfactants with a high tendency towards interfacial 

accumulation as compared to SSW, exert a large positive surface excess, which reduces the 

surface tension and surface potential due to a lowering of the Gibbs free surface energy G:  
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γ = (dG/dA) T,P                                                                                                  (equation: 1.1.3.3.1). 

By comparison, sodium chloride has a negative surface excess (high concentrations in SSW), 

which would tend to increase the surface tension and surface potential. The resistance of the 

interface to changes in the surface area (A) is known as viscoelasticity: 

ε' = -dπ / d ln A                                                                                               (equation: 1.1.3.3.2) 

where π is the surface tension (Barger and Means, 1985; Frew and Nelson, 1992).   

In surface films with high elasticity and no viscosity ε' = ε0, the Gibbs or equilibrium elasticity. 

In the presence of surfactants, the Gibbs elasticities have demonstrated ε0 values in the range 

2-40 m Nm-1, sufficient for wave damping (Barger and Means, 1985; Frew and Nelson, 1992). 

The latter authors confirmed how the compositional difference alters the physical properties of 

surface films. They showed how the π – A isotherm differs between slicks and non-slick 

microlayers. A slick microlayer at the same surface pressure as a non-slick microlayer has a 

consistently higher elastic modulus than a non-slick microlayer (Bock et al., 

1999).                                                                                                   

Surfactant enrichment in the SML (see section 1.1), as well as altering its physiochemical 

properties, influences its optical properties and mass and energy transfer between the 

atmosphere and ocean (MacIntyre, 1974; Hunter, 1977; Frew, 2005; Liss et al., 2005). 

Importantly from the standpoint of this thesis, surfactants suppress the air-sea transfer velocity 

(kw) of CO2 and of other climate-active gases (Liss et al., 2005; Nightingale, 2009; Salter et al., 

2011; Pereira et al., 2016). 

According to the classical model of the SML (see Figure 1.3), organic compounds accumulated 

at the air-sea interface are characterized as either dry or wet surfactants (Gladyshev, 2002). Dry 

surfactants such as hydrophobic lipids (Hunter and Liss, 1981; Ćosović, 2005; Frka et al., 2009) 

form the top layer and enable the further accumulation of less surface active compounds (i.e. 

“wet surfactants”) such as polysaccharides, proteins and humic-type materials in the SML 

(Gladyshev, 2002; Frka et al., 2009). 

There are several reports of surfactant enrichment in the SML relative to underlying waters in 

the oceans, based on indirect evaluations, e.g. satellite-derived, or field measurements of 

primary productivity as a proxy for biological-derived surfactant distributions. For example, 
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Ćosović and Vojvidić (1982) reported surfactant enrichment in the SML by a factor of ≤ 2.5 in 

samples from the Adriatic Sea. Gašparović (2012) also recorded SML surfactant enrichment 

factors of between 1.03 and 1.10 in the Northern Adriatic Sea and Gašparović et al. (2007) 

reported surfactant enrichment factors in the range 1.2 to 2.8 in a Norwegian fjord. 

Wurl et al. (2011) reported surfactant enrichment factors of between 0.5 and 5.9 in the SML of 

various marine environments, extrapolated from relationships between surfactants and primary 

productivity. Salter (2010) found surfactant enrichment factors between 1.2 and 20 in the SML 

of North Sea coastal samples and Pereira et al. (2016) found surfactant enrichments ranging 

from ~1.0 to 1.9 during 20 km offshore transects in the North Sea. Thus, a wide range of 

surfactant enrichment factors have been observed (between 1 and 20) clearly dependent on 

location and probably also time of year. 

1.1.3.3.1 Lipids 

Lipids are a surfactant sub-group derived from phytoplankton exudates and primary production 

(Parrish et al., 2005). Total lipid concentration in plankton was reported to account for 3.4 ± 

1.7% of dry weight, with a maximum of 6.3 ± 2.5% observed during a phytoplankton bloom in 

Newfoundland, Canada (Parrish et al., 2005). Also, 16 different chemical structures of marine 

lipids were identified in dissolved and particulate forms at microgram per litre levels (Parrish, 

1988). The main compounds included hydrocarbons, esters, triglycerides, fatty acids, sterols, 

glycolipids and phospholipids (Parrish, 1988). 

In early research, low solubility lipid molecules containing hydrophobic moieties were 

identified as being associated with the SML (Norkrans, 1980; Hardy, 1982). However, there is 

some disagreement over lipid abundances in the SML. Garrett (1967) showed that lipids are a 

major component of the SML in both slick and non-slick conditions, however, Hunter and Liss 

(1981) reported a smaller lipid contribution to dissolved organic matter (DOM) collected from 

the SML compared to other organic compounds. They also assumed that high lipid 

concentrations reported in some SML coastal areas may result from terrestrial input or oil 

pollution (Hunter and Liss, 1981). Frka et al. (2009) proposed that lipids contribute to early 

stage formation and stabilisation of the SML.  

One of the earliest studies of fatty acids specifically, found the highest total concentration in 

the Mediterranean Sea to be 11.6 µg L-1 but there was no correlation with chlorophyll a 
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concentration. It was suggested that fatty acids are released after the zooplankton bloom as a 

result of excretion and degradation processes (Goutx and Saliot, 1980). 

While the major sources of fatty acids in the oceans are from natural sources such as 

phytoplankton, anthropogenic sources can also result in high concentrations of fatty acids in 

rivers, particularly in urban areas (Parrish, 1988). For example, total fatty acid concentrations 

up to 1 mg L-1 were observed in some Japanese coastal areas with a higher contribution of 

particulate than dissolved fatty acids (Matsumoto, 1981). Hydrocarbons as a pollution indicator 

in seawaters also account for 20% of total dissolved inorganic lipids in the marine environment 

(Barbier et al., 1973; Kolattukudy, 1976).  

The distribution of dissolved and especially particulate SML lipids show seasonal and spatial 

variability controlled by biological productivity and water temperature (Gašparović et al., 1998; 

Parrish et al., 2005; Penezić et al., 2010). For example, Gašparović et al. (1998) found that total 

lipid concentrations were much lower in spring than in summer due to lower biological 

productivity in the cold waters in the northern Adriatic Sea during spring. 

1.1.3.3.2 Carbohydrates 

Carbohydrates including monosaccharides and polysaccharides are released by marine 

phytoplankton such as dinoflagellates and diatoms as intra or extracellular products forming 

gelatinous compounds. Carbohydrates are also derived as by-products of bacterial 

decomposition and accumulate in the SML (Myklestad, 1974; Haug and Myklestad, 1976; 

Sakugawa and Handa, 1985a; Sakugawa and Handa, 1985b; Alldredge et al., 1993). 

Early research by Sieburth (1983) considered carbohydrates to be an important component 

during SML formation and defined the SML as a “highly hydrated loose gel of tangled 

macromolecules and colloids” (see section 1.1.1). This early hypothesis was confirmed later 

during several field experiments, carbohydrates being reported to contribute to SML formation 

in the form of microgels (Wurl and Holmes, 2008; Cunliffe and Murrell, 2009; Cunliffe et al., 

2009b; Wurl et al., 2009; Wurl et al., 2011b; Gao et al., 2012; Cunliffe et al., 2013). 

 

An alternative explanation of the gelatinous nature of the SML is the excretion of extracellular 

exopolymer gel particles by bacterioneuston which accumulate in the SML as a defensive 

mechanism against high solar radiation (Elasri and Miller, 1999; Ortega-Retuerta et al., 2009).  
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Samples collected from a Sargasso Sea surface slick during a Trichodesmium bloom were 

associated with elevated amylolytic (conversion of starch to sugar) bacterial activity. Lower 

proteolytic (conversion of protein to sugar) and lipolytic (conversion of lipids to sugar) 

activities were also found (Sieburth and Conover, 1965). Therefore, it was suggested that 

carbohydrates must be a larger component of the SML than lipids (Sieburth, 1983). This is 

supported by recent research showing that marine DOM contains 40% carbohydrates compared 

to only a 5 – 25% contribution from lipids (Leenheer and Croué, 2003; Carpenter and 

Nightingale, 2015). 

Benner et al. (1992) suggested that high molecular weight polysaccharides (> 1000 Daltons 

molecular weight) are dominant in the surface waters (~50%) supporting heterotrophic activity 

compared to the deeper waters (~25%). It was also reported higher concentrations of 

carbohydrates in the surface waters compared to both the oxygen minimum zone and deeper 

waters in the North Pacific Ocean (Benner and Pakulski, 1992). 

There are several reports of carbohydrate contributions to marine organic matter pool outside 

the SML. Sakugawa and Handa (1985a) proposed that carbohydrates account for only 10 – 20% 

of DOM in the marine environment. Burney et al. (1979) reported that macromolecule sugars 

may contribute up to nearly 70% of total dissolved carbohydrate in the North Atlantic Ocean. 

Wheeler (1976) also found that polysaccharides are a major portion of dissolved carbohydrates 

in seawater off the Georgia coast. These high molecular weight compounds were the most 

abundant dissolved carbohydrates in surface seawater of Mikawa Bay, Japan (Sakugawa and 

Handa, 1985b). 

Hetero-polysaccharide compounds were also collected from Mikawa Bay, Japan during a 

dinoflagellate (Procentrum minimum) bloom, suggesting the aggregation of phytoplankton-

produced carbohydrates via extracellular release or cell lysis (Sakugawa and Handa, 1985a). 

1.1.3.3.3 Transparent Exopolymer Particles (TEP) 

Transparent Exopolymer Particles (TEP) are operationally defined as particles containing 

surface-active acidic carbohydrates (Mopper et al., 1995), that form in the water column from 

abiotic coagulation of DOM precursors (Wei-Chun et al., 1998). They accumulate in the SML 

via their surface active properties and contribute to its gelatinous structure (Alldredge et al., 

1993; Passow, 2002b; Engel, 2004; Wurl and Holmes, 2008; Cunliffe and Murrell, 2009; Wurl 

et al., 2011a). 



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

30 
 

TEPs facilitate the transfer of dissolved carbon to the particulate form known as marine snow 

(Verdugo et al., 2004) by coagulation/aggregation in the water column, and assist subsequent 

vertical transport of carbon and associated nutrients to the deep ocean (Alldredge and 

Gotschalk, 1988; Azam and Long, 2001). Therefore TEPs are an important component of the 

marine carbon and nutrient cycles (Passow et al., 2001; Verdugo et al., 2004; Cunliffe et al., 

2011). 

There are several sources of TEPs in the oceans; these derive from micro - and macro - organism 

exudates including those of phytoplankton, bacterioplankton, some macroalgae species, 

oysters, mussels, scallops and sea snails (Passow, 2002a; McKee et al., 2005; Heinonen et al., 

2007). 

Smith et al. (1995) discussed the production of TEPs in the SML via two different mechanisms. 

It was suggested that TEPs may be a by-product released by phytoplankton as a defensive 

mechanism against bacteria or be directly-released by bacteria involved in phytoplankton cell 

hydrolysis.  

Enrichment of TEPs in the SML relative to corresponding sub-surface waters was reported in 

oceanic samples previously, with enrichment factors relative to the underlying water ranging 

from 1.7 to 4.8 in the North Pacific, offshore of Hawaii and in the Arctic Ocean (Wurl et al., 

2011a). 

Cunliffe et al. (2009) found TEPs enrichment in the SML ranging between 2.3 and 2.9 during 

a mesocosm phytoplankton bloom experiment using Norwegian fjord waters.  

TEPs demonstrate seasonal variations, with high concentrations during phytoplankton blooms 

in aquatic environments (Passow, 2002b). It was highlighted that the TEP maxima may occur 

at the end of a phytoplankton bloom and coincide with higher rates of polysaccharide exudation 

by nutrient limited phytoplankton (Corzo et al., 2000; Engel et al., 2002; Wurl et al., 2011a). 

Wurl et al. (2011) also described TEP dynamics via in-situ biological production in the euphotic 

zone and accumulation in the SML due to their surface-active properties. TEPs then grow 

within the SML through further aggregation and finally sink to deep waters via grazing or 

degradation processes or are ejected to the atmosphere via air bubbles bursting at the air-sea 

interface (Wurl et al., 2011a).   



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

31 
 

TEPs are recycled within the water column through grazing and degradation processes, by 

zooplankton and other microorganisms and as a food source for bacteria. Hence, their 

concentrations decrease with depth due to this bacterial consumption (Mari and Kiørboe, 1996; 

Engel, 2004; Berman and Holenberg, 2005; Wurl et al., 2011a).  

1.1.3.3.4 Proteins 

Proteins constitute between 25% and 50% of dissolved organic matter in aquatic environments 

(Leenheer and Croué, 2003; Carpenter and Nightingale, 2015). However, later research showed 

that extracellular phytoplankton derived proteins are also enriched in the SML but their 

accumulation is less efficient than for other components such as carbohydrates due to bacterial 

utilization of amino acids (Kuznetsova and Lee, 2001; Matrai et al., 2008; Cunliffe et al., 2013).     

Early research reported proteins (e.g. glycoprotein) as the most abundant component in the 

SML (Williams et al., 1986). Later research found that proteins constitute between 25% and 

50% of dissolved organic matter in aquatic environments (Leenheer and Croué, 2003; Carpenter 

and Nightingale, 2015). 

Microbial uptake of organic matter is facilitated by enzymatic hydrolysis of protein compounds 

and other biopolymers in many aquatic environments (Kuznetsova and Lee, 2001). Hydrolysis 

of accumulated protein via bacterial remineralization in the SML resulted in a lower 

concentration of amino acids than in underlying water in Stony Book Harbour, New York 

(Kuznetsova and Lee, 2001). However later studies in the Atlantic Ocean and Mediterranean 

Sea showed that bacterial growth efficiencies in the SML were low indicating limited bacterial 

remineralization of proteins in the SML (Reinthaler et al., 2008).      

Kuznetsova et al. (2004) also reported an inverse correlation between protein enrichment in the 

SML and primary productivity, with higher SML protein enrichments observed in oligotrophic 

open ocean waters than in eutrophic coastal waters. This implies that more rapid protein 

removal occurs in the oligotrophic SML than in the eutrophic SML (Kuznetsova et al., 2004). 

1.1.3.3.5 Humic-like materials 

The enrichment of humic materials in the SML results from the biological and chemical 

degradation of terrestrial and aquatic plant material (Stedmon et al., 2003). The major aquatic 

humic components are humic acids, which have relatively low solubility in very acidic waters, 

fulvic acids with solubility independent of pH and insoluble humins (Aiken et al., 1985).  
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The SML enrichment of marine humic-like compounds consisting of ‘fresh’ marine humic 

materials associated with biological activity and salinity gradients was reported in a variety of 

freshwater and marine environments previously (Coble, 1996; Parlanti et al., 2000). Humic 

materials with terrestrial origins were reported in rivers. Deep marine waters were also 

suggested to represent ‘older’, more degraded and modified humic materials (Komada et al., 

2002; Hudson et al., 2007). 

1.1.3.4 Sources of surfactants 

Natural surfactants are derived from multiple sources in the marine environment. Primary 

sources of surfactants in the open ocean are metabolic by-products of marine phytoplankton 

(extracellular release during all phases of growth) (Ẑutić et al., 1981), products of zooplankton 

and protist grazing (Kujawinski et al., 2002), bacterial degradation products (Hisatsuka et al., 

1971; Sieburth et al., 1976; Rosenberg et al., 1979; Hardy, 1982; Kurata et al., 2016), material 

deposited from the atmosphere (i.e. wet and dry deposition such as rain and dust respectively) 

(Kurata et al., 2016) and in situ photochemical degradation products of pre-existing organics 

(Tilstone et al., 2010). In coastal regions additional surfactants of both natural origin (Frew et 

al., 2006) and anthropogenic origin (Guitart et al., 2007) may also be important. 

For example, Salter (2010) reported two major sources of surfactants in the River Tyne Estuary 

and the coastal North Sea based on FDOM EEM analysis. These were an allochthonous source, 

being material derived from either terrestrial deposition or microbial degradation and an 

autochthonous source, being compounds derived from in-situ production of phytoplankton 

exudates. 

One of the earliest studies of phytoplankton-derived surfactants was conducted by Ẑutić et al. 

(1981), in which surfactant production by six different marine phytoplankton species was 

measured during their growth in batch cultures. The results showed surfactant production in 

almost all growth stages (at various rates), with variable total production between different 

species and at different life stages. For example, Cryptomonas produced surfactants from the 

first day of the experiment (lag phase)4 while Skeletonema released surfactants one week after 

the start of the experiment (Ẑutić et al., 1981). The highest rate of surfactant production 

                                            
4 The growth dynamics of phytoplankton is characterized by four phases according to cell density, including a 
lag or induction phase in which little increase in cell density occurs. The next stage is the exponential phase in 
which cell density increases over the time. In the stationary phase the cell density is relatively constant and in the 
final, death phase, it decreases rapidly.      
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occurred after nearly two weeks of growth in Cryptomonas (late of stationary phase)4 suggesting 

extracellular release due to cell lysis. 

The study of natural surfactant slicks in the Sargasso Sea showed them to have formed from 

phytoplankton-derived organic matter (Sieburth and Conover, 1965). It was also suggested that 

high concentrations of carbohydrates determined in the SML might be associated with 

Trichodesmium-produced slicks in the Sargasso Sea (Sieburth and Conover, 1965). 

Since then, there have been several studies of natural surfactant production by phytoplankton 

in both field and laboratory experiments (Table 1.4). 
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For example, a field experiment was carried out to investigate an algal bloom impacts on air-sea 

gas transfer in the Southern Ocean. A high concentration of surfactants (~ 0.02 mg L-1 eq. T-X-

100)5 was found during the phytoplankton bloom, promoted by deliberately added iron (Southern 

Ocean Iron Fertilization Experiment, (EIFEX)) (Croot et al., 2007). The highest surfactant 

concentration (up to 0.03 mg L-1 eq. T-X-100) was also reported at the end of phytoplankton 

bloom. 

Fogg (1966) revealed phytoplankton extracellular production in natural environments and 

proposed two models including overflow and a passive diffusion model to describe the 

mechanism of this release. In the passive diffusion model, low molecular weight (LMW) 

photosynthetic products such as dissolved free amino acids (DFAAs) and sugars are released. 

However, active uptake of these products by bacterioplankton maintain the concentration 

gradient and promote the passive diffusion of the excretion from phytoplankton (Fogg, 1966).   

The overflow release of high molecular weight (HMW) products by phytoplankton was the 

base of the overflow model. As the release of the photosynthetic products by phytoplankton 

costs less energy than storing them, especially under limited nutrient conditions, extracellular 

release of these products occurs at all phytoplankton growth stages (Fogg, 1966).  

Frew et al. (1990) also found relatively high production of extracellular carbohydrates (27 – 

47%) during the stationary phase2 of phytoplankton growth in a series of laboratory experiments 

using natural seawaters from the Sargasso Sea.  

Grazing by zooplankton and protists is another important source of natural surfactants in 

seawater. A two-phase laboratory system including protists and prey (bacterial suspension) was 

maintained to examine the possibility of surfactant production during protozoan grazing 

(Kujawinski et al., 2002). The results showed that protozoans grazing on bacteria release 

soluble surfactants in concentrations comparable to those observed in association with 

phytoplankton blooms (Kujawinski et al., 2002). It was proposed that protozoan grazing is a 

potentially important source of surfactants in marine ecosystems where protists are abundant, 

such as at the sediment-water interface and in microbial loop dominated oligotrophic regimes 

(Kujawinski et al., 2002).  

                                            
5 Triton-X-100: the non-ionic soluble surfactant polyoxyethylene t-octylphenol (or T-X-100) 
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Micro and macro-zooplankton were also shown to be a sink and source for surfactants. For 

example, the removal of significant amounts of total phytoplankton production (nearly 80%) 

via zooplankton sloppy feeding was reported (Sherr and Sherr, 1988). Release of surfactants 

during zooplankton grazing on organic exopolymer particles was also shown previously 

(Passow and Alldredge, 1999; Ling and Alldredge, 2003; Croot et al., 2007). 

The bacterial contribution to surfactant production is facilitated either by the degradation of 

biopolymeric materials or by formation of macromolecules via the condensation of low 

molecular weight organics (Nissenbaum, 1974). For example, it was shown that a range of 

bacteria such as Pseudomonas, Bacillus, Mycobacterium and Acinetobacter release natural 

surfactants as either extracellular products or attached to the cells during cell growth (Hisatsuka 

et al., 1971; Rosenberg et al., 1979).  

Enrichment of bacteria, particularly amylolytic bacteria, within the SML compared to the sub-

surface waters was also reported (Sieburth and Conover, 1965). This might indicate a lower 

contribution of lipids compared to carbohydrates to the SML structure than was thought 

previously (Sieburth and Conover, 1965; Kjelleberg and Håkansson, 1976; Williams et al., 

1986).  

The so-called Bacterioneuston (bacteria in the SML) in slick and non-slick conditions was 

examined to identify dominant surfactant producers and surfactant degraders in the Strait of 

Florida (Kurata et al., 2016). It was revealed that marine bacteria might control surfactant 

dynamics in the ocean, producing a variety of surfactants via multiple taxa ranging from 

Pseudomonas, Bacillus and Acinetobacter and Rhodococcus spp. The highest abundance of 

bacteria-produced surfactants was found in the near surface layer just under the SML (Kurata 

et al., 2016). It was suggested that bacteria produce surfactants in organic-rich regions of the 

water column and that they accumulate at the sea surface by physical processes such as 

turbulence and bubble scavenging (Kurata et al., 2016). Surfactant degradation by bacteria such 

as Escherichia spp. was also identified. However, the production pathways and transformations 

in the open ocean are yet to be revealed.    

1.1.3.5 Distribution of surfactants 

Seasonal and spatial variations in surfactant distributions were determined in previous research. 

For example, enhancement in surfactant concentrations during a phytoplankton bloom was 

suggested to be attributed to higher primary productivity in the bloom event in the Adriatic Sea 
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(Ćosović et al., 1979; Zutic et al., 1979; Zvonaric and Zutic, 1979; Ćosović et al., 1985; 

Sakugawa and Handa, 1985a; Sakugawa and Handa, 1985b). 

However, a lack of global in-situ surfactant level coverage due to difficulties in measuring 

surfactants in the field (such as ease of sample contamination and hardship of using the 

voltammetry technique at sea) and also the lack of a robust freezing protocol for the samples, 

led to the use of primary productivity as a proxy for biologically-derived surfactant distribution 

in the oceans (Goldman et al., 1988; Asher, 1997; Tsai and Liu, 2003; Wurl et al., 2011b). 

For example, Asher (1997) also estimated oceanic surfactants from satellite-derived chlorophyll 

as a proxy for primary productivity and suggested lower amounts of surfactants in oligotrophic 

regions. Later, Wurl et al. (2011) suggested using primary productivity in conjunction with 

wind speed to predict global surfactant coverage and its spatial and temporal variabilities. 

Based on the lowest threshold of primary productivity in the productive oceans (i.e. 15 mg C 

m-2 mth-1) and depressions in the transfer velocity of CO2, surfactant coverage was mostly 

proposed for the North Atlantic during the boreal summer and autumn (between ~ 60°N and ~ 

40°N), in the subtropical Atlantic with nutrient-enriched upwelled waters, in the coastal waters 

off Africa and South America and also off the Falkland Islands in austral spring and summer. 

Of particular note, the rest of the Atlantic Ocean, including the central oligotrophic gyres 

between 30°N and 30°S was expected to be surfactant free (Tsai and Liu, 2003; Wurl et al., 

2011b). 

Surfactants were also suggested to be more abundant in coastal regions because of freshwater 

discharge of terrestrial surfactants (Gašparović and Ćosović, 2001; Gašparović et al., 2007). 

Estimating the extent and coverage of natural surfactants via the application of remote sensing 

was not recommended as the surfactant coverage by soluble fractions in the absence of visible 

slicks is not detected by this technique (Liss et al., 2005).   

1.2 Air-sea gas exchange 

Air-sea gas exchange is a globally relevant process that provides the link between marine 

biogeochemistry, ocean circulation and atmospheric composition. 
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The exchange flux (F) of a gas across the SML is the product of an air-sea gas concentration 

gradient (ΔC) and a gas transfer velocity (kw): 

F= kw ΔC                                                                                                                 (equation: 

1.2.1) 

(Liss and Slater, 1974). 

The most difficult parameter to quantify in equation 1.2.1 is kw. The ratio of the diffusivity of 

the gas of interest (D) to the thickness of the water side diffusive boundary at the air-sea 

interface (z) define kw (i.e. kw=D/Z). Thus, increasing z decreases kw and slows the gas 

exchange flux.  

kw can be interconverted between different gases based on the Schmidt number (Sc, i.e. the ratio 

of kinematic viscosity to the molecular diffusivity of each gas in question). To do this requires 

using an assumed or estimated “Schmidt number exponent”, n, which is often assumed to be 

0.5 for a wavy surface (Upstill-Goddard, 2006). The value of kw  is usually converted to k660 

(i.e. the value of kw for Sc = 660), being the value for CO2 in seawater at 20°C (Upstill-Goddard, 

2006). 

The variables and underlying mechanisms that control the value of kw are yet to be fully 

understood. Thus kw remains the greatest challenge to quantifying the global air-sea exchanges 

of CO2 and other climate active gases (Frew et al., 2004; Takahashi et al., 2009). 

Various models have been proposed to describe gas exchange based on mostly molecular and 

turbulent diffusion. One of the simplest models is the two-layer (film) model in which the 

transfer process is mainly controlled by molecular diffusion while any production and 

destruction processes which occur in the film are slower than diffusion (Liss and Slater, 1974). 

It is also assumed that the concentration gradients of any gases in air and water below the 

diffusive boundary are zero due to efficient turbulent mixing by eddies. So, the dominant 

transport process in underlying water is a slow process of turbulent mixing, as compared to 

much more rapid molecular diffusion within the SML. 

For low solubility gases such as carbon dioxide (CO2), methane (CH4) and sulphur hexafluoride 

(SF6), the primary resistance to gas exchange in this model is transfer through the waterside 

thin film which is slower than through the air side (Le Quéré and Saltzman, 2013). However, 
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the thickness of the surface film varies with different degrees of turbulence; therefore assuming 

a constant film in the model is unrealistic (Le Quéré and Saltzman, 2013). 

To overcome this, models such as the surface renewal model (Ledwell, 1984) have been 

proposed. This model assumes that surface water is consistently renewed by bulk water due to 

the presence of eddies approaching the surface and that this renewal restores surface conditions 

after any physical disruption. However, the model is rarely applied in situ because it is difficult 

to determine the renewal rate (Le Quéré and Saltzman, 2013). 

There are other models proposed based on other parameters measurable in the field such as 

turbulent energy rate (Zappa et al., 2007) or bubble mediated gas transfer (Woolf, 1997; McNeil 

and D'Asaro, 2007) but further discussion on these approaches are beyond the scope of this 

research. 

1.2.1 Surfactant control on air-sea gas exchange 

Soluble surfactants may exert greater control on air-sea gas exchange than was initially 

believed. This is because they reform more quickly at the interface after physical disruption 

than surface films composed of insoluble surfactants (Springer and Pigford, 1970). 

Surfactants influence gas exchange by modifying the hydrodynamic characteristics of the 

interfacial layer (Frew et al., 1990; Tsai 1998; Mckenna and McGills; 2004) via the dynamic 

damping of short wind (capillary) waves with subsequent reduced surface vorticity (Figure 1.7). 

They also dampen eddies approaching the surface by reducing surface tension and creating a 

stress opposite to the force of upward eddy transport. 
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Figure 1.7. Surfactant edge from Deep Ocean Gas Exchange Experiment (DOGEE II) in the North 
Atlantic Ocean. Credit to Robin Pascal. 

So, as the thickness of viscous sublayer increases, the surface renewal weakens and turbulent 

length scale will be increased. All these modifications reduce kw and hence air-sea gas exchange 

by capillary waves damping turbulent energy transfer (Davies, 1966; Metzger and Dobbins, 

1967; Tsai, 1996; McKenna and McGillis, 2004; Liss et al., 2005; Salter et al., 2011). 

Insoluble surfactants on the other hand influence air-sea gas exchange through a static 

mechanism. They form a monolayer physical barrier (Springer and Pigford, 1970) that increases 

mass transfer resistance at the sea surface (Liss and Martinelli, 1978) and disrupts molecular 

diffusion across the interface. However, this physical barrier tends to be dispersed under typical 

oceanic conditions of wind and waves (Goldman et al., 1988). The effect is also most important 

for gases such as water vapour and ammonia (NH3), for which mass transfer is controlled 

mainly by the gaseous phase than water side resistance (Springer and Pigford, 1970; Liss, 

1983). Therefore, in evaluating the surfactant control of air-sea gas exchange in the marine 

environment the soluble surfactant effect is the most important.  

There have been contradictory views on the effect of SML surfactants on kw in the past. For 

example, Adamson (1990) and Asher (1997) suggested that forming a single-component film 

required to make a physical gas exchange barrier at the surface is impossible due to the presence 



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

41 
 

of mixed composition films (Liss et al., 2005). On the other hand, surfactant control of gas 

exchange was previously underestimated because it was thought that surfactant-derived slicks 

only exist at low wind speeds and are disrupted at higher wind speeds (greater than 13 m s-1), 

being dispersed by surface winds and waves (Broecker et al., 1978; Liss, 1983; Tsai and Liu, 

2003). 

However, in agreement with a previous explanation by Goldman et al. (1988), Frew et al. 

(1990) consider soluble surfactants as important as insoluble fractions in controlling gas 

exchange at high wind speeds because they release back to the interface after physical 

disruption by bubble scavenging (Tsai and Liu, 2003).   

Frew et al. (2002) also suggest that suppression of kw is dependent on SML surfactant 

enrichment rather than bulk surfactant concentration, based on the results of a gas transfer 

experiment in a small annular wind-wave tank. 

To highlight the importance of  surfactants in air-sea gas exchange, an early global flux model 

for CO2 (Berger and Herguera, 1992) showed a likely 6-fold suppression by surfactants. 

However full coverage of the global oceans with surfactants was considered unrealistic (Liss et 

al., 2005). 

A series of laboratory and field studies have been conducted to evaluate the suppression of air-

sea gas exchange by surfactants using natural and synthetic surfactants (Table 1.5).  

Synthesized surfactants including oleyl alcohol and Triton-X-100 (T-X-100) were chosen 

primarily in previous research because they are well characterized and studied under different 

conditions (Saylor, 2003). Also, alternative advantages of using oleyl alcohol is its similar 

characteristics to natural oceanic surfactants (Barger, 1991). 
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Table 1.5 shows that suppression of gas exchange in the presence of natural and artificial 

surfactants may typically approach 50% and even reach 85% (Broecker, 1978; Brockmann et 

al., 1982; Asher and Pankow, 1986; Jähne et al., 1987a; Goldman et al., 1988; Salter et al., 

2011; Schneider-Zapp et al., 2014; Pereira et al., 2016). For example, spatiotemporal variability 

of kw by natural surfactants was studied during a 20 km offshore transect in the North Sea using 

a custom built laboratory gas exchange tank (Pereira et al., 2016). It was suggested that natural 

surfactants suppress kw for CH4 by between 14% and 51% relative to surfactant-free MilliQ 

water.   

Some other laboratory measurements were also carried out to determine surfactant control on 

gas transfer as a function of wind speed. For example, Broecker (1978) measured gas transfer 

of CO2 in the liquid phase using a wind-wave tunnel for clean and oleyl alcohol covered 

surfaces. They observed a four to five fold reduction in the gas transfer rate at a wind speed of 

12.5 m s-1 in the film-covered surface compared to the clean surface (Broecker et al., 1978).  

Asher (1996) showed that kw was reduced in the presence of insoluble synthetic surfactants 

(Triton) compared to clean water for insoluble helium (He) and relatively soluble CO2 in a 

whitecap simulation tank (Liss et al., 2005). He later, in agreement with Frew et al. (1990) 

assumed that the SML inhibits gas exchange by reducing kw in the presence of both visible and 

invisible slicks (derived from soluble and insoluble surfactants). However, the quantification 

of this suppression under global oceanic conditions is yet to be understood (Asher, 1997).   

Brockman et al. (1982) also reported a decrease in CO2 exchange by 30% during artificial 

visible slick formation of oleic acid compared to non-slick conditions. 

Some field experiments were also carried out to understand surfactant control on gas exchange 

in aquatic environments. For example, Salter et al. (2011) showed that phytoplankton derived 

surfactants suppress kw by up to 55% during a mesocosm phytoplankton bloom experiment. 

In northern Pacific and Atlantic Ocean CO2 flux reduction by surfactants was reported 

throughout a year based on primary productivity (Tsai and Liu, 2003). 
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1.3 Objective of the thesis 

The principal aim of this study is to examine the spatial variability of natural surfactants and 

associated components (e.g. CDOM) at the ocean basin scale (Atlantic Ocean), both in the SML 

and in depth profiles over the upper 100 metres of the water column. Such data are important 

to the evaluation of air-sea gas exchange but they have previously been lacking. The aims were 

achieved through participation in two Atlantic Meridional Transect cruises during 2014 

(AMT24) and 2015 (AMT25). The results are discussed in the context of our current 

understanding of the environmental controls of air-sea gas exchange. 

1.4 Thesis outline 

In Chapter two, after a short introduction (section 2.1), section (2.2) describes the study region 

and identifies sampling stations (cruise map). Section 2.3 briefly describes major Atlantic 

Ocean water masses encountered on the AMT transects. Major ocean currents encountered are 

described in section 2.4. Sampling techniques for the SML and underlying water are in section 

2.5. Analytical methods for SA and CDOM are described in section 2.6. In section 2.7, the gas 

exchange methodology including the structure of a custom-build gas exchange tank used in this 

work and the associated experimental method are outlined. Sections 2.8 - 2.10 describe relevant 

hydrographic data and statistical analyses used.  

In Chapter three, sections 3.1 to section 3.5, present and discuss relevant ancillary data. Section 

3.6 describes the distribution and spectral properties of CDOM in the SML and in the water 

column to a depth ~ 100 m. These data are used to assess the relationships between CDOM and 

biological and physiochemical parameters.  

Chapter four examines SA in the SML and throughout the water column, and enrichment factors 

in the SML, in a range of Atlantic Ocean biogeochemical provinces. Associations of SA with 

other parameters including wind speed, chlorophyll, primary productivity temperature and 

salinity are examined.  

Chapter five presents the results from the gas exchange tank experiment and discusses 

surfactant controls on kw relative to surfactant-free MilliQ water.  
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Chapter 6 is a summary of Chapters three to five, highlighting the major findings and comparing 

these with previous results. 

Finally, Chapter 7 includes conclusion and recommendations for future work. 
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Chapter 2. Materials and Methods 

2.1 Introduction 

This chapter describes the study region, sampling regime, analytical methods and sample 

processing used to determine spatial variations of natural surfactant activity (SA) and 

chromophoric dissolved organic matter (CDOM) in different oceanographic provinces of the 

Atlantic Ocean. It also summarises physiochemical characteristics of water masses via 

Temperature-Salinity (T-S) diagrams and describes surface water currents. 

2.2 The study region and sampling stations 

The aim of the Atlantic Meridional Transect (AMT) programme (http://www.amt-uk.org/) is to 

annually monitor the physical and biogeochemical properties of “oceanographic provinces” in 

the Atlantic ocean, defined by the regulation of phytoplankton distributions by hydrographic 

properties (Longhurst et al., 1995; Reygondeau et al., 2013). Since 1995, atmospheric and 

oceanic samples have been collected along AMT transects and examined for physical, optical 

and biogeochemical parameters (Robinson et al., 2009). A typical AMT transect covers 13,500 

km, crossing approximately 17 oceanographic provinces with distinct biological and 

physiochemical characteristics, from temperate regions to oligotrophic gyres and equatorial 

upwelling (Hooker et al., 2000). To date the AMT programme has included 26 research cruises, 

the latest being between Immingham and the Falkland Islands during September-November 

2016.  

2.2.1 Sampling pattern 

Sampling during an AMT cruise uses conductivity, temperature and depth (CTD) sensors 

attached to a stainless steel Niskin bottle rosette (Sea-Bird Electronics, SBE09 CTD; 24 x 20L 

PVC Niskin water bottles). This allows for the collection of water samples at predetermined 

depths throughout the water column. There are typically two casts per day. The first is 
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scheduled before dawn and the second at solar noon enabling the assessment of light-mediated 

biogeochemistry. Sampling is usually restricted to a maximum depth of 500 m due to time 

constraints, and with a particular focus on the euphotic zone.   

AMT samples considered in this thesis were collected between ~50°N and ~50°S on two cruises 

of RRS James Clark Ross: AMT24 (21st Sept. - 6th Nov. 2014) and AMT25 (11th Sept. – 4th 

Nov. 2015). Consequently, sampling was in the boreal summer/autumn in the Northern 

Hemisphere and in the austral spring in the Southern Hemisphere. Both cruises departed from 

Immingham (UK), AMT24 terminating in Punta Arenas (Chile) and AMT25 terminating in 

Stanley, Falkland Islands (Figure 2.1). 
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Figure 2.1. Map of the cruise transects. Filled circles in red represent sampling stations on AMT24 and 
in blue on AMT25. Oceanic provinces related to the AMT24 and AMT25 cruise tracks (Longhurst, 
1995; Reygondeau et al., 2013) are also shown. Provinces are: North Atlantic Drift region (NADR); 
North Atlantic Sub-Tropical (Eastern) (NAST (E)); North Atlantic Sub-Tropical (Western) (NAST 
(W)); North Atlantic Tropical (NATR); Western Tropical Atlantic (WTRA); Eastern Tropical Atlantic 
(ETRA); South Atlantic Gyral (SATL); South Sub-Tropical Convergence (SSTC); Southwest Atlantic 
Continental shelf (FKLD). 
 
As Figure 2.1 shows, AMT24 and AMT25 followed slightly different courses. The principal 

difference was in the region from 40°N to 20°S, where there was a difference in longitude of ~ 

13° between the two transects. This was due to deployment of moorings and deep CTDs 

arranged for other research groups on AMT25. 

The Atlantic Ocean oceanographic provinces introduced by Longhurst (1995) were adopted in 

this study (Longhurst, 1995; Reygondeau et al., 2013). Longhurst (1995) assessed seasonal 

chlorophyll satellite images using the Moderate Resolution Imaging Spectroradiometer 

(MODIS) from the Coastal Zone Colour Scanner (CZCS) satellite and compared them with 

regional archives of surface chlorophyll, mixed layer topography, seasonal wind stress, wind 

stress curl, oceanic surface heat flux, the distribution of observable oceanic frontal zones and 

phytoplankton ecology (Longhurst, 2010). Satellite-derived images of chlorophyll distribution 

on AMT24 and AMT25 are shown in Figure 2.2.  
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Figure 2.2. Satellite-derived images of chlorophyll distribution in the Atlantic Ocean. The data provided 
by NASA Earth Observatory for October 2014 (left) and 2015 (right). Available at:  
https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA (Accessed: 17 April 2017). 
 
In general, the average chlorophyll concentration was higher on AMT24 (0.14 ± 0.17 mg m-3) 

than on AMT25 (0.06 ± 0.10 mg m-3). The maximum concentration of chlorophyll was 

observed in the European Continental Shelf Waters (ECSW) (~ 0.3 mg m-3) and the minimum 

was found on North Atlantic Sub-tropical Region (NAST) (~ 0.1 mg m-3) on both transects 

(Figure 2.2).  

2.3 Water masses 

Emery and Meincke (1986) identified four major water masses in the uppermost 500 m of the 

Atlantic Ocean: Atlantic Subarctic Upper Water (ASUW), which is the farthest north and is 

supplied by Subarctic and North Atlantic Intermediate Water (Wright and Worthington, 1970); 

Eastern and Western North Atlantic Central Water (ENACW and WNACW), in the eastern and 

western central north Atlantic Ocean respectively; and South Atlantic Central Water in the 

Southern Hemisphere (Table 2.1). 

  

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA
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Table 2.1. Temperature-Salinity (T-S) characteristics of major water masses in the Atlantic Ocean 
determined by Emery and Meincke (1986) 

 

In this study, water masses were identified by plotting T-S relationships derived from vertical 

CTD profiles (Aiken et al., 2000; Hooker et al., 2000) (Figure 2.3). 

 

 
Figure 2.3. Temperature-Salinity (T-S) diagram showing water masses encountered during AMT24 (red 
symbol) and AMT25 (green symbol). The major identifiable water masses are North Atlantic Central 
Water (NACW), South Atlantic Central Water (SACW) and Sub-Antarctic Surface Water (SASW). The 
dashed boxes represent the corresponding boundaries of temperature and salinity. The lines show 
constant density. 

  

SASW 
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North Atlantic Central Water (NACW) spans from ~50°N to ~10°N and from ~30°E to ~10°W, 

dominating northern equatorial areas, whereas SACW lies between ~10°N and 40°S and at the 

southerly boundary of NACW in the southern equatorial region (Sverdrup et al., 1942; Wright 

and Worthington, 1970; Emery and Meincke, 1986; Aiken et al., 2000). In general, SACW is 

more nutrient enriched and has lower salinity than NACW (Gardener, 1977).   

From Figure 2.3 it is evident that northern and southern water masses can be distinguished 

easily by their distinct quasi-linear relationships between salinity and temperature. Proceeding 

from higher to lower latitudes, towards the tropical regions (most points outside the dashed 

boxes) coincides with rising temperature and salinity, except in the mid-latitude equatorial 

regions where high precipitation (Aiken et al., 2000) and/or Amazon discharge influence 

salinity. Amazon water was characterised on previous AMT transects by temperatures ~28°C 

and salinities below 35.5 in the Boreal Autumn flowing easterly (North Equatorial Counter 

Current (NECC), see section 2.4)  (Aiken et al., 2000). West of the SACW boundary there is a 

small area showing inconsistency with the T-S relationship for the rest of the water mass, being 

characterised by a salinity ~34 and a temperature 3°C - 5°C (mostly evident on AMT24). The 

same was recorded by Aiken et al. (2000) on AMTs 1- 4 and Forster (2006) on AMTs 12-13. 

This low temperature, low salinity water might reflect Sub-Antarctic Surface Waters (SASW) 

transported northward by the Falkland Current (see section 2.4). 
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2.4 Atlantic Ocean surface circulation 

The main ocean currents encountered during AMT24 and AMT25 are shown in Figure 2.4. 

 
Figure 2.4. Atlantic Ocean surface currents encountered during AMT24 and AMT25: Letters refer to: 
Portugal current (PC); Azores Current (AC); Canary current (CC); North Equatorial Current (NEC); 
North Equatorial Counter Current (NECC); South Equatorial Current (SEC); Brazil Current (BC) and 
Falklands Current (FC), as defined by Hooker et al. (2000). The North Atlantic Gyre is a clockwise gyre 
between the northern temperate waters and the equatorial regions. The South Atlantic Gyre is an anti-
clockwise gyre between the southern temperate waters and the equatorial regions.  
 
The Atlantic Ocean comprises two main gyres: the northern Atlantic subtropical gyre (NAG) 

and the southern Atlantic subtropical gyre (SAG), each containing several current components 

(Aiken et al., 2000). Both gyres are characterized by positively correlated high temperature and 

salinity (Hooker et al., 2000). 

The Azores Current (AC) component of the NAG is an eastward current to a depth of 1000 m. 

It originates in the Gulf Stream and flows within the region bounded by ~10°W and ~40°W and 

~30°N and ~42°N. It has three branches which supply the northern boundary of the North 
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Equatorial Current (NEC) and the northern part of the Canary Current (CC) (Krauss et al., 1990; 

Aiken et al., 2000; Reverdin et al., 2003). Another branch of the AC is the Portugal current 

(PC) which flows between 10°W and ~ 25°W and between 38°N and ~ 47°N. 

The North Equatorial Current (NEC) flows westward, from the north west coast of Africa 

between ~10°N and 20°N, centred at 15°N (Fedoseev, 1970; Aiken et al., 2000; Hooker et al., 

2000). Therefore, the northern part of the NEC is supplied by both AC and CC in the north-east 

Atlantic. The NEC can also be affected by west-coast African upwelling water (Fedoseev, 1970; 

Mittelstaedt, 1991).  

The North Equatorial Counter Current (NECC) flows easterly between 3°N and 10°N (Hooker 

et al., 2000). The current is supplied by the North Benguela Current (NBC) between 6°N and 

8°N (Frew et al., 1990; Wilson et al., 1994), north of the South Equatorial Current (SEC) and 

south-westerly of the NEC. The current has seasonal variability with boreal summer and early 

autumn flow over the entirety of the tropics between 5°N and 10°N. However, the current 

disappears during the boreal spring due to strong winds in the northern hemisphere 

(Mittelstaedt, 1991; Wilson et al., 1994; Aiken et al., 2000). The eastward extension of the 

NECC reaches the African continent and supplies the Guinea Current (GC) while a northern 

branch of NECC also feeds the NEC (Richardson and Reverdin, 1987; Mittelstaedt, 1991). The 

surface interactions between the CC, NEC and NECC located between 15°N and 10°N gives 

rise to a surface cyclonic circulation (Mittelstaedt, 1991).   

Major currents of the SAG are the South Equatorial Current (SEC), which crosses the equator, 

the Brazil Current (BC), the South Atlantic Current (SAC) and the Benguela Current (BenC) 

(Aiken et al., 2000). The SEC is an westward current between ~ 4°N and ~ 25°S (da Silveira et 

al., 1994; Aiken et al., 2000; Hooker et al., 2000). It is a complex current with 3 branches 

including a southern branch, the Southern South Equatorial Current (SSEC), a central branch, 

the Central South Equatorial Current (CSEC), which flows between 5-6°N and supplies the 

North Benguela Current (NBC), and finally a seasonal (austral summer/autumn) northern 

branch, the Northern South Equatorial Current (NSEC), which flows between 1°N and 3-5°S. 

The SSEC originates in the BenC and flows northward into the NBC between 10°S and 12°S, 

with some input into the Brazil Current (BC) (Aiken et al., 2000; Hooker et al., 2000).  

The BC is a southerly flowing current at ~27°W which flows along the continental shelf and 

represents the western boundary of the SAG. (Peterson and Stramma, 1991). The most south-
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westerly current encountered in this study is the Falkland Current (FC) which flows northward 

and is a branch of the Antarctic Circumpolar Current.  

2.5 Sample collection and analytical methods 

2.5.1 Sampling the Sea Surface Microlayer (SML) and Sub-Surface Water (SSW) 

A total of 1479 samples were collected from 120 stations: 67 on AMT24 and 53 on AMT25 

(Table A.2). The surface microlayer (SML) was sampled first, in triplicate twice daily, during 

pre-dawn (05.00 - 06.00 GMT) and solar noon (13.00 - 14.00 GMT) hydrocasts. A custom-

made Garrett screen (Garrett, 1965) (width:60 cm, breadth: 60 cm, mesh:16, wire diameter: 

0.36 mm, effective surface area: 2025 cm2) was used, following a standard protocol (Cunliffe 

and Wurl, 2014).  

Sampling took place from the deck of the ship, over the bow. The approximate deployment 

position was 8.3 metres above the sea surface. Sampling was only carried out when the ship 

was stationary, as recommended by Cunliffe and Wurl (2014), and following a visual inspection 

to establish that there were no ship-derived effluents that would contaminate the samples. No 

effluent was discharged from the ship 1 hour before arriving at the next sampling station so as 

not to disturb the surface and contaminate samples. This procedure was developed and 

evaluated by Salter et al. (2011) and used successfully in an investigation of air-sea gas 

exchange mediated by an artificial surfactant slick.  

The need to sample from the ship’s deck was dictated by cruise logistics and is the principal 

reason why the Garret Screen (Figure 2.5 A) was selected over alternative samplers such as the 

glass plate (see section 1.1.2), which cannot be deployed in this way. The Garret Screen has a 

number of other advantages, including ease of cleaning with 10% HCl or by baking at 450oC 

for 6 hours, and the ability to accumulate relatively large sample volumes rapidly (15 ml/dip).  

The screen was deployed horizontally, pre-rinsed in seawater and submerged just under the 

water surface for 5 seconds before being lifted back up through the SML. Based on multiple 

screen deployments, the Garrett screen used typically samples the uppermost 65-80 µm of the 
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sea surface (Pereira et al., 2016). However, this may vary depending on both the oceanographic 

and meteorological conditions at the time of sampling (Cunliffe and Wurl, 2014).  

The adhering small rectangular cells of seawater samples captured in the spaces of the wire 

mesh by means of surface tension were drained along one of the screen corners into pre-rinsed 

15 ml high-density polyethylene (HDPE) tubes (Schneider-Zapp et al., 2014) (Figure 2.5 B) 

and stored in a cool box to minimize the possibility of photochemical degradation and/or 

biological modification prior to analysis. The HDPE tubes were previously shown to be inert 

to surfactant activity (Schneider-Zapp et al., 2014; Pereira et al., 2016). 
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(A) 

 

(B) 

 
Figure 2.5. Garrett screen orientation during sampling on board RRS James Clark  
Ross: (A) Garrett Screen at the sea surface during AMT24: (B) Method of draining  
sample water from the Garrett Screen. 
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At high sea states the screen was deployed within wave troughs and in the case of any splash 

back, the samples were excluded. 

Sub-Surface water (SSW) samples were routinely collected simultaneously via a hull-mounted 

“non-toxic” seawater inlet 7 m below the waterline and during each 500 m hydrocast (a total of 

357 “non-toxic” SSW samples).  

To investigate the vertical profile of CDOM in more detail (see section 3.6), at 14 stations on 

AMT24 and 13 stations on AMT25, 9 samples were collected: at the 5 selected light penetration 

depths (see section 2.4), at the base of the mixed layer, at the deep chlorophyll maximum 

(DCM) and at the oxygen (O2) maximum and minimum depths (as indicated by an oxygen 

sensor on the CTD rosette). Sample allocations for the analysis of surfactant activity (SA) and 

CDOM absorbance (see sections 2.5.3 and 2.5.6) are shown in Figure 2.6. 

 
Figure 2.6. Sample collection and sample processing protocols for surfactant and CDOM absorbance 
on AMT24 and AMT25 
 
In general, 7 samples were collected from each cast including 5 samples from various selected 

light penetration depths (97%; 55%; 33%, 14% and 1%). Samples were collected from the 

Niskin bottles using acid-washed silicon tubing that was pre-rinsed with excess sample. 

Samples for SA determination were unfiltered because filtration can modify SA by removing 

insoluble and most absorbable compounds and/or releasing intracellular matter due to cell 

rupture (Ẑutić et al., 1981; Ćosović et al., 1985; Williams, 1986; Ćosović and Vojvodić, 1998; 

Schneider-Zapp et al., 2014; Pereira et al., 2016; Sabbaghzadeh et al., 2017). Reduction in total 
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SA by ~13% in seawater samples (i.e. north Adriatic Sea) and ~70% in estuarine samples 

following filtration was reported previously (Ćosović and Vojvodić, 1998).  

All samples for SA determination were analysed immediately following sample collection. 

Typically there was a maximum of 3 hours between sample collection and the final analysis for 

each cast. Samples were kept in the dark in a cool box after Gašparović et al. (2011), Salter et 

al. (2011) and Pereira et al. (2016). Schneider-Zapp et al. (2013) showed that untreated SA 

samples can be stored at 4°C in the dark for up to two weeks with little overall change. 

Samples for CDOM determination were collected in 250 ml borosilicate volumetric flasks 

(analytical grade glassware, SCHOTT, GL 45, 250 ml, Fisher brand) pre-rinsed with excess 

sample. All glassware was pre-combusted at 450°C for 8 hours to remove any accumulated 

organic matter (Stubbins et al., 2006). To minimize contamination during filtration, syringes 

and all containers were pre-rinsed with pure laboratory water (18.2 Ohm Milli-Q, Millipore 

System Inc., USA), hereinafter referred to as MilliQ, and a small aliquot of sample (~ 3 ml) 

prior to use. This procedure was repeated prior to each subsequent filtration. Powder free 

disposable gloves were worn during all sampling and sample processing. 

After sample collection, sub-samples (20 ml) were transferred to a ground glass syringe (20 ml, 

SAMCO) and filtered (10 ml min-1) through 0.22 µm surfactant-free single use Millipore 

syringe filters (MILLEX GP, Millipore, PES membrane). 

CDOM samples were filtered based on previous protocols (Nelson et al., 1998; Helms et al., 

2008; Nelson and Siegel, 2013). Unfiltered samples include particulate components such as 

picophytoplankton, bacteria, other organics and mineral grains, in addition to dissolved species 

that contribute to light attenuation and hence modify sample absorbance characteristics 

(Michaels and Knap, 1996; Nelson and Siegel, 2013). Particulate absorbance tends to become 

dominant at wavelengths > 360 nm, which importantly affects the calculation of spectral slope 

due to changed absorption characteristics (Stubbins et al., 2006). For example, Nelson et al. 

(1998) reported 50% of total particulate absorption at 440 nm by detritus.  
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2.5.2 SML thickness estimation 

SML thickness was determined in two ways, firstly by dipping the screen 10 times in one 

location and recording the total volume collected and secondly, by dipping the screen 10 times 

at 10 different spots around the ship and recording the total volume collected (Salter, 2010).  

The SML thickness ranged between 185.2 and 340.7 µm with an overall average of 264.5 ± 

35.6 µm on AMT24. The SML thickness was quite similar between the Northern and the 

Southern Hemisphere with an average of 258.0 ± 36.5 µm and 275.5 ± 31.8 µm respectively.  

2.5.3 Surfactant Activity (SA) determination by Alternating Current (AC) Voltammetry 

SA was analysed by sinusoidal alternating current (AC) voltammetry (797 VA Computrace, 

Metrohm, Switzerland). The method is the most convenient technique for surfactants with a 

wide range in hydrophobicity, i.e. from hydrophilic polysaccharides to strongly hydrophobic 

fatty acids (Gašparović and Ćosović, 1994; Vojvodić et al., 1994). The method uses three 

electrodes:  (i) reference electrode (saturated silver/silver chloride (Ag/AgCl)) saturated in 3 

mol L-1 KCl solution; (ii) hanging mercury drop electrode (HMDE: renewable, non-polar 

hydrophobic surface) and (iii) platinum wire auxillary electrode (Ćosović and Vojvodić, 1982; 

Ćosović and Vojvodić, 1998; Cuscov and Muller, 2015).  

In AC voltammetric analyses a constant potential (E) of -0.6V is applied between the HMDE 

and reference electrodes, giving an electrical double layer at the mercury-water interface while 

the water sample is stirred for some deposition period to adsorb surface active material to the 

electrode. The adsorbed compounds modify the electrical double layer at the mercury-water 

interface. The net effect of surfactant accumulation on the HMDE is to modify permittivity and 

thickness of the double layer, resulting in the depression of CCi for the applied voltage (Cuscov 

and Muller, 2015).  

Calibration was against the non-ionic soluble surfactant polyoxyethylene t-octylphenol (Triton-

X-100 or T-X-100). T-X-100 is a simple, relatively small molecule (MW = 600 Da) that 

simulates the same absorption behaviour during AC voltammetry as does natural surfactant of 

the same activity (Ćosović and Vojvodić, 1998; Frka et al., 2012; Cuscov and Muller, 2015). 

T-X-100 is chemically stable and is commercially available.  
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The change in capacitive current (ΔI) was calculated for a range of standard solutions with 

known concentrations of T-X-100 (50 µl, 55 µl, 110 µl, 220 µl, 480 µl, 1.05 ml, 2.95 ml, 5.80 

ml and 9.90 ml of 2 mg L-1 T-X-100 solution added to the initial 10 ml of 0.55 mol L-1 NaCl). 

Standard solutions of T-X-100 were prepared fresh prior to each calibration. ΔI was then plotted 

as a function of T-X-100 concentration (mg L-1) to derive a calibration curve. When 

determining SA it is important to select measurement conditions that ensure an absorption effect 

corresponding to the rising part of the calibration curve and below the surface saturation level 

(Ćosović and Vojvodić, 1982; Ćosović and Vojvodić, 1998) (Figure 2.7). Sample SA is 

expressed as a “T-X-100 (in mg L-1) equivalent” (Ćosović and Vojvodić, 1998). 
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(a) 

 

(b) 

 
Figure 2.7. (a) Typical full calibration curve for T-X-100 for deposition times of 15s and 
60s.The dashed lines and arrows represent the rising parts of each curve, which were used 
for calibration (b) and the dashed line represents the best linear fit. The best linear fit equation 
and r-squared (r2) are also displayed. Note that the x-axis scale in (a) is logarithmic whereas 
in (b) it is linear. 
  

ΔI = 759.45 T-X-100 (mgL-1) - 1.6585  
r2 = 0.98 

ΔI = 318.64 T-X-100 (mgL-1) - 12.309  
r2 = 0.98 
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Salt solution (3 mol L-1 NaCl) with an ionic strength lower than that of seawater (~ 0.7 mol L-

1) was selected as the blank/reference solution (Cuscov and Muller, 2015). Prior to use, solid 

sodium chloride (NaCl, FischerScientific, CAS: 7647-14-5, ≥ 99.0) was heated for 6 to 8 hours 

at 450°C to eliminate traces of organic matter. All blank and standard solutions were prepared 

from reagent grade chemicals.  

The blanks run before and after each batch of samples and possible contamination of the blank 

and electrochemical cell was examined before each measurement. Suppression of CCi above 

10% of the maximum ΔI for surfactant absorption at saturation implies cell contamination or 

blank impurities. In that case the cell was acid washed and then heated at 450°C for 6 hours, a 

new blank solution was prepared and CCi was re-evaluated. This process was also repeated for 

samples taken from the deepest Niskin bottle (i.e. 500 m) from each CTD cast as these were 

expected to have the lowest values of SA to better evaluate any potential contamination during 

sampling. The depression of the capacitive current (i.e. CCi) is larger in samples of high SA 

(Figure 2.8). 
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Figure 2.8. Current-potential curves for different concentrations of T-X-100: (1) 0 µl L-1, (2) 110 µl L-

1, (3) 220 µl L-1 and (4) 480 µl L-1. Supporting electrolyte: 0.55 M NaCl. Amplitude 10mV, frequency 
75Hz. 
 
For short deposition times (i.e. low surface coverage) the surface coverage is proportional to 

the deposition time. However, this will not be the case at longer deposition times because 

additional molecules will only be adsorbed with less spacing between them and the repulsive 

electrostatic interactions between adjacent molecules become apparent (i.e. decrease in the 

slope of the surface coverage) (Figure 2.9). 
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Figure 2.9. Current-voltage curves for 220 µl L-1 concentrations of T-X-100 for 15s (blue line) and 60s 
(red line) deposition times. Supporting electrolyte, 0.55 M NaCl; amplitude 10 mV; frequency 75Hz. 
The yellow arrow compares the difference between the intensity of the slope for the two deposition 
times.  

The accumulation of surfactants is monitored by sweeping the potential from -0.6V to -1.0V 

(Schneider-Zapp et al., 2014; Pereira et al., 2016). As the standard in the literature is to use the 

current at -0.6V and because this enables comparison with other published data, E = -0.6V for 

SA measurements was employed. Therefore, SA includes the sum of the anionic and non-ionic 

components, as in previous studies of environmental water samples (Gašparović et al., 2011; 

Wurl et al., 2011b; Gašparović, 2012; Schneider-Zapp et al., 2014; Pereira et al., 2016).  

The quantification of SA is by defining ΔI, the decrease in CCi at E = - 0.6V relative to the 

baseline for pure, surfactant-free electrolyte (3mol L-1 NaCl): depending upon the expected 

value of SA in each sample: 

ΔI= Is - Ib                                                                                                                                                                       (equation: 2.1); 

where Is and Ib are the values of CCi at E = -0.6V for the sample and the blank respectively 

(Ćosović and Vojvodić, 1982; Ćosović and Vojvodić, 1998).  

Choosing an appropriate deposition time for the analyses is critical in any AC voltammetry 

technique. The deposition time should be long enough to provide satisfactory sensitivity for the 
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analyses, while avoiding saturation and absorption of any impurities present in the samples, 

such as cell walls and electrolytes. 

This work used deposition times of both 15s and 60s for each individual sample to cover the 

range of SA in the oceanic samples and these were kept constant through all the measurements 

during both cruises. This is the standard technique established in the Oceans and Climate 

Research Group at Newcastle University, based on earlier methods (Ćosović and Vojvodić, 

1982; Ćosović and Vojvodić, 1998), and used previously for offshore North Sea samples 

(Schneider-Zapp et al., 2014; Pereira et al., 2016).  

Reduction in CCi is related to the extent of surfactant absorption on HMDE during the 

deposition time. The HMDE became saturated at levels around 9.90 ml L-1 surfactant eq. T-X-

100 and CCi showed no further decrease (Figure 2.10). 
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If the electrode is saturated then appropriate dilution is required to bring the sample to within 

the measurable concentration range (Ẑutić et al., 1981; Ćosović and Vojvodić, 1982; Ćosović 

and Vojvodić, 1998). Diluting the samples with high purity water and electrolyte will give better 

precision than reducing deposition time, which leads to decreased sensitivity (Ćosović and 

Vojvodić, 1998; Cuscov and Muller, 2015).  

CCi is influenced by the ionic strength of the sample. So, equal ionic strength between the 

samples was achieved by adding either MilliQ water or highly pure surfactant-free salt solution 

(3 mol L-1 NaCl) (FischerScientific) depending upon whether the initial salinity (S) of the 

sample was greater or lower than 35 (Ćosović and Vojvodić, 1998; Cuscov and Muller, 2015). 

All samples were therefore normalised to S = 35. The actual SA for a given sample was then 

recalculated using the dilution factor. The final volume of the sample in the cell was always 

maintained at 10 ml. 

To enhance surfactant accumulation at the HMDE and increase the method sensitivity, the 

sample was stirred at 1000 rpm during deposition, in the standard 100 cm3 Metrohm sample 

cell using a 10 cm Teflon stirrer bar (Ćosović and Vojvodić, 1982). All measurements were 

with the sample cell open to air and without de-aeration. Analyses were all in triplicate. 

Analytical precision was expressed as a standard error =100 σ/x, where σ is the standard 

deviation of the mean (x) of the triplicate samples. Analytical precision was always better than 

± 10% and was frequently better than ± 4%. The detection limit was 0.00995 mg L-1 T-X-100. 

2.5.4 Method modification for SA analyses at sea 

Some method modifications were required due to the possibility of the mercury drop detaching 

from the electrode at high sea states due to ship motion. To avoid this the equipment was 

installed on a custom-designed gimbal table (Figure 2.11). 
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Figure 2.11. 797 VA Computrace on the gimbal table during AMT25 (2015). 
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A gimbal table provides a platform such that and object can be fixed to it and allowed to rotate 

along different axes. This helps the object to remain upright while the ship is pitching or rolling.  

Mercury drop size number gives the drop creation time in units of 40 ms. Presumably, there is 

an advantage of using a larger drop size because of higher surface absorption capacity for 

surfactants to be absorbed if the drop is sufficiently stable. With too large a drop size, the 

mercury drop becomes quite heavy which may affect the stability. For example, the typical 

mercury drop size (DS) used previously at Newcastle University (North Sea samples) was 7 

(Pereira et al., 2016) that was not stable enough under high sea states on AMT cruises (Figure 

2.12). 

 

 
Figure 2.12. Current-potential curve derived from AC voltammetry with drop sizes (DS) of 4 and 7  
on AMT24. Unk indicates inability to resolve the current 
 
Figure 2.12 shows no response using DS = 7; the mercury drop has become unstable and fallen. 

A smaller drop (DS = 4) increases stability and makes it less likely to fall during the capillary 

measurement. However, it will make the analysis less sensitive unless the deposition time is 

increased. So, the medium mercury drop size of 4 with deposition of 15s and 60s was selected 

for all analyses (Cuscov and Muller, 2015). 
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2.5.5 Enrichment factor (EF) 

To quantify the degree of surfactant enrichment in each SML sample relative to corresponding 

SSW sample, an enrichment factor (EF) was calculated as: 

EF = (Surfactants SML / Surfactants SSW)                                                               (equation: 2.2); 

Therefore, EF values >1 indicate surfactant enrichment in the SML whereas EF < 1 indicates 

surfactant depletion in the SML compared to the underlying waters. 

To evaluate surfactant enrichment factors, data from the ship’s non-toxic supply line at 7 m 

were used as the reference, as for CDOM optical properties (see section 2.5.6). Although 2 m 

data were also available from some CTD casts, this depth was not consistently sampled along 

transects (the shallowest depths in some CTD casts being 5 m or more). Also, a strong 

correlation between SA in the shallowest CTD sample (2 m) and SA in the corresponding 7m 

non-toxic sample was observed (Figure 2.13) hence, the latter were selected to determine SA 

EFs in the Atlantic Ocean and these 7 m data are subsequently referred to as sub-surface water 

(SSW). 

 

Figure 2.13. SA derived from the shallowest CTD samples (2m) and the corresponding 7m non- 
toxic sample. The dashed line represents the best linear fit. The regression model and r-squared 
(r2) are also indicated. 
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So, EFs were calculated for all stations on AMT24 and AMT25 using SSW from 7 m depth.  

2.5.6 CDOM determination 

To maintain thermal equilibration between the samples (especially cooler, deep samples) and 

the reference solution, samples were stored at laboratory temperature (Kitidis et al., 2006; 

Stubbins et al., 2006) and in the dark for 1 hour prior to analysis to avoid artefacts arising from 

temperature differences (Miller et al., 2002; Helms et al., 2008).  

Spectrophotometric analyses of CDOM were conducted using a UV-Visible high performance 

liquid core waveguide (LCW) spectrophotometer (Ultrapath UV, World Precision Instruments 

(WPI), Inc. USA) ideally suited to the analysis of low CDOM oceanic samples (Miller et al., 

2002) (Figure 2.14). 

 
Figure 2.14. (Ultrapath) spectrophotometer with fibre-optic pathlength. 
Source: https://www.wpiinc.com/products/spectroscopy-and-optics/upuv-ultrapath-system-ultraviolet-
and-visible-light/ 
 
This instrument was used because using a 10 cm cuvette conventional spectrophotometer leads 

to significant errors in light absorption measurement at wavelengths > 360 nm for oceanic 

samples; previously CDOM absorption coefficients in the Atlantic Ocean determined in this 

way were below the detection limit of the spectrophotometer (Stubbins et al., 2006).  

The effective optical path lengths used were 50 cm on AMT24 and 200 cm on AMT25. It was 

necessary to use a shorter pathlength on AMT24 due to prior instrument damage. For this reason 

all results were normalized to the pathlength used in each case. 

https://www.wpiinc.com/products/spectroscopy-and-optics/upuv-ultrapath-system-ultraviolet-and-visible-light/
https://www.wpiinc.com/products/spectroscopy-and-optics/upuv-ultrapath-system-ultraviolet-and-visible-light/
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The detection limits of the LCW spectrophotometer at 50 and 200 cm path lengths were 0.0092 

m-1 and 0.0023 m-1 respectively.    

Filtered seawater samples (100 µl – 10 ml) (Miller et al., 2002) were drawn into the Ultrapath 

sample cell using a peristaltic pump. Studies have shown that filtered and unfiltered CDOM 

gives the same/very similar results (Pereira et al., 2016). 

To avoid artefacts from sample residue, wetted Ultrapath components were cleaned daily with 

1 mL of Ultrapath Waveguide cleaning solution (WPI, USA) followed by 20 ml MilliQ.   

Absorbance spectra were recorded over a range of wavelengths (275-700 nm) at 1nm resolution 

against a sodium chloride (NaCl) reference (0.5 M NaCl solution) following Nelson et al. 

(2007). The reference solution closely matched sample salinity to within ±1 (34 to 37). The 

artificial seawater was prepared using granular NaCl (Fisher Scientific, CAS: 7647-14-5, ≥ 

99.0) baked at 400°C for 6-8 hours to remove any organic contamination (Miller et al., 2002; 

Helms et al., 2008). Instrument baseline values were recorded before and after processing of a 

CTD cast, to monitor instrument drift, which was also monitored by checking the absorbance 

spectra of MilliQ water regularly. In the case of any observed high absorbance while running 

MilliQ, the sample cell was cleaned and the procedure repeated until successful.   

Baselines recorded on the same day usually agreed to within ± 0.00005 absorbance units at 275 

nm. Collected spectra were all corrected for dark current by setting the shutter in the closed 

position and taking dark spectra. Measurements were made in triplicate within 3 hours of 

collection. Naperian absorption coefficients, aλ, were then calculated following: 

aλ = 2.303A/l                                                                                                         (equation: 2.3); 

where aλ is sample absorbance at wavelength λ (corrected for the blank (reference) and 

temperature offset), A is the absolute absorbance and l is the fibre-optic pathlength (m). The 

effective pathlength for each optical cell was 49.78 ± 0.5 cm and 204.01 ± 1.0 cm for 50 and 

200 cm pathlengths respectively. 

CDOM absorbance is highest at short wavelengths (280 - 450 nm) and decreases exponentially 

towards longer wavelengths (Twardowski et al., 2004). Typically, no absorbance is measurable 

at wavelengths > 600 nm (Figure 2.15).  
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Figure 2.15. A typical CDOM absorbance-wavelength curve for a wavelength range 250 nm to 730 nm. 
Samples from SML, 2, 70 and 100 m were collected during CTD cast number 10 on AMT25. The black 
line represents the reference/blank absorbance. 

 

However, a typical CDOM absorbance spectrum is a featureless (i.e. without distinctive feature) 

trend and low overall resolution (Figure 2.15) led to absorbance measurements at discrete 

wavelengths or a range of wavelength bands to better determine CDOM, after Kalbitz et al. 

(1999), Hautala et al. (2000) and Helms et al. (2008). 

2.5.6.1 Refractive index and offset correction 

Differences in the refractive indices (RI) of a seawater sample and the Milli-Q reference can 

lead to systematic errors because the effective optical pathlength of the LCW varies with the 

refractive index of the solution (Miller et al., 2002). Miller et al. (2002) therefore recommended 

the use of sodium chloride (NaCl) solution as a reference against seawater samples and adjusted 

the NaCl concentration of their reference to match that of their seawater samples, using a 

refractometer. Given that salinities along AMT transects generally vary from 35 to 37 (Aiken 

et al., 2000), it was initially assumed that a NaCl solution of salinity of 36 (36.005 g L-1 NaCl) 

would be a practical reference, because the concentration dependence of the refractive index 

effect over the 35-37 salinity range is negligible , (i.e. the change in refractive index is 0.0138% 
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per PSU) (Tan and Huang, 2015). However, closer inspection of absorbance spectra recorded 

against the NaCl reference showed consistent negative offsets at longer wavelengths (675-695 

nm) indicating possible errors caused by differences in the wavelength dependence of the 

refractive indices of seawater and NaCl reference, respectively.  

It was therefore necessary to  investigate the wavelength dependence of absorbance of saline 

solutions obtained by subtracting the absorbance spectrum of a Milli-Q reference from 

absorbance spectra of artificial seawater and NaCl solution (S = 36) respectively after Dickson 

(1990) and Grasshoff et al. (2009).  

The apparent absorbance of NaCl (S = 36) (solution B) showed negative values at long 

wavelengths (-0.13 at 730 nm), an approximately linear increase towards the UV, followed by 

a roughly exponential increase towards shorter wavelengths (~ 0.15 at 250 nm). Absorbance 

for artificial seawater (solution D) showed a similar pattern, but with significantly higher values 

at wavelengths below 600 nm (Figure 2.16).  

At wavelengths above 300 nm, apparent absorbance increased with increasing salinity, showing 

a maximum increase of 0.003 per unit salinity at 325 nm.  

These results agree favourably with Nelson et al. (2007) who reported the same salinity 

dependence at 325 nm and found that the refractive index of seawater varied linearly with 

salinity over the entire ocean salinity range.   

To account for changes in sample salinity during AMT24 and AMT25, the apparent absorbance 

of the artificial seawater reference was calculated by interpolation to sample salinity as follows: 

Aλ,ref,SS = Aλ,ref,35 + (Aλ,ref,37 -Aλ,ref,35) / (37-35) × (SS-35)                                    (equation: 2.4)  

where Aλ,ref,35 and Aλ,ref,37 denote the apparent absorbances at wavelength λ and salinities 35 

and 37 respectively, and SS denotes sample salinity. To account for the use of NaCl solution as 

a reference during AMT 24 and 25, spectral correction factors, Fλ, were calculated by 

subtracting the absorbance of artificial seawater at sample salinity Aλ,ref,SS from the absorbance 

of NaCl (S = 36), Aλ,NaCl,36: Fλ = Aλ,NaCl,36 -Aλ,ref,SS.  
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The maximum Fλ for salinity 36 occurred at 280 nm (0.057; Figure 2.16). Absorbance spectra, 

referenced to artificial seawater matched to sample salinity, were then obtained by subtracting 

Fλ from sample absorbance.  

 
Figure 2.16. The difference in absorbance spectra over a range of wavelengths before and after 
refractive index (RI) correction. NaCl solution of salinity 36 (solution B) (blue), artificial seawater with 
interpolated salinity of 35 to 37 (solution D) (yellow), apparent optical density of the sample (purple), 
sample apparent optical density after offset correction (pink) and 1:1 line (black).   
 

2.5.6.2 Data processing 

For this study CDOM absorption coefficient was calculated at 300 nm wavelength (a300) 

because CDOM dominates at this wavelength (Kitidis et al., 2006; Stubbins et al., 2006; Helms 

et al., 2008; Pereira et al., 2016). Also, the measurement of absorption coefficient at longer 

wavelengths (i.e. > 400 nm) may be problematic for most spectrophotometers (Helms et al., 

2008). 

2.5.6.2.1 Spectral slope ratio (SR) 

Characterisation of CDOM properties such as chemical structure and source can be informed 

by using spectral slope values and specific spectral slope ratios that are not CDOM 

concentration dependant (Brown, 1977). Spectral slope determination over a narrow 

wavelength range is more efficient with less variation than over a longer wavelength range 

(Brown, 1977).  Therefore, two distinct spectral slope regions (i.e. 275-295nm and 350 - 
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400nm) were selected, after Carder et al. (1989) and Helms et al. (2008). The spectral slope 

ratio (SR) was calculated using a log linear fit of an exponential function in MS Excel to the 

absorption spectrum over two pre-defined wavelength ranges as following: 

SR = Slope (ln absorbance at wavelength 275:295) / Slope (ln absorbance at wavelength 

350:400) (i.e. S275-295 / S350-400)                                                                             (equation: 2.5); 

(Helms et al., 2008). Using spectral slopes over these two defined wavelength ranges avoids 

using absorption spectra close to the detection limit of the instrument. These wavelength ranges 

are very sensitive indicators of the photochemical transformation of CDOM, changes in its 

molecular weight and source (Helms et al., 2008). 

However, using non-linear fits may cause a bias in slope ratio. To test for this, a log-linear fit 

procedure was applied to a sample subset. No discernible differences were found by using either 

a log linear or nonlinear fit (Stedmon et al., 2000; Twardowski et al., 2004; Helms et al., 2008). 

Helms et al. (2008) pointed that the variation between log transform linear regression and 

nonlinear regression fit was less than 1%. This was most likely due to the wavelength (λ) ranges 

in Helms et al. (2008) being much shorter than in this study. 

Variations in organic matter molecular weight can also be evaluated using E2:E3, the absorption 

ratio for the wavelengths 250 nm and 365 nm. There is an inverse correlation between E2:E3 

ratio and molecular weight because of stronger light absorption by high molecular weight 

material at longer wavelengths (De Haan and De Boer, 1987; Peuravuori and Pihlaja, 1997; 

Helms et al., 2008).  

2.6 Gas exchange methodology 

Estimates of carbon dioxide (CO2) transfer velocity (kw) were made on large volume (93 L) 

surface water samples collected at 13 stations between 26th September and 26th October 2014 

during AMT24 by Dr Ryan Pereira (Newcastle University, now at Heriot-Watt University) 

using a fully automated closed air-water gas exchange tank (Figure 2.17).  

These kw estimates were coordinated with SA and CDOM measurements presented in this thesis 

and are used subsequently (Chapter 5) to aid interpretation of the wider implications of the SA 

and CDOM distributions observed in the Atlantic Ocean SML. Therefore, while detailed 
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descriptions of the gas exchange tank methodology and kw derivation is outside the scope of 

this thesis, a brief description is provided here to give some context. Full details, including tank 

design, operation and cleaning procedures are given in Schneider Zapp et al. (2014). Principal 

features of the exchange tank are shown in Figure 2.17. 
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In brief, the cleaned acid-washed tank was filled with ~ 93 L of seawater via the ship non-toxic 

seawater supply (inlet at 7m).  It is not practical to collect the required sample volume from the 

SML using the Garrett Screen (Pereira et al., 2016). A 1.1 L subsample of ambient seawater 

was decanted into a sealed glass bottle and enriched with methane (CH4) and sulphur 

hexafluoride (SF6) by equilibration. This gas-enriched sub-sample was then added to the tank 

water and the final volume recorded. Adding the sub-sample creates a gradient of gas partial 

pressures between the tank air and water phases, which drives measurable air-water gas 

exchange during the experiment. Then the tank was sealed. 

Two sequential fixed levels of baffle frequency (0.60 and 0.75 Hz) were used, controlled by 

user designed software in Newcastle University. However, in some experiments it was found 

that 0.75 Hz had the potential to create bubbles and so all reported results are for the baffle 

frequency of 0.60 Hz in this study.  

During an experimental run, samples of tank headspace and water, the latter automatically 

equilibrated with compressed air, are analysed for CH4 and SF6 by gas chromatography. The 

changes in tank headspace and water gas partial pressure with time are used to derive kw 

estimates for CH4 at the baffle speed. These data are then converted to equivalent values for 

CO2 in seawater at 20oC (k660) using diffusivity-based relations (Schmidt number). Schmidt 

numbers were obtained from Wanninkhof et al. (1992) after Schneider-Zapp et al. (2014) to 

aid comparison under different physical conditions. 

The ratio of k660 of the sample to that of corresponding surfactant-free MilliQ water; film factor 

(R660′) was calculated as a means of minimising variability in the results due to ship movement.  

Surfactant-free MilliQ water (sample blank) was therefore run prior to each seawater sample. 

The value of k660 for the sample blank was then normalized to the k660 value of an ‘installation 

blank’ (surfactant-free MilliQ water) measured prior to the cruise while the ship was in port.  

This correction factor was applied to each sample: 

k660 sample = k660 sample x [k660 installation MilliQ / k660 sample MilliQ]           (equation: 2.6).  

Results were discarded if the correction factor was greater than 30% (Schneider-Zapp et al., 

2014; Pereira et al., 2016). 
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2.6.1 Wind speed measurement 

Wind speeds were measured from the ship’s anemometer located on the top of the foremast at 

~ 20.8 m height above sea level and logged on the ship’s computer every 10 minutes. The true 

wind speed and direction were corrected for the ship’s heading by the respective vector. Wind 

speeds were finally corrected to U10n, the corresponding wind speed at reference height of 10 

m corrected to neutral stability (Nightingale et al., 2000).  

2.6.2 SML thickness versus wind speed 

The relative standard deviation (RSD) of the SML measurements was better than 20%, showing 

that the data are tightly clustered around the mean. 

 

SML thickness showed an inverse relationship with wind speed during this study, although the 

relationship is rather weak (Figure 2.18).  

 

 

 
              Figure 2.18. SML thickness against wind speed in the Atlantic Ocean. Data are available for 
              AMT24 only. 
 
 



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

82 
 

Although the inverse correlation between SML thickness and wind speed was significant (p = 

0.010) the small r-squared value (i.e. r2 = 0.13) due to the scatter of the data (Figure 2.18) 

implies that wind speed alone cannot be used to predict SML thickness. Other factors such as 

wind generated turbulence, waves and bubbles are likely to also be important in controlling 

SML thickness (Wurl et al., 2011b; Cunliffe et al., 2013). 

2.7 Statistical analysis 

Statistical analyses were established based on sample size; if the sample size was small (i.e. less 

than 30 data points), a parametric test (i.e. two sample t-test) was used to analyse similarity 

between the datasets for normally distributed samples. Nonparametric tests (i.e. Mann-

Whitney) were conducted for non-normally distributed data. For large sample sizes (i.e. greater 

than 30 data points), the Central Limit Theorem6 was considered for normality of the datasets. 

Statistical differences were accepted as significant for a probability of less than 0.05 (i.e. p < 

0.05).  

Statistical analysis and illustrations were performed with Microsoft excel 2013, Ocean Data 

View (ODV4), MATLAB R2016a and Minitab17.  

2.8 Hydrographic variables 

This section gives a broad outline of temperature, salinity and density during this study. The 

distributions of these characteristics during previous AMT transects were described by Aiken 

et al. (2000) and Robinson et al. (2006). The hydrography during AMT24 and AMT25 did not 

vary from the typical salinity and temperature climatology for September - November in the 

study area.  

In-situ temperature and salinity were logged from the ship’s thermosalinograph (in-line with 

the non-toxic seawater supply) and the CTD probe to investigate vertical hydrographic structure 

of the water column.  

                                            
6 According to the Central Limit Theorem, the distribution of means will follow a Gaussian distribution (i.e. 
normal bell shaped distribution) if the sample size is large enough (i.e. more than 30 data points). 
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Distributions of surface temperature, salinity and Sigma-T (σt), seawater density (derived from 

S and T) expressed as density (kg L-1) – 1000 kg L-1, were relatively similar on the two transects 

(Figure 2.19).  
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Surface water in the tropical and equatorial regions has low σt due to low salinity and the high 

temperatures. In the northern hemisphere equatorial region, the highest temperature is 

associated with a sharp decline in salinity, which may reflect some dilution of the salinity by 

precipitation (Aiken et al., 2000; Hooker et al., 2000).  

Temperature reaches a plateau in the northern hemisphere tropics (~ 28° N) and remains above 

20°C until it decreases towards the higher latitudes in the southern hemisphere. The coastal 

upwelling off the west coast of Africa is not clear from the surface temperature profile because 

the cruise tracks are too far from this region (Figure 2.19). 

Salinity shows a similar pattern; increasing from higher to lower latitudes. Salinity maxima 

were observed in the tropics (37 - 37.5) in association with high surface temperature typical of 

the regions. Salinity minima of ~ 32 – 34 were observed around ~ 5°N on both cruises in 

association with salinity decreases in the underlying water (Figure 2.19), indicating some 

upwelling of low salinity upwelled water to the surface and/or the signature of excess 

precipitation at the Equator. However, this is not very clear from the temperature plot (Figure 

2.19).  

Highest σt occurs at high latitudes in both hemispheres and declines sharply to < 22 in the 

equatorial region (i.e. 10°N) due to the higher temperatures (Figure 2.19). 

Depth profiles of S, T and σt are shown in Figure 2.20. 
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The main features of the North Atlantic Gyre (NAG) and the Southern gyre (SAG) between 

~35°N and ~20°S are the high surface temperatures which declined through the water column 

associated with the tropical regions (Figure 2.20).  

Clearly seen in the temperature profile is cool (and low salinity) water south of ~ 42°S. Low 

temperature and salinity around the equatorial regions may result from equatorial upwelling on 

both cruises (Figure 2.19). Upwelling African coastal water was especially discernible on 

AMT25 (see section 2.2) but it does not show clearly on the temperature and salinity plots 

(Figure 2.20). 

Along the full extent of both transects σt increases with depth. The lower values in the Northern 

and Southern Gyres are observable to ~ 300 m depth. This is due to high solar radiation 

penetration in these surface optically clear waters and also high temperature at depth due to 

convergence. These less dense waters extend deeper in the Southern Hemisphere, crossing 

further into the central gyre (Figure 2.19). Minima in σt are also found between 10°N and the 

equator to a depth ~ 50 m associated with low salinity and high temperature. This may reflect 

the influence of Amazon outflow carried by the NECC (see section 2.4) (Aiken et al., 2000; 

Hooker et al., 2000) and is more noticeable on AMT24 than on the more eastward AMT25 (see 

section 2.2).  

In the high latitudes, north of 40°N and south of 40°S around the European and South-West 

American continental shelves there is less vertical contrast in σt. These variations in density 

down to 500 m allowed Hooker et al. (2000) to identify 17 distinct biogeochemical provinces 

along AMT transects.  

2.8.1 Dissolved oxygen profile in the Atlantic Ocean 

As for salinity (S) and temperature (T), the latitudinal distributions of dissolved oxygen to 500 

m depth were similar during AMT24 and AMT25 (Figure 2.21). 
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           Figure 2.21. Latitudinal cross section of dissolved oxygen (µg L-1) on AMT24 (top) and 
           AMT25 (bottom) 
 
There was a distinct oxygen minimum (~ 100 µmol L-1) between ~ 20°N and ~ 10°S. However, 

concentrations were slightly higher around the equator. Maximal oxygen was at high latitudes, 

especially south of 40°S where it is associated with the spring phytoplankton bloom. 

2.8.2 Nutrients 

Samples were analysed for nutrients on board using a Bran and Luebbe segmented flow 

colorimetric Auto-analyser after Woodward and Rees (2001) and Hydes et al. (2010). 

2.8.3 Mixed Layer Depth (MLD) 

Mixed layer depth (MLD) is a boundary between the mixed layer of the surface and stratified 

deeper layer (Longhurst et al., 1995; de Boyer Montégut et al., 2004).  
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Mixed layer determination was adapted from Hooker et al (2000), an approach valid for 

previous AMT cruises. According to their model, the pycnocline or thermocline starts where 

gradients of three out of four continuous depths are greater than 0.035 kgm-3 for σt or 0.1°C/m 

in temperature (Hooker et al., 2000). In areas with lower gradients the threshold values were 

increased to 0.1 kg m-3 for σt or 0.5°C/m in temperature from surface water (i.e. the reference).  

Hooker et al. (2000) however found strong compatibility between MLD derived from 

temperature and density. So, it was suggested that MLD determination based only on 

temperature is reliable enough (Hooker et al., 2000). 

During this study, the gradients in temperature were thus derived to identify the MLD after 

Hooker et al. (2000). It was revealed that the mixed layer determination in this way is consistent 

with the depth of the mixed layer identified during sampling based on temperature profile by 

the ship’s system within the analytical error of ± 0.1. So, the MLD presented in this study were 

derived from on board temperature profiles during sampling.  

2.9 Summary 

Table 2.2 summarises the analyses, methods and relevant references. Also listed are colleagues 

who provided their raw data, which had not been published at the time of writing. Data 

interpretations throughout the entire thesis are those of the author alone. 
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Chapter 3. Biological and optical properties of water masses in the Atlantic 

Ocean 

3.1 Introduction 

This Chapter presents and discusses ancillary data (latitudinal distributions of phytoplankton 

communities, chlorophyll, primary production and nutrients) collected during AMTs 24 and 25 

from ~ 50°N to ~ 50°S and between ~ 5°W and ~ 55°W, (see section 2.2) and which support 

interpretation of the surfactant data discussed in Chapter four. 

To assess dissolved organic matter (DOM) biogeochemical characteristics, optical properties 

of the chromophoric fraction of DOM (chromophoric dissolved organic matter, CDOM) in the 

SML, in SSW (7m) and throughout the water column to ~ 100 m are presented. Relatively little 

is known about CDOM distributions and variability at ocean basin scales; therefore, using a 

framework of biogeochemical provinces is advantageous for identifying CDOM variability.  

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

92 
 

3.2 Chlorophyll distribution and primary productivity in the Atlantic Ocean 

Satellite-derived surface chlorophyll images reveal rather similar chlorophyll distributions 

during the two cruises and a strong similarity to the distribution of phytoplankton abundance 

(see section 3.4). 

Concentrations were lower in the oligotrophic regions, about 0.1 mg m-3, and higher in 

temperate waters in the Northern Hemisphere and in tropical regions; ~ < 1 mg m-3. The highest 

concentration of chlorophyll on both transects was observed at high latitudes in the Southern 

Hemisphere, ~ 1 mg m-3 (Figure 3.1). 

 

Figure 3.1. Satellite-derived (AQUA/MODIS) images of chlorophyll distribution in the Atlantic 
Ocean. The data are provided by NASA Earth Observatory for October 2014 (left) and 2015 (right). 
https://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=MY1DMM_CHLORA. The red lines 
represent the cruise track. 
  

AMT24 AMT25 

https://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=MY1DMM_CHLORA
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Figure 3.2. Latitudinal cross section of chlorophyll (mg m-3) in the Atlantic Ocean. The data are 
derived from a fluorescence sensor fitted on the CTD rosette on AMT24 (top) and AMT25 (bottom). 
 
Chlorophyll concentrations in the upper 100 m of the water column averaged 0.049 ± 0.084 mg 

m-3 (range: 0.00 - 1.08 mg m-3) on AMT24 and 0.046 ± 0.079 mg m-3 (range: 0.00 - 0.93 mg m-

3) on AMT25. However, the chlorophyll concentration was not constant with depth and the 

chlorophyll maximum was more intense during AMT25 in the Northern latitudes (Figure 3.2). 

Chlorophyll maxima occurred around 40°N and 40°S with a shallow euphotic zone (~ 65 m) 

and in the tropics between 20°N and 10°S where the average of euphotic zone depth was ~75 

m. Chlorophyll reached a maximum ~ 0.7 mg m-3 at about 30 m depth north of 40°N on AMT25 

compared to lower chlorophyll concentrations (~ 0.4 mg m-3) on AMT24. The concentration of 

chlorophyll was about 0.3 mg m-3 south of 40°S on both transects (Figure 3.2). In the tropical 

region, chlorophyll was more uniform with depth, ~ 0.2 mg m-3 and ~ 0.3 mg m-3 on AMT24 

and AMT25 respectively.  
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In the oligotrophic regions around 30°N and 20°S, chlorophyll was mostly undetectable or close 

to the detection limit on both cruises (Figure 3.2). The euphotic zone was deepened in these 

regions with ~ 100 m depth in the Northern Hemisphere and ~ 120 m depth in the Southern 

Hemisphere.  

The overall distribution of primary productivity also corresponded to chlorophyll and 

phytoplankton distribution (see section 3.4). The average total primary productivity for depths 

≤ 100 m was 0.48 ± 0.41 mg C m-3d-1, with a range of 0.02 - 1.70 mg C m-3 d-1 (Figure 3.3). 
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Figure 3.3. Total primary productivity (PP Total) (mg C m-3 d-1) in the water column on AMT24 
The data are available for AMT24 only. Black dots represent sampling locations. 
 
Productive regions around 40°N with an average of 0.54 ± 0.39 mg C m-3 d-1 in a range of 0.08 

- 1.47 mg C m-3 d-1 and 40°S with an average of 0.90 ± 0.30 mg C m-3 d-1 in a range of 0.39 - 

1.56 mg C m-3 d-1 corresponded to chlorophyll maxima and were also associated with a 

phytoplankton bloom (high coccolithophores numbers) in the region (see section 3.4). 

Another maximum in primary productivity was found around the equatorial region between 

10°N and 10°S (0.57 ± 0.38 mg C m-3 d-1 in a range of 0.03 - 1.70 mg C m-3 d-1) in association 

with nutrient-enriched upwelling waters. 

Primary productivity minima were observed in the oligotrophic gyres of the Northern 

Hemisphere (between 30°N and 10°N) and the Southern Hemisphere (between 10°S and 38°S) 

corresponding to chlorophyll minima and a less abundant phytoplankton distribution (see 

section 3.4). Averages of 0.33 ± 0.36 mg C m-3 d-1 in a range of 0.04 - 1.40 mg C m-3 d-1 in the 

Northern gyre and 0.25 ± 0.33 mg C m-3 d-1 in a range of 0.02 - 1.29 mg C m-3 d-1 in the Southern 

gyre were observed. 

3.3 Nutrient distributions in the Atlantic Ocean 

Vertical nutrient distributions were broadly similar on both cruises (p > 0.05), with higher 

concentrations at high latitudes (i.e. north of 40°N and south of 40°S) and in the tropics between 

about 20°N and 10°S, mostly at depths shallower than 40m. The most abundant nutrients were 
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silicate (ranged between 0.07 and 49.71 µM) and nitrate + nitrite (up to ~ 34.54 µM), phosphate 

(range from 0.01 to 2.38 µM) and nitrite (maximum of 0.37 µM) being lower (Figure 3.4). 
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Surface temperate waters in the Northern Hemisphere were characterized by low concentrations 

of nutrients. However, below the nutricline at about 40 m depth, nutrient concentrations were 

higher (Figure 3.4). 

In the northern and southern Atlantic gyre (i.e. NAG and SAG), NO2- and NO3- were almost 

fully depleted. PO43- showed a similar pattern in the northern gyre but slightly higher 

concentrations (~ 0.2 µM) in the southern gyre. SiO42- concentrations were also low in the 

gyres: ~ 0.6µM in the northern gyre and ~ 0.9 µM in the southern gyre (Figure 3.4). 

In the upwelling region between 20°N and 10°S nutrients followed almost the same pattern 

between the surface and ~50 m depth (nutricline), with low concentrations of SiO42- and 

PO43- and undetectable levels of NO2- (Figure 3.4). The enhancement of nutrients within the 

water column in this region might be evidence of the equatorial upwelling. 

At high southern latitudes (i.e. south of 40°S), nutrient distribution in top 100 m was more 

homogenous (Figure 3.4). SiO42- concentration ranged between 4 and 10 µM, there was < 2 µM 

of PO43- and ~ 0.2 µM of NO2-, but the latter was observed only on AMT24 (Figure 3.4). 

3.4 Phytoplankton abundances in the Atlantic Ocean 

In general, phytoplankton community structure and abundance varied latitudinally and with 

depth, with the highest phytoplankton occurences at high latitudes, in northern and southern 

hemisphere temperate waters, and in sub surface waters in tropical and equatorial upwelling 

regions around deep chlorophyll maxima (i.e. ~ 60 – 80m depth), reflecting similar distributions 

of  nutrients (see section 3.3). 

The dominant phytoplankton size classes in the Atlantic Ocean are picophytoplankton (0.2 – 

2.0 µm) and nanoplankton (2.0 – 20 µm) (Zubkov et al., 2000b; Teira et al., 2005). 

In the oligotrophic regions with low nutrient availability between 35°N and 35°S, the 

phytoplankton was dominated by picophytoplankton whereas in the mesotrophic zone with 

moderate nutrients north of 35°N and south of 35°S, nanoeukaryotes including cryptophytes 

were abundant in this study, in agreement with Aiken et al. (2009). 
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Major picoplankton species included autotrophic cyanobacteria such as Prochlorococcus sp. 

and Synechococcus sp. and also heterotrophic bacteria (Sieburth, 1979; Zubkov et al., 2000b; 

Tarran et al., 2006) (Figure 3.5). 
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Prochlorococcus was the most abundant picoplankton species throughout the water column on 

both transects between ~50°N and ~ 38°S, including the northern and southern gyres. 

Prochlorococcus dominated the oligotrophic gyres (NAST and SATL; average of 150,000 cells 

ml-1) characterised by low nutrient availability (see section 3.3) and temperatures below 20°C.  

It has been suggested that the latitudinal distribution of Prochlorococcus is temperature 

dependent and that low temperatures (14 - 17°C) limit its distribution (Olson et al., 1990). 

However, although Prochlorococcus were absent south of 38°S where the surface water 

temperature decreased to ~14°C they were detected down to 60m at 47°N where the temperature 

was ~ 16°C (Figure 3.5; see also section 2.8). High Prochlorococcus abundance in oligotrophic 

waters implies that their growth is not substantially nutrient dependent. It was pointed out 

earlier that Synechococcus and picoeukaryote abundances might be more strongly controlled 

by nutrient availability than Prochlorococcus (Vaulot et al., 1995). Maximal Prochlorococcus 

cell numbers (600,000 cells ml-1) were found above 60 m depth in the equatorial region between 

20°N and the equator. This distribution presumably reflects the influence of the subsurface 

equatorial current that transports nutrient-enriched waters from deep water towards the surface 

(Zubkov et al., 2000b). However, their distribution is more uniform in the euphotic zones of 

oligotrophic waters compared to the equatorial region (Figure 3.5). 

Synechococcus was found in very low abundance over the full extent of both transects. The 

highest concentration of Synechococcus was found in the West African (Mauritanian) 

upwelling mainly on AMT25 (Figure 3.5). Synechococcus was absent in the Atlantic gyres but 

was more abundant at high latitudes temperate waters (i.e. the northern and southern end of 

transects) with temperature < 10°C (Olson et al., 1988; Olson et al., 1990; Campbell and 

Vaulot, 1993) and higher nutrient concentrations.  It has been suggested that Synechococcus 

has a greater nutrient dependence than does Prochlorococcus and it has been observed that the 

abundance of Synechococcus generally increases around 40 – 80m depth in the equatorial 

region where nutrient-enriched water is transported to the surface (Zubkov et al., 2000b). 

Picoeukaryotes were less abundant on both cruises, with the highest cell numbers of ~ 30,000 

cells ml-1 at the northern and the southern ends of the transects throughout the water column 

and in between ~ 20 m and ~ 80 m in the equatorial regions (Figure 3.5). 

Higher phytoplankton abundances are reported for areas with relatively shallow pycnoclines 

and nitraclines (rate of maximum change in NO3- with depth), such as in northern and southern 
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temperate waters, whereas in the Atlantic oligotrophic gyres with a deeper nitracline (> 90 m), 

phytoplankton are less abundant (Heywood et al., 2006; Tarran et al., 2006). 

In southern hemisphere temperate waters, phytoplankton distributions were vertically extended 

because of greater water column mixing as compared to more stratified waters in the same 

latitudes of the Northern Hemisphere. Also, water stratification in the Northern Hemisphere 

during the late boreal summer caused the phytoplankton to be mostly distributed below the 

surface, as also found earlier (Tarran et al., 2006).   

The least abundant eukaryotic phytoplankton are coccolithophores, which are often 

undetectable by flow cytometry (Tarran et al., 2006). Maxima of only about 300 cells ml-1 were 

found at the northern and southern end of the transects. Coccolithophores also showed a 

maximum on AMT24 north of 40°N, at around 20 m depth, which coincided with a peak in 

chlorophyll (see section 3.2).  

Picoeukaryotes also showed the highest concentrations in the same area as Synechococcus (i.e. 

temperate water at either end of transect and at 40 – 80 m depth in the equatorial region) 

although they were much less numerous than Prochlorococcus and Synechococcus. In general, 

high numbers of picoeukaryotes coincided with Synechococcus between 30°S and 50°S and an 

absence of Prochlorococcus. 

In the Southern Hemisphere, picoeukaryotes disappeared completely in the oligotrophic waters 

of the SAG but rose again from nearly 30°S to the Falkland Islands shelf, suggestive of a 

nutrient dependent species (Figure 3.5).  

Overall, different picoplankton communities were observed between mesotrophic7 waters in 

temperate regions where Synechococcus and picoeukaryotes dominated, compared to the 

northern and southern oligotrophic waters where Prochlorococcus were particularly abundant, 

while concentrations of both Synechococcus and picoeukaryotes were much lower, as also 

found earlier (Zubkov et al., 2000b). 

From temperate to subtropical zones, seasonal stratification persists in autumn, associated with 

a shallow mixed layer (~ 50m) with the presence of phytoplankton in the thermocline. However, 

in tropical waters, a permanently stratified water column on either side of the equator is 

                                            
7 Mesotrophic waters with the moderate trophic state contain more dissolved nutrients than the oligotrophic 
waters but less than eutrophic waters. 
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associated with a deep mixed layer and very low chlorophyll (~ 0.05 mg m-3) (Aiken et al., 

2000).  

The depth-integrated biomass of heterotrophic bacteria previously showed similarity with 

picophytoplankton abundances at all latitudes in the Atlantic Ocean while they were most 

dominant in the temperate and equatorial waters and least abundant in the Atlantic oligotrophic 

gyres (Robinson et al., 2006).  

Although no data are available for heterotrophic bacterial distributions for this study it has been 

suggested that the maximal occurrence of DOM-dependent heterotrophic bacteria is in the 

productive regions of temperate waters at the northern end of the transects, in upwelling regions 

and in the frontal system between the Brazil and Falkland currents at the southern end of the 

transects, as  previously reported along AMT transects at the same time of year (Zubkov et al., 

1998). In oligotrophic regions such as Atlantic northern and southern gyres, by comparison, the 

distribution of heterotrophic bacteria is limited by the growth of Prochlorococcus and their 

limited excretion of DOM (Zubkov et al., 1998). Also, heterotrophic bacterial numbers and 

biomass maxima are observed in temperate and equatorial waters and shift southwards in April-

May (Zubkov et al., 2000a). Zubkov et al. (2000a) also concluded that heterotrophic 

nanoplankton control the growth of heterotrophic bacteria by consuming their total daily 

production throughout the Atlantic Ocean. 

3.5 CDOM distributions in the Atlantic Ocean 

The distributions of CDOM and its optical properties (i.e. spectral slopes and slope ratios) (see 

section 2.5.6) in the SML and the water column show some distinct and contrasting features 

(Figure 3.6). The figure shows a small subset of the actual data (i.e. 42 profiles, see section 

4.2.4). The purpose of figure 3.6 is to illustrate the consistent contrast between the SML and 

SSW for CDOM properties that warrants the SML being discussed separately. 
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In general, CDOM (a300) was higher in the SML compared to the underlying waters with 

statistically significant difference observed at high latitudes (p < 0.05) in contrast to S275-295 

which is lower in the SML relative to the underlying waters. Moreover, CDOM (a300) and S275-

295 did not show any changes in the mixed layer or deep chlorophyll maximum8 (DCM) in the 

water column. So, based on these results, it is concluded that the distinct pattern of high CDOM-

low spectral slope SML relative to the underlying water exists and these contrasts might apply 

to the whole data set in the Atlantic Ocean. 

Data were therefore grouped into two categories for subsequent discussion: (a) samples in the 

SML and (b) samples from the water column (depth ≤ 100m). 

3.5.1 The latitudinal distribution of CDOM and its optical properties in the SML 

The mean, standard deviation and range of CDOM spectral parameters in the SML over the full 

extent of the two transects (i.e. AMT24 and AMT25) with respect to their oceanographic 

provinces is represented in Table 3.1. 

  

                                            
8 A deep chlorophyll maximum depth (DCM) is a sub-surface depth in which the concentration of chlorophyll is 
maximum in the oceans. 
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The total average CDOM (a300) in the SML was 0.45 ± 0.23 m-1 and ranged from 0.16 to 1.52 

m-1. Results were statistically similar between AMT24 (average of 0.47 ± 0.28 m-1) and AMT25 

(average of 0.41 ± 0.13 m-1) (Two Sample t-test, testing H0: the two means are equal against 

HA: at least one mean is different; As µ1 - µ2 = 0.0617, t95% CI (2) 101 = 1.53, H0 is accepted [p = 

0.128]). CDOM (a300) varied between 0.16 – 1.52 m-1 over both transects (Figure 3.7).  
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The most notable features of the data common to both transects within the SML, were distinct 

CDOM (a300) maxima between 50°N and 40°N (ECSW and NADR), on AMT24 (0.96 ± 0.30 

m-1) and AMT25 (0.60 ± 0.10 m-1). There were also small CDOM (a300) maxima between 20°N 

and 10°N in the tropics (NATR) on AMT24 (0.65 ± 0.27 m-1) and AMT25 (0.40 ± 0.05 m-1).  

CDOM (a300) decreased significantly to almost a half (0.44 ± 0.27 m-1) of its values at higher 

latitudes towards NAST, indicating a transition to low CDOM waters of the oligotrophic NAG 

during both cruises (Two-Sample t-test, testing H0: the two means are equal against HA: at least 

one mean is different; As µ1 - µ2 = 0.3520 and 0.2434, t95% CI (2) 16 and 18 = 2.04 and 3.36, H0 is 

rejected [p = 0.04 and 0.004] for AMT24 and AMT25 respectively).  

CDOM (a300) increased again into the productive and nutrient-enriched tropical regions 

(NATR; 25-10°N) on both cruises (see Table 3.1). 

While Figure 3 shows a few isolated high CDOM (a300) values, due to the stringent precautions 

taken to exclude contamination during sampling, it is most likely that these are real values.  

Mann (2010) also observed high surface CDOM (a280) distributions (1.0 - 1.1 m-1) at 50°N on 

the UK shelf during AMT18 (Oct – Nov. 2008), although these samples were not from the 

SML. He also observed a reduction in surface CDOM to less than 0.45 m-1 towards the northern 

and the southern Atlantic gyres during AMT18. High concentrations of CDOM (a280) around 

10°N and 10°S (ranged from 0.55 to 0.65 m-1) at 100 – 130 m depth were also reported (Mann, 

2010). 

In agreement with the present results, Nelson et al. (2007) also reported the lowest surface 

CDOM (a325) (< 0.1 m-1) values in the central Atlantic subtropical gyre due to CDOM 

photodegradation and high CDOM absorption measurements (up to ~ 0.7 m-1) in the coastal 

areas of the North Atlantic influenced by the terrestrial inputs. 

In concurrence, Siegel et al. (2002) found the CDOM absorption coefficient (a440) of total 

CDOM and detrital material to be maximal at high latitude polar waters of the Northern 

Hemisphere using satellite ocean colour data. Absorption decreased significantly towards the 

oligotrophic gyres but local absorption maxima were also reported in equatorial upwelling 

regions of the global oceans (Siegel et al., 2002).  
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On both cruises CDOM (a300) in the Southern Hemisphere SML was lower than in the Northern 

Hemisphere SML, but with a significant difference observed only on AMT24 (Two-Sample t-

test, testing H0: the two means are equal against HA: at least one mean is different; As µ1 - µ2 

= 0.2373, t95% CI (2) 42 = 3.86, H0 is rejected [p = 0.000]). Averages of Northern Hemisphere 

CDOM (a300) were 0.58 ± 0.34 m-1 on AMT24 and 0.43 ± 0.13 m-1 on AMT25, compared to 

the Southern Hemisphere CDOM (a300) averages of 0.35 ± 0.11 m-1 on AMT24 and 0.36 ± 0.13 

m-1 on AMT25. 

The Southern Hemisphere biogeochemical provinces SATL (5 - 42°S), SSTC (42 - 45°S) and 

FKLD (48 - 50°S) showed no significant differences in CDOM (a300) on either cruise. Southern 

Hemisphere CDOM (a300) was also not statistically different between the two cruises (Two-

Sample t-test, testing H0: the two means are equal against HA: at least one mean is different; As 

µ1 - µ2 = -0.0160, t95% CI (2) 46 = -0.42, H0 is accepted [p = 0.674]).  

Average S275-295 was 0.030 ± 0.005 nm-1 (range 0.020 - 0.043 nm-1) on AMT24 and 0.036 ± 

0.004 nm-1 (range 0.023 - 0.044 nm-1) on AMT25 (Figure 3.8). 

Contrary to CDOM (a300) values, the highest S275-295 (nm-1) values were encountered in the 

oligotrophic gyres (centered on 30°N and ~ 20°S) with an average of about 0.04 nm-1 whereas 

the lowest measured S275-295 (< 0.03 nm-1) were found north of 40°N and south of 40°S, 

statistically similar between the two cruises (p > 0.05) (Figure 3.8).  
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Figure 3.8. Latitudinal distributions of S275-295 in the SML on AMT24 (circles) and AMT25 (triangles). 
The hatched regions indicate the northern and southern oligotrophic gyres with high S275-295. Negative 
latitudes are south of the Equator. 
 
Average S275-295 (nm-1) was higher in the Southern Hemisphere than in the Northern 

Hemisphere during both cruises but with a significant difference observed only on AMT24 

(AMT24 Northern Hemisphere, 0.030 ± 0.006 nm-1 (n = 32); AMT24 Southern Hemisphere, 

0.032 ± 0.004 nm-1 (n = 32, t-test, p = 0.04)); (AMT25 Northern Hemisphere, 0.036 ± 0.004 

nm-1 (n = 33); AMT25 Southern Hemisphere, 0.037 ± 0.005 nm-1 (n = 16, t-test, p = 0.44)). 

The highest average of S350-400 (nm-1) (see section 2.5.6) within the SML on both cruises was 

observed on NATR (AMT24; 0.030 ± 0.012 nm-1, n = 9 in a range of 0.015 - 0.055 nm-1 and 

AMT25; 0.023 ± 0.006 nm-1, n = 9 in a range of 0.016 - 0.032 nm-1) (see Table 3.1). 

A significant difference was also observed between S350-400 in the oligotrophic NAST compared 

to more productive NATR, consistent on both cruises (AMT24; p = 0.003 and AMT25; p = 

0.02). S350-400 was similar (p > 0.05) between the remaining provinces on AMT24. However 

S350-400 was significantly different between the equatorial region (i.e. WTRA) and the Southern 

Gyre (SATL) (p = 0.01) and also between SATL and SSTC (p = 0.004) on AMT25 (see Table 

3.1). 

The average of S350-400 in the Northern Hemisphere was similar between the cruises (AMT24; 

0.020 ± 0.009 nm-1 and AMT25; 0.019 ± 0.004 nm-1), however, the average of Southern 

Hemisphere S350-400 on AMT25 was lower than the average of the Southern Hemisphere S350-
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400 on AMT24 (AMT24; 0.019 ± 0.008 nm-1 and AMT25; 0.015 ± 0.002 nm-1) but the difference 

was not statistically significant (p > 0.05).  

The total average of SR in the SML (see section 2.5.6) was 1.65 ± 0.54 in a range of 0.15 - 2.70 

and 2.11 ± 0.56 in a range of 1.03 - 3.60 (excluding the outliers) on AMT24 and AMT25 

respectively (Table 3.1). The highest SR (i.e. SR > 2) was found in the oligotrophic regions of 

the NAST and the SATL. SR in the SML was low with an average of < 1.5 around the European 

continental shelf (i.e. ECSW) on both transects (Table 3.1). 

3.5.2 CDOM enrichment factors (EF) in the Atlantic Ocean 

CDOM (a300) in SSW was distributed similarly to CDOM (a300) in the SML consistently 

between both transects (Figure 3.9). 

 

 
Figure 3.9. Latitudinal distribution of CDOM (a300) in SSW (7m) on AMT24 (circles) and AMT25 
(triangles). Sample numbers (n) are also indicated. Negative latitudes are south of the Equator line. 
 
There was a strong positive relationship between SML CDOM (a300) and SSW CDOM (a300) 

(Pearson correlation coefficient (r) = 0.805, p < 0.001, n = 103). 

The results are in agreement with previous studies that showed statistically significant 

relationships between values in the  SML and corresponding subsurface water of CDOM (a305), 
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DOC and dimethylsulfide (DMS) in the Pacific/Yellow Sea (Yang et al., 2005; Yang et al., 

2006; Yang et al., 2009).  

SSW CDOM (a300) was in the range 0.10 - 0.87 m-1 on AMT24 and 0.13 - 0.50 m-1 on AMT25 

with maxima observed at north of 40°N on both transects (AMT24, 0.57 ± 0.17 m-1 ; AMT25, 

0.44 ± 0.03 m-1).   

SSW CDOM (a300) was significantly higher overall in the Northern Hemisphere than in the 

Southern Hemisphere (AMT24 Northern Hemisphere SSW CDOM (a300), 0.35 ± 0.19 m-1; 

Southern Hemisphere SSW CDOM (a300), 0.23 ± 0.04 m-1; AMT25 Northern Hemisphere SSW 

CDOM (a300), 0.25 ± 0.10 m-1; Southern Hemisphere SSW CDOM (a300), 0.20 ± 0.04 m-1) 

(Mann Whitney, testing H0: n1 = n2 against HA: n1 ≠ n2; As n1 - n2 = 0.1119 (AMT24) and 

0.8761 (AMT25) with %95 CI, H0 is rejected [p = 0.040 0 (AMT24) and p = 0.000 0 (AMT25]).  

To investigate possible accumulation or depletion of CDOM within the SML with respect to 

SSW, the enrichment factor (EF) of CDOM was calculated: EF (CDOM) = CDOM (SML) / CDOM 

(SSW). EF > 1 indicates enrichment of CDOM in the SML and EF < 1 indicates depletion. EFs 

for CDOM (a300) showed similar variability on both transects and were >1 for all sampling 

stations (Figure 3.10). 

 

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

117 
 

        

             
  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

118 
 

During both cruises three bands of high CDOM (a300) EF were observed centered on ~ 42°N in 

NADR, 10°N in WTRA and 15°S (Figure 3.10). Average CDOM (a300) EF values were 1.73 ± 

0.72 (range 1.03 - 3.03) on AMT24 and 1.63 ± 0.47 (range 1.16 - 2.87) on AMT25.  

Enriched CDOM in the SML on both cruises is in agreement with Galgani and Engel (2016) 

who observed CDOM (a325) enrichments in the SML in upwelling regions off the coast of Peru. 

The SML enrichment factors ranged between 0.40 and 2.80 with a median EF (a325) = 1.20, 

(Galgani and Engel, 2016), as compared to the range of 1.03 and 3.03 found in this study. 

The results from the current study also agree with those of Tilstone et al. (2010) who found 

CDOM (a300) maxima in the SML with concentrations more than twice those of sub-surface 

waters (2.0 m depth) off the Iberian Peninsula. CDOM was also observed to be enriched in the 

SML (EF = 1.84) compared to the underlying waters in Jiazhou Bay, China during autumn and 

winter (Zhang and Yang, 2013).  

The relationship between EF CDOM (a300) and CDOM absorption characteristics was 

investigated, but no significant linear regressions between EF CDOM (a300) and either S275-295, 

S350-400 or SR were found (p > 0.05)  .    

3.5.3 SML CDOM (a300)-SSW CDOM (a300) association 

Further investigation revealed that SML CDOM (a300) has a strong positive relationship (r2 = 

0.64) with SSW CDOM (a300) (Pearson correlation coefficient; r = 0.80, p < 0.001, n = 103) 

(Figure 3.11). 
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Figure 3.11. CDOM (a300) in the SML against CDOM (a300) in SSW (7m) 
The line represents the best fit linear relationship. The linear equation and r-squared 
are also shown. Sample number (n) is indicated.    
   
Although, the r-squared value (r2) was not great due to probably the clustering of the data at the 

low value of absorption (Figure 3.11). This indicates a direct dependency of SML CDOM on 

organic matter availability in the underlying waters (Zhang and Yang, 2013). 

3.5.4 CDOM profile within the water column in the Atlantic Ocean 

In general, CDOM (a300) decreased below the SML at all latitudes during AMT24 and AMT25. 

It ranged from 0.10 - 0.87 m-1 on AMT24 and 0.13 - 0.55 m-1 on AMT25 at depths shallower 

than 100 m, with a statistically significant difference between two cruises (p = 0.003, n = 583) 

(Table 3.2). 
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This is in agreement with Galgani and Engel (2016) who also observed higher CDOM (a325) 

in the SML compared to the underlying waters in upwelling waters off the coast of Peru. 

The average CDOM absorbance of 0.29 ± 0.12 m-1 agrees closely with values of 0.35 ± 0.10 m-

1 obtained from AMTs 9, 10 and 11 to a depth of 300 m (Kitidis et al., 2006). However, their 

results were slightly higher than the mean CDOM absorption coefficient in this study due to 

their unfiltered samples. 

CDOM absorption coefficients for oceanic samples with an average CDOM (a300) < 0.50 m-1 

were reported for the Mid-Atlantic Bight, the western tropical Atlantic and the Sargasso Sea 

(Siegel and Michaels, 1996; Del Vecchio and Blough, 2004). 

Stubbins et al. (2006) reported average CDOM (a300) of 0.19 ± 0.03 for filtered surface water 

samples from the entire euphotic zone (i.e. > 100m depth) collected on AMT15 (September and 

October 2004) between the UK and Cape Town (South Africa). 

CDOM (a300) measurements within the water column also showed a maximum between 50°N 

and 35°N, with an AMT24 average of 0.41 ± 0.12 m-1 (range 0.17 - 0.87 m-1) and an AMT25 

average of 0.36 ± 0.10 m-1 (range 0.17 - 0.54 m-1) (Figure 3.12). 
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At high latitudes in the Northern Hemisphere (i.e. ECSW and NADR), CDOM (a300) maxima 

in the water column were typically encountered shallower than 70 m, with a surface MLD ~ 25 

m and DCM at around 50 m during both cruises in this study.  

The current study shows the notable increase in CDOM absorbances from the base of the mixed 

layer in the Northern Hemisphere between 45°N and 25°N in water deeper than 60 m. In the 

tropical-equatorial region (between 20°N and 5°S), CDOM (a300) maxima were encountered 

below 20 m depth. Average values were 0.31 ± 0.14 m-1 (range 0.13 - 0.62 m-1 on AMT24 and 

0.27 ± 0.10 m-1 (range 0.15 - 0.51 m-1) on AMT25 (Figure 3.12). In agreement with the current 

study, maxima in CDOM (a300) (> 0.6 m-1) were measured between 30 m and 80 m depth at the 

same latitudes (Kitidis et al., 2006). 

In the oligotrophic regions between 35°N and 20°N a smooth distribution and lower CDOM 

(a300) values were observed throughout the water column (AMT24, 0.24 ± 0.11 m-1, range, 0.10 

- 0.56 m-1 ; AMT25, 0.19 ± 0.05 m-1, range, 0.14 - 0.37 m-1). The position of the DCM had 

deepened to ~100 m in the vicinity of the oligotrophic NAG while the MLD was still shallow 

(~ 35 m). It was also noticed that at depths shallower than 50 m in this region, CDOM depletion 

might occur as CDOM (a300) decreased to less than 0.1 m-1 in some samples (Figure 3.12). 

In concurrence, the central oligotrophic gyres of the Atlantic, Indian and Pacific Ocean showed 

CDOM minima in previous research (Carder et al., 1989; Nelson and Siegel, 2002; Siegel et 

al., 2002; Siegel et al., 2005a; Siegel et al., 2005b; Kitidis et al., 2006; Kowalczuk et al., 2013) 

In the Southern Hemisphere, CDOM (a300) was lower than the Northern Hemisphere (AMT24, 

0.22 ± 0.04 m-1, range of 0.14 - 0.35 m-1; AMT25, 0.21 ± 0.04 m-1, range 0.13 - 0.35 m-1 (see 

Table 3.2). 

In the oligotrophic South Atlantic gyre (SAG) between 10°S and 30°S, CDOM (a300) values 

were more homogenous within the water column with lower concentrations (AMT24, 0.20 ± 

0.04 m-1, range 0.14 - 0.32 m-1; AMT25, 0.18 ± 0.02 m-1, range 0.13 - 0.27 m-1) compared to 

lower latitudes in the Northern Hemisphere. The DCM had deepened in this region (DCM > 

100 m) and reached almost 140 m on AMT24. Overall, CDOM (a300) distributions in the water 

column are less variable with depth in both the NAG and SAG with a deep DCM and low 

surface chlorophyll values.  
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At higher latitudes in the Southern Hemisphere (south of 30°S) a shallower DCM (~ 50 m) 

might have resulted in slightly higher CDOM (a300) values within the water column compared 

to the lower latitudes of the South Atlantic (AMT24, 0.24 ± 0.03 m-1, range 0.17 - 0.31 m-1; 

AMT25, 0.22 ± 0.02 m-1, range 0.18 - 0.25 m-1).  

Water column CDOM (a300) values in the Northern Hemisphere changed significantly along 

the cruise transects between the provinces whereas the water column CDOM (a300) in the 

Southern Hemisphere was more homogenous and changed statistically less between the 

provinces. 

CDOM (a300) was also found to be significantly different between the Northern and the 

Southern Hemisphere, consistently on the two cruises in agreement with Kitidis et al. (2006) 

(Two-Sample t-test, testing H0: the two means are equal against HA: at least one mean is 

different; As µ1 - µ2 = 0.1238 (AMT24) and 0.0841 (AMT25), t95% CI (2) 251 = 11.39 (AMT24) 

and t95% CI (2) 218 = 8.04 (AMT25), H0 is rejected for AMT24 and AMT25 [p < 0.001]). Northern 

Hemisphere CDOM (a300) was 0.35 ± 0.14 m-1 and 0.30 ± 0.11 m-1 compared to Southern 

Hemisphere CDOM (a300) of 0.22 ± 0.04 m-1 and 0.21 ± 0.04 m-1 on AMT24 and AMT25 

respectively.  

3.5.4.1 Further investigation of CDOM optical properties in the Atlantic Ocean 

In agreement with Kowalczuk et al. (2013), the distribution of CDOM (a300) and S275-295 show 

a significant inverse correlation in the Atlantic Ocean both in the SML and throughout the water 

column (Pearson correlation coefficient (r) = -0.77, p < 0.001, n = 114 (SML) and r = -0.83, p 

< 0.001, n = 584 (water column)). The average of S275-295 throughout water column (i.e. ≤ 100 

m) is significantly higher than in the SML of the Atlantic Ocean (Two-Sample t-test, testing 

H0: the two means are equal against HA: at least one mean is different; As µ1 - µ2 = 0.00450 

3, t95% CI (2) 188 = -7.05, H0 is rejected [p < 0.001]). 

In concurrence, Galgani and Engel (2016) found higher S275-295 in underlying waters (~ 20 cm), 

ranging from 0.017 to 0.043 nm-1 compared to between 0.012 and 0.038 nm-1 in the SML, in 

the upwelling region off the coast of Peru, but the difference was not statistically significant. 

Zhang and Yang (2013) also found lower S350-400 in the SML than in sub-surface waters for 

almost all sampling stations along offshore transects in Jiaozhou Bay, China. 

The total average of S275-295 within the water column was rather similar on both cruises (AMT24 

S275-295, 0.036 ± 0.007 nm-1; range 0.020 - 0.053 nm-1; AMT25 S275-295, 0.040 ± 0.007 nm-1; 
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range 0.023 - 0.053 nm-1). CDOM spectral slope values with the inverse relationship with 

CDOM absorption coefficient were reported typically for oceanic samples (Bricaud et al., 1981; 

Nelson et al., 1998; Nelson et al., 2004; Nelson et al., 2007; Nelson et al., 2010).  

S275-295 was compared between the hemispheres to further investigate its latitudinal/regional 

variability. Similar to results from the SML (see section 3.5.1), average Southern Hemisphere 

S275-295 was higher than for the Northern Hemisphere observed on both cruises (AMT24 

Northern Hemisphere S275-295, 0.034 ± 0.007 nm-1, n = 200; AMT24 Southern Hemisphere S275-

295, 0.038 ± 0.005 nm-1, n = 141; AMT25 Northern Hemisphere S275-295, 0.039 ± 0.007 nm-1, n 

= 158; AMT25 Southern Hemisphere S275-295, 0.042 ± 0.005 nm-1, n = 82) with significant 

difference (Two-Sample t-test, testing H0: the two means are equal against HA: at least one 

mean is different; As µ1 - µ2 = -0.0038 05 (AMT24) and -0.0032 84 (AMT25), t95% CI (2) 338 = 

-5.35 (AMT24) and  t95% CI (2) 222 = -3.84 (AMT25), H0 is rejected for AMT24 and AMT25 [p < 

0.001]). 

To further assess the spatial signal of the quantity and composition of organic matter in the 

Atlantic Ocean, S275-295 values in the SML and the water column were compared. In total, the 

average SML S275-295 was 0.033 ± 0.005 nm-1 (AMT24 SML S275-295, 0.030 ± 0.005 nm-1, range 

0.020 – 0.043 nm-1; and AMT25 S275-295, 0.036 ± 0.004 nm-1, range 0.023 - 0.044 nm-1, lower 

than average S275-295 within the water column (depth ≤ 100m) with an  average of 0.038 ± 0.007 

nm-1 (AMT24 S275-295, 0.035 ± 0.007 nm-1, range 0.020 - 0.053 nm-1; AMT25 S275-295, 0.040 ± 

0.007 nm-1, range 0.023 - 0.052 nm-1). 

S275-295 maxima were found in the oligotrophic region of the NAG above ~ 50 m depth, above 

~20 m depth in the equatorial region between 20°N and the Equator and also in low latitudes in 

the SAG (north of 40°S), consistent between the two cruises (Figure 3.13). 
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In the oligotrophic region of the NAG (35°N - 20°N) (depth ≤ 50 m) S275-295 maxima were 

found with an average of 0.041 ± 0.007 nm-1 (range 0.027 - 0.053 nm-1) on AMT24 and 0.046 

± 0.004 nm-1 (range 0.031 - 0.052 nm-1) on AMT25. Second S275-295 maxima were found in 

SAG between 10°S and 30°S, with an average of 0.042 ± 0.005 nm-1 (range 0.026 - 0.051 nm-

1) on AMT24 and 0.047 ± 0.003 nm-1 (range 0.037 - 0.052 nm-1) on AMT25. The last S275-295 

maxima was above 20 m in the tropical region (between 20°N and the Equator) with an average 

of 0.037 ± 0.008 nm-1 (range 0.020 - 0.050 nm-1) on AMT24 and an average of 0.040 ± 0.008 

nm-1 (range 0.023 - 0.050 nm-1) on AMT25.  

S275-295 was lower at high latitudes (~ 40°N and ~ 40°S) within the water column and also in 

the tropical and equatorial region in the Northern Hemisphere waters below ~ 20 m depth 

(Figure 3.13). 

S350-400 on the other hand showed a homogenous distribution within the water column (depth ≤ 

100 m) with some high S350-400 values observed at single depths mainly on AMT24. S350-400 

within the water column was in the range 0.001 - 0.074 nm-1 and 0.008 - 0.022 nm-1 on AMT24 

and AMT25 respectively (Table 3.2). 

SR within the water column was in the range 0.62 - 7.30 on AMT24 and 1.63 - 6.43 on AMT25 

(see Table 3.2). SR maxima were observed mostly in the oligotrophic NAST, primarily at depths 

shallower than ~ 60 m and at all depths in SAG. SR minima (~2) were found at the northern 

end of transects and in the tropical and the equatorial region within the water column deeper 

than 20 m (Figure 3.13). This is in agreement with Kowalczuk et al. (2013), who found the 

lowest SR values (SR ~ 2.0) in the western European continental shelf in the upper 100 m and 

also at the southern edge of the transect about 50°S in the top 50 m. 

Overall, the average of SR during this study is in agreement with SR reported by Kowalczuk et 

al. (2013), who report an average of 3.09 ± 0.05 in the mixed layer of the Atlantic Ocean during 

AMT20 (2010). Zhang and Yang (2013) reported SR ranging between 0.8 and 2.3 and increased 

with CDOM photodegradation in Jiaozhou Bay, China. 

Also, in agreement with Galgani and Engel (2016), SR was significantly lower in the SML (1.88 

± 0.58, range from 0.15 to 3.60) compared to the sub-surface waters (3.00 ± 1.35, range from 

0.85 to 7.86) (Two-Sample t-test, testing H0: the two means are equal against HA: at least one 

mean is different; As µ1 - µ2 = 1.090, t95% CI (2) 140 = -7.54, H0 is rejected [p < 0.001]). In 
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contrast, Tilstone et al. (2010) found higher SR in the SML associated with higher S275-295, 

indicative of CDOM photobleaching in oceanic samples off the Iberian Peninsula. 

3.5.5 The presence of mycosporine-like amino acids (MAA) 

A typical UV/visible absorption spectrum for CDOM was presented and discussed in section 

2.5.6. However, in SML samples around 15°N a prominent absorption shoulder between 325 

and 350 nm was observed in the CDOM absorbance vs wavelength plots (Figure 3.14). 

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

130 
 

 
Figure 3.14. Absorbance vs wavelength plot (in red) of an SML sample (CTD026, AMT24: Lat. 
16.43°N; Long. 28.4°S) showing a distinct shoulder at 325-350 nm. The grey line represents the 
absorbance vs wavelength plot for corresponding sub-surface water. The dashed line represents the 
artificial seawater reference.  
 
Tilstone et al. (2010) also reported such a prominent absorption shoulder at short wavelengths, 

suggestive of the presence of mycosporine-like amino acids (MAA) in the dissolved optical 

fraction of organic matter off the Iberian Peninsula. The MAA enrichment in the SML of up to 

290 µg L-1 during slick formation coincided with abundance of dinoflagellates (Tilstone et al., 

2010). 

Also, a strong correlation between CDOM absorption coefficient and MAA concentration may 

indicate that MAA compounds might have similar optical properties, contributing to total 

CDOM absorption in the ocean (Tilstone et al., 2010). 

Whitehead and Vernet (2000) also observed MAA to be present in oceanic samples during a 

red tide off the upwelling coast of California. 

A prominent absorption ~ 280 nm in some samples from the UK shelf regions associated with 

coccolithophores bloom has been reported previously (Mann 2010). 
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However, the samples containing MAAs in this study were mostly observed in the SML around 

15°N in the NATR during both cruises (4 samples in total). The presence of MAA was not 

frequent in other provinces and CDOM dominates the spectral absorbance within the SML at 

other locations.  

3.5.6 CDOM absorption coefficient – spectral slope relationship 

Overall there was a significant inverse relationship between CDOM (a300) and S275-295 both in 

the SML (r2 = 0.60, n = 114) and in the water column (r2 = 0.69, n = 584) (Figure 3.15). 
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In general, S275-295 decreased with increasing CDOM (a300) consistently on the two cruises 

while the highest average values of S275-295 i.e. 0.044 and 0.054 nm-1 coincided with the lowest 

CDOM (a300) i.e. 0.16 and 0.10 m-1 in the SML and the water column respectively. 

The highest values of CDOM (a300), associated with the lowest S275-295, were observed in the 

waters off the UK coast (ECSW) and in NADR during both cruises whereas the highest S275-295 

values are associated with the lowest CDOM (a300) as recorded in the oligotrophic waters of 

the SATL on both cruises (Figure 3.15).  

A significant negative correlation (p < 0.001, n = 114) between CDOM (a300) and S275-295 was 

found in the SML, with the strongest linear relationship observed in the NATR (r2 = 0.89, n = 

18). A significant negative correlation was also found between CDOM (a300) and S275-295 in the 

water column (p < 0.001 n = 584).   

3.5.7 CDOM-Chlorophyll association 

Phytoplankton are the principal source of biologically-derived CDOM in the marine 

environment (Carder et al., 1989; Kowalczuk, 1999). 

Phytoplankton were distributed in deeper waters at lower latitudes (excluding the equatorial 

upwelling region) and within the mixed layer at higher latitudes (depth ≤ 100m) in this study 

(see section 3.4). Given that CDOM in the open ocean is mainly derived from phytoplankton 

(Carder et al., 1989; Kowalczuk, 1999), the relationship between CDOM (a300) and 

chlorophyll- a as an overall indicator of phytoplankton abundances was examined. CDOM 

(a300) showed a positive relationship with chlorophyll-a. Although the p-value vale was 

significant (Pearson correlation coefficient (r) = 0.40, p < 0.001, n = 661), the linear regression 

model cannot be used to predict CDOM absorption coefficient based on chlorophyll-a with any 

significant degree of accuracy as the r2 value was only 15%. To investigate further, the data 

were split to two groups i.e. SML and SSW (= 7m) (Figure 3.16). 
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This showed that there are two distinct patterns with respect to the chlorophyll-a and CDOM 

association in the Atlantic Ocean. The water masses at high latitudes mainly in the Northern 

Hemisphere (i.e. ECSW and NADR; circled in Figure 3.16) differ markedly from the general 

data trends in both the SML and SSW. The correlation between CDOM and chlorophyll-a 

improves significantly in the absence of these water masses (Pearson correlation coefficient (r), 

SML (r) = 0.88 and SSW (r) = 0.64, p < 0.001; Figure 3.17).  
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The linear regression model can then be used to predict the CDOM absorption coefficient in 

the SML using chlorophyll-a as a proxy with a nearly 80% accuracy. However, the model is 

province-dependent, and is applicable for the open ocean where there are no alternative sources 

of CDOM such as riverine or terrestrial input. In addition, in the ECSW and NADR there might 

be additional factors controlling CDOM distribution. 

Kitidis et al. (2006) also observed regional/spatial co-dependence of CDOM and chlorophyll-a 

in the Atlantic Ocean. A statistically significant correlation was found between CDOM and 

chlorophyll-a in relation to phytoplankton abundance at the base of the mixed layer at lower 

latitudes and in the mixed layer at higher latitudes (Kitidis et al., 2006). However, overall the 

linear regression between CDOM and chlorophyll-a was not strong (r2 ~ 0.20) on AMT 9, 10 

and 11, suggesting that chlorophyll-a cannot be used as a quantitative proxy for CDOM 

distribution (Kitidis et al., 2006). 

Nelson et al. (1998) found no clear correlation between CDOM (a300) and chlorophyll-a 

concentration (r2 = 0.45, p > 0.05), even with low CDOM (a300) of 0.20 m-1 coinciding with 

high chlorophyll-a (0.30 mg m-3) during a phytoplankton spring bloom in the Sargasso Sea. 

The S275-295 vs chlorophyll-a relationship was also improved by excluding the samples from 

high latitudes in the Northern Hemisphere (Figure 3.18). 
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Figure 3.18. S275-295 – chlorophyll a relationship in the SML and the SSW during AMT24 and AMT25. 
The dashed line represents the linear regression of the data along with the linear regression equation, 
correlation coefficient and number of the samples.  
 
The Pearson correlation coefficient of r = -0.79 showed a strong negative correlation between 

CDOM spectral slope and chlorophyll-a concentration in the SML and the SSW samples (p < 

0.001). The linear regression showed that the degree of the model accuracy is high based on r2 

value (r2 = 0.61) (Figure 3.18). 

3.5.8 Changes in CDOM optical properties related to physiochemical indicators 

CDOM optical properties including CDOM (a300) and S275-295 were compared with salinity, 

water temperature and wind speed in the SML, the SSW (7 m) and the water column (depth ≤ 

100 m).  

Overall, CDOM (a300) showed inverse correlations with salinity and temperature in the SML, 

SSW and the deeper water column, but these were not statistically significant (AMT24 salinity, 

r2 = 0.018, p = 0.275, n = 65, AMT25 salinity r2 = 0.000, p = 0.876, n = 65; AMT24 temperature, 

r2 = 0.024, p = 0.292, n = 47, AMT25 temperature, r2 = 0.006, p = 0.604, n = 47) (Table 3.3). 
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Galgani and Engel (2016) also found a decrease in CDOM absorbance with increasing salinity, 

temperature and wind speed with stronger dependency within the SML compared to underlying 

waters of the upwelling region off the coast of Peru. 

Kitidis et al. (2006) also reported that CDOM (a350) decreased with increasing salinity while 

CDOM levels decreased at salinity greater than 33.0, suggestive of CDOM removal due to 

photodegradation.   

CDOM spectral slope, an indicator of CDOM history including its source, molecular weight 

and degradation (Helms et al., 2008), increased at higher salinity and temperature with 

significant dependency observed in the SSW and the water column although the correlation are 

still relatively small (Table 3.3). 

In agreement with this study, Kitidis et al. (2006) also found that S290-350 increased with salinity 

and temperature in the surface waters (< 7m) of the Atlantic Ocean, attributed to CDOM 

photodegradation due to high solar radiation. 

Moreover, CDOM, in general, showed a negative correlation with wind speed while CDOM 

(a300) and S275-295 decreased at high wind speed (U10) with statistically significant correlation 

observed between wind speed and S275-295 (Table 3.4). 

  

Table 3.4. Correlation between CDOM optical properties in the SML and wind speed (U10) during 
AMT24, AMT25 and the total samples. The numbers represent Pearson correlation coefficient. 
Significant correlation (p < 0.05) are marked with star. Negative values represent inverse correlation. 
Sample numbers (n) are indicated. 
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Galgani and Engel (2016) also found a positive correlation between S275-295 and both salinity 

and temperature in the SML and underlying waters but did not show any correlation with wind 

speed for the upwelling region off the coast of Peru. 

However, it should be pointed that the range of wavelengths on which CDOM spectral slope 

values are calculated is important as it might show different behaviour towards salinity and 

temperature. For example, Kitidis et al. (2006) found that CDOM spectral slope decreases with 

higher salinity if the slope is calculated above 350 nm whereas CDOM increases with salinity 

for spectral slopes calculated below 350 nm as in this study. 

3.6 Summary 

To discern dynamics and chemical characteristics of DOM including sources, sinks and 

transformations in the Atlantic Ocean, the optical properties of CDOM in the SML, in 

subsurface water (SSW = 7m) and in the deeper water column (≤ 100m) were determined in a 

range of biogeochemical provinces on two cruises of AMT. Characterization of CDOM via its 

optical properties enhances our understanding of organic matter composition in the marine 

environment and assists in identifying any modification of DOM in the SML or throughout the 

water column. 

CDOM generally showed a SML maximum over the full extent of the transects, with a more 

homogenous distribution in the water column, but with the exception of high latitudes in the 

Northern Hemisphere (i.e. around 40°N) and in the equatorial region, with possible local 

CDOM production or terrestrial deposition in the vicinity of the continental shelves and/or 

equatorial upwelling systems.  

Other biological characteristics of the Atlantic Ocean including phytoplankton community 

structure, chlorophyll, nutrient distributions and primary productivity in the Atlantic Ocean 

with respect to the biogeochemical provinces were discussed in this Chapter. Relationships of 

CDOM with chlorophyll-a revealed the distinct pattern in Atlantic biogeochemical provinces. 

A better correlation was observed in the lower latitudes of the tropical and the equatorial regions 

compared to the higher latitudes in the Northern Atlantic hemisphere in the vicinity of the 

European continental shelves (see section 3.5.7).  
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Chapter 4. Surfactants in the Atlantic Ocean surface microlayer and 

underlying water 

4.1 Introduction 

In this Chapter, the three following datasets are presented and discussed; total surfactant activity 

(SA) in the sea surface microlayer (SML) and in the water column (depth ≤ 100m) and 

surfactant enrichment factors (EFs) in the Atlantic Ocean. These first comprehensive surfactant 

measurement at ocean basin scales are important because as discussed (see section 1.2.1) 

surfactants are one of the major controls of the air-sea exchange of climate active gases such as 

CO2. 
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4.2 Results 

4.2.1 Surface distributions of surfactants in the Atlantic Ocean 

In this section measurements of surfactant activity (SA) in the SML along two Atlantic 

Meridional Transect (AMT) cruises between 50°N and 50°S: AMT24 (2014) and AMT25 

(2015) (section 2.2) are discussed. 

Average SA in the SML was 0.34 ± 0.19 mg L-1 eq. T-X-100 (range 0.13 – 1.00 mg L-1 eq. T-

X-100) on AMT24 and 0.47 ± 0.38 mg L-1 eq. T-X-100 (range 0.12 - 1.77 mg L-1 eq. T-X-100) 

on AMT25. 

Wurl et al. (2011 b) reported SA values of 0.49 ± 0.40 mgL-1 eq. T-X-100 in the SML (range: 

0.10 - 1.57 mg L-1 eq. T-X-100) for several oceanic regions including the north Pacific, the 

subtropical north Pacific and the Arctic. Although the ranges in SA during this study were 

within those given by Wurl et al. (2011b) (except for the upper limit of SA of 1.76 mg L-1 eq. 

T-X-100 on AMT25), there are some important differences. The details of the SA distributions 

varied between the Atlantic Ocean biogeochemical provinces in this study, which was not 

shown by the earlier more broad based synthesis which predicted similar SA (and EF) ranges 

for areas of comparable trophic status in different ocean basins (Wurl et al., 2011b). 

Frew et al. (2002) reported that SA in the SML ranged from 0.05 to 3.00 mg L-1 eq. T-X-100 

in coastal and oceanic samples from the Sargasso Sea-Middle Atlantic Bight. They found 

significantly lower SA in oligotrophic oceanic samples, with a maximum of 0.15 mg L-1 eq. T-

X-100 compared to more eutrophic coastal samples where SA reached as high as 3.00 mg L-1 

eq. T-X-100 (Frew et al., 2002). 

SA in the SML was also considerably lower in oceanic samples of the northern Adriatic Sea 

(i.e. average of 0.083 mg L-1 eq. T-X-100) (Gašparović et al., 2011) compared to this study. 

Although, the data were reported on a yearly basis and SA maxima were observed in August 

and at the beginning of November.  

Ćosović and Vojvodić (1982) also reported higher SA for the SML (range; 0.10 - 2.50 mg L-1 

eq. T-X-100) compared to the SSW samples (maximum 60 m depth) (range; 0.01 - 1.00 mg L-

1 eq. T-X-100) in the Northern Adriatic Sea. SA also showed seasonal dynamics with the 
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highest SA values measured in the late summer and autumn associated with a phytoplankton 

bloom (Ćosović and Vojvodić, 1998). 

Croot et al. (2007) reported SA values in the Southern Ocean during an iron fertilisation 

experiment (to promote a phytoplankton bloom) ranging from < 0.005 to 0.03 mg L-1 eq. T-X-

100 with general SA enrichment observed in the SML. The highest SA values (> 0.02 mg L-1 

eq. T-X-100) were also recorded at the end of the phytoplankton bloom (Croot et al., 2007). 

Latitudinal SA distributions on AMT24 and AMT25 were broadly similar. While the SA 

maximum at 40°N was present in both the SML and the SSW, other details of SML SA were 

not reflected in the SSW data. Excluding the SA maxima, there was a discernible trend of 

progressively decreasing SA from the north to the south on both transects, both in the SML and 

in SSW (Figure 4.1).  

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

145 
 

 
 
 

 
Figure 4.1. Latitudinal distribution of SA in the SML (top) and in SSW (7m depth) (bottom) along 
AMT24 and AMT25 in the Atlantic Ocean. Negative values of latitude represent the Southern 
Hemisphere. Bars display standard deviation of the mean. Note that the scales on y-axis are different for 
the two plots.  
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Given that the two transects differed by up to 13° of longitude between ~ 40°N and 20°S (see 

section 2.2), it seems that there are only comparatively small longitudinal SA gradients across 

a substantial fraction of the Atlantic Ocean. The most notable features of the data, common to 

both transects and in both the SML and in SSW, were distinct SA maxima centred on ~ 40°N, 

in NADR (AMT24, SML 1.00 ± 0.28 mg L-1 eq. T-X-100, SSW 0.36 ± 0.15 mg L-1 eq. T-X-

100; AMT25, SML 1.76 ± 0.10 mg L-1 eq. T-X-100, SSW 0.58 ± 0.16 mg L-1 eq. T-X-100) 

(Figure 4.1).  

On AMT24 only, there were also two small SA maxima that were exclusive to the SML, centred 

around 26°N between NAST and NATR provinces with an average of 0.57 ± 0.07 mg L-1 eq. 

T-X-100 and at ~10°N in WTRA, (0.70 ± 0.14 mg L-1 eq. T-X-100) (Figure 4.1). It was also 

noticeable that the ranges in wind speed (U10) between 36°N and 26°N (6.69 ± 1.33 m s-1) and 

between 12°N and 9°N (3.91 ± 0.71 m s-1) on AMT24 were somewhat higher than on AMT25 

(4.77 ± 1.14 m s-1 ; 1.26 ± 0.35 m s-1 respectively). Also, as Figure 4.2. shows, salinity was 

comparatively low at ~10°N on both transects, but it was also about two salinity units lower 

during AMT24 (Salinity ~ 32) than during AMT25 (Salinity ~ 34) at this location.  
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Additionally, high SA was observed at ~50°S in Falkland Islands (FKLD) (0.54 ± 0.01 mg L-1 

eq. T-X-100) during AMT24. Evidence for this feature during AMT25 was either absent or 

comparatively limited (Figure 4.1).  

An average SA in the Atlantic Ocean was found to be statistically higher in the SML compared 

to the SSW and as high as a factor of two on AMT25 (Two Sample t-test, testing H0: the two 

means are equal against HA: at least one mean is different; As µ1 - µ2 = 0.1319, t95% CI (2) 293 = 

6.74, H0 is rejected [p < 0.001]). 

Average SA was also compared between the northern and the southern hemispheres for both 

transects (Table 4.1). The Atlantic Northern and Southern Hemisphere showed different SA 

ranges during this study. An average of SA in the SML and the SSW was statistically higher 

(as high as three times) in the Northern Hemisphere than in the Southern Hemisphere {(Two 

Sample t-test, testing H0: the two means are equal against HA: at least one mean is different; As 

µ1 - µ2 = 0.2107 and 0.4360, t95% CI (2) 57 and 31 = 5.44 and 4.63, H0 is rejected [p < 0.001] for 

SML AMT24 and AMT25 respectively) (Two Sample t-test, testing H0: the two means are 

equal against HA: at least one mean is different; As µ1 - µ2 = 0.0772 and 0.2366, t95% CI (2) 53 and 

35 = 9.43 and 5.94, H0 is rejected [p < 0.001] for SSW AMT24 and AMT25 respectively)}. 
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On AMT24 average Northern Hemisphere SA was more than twice as high in the SML and 

about 1.5 times as high in SSW as in the Southern Hemisphere. On AMT25 Northern 

Hemisphere SA was also about three fold higher than in the Southern Hemisphere, both in the 

SML and in SSW. The differences in SML SA and SSW SA between the hemispheres were 

statistically significant (t-test, p < 0.05) on both cruises (Table 1.4). 

4.2.2 Surfactant enrichment factors (EF) in the Atlantic Ocean 

Further investigations showed that there is a broad significant positive correlation (Pearson 

correlation coefficient (r) = 0.85; p < 0.001, n = 205) between SML SA and corresponding SSW 

SA that implies a consistent SA enrichment in the SML compared to the corresponding 

underlying waters in the Atlantic Ocean (Figure 4.3). This is similar to the relationship found 

for CDOM (a300) (Figure 3.11). 

 

 

 
Figure 4.3. Surfactant activity (SA) in the sea surface microlayer against sub-surface  
Water (SSW = 7m) in the Atlantic Ocean. The dashed line represents the best linear fit. 
The r-squared (r2) value of the linear fit and sample numbers are also indicated. 
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SA was enriched in the SML (EF > 1; see section 2.5.5) at 64 of 66 and 45 of 47 sampling 

locations during AMT24 and AMT25 respectively; the remaining four values of EF being ~ 

0.96 ± 0.01 (Figure 4.4). 

 

 
Figure 4.4. Latitudinal distribution of SA enrichment factors (EFs) in the SML of the  
Atlantic Ocean. AMT24 (filled triangle) and AMT25 (empty triangle). The dashed line represents 
the same concentration of surfactants in the SML and the SSW (i.e. EF = 1). Negative values of latitude 
represent the Southern Hemisphere. 
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Overall, EFs were an average of 1.74 ± 0.79 (range; 0.95 - 4.25) on AMT24 and 1.68 ± 0.65 

(range; 0.97 - 3.47) on AMT25. The results were statistically similar between the two transects 

(Two Sample t-test, testing H0: the two means are equal against HA: at least one mean is 

different; As µ1 - µ2 = 0.061, t95% CI (2) 111 = 0.43, H0 is accepted [p = 0.667]). SA enrichment 

in the SML (i.e. EF > 1) in almost all sample locations in the current study confirms the findings 

of Wurl et al. (2011b) who showed surfactant enrichments in most oceanic samples. They 

suggested surfactant levels varying between 0.21 and 0.81 mg L-1 eq. T-X-100 with enrichment 

factors of 1.1 – 5.6 in the global oceans, based not on direct measurements but on primary 

productivity and wind speed proxies (Wurl et al., 2011b). 

EF maxima were observed at the same latitudes as the SML SA maxima (Figure 4.1), to the 

north of ~ 40°N (ECSW and NADR) on both transects. Another small EF maximum was 

centred around 10°N with an average of 1.70 ± 0.57 on AMT24 and 1.64 ± 0.72 on AMT25. 

An additional EF maximum at ~50°S (FKLD) (4.14 ± 0.2) during AMT24 was also observed 

at the same latitude as the SML SA maximum; however, this feature was absent during AMT25 

(Figure 4.4 and Table 4.2). 

The overall average of surfactant EFs in the Atlantic Northern Hemisphere was higher than the 

Atlantic Southern Hemisphere with a statistically significant difference observed on AMT24 

only (Two Sample t-test, testing H0: the two means are equal against HA: at least one mean is 

different; As µ1 - µ2 = 0.445, t95% CI (2) 64 = 2.34, H0 is rejected [p = 0.023]). 

The average Northern Hemisphere SA EF was 2.11 ± 0.92 (range; 0.96 - 4.52) on AMT24 and 

1.75 ± 0.70 (range; 0.97 - 3.47) on AMT25, as compared to average Southern Hemisphere SA 

EFs of 1.51 ± 0.67 (range; 0.97 - 4.15) on AMT24 and 1.53 ± 0.52 (range; 1.05 - 3.19) on 

AMT25. Surfactant EF variations between the biogeochemical provinces are shown in Table 

4.2. 
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SA EFs from the same trophic (productivity) levels but different locations have been compared 

previously and revealed that surfactant enrichments are independent of location (Wurl et al., 

2011b). For example, surfactant EFs in the oligotrophic regions of the Arctic (2.7 ± 1.3) were 

not significantly different from EFs of waters of similar productivity in the North Pacific (2.3 

± 1.2) (Wurl et al., 2011b). Dissolved organic carbon (DOC) enrichments have been also 

reported to be independent of location, time and wind state (Carlson, 1983).  

A summary of SML SA and EFs reported for global aquatic environments compared to the 

current study are presented (Table 4.3). 
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SA in the SML and its EFs from both transects during the current study were mostly within the 

range of 0.21 - 0.81 mg L-1 eq. T-X-100 and 1.1 - 5.6 respectively suggested for oceanic regions 

(Wurl et al., 2011b).  

Table 4.3 shows that in general, samples from eutrophic coastal waters tend to have higher 

ranges in SA in the SML and lower SA enrichment factors than oligotrophic open oceans. For 

example, SA EF ≤ 2.5 were reported for the Adriatic Sea between April and January (Ćosović 

and Vojvodić, 1982). The averages EFs of 1.7 ± 0.7 and 4.9 ± 2.4 in non-slick and slick samples 

respectively were however observed at Santa Barbara Channel, a highly productive area (Wurl 

et al., 2009). 

A five year study of surfactants in the northern Adriatic Sea also revealed average SA EFs of 

1.3 in oceanic filtered samples (Gašparović, 2012), slightly lower than SA EFs found in the 

current study but not significantly (p < 0.05).  

Salter (2010) reported SA in a range 0.35 and 1.12 mg L-1 eq. T-X-100 with EFs between 0.8 

and 8.0 during May and September 2007 in the River Tyne estuary. SA EFs were also reported 

between 1.2 and 20.0 along a 20 km offshore transect in the North Sea (Salter, 2010). These 

very high EFs presumably are linked to inputs of terrestrially derived surfactant in this region. 

Pereira et al. (2016) reported SA EFs ranged ~ 1.0 to 1.9 using the same transects in the North 

Sea between January 2012 and December 2013, which is significantly lower than the earlier 

study by Salter (2010), which sampled the same stations. 

SA EFs were also inversely correlated with SA in the SSW whilst high EFs were mostly 

observed when SA in the SSW was < 0.4 mg L-1 eq. T-X-100 (Figure 4.5).  
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It is also noticeable that when SSW SA exceeded this threshold, EFs were mostly less than 2.6 

in the Atlantic oceanic samples (Figure 4.5). 

The consistent observations of low EFs coincident with high SA in the subsurface waters is also 

supported by Wurl et al. (2011), who reported EF values < 2.7 for SA values in the subsurface 

waters > 0.6 mg L-1 eq. T-X-100. 

4.2.3 Depth distributions of surfactants in the Atlantic Ocean 

Surfactants in the open oceans are derived from diverse sources, for example phytoplankton 

production and bacterial degradation (see Chapter 1). Hence, important features of the SA 

distributions are likely to relate to these sources. 

Depth profiles of SA in this study are mainly focused on the top 100 m because this is the region 

where most light-dependent biological activity occurs (Zubkov et al., 1998). It has been 

reported previously that heterotrophic9 bacteria have higher metabolic activities shallower than 

100m and that their contribution to production decreases to 10 - 20% of total bacterial 

production in water deeper than 100 m. Also, autotrophic 10  phytoplankton are mostly 

distributed at depths shallower than 200 m (Zubkov et al., 1998). So, SA depth profiles were 

routinely sampled between surface waters and 100m depth on both cruises. 

The average value of SA in top 100m of the water column (and including the SML) was 0.21 ± 

0.10 mg L-1 eq. T-X-100 (range 0.09 – 1.00 mg L-1 eq. T-X-100) on AMT24 and 0.31 ± 0.28 

mg L-1 eq. T-X-100 (range 0.06 - 1.77 mg L-1 eq. T-X-100) on AMT25. 

There were no discernible differences in SA depth profiles within provinces so profiles for all 

stations are not shown. Figure 4.6 summarises typical SA profiles for each oceanographic 

province sampled, with station locations identified on the map. 

  

                                            
9 heterotroph; an organism that obtains nourishment from the ingestion and breakdown of organic  

matter 
10 autotroph; an organism capable of synthesizing organic nutrients directly from simple inorganic    

compounds such as carbon dioxide and inorganic nitrogen 
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Figure 4.6 also shows that vertical SA distributions are also rather similar between 

oceanographic provinces as well as within them. Typically, SA declined steeply below the SML 

and was then rather constant from sub-surface waters down to 100 m depth. 

In agreement with the current study, Ćosović et al. (1985) also found SA maxima in the SML, 

and a decline in SA through the water column to a depth of 100 m in the western Mediterranean 

Sea and in coastal waters of the Adriatic Sea. 

Notably, samples collected from the DCM were not elevated in SA relative to other samples. 

Associated CDOM profiles follow the same general trend, with CDOM maxima in the SML, a 

sharp decrease into sub-surface waters and approximately constant values below this (Figure 

4.6). 

For further investigation, the data were split into two subgroups; above and below the base of 

the mixed layer, and SA distributions within the water column were examined accordingly. On 

both cruises and in all biogeochemical provinces SA was always higher above (shallower) than 

below (deeper) the base of the mixed layer (Table 4.4). However, the difference was not 

statistically significant (Two Sample t-test, testing H0: the two means are equal against HA: at 

least one mean is different; As µ1 - µ2 = 0.0671 and 0.1186, t95% CI (2) 8 = 2.27 and 1.38, H0 is 

accepted [p = 0.060 and 0.206] on AMT24 and AMT25 respectively).  
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Table 4.4. Average and standard deviation of SA mg L-1 eq. T-X-100 above (shallower) (A-MLD) 
and below (deeper) (B-MLD) the base of the mixed layer in each individual biogeochemical  
province on AMT24 and AMT25 in the Atlantic Ocean 
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Average SA above the base of the mixed layer decreased gradually from higher latitudes to 

lower latitudes in the Northern Hemisphere. This decline continued towards the Southern 

Hemisphere (i.e. a steady meridional gradient), SA decreasing by almost 50% from NADR and 

NAST towards SSTC on AMT24 and by almost six-fold on AMT25 (Table 4.4). Around the 

Falkland Islands, there was a slight increase in average SA compared to the adjacent SSTC 

province (data available for AMT24 only) (Table 4.4). 

SA below the base of the mixed layer showed a constant trend, as above the base of the mixed 

layer, with a discernible decrease from higher latitudes towards lower latitudes in the Northern 

and Southern Hemisphere, although the changes from higher to lower latitudes were smaller 

than for SA above the base of the mixed layer (Table 4.4). The differences in SA above and 

below the base of the mixed layer were however not statistically significant on either cruise (t-

test, p > 0.05). 

High SA above the base of the mixed layer was also reported previously with no statistically 

significant difference from deeper waters below the base of the mixed layer to 200 m depth 

(Gašparović and Ćosović, 2001; Croot et al., 2007; Wurl et al., 2009). For example, Wurl et al. 

(2009) found higher SA above the base of the mixed layer (0.33 ± 0.20 mg L-1 eq. T-X-100) 

compared to the deeper waters (0.18 ± 0.07 mg L-1 eq. T-X-100) in the Santa Barbara channel 

while, the difference was not statistically significant (p > 0.05). 

Croot et al. (2007) also reported a significantly higher SA around the base of mixed layer 

compared to the deeper waters during the Southern Ocean Iron fertilization experiment, 

suggestive of in-situ biological production in accordance with a greater abundance of 

phytoplankton in euphotic zone. 

It is evident from the contour plot of SA distribution along the full extent of both transects to 

100 m depth that in general, some “surfactant production zones” exist in the Atlantic Northern 

Hemisphere (Figure 4.7). 
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Figure 4.7. Contour plot of SA water column profile to 100m depth over the full extent of the transects 
on AMT24 (top) and AMT25 (bottom) in the Atlantic Ocean 
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As for the SML, overall, SA was higher in the Northern Hemisphere than in the Southern 

Hemisphere on both cruises. Northern Hemisphere SA was 1.5 times higher (0.24 ± 0.11 mg L-

1 eq. T-X-100, range of 0.10 - 1.00 mg L-1 eq. T-X-100) than Southern Hemisphere SA (0.16 ± 

0.06 mg L-1 eq. T-X-100, range of 0.09 - 0.74 mg L-1 eq. T-X-100) on AMT24. On AMT25, 

Northern Hemisphere SA was almost three times higher (0.36 ± 0.29 mg L-1 eq. T-X-100, range 

of 0.05 - 1.77 mg L-1 eq. T-X-100) than Southern Hemisphere SA (0.12 ± 0.04 mg L-1 eq. T-X-

100, range of 0.05 - 0.37 mg L-1 eq. T-X-100). The SA difference between the hemispheres was 

statistically significant on both cruises (Two Sample t-test, testing H0: the two means are equal 

against HA: at least one mean is different; As µ1 - µ2 = 0.0824 and 0.2348, t95% CI (2) 399 and 237 = 

10.21 and 11.54, H0 is rejected [p < 0.001] on AMT24 and AMT25 respectively). 

The main feature of the SA depth distribution was that the high surface SA observed to the 

north of 35°N on AMT25 is present to 100m depth with an average (0.57 ± 0.31 mg L-1 eq. T-

X-100) that is almost two times higher than on AMT24 (0.24 ± 0.13 mg L-1 eq. T-X-100). This 

difference was statistically significant (t-test p < 0.05). SA was also somewhat lower between 

the equator and 35°N on AMT25 (0.20 ± 0.11 mg L-1 eq. T-X-100) than on AMT24 (0.24 ± 

0.08 mg L-1 eq. T-X-100).  

The Atlantic Northern Gyre (42 - 25°N) also showed higher SA (0.22 ± 0.03 mg L-1 eq. T-X-

100 and 0.39 ± 0.25 mg L-1 eq. T-X-100 on AMT24 and AMT25 respectively) than the Atlantic 

Southern Gyre (5 - 42°S) (0.16 ± 0.02 mg L-1 eq. T-X-100 and 0.12 ± 0.04 mg L-1 eq. T-X-100 

on AMT24 and AMT25 respectively).  

At 10 stations (5 stations on each cruise) deeper sampling was carried out to a maximum of 

500m, with typically 4 of 7 samples above 100 m. These showed only small SA variability at 

most, within the deeper water column (Figure 4.8). 
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CDOM showed a similar pattern to SA to 500m, with no significant changes in absorbance with 

depth. These profiles of SA and CDOM do not show any evidence of variability between 

Atlantic biogeochemical provinces (Figure 4.8). 

4.2.4 Association of surfactants and wind speed (U10n) in the Atlantic Ocean 

The average values of wind speed normalised to 10 m height and corrected for atmospheric 

stability (U10n) were 6.95 ± 2.17 m s-1 (range 0.65 -  12.93 m s-1) on AMT24 and 4.94 ± 1.44 m 

s-1 (range 0.29 - 7.25 m s-1) on AMT25. Evidently, surfactants were typically present in SML 

at all values of U10n up to the highest recorded (~ 13 m s-1) on both transects (Figure 4.9).  

 

 
Figure 4.9. SA in the SML vs wind speed in the Atlantic Ocean. The data were derived 
from AMT24 (filled triangles) and AMT25 (circles). The dashed line represents the linear 
regression with linear equation present. The bars display the standard deviation of the mean. 
The sample numbers are also displayed. 
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Surfactant distributions in the SML showed an inverse correlation with wind speed under the 

sampling conditions encountered during this research (Figure 4.9) (Pearson correlation 

coefficient (r) = -0.318, p = 0.001). Although this result was significant, a linear regression 

showed that the model could not be used to predict surfactant distributions based on wind speed 

with any significant degree of confidence as the r2 value was only 0.10 (Figure 4.9). This is 

consistent with a previous study by Wurl et al. (2011) who found no evidence of a significant 

relationship between surfactant distributions (and their enrichment factors in the SML) with 

wind speed in either the North Pacific or the Arctic Oceans. 

Surfactants were also enriched in the SML compared to the corresponding sub-surface waters 

(i.e. EF > 1) at all wind speeds up to the maximum ~ 13 m s-1 observed in the current study 

(Figure 4.10). These results, showing high EF values at high wind speeds, are contrary to a 

previous prediction that high EFs for SA and other SML components poleward of both 30°N 

and 30°S in the Atlantic Ocean would be precluded at wind speeds > 12 m s-1 (Wurl et al., 

2011b) due to physical surface disturbance. 
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Figure 4.10. Surfactants enrichment factor (EF Surfactants) against wind speed (U10n) (ms-1) in the Atlantic 
Ocean (bottom) and other oceanic sampling locations (top). The data along both transects (i.e. AMT24 
and AMT25) split between the Northern Hemisphere (NH) and the Southern Hemisphere (SH) are 
represented. The dashed lines show EF = 1. The other global oceans data were kindly provided by Oliver 
Wurl. 
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In agreement with the current study, Reinthaler et al. (2008) also found SML enrichments in 

dissolved organic carbon (DOC) and amino acids at wind speeds greater than 7.5 m s-1. They 

also reported the second highest enrichment of DOC (EF = 2.1) and dissolved free amino acids 

(DFAA) (EF = 2.6) at their highest recorded wind speeds (9.7 m s-1) in the open Atlantic and 

the western Mediterranean Sea (Reinthaler et al., 2008).  

It should be pointed that SML stability at high wind speed represents invisible slicks whereas 

visible slicks will disrupt at wind speeds higher than 4 m s-1 (see section 1.1). 

Carlson (1983) observed dissolved organic carbon (DOC) enrichment in the SML at wind 

speeds up to 8 m s-1, however, there was no discernible influence of wind speed or wave state 

on DOC enrichment factors. It was suggested that accumulation and depletion processes were 

in balance (Carlson, 1983). 

Frew et al. (2004) suggested that surfactant enrichments in the SML would be suppressed at 

wind speeds greater than 6 – 8 ms-1 during a field study. 

Obernosterer et al. (2008) found an inverse correlation between SML particulate organic matter 

enrichment and wind speed in the South Pacific Ocean. However, it was suggested that wind 

speed history (i.e. at least 6 hours recorded wind speeds prior to measurements) is more 

important than instantaneous winds concerning SML enrichments. In agreement, Tilstone et al. 

(2010) also found high concentrations of chlorophyll-a at low wind speeds off the Iberian 

Peninsula.      

The correlation between SA EFs and wind speed were not statistically significant on either 

transect (Pearson correlation coefficient (r) = -0.175, p = 0.164 and n = 65 on AMT24 and r = 

-0.165, p = 0.285 and n = 44 on AMT25 respectively).  

The lack of any strong correlation between SA and wind speed during the current study is in 

agreement with the data from the Pacific and Arctic oceans (Figure 4.10). 
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4.2.5 Relationships between SA and biological variables 

Chlorophyll-a has been used previously as a proxy for phytoplankton productivity to investigate 

any possible relationship with SA in the marine environment (Wurl et al., 2009; Wurl et al., 

2011b). Therefore, the relationships between chlorophyll-a and SA were investigated for both 

cruises (Figure 4.11). 
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Overall, a positive relationship was found between chlorophyll-a and SA during this study but 

the correlation was not statistically significant (Pearson correlation coefficient (r) = 0.117, p = 

0.226, n = 109). This is in agreement with earlier results from coastal and oceanic locations 

including Saanich inlet, Vancouver Island, Hawaii, North Pacific and Arctic (Wurl et al., 

2011b) (insert in Figure 4.11). 

In concurrence with results from this study, the vertical distribution of surfactants did not 

correlate with fluorescence or chlorophyll in the Southern Ocean during an iron fertilisation 

experiment (Croot et al., 2007). Wurl et al. (2009) also noticed no correlation between 

fluorescence and SA in the water column in the Santa Barbara Channel. However, they reported 

a positive correlation between fluorescence and SA above the base of the mixed layer (Wurl et 

al., 2009). Pereira et al. (2016) also found no clear relationship between SA and chlorophyll-a 

in the coastal waters of the North Sea, suggesting that primary productivity is not a good proxy 

for SA. Gašparović et al. (2011) also found no significant correlation between chlorophyll-a 

and surfactants in the northern Adriatic Sea. 

However, there are some contradictory results reported by Salter (2010) who found a strong 

positive relationship between SA and chlorophyll-a (r2 = 0.76) during a phytoplankton bloom 

in a mesocosm experiment and also on a 20 km offshore coastal North Sea transect suggesting 

that phytoplankton produced surfactants were dominant at the sample location. This is probably 

because of only one phytoplankton species being dominant in the bloom event. 

There is a cluster of the data points within the oval in Figure 4.11 showing that with increasing 

chlorophyll to a maximum of 0.8 µg L-1, SA does not exceed 0.4 mg L-1 eq. T-X-100. For 

samples with SA above this threshold chlorophyll-a is below ~ 0.3 µg L-1. The latter samples 

are mostly from higher latitudes on both transects (i.e. ECSW and NADR) and it may be that 

these include an SA component deriving from terrestrial sources not associated with 

chlorophyll-a, such as riverine humics (Figure 4.11).  

Samples from the DCM in this study also did not show higher SA compared to the reminder of 

the water column, in contrast to the results of Wurl et al. (2009) who found higher SA in the 

DCM of the Santa Barbara channel, perhaps due to phytoplankton sinking through the water 

column. 
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Although it is widely assumed that natural surfactants in the oceans derive mainly from primary 

production, no strong correlation was observed between total primary productivity and SA in 

this study (Pearson correlation coefficient (r) = 0.005, p = 0.962, n = 80) (Figure 4.12). 

 

 
Figure 4.12. Primary productivity against SA in the Atlantic Ocean. The data are all depth 
and available for AMT24 only. Linear regression model, r-squared (r2) and sample numbers 
are also indicated. The dashed line represents the best linear fit. Error bars display the standard 
deviation of the mean. 
 
This was in contrast to Salter (2010) who found positive correlations between primary 

productivity and SA in the River Tyne Estuary and the coastal waters of the North Sea with the 

highest SA recorded during a phytoplankton bloom. Further, SA in the northern Adriatic Sea 

were found to be highly dependent on phytoplankton community production (Gašparović and 

Ćosović, 2001).  

However, Wurl and Holmes (2008) showed that temporal variations in dissolved organic carbon 

(DOC), total dissolved carbohydrates (TDC), transparent exopolymer particles (TEP) and 

suspended particulate matter enrichment in the SML relative to corresponding sub-surface 

waters in oceanic samples is poorly correlated with biological parameters such as chlorophyll- 

a and primary productivity. 
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4.2.6 SA-nutrients association 

Nutrient distributions in the SML and through the water column showed an inverse relationship 

with SA in the Atlantic Ocean (Figure 4.13).  

 

 
Figure 4.13. SA - nutrient association in the Atlantic Ocean. Nutrients are: nitrite (blue), 
nitrate + nitrite (red), silicate (green) and phosphate (purple). The data are extracted from 
AMT24 and AMT25 irrespective of depth. 
 
Spearman rank correlation coefficients were statistically significant: phosphate, r = -0.61, p < 

0.001, n = 638; silicate; r = -0.54, p < 0.001, n = 633; nitrate + nitrite; r = -0.46, p < 0.001, n = 

628; nitrite; r = -0.23, p < 0.001, n = 552. However, the linear regression shows that nutrient 

distributions cannot be used to satisfactorily predict SA distributions (r2 was not better than 

0.12). Even by excluding low SA values, this correlation does not markedly improve (r2 ~ 0.15).  

4.2.7 Association of SA with CDOM in the Atlantic Ocean 

To explore if CDOM can be used as a proxy for SA determination in oceanic waters, the 

relationship between SA and CDOM was investigated. 

Overall, vertical profiles of SA and CDOM in the Atlantic Ocean showed the same trends (see 

section 4.2.3). Maximal SA and CDOM were observed within the SML and neither changed 
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significantly with depth below the sub-surface waters. There were positive linear relationships 

between SA and CDOM for both transects (Figure 4.14). 

 

 
Figure 4.14. SA and CDOM relationship in the Atlantic Ocean along AMT transects. 
Data are from AMT24 and AMT25. Dashed line represents the best linear fit. 
The linear regression model, r-squared (r2) value and sample number are indicated. 
 
 
Although the correlation was significant (Pearson correlation coefficient (r) = 0.433, p < 0.001), 

a linear regression showed that the model could not be used to predict surfactant extent based 

on CDOM with any significant degree of confidence as the r2 value was only 0.20 (Figure 4.14). 

4.2.8. Association of SA with hydrographic indicators in the Atlantic Ocean 

There was no general correspondence between SA and either salinity or temperature in the SML 

or SSW during the current study [(SA (SML) versus salinity; AMT24, r2 = 0.000, p = 0.843, n 

= 64 - AMT25, r2 = 0.001, p = 0.840, n = 44) (SA (SSW) versus salinity; AMT24, r2 = 0.112, 

p = 0.008, n = 61 - AMT25, r2 = 0.002, p = 0.753, n = 47) (SA (SML) versus temperature; 

AMT24, r2 = 0.090, p = 0.016, n = 64 - AMT25, r2 = 0.025, p = 0.307, n = 44) and  (SA (SSW) 

versus temperature; AMT24, r2 = 0.341, p = 0.000, n = 61 - AMT25, r2 = 0.006, p = 0.584, n = 

47)].  Neither salinity nor temperature was found to be confidently predict SA (r2 < ~ 0. 35).  

In contrast, Salter (2010) found an inverse correlation between SA and salinity in the River 

Tyne estuary in agreement with Hunter and Liss (1982) who observed SA decrease with salinity 
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in four UK estuaries. However, the salinity gradients are larger in estuaries compared to the 

open ocean during the current study and the strong correlations found previously reflect high 

SA inputs from rivers. 

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

181 
 

4.3 Summary 

Measurements of SA in the Atlantic Ocean, both in the SML and in SSW during AMT24 and 

AMT25 shows consistent SA enrichment in the SML.  

Surfactants are enriched in the SML to a wind speed of at least 13 m s-1, so that SA in the SML 

should be decoupled from the ambient wind speed.  

At ocean basin scales with diverse biogeochemical regimes variability in surfactant sources will 

likely to be maximal and include temporal components as well as additional effects from 

advection and mixing, challenging the use of primary productivity and associated proxies for 

predicting surfactant distributions. 
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Chapter 5. Surfactant control of gas transfer velocity (kw) in the Atlantic 

Ocean: in-situ gas exchange experiments during AMT24 

5.1 Introduction 

This chapter presents the results of gas exchange experiments carried out using a custom-

designed gas exchange tank (Schneider-Zapp et al., 2014) during AMT24 and compares the 

results with those from identical experiments in the North Sea (Pereira et al., 2016) to help 

evaluate surfactant suppression of kw across a range of Atlantic Ocean biogeochemical  

provinces. North Sea and AMT24 data were generated by Dr Ryan Pereira (Newcastle, now at 

Heriot-Watt University), the latter during the NERC RAGNARoCC project that also funded 

this PhD. The data were used to aid interpreting how SA distributions in the Atlantic Ocean 

SML may impact air-sea gas exchange. SA data and all interpretations in this chapter are solely 

those of the author.  

The fully automated, closed air-water gas exchange tank was built to determine surfactant 

control of kw in the laboratory using un-amended seawater (Schneider-Zapp et al., 2014). 

Water-side turbulence is set with an automated baffle. Changes in the partial pressures of 

selected climate-active gases (CH4, N2O, SF6) in tank air and water during the experiment (i.e. 

3.25 h, the duration of a typical experiment) are determined by two in-line gas chromatographs 

(see section 2.6). For direct comparison, derived kw values are normalised to a constant Schmidt 

number of 660 (Wanninkhof et al., 1993; Wanninkhof et al., 1997) for each selected level of 

fixed turbulence (Schneider-Zapp et al., 2014). 
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5.2 Results 

5.2.1 R660 evaluation of the Atlantic Ocean samples 

In the earlier North Sea study kw was estimated at baffle frequencies of 0.6 Hz, 0.7 Hz and 0.75 

Hz but the strongest linear relationships between R660 (ratio of sample k660 to the corresponding 

k660 of surfactant-free MilliQ water) and SA was found for baffle frequencies of 0.6 Hz and 0.7 

Hz due to potential interference from bubbles at 0.75 Hz (Pereira et al., 2016).  In this work due 

to time constraints it was decided to use kw estimated at 0.6 Hz only. Due to further problems 

with the analysis of SF6 (N2O was not measured), the k660 and R660′ estimates discussed here 

were all derived from CH4 data at 0.6 Hz.  

The average value of CH4 k660 (0.6 Hz) was 8.50 ± 0.82 cm h-1 (range 6.85 - 9.83 cm h-1) 

equivalent to a wind speed ~ 5.50 - 6.60 m s-1 after Nightingale et al. (2000). R660′ ranged from 

0.68 ± 0.02 to 0.98 ± 0.04 cm h-1 on AMT24 (Table 5.1). 
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Evidently, the values of R660′ are below 1.0 because of the suppression of kw by surfactants. 

These results are within the reported natural range for k660 in the presence of surfactants  of 5.81 

- 70.17 cm h-1 (Asher, 2009).  

Values of k660 in the range 8.02 ± 0.33 to 13.04 ± 0.51 cm h-1 were found using the same system 

with the same baffle frequency for water samples from a 20km offshore transect in the North 

Sea (Pereira et al., 2016). Corresponding values of CH4 R660 were reported in the range 0.49 ± 

0.02 to 0.82 ± 0.03 (Pereira et al., 2016).  

So, the average CH4 R660′ suppression to the maximum of 25% in the presence of natural 

surfactants in the current study were within the range of 10% to 90% suppression of kw reported 

for both oceanic and coastal waters in the presence of natural and synthetic surfactants in 

laboratory tank and field experiments (Broecker, 1978; Brockmann et al., 1982; Jähne et al., 

1987a; Jähne et al., 1987b; Goldman et al., 1988; Frew, 1997; Bock et al., 1999; Salter et al., 

2011; Schneider-Zapp et al., 2014; Pereira et al., 2016).  

For example, Goldman et al. (1988) and McKenna and McGillis (2004) reported the magnitude 

of suppression of gas transfer ranged between 36% and 47% using artificial surfactants (i.e. 

oleyl alcohol) during laboratory experiments. Salter et al. (2011) reported an average kw 

suppression ~ 34% for wind speeds of between 4.95 and 10.75 m s-1 with a maximum of 

suppression as high as 41% during a dual tracer release experiment in the North Atlantic.  

Suppression of k660 of oxygen (O2) by 55% to 65% in the presence of natural surface films was 

reported during tank experiments using coastal waters from the southwestern Baltic Sea 

(Schmidt and Schneider, 2011). It was suggested that the seasonal variability of water column 

productivity in the Baltic Sea may drive changes in the thickness and composition of surface 

films, resulting in variability in the suppression of gas transfer (Schmidt and Schneider, 2011).  

  



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

186 
 

5.2.2 Association of R660′ with SA and CDOM: a comparison between the Atlantic Ocean 

and North Sea 

The results show a  significant suppression of CH4 R660′ as a function of SA in the SML, in 

both the Atlantic Ocean (AMT24) and in the North Sea (Dove Time Series) (p = 0.018 and p < 

0.001 respectively, Figure 5.1). Average CH4 R660′ suppression was 14.0 ± 6.9% (range 1.8 - 

30.0%) for the Atlantic Ocean, somewhat less than the value of 35.8 ± 10.3% (range 18.0 - 

51.0%) found for the North Sea (Pereira et al., 2016). 
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Table 5.2 compares the AMT24 results with those of other studies of kw suppression by 

surfactants including the North Sea experiment.  

The plausible explanation of the difference between the degree of kw suppression for the North 

Sea and the Atlantic Ocean is that variability in the composition of the surfactant pool as well 

as SA influences kw suppression. 

To investigate kw suppression with respect to organic matter composition in more detail, the 

relationship between CH4 R660′ and CDOM (a300) was examined. An inverse linear relationship 

was observed between CH4 R660′ and CDOM (a300) in the SML and in SSW, however, the 

relationship is not statistically significant (Figure 5.2). 
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Figure 5.2. CH4 R660′ against CDOM absorption coefficient (a300). CDOM (a300) (m-1) in the SML (red) 
and in the SSW (blue) during AMT24. The dashed lines represent the linear fit described by the equation, 
with the corresponding value of the correlation coefficient (r2). p < 0.05 gives the probability of 
significant correlation. The sample numbers are also indicated.  
 
The results from the current study support the recent conclusion from the North Sea that CDOM 

is not an effective proxy for predicting kw (Pereira et al., 2016). In that study CHR4R RR660 Rdid not 

show a statistically significant relationship with total CDOM absorbance i.e. (aR250-450R) (CHR4R 

RR660R versus SML Total CDOM (aR250-450R); rP

2
P = 1 x 10 P

-5, 
Pp = 0.992 and SSW Total CDOM (aR250-

450R); rP

2
P = 0.11P

, 
Pp = 0.250, n = 13). 

However, further investigation during this study revealed a statistically significant inverse 

correlation between CH4 R660′ and EF (a300) on AMT24 (Pearson correlation coefficient; r = -

0.80, p = 0.002, n = 12) (Figure 5.3). 
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Figure 5.3. CH4 R660′ against CDOM EF (a300) during AMT24. The dashed line represents the linear 
fit described by the equation, with the corresponding value of the correlation coefficient (r2). 
The bars display standard deviation of the mean. Sample numbers (n) are also indicated. 
 
An inverse correlation between CH4 R660 and EF (Total a250-450) was also observed for the North 

Sea but it was not statistically significant (r2 = 0.30, r = -0.53, p = 0.06, n = 13). This might 

reflect more diverse CDOM sources in the North Sea due to a strong terrestrial CDOM 

component that is not seen in the Atlantic Ocean.   

While CDOM absorbance is a “bulk” measure of CDOM, the 250:365 nm CDOM absorption 

ratio (E2:E3) indicates relative changes in low molecular weight (LMW) compared to high 

molecular weight (HMW) organic matter (see section 2.5.6). CDOM (E2:E3) decreases with 

increasing molecular weight due to increasing light absorption (Peuravuori and Pihlaja, 1997). 

Therefore E2:E3 and SR (see section 2.5.6) both can reveal optical characteristics of DOM 

relating to composition that might have impacts on kw suppression. 

A statistically weak correlation was found between CH4 R660′ and CDOM (E2:E3) in both the 

SML and in SSW [(CH4 R660′ against SML CDOM (E2:E3); r2 = 0.10, p = 0.30, n = 13) (CH4 

R660′ against SSW CDOM (E2:E3); r2 = 0.04, p = 0.52, n = 12)]. However, there was a much 

stronger positive correlation between CH4 R660′ and EF (E2:E3) = (SML E2:E3 / corresponding 

SSW E2:E3) (Pearson correlation coefficient; r = 0.83, p = 0.003, n = 10) (Figure 5.4). 
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Figure 5.4. CH4 R660′ against EF (E2:E3) (i.e. SML E2:E3 compared to the corresponding 
SSW E2:E3) on AMT24. The dashed line represents the linear fit described by the equation, with 
the corresponding value of the correlation coefficient (r2). Sample numbers (n) are also indicated. 
 
The linear regression model can then be used to predict CH4 R660′ using the enrichment factor 

of CDOM (E2: E3) as a proxy with 70% accuracy (i.e. r2 = 0.70, Figure 5.4). 

In agreement, a positive relationship was found for the samples from the North Sea, although 

the correlation was not statistically significant (Pearson correlation coefficient (r) = 0.46, r2 = 

0.21, p = 0.111, n = 13), presumably due to a wider CDOM compositional range in the North 

Sea resulting from the greater influence of terrestrial input than in the Atlantic Ocean. 
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5.2.3 R660′- chlorophyll association 

A significant correlation (Pearson correlation coefficient, r = 0.85, p-value = 0.003, n = 7) was 

observed between CH4 R660′ and chlorophyll-a on AMT24 (Figure 5.5). 

 

 
Figure 5.5. CH4 R660′ against chlorophyll a (µgL-1) on AMT24. The dashed line represents 
the linear fit described by the equation, with the corresponding value of the correlation  
coefficient (r2). Sample numbers (n) are also indicated. 
 
Previous results for surface water samples collected on a transect from the East Coast of the 

USA to Bermuda showed a similar correlation of kw (determined in a laboratory wind-wave 

tank) with chlorophyll and also with DOC, although the samples were stored for a considerable 

time prior to the kw estimates (Frew, 1997).  

In contrast, Pereira et al. (2016) recently found no significant relationships between CH4 R660 

and chlorophyll-a for North Sea samples and Nightingale et al. (2000) found no such correlation 

during a deliberate iron enrichment experiment that resulted in an algal bloom in the Pacific 

Ocean. During the Pacific bloom, chlorophyll increased tenfold but there was no reduction in 

kw. It was therefore suggested that a simple relationship between kw and chlorophyll does not 

exist (Nightingale et al., 2000). Goldman et al. (1988) also found no clear relationships between 

chlorophyll-a and oxygen exchange in the presence of natural surfactants. 
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5.3 Summary 

The value of kw for CH4 was suppressed to maximum of 25% in the presence of natural 

surfactants during gas exchange tank experiments using samples from the AMT24 transect. 

The difference between kw suppression in the presence of surfactants in the North Sea and the 

Atlantic Ocean might be associated with differences in the compositions of the surfactant pools 

in these two regions. While a larger terrestrial component is likely in the North Sea, a 

predominance of biologically-produced surfactants is most likely in the Atlantic. However, the 

possibility that differences in surfactant composition as well as SA are also important in 

controlling the gas transfer velocity (Pereira et al., 2016) remains to be investigated. 

Surfactants should be accounted for when evaluating rates of air-sea gas exchange. Although 

as shown in chapter 4, SA does not vary much across large areas of the Atlantic Ocean, either 

latitudinally or longitudinally, localised maxima could be important. For example, the SA 

maximum around 40°N in NADR coincides with instrumented shipping routes used to 

determine CO2 uptake in the Integrated Carbon Observation System (ICOS). Ignoring the large 

SA maximum around 40°N may mean that CO2 uptake rates in this large CO2 sink region, 

which are based on conventional gas exchange models that ignore surfactants, might be 

overestimated.  

The results from this and previous chapters suggest that surfactants should be a core 

measurement for air-sea gas exchange studies. Remote-sensing methods for determining 

surfactants are not sufficient because they only detect visible slicks and not the soluble 

surfactants that are so important to air-sea gas exchange (see section 1.2.1).  
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Chapter 6. General Discussion  

6.1 CDOM in the Atlantic Ocean 

Characterization of CDOM as a subset of DOM, may help to better understand the details of 

DOM photochemical properties, including the photochemical characteristics of surfactants. 

This would help in more clearly identifying the sources and origins of surfactants present in 

different biogeochemical provinces of the ocean.   

CDOM absorption coefficients are proxies of CDOM absorbances whereas CDOM spectral 

slopes contain information on CDOM composition and DOM molecular weight (Carder et al., 

1989; Twardowski et al., 2004; Helms et al., 2008). CDOM sources and modifications 

including autochthonous production, terrestrial deposition and river outflow (Siegel et al., 

2002; Astoreca et al., 2009; Hansell and Carlson, 2014), CDOM photodegradation and 

microbial uptake are identified by CDOM spectral slopes (Twardowski and Donaghay, 2002; 

Sulzberger and Durisch-Kaiser, 2009).  

During the current study, it was revealed that CDOM absorption coefficients and corresponding 

spectral slopes display province dependant patterns, particularly in the SML of the Atlantic 

Ocean (see section 3.5). In agreement, Kitidis et al. (2006) found that CDOM was more variable 

regionally, with distinct depth distributions, than seasonally during AMT transects between 

1999 and 2000. 

6.1.1 CDOM enrichment in SML of the Atlantic Ocean  

The results from the current study are in agreement with previous research (see section 3.5.2), 

clearly indicating that CDOM consistently accumulates in the SML. SML enrichment could be 

a consequence of faster CDOM accumulation than removal processes, such as 

photodegradation. Previous laboratory irradiation experiments revealed that photodegradation 

is a slow process, with time scales of up to weeks (Kitidis et al., 2006). 

An alternative suggestion is that CDOM accumulation in the SML is facilitated by efficient 

upward transport of materials via turbulence and bubble scavenging through sub-surface waters 
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of the ocean. This is supported by strong positive relationships between SML CDOM (a300) and 

SSW CDOM (a300) found during this study, in agreement with previous work (see section 

3.5.2). This also implies that organic material accumulating in the SML is predominantly 

supplied from the underlying waters (Zhang and Yang, 2013). 

UV-resistant phytoplankton exudates, mycosporine-like amino acids (MAA) were detected in 

the SML during the current study in agreement with Tilstone et al. (2010). The samples 

containing MAA in this study were mostly located between 25°N and 15°N in NATR on both 

transects and were exclusive to the SML (see section 3.5.5). 

The presence of MAA in SML samples from off the Iberian Peninsula with the maxima during 

phytoplankton bloom was interpreted to indicate phytoplankton MAA production as a defensive 

mechanism against photobleaching (Tilstone et al., 2010).  

In the present work the high latitudes of the Northern Hemisphere (i.e. ECSW and NADR) were 

characterized by SML CDOM absorbance maxima, suggestive of terrestrial inputs in 

continental shelf waters (see section 3.2) in agreement with Kowalczuk et al. (2013) and 

Hansell and Carlson (2014). CDOM absorbance minima on the other hand occurred in the 

oligotrophic NAST on both transects (see section 3.5.1). It is suggested from the current study 

that these low SML CDOM oceanic waters can be attributed to reduced CDOM availability in 

the underlying waters due to low regional productivity (see section 3.2). Also, deepened mixed 

layer, high stratification and high photodegradation of CDOM in these clear waters exposed to 

high solar radiation would very likely increase CDOM removal rates (Siegel and Michaels, 

1996; Nelson et al., 1998; Kitidis et al., 2006). 

The small but discernible SML CDOM absorbance maxima observed in the tropical-equatorial 

region during this study (see section 3.5.1) might be attributed to upwelling of CDOM-enriched 

deep waters. 

6.1.2  Depth profile of CDOM in the Atlantic Ocean  

The agreement between the forms of the CDOM profiles found on AMT24 and AMT25 with 

those from other studies (see section 3.5.4) shows that CDOM consistently decreases between 

the SML maxima and the sub surface waters at all stations. 
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Similar to the SML, high CDOM absorbances were found in ECSW and NADR where the 

locations of these maxima were associated with chlorophyll maxima (see section 3.2), 

indicating the contribution of autochthonous CDOM components. CDOM absorbance minima 

in the oligotrophic regions of NAST (in depth shallower than ~ 50 m) and SATL might imply 

that CDOM depletion occurs faster than CDOM formation in these less productive regions. 

There are two pathways for CDOM removal in the oligotrophic gyres of the Atlantic Ocean; 

CDOM expose to high UV radiation in these clear optic waters with light penetration as deep 

as 80 m and higher temperature enforced water stratification and entrapment of CDOM in the 

photic layer. This physical mechanism facilitates higher exposure of CDOM to photochemical 

degradation (Kitidis et al., 2006; Nelson et al., 2007; Smyth, 2011).  

The regional/latitudinal CDOM (a300) maxima found in the northern tropical region (see section 

3.5.4) coincided with a DCM depth of ~65 m (see section 3.2) during this study are suggestive 

of upwelled deep CDOM-rich waters and in-situ biological production of CDOM. Kitidis et al. 

(2006) also suggested that remineralization of sinking particles in deep waters or CDOM 

scavenging to the top layers by migrating zooplankton might result in high CDOM in the area.  

The slight increases in CDOM absorbance at high latitudes of the Southern Hemisphere (i.e. 

the south of 30°S) mostly observed on AMT24 in the current study might be indicative of local 

CDOM production (see section 3.5). In agreement, Kitidis et al. (2006) observed high CDOM 

absorbance at high latitudes (i.e. north of 40°N and south of 30°S in the Atlantic Ocean), 

suggestive of in-situ biological production of CDOM in these less stratified regions.  

CDOM absorbance throughout the water column (i.e. ≤ 100 m) was more homogeneously 

distributed in the Southern Hemisphere compared to the Northern Hemisphere during the 

current study (see section 3.5.4) in agreement with Kitidis et al. (2006), suggestive of wind-

induced turbulence resulting in well-mixed waters. 

6.1.3 Optical properties of CDOM in the Atlantic Ocean 

CDOM has two pools in the Atlantic Ocean including; recently fresh produced CDOM mainly 

via biological production associated with high absorption coefficient and low spectral slope 

against old ‘background’ CDOM with lower absorption coefficient and higher spectral slope 
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values (Stedmon and Markager, 2001; Kitidis et al., 2006; Hansell and Carlson, 2014) and are 

joined where the water masses mix in the ocean.  

S275-295 showed a significant inverse correlation with CDOM absorbance during the current 

study (see section 3.5.4). Higher S275-295 in underlying waters was found compared to the 

SML, in agreement with Kowalczuk et al. (2013), Zhang and Yang (2013) and Galgani and 

Engel (2016).  

The high latitudes of the Northern Hemisphere (i.e. ECSW and NADR) were characterised by 

CDOM absorbance maxima and S275-295 minima compared to the oligotrophic gyres of the 

Atlantic Ocean with low CDOM absorbance and high S275-295 during the current study. In 

agreement, Kitidis et al. (2006) characterized the oligotrophic subtropical gyres by the lowest 

CDOM (a300) and the highest S275-295 between the surface waters and 250 m depth comapred to 

upwelling regions in the Atlantic Ocean. 

Kitidis et al. (2006) suggested that in the regions with S275-295 maxima (i.e. the oligotrophic 

regions of the Atlantic Northern and the Southern gyre), CDOM sources are provided from the 

centre of the gyres (physical transportation) and display ‘old’ CDOM with high exposure to 

photodegradation through its history. In contrast, in the regions with S275-295 minima (i.e. the 

higher latitudes of the Northern and Southern Hemisphere) fresh phytoplankton-derived 

CDOM within the mixed layer may be considered as the main source of CDOM, in concurrence 

with the current study. 

Also, S275-295 was assumed to be greater than S350-400 in biologically-derived marine CDOM, in 

contrast to terrestrially derived or more photodegraded CDOM with S350-400 greater than S275-

295 (Helms et al., 2008; Yamashita and Tanoue, 2009). So, based on this assumption, it is 

suggested that marine sources of CDOM with S275-295 > S350-400 were the dominant CDOM 

component in the Atlantic Ocean provinces during the current study (see section 3.5).   

Helms et al. (2008) showed that SR is a more relevant indicator of photochemically-derived 

transformations in the molecular weight of CDOM than spectral slope values. Higher S275-295 

than S350-400 means higher absorption towards shorter wavelengths represent lower molecular 

weight organic matters compared to long-chain higher molecular weight organics with higher 

absorption towards the longer wavelengths. 
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While lower SR is indicative of higher molecular weight of (dark) microbial transformed 

CDOM dominant in the terrestrial regions, high SR indicates lower molecular weight CDOM, 

suggestive of photodegraded oceanic CDOM (Helms et al., 2008; Kowalczuk et al., 2013). 

However, CDOM transformation rate by microbial activities is slower than degradation by 

photochemical activity (Moran et al., 2000; Vähätalo and Wetzel, 2004). Hence, in marine 

waters, SR values presumably increase rapidly by photodegradation and decrease more slowly 

by microbial activity (Helms et al., 2008).   

SR maxima observed in the oligotrophic regions of the NAST and the SATL in the current study 

might be indicative of lower molecular weight organic matter and/or photodegraded CDOM, in 

agreement with previous research (Peuravuori and Pihlaja, 1997; Helms et al., 2008). SR 

minima were found in the SML around the European continental shelf (i.e. ECSW) on both 

transects in the present work, suggestive of dominant higher molecular weight humic material 

of terrestrial origin.  

6.1.4 CDOM composition in the Atlantic Ocean 

CDOM compositions are diverse in the open oceans. For example, the enrichment of amino 

acids and protein-like components in the surface layers of the oceans with a decrease to the 

deeper waters, suggestive of local production of phytoplankton-induced DOM in the surface 

waters were reported (Jørgensen et al., 2011; Stedmon and Álvarez-Salgado, 2011; Kowalczuk 

et al., 2013). 

Galgani and Engel (2016) found protein-like components enriched in the SML in the upwelling 

region off the coast of Peru, suggestive of microbial production via a photoprotection 

mechanism or bacterial degradation products. Also, the microbial and photochemical 

degradation was suggested to be the major sink of CDOM components, controlling surface 

CDOM dynamics in the region (Galgani and Engel, 2016).  

Humic-like components on the other hand showed a significant enhancement in the underlying 

waters of the Atlantic and the Pacific Ocean (Jørgensen et al., 2011). Overall, the dynamics of 

humic-type compounds in the oceans are maintained through enrichment via terrestrial inputs 

or local microbial production in deep waters and removal by photodegradation mainly in the 

top layers of the oligotrophic regions (Jørgensen et al., 2011; Romera-Castillo et al., 2011; 
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Kowalczuk et al., 2013). Also, in conditions of low primary productivity, heterotrophic bacteria 

utilise humic substances as a source of carbon and facilitate CDOM removal (Sundh and Bell, 

1992). 

In the Atlantic Ocean, CDOM maxima within the mixed layer in the ECSW suggestive of in-

situ production of protein-like components, the terrestrial input of mostly humic-type materials 

and also microbial remineralization of DOM were reported (McKnight et al., 2001; Stedmon et 

al., 2003; Romera-Castillo et al., 2011; Kowalczuk et al., 2013). The humic-type components 

was also reported in the oligotrophic gyres and the tropical regions (Nelson et al., 2007; Swan 

et al., 2009; Nelson et al., 2010) and also in the subsurface waters between 20 m and 50 m in 

the equatorial upwelling region of the Atlantic Ocean (Kowalczuk et al., 2013). This suggests 

that CDOM produced by microbial activity in the deeper waters is circulated to the surface 

layers in the gyres and upwelling regions.  

Kowalczuk et al. (2013) reported high in-situ production of protein-like components in the 

Atlantic Southern Hemisphere (i.e. south of 7°S) compared to the Northern Hemisphere (i.e. 15 

times higher) along with lower humic-like components (based on fluorescence spectroscopy; 

see section 1.1.3.2). In contrast, in the Northern Hemisphere, humic-like components are 

dominant in the mixed layer and just below the base of the mixed layer (Kowalczuk et al., 

2013).  

6.1.5 CDOM and Chlorophyll-a 

CDOM-chlorophyll-a association was found to be province-dependant during the current study. 

Relatively weak correlations between CDOM and chlorophyll-a were found in the water masses 

from the high latitudes, with the possibility of a non-phytoplankton produced CDOM 

contribution of terresterial origin (see section 3.5.7). In agreement, Del Castillo and Coble 

(2000) found no relationship between phytoplankton abundance and CDOM distribution on the 

West Florida shelf, suggestive of terrestrial CDOM inputs. 

However, in agreement with other oceanic regions (DeGrandpre et al., 1996; Nelson et al., 

1998) along AMT transects crossing different biogeochemical provinces from the eutrophic 

continental shelf to the oligotrophic gyres and the upwelling regions, a weak relationship 

between CDOM and chlorophyll-a is not surprising due to the various CDOM sources and the 



Bita Sabbaghzadeh                                                                                    Surfactants and Chromophoric Dissolved Organic Matter (CDOM)                       
                                                                                                                   in the Atlantic Ocean surface microlayer and the corresponding  
                                                                                                                   underlying waters 
 
 

201 
 

complexity of CDOM dynamics. Variables such as nutrient availability, solar irradiation, 

carbon-nitrogen (C:N) ratio, phytoplankton species and their growth stage and the microbial 

transformation of CDOM might all influence the distribution of biologically-derived DOM 

(Søndergaard et al., 2000; Ward and Bronk, 2001; Nelson and Siegel, 2013). 

Kitidis et al. (2006) also suggested that chlorophyll-a is not a good proxy for CDOM estimation 

because of temporal decoupling of CDOM and chlorophyll-a in the oceans due to other CDOM 

production pathways rather than direct phytoplankton exudates.  

Seasonally and spatially variable relationship between CDOM absorbance and chlorophyll-a in 

the Atlantic Bight raised the conclusion that CDOM and chlorophyll-a should be decoupled due 

to the time delay between the phytoplankton bloom and enhancement of induced-CDOM levels 

(DeGrandpre et al., 1996).  

CDOM enhancement during the summer while phytoplankton biomass was at its lowest in the 

Sargasso Sea (Nelson et al., 1998), suggests that CDOM is also produced as a degradation 

product of phytoplankton via zooplankton grazing and/or mostly bacterial degradation (Bricaud 

et al., 1981; Nelson et al., 1998). 

6.1.6 CDOM association with physical parameters  

During the current study CDOM absorbance in the SML and underlying waters showed an 

inverse correlation with salinity and temperature in the Atlantic Ocean (see section 3.5.8). 

S275-295 on the other hand, increased at higher salinity and temperature both in the SML and 

throughout the water column (see section 3.5.8). 

However, it should be pointed that the range of wavelengths on which CDOM spectral slope 

values are calculated is important as these might show different behaviours towards salinity and 

temperature (Carder et al., 1989). For example, Kitidis et al. (2006) found that CDOM spectral 

slope decreases with higher salinity if the slope is calculated above 350 nm whereas CDOM 

increase with salinity for the spectral slope calculated below 350 nm. 
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6.2 Surfactant distribution in the Atlantic Ocean 

6.2.1 Surfactant distribution in the SML of the Atlantic Ocean 

SA measurements in the Atlantic Ocean between 50°N and 50°S (Sabbaghzadeh et al., 2017) 

constitute the first direct measurement of surfactants in the open ocean along a vast latitudinal 

gradient. The data allow a test of an earlier prediction of SA distributions in the marine 

environment that was derived from the global maps of primary productivity and wind speed 

(Wurl et al., 2011b). 

SA was enriched in the SML compared to the corresponding SSW at almost all sampling 

locations during the current study. The strong positive correlation between SML SA and SSW 

SA clearly implies a continual renewal of SML SA from SSW, as previously discussed (Hardy, 

1982; Frew et al., 2006; Cunliffe et al., 2013; Zhang and Yang, 2013; Pereira et al., 2016).  

A distinct latitudinal distribution of surfactant was found for both the SML and the SSW of the 

Atlantic Ocean during the current study. The SA maxima around 40°N in NADR in both the 

SML and the SSW (see section 4.2.1) is suggestive of terrestrially-derived surfactant deposition 

in the region. Two small SA maxima that were exclusive to the SML in the northern sub-tropical 

and tropical regions on AMT24 (see section 4.2.1) might be attributed to enhanced bubble 

scavenging of surfactants under the somewhat more turbulent conditions experienced during 

AMT24. In other words, at high turbulence more bubbles are generated with breaking waves, 

bringing more surfactants to the surface via bubble scavenging. An alternative explanation is 

that these maxima reflect more intense and/or more frequent local precipitation on AMT24 

(lower salinity in the region on AMT24 compared to AMT25, see section 4.2.1) or possibly 

enhanced net biological production of surface active material. 

Elevated SML surfactants following rainfall have previously been confirmed to enhance 

particulate organic matter in the SML (Wurl et al., 2011b). Aiken et al. (2000) also reported a 

decrease in salinity (~ 35.0) from the sea surface to a depth of 100 m in the tropical and 

equatorial regions caused by high precipitation. This water mass with distinct temperatures and 

salinity patterns was identified as Equatorial Surface Water (ESW) during their study using the 

same basic AMT transect (Aiken et al., 2000). 
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While a previous rainfall event is plausible, no precipitation was experienced during sampling. 

An alternative or complementary explanation is the effect of equatorial upwelling, as indicated 

by low surface salinity on AMT24 relative to deeper waters. The nutrient distribution also 

showed a change around this region, possibly indicative of nutrient-enriched upwelled waters 

(see section 3.3). 

Another small SA maximum at ~ 50°S (FKLD) observed during AMT24 may indicate high 

local productivity, or terrestrially-derived surfactants, or an aggregate of both. Evidence for this 

feature during AMT25 was either absent or comparatively limited (see section 4.2.1). Primary 

productivity data are unavailable for this sampling location but chlorophyll-a concentration was 

slightly higher in this region (1.00 µg L-1) than in adjacent waters (~ 0.6 µg L-1), although 

chlorophyll-a might not be a good proxy for surfactant estimation (Pereira et al., 2016). So, the 

precise origin of this SA maxima thus remains unknown. 

Average SA in the SML and the SSW was statistically higher in the Northern Hemisphere 

compared to the Southern Hemisphere on both transects (see section 4.2.1). Moreover, SA 

represents conservative behaviour in the SML in a range of biogeochemical provinces of the 

Atlantic Southern Hemisphere (i.e. WTRA, SATL and SSTC) indicating no major production 

(enhancement) or removal (depletion) of surfactants along both transects. 

Although a conservative nature of surfactant was also observed in SSW over the full extent of 

both transects, an exception was found around NADR on AMT25. The similar increase in SA 

in both the SML and SSW in this region might be attributed to high deposition of terrestrial-

derived surfactants on AMT25. 

6.2.2 Surfactant depth profiles in the Atlantic Ocean 

The depth profile of surfactants in the Atlantic Ocean revealed that an earlier view of the SML 

as a “layer of sudden change” (Zhang et al., 2003) is valid for surfactants and some associated 

variables in the Atlantic Ocean. 

Surfactants and the associated CDOM depth profiles showed similar behaviour within the water 

column, decreasing sharply from the SML to sub-surface waters and then staying quite constant 

to 100 m depth. However, SA in the upper 100 m around 40°N on AMT25 was significantly 
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higher than on AMT24 (see section 4.2.3). The plausible explanation is higher terrestrial 

deposition around the continental shelf during AMT25.  

The main conclusion to draw from the depth distributions of SA and CDOM in the current study 

is that either surfactants are a major DOM component in the Atlantic Ocean or that similar 

processes control the distributions of SA and the remainder of DOM. From the data presented 

in this thesis it is not possible to determine which of these two possibilities is the most likely.  

Further studies examining the composition of the surfactant and wider DOM pools may better 

answer this question.  

The SA distributions determined in the current study challenge those previously estimated for 

ocean basins derived from satellite images. For example, Tsai and Liu (2003) suggested vast 

regions of the Atlantic Ocean between 30°N and 30°S including the Northern and Southern 

Atlantic oligotrophic gyres to be free of surfactant, based on low satellite-derived primary 

productivity. The major regions of the global oceans covered by surfactant were suggested to 

be the subarctic Pacific and the Atlantic Oceans in boreal summer and autumn (i.e. between 

March and September), the eastern equatorial and subtropical Pacific, Atlantic coastal waters 

off America and Africa and in the upwelling regions during austral spring and summer (i.e. 

between July and December). Significant surfactant coverage in the Indian Ocean was assumed 

only from July to October, and in the Southern ocean commencing in July and reaching a 

maximum in December and January (Tsai and Liu, 2003; Wurl et al., 2011b). 

Wurl et al. (2011) further suggested that surfactant only covers the most productive regions of 

the oceans such as the coastal, upwelling and polar area while large regions of the oceans are 

surfactants free, based on primary productivity thresholds of oligotrophic and eutrophic waters 

and wind speed data. 

SA within the water column did not show any significant changes around the DCM in the 

present work. SA however was always higher above the base of the mixed layer compared to 

deeper waters during the current study, consistent with a greater abundance of phytoplankton 

metabolism products in the mixed layer than in deep waters (Zubkov et al., 2000b), and/or 

lower biogeochemical removal of SA in the mixed layer and SA compositional differences. 
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Protein-like components showed a distinct depth distribution pattern with higher values in the 

mixed layer, whereas marine humic-type components were concentrated below the base of the 

mixed layer along previous AMT transects (Kowalczuk et al., 2013). 

Ćosović et al. (1985) also showed that the composition of DOM varies with depth. While 

soluble and insoluble hydrophobic surfactants are mostly present in surface layers, the 

concentration of more hydrophilic refractive substances increased through the water column to 

a maximum of 400 m depth in the Mediterranean (Ćosović et al., 1985).  

Later research also showed that the SML is enriched in lipids from different compounds such 

as fatty acids, sterols and carotenoids, whereas the sub-surface waters revealed a depletion of 

these low soluble hydrophobic surfactants in the southern California Bight and the U.S. Middle 

Atlantic Bight (Frew et al., 2006). 

6.2.3 Enrichment factors (EFs) of surfactants in the Atlantic Ocean 

Accumulation or depletion patterns of any compounds including organic and inorganic matter 

in the SML relative to the corresponding sub-surface waters is determined by quantifying 

enrichment factors (EFs) (see section 2.5.5). 

The SML was enriched with surfactants (EF > 1) at almost all sampling locations during the 

current study (see section 4.2.2). The SML enrichment of surfactants could be attributed to the 

Gibbs surface adsorption process, i.e. high surface tension in the SML promotes adsorption and 

stabilisation of organic matter and its accumulation in the SML as a consequence (Zhang and 

Yang, 2013).  

Maximal SA EFs were observed at the same locations as SA maxima over the full extent of the 

transects (see section 4.2.2); around the continental shelves both on the northern and southern 

end of transects (i.e. ECSW and FKLD), suggestive of some terrestrial discharge in the regions 

and around the equatorial region, attributable to equatorial upwelling on both transects.  

The most plausible explanation for the consistent observations of low EFs associated with high 

SA in the subsurface waters during the current study is that for any given wind speed, bubble 

scavenging is proportionally greater in low SA waters than in high SA waters. This is because 

there is a finite limit to the amount of surfactant that can be supplied by any individual bubble 
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to the SML. Consequently, SML enrichment is limited by the total number/surface area of 

bubbles and so in SSW of comparatively low SA a proportionately larger fraction of the 

available surfactant pool is available for bubble scavenging (leading to high EF) than in SSW 

of comparatively high SA (leading to low EF). An inverse relationship between EF and SSW 

SA is therefore inevitable. 

6.2.4 Association of SA with physical and biological indicators in the Atlantic Ocean 

Evidently, there was no trend between surfactant distributions in both the SML and the 

subsurface waters and the physical properties of seawater including salinity and temperature 

(see section 4.2.8). Diverse physical mechanisms operate at the sea surface including surface 

turbulence, breaking waves, accumulation of organics via bubble scavenging and slicks 

formation resulting in a complex environment that might preclude any simple correlation 

between SA and physical parameters.  

In the current study the similar behaviour of SML and sub-surface samples versus physical 

parameters might indicate a similar composition of surfactants in both the SML and in 

corresponding sub-surface waters. This is consistent with the assumption that sub-surface 

waters are the major source of surfactant to the SML (Salter, 2010). 

Overall, a positive relationship was found between chlorophyll-a and SA during this study but 

the correlation was not statistically significant (see section 4.2.5). These findings are perhaps 

not surprising given that surfactant production is likely variable among individual 

phytoplankton species and possible additional contributions from non-chlorophyll containing 

microorganisms such as bacteria or zooplankton (Kujawinski et al., 2002). 

It was also proposed that a time delay between phytoplankton reproduction (i.e. chlorophyll-a 

increase) and phytoplankton organic matter excretion (i.e. surfactant production) might result 

in no observable correlation between SA and chlorophyll-a (Gašparović et al., 2011). 

Even so, previous work (Wurl et al., 2011a; Pereira et al., 2016) suggested that chlorophyll-a 

might not be a good proxy for primary productivity as it only accounts for about 50% of total 

pigment in most marine ecosystems (Barlow et al., 2002), the remainder being contributed 

principally by other phytoplankton pigments including chlorophyll b and c and carotenoids 
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(Kirk, 1994). So, total primary productivity associated with SA was also investigated in the 

current study but no strong correlation was found in the oceanic samples (see section 4.2.5). 

In agreement with Wurl and Holmes (2008) the most likely explanation for the discrepancy is 

that at ocean basin scales as in the current study, with diverse biogeochemical regimes, multiple 

possible sources of surfactant will be large and include temporal components as well as 

additional effects from physical parameters. The data from the current study then challenge the 

use of primary productivity solely as a proxy for surfactant activity distributions. 

To conclude, any simple correlation between surfactant distributions and biological indicators 

such as chlorophyll-a and primary productivity might be hidden by physical variables. For 

exmple, wind-induceed turbulence, advection and convection partially control the enrichment 

and depletion of organic matter in the SML (Carlson, 1983; Wurl et al., 2009; Carlson, 2013).  

It was concluded from the current study that CDOM may not be used to predict surfactant extent 

(see section 4.2.7). This might not be unexpected given that SA is often or exclusively only a 

minor DOM component (see section 1.1.3) and that CDOM behaviour reflected those of some 

other, dominant, non-surfactant components.  

Frew et al. (2002) also showed temporal variability in SA/CDOM ratios in the Middle Atlantic 

Bight, with higher ratios during spring than in late summer and autumn coinciding with a 

phytoplankton bloom. 

6.2.4.1 Association of SA with wind speed in the Atlantic Ocean 

 

The constant enrichment of surfactants in the SML at all recorded wind speeds (up to 13 m s-1) 

in the current study (see section 4.2.4) was in contrast with Wurl et al. (2011) who predicted 

that at high latitudes in the Atlantic Ocean (i.e. north of 30°N and south of 30°S), organic matter 

enrichment (including surfactants) would be precluded at the wind speeds greater than 12 m s-

1. 

We should now be confident that high EFs at such high wind speeds should not be surprising 

because the SML reforms rapidly within seconds following physical disruption (Dragcevic and 

Pravdic, 1981; Cunliffe et al., 2013). Organic matter dispersed by breaking waves reabsorbs to 

the surfaces of air bubbles generated by the same breaking waves (Hunter, 1977; Stefan and 

Szeri, 1999; Liss et al., 2005; Wurl et al., 2011b) and is transported back to the surface via 
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bubble scavenging or is ejected to the atmosphere via bubble bursting at the atmosphere-ocean 

interface.  

The results from the current study thus strongly support the notion of a self-sustaining SML, 

and there is no reason to exclude the operation of the above mechanism at high wind speeds in 

the high latitudes of the Atlantic Ocean. 

Moreover, upward transport facilitated by bubbles may be selective as organic matter with 

surface active properties (i.e. surfactants) might have a higher potential to be scavenged to the 

surface compared to the less surface-active organics (Liss, 1975; Stefan and Szeri, 1999). 

In contrast, Wurl et al. (2009) argued that at high wind speeds bubbles carrying organic matter 

might penetrate into deeper waters releasing the material into deep waters and take a longer 

time to return to the upper layers resulting in a temporary depletion in the SML.       

With an observed high level of agreement in SA distributions between AMT24 and AMT25, it 

would appear that there is a dynamic equilibrium operating in oceanic systems. While SML 

disruption frequently occurs at high latitudes, this is compensated by an enhanced bubble-

mediated flux of organic compounds to the ocean’s surface, and hence SML enrichments are 

maintained. This outcome may indicate that SA enrichment of the SML might be decoupled 

from ambient wind speed in the open oceans.  

Additionally, in the presence of fewer surfactants present in SSW, a larger proportion of these 

compounds absorb to the surface of rising bubbles leading to high EFs, whereas with high 

concentrations of surfactants in SSW, less surfactant is scavenged due to possibly not enough 

surface bubbles being available, leading to lower EFs. 

The current study also supports previous conclusions regarding the stability of the SML under 

high wind speeds during both laboratory and field experiments. For example, Broecker et al. 

(1978) reported that an artificial surface film is persistent and resistant to tear up to wind speeds 

of 13 m s-1 in a linear wind-wave tunnel. 

However, a simple correlation between surfactant enrichments and wind speed in oceanic 

waters might be masked by other variables including surface vorticity, wave velocity, surface 

turbulence, biological indicators and surfactant composition. An alternative possibility from the 

current study as suggested by Wurl et al. (2011) is that surfactants include both dissolved and 
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particulate fractions, the latter perhaps having a better correlation with wind speed than the 

dissolved fraction.  

6.3 Atmosphere-ocean gas exchange 

6.3.1 Surfactant control of atmosphere-ocean gas exchange 

Surfactant control of the atmosphere-ocean exchange of climate active gases has come to 

prominence in recent years as climate change issues have received more attention. However, 

the absence of information on the extent and distribution of surfactants on the global scale has 

become one of the major obstacles to understanding their importance (Tsai and Liu, 2003). 

Surfactant control of gas exchange (through dynamic and static mechanisms) is estimated to be 

considerable (see section 1.2.1). So, an important role for surfactants in air-sea gas exchange is 

inevitable. Importantly, the work presented in this thesis shows that previous estimates of gas 

exchange between the atmosphere and the oceans might be overestimated because the presence 

of surfactants has not been accounted for, and this is especially relevant to high wind regimes 

where it was previously thought that surfactants were not enriched in the SML, something that 

the work in this thesis has shown to be incorrect.  

Surfactant suppression of kw by up to 50% may be typical (Frew, 1997; Bock et al., 1999; Salter 

et al., 2011) (see Chapter 1). While strong spatiotemporal gradients in surfactants within the 

SML, and hence in kw, have been reported for some coastal waters (Frew et al., 1990; 

Schneider-Zapp et al., 2014; Pereira et al., 2016), prior to the current study surfactant 

distributions at the ocean basin scale were based only on estimates derived from proxies (Wurl 

et al., 2011b). 

Quantification of the impact of surfactants on gas exchange rates was facilitated using a custom-

built experimental tank during the current study. This enabled turbulence to be controlled so 

that the only relevant variable in the experiments was SA (see section 2.6). The extrapolation 

of the results derived from the laboratory experiments to larger scales representative of the open 

ocean might be justifiable but requires additional experiments. 
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The maximum of ~ 25% in kw suppression of the Atlantic oceanic samples during the current 

study was lower than observed for identical tank experiments using coastal North Sea samples 

that had a maximum of 51% suppression (Pereira et al., 2016).  

It should be pointed that these analyses made no consideration of the possible effect of 

surfactant compositional differences between the two regions (i.e. the North Sea and the 

Atlantic Ocean). Therefore, from the current study, it is suggested that in addition to SA, 

differences in surfactant composition indicated by variability in CDOM parameters might affect 

kw suppression.  

It was suggested previously that the seasonal and spatial variability of water column 

productivity in the Baltic Sea may drive changes to the thickness and composition of surface 

films resulting in variability in the suppression of gas transfer (Schmidt and Schneider, 2011).  

6.3.2 Gas exchange and CDOM association 

An inverse linear relationship between CH4 R660′ and CDOM absorbance was found during the 

current study (see section 5.2.2). However, the correlation was not statistically significant. This 

was in agreement with the recent conclusion of Pereira et al. (2016) who proposed that using 

remotely sensed CDOM as a proxy for the kw estimation is not feasible.  

From the current study, it is suggested that as the concentration of organic matter in the SML 

and corresponding sub-surface waters are tightly bound (i.e. sub-surface waters are a source of 

organic compounds to the SML, see section 4.2.2) and that a better approach might be to use 

enrichment factors as a proxy rather than absolute values of organic matter concentration 

(CDOM absorbance) in either the SML or the sub-surface waters (see section 5.2.2). 

Furthermore, increasing CDOM (E2: E3) is indicative of a greater proportion of lower 

molecular weight organic matter (Peuravuori and Pihlaja, 1997). That CDOM (E2: E3) is 

enhanced in the SML relative to the corresponding sub-surface waters, implies that organic 

matter of a lower molecular weight is more abundant in the SML than the sub-surface waters 

and hence suggestive of it being more important in retarding gas transfer in the SML. 
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Chapter 7. Conclusion and future work 
 

The current study has provided novel data on the distribution of surfactants and CDOM in SML 

and throughout the water column (≤ 100 m) of the Atlantic Ocean. The results of this study 

challenge the suggestion of Wurl et al. (2011) that oceanic regions with a monthly average wind 

speed above 10 m s-1 are free of SML and its components (Wurl et al., 2011b).  

The present study unequivocally shows that the SML enrichment in surfactants persists at wind 

speeds higher than the average global oceanic wind speed. This research has contributed 

evidence that the SML is a self-sustaining environment with respect to organic matter 

distribution.  

The direct measurement of SA in the current study revealed a clear picture of surfactant 

distribution in the Atlantic Ocean that is an advance on the proposed distribution of Wurl et al. 

(2011) based on proxies including primary productivity and wind speeds.  

A generally higher SA was observed in the Atlantic Northern hemisphere compared to the 

Southern hemisphere, with an SA maximum around 40oN associated with in-situ production or 

terrestrial discharge. Also, an increase on SA in the Equatorial region suggests SA inputs to the 

SML via equatorial upwelling.  

Further investigation by determining CDOM optical properties revealed more details of the 

different sources, molecular weights and composition of organic matter dominant in the 

Atlantic biogeochemical provinces. 

In-situ regional production of low molecular weight protein-like components is suggested for 

most Atlantic provinces. However, there was a possibility of high molecular weight humic 

materials with a terrestrial origin near the continental shelves during the current study. Also, 

CDOM exposed to high degradation (i.e. ‘old’ CDOM) might be transported from the centre of 

the oligotrophic gyres to the surface layers.  

Although this thesis presents a considerable dataset on SA and CDOM in the Atlantic Ocean 

provinces, there remain important concerns that should be considered in future work; 
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Temporal sampling within the study area 

Improvement to the spatiotemporal resolution of SA sampling would help to better determine 

surfactant coverage in the Atlantic Ocean. If they occur, seasonal gradients in SA would be 

particularly important in the Atlantic Northern Hemisphere which is a large sink for CO2.  

Air-sea CO2 exchange rates might are likely to be greatly overestimated if surfactants present 

in the SML are neglected. Previously observed large seasonal variability in pCO2 in the North 

Atlantic was attributed to variabilities in temperature, biological activity, mixing and water 

currents. However, surfactant control on kw also needs to be taken into account (Takahashi et 

al., 2009). 

This will require the routine measurement of SA. It is anticipated that future seasonal 

measurements of the type described in this thesis, will move us to eventually better 

parameterization of the surfactants control on kw. 

Data resolution in the water column could be improved by collecting more samples below the 

base of the mixed layer, although this is impossible within the constraints of AMT sampling 

and also by currently time-consuming sample analysis.  

Investigation into surfactants composition 

Concerning the various sources of surfactant in the marine environment (see section 1.1.3), a 

better understanding of surfactant composition will probably be necessary for a better 

understanding of the variability in surfactant control of air-sea gas exchange, both spatially and 

temporally. 
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Appendices 

Appendix 1.  

Table A.1. Descriptive statistics of temperature (°C), salinity and U10n (ms-1) in biogeochemical 
provinces for 100m depth in the Atlantic Ocean. The provinces are including European Continental 
Shelf water (ECSW), North Atlantic Drift Region (NADR), North Atlantic Subtropical Region (NAST), 
North Atlantic Tropical Region (NATR), Western and Eastern Tropical Atlantic (W/E TRA), South 
Atlantic Gyral (SATL), South Sub Tropical Convergence (SSTC) and Falkland Islands (FKLD)
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Table A.1. (continued) Descriptive statistics of temperature (°C), salinity and U10n (ms-1) in 
biogeochemical provinces for 100m depth in the Atlantic Ocean. The provinces are including European 
Continental Shelf water (ECSW), North Atlantic Drift Region (NADR), North Atlantic Subtropical 
Region (NAST), North Atlantic Tropical Region (NATR), Western and Eastern Tropical Atlantic (W/E 
TRA), South Atlantic Gyral (SATL), South Sub Tropical Convergence (SSTC) and Falkland Islands 
(FKLD)

 
  

Provinces AMT24 AMT25 AMT24 AMT25 AMT24 AMT25
SATL
n 2460 2312 2460 2216 23 11
Ave. 19.90 20.11 36.21 36.25 7.64 3.78
SD. 4.63 3.77 0.74 0.64 2.71 1.28
Min. 11.61 10.23 34.83 34.6 2.52 1.89
Max. 26.14 24.62 37.17 37.14 12.94 6.38
SSTC
n 589 287 589 192 6 1
Ave. 10.10 9.80 34.61 34.52 9.95 2.44
SD. 1.20 0.72 0.18 0.04 1.39 -
Min. 8.36 8.66 34.44 34.46 7.96 -
Max. 11.66 11.14 34.98 34.58 11.76 -
FKLD
n 288 189 288 535 2 1
Ave. 5.97 4.65 34.21 34.91 8.91 6.84
SD. 2.00 0.26 0.19 0.76 2.98 -
Min. 3.36 4.07 34.02 34.08 6.81 -
Max. 8.81 5.13 34.49 36.06 11.01 -

Temperature (°C) Salinity U10n (ms-1)
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