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Abstract

Many animals are able to perceive stereoscopic depth owing to the disparity information that
arises from the left and right eyes’ horizontal displacement on the head. The initial computation of
disparity happens in primary visual cortex (V1) and is largely considered to be a correlation-based
computation. In other words, the computational role of V1 as it pertains to stereoscopic vision can
be seen to roughly perform a binocular cross-correlation between the images of the left and right
eyes. This view is based on the unique success of a correlation-based model of disparity-selective
cells – the binocular energy model (BEM). This thesis addresses two unresolved challenges to this
narrative. First, recent evidence suggests that a correlation-based view of primary visual cortex
is unable to account for human perception of depth in a stimulus where the binocular correlation
is on average zero. Chapters 1 and 2 show how a simple extension of the BEM which better
captures key properties of V1 neurons allows model cells to signal depth in such stimuli. We
also build a psychophysical model which captures human performance closely, and recording from
V1 in the macaque, we then show that these predicted properties are indeed observed in real
V1 neurons. The second challenge relates to the long-standing inability of the BEM to capture
responses to anticorrelated stimuli: stimuli where the contrast is reversed in the two eyes (e.g.
black features in the left eye are matched with identical white features in the right eye). Real
neurons respond less strongly to these stimuli than model cells. In Chapter 3 and 4, we make
use of recent advances in optimisation routines and exhaustively test the ability of a generalised
BEM to capture this property. We show that even the best-fitting generalised BEM units only go
some way towards describing neuronal responses. This is the first exhaustive empirical test of this
influential modelling framework, and we speculate on what is needed to develop a more complete
computational account of visual processing in primary visual cortex.
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Chapter 0

Introduction

0.1 The stereo correspondence problem

Stereoscopic vision is possible because the left and right eyes receive slightly different images of

the world. This geometric arrangement gives rise to retinal disparity which can be used to extract

depth information from a visual scene. A key challenge in stereo vision is determining which ele-

ments in the image seen by the left eye correspond to the elements in the image seen by the right

eye. This computationally demanding task is known as the stereo correspondence problem and

has been extensively studied [Julesz, 1971, Marr, 1980, Ohzawa et al., 1990, Howard and Rogers,

1995, Backus et al., 2001, Prince et al., 2002a, Banks et al., 2004, Parker, 2007, Henriksen et al.,

2016c]. The challenge posed to the brain is particularly evident in a class of stimuli known as

random dot stereograms (RDSs, Figure 0.1) [Julesz, 1971]. Random dot stereograms are made up

of black and white dots, and the images are identical in the left and right eyes up to a translation

of a subset of the pixels. Random dot patterns are interesting because for any given dot in the left

eye, there is a very large number of dots in the right eye which it could in principle correspond to.

Nevertheless, the brain effortlessly achieves a globally consistent solution to the correspondence

problem, and the disparity information allows human observers to see complex depth-defined ob-

jects in otherwise featureless images. Figure 0.1, for example, contains a silhouette of a stag which

is only seen when the left and right images are appropriately fused. Notably, when the contrast of

the Julesz-style random dot stereogram is reversed, such that white dots in the left eye correspond

to black dots in the right eye, and vice versa, the perception of depth is abolished. These stimuli

are known as anticorrelated random dot stereograms [Julesz, 1971, Cogan et al., 1993].

Modern versions of the random dot stereograms often paint black and white dots on a gray

background, and use simple objects in depth. In Figure 0.2, the depth object is a disk which either

appears in front of or behind the background. These stimuli allow for more complex stimulus

manipulations with which to probe the mechanisms of correspondence.

11



12 CHAPTER 0.

Figure 0.1: A random dot stereogram. When viewed separately, no discernible features are seen.
However, when fused, even complex objects can appear in vivid depth. In the above example, a
silhouette of a stag can be seen in a separate plane to the background.

Figure 0.2: Another version of the random dot stereogram, where black and white dots are painted
on a gray background. When fused, a stereo-intact observer will perceive a disk either in front of or
going into the background. Many modern psychophysical studies use these random dot stereograms
to study stereopsis. A stereo intact observer can perceive a central disk in front of the background
by crossing their eyes such that the left eye sees the right-hand image and vice versa.

0.2 Mechanisms of correspondence

Julesz’s random dot stereograms have been incredibly influential in shaping thinking about stere-

opsis and correspondence. One of the key contributions of Julesz and his stimuli was that the

perception of depth in these stimuli unequivocally showed that stereo vision must be a low-level

process. Up until the introduction of the random dot stereogram, researchers generally considered

stereopsis to be a high-level cognitive process [Howard, 2002]. The realisation that correspondence

occurs at a very early stage of visual processing had the knock-on effect of focusing stereo research

on the underlying mechanisms of stereopsis [Julesz, 1971, Marr and Poggio, 1976, Marr and Pog-

gio, 1979], rather than simply investigating the properties of the phenomenon [Von Helmholtz,

1881, Ogle, 1952b, Ogle, 1952a]. Marr & Poggio (1976, 1979) published a series of influential pa-

pers, where they proposed algorithms for obtaining stereo correspondence solutions. These early

algorithms were generally based on matching image features in the two eyes. For example, in the
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algorithm proposed by Marr & Poggio (1979), linear filters obtain zero-crossings of the left and

right images. These roughly correspond to the edges of objects, but can be produced by any large

local change in luminance. The zero-crossings are then matched across the left and right eyes, and

a disparity estimate is obtained through a coarse-to-fine refinement, where the coarse spatial filters

constrain the disparity solution space of the fine spatial filters. These models have been greatly

influential in both human vision science and computer vision, and while they have been largely

discounted as veridical accounts of human stereopsis, certain components of the models, such as

pooling across spatial frequencies, have been shown to take place in disparity-selective cells in V1

[Baba et al., 2015, Tanabe et al., 2011a].

The earliest observations of neurons specialised for stereopsis came from Barlow, Blakemore,

& Pettigrew (1967) and Pettigrew, Nikara, & Bishop (1968), who reported disparity-selective cells

in the primary visual cortex (V1) of cats. These neurons modulate their firing rate as a function

of the disparity of the stimulus [Barlow et al., 1967, Pettigrew et al., 1968], and have since been

found in the macaque [Hubel and Wiesel, 1970, Poggio and Fischer, 1977], the barn owl [Pettigrew

and Konishi, 1976, Nieder and Wagner, 2000], sheep [Clarke et al., 1976], and their existence has

been inferred in humans through psychophysical [Read and Eagle, 2000, Kane et al., 2014], elec-

troencephalographic [Norcia et al., 1985], and neuroimaging [Backus et al., 2001] approaches.

0.3 Neuronal models for computing disparity

Ohzawa, DeAngelis, & Freeman (1990) proposed the first computational model of disparity-

selective cells in primary visual cortex. This model - the binocular energy model (BEM) - has

been incredibly successful in capturing a range of computational properties of disparity-selective

V1 neurons. The BEM is the binocular cousin of the more well-known motion energy model [Adel-

son and Bergen, 1985], and belongs to a large family of models known as linear-nonlinear (LN)

models. LN models locally filter the image using either spatial or spatiotemporal linear filters,

before applying an output nonlinearity to the response. For the purposes of computer simulations,

a useful convention is using vector notation to denote the linear filter and the stimulus, and then

define the filtering process as the dot product:

v = ρ · s, (0.1)

where ρ and s refer to the linear filter and stimulus, respectively, represented as vectors, and

· denotes the dot product. This form is agnostic about whether the linear filter is spatial or

spatiotemporal. If the stimulus vector is spatial, then the vector’s entries represent the stimulus at

various positions on the retina. If the stimulus vector is spatiotemporal, then each entry represents

a luminance value at a particular time and retinal position. The linear filter ρ is roughly analogous
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to the receptive field of real neurons. The response of the LN unit is obtained by passing v through

a nonlinearity:

s = f(v). (0.2)

f can take on a range of forms, but common choices are half-wave rectification (f(v) = Pos(v)),

half-squaring (f(v) = [Pos(v)]2), or simply squaring (f(v) = v2). These models are very similar

to the units used in modern neural networks, where sigmoids or rectified linear units (RELUs) are

generally used [Rumelhart et al., 1986, Nair and Hinton, 2010].

The binocular energy model has filters in the left and right eyes, and selectivity for non-zero

disparities is generated by having the left and right filters centred on non-corresponding regions of

the left and right visual field (for non-zero disparities). To compute the response of the model, the

left and right filter responses are summed before passing the sum through a squaring nonlinearity

[Ohzawa et al., 1990, Read et al., 2002].

s = (vL + vR)2 = v2
L + v2

R + 2vLvR. (0.3)

The subscripts here refer to the left and right eyes. The v2
L + v2

R term means that the model will

respond independently to stimulation in either the left or the right eye. This mimics the behaviour

observed in real V1 neurons [Ohzawa et al., 1990], many of which can be driven by visual stimulation

in either eye. The model’s disparity selectivity arises from the cross-term 2vLvR. The BEM has

two binocular subunits, each analogous to a simple cell, which together form a model complex cell.

The response of complex cells is invariant to stimulus phase in either eye (i.e. they respond equally

well to a black bar as they do to a white bar). In order to achieve phase invariance, the BEM uses

two binocular simple cells whose linear filters are in quadrature, so that the left linear filter of the

first subunit ρ1L is orthogonal to the left linear filter of the second subunit ρ2L, and vice versa for

the right eye filters. The complete response of the binocular energy model is therefore

C = (v1L + v1R)2 + (v2L + v2R)2

= v2
1L + v2

1R + v2
2L + v2

2R

+ 2(v1Lv1R + v2Lv2R). (0.4)

The invariance to stimulus phase arises because the terms v2
1L + v2

2L and v2
1R + v2

2R guaran-

tee constant response to equal magnitude stimuli with different phase (in the same way that

cos2(x) + sin2(x) = 1).

Figure 0.3 shows a schematic representation of the BEM. Two types of retinal disparity are seen

in cortex: position disparity and phase disparity. Position disparity is defined as a position offset
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Figure 0.3: Schematic illustration of the binocular energy model. The two left-most columns show
the left and right eye linear filters, respectively, and the two rows correspond to the two orthogonal
simple cell subunits of the BEM. The left and right image is filtered by the left and right filters,
respectively. The filtered response is then summed, passed through a squaring nonlinearity before
the responses of the two simple cells ubunits are added to produce the model complex cell response.

between the filters in the two eyes without a change in the profile of the filters. Phase disparity

is when the centres are the same across the two eyes, but the profiles (phase) of the left and right

filters are different. The binocular energy model has been widely successful because of its ability

to capture a range of properties of real cells, including both phase and position disparity. One

key success of the BEM is the observation that although V1 complex cells do not modulate their

response to stimulus phase in either eye, they do modulate their response to the binocular phase

difference [Ohzawa and Freeman, 1986]. The reason for this in the BEM can be seen by inspecting

Equation 0.4: the cross-terms that produce the disparity modulation are v1Lv1R and v2Lv2R, and

these do depend on the phase difference in the left and right image. Another key property of the

BEM is that inverting the contrast in one eye – thereby inverting the correlation – also inverts

the disparity tuning curve of the model units. This was shown experimentally to be the case, first

by Ohzawa et al. (1990) in the cat using individual bars, and later by Cumming & Parker (1997)

in the macaque. Cumming & Parker (1997) also showed that while the original BEM predicts

a perfect inversion of the disparity tuning curve, real cells also have reduced amplitude to anti-

correlated stimuli (Figure 0.4). Because anticorrelated stimuli represent an impossible binocular

configuration, this attenuation represents a suppression of false match responses, and suggests that

these cells are specialised for the binocular statistics of the natural world [Cumming and Parker,

1997, Tanabe et al., 2011a].

A large corpus of research has attempted to resolve the discrepancy between the binocular

energy model and real neurons. Initial attempts used simple extensions, such as appending an

output nonlinearity to the BEM [Nieder and Wagner, 2000]. However, an output nonlinearity

cannot account for the attenuated response of odd-symmetric cells, so it is at best an incomplete
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Figure 0.4: Example disparity tuning curve, similar to that reported in Cumming & Parker (1997).
The cell (a) shows clear disparity tuning to both correlated (red) and anticorrelated (black) stimuli,
but its disparity tuning curve inverts to anticorrelation. The BEM predicts an exact inversion (b),
while the cell has an attenuated response to anticorrelated stimuli.

description of V1 disparity selectivity [Read et al., 2002]. Other efforts have focused on modifying

the architecture of the BEM. Read, Parker, & Cumming (2002) showed that a model which passes

the monocular filter responses through a nonlinearity prior to binocular combination can account

for a range of disparity tuning curves [Read et al., 2002], including the attenuated response to

anticorrelated stimuli. However, a key prediction made by applying such nonlinearities prior to

binocular combination is that the temporal modulation frequency in response to drifting gratings

should double. This is only observed in some cells [Read et al., 2002], and so most modelling

approaches have since maintained the condition of linear binocular combination [Haefner and

Cumming, 2008, Tanabe and Cumming, 2008, Tanabe et al., 2011a]. Haefner & Cumming (2008)

proposed a two-subunit (2SU) model to account for odd-symmetric cells [Haefner and Cumming,

2008]. It does so by combining two BEM-like cells with different disparity tuning, where neither of

the subunits themselves have phase disparity. Tanabe & Cumming (2008) tested the predictions

of the 2SU model by varying the spatial frequency and phase components of broadband spatial

gratings, and showed that the behaviour of V1 neurons agree better with the predictions of the

2SU model than that of the BEM [Tanabe and Cumming, 2008]. Further expanding on the 2SU

framework, Tanabe & Cumming (2011) carried out a spike-triggered analysis of covariance; if the

underlying generative process is well-described by a generalised quadratic model, this approach

will recover filter elements which span the same subspace as the underlying neuronal subunits

[Tanabe et al., 2011a]. Tanabe & Cumming (2011) confirmed that many neurons are indeed

composed of many more LN elements than that suggested by the BEM, and also often vary in their

position disparity. Interestingly, the authors also found that neurons in V1 are commonly arranged

in a push-pull architecture: suppressive units have the opposite response profile to excitatory

subunits, meaning excitatory subunits are driven by the same disparities that suppress the response

of the suppressive subunits (i.e. disinhibition). The suppressive subunits additionally have the
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interesting characteristic of a broader spatial profile than the excitatory subunits. The spike-

triggered covariance method demands that the stimulus is independent white noise - independent

from pixel to pixel and frame to frame, as well as between the left and right eyes. However, for

this stimulus, neither the neurons nor the model units exhibited the characteristic attenuation

to anticorrelated frames, and the authors were thus unable to comment on the ability of this

framework to capture the response attenuation to anticorrelated stimuli. The origin of the response

attenuation to anticorrelated stimuli remains an outstanding question in the field.

0.4 V1 activity and depth perception

Activity in primary visual cortex is a poor correlate of stereoscopic depth perception. Two key

observations demonstrate this fact. First, V1 neurons show tuning only to absolute disparity,

whereas psychophysically, humans have much greater sensitivity to relative disparity [Cumming

and Parker, 1999]. Second, while V1 neurons modulate their response to anticorrelated stimuli,

depth is only perceived here under very specific circumstances. In the traditional Julesz-style

random dot stereograms, depth is never perceived in anticorrelated stimuli. However, Cogan et al.

(1993) showed that human observers perceive veridical depth in sparse anticorrelated random dot

stereograms (although observers have very high thresholds) [Cogan et al., 1993]. More commonly,

reversed depth is reported in anticorrelated stimuli. For example, Read & Eagle (2000) showed that

reversed depth is perceived by human observers using both 1D and 2D random noise patterns, with

a stronger effect being observed for the 1D case [Read and Eagle, 2000]. Tanabe, Ysauoka, & Fujita

(2008) noted that reversed depth discriminations can be observed in random dot stereograms where

black and white dots are painted on a gray background [Tanabe et al., 2008]. The authors note that

the condition for depth perception appears to be that there must be a clear reference plane against

which the observers can make the depth judgement. More recently, Hibbard et al. (2014) reported

data from a large number of participants suggesting that no reversed depth is seen in anticorrelated

random dot stereograms [Hibbard et al., 2014]. However, Hibbard et al. introduced an empty zone

between the disparity-defined region and the reference plane (the background), which may have

prevented the observers from using the annulus as a point of reference. In general, the literature

on depth perception in anticorrelated stimuli is inconsistent, with depth only being reported in

specific circumstances. The neuronal mechanisms which lead to reversed depth judgements are not

understood. The failure to understand how and when anticorrelation gives rise to reversed depth

judgements comes partially from an inadequate understanding of how V1 activity is read out in

real networks.

0.5 Disparity processing in higher cortical areas

Cells in higher cortical areas likely inherit their disparity tuning from cells in primary visual cortex.

Tanabe & Cumming (2008) showed that neurons in V2 are consistent with the 2SU model discussed
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previously. A substantial number of V2 neurons also show tuning to relative disparity, which is

absent in V1 [Thomas et al., 2002]. While the anticorrelated modulation in V2 is comparable to

that in V1 [Tanabe and Cumming, 2008], there appears to be progressively weaker modulation

to anticorrelated stimuli along the ventral pathway. In V4, there is clear evidence that responses

to anticorrelated stimuli are greatly weakened compared to the modulation seen in V1 [Tanabe

et al., 2004]. By the time the signal reaches IT, there is no significant neuronal modulation to

anticorrelated stimuli [Janssen et al., 2003]. The character of disparity tuning appears to be

different in the ventral and dorsal streams. Along the dorsal stream, tuning for anticorrelated

stimuli is strongly maintained even in MT and MST [Krug et al., 2004, Takemura et al., 2001],

prompting the suggestion that the ventral and dorsal pathways might be differentially specialised

for different aspects of binocular vision [Parker, 2007].

0.6 Aims and outline

This thesis has two key aims. Recent work by Doi et al. (2011, 2013, 2014) has found that humans

can perceive depth in a class of stimuli with mixed correlated and anticorrelated dots (mixed cor-

relation random dot stereograms). When there is an equal number of correlated and anticorrelated

dots (half-matched stereograms), the average correlation of the stereogram is zero because the

correlated and anticorrelated dots cancel out. In these stimuli, the BEM does not signal dispar-

ity, and Doi et al. have suggested that a separate disparity computation extracts disparity from

these images. The implication of this work is that a substantial revision in our understanding

of the role of V1 binocular neurons in stereoscopic depth perception is needed. The first aim is

therefore to examine whether such a major revision is necessary. While Doi et al. show how a

binocularly linear model such as the BEM cannot signal depth in these stereograms, this may not

imply that V1 neurons cannot signal depth. This is possible precisely because the responses of

real neurons to anticorrelated RDSs do not follow the predictions of the BEM. Evaluating whether

a revision of the role of V1 in depth perception is necessary is therefore the focus of Chapters 1

and 2. Chapter 1 begins by exploring the recent literature on the subject, and then examines how

modified BEM units, which more closely approximate key aspects of the disparity tuning proper-

ties of real cells, can account for depth perception in mixed correlation stereograms. We confirm

that they can, and that the existing psychophysical literature is consistent with the theoretical

properties of modified BEM neurons. The work reported in Chapter 1 is published in Henriksen,

Cumming, & Read, PLoS Comput. Biol. (2016). Chapter 2 follows on from this and examines

whether neurons in primary visual cortex do in fact respond to half-matched stereograms, as our

model would predict. We find that neurons in macaque V1 agree well with the properties of our

modified BEM units. We conclude that the psychophysical evidence is consistent with known

properites of V1 neurons, and that the conceptual revision offered by Doi et al. is unnecessary.

The work reported in Chapter 2 is published in Henriksen, Read, & Cumming, J. Neurosci. (2016).
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The binocular energy model and related neuronal models are central for the field’s thinking

about stereopsis as a perceptual process. The well-established limitations of the BEM means that

we need a better model for understanding the foundational units which facilitate stereopsis (i.e. V1

neurons). However, a better model which can capture properties such as the anticorrelated atten-

uation in real cells has so far remained elusive. In order to model disparity-selective cells, the field

has traditionally used models where the model architecture and parameters are chosen by hand.

Recent developments in optimisation routines now allow for the automatic fitting of architectures

and model parameters. We are thus in the unique position to test not only whether a particular

model gives an adequate description of a particular disparity-selective cell, but rather whether

this entire class of models can give an adequate description of a population of disparity-selective

cells. The second aim of this thesis is therefore to attempt to develop a full model of V1 disparity

selectivity through data-driven (machine learning) modelling efforts. In Chapter 3, we show that

even the best-fitting generalisations of the binocular energy model (GBEM) cannot capture key

characteristics of real V1 neurons. Specifically, we show that what the field has generally thought

of as an attenuated response to anticorrelated stimuli is in fact an enhanced response to correlated

stimuli at the preferred disparity of the cell. We call this mechanism correlated boosting. Impor-

tantly, real cells exhibit much stronger correlated boosting than model units, suggesting that this

arises through a separate mechanism than the one used by the LN framework to create disparity-

selectivity. In Chapter 4, we analyse stimulus-driven response variability (“external variance”) in

the BEM, GBEM, and real cells. Two key results emerge. First, correlated boosting also affects

external variance and results in an underestimate of the external variance at the preferred dispar-

ity of the cell. Second, real V1 neurons have higher baseline external variance than GBEM units.

This means that they modulate their response more strongly to features in the stimulus other than

disparity. We discuss the implications of these findings for our understanding of V1 neurons, and

chart out potential modifications to existing modelling frameworks to help bridge the gap between

data and theory.
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Chapter 1

A single mechanism can account for human perception of

depth in mixed correlation random dot stereograms

1.1 Introduction

In a recent series of papers, Doi et al. (2011, 2013, 2014) have proposed that two distinct compu-

tations contribute to depth perception in cyclopean stimuli [Doi et al., 2011, Doi et al., 2013, Doi

and Fujita, 2014]. They postulate a pure correlation mechanism, which depends linearly on inte-

rocular correlation, plus an additional “matching” computation, which in their most recent work

[Doi and Fujita, 2014] they have suggested may simply be the correlation mechanism plus an ad-

ditional output nonlinearity. Under some circumstances, this is identical to a single mechanism

with a nonlinear response to correlation (Figure 1.1). However, Doi et al. propose that the two

mechanisms have distinct spatiotemporal integration properties, and so may be differentially acti-

vated by different stimuli. These conclusions are motivated by a series of ingenious psychophysical

experiments in which the authors mixed correlated and anticorrelated dots within a single random

dot stereogram (RDS). When half the dots in an RDS are correlated and half are anticorrelated

(half-matched RDSs; Figure 1.2a), the global binocular correlation of the stimulus is 0. In this

case, the authors argue, a pure correlation computation should not be able to detect depth. How-

ever, humans can perceive depth in such stimuli [Doi et al., 2011, Doi et al., 2013]. Doi et al.

argue that this cannot be explained by a pure correlation mechanism, and propose an additional

matching mechanism to account for these data. In addition to depth perception in half-matched

RDSs, two pieces of evidence suggest that two separate mechanisms extract disparity in random

dot stereograms. Doi et al. (2011) have reported that larger disparities tend to lead to decreased

performance for half-matched RDSs and more reversed depth responses to anticorrelated RDSs

[Doi et al., 2011]. In a subsequent publication, Doi et al. (2013) reported a similar phenomenon

in the temporal domain [Doi et al., 2013]. They investigated dynamic random-dot patterns, in

which the dot pattern is periodically replaced with a new random pattern with the same disparity

and correlation. They showed that faster dot pattern refresh rates lead to poorer half-matched

judgments and more reversed depth responses to anticorrelation. The authors argue that these

results again reflect the weighted contribution of two separate mechanisms: one slow matching

21
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Figure 1.1: Response amplitudes in correlated and anticorrelated stereograms. Binocular energy
model response to correlated (open circles, red line) and anticorrelated stimuli (solid circles, black
line). The red arrow denotes the correlated amplitude, the black arrow the anticorrelated amplitude
and the gray line the uncorrelated baseline response of the model cell. The amplitude ratio is
the anticorrelated amplitude (black line) divided by the correlated amplitude (red line). b) The
response at the preferred disparity as a function of binocular correlation (blue) which is linear,
hence we call this a “pure” correlation computation. The green line shows this response after
rectifying in the correlation domain - proposed as a separate computation by Doi & Fujita (2014).
c) shows a linear combination of the two lines in b) - a single computation passed through a
different nonlinearity (black). As shown, the two computations in b) (i.e. blue and green lines)
and the linear combination of the two in (black line in c) are indistinguishable descriptions: b)
contains two mechanisms, but their combined response is identical to the black line in c). If the two
components in b) differ in some other respects (spatial or temporal properties) it may be possible
to demonstrate that a single mechanism cannot reproduce the same behavior. No study has yet
attempted to describe behavioral data with a single mechanism like c). We explore a mechanism
based on a slightly simpler nonlinearity - squaring the response of the model in a (magenta line in
c).

computation, responsible for fine disparity discrimination, and one rapid correlation computation,

responsible for coarse disparity discrimination. Figure 1.2b illustrates schematically the perfor-

mance they expect from these two computations in isolation.

While it is true that half-matched RDSs – stereograms with equal numbers of correlated and

anticorrelated dots – have a mean binocular correlation of 0, it is possible that local fluctuations in

correlation could be exploited to determine the stimulus disparity [Doi et al., 2013, Doi and Fujita,

2014]. Doi et al. propose that these fluctuations are used by the matching computation, possibly

in extrastriate cortex [Doi et al., 2011, Doi et al., 2013]. However, the attenuated responses of

V1 neurons to anticorrelated dots [Cumming and Parker, 1997] makes it possible that even V1

neurons could encode disparity in these stimuli. V1 neurons respond more strongly to positive

than negative binocular correlation [Cumming and Parker, 1997]. If this attenuated response was

generated by a simple output nonlinearity, then their responses to stimuli with high correlation

variability may be greater than predicted from the mean correlation alone. In other words, the

mean response of the cell may depend on the local correlation variability as well as the mean corre-

lation. Doi & Fujita (2014) explore this with a modified version of a cross-correlation computation

which they refer to as “cross-matching”. Cross-matching computes the correlation between left
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Figure 1.2: Correlation and matching computations in random dot stereograms. a) A schematic
representation of a half-matched random dot stereogram. Half the dots are correlated, half the dots
are anticorrelated, resulting in a binocular correlation of 0. b) Psychometric functions reflecting
the operation of hypothetical matching and pure correlation computations (recreated from Doi et
al., 2011) as a function of dot match level. The pure correlation computation (blue line) signals
reversed depth at a dot match level of 0 (fully anticorrelated), is at chance at a dot match level of
0.5 (half-matched) and performs perfectly at a dot match level of 1. The matching computation
(green line) is at chance for anticorrelated stimuli and gradually increases to perfect performance
with increasing percentage of matched dots. The horizontal line shows chance performance, and
the vertical line marks a dot match level of 0.5, e.g. the half-matched stereogram shown in (a).

and right images, but then follows this by half-wave rectification. Doi & Fujita (2014) conclude

that cross-matching has the necessary properties to serve as the computation underlying their

putative match-based computation. Importantly, they still postulate that human stereo vision is

subserved by separate pure correlation and match-based computations, with different spatiotem-

poral properties, and whose contribution to perception vary with properties of the stimulus. The

proposition that these two mechanisms have different spatiotemporal properties is crucial if the

two-mechanism model is to be distinguished from a single mechanism intermediate between the

pure correlation and pure matching models. While differences in spatiotemporal properties are

essential in order to separate “pure correlation” and “cross-matching”, changes in psychophysical

performance with changes in spatiotemporal properties of the stimulus do not necessarily imply

that there must be two mechanisms. In principle, changes in performance could be due to changes

in the stimulus, even with a single-mechanism model. However, no one has yet explored whether

a single-mechanism model can account for the results of Doi et al.

Here we explore the possibility that a single computation can explain depth perception in

correlated, anticorrelated, and half-matched random-dot stereograms. Like Doi & Fujita (2014),

we use a model that can describe the attenuation observed in V1 neurons – a binocular energy model

with an additional output nonlinearity – and show that this can explain responses to half-matched

stereograms. Our scheme differs from theirs in that it does not suppose two distinct computations

operating in cortex, but rather uses a single mechanism to explain all the psychophysical data. To

explore this model, we first investigate the model responses to half-matched RDSs. We then show
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that this model can account for a range of previously documented psychophysical phenomena,

including effects which Doi et al. have suggested are diagnostic of either a pure correlation or

a match-based computation [Doi et al., 2011, Doi et al., 2013, Doi and Fujita, 2014]. Finally,

we confirm two new predictions made by the model in human observers: that psychophysical

performance should become worse with 1) decreased dot size in half-matched stereograms and 2)

in response to rapid temporal modulation in correlation.

1.2 Methods

All simulations were implemented in BEMtoolbox - a custom Matlab toolbox for simulating binocu-

lar neurons. The toolbox is available at http://github.com/sidh0/BEMtoolbox. All code used in

the current manuscript is available online at http://github.com/sidh0/hcr16_ploscb (requires

BEMtoolbox).

1.2.1 Random dot stereograms

We created dynamic random-dot stereograms with a varying number of correlated and anticorre-

lated dots as described by Doi et al. (2011, 2013). Black and white circular anti-aliased dots, 0.09◦

in radius, were painted on a gray background. When the stimulus was half-matched, half the dots

were correlated, i.e. had the same luminance in both eyes, while the other half were anticorrelated,

i.e. drawn black in one eye and white in the other. There were on average equal numbers of

black and white dots for each correlation value. Dots had zero binocular disparity except within

the central 2.5◦ of the stimulus. The surrounding annulus had a width of 1◦. The stimulus thus

depicted a disparate disk either in front of or behind a zero-disparity background. No subpixel

disparity was used. Unless otherwise specified, the dot density was 24%, meaning that if none of

the dots overlapped, they would have occupied 24% of the stimulus area. The dots were, however,

allowed to occlude one another. The dots were painted in random order so as to prevent any cues

arising from occlusion due to either correlated dots systematically occluding anticorrelated dots or

the surround dots systematically occluding the center dots. The above applies to both the human

psychophysics and the simulations. For the psychophysical investigations, the background was

kept 100% correlated for consistency with Doi et al. (2011, 2013). For all simulations, 292 × 292

pixels were used to simulate the stimulus such that 1 pixel corresponded to 0.03◦. When time was

incorporated into the model, the simulations were carried out at a temporal resolution of 1ms.

For the dot size experiment (Figure 1.10), we created half-matched (binocular correlation of

0, match level of 0.5) and correlated RDSs (binocular correlation of 1, match level of 1). We

used three different dot sizes: 0.025◦, 0.05◦, and 0.075◦. The dots were circular and anti-aliased.

The surrounding annulus was always correlated as per Doi et al. (2011, 2013). The stimuli were

presented at a dot pattern refresh rate of 21.25Hz, for 500ms, and at a disparity of ±0.075◦. All
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Figure 1.3: Alternating-correlation random dot stereograms. In the illustration, the observers first
see two correlated frames, then two anticorrelated frames, then two correlated frames and so on for
500ms. The dot pattern is updated at 120Hz with the correlation alternation rate varying across
trials.

other features of the RDSs were as previously described.

1.2.2 Alternating-correlation random dot stereograms

Instead of manipulating binocular correlation over space, as in the half-matched stereogram, we

manipulated the binocular correlation over time (Figure 1.3). The stimulus was presented at a

constant refresh rate – 120Hz – meaning that a new frame of the dynamic RDS was generated

every 8.33ms. The key manipulation was how often the binocular correlation of the dynamic RDS

flipped. This could either be at 60, 30, 15, 7.5 or 3.75Hz. At 60Hz, a correlation alternation

cycle is completed after two frames, at 30Hz after four frames and so on. Whether a trial started

with a correlated or an anticorrelated frame was randomized. For the alternating-correlation

RDSs, the surround had the same correlation as the disparity-defined region, meaning that the

surround changed correlation with the centre, although its dispariy remained fixed at 0◦. We used

a dot density of 200% and six disparities: ±0.2275◦, ±0.1365◦, and ±0.0455◦. The stimulus was

presented for 500ms (60 frames) and following the presentation, the observers were asked to report

whether the central disk appeared near or far relative to the background using a mouse press. The

stimulus is illustrated in Figure 1.3.

1.2.3 Psychophysics experimental procedure

The stimuli were generated in Matlab and displayed using Psychtoolbox [Kleiner et al., 2007]. The

stimuli were displayed on a 19” Dell Trinitron CRT monitor. For the dot size experiment, the

refresh rate of the monitor was 85Hz and the resolution was 1024 × 768 pixels. The monitor’s

luminance output was linearized prior to the experiment. For all experiments, the Michelson

contrast was > 99%. For the alternating experiment, the refresh rate of the monitor was 120Hz
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and the resolution was 800× 600. Dichoptic presentation was ensured through the use of a simple

four-mirror haploscope. In both experiments, the observers indicated using a mouse button press

whether the central disk appeared near or far relative to the background. For the statistical testing

of the effect of dot size (Figure 1.10) we used a Monte-Carlo method equivalent to 1-way ANOVA

(which cannot be used here since the data are binomial proportions). For each observer and dot

size we generated random draws from a binomial distribution with a fixed probability, equal to

the mean across dot sizes for that observer. We then measured the variance in proportion correct

across dot size, generating a distribution of values compatible with the null hypothesis.

1.2.4 Observers

Four observers participated in the dot size experiment, three of whom were male. Six observers

participated in the alternating experiment, four of whom were male. In the alternation experiment,

two observers’ data were discarded as they were unable to reliably report depth in 100% correlated

stereograms. For both experiments, one of the observers was the author, the rest were naive

to the purpose of the experiment. All observers had normal or corrected-to-normal vision using

spectacles or contact lenses. Both experiments were approved by the Faculty of Medical Sciences

ethics committee at Newcastle University.

1.2.5 Binocular energy model units

The energy model has been described in detail elsewhere [Ohzawa et al., 1990, Qian and Zhu,

1997, Read et al., 2002]. Briefly, we modeled the receptive fields of monocular subunits as two-

dimensional Gabors with vertical orientation tuning

ρ(x, y) = exp

(
− (x− x0 ±∆x/2)2

2σ2
x

− (y − y0)2

2σ2
y

)
cos(2πf(x− x0 ±∆x/2)± ϕ/2). (1.1)

x0 and y0 denote the horizontal and vertical receptive field centers, respectively, ∆x denotes

horizontal disparity and ϕ denotes phase. σx and σy denote the horizontal and vertical extent

of the receptive fields, respectively, and f is the frequency of the Gabor. For all simulations carried

out here we used σx = σy, and the receptive field centers x0 and y0 were placed randomly within

the disparity-defined region of the stimulus. No phase disparity was used in any of the models. For

Figure 1.4, 1.5, and 1.6 there was no temporal component of the receptive field. For Figure 1.5b,

1.8, 1.10, and 1.11 we incorporated time by giving each monocular subunit a biphasic temporal

kernel as described by Qian and Freeman (2009).

ρt(t) =


1

Γ(α)τα t
α−1 exp(− t

τ ) cos(ωt+ φ) if t ≥ 0,

0 otherwise.

(1.2)
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For all simulations where a temporal component was incorporated, we used α = 2.5, ω = 4 × 2π,

ϕ = −π, and τ = 0.035, which gives a temporal kernel with peak response at approximately 4.3Hz.

We chose a biphasic kernel because most V1 neurons have temporal kernels that are bandpass

[Hawken et al., 1996]. In Figure 1.11, we also used the monophasic temporal kernel from Doi et

al. (2013). The spatial receptive field and temporal kernel were separable giving

ρ(x, y, t) = ρ(x, y)ρ(t) (1.3)

Two binocular simple cells were constructed by squaring the sum of two monocular inputs. This

produces a binocular simple cell response

S = (VL + VR)2 = V 2
L + V 2

R + 2VLVR (1.4)

where VL and VR denote the left and right monocular responses, respectively. The disparity tuning

of the model arises from the cross-term 2VLVR. The BEM models a complex cell by combining

simple cells whose receptive fields are π
2 out of phase, generating response invariance to stimulus

phase. Combining the simple cell responses, we now have C = S1 + S2. In order to obtain a

cell with an amplitude ratio < 1, we added a static squaring output nonlinearity so that our final

model is simply C2. We computed the disparity tuning curve in Figure 1.4 by calculating the mean

response of the model to 20 000 images displayed at 21 disparities, spanning the range of disparities

covered by the neurons’ responses. For generating Figure 1.5a, we computed the correlated and

half-matched response of 30 cells, whose RF size, parameterized by σ, was in the range [0.01◦,

0.3◦]. We used 11 dot density values, logarithmically spaced from 0.01 to 5.12. The dot size was

fixed at 0.09◦. We computed the response of each of the 30 cells to 20 000 RDSs per density.

For Figure 1.5b, we computed the correlated and half-matched responses for each cell to dynamic

RDSs of 11 different frequencies, ranging from 1Hz to 100Hz. The RF sizes and dot size were

the same as for Figure 1.5a. We obtained the model responses by averaging across 5000 trials per

frequency-relative RF size combination, where each trial had a duration of 10s.

1.2.6 Perceptual decision model

Our model population consisted of 160 neurons tuned to four disparities (±0.48◦ , ±0.03◦). Using

only a single neuron at each disparity produced significantly poorer performance than human ob-

servers, because performance is limited by the fluctuations in image content from trial to trial.

With 40 neurons in each group, and fitted noise levels, performance was comparable to humans.

Disparity selectivity was introduced with a position disparity between left and right eyes, with a

phase disparity of 0. We made the assumption that receptive field size, parameterized by the stan-

dard deviation of the Gaussian envelope σ, scaled with disparity magnitude. Specifically, we had
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σ = 0.023 + 0.41|∆x|, where |∆x| is the absolute value of the cell’s preferred disparity, measured

in degrees. This is similar to previous modeling work that incorporate disparity-size correlations

[Allenmark and Read, 2011]. The specific parameters we have chosen here are not critical – many

different sizes and disparities will yield very similar results for the half-matched stimuli, though the

exact shape of the psychometric function varies. The frequency of the monocular Gabors scaled

inversely with the receptive field size: f = 0.3125/σ, in agreement with physiological estimates

[Prince et al., 2002b]. The resulting disparity tuning curves, shown in Figure 1.6, were obtained

from computing the average response of each cell to 5000 correlated RDSs per disparity. For the

tuning curves, we used 51 disparities spaced from −1◦ to 1◦, with disparities near the peak of the

fine tuning curves being sampled more finely. All other stimulus parameters were as previously

described.

Gaussian noise was included in the model, where the variance of the noise at any moment in

time was proportional to the response of the cell at that time. This approximates the relationship

between mean spike count and variance in real cells. The response of the ith neuron to the kth

time point is given as

Pi,k = C2
i,k/〈C̄2

i〉+ κεi,k, (1.5)

where C2
i,k is the squared energy model response of the ith neuron to the kth time point, and

〈C̄2
i〉 is the mean response of the squared energy model cell to correlated RDSs at the preferred

disparity of the cell, presented at 21.25Hz. Dividing by the constant scaling factor 〈C̄2
i〉 ensures

that all cells, have the same maximum response to correlated stimuli at their preferred disparity.

In other words, a value of 0.5 in this scheme means that the response was half the mean response

to correlated RDSs at the cell’s preferred disparity. εi,k ∼ N (µ, σ2) is the noise in the model,

with µ = 0 and σ2 = C2
i,k/〈C̄2

i〉 (i.e. the variance is proportional to the response magnitude

of the cell at any given time). κ is a free parameter which governs the magnitude of the noise.

This scaling reveals a subtle difference in disparity selectivity with RF size. Because of the final

squaring, differences in variability of C lead to differences in mean response. For correlated RDS

at the preferred disparity, these fluctuations are correlated in the monocular responses, whereas for

uncorrelated RDS they are not. As a result the variability in C is greater for correlated stimuli than

for uncorrelated stimuli, and this variability is greater for small RFs than larger ones. Consequently,

when scaled by the response to the preferred disparity, smaller RFs show slightly weaker responses

to uncorrelated stimuli. Note that the half-matched stimulus introduces additional variation in the

binocular correlation, causing responses that are greater than those to uncorrelated dots.

Each neuron also has an antineuron whose response is denoted byNi,k. The antineuron response

is defined exactly the same as Pi,k above, with the same retinal position, except its disparity is

the opposite sign. That is to say, if a neuron P has a disparity preference of 0.03◦, then its
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antineuron N would have a disparity preference of −0.03◦. We created an opponent cell by taking

the difference of a neuron and its antineuron. To make the decision, each opponent cell’s response

was summed across time points

Ri =
∑
k

(Pi,k −Ni,k). (1.6)

Ri thus reflects the overall opponent (squared) energy for the ith neuron-antineuron pair on a

particular trial. If this value is negative, the pair has a mean signal indicative of a negative

disparity, and vice versa for positive values.

Within each group of 40 neurons tuned to the same disparity, the models were given non-

overlapping RF locations, so that they sampled independent regions of the image. In Figure 1.8,

we used 1.5s trials and summed the responses over time in each model neuron. To obtain the

decision, we used a straightforward linear readout of the population response: if the summed

activity across the neuron-antineuron pairs was negative, then the decision model would report

that the stimulus disparity was negative, and vice versa for positive values:

Ψ =

1 if
∑
iRi > 0,

0 otherwise.

(1.7)

Ri is as defined in Equation 1.6. Ψ = 0 and Ψ = 1 indicate near and far responses, respectively.

The biphasic temporal kernel employed here had a peak response to 4.3Hz, meaning that the

on-phase of the kernel has a duration of approximately 125ms. For reference, at 21.25Hz, the

dot pattern is updated every 47.06ms and at 120Hz every 8.33ms. We computed the response of

the model to a constant number of RDSs consisting of mixed correlated and anticorrelated dots.

Correlation varied from -1 (completely anticorrelated) to +1 (completely correlated) in steps of

0.2. A correlation of 0 in this scheme corresponds to half-matched RDSs. We presented 10 000

trials at each disparity-correlation combination; all other stimulus parameters were as previously

described.

1.3 Results

1.3.1 Binocular energy model disparity tuning to half-matched stimuli

We created binocular energy model (BEM) units by combining model binocular simple cells whose

monocular receptive fields were in quadrature phase. This gives a model complex cell response

C which is invariant to stimulus phase. As discussed above, the response of a BEM unit like

this is a linear function of binocular correlation. We made the model nonlinear with respect to

correlation by adding a static squaring output nonlinearity, giving a final response C2. The same

model was also explored by Read, Parker, and Cumming (2002). We computed the response of

both models to correlated, half-matched, and anticorrelated random dot stereograms (RDSs) of
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various disparities. Disparity tuning curves for the BEM with and without an output nonlinearity

are shown in Figure 1.4. For the binocularly linear BEM (Figure 1.4a), the model’s responses

to correlated and anticorrelated stimuli have a characteristic symmetry about a horizontal line

(the response to zero binocular correlation), i.e. the amplitude ratio between the correlated and

anticorrelated responses is 1. For half-matched stimuli, the model has no disparity selectivity.

When the model has a static output nonlinearity (Figure 1.4b), the correlated and anticorrelated

tuning curves become asymmetric. This asymmetry leads to a modest, but very clear disparity

tuning for half-matched RDSs with a peak at the neuron’s preferred disparity.

Figure 1.4: Binocular energy model tuning curves. Tuning curves from a binocular energy model
in response to correlated, half-matched and anticorrelated RDSs for a binocularly linear model (a)
and a model with an output nonlinearity (b).

In the linear BEM (Figure 1.4a), the half-matched nature of the stimulus manifests itself as a

variable firing rate, but not as a mean change [Doi et al., 2013]. The disparity tuning in Figure

1.4b arises because the expected value of a squared random variable depends on its variance:

E[X2] = E[X]2 + Var[X] (other choices for the exponent, as well as other nonlinearities, such as

thresholding, will also yield a dependence on variance). For the model with an output nonlinearity,

therefore, the high correlation variability in half-matched RDSs gets converted into a mean change

in the firing rate. Because the tuning in Figure 1.4b is the consequence of fluctuations in local

correlation over the RF, stimulus parameters that affect the variability of these local measures

also affect the disparity tuning. Increasing the dot density decreases the correlation variability as

there are more dots within a neuron’s spatial receptive field. Following earlier studies [Doi et al.,

2011, Doi et al., 2013], dot density is defined as the proportion of the stimulus area that would be

covered by dots if the dots were not allowed to occlude (although dots were allowed to occlude),

hence the units are in proportion coverage. Having fewer, larger dots (while maintaining constant

density) generally increases the correlation variability as a single dot fills a larger fraction of the RF

with pixels sharing the same correlation. With more, smaller dots, the cell is integrating across a

greater number of samples (since the cell is likely to see more independent dots within its receptive

field) and so the variability is reduced. Because increasing the dot size while holding density

constant is the equivalent of reducing the receptive field size in the model, we use the relative
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Figure 1.5: Effect of dot density, dot pattern refresh rate and relative receptive field size on
disparity tuning in a model cell. a) Normalized half-matched response (Equation 1.1) as a function
of density and relative receptive field size (density is here defined as the equivalent proportion of
space the dots would occupy if they did not occlude one another). A relative receptive field size
of 2 means that σ/r = 2, i.e. that the standard deviation of the monocular Gabor is twice the
dot radius. Colors show the magnitude of the normalized response. A normalized response of 1
would indicate that the response to half-matched stimuli at the preferred disparity is equal to the
correlated response; a normalized response of 0 means that the half-matched response is equal to
the uncorrelated response. Decreasing the relative receptive field size and reducing the dot density
both increase the variability in the correlation level and thus increase the half-matched response.
The normalized responses were obtained by computing the average half-matched, correlated, and
uncorrelated responses from 20 000 RDS per density-relative RF size combination. b) Normalized
half-matched response as a function of dot pattern refresh rate and relative receptive field size.
Decreasing the relative receptive field size again increases the half-matched response. Similarly,
increasing the dot pattern refresh rate decreases the variability in binocular correlation and thus
decreases the half-matched disparity tuning. The normalized responses were obtained by averaging
across 5000 trials, 10 seconds in duration, for each frequency-relative RF size combination.

receptive field size, defined as σ
r , where σ is the standard deviation of the monocular Gabors,

and r is the dot radius. The effect of density and relative receptive field size on disparity tuning

in our model can be seen in Figure 1.5a, where the strength of disparity tuning for half-matched

stimuli is plotted as a proportion of the modulation produced by correlated patterns with the same

spatial parameters. We define this normalized mean response from the responses to the preferred

disparity:

Rnorm =
〈C2

hm〉 − 〈C2
uncorr〉

〈C2
corr〉 − 〈C2

uncorr〉
, (1.8)

where C2
uncorr, C

2
hm, and C2

corr are respectively the mean response to uncorrelated, half-matched

and correlated stimuli at the neuron’s preferred disparity. As the relative receptive field size

decreases (i.e. smaller receptive field relative to the dot size), modified BEM cells signal disparity

more vigorously to half-matched stimuli (relative to equivalent correlated stimuli). It is worth

noting that while the amplitude ratio is large for very low densities, this does not necessarily

translate to better psychophysical performance on the task. This is because at low densities, the

responses to both correlated and anticorrelated patterns are much weaker, so the signal-to-noise

ratio is lower. (The variations caused by the monocular image content dominate the model’s
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response). The effect of this is that there may be poorer performance at very low densities than

at higher densities, despite the amplitude ratio being higher at low densities. Consider the case

where the density is so low that on some trials no dots are presented in the RF. For these trials

performance based solely on this neuron will be at chance, despite the high normalized response

ratio averaged across many trials. Even performance based on many neurons would presumably

suffer from a lower signal to noise ratio. We will explore the effects of signal and noise in simulations

of a psychophysical task below.

Just as increasing the spatial extent of the receptive field (relative to dot size) reduces variability

in binocular correlation seen by the model, so increasing the temporal extent of the RF (relative to

the pattern update frequency) reduces variability. We explore this using a fixed RF and a changing

dot pattern refresh rate. As refresh rates increase, the model cell is integrating more dots within its

temporal window, reducing fluctuations in the binocular correlation. Modified BEM cell responses

are shown in Figure 1.5b for different receptive field sizes and pattern refresh rates. For low refresh

rates and small RF sizes, the cell exhibits substantial disparity tuning to half-matched stimuli.

As in Figure 1.5a, when the RF size increases relative to the dot size, the disparity tuning to

half-matched stimuli decreases since the cell is integrating across more dots. Similarly, as the dot

pattern refresh rate increases, the half-matched disparity tuning decreases since the cell is again

integrating across more dots (but now across time rather than across space).

These simulations demonstrate two key properties: the model exhibits less disparity tuning to

half-matched stimuli as 1) the receptive field increases in size relative to the dot size, and 2) the

refresh rate increases relative to the temporal integration period of the neuron. The first finding is

noteworthy because it was observed in Doi et al. (2011) that human observers are better at reporting

depth in fine disparity half-matched RDSs than in coarse disparity ones [Doi et al., 2011]. Given

the effects of RF size we show, this observation might be accounted for by the well-known size-

disparity correlation [Allenmark and Read, 2011, Smallman and MacLeod, 1994, Prince and Eagle,

1999, Tyler, 1974, Prince et al., 2002a], since coarse disparity detectors tend to have larger receptive

fields than fine disparity detectors. The second finding is noteworthy because Doi et al. (2013)

reported that performance to half-matched stimuli also decreased with increasing pattern refresh

rate [Doi et al., 2013]. The authors interpreted this as a shift from a matching computation at low

refresh rates to a pure correlation computation at high refresh rates. In the current framework, the

decreased disparity tuning with refresh rate reflects temporal integration within a single correlation-

based computation, rather than differential activation of two distinct computations with different

spatiotemporal properties. Although the match-based computation hypothesized by Doi et al. is

similar to our modified correlation-based computation, in our framework, only a single computation

is involved. Indeed, our model neurons could be described as the sum of a matching computation

and pure correlation computation, just as illustrated in Figure 1.1c, but this is achieved by a single

mechanism. Unless the two components differ in some other way (e.g. temporal response), the two

descriptions are identical.
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1.3.2 Psychophysical decision model

Clearly, the fact that our version of the BEM can signal disparity in half-matched stereograms

makes it possible that this explains human psychophysical performance. Additionally, our model

neurons lose disparity tuning to half-matched stimuli with increasing receptive field size and dot

pattern refresh rate, which is also in agreement with the psychophysical literature [Doi et al.,

2011, Doi et al., 2013, Doi and Fujita, 2014]. Finally, the model neurons show weaker responses

to anticorrelated dots, which produce weak or absent depth sensations [Doi et al., 2011, Doi et al.,

2013, Hibbard et al., 2014, Read and Eagle, 2000, Tanabe et al., 2008]. Thus, at least qualitatively,

the signal strength in these model neurons parallel all of the psychophysical phenomena that have

been used to suggest two stereo mechanisms. However, these manipulations also influence the

ratio of the signal to noise, so the response amplitudes described above cannot simply be com-

pared to psychophysical performance. To test more formally whether our model can explain these

psychophysical phenomena, we simulated responses of a small population of neurons and made the

perceptual decision based on a straightforward linear readout of the population activity.

The population and decision rule are described in detail in the Methods section. Briefly, our

starting-point was the modified binocular energy model units discussed above, whose response is

denoted by C2 in Equation 1.1. For neurons with different RF sizes, we scaled these responses,

such that the cells had equal mean responses to correlated stimuli at their preferred disparity.

The disparity tuning curves of these cells are shown in Figure 1.6 in response to correlated RDSs.

The peak of the disparity tuning curves are identical for all cells, but the uncorrelated baseline is

slightly lower for the fine disparity neurons (see Methods). We then applied Gaussian noise, inde-

pendently for each unit, with variance proportional to the response at any time and the constant

of proportionality being a free parameter. When using a fixed stimulus duration, higher pattern

refresh rates mean that model responses average over a larger number of RDS images, reducing

the stimulus-driven variability between trials. We therefore fit the noise parameter separately for

each frequency. If an equal number of frames is used (and hence varying stimulus duration), the

same results can be reproduced with fixed noise across frequencies. For simplicity, we restricted

ourselves to four preferred disparities (−0.48◦,−0.03◦, 0.03◦, 0.48◦), and assumed that receptive

field size scaled with disparity magnitude according to σ = 0.023◦+0.41|∆x|. In simulations using

only one cell per disparity, random fluctuations in the monocular image content led to performance

that was poorer than human subjects. This is further compounded by the fact that local receptive

field models, such as the BEM (and its derivatives) measure local instaneous correlation, and not

global binocular correlation voer time. We therefore included multiple cells for each disparity, dif-

fering only in their locations on the retina. Each cell had non-overlapping receptive fields that were

otherwise identical. We found a good match to human performance using 40 cells per disparity,

for a total of 160 cells in the model population.



34 CHAPTER 1.

Figure 1.6: Disparity tuning curves for binocular energy model units with a squaring output non-
linearity in response to 100% correlated RDSs. Green lines show fine disparity tuning curves, red
lines show coarse disparity tuning curves. Dashed lines indicate cells tuned to positive disparities,
while solid lines indicate cells tuned to negative disparities. The tuning curves were constructed
by computing the responses of four model cells to correlated RDSs with disparities in the range
[−1◦ , 1◦ ]. 5000 RDSs were used per disparity.

For the decision rule, we first created opponent cells by taking the difference of a squared en-

ergy model neuron and its “antineuron”, i.e. the neuron at the same location in the retina but

with preferred disparity differing in sign. To make the decision, each opponent cell’s response

was summed across time points to obtain Ri: the overall opponent (squared) energy for the ith

neuron on a given trial (Equation 1.7). A negative value for any given neuron-antineuron pair

means that the pair signals a negative (near) disparity, while a positive value means that the pair

signals positive (far) disparity. To obtain a decision, we summed the activity across the pool of

neuron-antineuron pairs. If this summed value was negative, the model reported that the stimulus

had a negative disparity, and vice versa. The decision model is shown schematically in Figure 1.7.

The red and green circles show the coarse and fine receptive fields, respectively, corresponding to

the red and green tuning curves in Figure 1.6. The tuning curves with negative disparities belong

to model units whwich make up the “near” pool and vice versa for cells with positive disparity.

The responses of the units in each pool is linearly summed before the responses are compared.

We first consider the effect of disparity magnitude on stereo depth perception in half-matched

RDSs. As Figure 1.5 shows, large dots (relative to RF size) produce stronger responses to half-

matched stereograms than small dots. For a stimulus with a fixed dot size, this means that neurons

with smaller RFs give stronger disparity signals in half-matched stereograms. Because we include

a size-disparity correlation in our model, fine disparities will elicit responses predominantly from

neurons with smaller RFs. These cells will see larger correlation fluctuations because of their small

RF size and thus have a larger response in the half-matched condition. The results from the sim-

ulations are shown in Figure 1.8a. For half-matched stimuli (correlation of 0) the model performs
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Figure 1.7: Schematic representation of the psychophysical decision model. Two separate pools
of cells are used – one tuned to negative or “near” disparities, and one tuned to positive or “far”
disparities. Each pool has cells with large receptive fields tuned to coarse disparities, and cells
with small receptive fields tuned to fine disparities. The response of each pool is integrated, and
the responses are then compared. If the near pool has a larger response, the model guesses that a
negative disparity was present, and vice versa for the positive pool.
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better in response to fine disparity stimuli than to coarse disparity stimuli. This remains true across

a range of correlation values, because even for low correlation values there are local fluctuations in

the correlation level. The fine disparity model cells are more sensitive to these fluctuations than

the coarse disparity cells, which leads to a leftward shift in the psychometric function. The upward

shift at fine disparities arises because here all cells contribute to the disparity judgment (often

with opposing signals, see Figure 1.6). However, for coarse disparities, the coarse cells dominate

the decision to anticorrelated stereograms. These shifts are similar to that observed by Doi et al.

(2011), but our account invokes only a single mechanism.

Next we consider the effect of dot pattern refresh rate on model performance. We used the same

model as for the disparity magnitude simulations, but used fine disparity stimuli. We presented

RDSs at two different frequencies: 5.3Hz and 42.5Hz, with a stimulus duration of 1.5s. Figure

1.8b shows the psychometric functions for the same model in response to low and high refresh

rates for fine disparities (0.03◦). As the pattern refresh rate increases, the psychometric function

moves rightward. This shift occurs because the neuron is integrating across more dot patterns (in

this case over time rather than space) which reduces local fluctuations in correlation. A similar

result was obtained using an equal number of stimulus frames rather than equal stimulus duration.

These results are qualitatively very similar to the data reported by Doi et al. (2011, 2013). The

key result from Doi et al. (2011) is reproduced in Figure 1.9a, and the key result from Doi et al.

(2013) is reproduced in Figure 1.9b.

Our model produced weak reversed depth in response to anticorrelated stimuli. This is similar

to some human studies [Doi et al., 2011, Doi et al., 2013, Read and Eagle, 2000], but the reversed

depth reported by our model was also generally stronger than that reported in the literature. This

partly reflects the fact that our model cells modulate their activity more than typical V1 neurons. A

final output exponent greater than 2 would reduce this, but we present data for the simplest model

as it is more tractable. Additionally, responses to anticorrelated stimuli are influenced by factors

that are not readily incorporated into simple models. For example, when a zero-disparity annulus

is also anticorrelated, depth perception is abolished [Read and Eagle, 2000, Cumming et al., 1998],

but when the surround is correlated, depth is sometimes reported [Doi et al., 2011, Doi et al.,

2013, Tanabe et al., 2008]. No existing models provide an account of this effect of the surround.

While a sufficiently complicated model could undoubtedly explain this important phenomenon,

adding additional parameters to the model would make it harder to interpret the success in ex-

plaining the results we discuss here. To this extent, the description of reversed depth in our model

(and all other extant models) is a simplification. In our model, the extent to which reversed depth

is reported is quite sensitive to the shape of the disparity tuning curves used for model neurons.

Despite this, the model does make clear that the information available about negative correlations

is influenced by these stimulus manipulations. Our configuration illustrates that it is possible to
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Figure 1.8: Simulated psychophysical performance. Performance of the model (proportion cor-
rect responses) as a function of binocular correlation. A binocular correlation of 0 here indicates
half-matched stereograms, i.e. stimuli with an equal number of correlated and anticorrelated dots.
a) Model performance to fine disparity stimuli (±0.03◦, green line) is better than in response to
coarse disparity stimuli (±0.48◦, brown line) for many correlation values. b) Model performance
to stimuli with low pattern refresh rate (5.3Hz, red line) is better than to stimuli with high refresh
rate (42.5Hz, blue line). In a) all stimuli were updated at 21.25Hz, and in b), all stimuli were
presented at a disparity of 0.03. Noise was fitted to match the performance of human observers.
The insets in both figures show the fractional area, which quantifies the odd-symmetry component
of the fitted psychometric function. A fractional area of 1 means that the psychometric func-
tion is completely symmetric (deviations from chance performance are exactly proportionate for
anticorrelated and correlated stimuli), whereas a fractional area of 0 means that all of different-
from-chance performance occurs at positive correlation values (i.e. the psychometric function is
completely odd-symmetric).

Figure 1.9: Psychophysical performance from Doi et al. (2011; left) and Doi et al. (2013; right).
In a), as the stimulus disparity becomes coarser, more reversed depth responses are seen for anti-
correlated stimuli, and poorer performance is seen for half-matched stimuli. In b) the same effect
is seen with high refresh rates.
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Figure 1.10: The effect of dot size in half-matched RDSs. a) Psychophysical performance for four
human observers in response to dynamic half-matched RDSs of three different dot sizes presented
at 21.25Hz dot pattern refresh rate. Each data point shows a minimum of 40 trials for each dot
size per subject. b) Average performance for the four human observers and for the model shown
in Figure 1.6. Error bars show binomial 95% confidence intervals. The noise-level was fitted to
match the human observers. Dot density for all stimuli was 24%.

explain the results of Doi et al., including reversed depth, using a single mechanism.

Here we have have used a linear readout of population activity, which is a parsimonious method

of neural decoding, and has frequently been used before [Uka and DeAngelis, 2004, Shadlen et al.,

1996, Gold and Shadlen, 2007]. It is possible that a more sophisticated decision model could yield

performance even more similar to the human observers. Indeed, more complex models, such as

those incorporating Bayesian priors [Read, 2002], or using maximum likelihood decoding [Goris

et al., 2013], have been shown to capture human psychophysical performance across a range of

stimuli and tasks. However, given the simplicity of our model population (only two cell types),

and the fact that the model cells do not faithfully reflect the properties of V1 neurons (which

show stronger attenuation to anticorrelated stimuli), exploring more complex decision rules seems

inappropriate.

1.3.3 The effect of dot size on human and model performance

Our model neurons show reduced responses to half-matched stimuli as dot size (relative to RF size)

is reduced. If this correctly captures the nature of signals used to perceive depth, we should expect

human performance also to depend on dot size to half-matched RDSs, but not for 100% correlated

stereograms. We therefore examined the effect of dot size on depth perception. Figure 1.10a shows

the proportion correct as a function of dot size for 4 observers. For the smallest dot size (0.025◦),

performance is not significantly different from chance for three of the observers using 95% binomial

confidence intervals. We used a Monte-Carlo simulation to test if dot size had a significant effect

on the variance in performance and found that it did (P = 6.3 × 10−5). For correlated stimuli,

all observers performed at ≥ 95% correct for all dot sizes. Thus, the decreased performance in

response to small dot half-matched RDSs cannot be attributed to changes in the spatial content of
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the monocular images. The decreased performance is consistent with predictions made by energy

model units with a simple output nonlinearity. Figure 1.10b compares the average response of the

human observers with the psychophysical decision model introduced earlier (Figure 1.8). Both the

model and the average human performance show a similar decline for the smallest dot size.

1.3.4 Alternating-correlation stereograms: temporal half-matching

We showed above that the effects of pattern refresh rate on performance in half-matched stere-

ograms can be explained by the effects of temporal integration on local fluctuations in correlation.

Doi et al. (2013) propose a different explanation, which is that the matching process is slow and

so the rapid changes in monocular patterns disrupt the matching computation, leaving the pure

correlation computation to dominate at fast refresh rates [Doi et al., 2013]. In order to provide an

additional test of these hypotheses we introduce a new stimulus in which the monocular pattern

refresh rate is always high, but binocular correlation changes at different rates. Each random

dot pattern is either 100% correlated or 100% anticorrelated (with the same disparity), and the

correlation value alternates (while monocularly every new monitor frame shows a new pattern,

as illustrated in Figure 1.3). We then explored the effect of changes in frequency with which the

correlation alternates. By presenting dot patterns at very rapid pattern refresh rates, we should

be able to keep the contribution of any putative slow matching computation to a minimum, in-

dependent of alternation rate. Doi et al. (2013) showed that the energy seen by their sustained,

matched-based mechanism fell by a factor of 2 as the pattern refresh rate increased from 5.3Hz to

43Hz [Doi et al., 2013]. At 43Hz, the highest refresh rate they could present, their sustained and

transient channels were seeing equal stimulus energy. In our CRT mirror stereoscope, we use a

pattern refresh rate of 120Hz. According to Doi et al’s model, this will ensure that the transient

channel feeding into the pure correlation mechanism is driven far more strongly than the sustained

channel feeding into the match-based mechanism. Perception in this stimulus should therefore be

dominated by the pure correlation mechanism.

However, Doi et al’s model also predicts that even though the pure correlation mechanism is

strongly driven, it must perform at chance in this task. Their definition of a pure correlation

mechanism is one that outputs 100% veridical depth for 100% correlated stimuli, 100% reversed

depth for anti-correlated stimuli, and is at chance (50%) for half-matched stimuli. Now, at alter-

nation rates which are slow compared to the temporal kernel of this mechanism, the observers are

simply seeing a rapidly updating stimulus which periodically flips between being correlated and

anticorrelated. Let’s say this stimulus has a near disparity. Doi et al’s pure correlation mechanism

will report alternately “near” and “far” as the correlation flips. Since we randomised the phase of

our alternation, over many trials there is no way for their pure correlation mechanism to report

“near” more or less often than “far”. On average, therefore, performance must be at chance. The
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situation is no better for alternation rates which are fast compared to this mechanism. There,

both correlated and anticorrelated frames fall within the temporal integration window. The stim-

ulus is effectively half-matched, and by definition, Doi et al’s pure correlation mechanism must

be at chance. Thus, a pure correlation mechanism, as defined by Doi et al., cannot contribute

to above-chance performance with this stimulus. Their match-based mechanism can contribute

in principle, but their conclusions about its temporal properties - that it is temporally low-pass -

makes depth discrimination in rapidly updating stimuli, such as the alternating-correlation stere-

ograms, a particularly demanding task. According to Doi et al. (2013), depth perception makes

use of “a simple, correlation-based representation for more dynamic (faster) and coarser features,

and a complex, match-based representation for less dynamic (slower or stationary) and finer fea-

tures” [Doi et al., 2013]. The implication is that for very rapidly updating stimuli, the relative

contribution of the matching computation to depth perception should be very small. Thus, this

task presents a particular challenge because the near/far judgment must be based on weak signals

from the slow matching computation, and stronger, but alternating and conflicting signals from

the fast correlation computation. Yet as Figure 1.11 indicates, our human observers performed

well above chance for alternation rates below 30Hz.

We compared the responses of human observers to alternating-correlation RDSs of various

alternation frequencies with that of the psychophysical decision model used earlier. Figure 1.11a

shows psychophysical performance in response to alternating-correlation RDSs averaged across

four subjects for the three disparities employed. Clearly, stimulus disparity had virtually no effect

on this task, where task difficulty was manipulated by increasing the alternation rate. Individual

psychometric functions, averaged across disparities, are shown for each subject in Figure 1.11b. In

both plots, model responses are shown in magenta. At alternation rates below 4Hz, the human

observers make accurate judgments, but as the alternation rate increases, performance decreases.

At intermediate alternation rates, the human observers can still do the task, but crucially, as

the alternation rate increases beyond about 20Hz, the correlation variability decreases and the

performance of human observers falls to chance. We conclude that our model accounts excellently

for human performance in this stimulus. Using the temporal kernel defined by Doi et al. (2013)

for the matching computation, we find a slightly less good fit to the data (see dotted line in

Figure 1.11). The main difference is at slow alternation rates, where subjects perform very well as

does our mechanism with a bandpass kernel. This model is unable to produce good performance

here because of the high monocular pattern refresh rate and its lowpass kernel. Presumably,

performance would be even worse in a two-mechanism model where the weak signal from the

low-pass matching computation competes with a much stronger, alternating signal from the pure

correlation computation.
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Figure 1.11: Psychophysical performance to alternating-correlation stereograms. Performance of
human observers on a front-back discrimination task with alternating-correlation random dot stere-
ograms. a) Each line shows the averaged performance of all subjects for each disparity magnitude.
b) Each line shows the performance of an individual observer averaged across the three disparities.
The solid magenta line in each plot shows model performance with our band-pass temporal kernel
[Model (BP)], and the magenta dotted line shows the model performance with the low-pass tem-
poral kernel used in Doi et al. (2013) [Model (LP)]. In both cases, the model was shown a disparity
of 0.03, and noise was fitted to match human observers.

1.4 Discussion

The first step in stereoscopic depth perception is the extraction of disparity from the left and

right images. The success of the binocular energy model in describing the responses of disparity-

selective cells in primary visual cortex [Ohzawa et al., 1990, Cumming and Parker, 1997, Read

et al., 2002] led to correlation-based schemes becoming the dominant explanation for human stereo

vision [Filippini and Banks, 2009, Banks et al., 2004, Kane et al., 2014]. Disparity-selective cells

in V1 show the hallmark of a correlation computation: inverting the binocular correlation of

the stimulus inverts their response, whereas a unit looking for matching features would simply

cease to detect any disparity after this manipulation. Recently, Doi et al. have postulated that two

distinct computations extract disparity in dense random dot stereograms: one extracts disparity by

computing the binocular correlation, while the other extracts disparity by computing the binocular

match level of the image. Doi et al. cite three key observations as evidence for the existence of

this match-based computation. First is the fact that humans correctly report depth in random dot

stereograms made of equal numbers of correlated and anticorrelated dots [Doi et al., 2011, Doi et al.,

2013]. Second, performance to these half-matched stimuli degrades with disparity magnitude, in a

way that is not seen with correlated RDS [Doi et al., 2011]. Third, in dynamic stimuli where the dot

pattern is regularly refreshed, performance declines with increasing refresh rate for half-matched,

but not correlated, stereograms [Doi et al., 2013].
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1.4.1 A single model accounts for depth judgments in half-matched

random-dot patterns

Here we show that all three of these observations can be explained by a model which uses a single

nonlinear correlation-based mechanism (the BEM with a static output nonlinearity). The nonlin-

earity we propose is similar to the nonlinear “cross-matching” model proposed by Doi & Fujita

(2014) - our proposed mechanism is well described by the linear sum of a “pure-correlation” mecha-

nism and a “cross-matching” mechanism (Figure 1.1c). Thus the two accounts are closely related.

If the pure correlation filter and cross matching filter have the same monocular spatiotemporal

RFs, the two accounts are indistinguishable. If the different computations are associated with

filters that have different spatiotemporal properties it becomes possible to distinguish one mecha-

nism from two, as two mechanisms will then predict different psychophysical performance. This is

exactly what Doi et al. propose to explain psychophysical changes that occur with pattern refresh

rate and disparity magnitude. We point out here that many of those changes in psychophysical

performance might occur because of the effects of stimulus changes on the activity of a single

mechanism. Doi et al. do not report any simulations with single-mechanism models, and so never

test the null hypothesis that a single channel suffices. Our results suggest that it may. Importantly

we do not claim to falsify a two-computation hypothesis - the isomorphism shown in Figure 1.1c

means that any data described by a single computation can also be described with two. All three

of these mechanisms (pure correlation, cross-matching, and the BEM with an output nonlinearity)

could be described as “correlation-based”, since they all start by computing correlation.

Adding an output nonlinearity to the BEM allows the neurons to signal disparity in half-

matched stereograms because the correlation fluctuations are converted to a mean firing rate

through this nonlinearity. (When there is no nonlinearity, the correlation fluctuations manifest

as a variable firing rate, but do not lead to a change in the mean). It follows from this that the

larger the correlation fluctuations, the greater the disparity tuning to half-matched stimuli. We

showed that the effect of disparity magnitude on half-matched depth perception can be explained if

larger receptive fields are used to detect larger disparities (the well-known size-disparity correlation

[Allenmark and Read, 2011, Smallman and MacLeod, 1994, Tyler, 1974, Prince et al., 2002a]. A

similar point was noted by Doi et al. (2013), who found that larger receptive fields decrease the

response variability of standard energy model cells [Doi et al., 2013], and by Doi & Fujita (2014)

who extended these findings to a “cross-matching” computation [Doi and Fujita, 2014]. Along the

same lines, the observation that depth perception is compromised in rapidly changing half-matched

RDSs is compatible with temporal integration within the correlation mechanism, and does not im-

ply a qualitative shift to a different computation.

This model correctly predicts our finding that psychophysical performance decreases with
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smaller dot size, and states that this is because smaller dots tend to decrease the local correlation

variability. It also correctly predicts that alternating the correlation over time should decrease

psychophysical performance because of a reduction in the effective variability in binocular correla-

tion. This is particularly interesting since the alternating stimulus presents particular challenges

for both of the mechanisms proposed by Doi et al. Their pure correlation mechanism should be at

chance since, by definition, it reports opposite depth sign for opposite correlations, and thus reports

either depth sign with equal probability for our alternating stimulus. Our single-mechanism model

can straightforwardly account for depth perception in these stimuli. Our model has a single, fixed

temporal kernel, and yet it can account simultaneously for the effects both of pattern refresh rate

(Figure 1.8b) and of alternation rate (Figure 1.11). Indeed our model describes the data somewhat

better than the“cross-matching” mechanism, most tellingly at low alternation rates. Here subjects

are close to 100% correct, whereas the sustained temporal properties of Doi et al’s cross-matching

mechanism means that it only reaches 80% correct.

1.4.2 Aspects of depth perception still unexplained

It has long been recognized that in some situations stereo correspondence that is not based on cor-

relation can be exploited. For example, it is well-known that monocular occlusion (i.e. objects seen

by one eye but occluded in the other) can contribute to the perception of depth in humans (so-called

da Vinci stereopsis [Nakayama and Shimojo, 1990]). Additionally, patients with binocular vision

disorders such as strabismus may show no depth perception with cyclopean stereograms, while

having measurable stereoacuity in images with monocularly visible contours [Fricke and Siderov,

1997, Fawcett, 2005, Giaschi et al., 2013]. For isolated monocular targets, humans can correctly re-

port depth for larger disparities than is possible in random dot patterns [Ogle, 1952c, Westheimer

and Tanzman, 1956]. This suggests that the human visual system may also contain a separate

algorithm, which enables a coarse form of stereopsis even when the correlation-based system is

damaged [Read, 2015], at least for sparse images consisting of a small number of monocularly

visible objects. There is some evidence suggesting that this system can use head-centric rather

than retinotopic coordinates [Read, 2015, Zhang et al., 2010, van Ee and Erkelens, 2010], imply-

ing an extrastriate locus. Importantly, however, the match-based computation proposed by Doi et

al. is quite different from this mechanism, as it would have to operate on dense random dot patterns.

Additionally, in human observers, depth perception in half-matched and anti-correlated stere-

ograms requires the presence of an adjacent correlated region [Doi et al., 2011, Doi et al., 2013].

This may be related to humans’ greater sensitivity to the relative disparity between adjacent sur-

faces than to the absolute disparity of a surface in isolation. However, the presence of a correlated

surround is not sufficient for reversed depth in anticorrelated RDSs [Hibbard et al., 2014, Doi et al.,

2014]. As these observations indicate complex interactions between different regions of the visual
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field, it is inevitable that they cannot all be explained by models like ours (or that of Doi & Fujita,

2014) that consider only the responses of a population of neurons at one location. That a local

model exploiting a single mechanism successfully explains so many phenomena strongly suggests

that a single mechanism is responsible.

1.4.3 Properties of V1 neurons

This mechanism closely resembles the known properties of disparity tuning in V1. The critical

property is that V1 neurons show weaker tuning to anti-correlated than to correlated stimuli. The

reduction becomes more pronounced in later areas [Janssen et al., 2003, Tanabe et al., 2004], but

is already present in V1 [Cumming and Parker, 1997]. This asymmetry suggests that V1 neurons

should, weakly, encode disparity in half-matched stimuli. This together with the tendency for V1

neurons tuned to large disparities to have larger receptive fields [Prince et al., 2002b] can account

for all the psychophysical data regarding half-matched stimuli. As we have shown, a model based

on these ideas provides an excellent account of human performance from previous studies [Doi et al.,

2011, Doi et al., 2013] (Figure 1.8) and also predicts performance on new stimulus manipulations

(Figure 1.10 and 9). Importantly, we use one model while only fitting a noise parameter to explain

the psychophysical results in Figures 6, 7 and 9. It is important to note, though, that no one has

yet examined the response of V1 neurons to half-matched stereograms. Our model of V1 neurons

captures their weaker tuning to anti-correlated stereograms, and predicts that this results in weak

tuning to half-matched stimuli. Yet until this prediction has been directly tested in V1 neurons,

we cannot be sure it occurs. If V1 neurons do not show disparity tuning for half-matched stimuli,

this would give much greater credence to the idea of a separate dot-matching computation in

extrastriate cortex. This question is the subject of chapter 2.



Chapter 2

Neurons in striate cortex signal disparity in half-matched

random dot stereograms

2.1 Introduction

As seen in the previous chapter, recent work by Doi et al. (2011, 2013, 2014) has suggested that a

correlation-based view of early disparity encoding may need to be supplemented by an additional

match-based computation. This is based on the observation that humans are able to see depth

in random dot stereograms (RDSs) constructed with an equal number of correlated and anticor-

related dots (termed half-matched RDS [Doi et al., 2011, Doi et al., 2013, Doi and Fujita, 2014]).

These stimuli have a mean binocular correlation of 0 (because the correlation of the correlated and

anticorrelated dots cancel out) and therefore many correlation-based computations, such as the

binocular energy model, do not signal disparity here. This led Doi et al. (2013) to propose that

an additional “matching computation”, possibly performed in extrastriate cortex, accounts for hu-

man depth perception in dense half-matched random dot stereograms. If V1 neurons only perform

a correlation computation, then this observation implies that humans see depth in half-matched

stereograms even though V1 neurons do not signal disparity in their mean firing rate. This would

be surprising as V1 activity is generally thought to be a necessary prerequisite for cyclopean depth

perception. Indeed, it would provide the first evidence that depth perception can occur without

an explicit signal in V1.

Thus, the current literature on half-matched stereograms suggests a radical change in our un-

derstanding of the role played by area V1 in depth perception. This argument depends critically on

the assumption that V1 neurons perform a correlation computation, as described by the binocular

energy model. However, the attenuated responses to anticorrelated RDS already indicate that dis-

parity selective responses in V1 do not simply reflect correlation. Indeed, the computational work

from Chapter 1 of this thesis showed that a simple modification to the BEM produces cells which

are disparity tuned to half-matched random dot stereograms. This raises the possibility that neu-

rons in V1 do modulate their firing rate with disparity in half-matched stereograms. We therefore

investigated the responses of disparity-selective cells in macaque V1 to half-matched random dot

45
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stereograms. We find that these cells do signal disparity (weakly) in the half-matched condition.

The model we developed in the previous chapter can explain this finding, and also predicts that the

strength of disparity tuning for half-matched stimuli should decrease with increasing dot density.

We show that variation in dot density does have this effect on the responses of V1 neurons. The

observed responses to half-matched stereograms restore the view that disparity-selective neurons

in V1 provide a sufficient substrate for depth judgments in random-dot patterns. The effects of

dot density suggest that a simple mechanism can explain these responses.

2.2 Methods

2.2.1 Animal subjects

Two male macaque monkeys (subjects Lem and Jbe) were implanted with head posts, scleral

search coils and a recording chamber under general anesthesia. The full experimental procedure

is described in detail elsewhere [Cumming and Parker, 1999, Read and Cumming, 2003]. Briefly,

subjects viewed separate CRT monitors with each eye through a mirror haploscope. They were

required to fixate a bright spot on each CRT, and maintain fixation for 2.1 sec to earn a drop of

liquid reward. The window of fixation was typically a box of 0.8◦ × 0.8◦ around the fixation spot.

One subject was trained to perform a front/back discrimination task with random-dot patterns as

described in [Prince et al., 2000]. All experiments were performed at the US National Institutes of

Health. All procedures were performed in accordance with the US Public Health Service policy on

the care and use of animals. The protocols were approved by the National Eye Institute Animal

Care and Use committee.

2.2.2 Model cells

The model cells were constructed exactly as described in [Henriksen et al., 2016a] (Chapter 1 of

this thesis) using BEMtoolbox - a Matlab toolbox for simulating binocular energy model cells

(available on https://github.com/sidh0/BEMtoolbox). In brief, the binocular energy model

(BEM) models a complex cell by combining the responses of two binocular simple cell subunits.

The simple cell has linear monocular receptive fields described by a Gabor function. For simplicity,

here we used identical RFs in the two eyes, so that model cells have a preferred disparity of zero.

The responses from left and right RFs are summed and then squared. A binocular complex cell

is the sum of two simple cells in quadrature, i.e. with RF phase differing by π
2 . We modeled a

cell whose response was a nonlinear function of correlation by including a static squaring output

nonlinearity. Thus, the final model is simply

C = (S1 + S2)2 (2.1)

where S1 and S2 are the two simple cell subunits of the BEM model. We computed the mean
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response of the model to correlated, half-matched and anticorrelated random dot stereograms at

5% and 24% dot density. 21 disparities were used, evenly spaced between −0.5◦ and 0.5◦. The

model response was averaged across 10 000 presentations for each stimulus condition.

2.2.3 Recording

We recorded extracellular activity from cells in V1 using 24-channel linear multicontact electrodes

(V-probes, Plexon), with 50 m spacing between the probes. Behavioral and neuronal data were

sampled using Spike2 (Cambridge Electronic Design). The spike waveform data were saved to

disk for offline analysis, and spikes were classified offline using custom software. Cells that were

well-isolated and exhibited significant disparity tuning to correlated random dot stereograms of

both 5% and 24% density as determined by a one-way ANOVA (P < 0.01) were included in the

analysis. 53/90 cells passed these criteria.

2.2.4 Stimulus

Black and white square dots were painted on a grey background, with disparity applied to the center

of the stimulus, keeping a zero-disparity annulus as reference (in order to eliminate monocular cues;

without a zero-disparity annulus, the observers might be able to detect a monocular shift in the dot

pattern from trial-to-trial). In the region where dots were displaced, monocular dots were painted

in order to prevent monocular cues. The stimulus is illustrated in Figure 2.1. For recordings from

the operculum (relatively foveal with RF eccentricity 1◦ − 3.5◦), the disparity-defined region was

3.4◦ in diameter, while the surrounding annulus had a width of 1◦. The annulus had a disparity

of 0◦ and a correlation that matched the center. Some recordings were made from neurons in the

calcarine sulcus by advancing the probe through the operculum. For these recordings (eccentricities

10◦ − 13◦), the disparity-defined region was 4.2◦ in diameter while the annulus had a width of 2◦.

This was done to ensure that the larger receptive fields in the calcarine were completely covered by

the disparity-defined region. For half-matched stimuli, we painted an equal number of correlated

and anticorrelated dots. Each dot had an equal probability of being black or white. An illustration

of this stimulus is shown in Figure 2.1. Disparity-values were chosen based on disparity tuning

curves collected prior to the experiment, ensuring that the range over which cells exhibit disparity

tuning was covered in our selection of disparity values. Each cell was tested with at least 9,

sometimes as many as 16, disparities. The random dot stereograms were presented dynamically

at a pattern refresh rate of 100 Hz. Each dynamic RDS stimulus was presented for 420 ms (i.e.

consisting of 42 unique dot patterns), with four stimuli being presented in a given trial with a

100 ms gap (grey screen) between the stimuli. Thus four stimuli were presented in each completed

fixation trial (2.1 sec). This allows four stimulus presentations to be completed while only rewarding

the monkey once. Because we anticipated weak responses to the half-matched stimuli, they were

presented 10 times more frequently than correlated or anticorrelated disparities. On average each
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Left image Right image

Anticorrelated

Correlated

Correlated

Anticorrelated

Half-matched

Figure 2.1: Illustration of a random dot stereogram. Black and white dots are painted in the left
and right image with disparity applied to the dots. Top row, All the dots have the same contrast
in the left and right eyes and so the stereogram is binocularly correlated. Middle row, All the dots
have opposite contrast in the two eyes (black is matched with white, and vice versa), and so the
stereogram is anticorrelated. Bottom row, The stereogram has an equal number of correlated and
anticorrelated dots, and so the stimulus is half-matched.

correlated (or anticorrelated) stimulus was shown 16 times, while each half-matched stimulus was

shown on average 161 times. We used two dot density values, 5% and 24%, where dot density is

defined as the percentage of the stimulus area that the dots would occupy if they did not occlude

one another. The dots were, however, allowed to occlude, but were painted in random order so

that correlated dots did not systematically occlude anticorrelated dots or vice versa, and so that

the centre did not systematically occlude the surround or vice versa. For the electrophysiological

experiments, the monkey simply needed to maintain fixation. The dot size varied depending on

the size of the receptive field. Previous modeling work has shown that the ratio between receptive

field size and dot size may affect the magnitude of half-matched responses [Henriksen et al., 2016a].

Thus, for eccentric recordings (defined as > 10◦ eccentricity), the dot size was increased to 0.2◦

or 0.3◦ to compensate for the larger receptive fields (3 sessions, 19 cells). Early recordings were

done with 0.2◦ radius dots, but these were subsequently increased to 0.3◦ after recognising that

this was a more appropriate size relative to the receptive field size at these eccentric locations. In

the remaining recordings the dot size was 0.1◦ (9 sessions, 34 cells). Recordings were either from

the operculum (relatively foveal; small dots) or from the calcarine sulcus (relatively eccentric; large
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dots). Dots were chosen according to the apparent receptive field size of the neurons.

To provide quantitative estimates of RF size, we measured responses to thin strips of random

dot texture. Vertical strips were placed at a variety of horizontal positions, spanning the RFs of

all recorded neurons, and a Gaussian function of position (SD σx) was fit to the spike counts.

Horizontal strips were used to estimate size in the vertical direction (SD σy). RF size was then

defined as 4
√
σxσy.

For neurophysiology experiments, stimuli were presented on two Viewsonic P225f CRT displays,

with a resolution of 1280 × 1024 pixels at 100Hz. At the viewing distance used (89cm) each

pixel subtended 0.018◦. The luminance response was measured with a Konica-Minolta LS100

photometer, and linearized with a lookup table. The mean luminance was 40 cd/m
2
, and contrast

was > 99%.

2.2.5 Quantifying disparity tuning

In order to quantify correlated disparity tuning, we used a standard metric known as the Disparity

Discrimination Index (DDI; [Prince et al., 2002b]). The DDI was computed using the square root

of the firing rate to ensure equal variances for different disparities/firing rates. The DDI is defined

as:

DDI =
Rmax −Rmin

Rmax −Rmin + 2RMSerror
(2.2)

where Rmax and Rmin correspond to the maximum and minimum mean square root firing rates on

the tuning curve, and RMSerror is the root mean square error around the mean square root rates

in the tuning curves. The DDI gives a measure of how large the peak-to-trough difference in the

tuning curve is relative to the intra-stimulus variability. A DDI near 0 thus means that the cell can

poorly discriminate the disparities corresponding to the peak and trough of the disparity tuning

curve. The DDI approaches 1 as the variability becomes negligible relative to the response range.

In order to quantify disparity tuning to half-matched stimuli, we computed the regression slope

between correlated and half-matched responses (type 2 regression, [Draper and Smith, 2014]). The

half-matched regression slope estimates the magnitude of disparity tuning to half-matched stimuli

as a fraction of that for correlated stimuli. A half-matched slope of 1 would mean that the cell has

the same disparity tuning to half-matched stimuli as it has to correlated stimuli; a half-matched

slope of 0 would mean either that the cell shows no disparity tuning to half-matched stimuli or that

the half-matched tuning is present but has a shape that is uncorrelated with the correlated tuning.

We observed no instances of the latter, so we used the slope as an index of response magnitude.

We also quantified the anticorrelated disparity tuning equivalently by computing the regression

slope between the correlated and anticorrelated responses. If the cells modulated their firing rate

strictly as a linear function of correlation, the anticorrelated slope should be -1 (corresponding to

an amplitude ratio of 1 and a phase change of π). The anticorrelated slope is closely related to the



50 CHAPTER 2.

anticorrelated amplitude ratio that has been previously used [Cumming and Parker, 1997]. The

amplitude ratio uses the amplitude of Gabor functions fitted to each of the tuning curves, which

has the advantage that it can capture a broader range of changes in the tuning curve, such as

phase shifts other than 0 or π. However, since the ratio must exceed 0, it can overestimate weak

modulation, which the slope estimate used here does not. We obtained confidence intervals for

the half-matched and anticorrelated slopes by resampling of residuals [Efron and Tibshirani, 1994].

For each cell and stimulus dot match value, we performed a square-root transform on the spike

counts, before computing the (square-root transformed) residuals for each disparity. In order to

construct a single resampled disparity tuning curve, we drew a sample from the pool of residuals,

added this on to the square root of the mean firing rate, and squared the value. This gave us one

resampled trial. We repeated this for ki trials, where ki is the number of trials (observations) for

the ith disparity value. In order to generate half-matched slope confidence intervals, we generated

a resampled tuning curve for correlated data, and a resampled tuning curve for half-matched data,

and then computed the slope between the two. We repeated this procedure 100 000 times, and

obtained the 95% confidence intervals for the slopes. The corresponding procedure was done for

anticorrelated data to obtain confidence intervals for anticorrelated slope.

2.2.6 ROC analysis

The ROC curve traces the performance of a binary classifier by plotting the false positive rate

versus the true positive rate using a variable threshold; in this case the classifier is a cell’s ability

to discriminate preferred disparity trials from null disparity trials [Green and Swets, 1966, Tolhurst

et al., 1983, Britten et al., 1992]. For each cell, we chose the two disparities with the largest and

smallest mean response in response to correlated RDS (i.e. preferred and null disparities). Using

the half-matched responses to these disparities, we computed the true and false positive rates by

progressively incrementing the classification threshold. This gives us the ROC curve for an indi-

vidual cell. In order to obtain neurometric performance for the cells to half-matched stimuli, we

computed the area under the receiver operating characteristic curve (AUROC). The AUROC varies

from 0 to 1. A value of 0 means that the classifier is always incorrect, while a value of 1 means

that the classifier is always correct. An AUROC value of 0.5 corresponds to chance performance.

Thus, the AUROC as a measure of neurometric performance is equivalent to percent correct as a

measure of psychometric performance.

The tuning curves we have collected are available on https://github.com/sidh0/hm with an

accompanying interactive data browser written in Matlab. Matlab code for generating all figures

in the current manuscript is also available on the Github repository.
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2.3 Results

2.3.1 Model disparity tuning curves

We have previously shown that a simple modification to the binocular energy model can produce

disparity selectivity for half-matched stimuli ([Henriksen et al., 2016a]; chapter 1 in this thesis), by

adding a squaring nonlinearity at the output of a traditional binocular complex cell. The result is

that positive binocular correlation produces a larger change in activity than negative correlation of

the same magnitude. This in turn means that random fluctuations in correlation around a mean of

zero produce a larger response than a correlation that is fixed at zero. (This is because the expected

value of a squared random variable depends on its variance: E(X2) = [E(X)]2 + Var(X), so that

the squaring output nonlinearity makes the mean firing rate depend in part on the variance in

binocular correlation). The original binocular energy model does not signal depth in half-matched

stereograms because its response varies linearly as a function of binocular correlation. Thus, when

the mean binocular correlation is zero, the mean response of the model is equal to its uncorrelated

response (although the variability of the response is greater in the half-matched case; [Doi et al.,

2013, Doi and Fujita, 2014, Henriksen et al., 2016a]). The extent of this variation in binocular

correlation will depend on the number of dots contained within the receptive field. More dots

within the receptive field reduces the fluctuations in correlation. If dot density (expressed in the

fraction of pixels that are covered by dots) is held constant, smaller dots produce more dots in

the receptive field. For fixed dot size, higher density also increases the number of dots. Thus,

small dots and high dot density both reduce the fluctuation in correlation over the receptive field.

Consequently, the Var(X) term is smaller, and the mean response of the cell is lower. Decreasing

the dot size and increasing the RF size are functionally equivalent operations; thus both produce

the same decrease in the fluctuations in the correlation level seen by the cell. In Figure 2.2 we

show the effect of dot density on disparity tuning by plotting the responses of the model neuron

described in (Henriksen et al., 2016a) to random dot patterns of two densities. We computed

disparity tuning curves in response to correlated, half-matched and anticorrelated random dot

stereograms. We used two dot densities - 5% and 24%. Figure 2.2a shows the response of the

model to 5% dot density stimuli. The tuning curves to correlated and anticorrelated stimuli are

asymmetric due to the output nonlinearity. For the half-matched stimuli, the model cell exhibits

clear disparity tuning at the preferred disparity of the cell. At higher dot densities (Figure 2.2b)

the half-matched disparity tuning, although still present, is greatly attenuated relative to the 5%

density stimuli. Thus, our model predicts that there should be a correlation between the magnitude

of half-matched tuning to 5% and 24% density reflecting variation between cells in, for example,

the output nonlinearity. It also predicts that the responses to the higher dot density should show

weaker modulation. One simple way to appreciate these results is to consider a dot density so low

that only one dot ever falls within the RF. Half of the stimuli will be 100% correlated, and half will

be 100% anticorrelated. The cell’s response will then be the mean of its responses to correlation
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and anticorrelation. As density is increased, the fluctuations in correlation are reduced, and the

disparity-related response of the cell weakens.
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Figure 2.2: Disparity tuning curve of a model cell which signals disparity in half-matched stimuli.
In a), the density of the stimulus was 5%, while in b) the density was 24%. The inset shows a
magnified view of the response to half-matched stereograms. The model cell is simply a traditional
binocular energy model with an additional squaring nonlinearity on the output [Henriksen et al.,
2016a]. Increasing the dot density decreases the local correlation variability and thus decreases
disparity tuning to half-matched stimuli. The inset in b shows a zoomed-in view of the half-matched
tuning curve. Due to the squaring output nonlinearity, the anticorrelated responses around the
flanks of the disparity tuning curve are also increased. Each point in a given tuning curve was
generated by averaging the responses of the model cell to 10 000 unique dot patterns.

2.3.2 Neuronal responses

We recorded extracellular activity of 53 isolated disparity-selective V1 neurons in response to

correlated, anticorrelated and half-matched dynamic random dot stereograms, while two macaque

monkeys maintained fixation. We used two dot densities - 5% and 24% - to test the model

predictions that the magnitude of disparity tuning to half-matched stimuli should decrease with

increasing dot density. Figure 2.3a shows an example disparity tuning curve for a cell in response

to 5% dot density stimuli. As in the model, this cell has asymmetric correlated and anticorrelated

tuning curves, and a peak in its response to half-matched stereograms at the preferred disparity

of the cell. In response to 24% dot density stimuli (Figure 2.3b), the cell’s half-matched tuning

decreases visibly, while the correlated and anticorrelated responses remain largely unchanged.

In order to quantify the magnitude of disparity tuning to half-matched and anticorrelated stim-

uli relative to the correlated response, we computed the regression slope between the correlated

and half-matched responses (half-matched slope) and between the correlated and anticorrelated

responses (anticorrelated slope). Figure 2.3c and d shows this for the 5% and 24% density stimuli,

respectively.
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Figure 2.3: Example tuning curves for a cell that is selective for disparity in dynamic half-matched
stimuli for both 5% dot density (a) and 24% dot density (b) stimuli. Dot width was 0.3◦, and RF
width was 1.05◦. In b, the inset shows a zoomed in view of the half-matched response. No inset is
shown for a as the response is sufficiently large to see unaided. Error bars show ±1 SEM. The lower
panel shows the half-matched and anticorrelated responses plotted as function of the correlated
response for 5% density (c) and 24% density (d). Lines show type 2 regression fits. 95% bootstrap
confidence intervals for half-matched slope was [0.197,0.27] for 5% density, and [0.076,0.125] for
24% density. For anticorrelated slope, the confidence intervals were [-0.591,-0.45] for 5% density
and [-0.637,-0.492] for 24% density.

In the example cell shown in Figure 2.3, the anticorrelated slope is ≈ 0.5 for both densities

tested. This is typical: across the population, anticorrelated slopes did not differ significantly for

5% vs 24% density (t(52) = 0.97, P = 0.34, paired t-test).

In contrast, half-matched slopes do depend on dot density. The half-matched slope in the low

density case is 0.23 (95% bootstrap CIs: [0.197,0.27]), meaning that the magnitude of half-matched

disparity tuning is 23% of that for correlated disparity. In the high density case, the half-matched

slope is 0.1 (95% CIs: [0.076,0.125]), or 10% of the correlated tuning. In other words, the strength

of disparity tuning has approximately halved in response to increasing the dot density (i.e. de-

creasing the correlation variability), yet remains significantly greater than 0.
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Figure 2.4 summarises this result across the population, showing the half-matched slope as a

function of disparity tuning strength, which is quantified with the Disparity Discrimination In-

dex (DDI). The DDI ranges from 0 to 1 and is a measure of a cell’s disparity tuning (Prince et

al., 2002). Figure 2.4a shows that there is no significant correlation between the DDI and the

half-matched slope of a cell for low density (r = -0.02, P = 0.91, Pearson correlation), and only

a modest relationship between DDI and half-matched slope in the high density stimuli (Figure

2.4b, r = 0.34, P = 0.01, Pearson correlation). This latter observation might reflect the higher

signal-to-noise ratio in neurons with higher DDIs. Under the null hypothesis that V1 cells are,

on average, not tuned to disparity in half-matched stereograms, the distribution of half-matched

slope values should be centered on 0. In Figure 2.4 the mean half-matched slope is significantly

greater than zero for both densities (5%: M=0.14, t(52) = 11.46, P < 10−15; 24%: M = 0.04,

t(52) = 6.76, P < 10−7). This is also true for both subjects when we consider their data separately

(Lem 5%: M=0.15, t(27) = 8.75, P < 10−8; Lem 24%: M=0.04, t(27) = 4.55, P < 10−3; Jbe

5%: M=0.14, t(24) = 7.33, P < 10−6; Jbe 24%: M=0.03, t(24) = 5.35, P < 10−4). Neurons which

exhibit significant disparity tuning to half-matched stimuli are shown as red triangles, while those

that did not are shown as green circles. For low dot density stimuli (Figure 2.4a), 34/53 cells

exhibit significant half-matched disparity tuning, while for high dot density stimuli (Figure 2.4b),

11/53 cells show significant tuning. Thus, on average, V1 neurons transmit a systematic disparity

signal even in 24% density half-matched RDSs.
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Figure 2.4: Half-matched slope (i.e., the regression gradient of responses to half-matched stimuli as
a function of the responses to correlated stimuli) plotted as a function of Disparity Discrimination
Index (DDI) for correlated stereograms for 5% density (a) and 24% density (b). The red triangles
show cells that exhibit significant disparity tuning to half-matched stimuli at the P < 0.01 level
(34/53 cells in a, and 11/53 cells in b). The blue square shows the example cell in Figure 2.3.
The dashed black line shows the expected half-matched slope under the null hypothesis that V1
cells are not, on average, disparity-tuned to half-matched stimuli. In both plots the points deviate
significantly from this prediction.
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As noted above, our model predicts that there should be a correlation between the magnitude

of half-matched tuning at different dot densities. We do find a moderate correlation between the

half-matched slopes at 5% and 24% density (r = 0.43, P = 0.001, Pearson correlation). Our model

also predicts that half-matched tuning should be weaker for stimuli with higher dot density, since

these have smaller fluctuations about the mean correlation level of zero. The difference between

the 5% and 24% density slopes is indeed highly significant (M=0.14 for 5% vs M=0.04 for 24%,

t(52) = 9.51, P < 10−12, paired t-test). This was also true for both monkeys when considered

separately (P < 10−6 in both cases).

In our simple model, the magnitude of disparity selective responses depends on the dot size,

the dot density, and the receptive field size, since all of these things alter the local variation in

correlation (Henriksen et al., 2016a). Despite this, the model predicts a unique relationship between

the slope of responses to half-matched vs correlated stimuli observed at 5% density and that at

24% density. Two different combinations of RF size and dot size that produce the same slope at

5% density will also produce the same slope at 24% density. This arises because the only factor

that determines the response magnitude for half-matched stimuli relative to correlated stimuli is

the variance in local correlation (other factors, such as contrast or spatial frequency content would

affect responses to both stimuli equally). Importantly, this means that the model predicts the

relationship between slopes (as a function of density) without any fitting of parameters. We show

this expected relationship between the half-matched slope for the two dot densities in Figure 2.5

(red line). Although there may be a deviation at large slope values (> 0.3), we have too few

neurons with these responses to be clear that this really is a model failure. As a result, over

the observed range, the quantitative success of the model is mainly in describing the mean slope

magnitudes, rather than the shape of any relationship. Nonetheless, since the model prediction

was made without any parameter fitting, this success provides strong evidence that V1 cells signal

disparity in these stimuli by exploiting fluctuations in local correlation within the RF. Note that if

responses to half matched stimuli represented a contribution from a pure “matching computation”

[Doi et al., 2011, Doi et al., 2013, Abdolrahmani et al., 2016, Henriksen et al., 2016a], the data in

Figure 2.5 should lie on the identity line, which they do not.

2.3.3 Testing more general models of a single mechanism

The quantitative prediction shown in Figure 2.5 is specific to our particular model: the binocular

energy model with a squaring output nonlinearity. But for a wide range of models in which a

cell’s half-matched response reflects its averaged response to positive and negative fluctuations in

binocular correlation, there should be a relationship between a cell’s attenuation to anticorrelated

stimuli and the magnitude of the half-matched tuning. We assess the attenuation using the anti-

correlated slope (i.e. the gradient of the regression line when anticorrelated responses are plotted
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Figure 2.5: Comparing half-matched disparity tuning for two dot densities (5% and 24%). Tuning
strength is quantified with the half-matched (HM) slope. Data are shown from 53 cells. Blue
triangles show data from monkey Lem, while magenta circles show data from monkey Jbe. The
solid red line shows the prediction of the modified binocular energy model introduced earlier (with
no free parameters). The model prediction was obtained by computing the 5% and 24% density
responses of model cells with different RF sizes.

against correlated). In neurons where responses to anticorrelation shows no attenuation, the mean

response to a mixture of correlations with a mean of zero is the same as the response to zero

correlation, and so a straightforward prediction is that there should be no tuning for half-matched

stimuli: the half-matched slope should be zero when the anticorrelated slope is -1. As the mod-

ulation to anticorrelated stimuli gets weaker, this averaging allows fluctuations in correlation to

produce stronger responses to half-matched stimuli at the preferred disparity (although responses

to half-matched stimuli will always be near-zero when fluctuations are small, e.g. if receptive fields

are large compared to dot size [Henriksen et al., 2016a]). Thus, the range of possible half-matched

slopes should be maximal when the anticorrelated slope is zero (or positive). In the low density

stimuli (Figure 2.6a), there is some support for this. There is a weak positive correlation between

the two (r = 0.25, P = 0.07, Pearson correlation), although this marginally fails to reach signifi-

cance. For high densities (Figure 2.6b), this trend is not evident or even reversed (r = -0.21, P =

0.13, Pearson correlation). However, there are a number of reasons why this relationship may be

obscured. For example, receptive field size affects half-matched slope without affecting anticorre-

lated slope. Additionally, since the half-matched slopes are all small, it may require considerably

more statistical power to reveal any relationship. We have sufficient power to demonstrate that

these cells are on average disparity tuned to half-matched RDSs at 24% density, but not for more

sophisticated analyses.

In Figure 2.6, the red and blue crosses show the predictions of idealized correlation and match-

ing computations, respectively. A pure correlation computation, such as the BEM, would have

perfectly inverted response to anticorrelated, and consequently no response to half-matched (anti-
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Figure 2.6: Half-matched slope as a function of anti-correlated slope for 5% density (a) and 24%
density (b). The blue square shows the example cell in Figure 2.3, and the magenta square shows
the example cell in Figure 2.7. If the half-matched response can be inferred from the correlated and
anticorrelated responses alone then there should be a positive correlation between half-matched
and anticorrelated slope (i.e. less attenuation to anticorrelation would imply smaller half-matched
slope). While there is a trend bordering on significance for low density (a), no such relationship is
evident in the high density stimuli (b). The red and blue crosses show the expected performance
of idealized correlation and matching computations, respectively.

correlated slope of -1, half-matched slope of 0). A pure matching computation would not modulate

its response at all to anticorrelated dots, but would have a half-matched amplitude which is half

its correlated amplitude (anticorrelated slope of 0, half-matched slope of 0.5). This is clearly not a

veridical characterization of the neurophysiological data, which shows instead a cloud centered in

between these two extremes and which changes with stimulus parameters such as dot density. This

is consistent with the view that disparity tuning in V1 arises from a single nonlinear correlation

computation, which can be roughly approximated by appending a squaring on to the BEM.

Many neurons in Figure 2.6 have anticorrelated slopes near 0 or even greater than zero, suggest-

ing there may be a subpopulation of neurons with no disparity-selective response to anticorrelated

dots, which seems at odds with the observations in Cumming and Parker (1997). This apparent

discrepancy reflects two factors: First, some neurons do show clear modulation to anticorrelated

stimuli but without any inversion. Some show tuning of similar shape (these are shown with phase

shifts near 0 in Cumming and Parker 1997, and have slopes > 0 here), and some show shapes that

differ in other ways (phase shifts neither 0 or π). Second, random fluctuations in a neuron showing

no systematic response will produce slope values scattered around zero here, but inevitably pro-

duce amplitude ratios > 0 when using fitted Gabor functions.

A less stringent version of the model prediction in Figure 2.5 is that the response to half-matched

stimuli should be less than or equal to the average of the correlated and anticorrelated responses.
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Only one cell in our dataset deviated significantly from this prediction. This cell, shown in Figure

2.7a for 5% density, shows completely symmetric tuning curves to correlated and anticorrelated

stimuli (i.e. an anticorrelated slope not significantly different from -1), yet has a half-matched

slope of 0.14 (95% CI: [0.103,0.173]). In other words, this cell’s response to half-matched stimuli

is greater than that predicted from the average of its correlated and anticorrelated responses. For

24% density stimuli (Figure 2.7b), the cell has an anticorrelated slope that is significantly lower

than -1, yet its half-matched slope is again significantly positive (95% CI: [0.005, 0.06]). This means

that the cell’s half-matched tuning is opposite to that produced by a random mixture of responses

to correlated and anticorrelated stimuli. These responses are rare, so it is possible that these cells

process disparity in a way that is different from other cells in striate cortex. Alternatively, it may

be that our model is too simple to fully describe the behavior of V1 neurons, a point we return to

in the discussion. Nonetheless, in 52/53 neurons, the 95% confidence interval for the half-matched

slope included the value predicted by the model.

2.3.4 Neurometric performance

The analysis above demonstrates that neurons in V1 do carry a weak but systematic signal about

disparity in half-matched stereograms. This analysis does not demonstrate whether the disparity

tuning is sufficient to account for psychophysical behavior. We chose our high density (24%)

because that value has been used in previous psychophysical studies [Doi et al., 2011, Doi et al.,

2013, Henriksen et al., 2016a]. If the weak tuning to half-matched stimuli we find with this density

is not sufficient to account for psychophysical performance, it might be necessary to postulate

a separate matching computation, as hypothesized in the literature [Doi et al., 2011, Doi et al.,

2013, Doi and Fujita, 2014]. To evaluate neuronal performance, we computed the neurometric

performance of the cells using the area under the receiver operator characteristic curve (AUROC).

The ROC curve was computed for each cell by comparing responses to its preferred disparity (i.e.

the disparity where the cell had the highest mean firing rate) and responses to its null disparity (i.e.

disparity with lowest mean firing rate). Preferred and null disparities were defined on the basis

of responses to correlated stereograms. The AUROC values are shown in Figure 2.8a for 5% dot

density stimuli and in 2.8b for 24% stimuli. This then estimates how reliably an ideal observer could

discriminate a half-matched stimulus at the preferred disparity from one at the null disparity, given

only the spike counts of the neuron. These can then be compared with psychophysical performance,

also expressed as % correct. The neurometric performance is lower than the published performance

of human observers. Human performance is often above 80% correct on half-matched stereograms,

although there is substantial variability between individuals [Doi et al., 2011, Doi et al., 2013].

However, there are a number of important differences between the stimulus conditions used in

the psychophysics and that used here. Most importantly, the published human studies used foveal

viewing of stimuli that were much larger than typical foveal receptive fields, giving them much more
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Figure 2.7: An unusual example cell that exhibits significant disparity tuning to half-matched
stimuli despite having symmetric tuning curves to correlated and anticorrelated dot-patterns. a)
and b) shows the tuning curves for 5% and 24% density dot-patterns, respectively. Error bars show
±1 SEM. 95% bootstrap confidence intervals for the half-matched slope was [0.103,0.173] for 5%
density and [0.005, 0.06] for 24% density. The corresponding confidence intervals for anticorrelated
slope was [-1.147,-0.876] and [-1.319,-1.066] for 5% and 24%, respectively. To 24% density stimuli
(b), the cell has an anticorrelated slope that is significantly less than -1 yet still exhibits significant
disparity-tuning to half-matched stimuli. The insets in a and b show a zoomed in view of the
half-matched response. The lower panel shows the half-matched and anti- correlated responses
plotted as a function of the correlated response for 5% and 24% density (c and d, respectively).

information than any single V1 neuron. We trained one of our animals to perform a discrimination

task, and then measured performance using stimuli matched to those used during recording. For the

recording sessions, the stimuli used at a given eccentricity were identical except for small changes

in position (necessary to center the stimulus on recorded RFs). The psychophysics used the same

stimulus configuration, with the location set to the mean of those used in the recording sessions.

The animal performed at 70% correct at the eccentric location, and 65% correct at the more foveal

location. This stimulus was larger than typical receptive fields (chosen to ensure that the RFs

of all cells recorded in a session were covered by the stimulus, even when considering fixational

eye movements). We therefore repeated the psychophysical measures changing only the size of the

region with disparate dots to match measured RF sizes. (RF size was estimated by the standard
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deviation of a Gaussian fit to the measures of minimum response field. The stimulus diameter was

set to be 8 times the mean of these standard deviations, still more than adequate to cover the

receptive field). Here the animal achieved only 51% correct, poorer than the mean AUROC (and

not significantly greater than 50%). Thus, when care is taken to match the information available to

individual neurons and the psychophysical observer, the ability of single neurons to detect disparity

in half-matched stereograms is sufficient to account for psychophysical performance.
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Figure 2.8: Area under the receiver operating characteristic curve (AUROC) for all cells for 5%
dot density (a) and 24% dot density (b). Red dots show data from more foveal recordings (< 5◦

from fixation), and black dots show data from eccentric recordings (> 10◦ from fixation). Only
monkey Lem had eccentric recordings. The AUROC estimates the percent correct on near/far task
that can be achieved using the spike counts from a single neuron (see Methods).

2.4 Discussion

Disparity-selective V1 cells probably provide the initial substrate for binocular depth perception,

at least in dense cyclopean stimuli such as random dot stereograms (RDSs). Disparity-selective

cells in V1 appear to carry out a local correlation-based computation, similar to that described

by the binocular energy model (BEM). Depth perception in half-matched random dot stereograms

- stimuli with an equal number of correlated and anticorrelated dots - has been proposed as evi-

dence that a separate stereo matching computation operates in cortex [Doi et al., 2011, Doi et al.,

2013, Doi and Fujita, 2014]. This is based on the observation that a computation that modulates

its response strictly as a linear function of correlation, such as the BEM, cannot report depth in

these stimuli. However, it is well-known that disparity-selective cells in V1 often have attenuated

responses to anticorrelated stimuli, which is also unlike the BEM. We have previously shown that

a simple model that reproduces attenuated response to anticorrelated RDS can also produce dis-

parity selectivity for half-matched RDS [Henriksen et al., 2016a]. This raises the possibility that

V1 neurons might signal disparity in half-matched stereograms. Here, we show that disparity-

selective neurons in primate V1 do show systematic disparity selectivity to half-matched RDSs.

These properties suggest that V1 neurons carry out a nonlinear correlation computation, inter-
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mediate between a “pure correlation” and “pure matching” computation. We propose that these

cells are the initial neuronal substrate for depth perception in half-matched RDS. This nonlinear

response to binocular correlation may represent the effect of mechanisms that reduce responses of

V1 neurons to “false” matches [Henriksen et al., 2016c].

In the model which prompted this work, this tuning arises from fluctuations in the local binoc-

ular correlation within the receptive field. Any stimulus manipulation which decreases the local

correlation fluctuations should decrease the magnitude of the model’s disparity tuning to half-

matched stimuli. In our experiments, we decreased correlation fluctuations by increasing dot

density. We found that this reduces half-matched disparity tuning in real neurons, as predicted by

the model. It is noteworthy that a number of psychophysical observations suggest that local corre-

lation fluctuations are also required for depth perception [Doi et al., 2013, Henriksen et al., 2016a],

providing further evidence that V1 neurons are indeed the neural substrate for the psychophysics.

Doi et al. (2014) have proposed a particular instantiation of a matching computation, known

as “cross-matching”. This is closely related to the BEM, but only contains a half-wave rectified

binocular term. If one incorporates monocular terms into this model, then this is very similar

to the squared model we have used here. Our choice for the squaring is simply that it is a vari-

ant of the BEM that has been explored multiple times [Read et al., 2002, Tanabe and Cumming,

2008, Henriksen et al., 2016a], and that the squaring gives a clear algebraic dependence on variance.

The choice of nonlinearity is therefore not a significant difference between these studies [Henriksen

et al., 2016a]. The distinguishing claim by Doi et al. is not that there are cells whose response

is a nonlinear function of correlation (this was shown in Cumming & Parker, 1997), but rather

that “Two distinct computations feed the disparity signals for stereoscopic depth perception. One

computes disparity based on binocularly matched patterns, while the other computes the cross-

correlation of binocular images.” ([Doi et al., 2011], p. 11). The fact that neurons at the very first

stage of disparity processing respond to both types of signal suggests that the two computations

may not be distinct.

A recent study found that V4 neurons also respond selectively to disparity in half-matched

stereograms [Abdolrahmani et al., 2016]. Given the results we present here, it is possible that

the responses they report are simply inherited from V1 neurons. In principle, the effects of dot

density that we demonstrate in V1 might be used to determine if responses in extrastriate cor-

tex simply reflect a summation over V1 inputs. Responses in extrastriate cortex should show

a similar dependence on dot density. However, quantitative predictions are difficult without pre-

cise information about the properties (especially RF size) of the set of V1 inputs to a given neuron.

Fluctuations in binocular correlation result in disparity tuning to half-matched stimuli in any
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system which shows attenuated responses for anticorrelated patterns (such as real V1 neurons,

[Cumming and Parker, 1997]). Therefore, increasing the variability of the correlation will increase

the mean response. This is true regardless of the mechanism that produces the attenuation. For

our quantitative modelling, we used a very simple modification to the BEM (a squaring output

nonlinearity). This nonlinearity was chosen simply because the expected value of a squared ran-

dom variable has a clear algebraic dependence on variance. Many other nonlinearities would also

produce such a dependnece. However, there are several reasons to believe this simple model is not

an accurate description of the mechanism producing attenuation in V1 neurons [Cumming and

Parker, 1997, Read et al., 2002, Haefner and Cumming, 2008, Tanabe et al., 2011a]. Possibly as a

result, some quantitative aspects of the data were not captured well by this model (e.g. the lack of a

clear relationship between anticorrelated slope and the range of half-matched slopes in Figure 2.6).

It is particularly worth noting that most V1 neurons behave as if they sum multiple subunits each

of which resembles a BEM [Tanabe et al., 2011a, Tanabe and Cumming, 2014], and that many of

these subunits have suppressive effects. If the asymmetrical response to correlation/anticorrelation

is different within each subunit, our simplified model is unlikely to reproduce the neuronal behavior.

Although we show that there is a weak signal in V1 neurons in response to half-matched RDSs,

this on its own does not prove that the signal is sufficiently strong to account for psychophysical

performance. Comparisons of neuronal and psychophysical behavior typically compare neuromet-

ric and psychometric thresholds [Britten et al., 1992, Parker and Newsome, 1998, Prince et al.,

2000, Uka and DeAngelis, 2003, Nienborg and Cumming, 2006, Nienborg and Cumming, 2014, Gu

et al., 2008]. For half-matched stimuli, this is harder to do because the sensation of depth is very

weak. In many subjects, no disparity, however large, produces 100% correct performance. As a

result, there are no published psychometric thresholds for disparity in half-matched stimuli. We

therefore compared neurometric and psychometric performance for a single disparity value (many

times threshold in correlated stimuli), using the area under the receiver operating characteristic

curve (AUROC) as a measure of neurometric performance. We found that that the most selective

neurons match psychophysical performance, but the majority are substantially poorer. However,

these psychophysical measures were made with stimuli much larger than typical V1 RFs. In one

animal we measured performance with a stimulus only double the measured size of the RFs, and

found that performance was then poorer than most neurons. Stimulus size may play a particularly

important part in half-matched stimuli, where random fluctuations in the stimulus are the only

source of a useable signal. As these are independent at different locations, the useful signal increases

with size. It therefore seems likely that the neurometric performance of the V1 cells reported here

is more than enough to account for the psychometric performance of human and monkey observers.

Although disparity-selective cells in V1 seem to explain depth perception in half-matched RDSs,

they may not explain all aspects of stereoscopic depth perception. One case is binocular stimuli
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in which the left and right images contain isolated monocular targets. Here, subjects can report

the depth sign for disparities that are larger than any V1 neuron has been shown to signal [Ogle,

1952c, Westheimer and Tanzman, 1956]. This may depend on signals in V1 that are separate from

those carried in disparity-selective neurons (such as monocular responses). Nonetheless, in dense

stimuli, such as RDS, it seems that disparity-selective signals in V1 provide a substrate that is suf-

ficient to support psychophysical performance in most disparity-based tasks that have been studied.

In summary, the responses of disparity-selective V1 neurons resemble the energy model in that

their response depends on the correlation between the left and right images. They differ in showing

weaker modulation to anticorrelated stimuli than correlated stimuli. In principle, this asymmetry

could lead to discernible responses to half-matched RDS, despite the fact that the mean binocular

correlation is 0, and indeed V1 neurons seem to behave in this way. Depth perception to half-

matched RDSs is therefore compatible with the view that disparity-selective neurons in striate

cortex provide the substrate for stereo depth perception in dense cyclopean stimuli.
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Chapter 3

Correlated boosting: a specialised computation for disparity

extraction in primary visual cortex

3.1 Introduction

A major unsolved question in the stereo literature is how exactly disparity-selective cells obtain

their disparity tuning. This was first raised by Cumming & Parker (1997) who computed disparity

tuning curves for correlated and anticorrelated random dot stereograms, and showed that real

cells have weaker modulation to anticorrelated stimuli than to correlated stimuli [Cumming and

Parker, 1997]. This property is not captured by the binocular energy model (BEM) and a large

number of subsequent papers have attempted to explain the reason for this discrepancy [Nieder and

Wagner, 2000, Read et al., 2002, Read and Cumming, 2003, Read, 2005, Tanabe and Cumming,

2008, Tanabe et al., 2011a, Tanabe et al., 2011b, Samonds et al., 2013, Henriksen et al., 2016a,

Henriksen et al., 2016c, Henriksen et al., 2016b]. With a few notable exceptions [Read et al.,

2002, Samonds et al., 2013], these models generally take the form of a linear-nonlinear (LN)

cascade. LN cascades begin with LN subunits, which consist of an initial linear filtering step

followed by a subsequent nonlinearity, such as half-wave rectification or half-squaring. The models

are known as “cascades” since the LN elements are then combined linearly before being passed

through a final output nonlinearity. This model architecture is shown schematically in Figure 3.1.

These models are very similar to a shallow (three-layer) neural network, and, when used in the

binocular domain, implement a generalised version of the binocular energy model. We therefore

refer to this broad class of models as the generalised binocular energy model (GBEM).

It is currently unknown whether generalised binocular energy models can capture the atten-

uated anticorrelated response seen in real cells. Goncalves & Welchman (2017) recently trained

a three-layer binocular convolutional neural network to detect disparities in natural images. The

authors found that when trained on these stimuli, the model units had disparity tuning curves with

attenuated responses to anticorrelated stimuli, much like real V1 neurons [Goncalves and Welch-

man, 2017]. The earliest attempt to do something similar in real cells was carried out by Anzai,

Ohzawa, & Freeman (1999), who carried out singular value decomposition (SVD) on the binocular

interaction receptive fields of real neurons. While the authors successfully recovered binocular

65
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Figure 3.1: The generalised binocular energy model (GBEM). Starting from the left, the image is

linearly filtered in the left and right eyes; the filtered responses Li = ρ
(i)
L · sL and Li = ρ

(i)
R · sR

are then combined and passed through a nonlinearity fi(Li +Ri). Finally, a weight wi is given to
each subunit, before the responses of all subunits are summed together and passed through a final
spiking nonlinearity F .

subunits using this technique, they did not include anticorrelated stimuli [Anzai et al., 1999], and

so are unable to comment on this aspect of neuronal computation. The most comprehensive ef-

fort to directly model the responses of V1 neurons to both correlated and anticorrelated stimuli

based on spiking data was carried out by Tanabe & Cumming (2011). The authors performed a

spike-triggered analysis of covariance using independent binocular Gaussian noise as their stimulus.

Tanabe & Cumming found that their GBEM units did not exhibit the attenuated anticorrelated

response to random line stereograms which was exhibited by their neuronal counterparts. How-

ever, when the V1 cells were tested on the independent binocular Gaussian noise (with which

the models were fit), the cells did not show attenuated responses to negatively correlated stimuli

either [Tanabe et al., 2011b]. It is perhaps less surprising that the model units did not show the

attenuated anticorrelated response if this was not present in the data to begin with.

It is at present unclear whether real neurons achieve their attenuation to anticorrelated stimuli

through an LN-cascade. The purpose of the present work is to address the discrepancy between the

works of Tanabe & Cumming (2011) and Goncalves & Welchman (2017). Using recently developed

optimisation routines [McFarland et al., 2013], we fit GBEM units to neuronal data recorded from

V1 in the macaque. The key advance from Tanabe & Cumming (2011) is that this method allow us

the fit GBEM units even when the image sequences are not pure noise. For the current purposes,

this means that sequences of different disparities, and with correlations of +1 or −1 can be used.
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The consequence of this is that unlike in Tanabe & Cumming (2011), the attenuated anticorrelated

response is present in the neuronal data. Importantly, the attenuated anticorrelated response is

recovered by our model subunits. We show that the attenuated anticorrelated response seen in

real neurons is in fact a boosting of true matches, as opposed to a suppression of false matches.

The extent of the correlated boosting is underestimated by even the best fitting GBEM, suggesting

that the mechanism for correlated boosting cannot be captured by a simple LN cascade.

3.2 Methods

3.2.1 Animal subjects

Two male macaques (Macaca mulatta) were implanted with scleral search coils, head posts, and a

recording chamber under general anaesthesia. The full procedure is described elsewhere [Cumming

and Parker, 1999, Read and Cumming, 2003]. For the experiment, subjects viewed two gamma-

corrected CRT monitors through a custom mirror haploscope. The subjects were required to

maintain fixation on a central box in order to receive a reward. All experiments were performed at

the National Institutes of Health in the US, and complied with the US Public Health Service policy

on the use and care of animals. The protocols received approval by the National Eye Institute

Animal Care and Use committee at the National Institutes of Health.

3.2.2 Recording

We recorded extracellular activity from neurons in primary visual cortex (V1) using laminar multi-

contact electrodes (U-probes, Plexon for monkey Jbe; V-probes, Plexon for monkey Lem). Each

electrode had 24 linearly arranged probes spaced 50 µm apart. The data was sampled with Spike2

(Cambridge Electronic Design), and the full waveform data was saved to disk for offline analy-

sis. Spikes were subsequently analysed offline using custom spike-sorting software. Neurons were

included in the analysis if they were well-isolated and disparity-tuned (as determined by a permu-

tation test, P < 0.01). 95/197 cells met these criteria, giving 65 cells from monkey Lem, and 30

from monkey Jbe.

3.2.3 Stimulus

The stimulus apparatus was the same as in Chapter 2. The animal was shown a 1D random noise

pattern consisting of either black, gray, or white bars. The orientation of the stimulus was chosen

so as to match the orientation preference of the cell (measured using circular patches of 1D noise

at zero disparity) as closely as possible. When the stimulus orientation was sufficiently different

from the preferred orientation (e.g. because there were multiple cells with different orientation

preferences), there was typically no disparity selectivity to the 1D noise stimulus. The bars were

0.0946◦ in width, and the pattern consisted of 42 bars in each eye. The stimulus could be either
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binocularly correlated, anticorrelated, or uncorrelated. Stimulus disparities were selected based on

the disparity tuning observed in the first measurements after fixing the orientation. Disparity was

applied to the stimulus by wrap-around (i.e. bars displaced off the right end of the stimulus would

be appended to the beginning of the stimulus; this has the effect of keeping the frequency power

spectrum the same for the left and right images). We only used disparities which were integer

multiples of the bar width, and always applied disparity orthogonally to the orientation of the bar

pattern. A new stimulus pattern with a new disparity and correlation was shown every 30ms. A

single trial lasted for 3s, corresponding to 100 independent noise patterns. We also implemented

a two-pass procedure by duplicating trials, such that the same exact sequence of noise patterns

occurred twice for most trials. This was done to facilitate the analysis discussed in Chapter 4.

3.2.4 Generalised binocular energy model

We fit a generalised form of the binocular energy model using the framework developed by McFar-

land & Butts (2013). The model takes the general form

C = F

[
N∑
i

wifi(Li +Ri)

]
, (3.1)

where fi is the subunit nonlinearity for the ith subunit, wi is the weight given to the ith subunit

(constrained to be either -1 or +1, corresponding to a suppressive or excitatory subunit, respec-

tively), and F is the final spiking nonlinearity of the model unit. The weights of each subunit,

dictating the relative contributions of each subunit to the final model response are fit using the

filter coefficients. Li and Ri are the response of the ith left and right filters, and are further defined

as

Li = ρ
(i)
L · sL,

Ri = ρ
(i)
R · sR.

(3.2)

Here sL and sR refer to a vector representation of the stimulus presented to the left and right eyes,

respectively. ρ
(i)
L and ρ

(i)
R refer to vector representations of the linear spatiotemporal filters for

the left and right eye of the ith subunit. The number of spatial elements in the filter was simply

the number of independent pixels in the stimulus, which was 42 for the left and right eyes (84

total). The number of temporal elements in the filter was 15, sampled at 10ms, corresponding

to a maximum temporal kernel of 150ms. Thus, the total number of elements for the binocular

spatiotemporal filter was 1260. The subunit nonlinearity fi can in principle take on a range of

forms, but for the current purposes we have constrained it to always be a thresholded square. In

symbols,

f(x; θ) = Pos(x− θ)2, (3.3)



3.2. METHODS 69

Where Pos refers to half-wave rectification, and θ is the threshold parameter. The spiking non-

linearity F is a softplus rectifier, which is a smoothly varying rectifier function (with well-defined

derivatives everywhere). It takes the form

F (z;α, β, γ) = α ln(1 + exp[β(z − γ)]), (3.4)

where α, β, and γ approximately correspond to magnitude, slope, and threshold parameters,

respectively. The term in equation 3.1 is a continuous firing rate, and the spike count is obtained

by passing the continuous rate through some discretisation procedure. For all analyses, we passed

the continuous rate through a Poisson random number generator (poissrnd in Matlab) to obtain

discrete spike counts.

The optimisation routine developed by McFarland & Butts (2013) allows for fitting various

components of this framework to empirical data by optimising the (log) likelihood of the model

parameters given the data. Specifically, we can directly fit the coefficients of the linear spatiotem-

poral filters Li and Ri, the thresholds θi of the subunit nonlinearities, and the parameters α, β,

and γ of the spiking nonlinearity. While the log likelihood surface is not guaranteed to be con-

vex, McFarland & Butts note that appropriate steps, such as L1 and smoothness regularisation,

can in general prevent the routine from converging to local minima [McFarland et al., 2013]. L1

regularisation penalises the L1 norm (the taxicab distance from the origin) of the linear filter co-

efficients, ensuring that the filter coefficients take on sensible values and also encourages sparsity

of the filter coefficients (Tibshirani, 1996). Smoothness regularisation penalises the Laplacian of

the filter coefficients, ensuring that the second derivatives of the filters are small everywhere. This

prevents abrupt, physiologically implausible changes in the filters (since such changes would cor-

respond to large second derivatives). More generally, both forms of regularisation help prevent

overfitting to the training data. The numbers of excitatory and suppressive subunits have to be

optimised through cross-validation. In order to do this, we first split the data into a training set

and a validation set. In order to prevent leakage of the training data into the validation data, the

sets were split by trial instead of frame. For each cell, 75% of trials belonged to the training data,

and the remaining 25% of trials belonged to the validation data. All identical trials (i.e. two-pass

trials) were kept in the same set (either validation or training) to ensure independence of the two

sets. Since there is no straightforward way of determining what was on a cell’s receptive field prior

to the onset of a trial, we discarded the first 200ms of each trial. We then performed a grid search

on the number of excitatory and suppressive subunits, computing the log likelihood of the model

on the validation data (the cross-validated log likelihood) for each combination of excitatory and

suppressive subunits. Our hyperparameter search space was from 1 to 12 excitatory subunits, and

from 0 to 5 suppressive subunits, yielding a total of 72 hyperparameter combinations for each cell.

We capped the number of excitatory and suppressive subunits at 12 and 5, respectively, since we

observed no cases of cells which were best modelled by 12 excitatory or 5 suppressive subunits. We
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repeated this procedure at least 3 times for each excitatory-suppressive combination, and used the

mean cross-validated log likelihood for model selection. The hyperparameter combination with the

highest mean cross-validated log likelihood was used in the subsequent analysis. In general, the

cross-validated log likelihood is fairly stable across iterations and so the best parameter combina-

tion is not greatly affected by either number of repeats or aggregation rule (i.e. mean, min, max,

and median all give very similar results). For each cell, we obtained cross-validated spike count

predictions by running five-fold cross-validation. We first split the data into five equal subsamples

(by trial, as noted above), and then fitted the GBEM on four of the subsamples. This allows us to

obtain spike count predictions for hitherto unseen data (i.e. cross-validated predictions). We did

this for each of the subsamples, resulting in cross-validated predictions for all trials in our dataset.

Note that this results in predictions from slightly different models, but allows us to test this set of

model parameters as opposed to a particular instantiation of the GBEM.

The disparity tuning curve captures how well a GBEM unit can capture responses across dis-

parities. In order to describe how the GBEM units captures the cell’s responses within disparities

(e.g. as in Figure 3.4b, d, and f), we first identify frames with the appropriate disparity/correlation,

and then run the forward correlation procedure as specified in the Methods. This gives us a set of

spike counts associated with each frame for both the cell and the GBEM. We then bin the model

spike counts with an equal number of samples in each bin, and then compute the average spike

count in the cell for each bin. For a perfect model, these points should lie on the identity line.

More generally, if a model unit captures the cell’s response within a disparity, then the predicted

firing rate and the observed firing rate should be closely related.

In order to compare our model responses to the population responses of cells in Tanabe &

Cumming (2011), we also computed the responses of the model units to binocular Gaussian 1D

noise. Each pixel in these stimuli had a value which was drawn from a normal distribution with

unit variance, and was independent in the two eyes and also independent from frame to frame. A

new pattern was generated every 10ms.

3.2.5 Disparity tuning curves

In order to compute disparity tuning curves, we performed a forward correlation analysis. For a

given disparity and correlation, we first identified all the patterns which were presented with the

given stimulus parameters. For each pattern, we computed the number of spikes observed in bins

tmax−1, tmax, and tmax+1, where tmax is the time bin where we observed the largest variance across

disparities. In other words, we computed the response in a 30ms window around the peak response

for each neuron. The mean spike count was then computed for every disparity/correlation, giving
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a mean spike count for each disparity-correlation combination. The same exact procedure was per-

formed for both the real cells and their model counterparts, with the only difference being whether

the sequence of spike counts was predicted or observed. In order to construct “tuning curves”

for the independent binocular Gaussian noise, we used a procedure like that used by Tanabe et

al (2011). We first computed the normalised binocular cross-correlation function of each image

frame, extracting a correlation value for each disparity. For each disparity, we then identified the

frames with the top and bottom 20% of correlation values, which correspond to our correlated and

anticorrelated frames, respectively. We then used these frames to trigger the forward correlation

procedure, computing disparity tuning curves as previously specified. With this procedure, a single

frame can be used in multiple disparities if the magnitude of binocular correlation exceeded our

threshold for more than one disparity.

3.3 Results

3.3.1 Example model subunits

From the fitting procedure, we obtain a GBEM unit with an optimal number of excitatory and

suppressive subunits for each cell. The linear filters for the GBEM fit to cell lemM322c1 are shown

in Figure 3.2a. For this cell, all subunits have a phase disparity between the two eyes (i.e. the profile

of the filters differ in the left and right eyes). Figure 3.2b shows the subunit nonlinearities for the

excitatory and suppressive subunits. In this case, the fitted thresholds are similar for the different

subunits, except for one of the excitatory subunits (bronze line in top panel of Figure 3.2b). While

this subunit’s filter coefficients are much lower (excitatory subunit with bronze outline in Figure

3.2a), its threshold is much more negative, meaning that this subunit gives a large constant output

to a blank screen. At the same time, the subunit’s dynamic range remains substantial despite

the small variation in the filter coefficients. This is because the output nonlinearity has a much

higher slope when the threshold takes on a large negative value compared to when it is around

zero. Figure 3.2c shows the “tuning curve” to correlated stimuli for the excitatory pool and the

suppressive pool (i.e. summed over excitatory and suppressive subunits, respectively). The pooled

responses are normalised such that the baseline (median) response is zero. The normalisation is

necessary for visualisation purposes since the excitatory subunit in Figure 3.2b has a high constant

output irrespective of the stimulus, which introduces a much higher baseline response for the

excitatory pool. The tuning curves of the excitatory and suppressive pools have opposite phases:

this is the familiar push-pull organisation for binocular neurons introduced by Read & Cumming

(2007) and found in V1 neurons by Tanabe, Haefner, & Cumming (2011). A similar push-pull

organisation was previously uncovered by Ferster (1988), who showed that orientation selective

simple cells in the cat receive both excitatory OFF and suppressive ON inputs to the ON region

of their receptive fields (and vice versa for the OFF region) [Ferster, 1988].
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Figure 3.2: a) Filters of excitatory and suppressive subunits recovered for cell lemM322c1. The
resulting GBEM unit has 5 excitatory subunits (red outline), and 3 suppressive subunits (blue
outline). The filters are shown here as spatiotemporal filters, with the vertical axis denoting time
and horizontal axis denoting space. Note that half of the pixels correspond to the left eye and the
other half to the right eye (separated by a vertical bisection). b) Subunit responses as a function
of the normalised filter response for both excitatory (top) and suppressive (bottom) subunits. The
filter response will necessarily be centred on zero. In order to normalise the filter responses, we
divide by the standard deviation. The normalised filter response is therefore a z-score where a
value of ±1 corresponds to one standard deviation from the mean (which as noted is necessarily
zero). A blank screen corresponds to a filter response of 0 in this scheme (though the converse
is not true: a filter response of 0 does not necessarily imply a blank screen). Each line shows a
different subunit, with the colours mapping onto the outline of the spatiotemporal filters in a).
c) Disparity tuning curves for the excitatory (red) and suppressive (blue) pools. The baseline
(median) response of the pools has been normalised to zero so that a meaningful comparison can
be made. The excitatory pool has a much higher baseline response than the suppressive pool.

3.3.2 Example disparity tuning curves

Once we have the GBEM fits for each cell, we can obtain a disparity tuning curve for both the cell

and the model. The cells are fitted using five-fold cross-validation (see Methods for details); this

enables us to get cross-validated model spike counts for all of our stimuli. In other words, the spike
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counts we use for the subsequent analyses are predicted spike counts of unseen data. We compute

the disparity tuning curves using a forward correlation procedure, counting the number of spikes

in a 30ms time window centred around the time of the maximal disparity-related response of the

cell (again, further details are found in the Methods). Figure 3.3 shows the disparity tuning curve

for two cells where the GBEM model has done a very good job at capturing the disparity tuning

of the cell. Figure 3.3a shows the tuning curve for cell jbeM012c7 which is known as a tuned

excitatory cell by Poggio & Fischer’s (1977) nomenclature. Figure 3.3b shows the corresponding

GBEM fit. It is important to highlight that the model was not fit to the disparity tuning curve

of the cell; rather, the optimisation routine was given the luminance values on the screen and the

spike times. Thus, the ability to capture disparity tuning means that the model has learned a

nonlinear binocular interaction which was not explicit in the inputs. The GBEM does a good job

at capturing both the correlated and anticorrelated responses of the cell, and also captures the

weak response attenuation of the cell to anticorrelated stimuli. Figure 3.3c shows the tuning curve

of another example cell known as a tuned inhibitory cell [Poggio and Fischer, 1977]. These cells

are relatively uncommon in cortex and respond most vigorously to a stimulus which is binocularly

anticorrelated, i.e. to stimuli which are impossible in naturalistic viewing. A success of the original

BEM is that it can capture this type of disparity tuning by incorporating phase disparity between

the left and right subunits. Indeed, the GBEM readily accounts for the disparity tuning of this cell

(Figure 3.3d), and does so by recovering linear filters which have phase disparities of approximately

π.

Most GBEM fits capture the overall shape of disparity tuning, and for some cells the mag-

nitude of disparity tuning is also well-captured (e.g. Figure 3.3). However, most GBEM units

underestimate the magnitude of disparity tuning. This becomes particularly evident when the

GBEM and cell responses are superimposed. Figure 3.4a shows an example odd-symmetric cell

where the cell’s response is very well-captured. As previously noted, the response here is cross-

validated, meaning that the model responses are shown for stimuli with which the model has not

been fit. Thus, Figure 3.4a represents a substantial success of the GBEM architecture to account

for average responses across disparities. In order to assess the ability of the GBEM to account for

responses within disparities, we plot the mean rate in the real cell as a function of the predicted

rate of the model, binned according to the predicted rate within each disparity/correlation (see

Methods). If the model correctly predicts the firing rate of the cell within a disparity, then these

points should be monotonically increasing within each disparity. The solid dots show the responses

to the preferred disparity of the cell – shown by the dashed blue line in Figure 3.4a – for correlated

(red) and anticorrelated (black) stimuli. The crosses show the anti-preferred disparity - shown

by the dashed green line in Figure 3.4a. If the model captured the responses to stimuli within a

disparity, then the predicted and observed rates should be appropriately rank ordered (i.e. higher

predicted rate should correspond to a higher observed rate). Indeed, that is generally the case for
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Figure 3.3: Disparity tuning curves for two example cells (a,c) and their corresponding GBEM
fit (b,d). Correlated responses are shown in red, anticorrelated responses are shown in black, and
uncorrelated responses are shown in gray. The number of spikes per second were calculated in a
30ms window centred around the peak temporal response of the cell. The shaded regions show
95% bootstrap confidence intervals for the responses.

both the preferred and anti-preferred disparity. However, not all cells produce perfect fits. Figure

3.4c shows a cell which is moderately successful: it captures the overall shape of the tuning curve,

but underpredicts the magnitude of disparity tuning. In particular, it underpredicts the response

of the cell to correlated stimuli. The effect of this can be seen in Figure 3.4d, where the responses

to the anti-preferred disparity (red and black squares), as well as the anticorrelated responses to

the preferred disparity (black circles) all lie on roughly the same curve. The correlated responses

are notably shifted up and to the left. This means that with the recovered model structure, there

is no single output nonlinearity that can simultaneously account for the responses to correlated

and anticorrelated stimuli. The implication is that the GBEM structure itself is not appropriate

for simultaneously describing the response to correlated and anticorrelated stimuli. It also suggests

that the correlated responses at the preferred disparity are in some way “special” in the way they

are processed by this V1 neuron.

For other cells, we observe a much more spectacular failure to capture the disparity tuning.

Figure 3.4e shows a cell where the model exhibits very little disparity selectivity. Despite this fail-
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Figure 3.4: Disparity tuning curves for three example cells which capture the diversity of model
fits. Here, the response of the model (dashed lines) is overlaid on the response of the cell (solid
lines). Panels a, c, and e show the disparity tuning curves, whereas panels b, d, and f show the
observed spike rated plotted as a function of the predicted spike rate (binned according to the
predicted spike rate). Each point in b, d, and f shows a separate disparity/correlation combination
(black dots are anticorrelated, red dots are correlated). Filled circles show the preferred disparity
of the cell (dashed blue line in a, c, and e), and pluses show the anti-preferred disparity (dashed
green line in a, c, and e).

ure to capture disparity tuning, Figure 3.4f shows that the rank ordering of the model responses

within disparities are nevertheless broadly preserved. In other words, the model can account for

a large proportion of the cell’s responses to variations in the stimulus, but simply fails to account

for disparity-selectivity. This means that for a given disparity, a large response in the cell to a

particular luminance pattern does generally correspond to a larger response in the model as well.

However, the GBEM selectively fails to capture the binocular interaction between the left and

right eyes. Indeed, the model fits can be broadly grouped into the three categories highlighted

in Figure 3.4. Of particular interest are the model units that fail to capture any disparity tuning

(e.g. Figure 3.4e); this does not represent a general fitting failure, as evidenced by Figure 3.4f, but
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is, as noted, a selective failure to capture disparity tuning. If a GBEM unit failed to capture less

than 30% of the variance in disparity tuning of the corresponding cell, we categorised this model

fit as failing to capture disparity tuning. Out of the 95 disparity-selective cells in our dataset, 28

fits failed to adequately capture disparity tuning (30% of disparity-selective cells).

Cells such as that in Figure 3.4e illustrate an important point: although it is trivial to hand-

tune a GBEM unit which is able to better capture the disparity tuning curve of these cells, the

GBEM is not fit to the tuning curves themselves. Instead, the input to the model is simply the

luminance patterns on the screen, and so the GBEM attempts to capture the full range of monoc-

ular, binocular, and temporal dynamics of the cell. Thus, while a hand-tuned model might be

able to capture the tuning curve, it would do much worse than the fitted GBEM in predicting the

response of the cell to actual (unseen) random line stereograms.

A key feature in Figure 3.4 is the underestimation by the GBEM of the magnitude of disparity

tuning in real cells (Figure 3.4c). Indeed, the largely absent disparity tuning of the GBEM unit

for jbeM060c9 (Figure 3.4e) can be seen as a more extreme failure of the sort seen in lemM312c8

(Figure 3.4c). The effect of underestimating the response to correlated stimuli (at the preferred

disparity) is that real cells have stronger anticorrelated attentuation than the GBEM units. This is

because the anticorrelated attenuation depends on the magnitude of the correlated response, which

is boosted in real cells. In order to quantify this, we compute the regression slope between the

correlated and anticorrelated response. We will refer to this metric as the relative anticorrelated

response of the cell (note that this is different from the metric used in Cumming & Parker, 1997,

but the same as that used by Henriksen et al., 2016b). Figure 3.5b shows this graphically. If the

relative anticorrelated response is -1, then the neuron responds as strongly to anticorrelated stimuli

as to correlated, but with a sign inversion (as in the standard binocular energy model) and thus

exhibits no response attenuation to anticorrelated stimuli. A relative anticorrelated response of 0

corresponds to a neuron which either does not modulate its response to anticorrelated stimuli or

whose anticorrelated response is modulated orthogonally to the correlated response. In practice,

the latter is rare and we observed no such cases in the current study. We therefore take this

metric to be an index of relative anticorrelated response. The relative anticorrelated response for

jbeM012c7 (Figure 3.3a) is -0.69 (95% CI: [-0.76, -0.62]), and the relative anticorrelated response for

its GBEM fit (Figure 3.3b) is -0.74 (95% CI: [-0.85, -0.63]). Thus, the GBEM readily captures much

of the anticorrelated response of this cell. For jbeM061c4 (Figure 3.3c), the GBEM also captures

the relative anticorrelated response of the neuron well (Figure 3.3d), and this is again reflected

in the relative anticorrelated response (jbeM061c4: -1.01, 95% CI: [-1.09,-0.923]; GBEM: -1.11,

95% CI: [-1.21, -1.00]). For the example cells in Figure 3.4, the relative anticorrelated responses

are -0.62 [-0.80,-0.45] for lemM328c9 and -0.95 [-1.04,-0.87] for its GBEM fit; -0.67 [-0.74,-0.60] for

lemM312c8 and -0.95 [-1.03,-0.87] for its GBEM fit; and -0.12 [-0.13,-0.11] for jbeM060c9 and -0.59
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[-0.67,-0.51] for its GBEM fit.

Figure 3.5: a) A disparity tuning curve for jbeM012c7 (solid lines), and its model fit (dashed
line). b) Anticorrelated response as a function of the correlated response for a cell (blue dots)
and its corresponding GBEM fit (magenta dots). The relative anticorrelated response is defined
as the slope of the regression line, shown for both the model and cell. A relative anticorrelated
response of 0 means that the cell does not modulate its response to anticorrelated stimuli, whereas
an relative anticorrelated response of -1 means that the cell inverts its response perfectly just
like in the binocular energy model. c) Anticorrelated response of the model as a function of the
anticorrelated response of the cell. The regression slope defines the anticorrelated model tuning
strength, which quantifies how strongly the model unit is tuned to anticorrelated stimuli relative
to the cell. If the anticorrelated model tuning strength is 0.5, then the model unit modulates its
response half as strongly to disparity for anticorrelated stimuli compared to that of the cell. d)
Correlated response of the model as a function of the correlated response of the cell. The regression
slope defines the correlated model tuning strength, which quantifies how well the model’s shape
and magnitude of disparity tuning matches that of the cell.

3.3.3 Population summary

In order to summarise the inability of the model to capture the cell’s tuning curve across the

population, we can plot the relative anticorrelated response for the neurons against the relative

anticorrelated response for their corresponding GBEM fits (Figure 3.6a). Two key points are

worth observing. First, there is a strong positive correlation between the relative anticorrelated

response in the cells and that seen in the model units (r = 0.61, p < 0.001, Pearson correlation).

This is notable since Tanabe & Cumming (2011) found no relative anticorrelated response in the

model units recovered with their spike-triggered analysis of covariance. Thus, although it has long

been recognised that LN cascades can in principle explain relative anticorrelated response, this

is the first direct evidence that this explanation is at least partially correct. However, the vast



78 CHAPTER 3.

majority of points in Figure 3.6a lie beneath the identity line, meaning that the GBEM system-

atically predicts a more negative (i.e. stronger) relative anticorrelated response than is observed

in the cells. This suggests that although the LN cascade goes some way towards accounting for

the relative anticorrelated response seen in V1 neurons, it is not on its own a sufficient explanation.

The GBEM fails because it underpredicts the magnitude of disparity tuning. However, there

are three potential reasons for this failure. The first possibility is that the GBEM fails because it is

unable to account for the anticorrelated response. This could be the case, for example, if these cells

have developed a specialised mechanism for suppressing false matches [Goncalves and Welchman,

2017]. The second possibility is that the GBEM is unable to capture the correlated response.

Similar to the anticorrelated case, a failure to capture the correlated response could be because

V1 neurons have enhanced responses to true matches which cannot be easily captured by the

GBEM framework. The third possibility is that there is failure to capture both the anticorrelated

and the correlated responses. To investigate this, we first define a model tuning strength metric.

The model tuning strength is simply the regression slope between the cell and the model’s tuning

curves (illustrated in Figure 3.5c and d for the anticorrelated and correlated case, respectively).

If the model tuning strength is 0.5, then the model’s disparity tuning is 50% of the real cell’s

tuning (provided that the shape of the disparity tuning curve has been appropriately captured,

which is generally the case in our data). We can compute the model tuning strength separately

for correlated and anticorrelated responses, yielding a metric for how well a GBEM unit is able to

capture the shape and magnitude of the cell’s disparity tuning for correlated and anticorrelated

stimuli. Figure 3.6b shows the anticorrelated model tuning strength on the vertical axis, and the

correlated model tuning strength on the horizontal axis. The vast majority of cells in this plot

lie above the diagonal, suggesting that the GBEM is better able to capture the anticorrelated

responses than the correlated ones. This was confirmed by a paired samples t-test comparing the

anticorrelated model tuning strength (M = 0.52) against the correlated model tuning strength

(M = 0.32): t(94) = 5.90, P < 10−7. The fact that points generally lie below 1 for both correlated

and anticorrelated stimuli means that the models underpredict the strength of disparity tuning for

both correlated and anticorrelated stimuli. However, the magnitude of the model failure is notably

greater for correlated stimuli compared to anticorrelated stimuli.

The previous analysis confirms that the correlated responses of the cells are more problem-

atic for the GBEM than anticorrelated responses. This is noteworthy since it suggests that the

established way of thinking about the shortcomings of the BEM – that it is not able to capture

the anticorrelated response – is incorrect. Instead, real neurons tend to have a larger response to

candidate true matches at one specific preferred disparity, which neither the BEM nor its general-

isation (the GBEM) is able to capture.

While the previous analysis shows that the GBEM units are failing to capture the correlated
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Figure 3.6: The relative anticorrelated response for the model against the relative anticorrelated
response for the cell. The dashed black line shows the identity line, while the dashed cyan line
shows the prediction of the BEM (perfect inverted tuning curve to anticorrelated). b) The model
tuning strength for the anticorrelated tuning curve, against the same for the correlated tuning
curve. The dashed black line again shows the identity line, and the red square marker shows the
point of perfect model fit. Cells which produce poor GBEM fits (< 30% accounted for variance in
the disparity tuning curve) are shown in gray in both plots.

responses, it is unclear from this whether the anticorrelated responses also contribute significantly

to the model failure. The results in Figure 3.6 are consistent with the idea that both the anti-

correlated and correlated responses systematically contribute to the model failure, but to different

extents. In order to explore this question, we investigated whether the failure of the GBEM to cap-

ture the relative anticorrelated response in real cells was related to the model tuning strength for

correlated and anticorrelated responses. Figure 3.7a shows the model tuning strength for correlated

responses against the relative anticorrelated response in the cell. There is a strong negative corre-

lation between the two (r = −0.58, p < 10−9, Pearson’s r). That is, the disparity tuning curves for

correlated stimuli are systematically captured less well for cells which show stronger attenuation

to anti-correlated stimuli. Figure 3.7b shows the equivalent plot for the model tuning strength to

anticorrelated responses. This relationship is weaker, but significant (r = −0.34, p = 0.001). In-

terestingly, the effect in Figure 3.7b is largely due to cells such as jbeM060c9 which fail to account

for the disparity tuning curve of the real cells. These are shown highlighted in gray and largely

cluster in the bottom right of the plot. Excluding cells with bad fits (e.g. those that can account

for less than 30% of the variance in the cell’s disparity tuning curve, gray circles in Figure 3.7b),

makes the relationship non-significant (r = −0.19, p = 0.13). The results in Figure 3.7a remain

highly significant (p < 10−7) when excluding poor fits. Taking the results of Figure 3.6 and 3.7

together suggests that “attenuated anticorrelated response” is the wrong way to think about the

response properties of disparity-selective cells. Instead of “attenuated anticorrelated response”,

real neurons show “correlated boosting”: that is, they have an amplification of their response to

candidate true matches (correlated stimuli at the preferred disparity of cell) rather than an at-

tenuation or suppression of false matches per se. This amplification is largely responsible for the
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failure of the GBEM to capture the disparity tuning curve of real cells.

Figure 3.7: Correlated (a) and anticorrelated (b) tuning curve slope plotted as a function of the
cell’s relative anticorrelated response. Tuning curve slope quantifies how well the magnitude of
disparity tuning in the cell is captured by its GBEM fit, and this can be computed separately for
the correlated and anticorrelated tuning curves. While the model’s correlated tuning strength is
significantly related to the cell’s anticorrelated slope (a), the model’s anticorrelated tuning strength
(b) is not. In other words, a cell’s magnitude of anticorrelated attenuation (i.e. its relative
anticorrelated response) is predictive of whether the correlated response will be well-described by
a GBEM unit. Cells which produce poor GBEM units (< 30% variance accounted for in the
disparity tuning) are shown in gray.

3.3.4 Binocular Gaussian noise

The most comprehensive attempt at directly modelling disparity-selective cells in V1 by learning

model parameters from data was performed by Tanabe & Cumming (2011). In order to retrieve the

linear filters for each subunit, the authors first performed a spike-triggered analysis of covariance,

and then optimised the nonlinearities for each subunit. In principle, this approach should give very

similar results to the analysis we show here. It is noteworthy then that Tanabe & Cumming (2011)

found no relative anticorrelated response in their model cells when tested on 1D line patterns,

where the real neurons exhibited strong relative anticorrelated response. The key differences be-

tween that paper and the current work are 1) the method of model estimation, 2) different stimuli

due to the requirements of their spike-triggered covariance method, and 3) the duration of each in-

dividual noise pattern (10ms in Tanabe & Cumming, 2011; 30ms in the present work). Specifically,

the spike-triggered analysis of covariance approach used by Tanabe & Cumming requires a white

noise stimulus which is independent in the two eyes. The consequence of using independent noise

in the two eyes is that there are very few frames with extreme binocular correlation values (e.g.

close to -1 or 1). Interestingly, the authors showed that when the cells were tested on the same

independent noise patterns with which the models were fit, the cells did not exhibit systematic

attenuation to anticorrelation either. It is then perhaps not surprising that the model units did

not reproduce the anticorrelated attenuation in the cell, since these nonlinearities were not evident
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in the data on which the models were fit [Tanabe et al., 2011b].

An independent test of our GBEM units is then to explore whether they can reproduce this

characteristic feature of real cells highlighted by Tanabe & Cumming (2011). The stimulus used

to fit the GBEM is very similar to the RLS stimuli used by Tanabe & Cumming to construct

their attenuated tuning curves, so we know that the model units express relative anticorrelated

response (or more appropriately, correlated boosting) in this case. Thus, the critical test is whether

our model units also express an absence of that attenuation to independent binocular Gaussian

noise. The procedure for calculating disparity tuning curves from independent noise data was

the same as in Tanabe & Cumming (2011) and is documented in the Methods section. Figure

3.8a shows a tuning curve computed using Tanabe & Cumming’s independent noise stimulus for

the example GBEM unit shown in Figure 3.3a (jbeM012c7). While the model unit previously

showed clear relative anticorrelated response (M=-0.74, 95% CI: [-0.85, -0.63]), this is now not

significantly different from -1 (M=-0.95, 95% CI: [-1.08,-0.82]. We can summarise this across the

population by plotting the relative anticorrelated response to the 1D RLS stimulus against the

relative anticorrelated response to the independent Gaussian noise stimulus (Figure 3.8). Just as

in Tanabe & Cumming (2011), our model units cluster around -1 (no attenuation), and at the

population level is not significantly different from -1 (t(94) = 1.53, p = 0.13). Thus, our model

units readily capture both the attenuated anticorrelated response/correlated boosting exhibited

by real cells to 1D RLS stimuli, and also the absence of that attenuation in independent Gaussian

noise.

Figure 3.8: The predicted disparity tuning curve of cell jbeM012c7 in response to binocularly
uncorrelated Gaussian noise (using forward correlation as in Tanabe et al), based on the GBEM
fit. The tuning curve of the cell and its GBEM fit to 30ms 1D noise stereograms are shown in
Figure 3.4c and d, respectively, where strong attenuation is present. Note that this attenuation
is not present in model responses to binocularly uncorrelated Gaussian noise. b) The population
summary for all GBEM units. The relative anticorrelated response to 1D noise is shown on the
horizontal axis, and the relative anticorrelated response to Gaussian noise is shown on the vertical
axis.
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3.4 Discussion

The binocular energy model has been enormously successful in capturing a range of properties of

disparity-selective cells. One prominent success is its ability to account for the inverted tuning

curves for anticorrelated stimuli [Cumming and Parker, 1997]. However, a complete account of the

relatively weaker response to anticorrelated stimuli reported by Cumming & Parker (1997), and

thus a complete model of disparity encoding by V1 neurons, has remained elusive. In response to

this, a range of modified BEM units have been proposed [Nieder and Wagner, 2000, Read et al.,

2002, Tanabe and Cumming, 2008, Tanabe et al., 2011a, Tanabe et al., 2011b, Samonds et al.,

2013, Henriksen et al., 2016a, Goncalves and Welchman, 2017], but it is unclear which, if any, of

these model frameworks can account for neuronal activity in V1.

In this paper, we made use of developments in optimisation routines which allowed us to fit

the components of generalised binocular energy model units to spiking data from V1. The data

was generally well-described by the model units, confirming that this class of models can serve as

a model of first approximation. However, even the best-fitting models underestimated the magni-

tude of the correlated response at the preferred disparity of the cell. It is important to note that

this is not simply a failure of the fitting procedure, such as a failure to find the global maximum

likelihood. Although it is possible to create disparity tuning curves by hand that better capture the

cells’ tuning curves, the GBEM was not optimised for fitting the actual tuning curves themselves.

Rather, the GBEM finds a model which can best map image sequences to firing rates, and in doing

so captures temporal and monocular dynamics, as well as binocular interactions.

We observed that the tendency for the GBEM to underestimate the correlated response was

related to how much response attenuation the cell exhibited: cells that show relatively weaker

modulation to anticorrelated stimuli were fit more poorly by our model framework. However, this

was specific to the correlated responses. In other words, when cells had very large correlated re-

sponses relative to anticorrelated responses, the model failed to capture the correlated response

to a larger degree than the anticorrelated response. This strongly suggests that disparity-selective

V1 cells have a specialised mechanism for strengthening the response of candidate true matches,

which likely does not originate from a standard linear-nonlinear cascade. We call this mechanism

correlated boosting.

Previous work has expanded on the BEM to account for the relatively weaker anticorrelated

responses in three separate ways. The first and simplest is by simply appending an output non-

linearity to the BEM. This is by far the most common method for generating anticorrelated at-

tenuation (e.g. [Nieder and Wagner, 2000, Read et al., 2002, Henriksen et al., 2016a]), but there

has been little evidence showing that this is the actual explanation. Read et al. (2002) pointed
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out that this explanation does not work for odd-symmetric cells since the correlated and anticor-

related responses are equally affected by the output nonlinearity in this case (thus there is no way

to selectively attenuate the anticorrelated responses, or more appropriately, to selectively boost

the correlated responses). Notably, a simple output exponent can be easily approximated by the

thresholded square nonlinearity on the subunits in the GBEM (Figure 3.9). Thus, if an output

nonlinearity was the correct explanation, our modelling approach would have revealed it.

Figure 3.9: Illustration of how a thresholded square can approximate an arbitrary output exponent.
The black line shows g(x) = xγ for γ = 4, 6, and 8 in plots a, b, and c, respectively. The red line
shows the nonlinearity f(x) = αPos(x− θ)2, where values of α and θ were fit to minimise the sum
squared error for each plot. α is a scalar which simulates the effect of the filter coefficients (though
it is outside the nonlinearity in this case for simplicity), and θ corresponds to the threshold. In
each case, the thresholded square is readily able to capture the steepness of the high exponent
nonlinearity. Not shown is γ = 2 since this is trivially captured by the rectified square by setting
α = 1 and θ = 0.

The second approach for generating anticorrelated attenuation is to use multiple binocular

subunits with different disparity tuning. This method was introduced by Haefner & Cumming

(2008). To produce odd-symmetric model cells that have attenuated responses to anticorrelated

stimuli, this model uses two subunits which are both even-symmetric with an output nonlinear-

ity, tuned to different disparities. If two such subunits feed into a complex cell, one exciting the

cell and one suppressing it, the complex cell will have odd-symmetric disparity tuning with anti-

correlated attenuation. Again, if this was the correct explanation, then the GBEM fitting procedure

should have come up with such model cells. Interestingly, for cells with odd-symmetric tuning,

the resulting GBEM consistently had binocular subunits which themselves had odd-symmetric

tuning. If the two-subunit (2SU) model by Haefner & Cumming (2008) was a correct description

of odd-symmetric disparity tuning, then the model should have recovered subunits with offset,

even-symmetric disparity tuning. This is therefore the first evidence that odd-symmetric disparity

tuning of V1 neurons does not generally arise through this type of 2SU-type architecture.

The third approach was pioneered by Samonds et al. (2013), where they used a recurrent net-
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work made up binocular energy model-like units. The authors found that anticorrelated response

attenuation can be accounted for by such models. Recurrent models are interesting because they

can easily model a range of complex phenomena known to operate in cortex. For example, feed-

forward models such as the GBEM are not ideal for modelling complex temporal dynamics. In

contrast, Samonds et al. (2013) used their recurrent binocular network to successfully model the

sharpening of disparity tuning over time [Samonds et al., 2009, Samonds et al., 2013]. Recurrent

models are particularly promising given the recent success of recurrent neural networks in match-

ing or exceeding human performance on a range of complex visual tasks, such as image captioning

[Vinyals et al., 2014] and object recognition [Liang and Hu, 2015]. Cells with recurrent connections

remain a strong potential candidate for accounting for disparity tuning in real cells. However, this

explanation has not yet been tested in real V1 neurons.

A model framework which has been much less explored is incorporating nonlinearities on the

monocular filter responses. Read et al. (2002) successfully described the tuning curves of a num-

ber of V1 neurons by creating models which incorporated a rectified squaring prior to binocular

combination. While the GBEM can readily generate such monocular subunits, it is greatly limited

in its ability to easily capture complex binocular interaction between the subunits. This is because

monocular subunits in the GBEM can only interact through the final (softplus) spiking nonlin-

earity, which is much less flexible than the thresholded square used on the individual subunits.

Interestingly, we observed several cells which had very dominant monocular responses (i.e. the

values of the filter coefficients of one eye were much greater than in the other eye), and whose dis-

parity tuning was poorly accounted for by the GBEM. One possibility is that another architecture,

such as that proposed by Read et al. (2002) is better able to account for the responses of such cells.

A fifth possibility is that incorporating models with pairwise nonlinearities might be able to

capture a range of complex dynamics. For example, a cell whose final spiking nonlinearity is a

thresholded AND gate, i.e.

F (g1, g2) =

g1 + g2 if g1 > θ1 and g2 > θ2,

0 otherwise,

(3.5)

could potentially display the correlated boosting effect given appropriate subunits. Similar non-

linearities have been explored in relation to contrast normalisation [Simoncelli and Heeger, 1998,

Carandini and Heeger, 2012], but little attention has been given to these types of computations in

the disparity domain.

A final possibility is that adding layers to the GBEM framework will allow the model to learn

more complex models which still generalise well to unseen data. Indeed, one of the remarkable
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features of deep convolutional neural nets is their ability to learn complex, nonlinear features from

unstructured data [LeCun et al., 2015]. It is well-known that given enough subunits, even models

such as the GBEM can in principle approximate any arbitrary function [Hornik, 1991]. However,

if the model is not a good approximation of the underlying generative process, then the learned

model parameters will fail to generalise to new, unseen data. For a deep generalised binocular

energy model framework the question therefore becomes whether such a model can 1) provide a

compact account of disparity-selectivity in cortex, and 2) help illuminate the mechanisms which

gives rise to interesting properties of real cells. Deeper binocular models (i.e. with 2 or more

“hidden layers”) are a promising avenue for future research.
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Chapter 4

Response variability in disparity-selective cells

4.1 Introduction

Chapters 1 and 2 [Henriksen et al., 2016a, Henriksen et al., 2016c] examined how response vari-

ability in the binocular energy model can get converted into a mean rate change through an output

nonlinearity. The choice of output exponent was a squaring because squaring gives a clear algebraic

dependence on variance (i.e. E[X2] = (E[X])2 + Var[X]). Interestingly, Chapter 3 showed how

an output exponent cannot be the right explanation for the characteristic boosting of correlated

responses at the preferred disparity of the cell, since the subunits can easily approximate any arbi-

trary output exponent (see Figure 3.9). Thus, if this was the explanation, the GBEM would have

recovered such subunits.

Response variability is an aspect of neuronal computation in disparity-selective cells that has

been largely overlooked. The response variability of the cell can be separated into two components:

internal (or intrinsic) variance and external (or stimulus-driven) variance. The internal variance is

simply the variability in firing which cannot be accounted for by changes in the stimulus. Neurons

appear to exhibit strong stochastic properties, and so will not generally repeat the same identical

set of spikes even though a sequence of stimuli is repeated exactly. Commonly, the spiking process

is modelled as a Poisson process, which has a Fano Factor (variance divided by mean) of 1. The

external variance of the cell is the variance in firing which is associated with changes in the stimulus.

Equivalently, it is that variance which is not stochastic variability. The total variance of the cell

can be written as a sum of the two

Vartotal[R] = Varint[R] + Varext[R]. (4.1)

Here, Vartotal[R], Varint[R], and Varext[R] refer to the total, internal, and external variance, re-

spectively. External or stimulus-related response variability is a particular challenge for a system

trying to decode information about the disparity of an image, independent of the scene content. In

the case of the random-dot stereograms used throughout this thesis, the observer has to correctly

extract the disparity of the stereogram while ignoring the particular pattern of dots. Even if a V1

87
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cell is highly disparity-tuned, it may carry relatively little information about disparity, independent

of dot pattern, if its external variance is also high In Chapter 1 and 2, it was the external variance

of the binocular energy model that carried the disparity signal which ultimately allowed a BEM

unit with an output nonlinearity to signal disparity in its mean rate.

External variance has received very little attention in the disparity domain. The notable excep-

tion is the work by Burge & Geisler (2014) who created so-called “log likelihood” model neurons.

These model units are a special case of the GBEM, and modulate their firing rate in proportion

to the log likelihood of the disparity given the stimulus. Consequently, these model units have

very little external variance and can encode disparity in a statistically optimal manner [Burge and

Geisler, 2014]. However, perfect disparity encoding comes at a cost: neurons that encode disparity

perfectly will have to ignore variability in the stimulus other than disparity. Real neurons are

unlikely to be log likelihood neurons since disparity-selective cells also modulate their firing in re-

sponse to other features of visual stimuli, such as contrast, orientation, spatial frequency content,

and so on. Despite the fact that understanding external variance has clear implications for under-

standing disparity encoding and the stereo correspondence problem, so far, no one has explored the

character of external variance in disparity-selective cells. In this chapter, we first derive theoretical

properties of the BEM’s external variance, and show that in the BEM, the external variance is

proportional to the square of the mean spike count. We then show data from a procedure which

is able to decompose the total response variance of real cells into external and internal variance

(as in Equation 4.1). These results show that the predictions of the BEM are in fact qualitatively

met: real cells do modulate their external variance with mean spike count. However, in real cells,

this relationship is linear, not quadratic. Lastly, we perform simulations using the model GBEM

units fitted in Chapter 3 and show that although the added flexibility of the GBEM allows the

model units to better capture the linear dependence of the external variance, the GBEM units

underpredict the overall external variance in the real cells.

4.2 Methods

4.2.1 GBEM units and cells

The data used in the present analysis was a subset of the data reported in Chapter 3. Out of the 95

disparity-selective cells in Chapter 3, 75 cells were recorded using the two-pass procedure described

below and were included in the analysis. The GBEM units were the same as those recovered in

Chapter 3 and all model responses were cross-validated as in Chapter 3.
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4.2.2 External variance and the two-pass procedure

In order to compute the external variance, we record the responses of neurons in response to two

identical trials. We define the internal variability for a given disparity and correlation as

Varint(R) =
1

2N

N∑
i

(R
(1)
i −R

(2)
i )2. (4.2)

Here, R
(1)
i and R

(2)
i refer to the spike count on the first and second pass of the ith stimulus

sequence. N is the total number of unique stimulus sequences (and 2N is therefore the total

number of trials). Thus, R
(1)
i and R

(2)
i denote the responses to two identical stimulus sequences.

If there was no internal variance in the cell, then R
(1)
i = R

(2)
i ∀i, and so the internal variance

(Equation 4.2) would be zero. In such a case, all the response variance of the cell would be

external variance. When neuronal spiking is not entirely determined by the stimulus sequence (as

is generally the case in mammalian cells), we can obtain the external variance by subtracting out

the internal variance from the total variance.

Varext(R) = Vartotal(R)−Varint(R). (4.3)

For completeness, the total variance is

Vartotal(R) =
1

2N − 1

N∑
i

[
(R

(1)
i − R̄)2 + (R

(2)
i − R̄)2

]
(4.4)

. R̄ refers to the mean rate for a particular disparity and correlation.

As in Chapter 3, we computed the spike count associated with a particular frame by computing

the number of spikes in a 30ms window centred around tmax. tmax is the time at which the where

the variance across disparities is maximal.

4.3 Results

4.3.1 The binocular energy model

The response of the binocular energy model to any given stimulus can be compactly summarised

as

C = (L1 +R1)2 + (L2 +R2)2, (4.5)

where L and R refer to the left and right eye responses and the subscripts refer to the two binocular

subunits of the BEM. The two subunits are constructed such that the receptive fields which give

rise to the responses L1 and L2 are 90◦ out of phase (i.e. they form a quadrature pair), giving

statistically independent responses (and equivalently for R1 and R2). Unless we introduce either
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a stochastic process (e.g. Poisson spiking) or a hidden variable (e.g. an internal gain parameter

[Goris et al., 2013]), all variance in the model response will be external variance.

In general, for spatiotemporal receptive fields, and in non-natural stimuli (e.g. random dot

stereograms), the distribution of the monocular filter responses (L1, R1, L2, R2) will be Gaussian.

The mean response of the filter depends on the characteristics of the filter and the stimulus, but

for stimuli which have on average an equal number of black and white pixels, the mean is 0 by

convention. In studies which look at natural images, luminance and contrast normalisation is

generally performed prior to feeding the images into the model [Burge and Geisler, 2014]. The

sum of two normal random variables - L and R - with zero mean is simply another normally

distributed variable with zero mean and variance depending on the covariance between L and R.

We can write B = L+R, and rewrite Eq 4.5 as

C = B2
1 +B2

2 . (4.6)

We can now see that the distribution of C is simply the sum of two independent squared random

variables. If the binocular responses B1 and B2 both had unit variance, this would simply be a

χ2-distribution with 2 degrees of freedom:

C ∼ χ2(k = 2) =
1

2k/2Γ(k/2)
xk/2−1 exp(−x/2) =

1

2
exp(−x/2). (4.7)

As shown, when k = 2, this reduces to an exponential distribution. In general, Var(B) =

Var(L + R) 6= 1. The effect of disparity and correlation is to change the variance of B, which

in turn gives rise to the mean change in C. Importantly, the variance of B is affected by the

covariance of L and R. This is because

Var(L+R) = Var(L) + Var(R) + 2Cov(L,R), (4.8)

and so the BEM is actually computing the covariance between the left and right eye responses.

Note that for half-matched stereograms, such as those used in Chapter 1 and 2, the covariance

term is larger for half-matched stimuli at the preferred disparity. Indeed, in general, the disparity

tuning arises by changes in the covariance between L and R. However, changing the variance of

B does not change the nature of the distribution: as we change the correlation and disparity, we

effectively change the length constant of the exponential distribution, but the BEM distribution

will remain an exponential so long as Var(B1) = Var(B2). In fact, this will often not be true. In

the general case, the response distribution of the BEM is the sum of two squared normal random

variables with different variances, whose analytical form can be derived [Moschopoulos, 1985], but

is much less straightforward. The variances of the filter responses will generally not be widely

different, and so the exponential approximation in Equation 4.7 is a useful simplification. As a
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purely empirical observation, the BEM distribution is very nearly exponential for all disparities.

One of the properties of the exponential distribution is that the variance is equal to the square of

the mean. Thus, for all disparities,

E[C]2 ≈ Var[C]. (4.9)

The BEM therefore makes the rather remarkable prediction that the spike count variance should

increase with the mean spike count (and specifically with the mean spike count squared).

Our stimulus was a 1D dynamic random line stereogram (see Methods for details), and the

tuning curves were computed by forward correlation using a 30ms window around the peak re-

sponse of the model unit. Figure 4.1 shows the disparity tuning curve (a) with the corresponding

external and internal variance (b and c) for an example BEM unit. The model cell was shown a

dynamic RLS, where a new stereogram with a different disparity and correlation was presented

every 30 ms. In order to summarise the dependence of the variance on the spike count, we fit a

scalar slope term to the variances. For the internal variance, there is a clear linear dependence,

as dictated by the Poisson spiking in the model (the slope is guaranteed to be exactly 1.0). For

external variance, there is a quadratic relationship between spike count and external variance, as

our derivation above shows. Naturally, this quadratic relationship is not well described by a simple

scaling of the mean spike count.

4.3.2 Example neurons

In order to explore the above prediction in real cells, we recorded neuronal spiking data from 75

V1 neurons in the macaque visual cortex. The full procedure is documented in Chapter 3. Briefly,

the stimulus was a sequence of 1D noise patterns which could either be binocularly correlated or

anticorrelated at a range of disparities, or uncorrelated. Each frame was on the screen for 30 ms,

and were presented in 3s trials. Disparity tuning curves were computed by summing the number

of spikes observed in a 30 ms window, centred on the maximum disparity-related response of the

cell. We compute the external variance by subtracting the internal variance from the total variance

within a disparity (see Equations 4.2 and 4.3) Figure 4.2a shows the tuning curve of an example

cell (lemM326c7). Figure 4.2b and c plot the external and internal variance, respectively, in the

same format. Two points are worth noting. First and foremost, the BEM prediction that external

variance should increase with firing rate clearly holds as the external variance follows the mean

spike count very closely (Figure 4.2b). Second, whereas the BEM predicts that the relationship

between external variance and mean spike count should be quadratic, Figure 4.2d shows that

this relationship can be adequately described by a linear relationship 4.2. In other words, in this

particular cell, variance increases linearly with firing rate.

The linear relationship between mean spike count and external variance is very consistent in
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Figure 4.1: A binocular energy model unit’s response to a random dot stereograms. a) The disparity
tuning curve computed through forward correlation in a random line stereogram. b) The external
variance as a function of disparity; as per the derivation above the external variance is proportional
to the square of the mean spike count. c) The internal variance for the BEM unit, which simply
reflects Poisson spiking (i.e. so that internal variance is equal to the mean spike count). d) External
and internal variance plotted as a function of the mean spike count. Regression lines are computed
without allowing an offset, such that when the mean spike count is 0, both variances must also be
0. While the external variance is quadratically related to the mean spike count, internal variance
is linearly related to it due to Poisson spiking.

Figure 4.2: a) Disparity tuning curve for cell lemM326c7. External variance (b) and internal
variance (c) are also shown for the same cell. d) External and internal variance plotted as a
function of mean spike count. In contrast to the BEM (Figure 4.1), lemM326c7’s external variance
can be well described by as a linear function of the mean spike count.
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Figure 4.3: a) Disparity tuning curve for jbeM056c5. External variance (b) and internal variance
(c) are also shown for the same cell. d) External and internal variance plotted as a function of
mean spike count. As with lemM326c7 (Figure 4.2), this cell’s external variance can also be well
described by as a linear function of the mean spike count.

real cells. Figure 4.3 shows another example cell which demonstrates this relationship.

4.3.3 Generalised binocular energy model units

The binocular energy model imposes tight constraints on the form that a given model neuron can

take. These constraints give rise to the prediction that the external variance should be quadrati-

cally related to the mean spike count. However, in the GBEM, the final spike rate reflects the sum

of multiple subunits, some of which may be suppressive. Thus, the GBEM is not constrained to

have a quadratic relationship between mean spike count and external variance. Testing whether

external variance can be well described by the GBEM represents a novel and challenging test for

the GBEM framework. It will also allow us to understand whether such model neurons capture

the range of stimulus selectivity seen in real cells.

To explore this, we used the models fitted in Chapter 3. Note that these models were fitted

such that when a trial was repeated for the two-pass procedure, both passes were put either in the

validation set or in the training set. This was done to maintain independence between the training

and validation sets, ensuring that the external variance is calculated completely on unseen data.

Figure 4.4 shows a GBEM unit for cell lemM326c7 (Figure 4.2). In this model unit, the external

variance follows the mean spike count (Figure 4.4), as in the real cells and the BEM. However,

visually, the external variance appears to be neither as linear as the real cells, nor as quadratic as

the BEM (Figure 4.4b and d).
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Figure 4.4: A GBEM unit fit to cell lemM326c7. a), b), and c) The mean spike count, external
variance, and internal variance, respectively, all as a function of disparity. d) External and internal
variance as a function of mean spike count.

Across the population, this is a weak, but systematic effect. In fitting the external variance

as either a linear or quadratic function of the mean spike count, we find that 47/75 (63%) of the

cells are best described as a linear function of the mean spike count (defined as where R2 for the

linear model is greater than R2 for the quadratic model). This contrasts with the GBEM units

where 32/75 (43%) are best described as a linear function of the mean spike count. The effect is

significant for the cells, comparing the median R2 for the linear model (median=0.82) to that of

the quadratic model (median=0.78), Z = 2.98, P = 0.003 (Wilcon signed sum rank test). For the

GBEM, there was no significant difference between the linear (median = 0.81) and the quadratic

(median = 0.82) models, Z = −1.12, P = 0.23. Although the effect in Figure 4.4 is visually

compelling, the relationship between external variance and mean spike count is often noisy for a

given cell, even though it appears systematic across cells. Taken together, these results suggest

that the GBEM goes some way towards capturing the linear dependence of external variance on

mean spike count that is observed in real neurons.

We next turn our attention to comparing the external variances between the cell and the model.

By superimposing the external variance of a GBEM unit onto that of the real cell, we can get a

better sense of the GBEM’s performance in capturing the underlying response statistics of the cell.

Figure 4.5a shows the cell and the GBEM superimposed for the mean spike count, and Figure 4.5b

shows the same for the external variance. For the external variance, we can see two key features:

1) the amplitude of the external variance modulation with disparity is larger in the real cell than

in the GBEM, and 2) there is a vertical shift in the external variance for the GBEM.
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Figure 4.5: The mean spike count and external variance of cell lemM326c7 with the corresponding
curves for its GBEM fit superimposed. The mean spike count (a) shows the effect of failing
to capture the mean rate reported in Chapter 3 (correlated boosting). The external variance
in the GBEM qualitatively mirrors the external variance in the cell, but there is a quantitative
disagreement between the two.

4.3.4 Population summary

Given the known failure of the GBEM to capture the correlated response, it is likely that the smaller

amplitude of the external variance reflects the same underlying failure. In order to quantify this

effect, we plot the model tuning strength from Chapter 3 – the regression slope between model

response and cell response – and the corresponding metric for external variance (i.e. the regression

slope between the model external variance and cell external variance). We call this latter metric

simply the external variance (EV) slope. As with the model tuning strength, if the EV slope is

1, it means that the magnitude of change in the external variance is perfectly captured by the

model. On the other hand, if the EV slope is 0, it means that the model does not capture any

of the disparity-related external variance modulation seen in the real cell. Importantly, if the

failure to capture the amplitude of the external variance is due to the same underlying failure

that is seen in the mean spike count (i.e. correlated boosting), then the model tuning strength

and the EV slope should be positively correlated. Figure 4.6a shows these metrics plotted against

one another for the population of cells. There is a clear and very significant relationship between

the two (r = 0.6, P < 10−5, Spearman correlation). This provides compelling evidence that

the underestimate of the disparity-related modulation in external variance is due to the same

mechanism which gives rise to the correlated boosting of the mean spike count. However, there is a

second feature of the external variance in the GBEM which cannot be accounted for by correlated

boosting. Indeed, this is evident in Figure 4.5 since the GBEM captures the mean spike count at

all disparities except the preferred disparity of the cell (i.e. correlated boosting), but the external

variance is underestimated for all disparities. Thus it is unlikely that the correlated boosting

mechanism is responsible for the failure to capture the average external variance. To quantify the

prevalence of external variance underestimation, we computed the average external variance for

each cell and for its GBEM fit only on the uncorrelated responses. This allows us to examine

the average external variance for data where the correlated boosting mechanism does not operate.



96 CHAPTER 4.

Figure 4.6: External variance slope plotted as a function of the model tuning strength. External
variance slope is defined as the regression slope between external variance in the model and external
variance in the cell. An external variance (EV) slope of 1 therefore means that the model is perfectly
able to describe the magnitude of changes in external variance in the cell. Model tuning strength
is as defined in Chapter 3 and is the regression slope between the mean spike count in the model
and that in the cell. As with the EV slope, a model tuning strength of 1 means that the model
is perfectly able to describe the disparity tuning curve of the cell. If the failure of the GBEM to
capture changes in external variance with disparity can be accounted for by the GBEM’s inability
to capture changes in mean spike count with disparity, then there should be a positive correlation
between EV slope and model tuning strength.

Comparing the average external variance of the cell to that of the GBEM, we see that in 70/75

cases, the cells had a higher external variance to uncorrelated stimuli. The average ratio of model

external variance to cell external variance was 0.65, meaning that the model external variance was,

on average, 65% that of the cells. We confirmed that this difference in the external variance was

significant with a Wilcoxon ranked sum test, Z = 6.57, P < 10−10.

4.4 Discussion

Compared to the mean rate of disparity-selective cells, the variability in response owing to stimu-

lus variation has received very little attention. In this chapter, we have examined the theoretical

properties of the binocular energy model (BEM) and showed that the BEM predicts a quadratic

dependence of the external variance on the mean spike count. Recording from neurons in V1, we

showed that BEM prediction is qualitatively borne out in real cells - V1 neurons do modulate their

external variance with mean spike count. However, they do so linearly as opposed to quadratically

as in the BEM. Using the GBEM units from Chapter 3, we showed that many of the best-fitting

GBEM fits share the properties of the BEM: their external variance can often be better described

as a function of the mean spike count squared rather than the mean spike count. Lastly, we showed

that GBEM units quantitatively fail to capture two elements of the external variance: the magni-

tude of disparity-related modulation and the baseline external variance seen in real cells.
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The latter two failures represent challenges to the GBEM framework. The result that failure

to capture the external variance is related to the correlated boosting is intuitive: if the external

variance increases with mean spike count, then we would expect that a failure to capture the mean

spike count should result in a failure to capture the external variance. Thus, it seems likely that

solving the question of correlated boosting should also resolve the issue of external variance near

the preferred disparity of the cell. The second result that the GBEM has a lower baseline external

variance than the cell (even to uncorrelated stimuli) is more puzzling. One possibility is that the

noise model used in our GBEM units is inappropriate for the cells. However, internal variance

is generally higher in real cells than assumed by Poisson spiking (i.e. Fano Factor is generally

greater than 1), and so it is unclear how this would in turn cause lower external variance in the

GBEM units. Lower external variance means that the cells have a much stronger selectivity for

certain aspects of the stimulus compared to the GBEM units. The fact that the cells have higher

external variance than the GBEM units means that they are responding more to some stimuli, and

less to others, than predicted by the model. Since all stimuli are binocularly uncorrelated, this

must be due to an aspect of the stimulus other than disparity. One interpretation is that, just as

the cells show “correlated boosting” leading to greater than predicted responses to their preferred

disparity, they also have other mechanisms which boost their responses to other stimulus features,

perhaps some particular pattern of contrast for example. Understanding what these stimulus fea-

tures are would represent an initial step for developing better models of stimulus encoding in cortex.

One assumption made by our modelling framework is that neuronal spiking is a stochastic Pois-

son process. A Poisson process constrains the internal variance to be equal to the mean spike count.

It is, however, well-known that real neurons are generally super-Poisson, i.e. variance commonly

exceeds the mean spike count, but rarely goes below it. It is unclear what the exact implication

of this violated assumption is on the external variance. That being said, it seems unlikely that

the systematically lower internal variance from Poisson spiking would cause a systematically lower

external variance in the cells.

In the context of disparity-selective cells, external variance represents selectivity for stimulus

features other than disparity. Neurons multiplex signals in this way in order to encode a rich rep-

resentation of the stimulus. However, this multiplexing puts a fundamental limit on the amount of

information which any one V1 neuron can transmit about disparity. Interestingly, in this scheme,

the BEM is a poor disparity detector. This is because for a given mean rate, the exponential

distribution is the maximum entropy distribution in the range [0,∞) (Park & Bera, 2009). This is

noteworthy since it means that within each disparity, the BEM is encoding the maximum amount

of information about the stimulus. However, this necessarily means that encoding the disparity

of the stimulus is limited as information about disparity is prone to be confused with information

about other aspects of the stimulus. At the level of individual cells, external variance therefore rep-
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resents a substantial problem for decoding disparity. However, it is possible to construct schemes

that can effectively cancel out part of this variability. For example, a standard BEM which also

receives suppressive inputs from its monocular subunits can end up with a response which depends

purely on the binocular interaction term. Such a model’s response is simply C ′ = 2L1R1 + 2L2R2,

and will be better able to decode disparity compared to the BEM. A similar point was noted by

Burge & Geisler (2014), who showed that it is possible to create statistically optimal disparity

detectors using a relatively modest number of LN subunits. These model units are termed log

likelihood (LL) neurons as they modulate their response with the (log) likelihood of the neuron’s

preferred disparity given the stimulus. Such neurons respond with very little variability to a par-

ticular disparity, allowing the disparity to be decoded with a high degree of certainty. In this

chapter, we have shown that V1 neurons exhibit very high external variance – in fact much higher

external variance than the best-fitting GBEM units. This means that V1 cells are not LL neurons.

However, although there is no evidence that such neurons exist in V1, it is possible that neurons

very similar to LL neurons exist in higher cortical areas (e.g. IT).
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General discussion and future directions

The current view of the early stages of stereopsis is that disparity is initially encoded by locally

filtering the images in the two eyes, and then computing something very similar to a binocular

cross-correlation [Qian and Zhu, 1997, Fleet et al., 1996]. This binocular cross-correlation com-

putation was originally represented by the BEM and has been hugely successful in accounting for

a range of properties of both disparity-selective cells in V1 and psychophysical performance in

humans. The success of the BEM has meant that it is often the first step in modelling percep-

tion/behaviour. For example, stereo resolution (i.e. the smallest disparity change that can be

detected) is much worse than luminance resolution (i.e. the smallest luminance change than can

be detected). Nienborg et al. (2004) showed that V1 neurons with larger receptive fields have

lower stereo acuity. These results agreed well with the predictions of the BEM, which proposes

that the envelopes of the linear filters constrain the smallest disparity change that can be de-

tected. Importantly, when studying complex stimuli such as dynamic random dot stereograms,

V1 neurons are modelled using early-stage spatiotemporal linear filters, and so the BEM makes

predictions about the detectability of disparity changes in space as well as in time [Nienborg et al.,

2004]. Subsequent studies have found compelling evidence that both the low spatial and temporal

resolution of stereo vision (compared to resolution in the luminance domain) is due to the con-

straints imposed by the linear filtering stage, as predicted by the BEM [Banks et al., 2004, Kane

et al., 2014, Allenmark and Read, 2012]. Thus, in the case of stereo resolution, the BEM provides a

useful simplification which can provide meaningful insights into neuronal and perceptual processes.

However, despite these successes, the correlation-based view of early stereo vision can also be

misleading. Recent experiments by Doi et al. (2011,2013) have brought into question the ability of

a correlation-based view to account for disparity computations in cortex. Specifically, the authors

argued that an additional match-based computation is required to account for the psychophysical

performance seen in human observers in response to mixed correlation random dot stereograms.

The first aim of this thesis was to examine whether such a revision is necessary. One key obser-

vation is that humans can see depth in half-matched random dot stereograms, even though the

binocular correlation is zero in such stimuli. Since the BEM modulates its response proportionately

99
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to binocular correlation, it does not (on average) signal disparity in stimuli with an equal number

of correlated and anticorrelated dots. However, real neurons are not linear in this way [Cumming

and Parker, 1997]. Chapter 1 showed how these psychophysical findings can be accounted for by

a decision model which performs a straightforward readout of a model population where the indi-

vidual cells better approximate activity in primary visual cortex. A key component of this model

was the use of BEM units with a squaring output nonlinearity to encode disparity. These model

units signal disparity even in half-matched stereograms, where the correlation is (on average) zero,

allowing a linear decision model to correctly report depth in this case. Chapter 2 confirmed that

real V1 neurons exhibit tuning to random dot stereograms with an equal number of correlated and

anticorrelated dots, and so provides strong support for the view that a single nonlinear correlation

computation carried out by V1 neurons is responsible for extracting disparity in this case.

The work in Chapter 1 and 2 highlights the need for better models of disparity-selective cells.

The second aim of this thesis was to improve on existing models by building generalised BEM

units through a data-driven machine learning approach. While the BEM and its variants have

been able to describe a range of properties of V1 neurons, no one has yet been able to explicitly

test this framework in real cells. The reason for this is two-fold. First, up until recently, there were

no special-purpose optimisation algorithms that could test this hypothesis exhaustively [McFar-

land et al., 2013]. Second, these methods require large volumes of neuronal data (several hours),

which are typically hard to obtain with single electrode recordings. Many modern array techniques

(including the V- and U-probes used here) permit for much longer recordings from each neuron.

These developments allow us to test the GBEM class of models by fitting the model architecture

and parameters to the spiking data recorded in cortex. The GBEM is a version of an artificial

neural network, which is now widely used in both academia and industry [LeCun et al., 2015].

Developing and testing a population of GBEM units fit to neuronal data was the key aim of Chap-

ter 3. Our results show that the GBEM can account for some, but not all of the computational

properties of V1 neurons. It is notable that the GBEM recovered disparity-selectivity in most cases

even though our fitting procedure did not specify disparity or correlation; instead the input was

simply the luminance pattern on the retinas, and the output was the spiking activity of the cell.

Surprisingly, we found that real cells have an amplification of their responses to correlated stimuli

at their preferred disparity, which model cells do not exhibit. This property had previously been

thought to be an attenuated response to anticorrelated stimuli. Instead, we show that this is likely

a mechanism for V1 neurons to boost their responses to candidate true matches. The view that

neurons are boosting their response to candidate true matches provide an important constraint on

the development of better models of V1 neurons.

Work here offers the hope that we will soon have a good enough account of V1 that we can

begin to understand how these are subsequently used in extrastriate cortex, and what additional
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processing is required to support perception. One area where GBEM units may provide insight into

human depth perception is the effect of dot contrast polarity on depth discrimination performance.

This effect was first reported by Harris & Parker (1995), who showed that human observers are

better able to discriminate a depth step-edge in random dot stereograms with mixed black and

white dots compared to stereograms that have either all white or all black dots. The performance

increase for mixed polarity stimuli was consistent with the idea that the observers effectively used

twice as many dots in the mixed polarity case (as determined by an ideal observer analysis). Harris

& Parker argued that this suggests that there are two separate channels for disparity extraction

of black and white stimuli. Read et al. (2011) reproduced the polarity effect reported by Harris

& Parker, but showed that the BEM does not exhibit stronger tuning to mixed polarity stimuli.

Additionally, since the work by Harris & Parker, there has been little further evidence for distinct

ON and OFF channels involved in the computation of disparity. Thus, the results from Harris

& Parker (1995) seems at odds with our understanding of disparity encoding in primary visual

cortex. Recently, Goncalves & Welchman (2017) built a model which may shed light on this. The

authors created a three-layer binocular convolutional neural network which was trained to iden-

tify disparity in natural images. When tasked with detecting a depth step-edge in either mixed

polarity or unipolar RDSs, the model performed better on the mixed polarity stimuli, with the

performance advantage again being consistent with the magnitude of the effect seen by Harris &

Parker. However, according to Goncalves & Welchman, the performance increase reflects a change

in the balance of excitation and inhibition depending on whether the model is seeing unipolar or

mixed polarity stimuli. It is presently unclear whether this is what is happening in real neurons.

The GBEM units reported here are fitted to neuronal data and so provide a direct way of testing

this explanation.

An additional perceptual observation which better models of V1 neurons may be able to ac-

count for is reversed depth in anticorrelated stimuli. Read & Eagle (2000) reported reversed depth

in anticorrelated noise stereograms, and Doi et al. (2011, 2013) have reported reversed depth in

anticorrelated random dot stereograms. Reversed depth in anticorrelated stereograms has also

been observed in our laboratory [Henriksen, 2014]. One key feature which is necessary to fa-

cilitate reversed depth perception is a correlated surround. Interestingly, Hibbard et al. (2014)

have reported results from a large experiment where no reversed depth was perceived with anti-

correlated stereograms with a zero-disparity correlated surround. However, there were a number

of differences between the stimulus used by Hibbard et al. and that used by Doi et al (2011,

2013). One such difference is that Hibbard et al. included a zone with no dots which surrounded

the disparity-defined region. Intuitively, the correlated surround provides an unambiguous zero-

disparity reference against which to to make the depth judgement. However, it is at present unclear

what the neuronal basis for this is. One possibility is that the GBEM units presented in this thesis

provide a different signal at the boundary depending on the presence or absence of a gap between
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the disparity-defined centre and the correlated surround. A related possibility is that there is an

interaction between anticorrelated dots at one disparity (e.g. < 0◦), and correlated dots at an-

other, neighbouring disparity (e.g. 0◦). A very similar effect was originally reported by Neri et al.

(1999), and may account for the apparent importance of a zero-disparity, correlated surround in

inducing reversed depth judgements. Future studies which incorporate the GBEM units developed

here may be useful for addressing this question.

Indeed, current models of V1 neurons seem to be converging on a design which is now very

common in machine vision. Deep neural networks have been enormously successful in matching

or exceeding human performance on a range of tasks, including image recognition [Liang and Hu,

2015], tumour detection and classification [Havaei et al., 2017], and optical character recognition

[Ciregan et al., 2012]. The success of deep learning is commonly attributed to its ability to learn

complex features from the data [LeCun et al., 2015]. This makes it uniquely powerful for doing

tasks for which the data is unstructured, but from which meaningful features can be recovered. It

is likely no accident that the low-level features that convolutional neural nets learn are very similar

to the linear filters used in linear-nonlinear models of visual neurons [Krizhevsky et al., 2012]. How-

ever, these are greatly simplified models of neuronal computation. In this thesis, we have showed

that a three-layer network cannot veridically describe disparity computations in primary visual

cortex. This is because real neurons exhibit domain-specific specialisations, such as correlated

boosting (boosting of candidate true matches in the disparity domain). It is possible that deeper

architectures will result in models which generalise well to unseen stimuli. Deep nets achieve their

success by learning complex nonlinear features which are useful for a given task. Thus, deep nets

may be successful in predicting the behaviour of real neurons even if the model structure does not

actually match the underlying physiology. Importantly, the mechanism which gives rise to corre-

lated boosting in the deep idealised network may not be related in any straightforward manner to

how this happens in real neurons. For example, suppose a nonlinear dendritic computation gives

rise to the thresholded AND gate noted in Equation 3.5. Suppose also that this mechanism can be

approximated by a network with several hidden layers, each of modest width. In this case, it is far

from clear whether the deep network will on its own give any sort of insight into the underlying

computation carried out by V1 neurons. Thus, although deeper networks present a viable research

target for studying neuronal computation, they may on their own be insufficient for generating

an actual understanding of what these neurons do. In principle, deep learning techniques can be

applied to our existing dataset, although it is generally the case that more complex models require

more data, which may be a limiting factor. Some cells in the dataset reported in Chapters 3 and

4 have relatively large amounts of data relative to that needed by the GBEM (this can be seen

with a learning curve, plotting cross-validated model performance as a function of data amount).

These cells are therefore good candidates for fitting more complex models.
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An interesting possibility is that if deep neural nets can be fitted to neuronal data, then they

may be used as proxies for real cells despite being black boxes. In such a scheme, a very complex

black box model could be used to test hypotheses and even fit other models which are designed

to extract insights and computational principles. Electrophysiological experiments are presently

invasive and very expensive, and so having a large number of model cells which generalise well

over a large set of stimuli would constitute a major breakthrough in both research efficiency and

animal welfare. A series of recent papers have begun exploring deep neural networks as articles of

research in their own right [Cadieu et al., 2014, Cichy et al., 2016].

The methods and techniques for modelling disparity-selective cells explored and discussed in

this thesis are summarised in Table 1.

Method Summary

BEM + output nonlin-

earity

Used in Chapter 1 and 2, and tested as general explanations

in Chapter 3 and 4. Not viable as a solution to either odd-

symmetric [Read et al., 2002] or even-symmetric disparity-tuned

cells (shown in this thesis).

Two sububunit (2SU)

model

Tested in Chapter 3 and 4. Only clear candidate for

odd-symmetric tuning curves with anticorrelated attenuation.

GBEM units fitted to odd-symmetric cells consist of subunits

which themselves have odd-symmetric tuning curves. Suggests

odd-symmetry does not arise through a 2SU architecture with

units of different disparity preference.

Recurrent networks Examined by Samonds et al. (2013); not examined in this thesis.

One of the key remaining hypotheses for how disparity tuning

(especially correlated boosting) arises in cortex.

Monocular nonlineari-

ties

The GBEM cannot easily capture both monocular nonlinearities

and complex binocular interactions, so not exhaustively tested

in the current thesis. This approach, introduced by Read et

al. (2002), remains a candidate for accounting for the disparity

tuning of at least some cells in V1.

Pairwise nonlinearities Some work done in the domain of contrast, but not explored

in stereo vision and not addressed in this thesis One candidate

mechanism for how disparity tuning arises in cortex.

Deep neural networks Currently not explored as a possible mechanism for V1 com-

putations, but is a viable candidate mechanism for disparity

selectivity.

Other approaches may be useful in elucidating some of these questions. For example, studying

the delay in information transmission may enable us to deduce whether a particular aspect of pro-
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cessing (e.g. correlated boosting) is due to recurrent connections. As discussed above, recurrent

networks are a very plausible candidate for generating veridical models of V1 neurons. Similarly,

studying the connectivity between regions may help constrain realistic models of neurons, espe-

cially for understanding how areas downstream from V1 generate their disparity tuning.

Stereo vision has a long history of being at the forefront of linking neuronal activity to perception

[Julesz, 1971, Marr, 1980, Cumming and Parker, 1997]. This is in large part because stereo vision is

a model system where the challenges posed to the brain are very well understood. Thus, although

we still do not have a full understanding of the initial stages of disparity computation, we are

making rapid progress in understanding the computations in V1, and how these computations

relate to visual perception.
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