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Abstract

Previous studies suggest human colour constancy is optimised for natural daylight illumi-

nations - a “blue bias” for colour constancy - but it is unclear how such a bias is encoded

in the visual system. We use an illumination discrimination task to test two hypothesised

mechanisms. Both hypotheses suggest that the human visual system has a prior expecta-

tion that illuminations are more likely to vary in a bluer region of chromaticity space. One

hypothesis (the nature hypothesis) suggests this has developed in the human visual system

through evolution, with selection of colour mechanisms that have reduced sensitivity to

global bluer changes across a scene (a species prior). The second hypothesis suggests that

the prior is learnt through experience with illuminations (the nurture hypothesis - an indi-

vidual prior). In Chapter 3 we expand on previous results showing a “blue bias” for colour

constancy when the illumination varies from a neutral reference, to show that the “blue

bias” prevails in variants of the task where the illuminations are all chromatically biased.

This result supports the nature hypothesis. However, depending on the chromatic bias,

different biases can emerge in the threshold data that are more supportive of the nurture

hypothesis. In Chapter 4 we explore individual differences in illumination discrimina-

tion ability, compare illumination discrimination ability with chromatic contrast detection

ability, and develop ideal observer models for the task. The results in this Chapter are

mostly in support of the nurture hypothesis. In Chapter 5 we show that illumination

priors may play a role in the recent visual illusion of a dress photograph that appeared

blue and black to some observers but white and gold to others. Finally, in Chapter 6, we

search for evidence that observers can learn an illumination prior during a psychophysical

task. We conclude that the “blue bias” is likely governed by both a learnt prior over the

characteristics of daylight illuminations (the nurture hypothesis) and a generic reduction

in sensitivity to bluer changes in an illumination (the nature hypothesis).
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Chapter 1

Introduction

1.1 Background and Overview

Our ability to see is largely taken for granted. We lack appreciation for the enormous

amount of work our visual systems must do to process visual input and infer the distal

stimulus whilst ensuring that our visual percept is accurate and consistent. Vision is used

without conscious effort for object recognition, guiding our interactions with the world. It

is especially important when we must react quickly to changes in the environment during

activities like playing sports or driving cars. Yet, as effortless and instantaneous as these

tasks seem, neuroscientists, psychologists, and computer scientists still struggle to create

computational models of visual processing that mimic human behaviour. The problem

boils down to the fact that human vision is an ill-posed problem.

Hohwy (2013) illustrates the under-determined nature of visual perception with the fol-

lowing example. Suppose an observer receives some visual input that stimulates the pho-

toreceptive layer of cells at the back of the eye (the retina, see Section 1.3) in such a way

as to cause a pattern of activity that represents the shape of half a bicycle immediately

next to a rectangle (this is a simplified representation of how the visual system works but

will do for this demonstration). This visual input could be caused by multiple physical

worlds. For example, the distal stimulus could be a bicycle occluded by a wall, half a

bicycle next to a wall, a swarm of bees flying in the shape of half a bicycle, or one of an

infinite number of other causes. Hohwy (2013) makes the point that one of the causes

listed above (occluded bicycle) can be considered more likely than the others. If the vi-

sual system incorporates this information as a probability distribution over the competing

hypotheses, then it is using prior knowledge to overcome uncertainty in the sensory signal

- the Bayesian Brain Hypothesis (Knill & Pouget, 2004; Mamassian, Landy & Maloney,

2003; Pouget, Beck, Ma & Latham, 2013). Estimating probability distributions over pos-

sible stimulus configurations, or in other words, forming priors for perception, begins to
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constrain visual processing and frames the problem in terms of probability. What is the

most likely distal stimulus given prior assumptions and the incoming data? Considering

perception as inference will constitute a major theme of this work.

There is uncertainty in visual perception for other reasons too. Not only can there be

many causes for the same visual input, but the same physical stimulus can lead to different

visual stimulation depending on factors such as viewing angle, viewing distance and the

incident illumination. In addition, the imperfections of the human visual system (caused

by biological constraints) make for a noisy sensory signal with added uncertainty. Yet, the

usefulness of a visual system is bounded by its ability to serve invariant perception in the

form of stable object recognition or visual constancy (Dicarlo & Cox, 2007; Rust & Stocker,

2010). Constancy in vision may be considered in many different modalities such as size

perception, shape perception, and, the subject of this thesis, colour perception. Colour

constancy is the term used to describe the phenomenon whereby the human visual system

maintains a relatively stable colour percept of the world despite changes in illumination;

or at least this is the most common form of the definition as colour constancy can also

be studied under illumination gradients, differences in viewing angle or changes in scene

configuration. Indeed, spatial variations in the illumination colour within a scene can be

on the same order of magnitude as variations throughout the day (Nascimento, Amano &

Foster, 2016).

In the studies that follow we investigate the role of prior assumptions for illumination

properties in colour constancy. We will expand on previous results from an illumination

discrimination paradigm that is considered a method of establishing thresholds for colour

constancy. Previous studies using this paradigm find evidence of a “blue bias” for colour

constancy; illumination discrimination is worse for bluer illumination changes along the

axis of daylight chromaticities (Pearce, Crichton, Mackiewicz, Finlayson & Hurlbert, 2014;

Radonjić, Pearce, Aston, Krieger, Cottaris, Brainard & Hurlbert, 2016b). In Chapter 3 we

show that the “blue bias” prevails in variants of the task, suggesting a reduced sensitivity to

global bluer changes in a scene. However, we find that depending on the task parameters,

2



Chapter 1. Introduction

different biases can emerge in the threshold data. We will pay particular attention to the

implications of inter-individual differences in performance on the task in Chapter 4, where

we also ask if differences in chromatic contrast detection ability can predict differences in

illumination discrimination ability. In addition, we develop ideal observer models for the

illumination discrimination task to assess whether differences in the sensory machinery

of the visual system can account for the inter-individual differences in performance or

whether more general properties of human observers predict the “blue bias”. Chapter

5 applies this work to a photograph of a blue and black (or white and gold) dress that

went viral on the internet in 2015. Finally, in Chapter 6, we search for evidence that

observers can learn an illumination prior during a psychophysical task. In what remains

of this Chapter, we introduce the main concepts of vision science and review the relevant

literature.

1.2 The Input

1.2.1 Light

Vision begins with a light source. Light is electromagnetic radiation and is made up of

photons. Photons travel in waves with a wavelength determined by the energy of the

photon. The more energy photons have the shorter the wavelength, while less energetic

photons travel with longer wavelengths. Wavelength is not the only parameter that defines

a wave; waves also have a speed and a frequency. For light waves, the speed is constant (in

air) while the frequency of the wave is related to the wavelength; the longer the wavelength

the lower the frequency and vice versa. Sources of light generally emit photons that are

travelling at a variety of wavelengths, and the total number of photons emitted by the light

source can vary greatly for each wavelength. The human visual system is only sensitive to

a small proportion of the light that makes up the electromagnetic spectrum (visible light,

wavelengths between approximately 400 and 700 nm; Figure 1.1).
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Figure 1.1: The electromagnetic spectrum.

1.2.2 Quantifying Light

Light can be quantified in several ways, taking into account wavelength or disregarding

it. Spectral measures of light take wavelength into account. If we are not interested

in measuring light at each wavelength and prefer a global measure, we simply sum the

spectral measure of interest over all wavelengths. Throughout the text, we will quantify

light using both spectral and global measures.

1.2.2.1 Radiometry

Radiometric quantities characterise the properties of light regardless of the observer. The

only radiometric quantities we review here are spectral irradiance and spectral radiance,

although there are many more. Spectral irradiance defines the amount of light (formally

referred to as the radiant flux) falling on a point on a surface as a function of wavelength

(Figure 1.2.A) and is expressed in W/m2/nm, or amount of energy per unit time, per

unit area, per wavelength (watts equal to joules per second). Spectral radiance defines

the amount of light emitted, reflected, or transmitted in a given direction from a point on

a surface (Figure 1.2.B) and is expressed in units of W/m2/sr/nm, or amount of energy

per unit time, per unit area, per solid angle, per wavelength.

The distinction between spectral irradiance and spectral radiance is subtle, but is enough

to ensure that one cannot be obtained from the other unless strict conditions are met.
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Figure 1.2: Radiometric measures of light. A. Irradiance defines all the light falling on a particular
point (or space). B. Radiance defines all the light coming from a particular point (or space).

Suppose a measurement of spectral radiance R(λ) has been taken from a point p on a

surface S. We can calculate the spectral irradiance I(λ) from R(λ) using the equation

I(λ) =
πR(λ)

r
(1.1)

if and only if S is a Lambertian surface (a surface which reflects each wavelength of light

equally in all directions), where r is the proportion of light that the surface reflects.

Unfortunately, the world is littered with non-Lambertian surfaces and this equation is

rarely useful. Instead, to obtain measurements of both spectral radiance and spectral ir-

radiance, one must utilise two different types of measuring equipment. The main difference

between radiance meters (used to measure spectral radiance) and irradiance meters (used

to measure spectral irradiance) is the lens. Radiance meters use a standard lens which is

focused at the point to be measured from (Figure 1.3.B). Irradiance meters however are

fitted with a cosine receptor. The cosine receptor is placed at the point where one wishes

to measure the incident light and performs the necessary function of gathering the light

falling on that point from every direction, correcting the power of the light according to

the cosine of the angle (Figure 1.3.A).

A measurement of spectral irradiance or spectral radiance can be used to define the spectral

power distribution (SPD) of a light source (although the spectral radiance measurement

must be taken from a Lambertian surface). Hence, a SPD defines the power of a light
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Figure 1.3: Light measurement devices. A. Cosine receptor used for irradiance measurements. B.
Standard lens used for radiance measurements.

source at each wavelength across the visual spectrum. Spectral radiance measures can also

be used to characterise the light reflected from a particular surface. At different points in

this thesis, both radiance and irradiance measures of light will be used.

1.2.3 Reflectance

If objects can be said to have a ‘true” colour, one would define this to be a correlate of

the object’s surface spectral reflectance function. An object’s surface spectral reflectance

function S(λ) specifies the quantity of light that the surface will reflect for each wavelength

across the visual spectrum. When the light emitted from a source I(λ) hits an object, the

light that is reflected from the object R(λ) is the point-wise product of the two functions

such that R(λ) = I(λ)S(λ) (Figure 1.4). The light that an object reflects can be quantified

by a spectral radiance measurement taken from the object’s surface.

1.3 The Human Eye

Light enters the eye through the pupil, which has the capability to expand and contract to

modulate the amount of light that enters the eye. After passing through the pupil, light

is focused on the retina at the back of the eye by the lens. The lens also has the capacity

to expand and contract in order to focus light from scenes at a variety of distances.

The retina has several layers; an illustration of the retinal layers can be seen in Figure 1.5.
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Figure 1.4: Determining the light signal reflected to the eye. The illumination I(λ) is reflected
from an object according to its surface spectral reflectance function S(λ). The reflected light is the
point-wise product of these two functions R(λ) = I(λ)S(λ). Once the reflected light is transmitted
through the optics of the eye, it reaches the retina at the back of the eye where the information is
effectively encoded as just three numbers by the three cone types in the retina (in a trichromatic
eye).

Notice that the photoreceptors, the rods and cones, are located at the back of the retina

and that light must pass through all other retinal layers before reaching the photoreceptor

layer. Once the light reaches the photoreceptor layer, the rods and cones begin responding

to the light signal by hyperpolarising, informing the bipolar cells, who in turn inform the

ganglion cells, that a light signal has been detected. The axons of the ganglion cells form

the optic nerve which delivers the information about the light signal received to the lateral

geniculate nucelus (LGN) for further processing.

1.3.1 Scotopic, Mesopic and Photopic Vision

The rod and cone photoreceptors in the human eye have distinctly different functions.

The rods mediate scotopic vision (vision at low light levels), while cones mediate photopic
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Figure 1.5: The human eye and a section through the retina.

vision (vision at higher light levels). In scotopic conditions, the cones are unresponsive,

whereas in photopic conditions the rods are responsive, but are fully saturated. The term

mesopic vision can also be used to represent vision in intermediate lighting levels where

both rods and cones are contributing to visual processes (Fairchild, 2005). For all studies

in this thesis, we will be working at phototopic lighting levels and so do not concern

ourselves with the rods.

1.3.2 Trichromacy

Normal human vision is trichromatic, the retina possessing three types of cone receptors:

the short (S), medium (M) and long (L) wavelength cones. The cones are named with

respect to their spectral sensitivity functions. According to the Stockman & Sharpe (2000)

cone fundamentals (Figure 1.6), L-cones have their peak sensitivity at 545 nm, M -cones
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at 525 nm, and S-cones at 420 nm. They are also referred to colloquially as the “red”,

“green”, and “blue” cones and we will adopt this terminology at times in the text.

Figure 1.6: Cone sensitivity functions (Stockman & Sharpe, 2000; CVRL.org)

Humans with colour deficiencies can have fewer cone types (monochromats or dichromats),

or can have a cone type whose sensitivity is shifted (anomalous trichromats) (Westland,

2002). Recent research has also led to the discovery of human tetrachromats who have

four cone types in their retina (Jordan et al., 2010). In these studies, we are concerned

only with colour normal observers (those possessing the standard three L, M , and S cone

types). While all observers are tested for colour vision deficiencies prior to participating

in the various experiments, we do not explicitly test for tetrachromacy in our observers so

cannot rule out the possibility of tetrachromats among our participant pool. Considering

the infancy of the tetrachromacy research field, however, and the uncertainty that remains

over whether observers who express more than three cone types in their retina can exploit

the information they obtain, we do not concern ourselves with this issue here.

In photopic lighting conditions, trichromats represent the reflected light spectrum by ef-

fectively encoding the information as just three numbers, the responses of the three cone

types, that are referred to as the tristimulus values, [L,M,S] (Figure 1.4). The cones

may be considered as photon catchers, their spectral sensitivity curves determining the
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probability that the cone will catch a photon travelling with a certain wavelength. Each

cone’s response may then be quantified by counting the number of photon catches or iso-

merisations within a given time interval. These response properties lead to the principle

of univariance that describes the inability of a single cone type to distinguish between

different wavelengths of light (Rushton, 1972). For example, consider a hypothetical case

where an L-cone is exposed to perfectly monochromatic light stimuli of wavelengths 545

nm and 582 nm (stimuli l1 and l2, respectively). If the relative power of stimulus l2 is

1.25 times that of l1, the number of isomerisations per time interval will be identical for

both stimuli and the cone will be unable to distinguish between them (Figure 1.7). The

principle of univariance gives rise to the phenomenon of metamerism. Two light stimuli

are considered metameric if they induce identical tristimulus values.

Figure 1.7: An illustration of the principle of univariance. An L-cone will respond the same to a
theoretical monochromatic light stimulus at a wavelength of 545 nm, l1, as it will to a theoretical
monochromatic light stimulus at a wavelength of 582 nm, l2, if the relative power of l2 is 1.25
times the power of l1. In this case, an L-cone is unable to distinguish the wavelengths of light and
would respond to both light stimuli identically.

1.4 Colour Vision

If the cones are blind to wavelength information, how then do human observers see in

colour? The trick is to interpret not the raw cone responses, but instead to trade-off the
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cone responses, reducing the correlation between the colour channels caused by the large

overlap in the spectral sensitivity functions of the different cone types.

1.4.1 Second Order Mechanisms

Zaidi (1997) showed that responses of the L and M cones are highly correlated for a selec-

tion of natural and man-made objects (r = .99). However, when Zaidi (1997) computed

the L+M and L−M contrasts between the two sets of cone responses, little correlation

remained (r = .21). This observation had been made earlier by Buchsbaum & Gottschalk

(1983). Similarly, Ruderman, Cronin & Chiao (1998) performed a principal components

analysis on a set of tristimulus values obtained from hyperspectral images of natural scenes

and found that the first three principal axes of variation in the data were a luminance axis

(L + M + S) and two chromatic axes (L −M and S − (L + M)). This suggests it may

be optimal to trade-off the cone responses in such a way in visual processing, and indeed,

electrophysiological recordings and behavioural data provide evidence for the existence of

such channels (three mechanisms: L+M +S, L−M , and S− (L+M)) early in the visual

system (Derrington, Krauskopf & Lennie, 1984; Krauskopf, Williams & Heeley, 1982). We

will refer to these as the second-order colour mechanisms.

The luminance mechanism (or channel) is considered such because it tracks changes in

overall stimulus intensity. Conversely, the chromatic mechanisms define an isoluminant

plane. Changes that modulate the L −M mechanism trade off the responses of the L

and M -cones creating a “red-green” chromatic channel. Similarly, changes that modulate

the S − (L+M) mechanism create a “blue-yellow” chromatic channel, trading off S-cone

responses with the sum of the L and M -cone responses. Krauskopf et al. (1982) concluded

from a set of psychophysical data that there are three second-order channels but that these

are governed by six independent mechanisms, one for each half-axis of change (redder

changes: L−M , greener changes: M −L, bluer changes: S − (L+M), yellower changes:

(L+M)−S, luminance increments: L+M +S, and luminance decrements −L−M −S).

In a first experiment, Krauskopf et al. (1982) defined a three-dimensional colour space
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with axes L+M (the luminance axis), L−M (the red-green axis), and S − (L+M) (the

blue-yellow axis). They refer to these as the cardinal axes of this colour space, terminology

that we will adopt throughout the text. They established thresholds for their participants

for stimulus changes from the white point of the space (the average adaptation state of the

participant) along each direction of each cardinal axis both before and after a habituation

stimulus. The habituation stimulus was sinusoidally modulated along one of the cardinal

axes such that the average chromaticity of the habituation stimulus was equal to the

chromaticity of the white point of the space. The rationale is that the average adaptation

state of the observer remains the same while the sensitivity of the hypothesised cardinal

mechanism is selectively reduced. The test stimulus for which thresholds were established

was a Gaussian enveloped pulse and they found thresholds for this stimulus using a yes/no

staircase procedure. When Krauskopf et al. (1982) compared thresholds before and after

habituation to each cardinal axis in the isoluminant plane of their colour space (L+M is

fixed), they found an increase in thresholds along the axis of habituation but not along the

orthogonal isoluminant cardinal axis. Thresholds along intermediate axes were moderately

increased. However, when the habituation stimulus modulated along intermediate axes,

chosen to equally stimulate the two cardinal axes, thresholds were increased in all directions

around the white point with only slight evidence of selective habituation. They take this

as evidence that the cardinal mechanisms of their colour space have a special status.

In a second experiment, Krauskopf et al. (1982) used a sawtooth habituation stimulus

rather than a sinusoidally modulating one. In this case, two types of habituation stimuli

could be used. For example, for the red-green (L−M) cardinal axis, there was a habitu-

ation stimulus that modulated slowly from red to green in the slow phase of the sawtooth

wave then returned quickly to red, and another where the stimulus modulated slowly from

green to red in the slow phase then returned quickly to green. The test stimuli in this

case was also changed to be a step change that did not return to the white point until

the participant had responded, ensuring only the increment/decrement half of the axis

was detecting the change. Using these stimuli, they found that thresholds were variably
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increased depending on the sign of the sawtooth (the direction of the slow change). For a

slow red to green phase, thresholds for detection of the green step change were increased

more than for the red step change. For a slow green to red phase, thresholds for detection

of the red step change were increased more than for the green step change. There was a

similar pattern for thresholds along the blue-yellow cardinal axes. These results suggest

separate mechanisms for the detection of increment/decrement changes along each chro-

matic cardinal axes. In a different study, they found similar effects for the luminance axis

(Krauskopf, 1980).

1.4.2 Higher-Order Mechanisms

Krauskopf, Williams, Mandler & Brown (1986) later re-analysed the data of Krauskopf

et al. (1982) and found evidence of higher order mechanisms (that appear later in the

visual pathway or require further processing). They decomposed the threshold elevations

as a function of test angle using Fourier analysis and found that the phase of the second

harmonic tracked the angle of the test. This characteristic of the data is not consistent

with the assumption of only two second order chromatic mechanisms, but rather with the

existence of further higher order chromatic mechanisms that are tuned to intermediate

directions (non-cardinal) in the isoluminant plane.

Webster & Mollon (1991) also suggested the existence of higher order mechanisms based on

colour matching data. They used a similar procedure to Krauskopf et al. (1982), showing

a sinusoidally modulating adapting stimulus followed by a test stimulus. However, in

their procedure, participants then adjusted a second test field presented in the other half

of the visual field to match the appearance of the first test. They adapted participants

separately to the two cardinal chromatic axes and to six intermediate axes (at 22.5◦, 45◦,

and 67.5◦ angles to cardinal axes). In all conditions, they find a selective effect on colour

appearance matches. Matches were increased in saturation for tests along the adapting

axes relative to tests along an orthogonal axes. In addition, intermediate tests were shifted

in hue towards an orthogonal axis. This was true for the six intermediate adapting axes in
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addition to the cardinal axes, although two out of four observers displayed more selectivity

for the cardinal chromatic mechanisms than others. The authors concluded that, if the

chromatic mechanisms act independently, then at least eight mechanisms are needed to

encode such changes in colour appearance. However, they also acknowledge that the two

cardinal mechanisms may not adapt independently. Zaidi & Shapiro (1993) also suggested

that the two cardinal mechanisms interact, proposing a model where the two mechanisms

jointly adapt that accounted for their data. In recent times, there has been suggestions

of a greater number of higher-order colour mechanisms (Hansen & Gegenfurtner, 2013),

but Shepard, Swanson, McCarthy, Eskew & Eskew Jr. ,Rhea T. (2016) offered a six

mechanism model (three bipolar channels) explanation that could account for the data,

akin to the original suggestion of Krauskopf et al. (1982). In sum, uncertainty remains

over the number of chromatic mechanisms that are responsible for colour processing and

there is no clear consensus among researchers in this field.

1.4.3 Where is colour processed?

In the last section, we introduced the idea of cone-opponent or second-order colour mech-

anisms and went on further to discuss the possibility of higher-order colour mechanisms.

However, we did not discuss where in the visual pathway such mechanisms may arise. We

briefly mentioned the study of Derrington et al. (1984) who found physiological evidence of

second-order mechanisms. More specifically, they found neurons in the lateral geniculate

nucleus (LGN) of macaque that display chromatic opponency. Other groups had previ-

ously recorded from cells that displayed chromatic opponency (Wiesel & Hubel, 1966; De

Valois, Abramov & Jacobs, 1966) but Derrington et al. (1984) were the first to quantify

them. However, cone-opponent processing begins much earlier than the LGN, starting in

retinal processing with the biplolar and ganglion cells. The three cardinal second-order

mechanisms are then processed somewhat distinctly along different channels as the signals

are passed from retina to cortex (Gegenfurtner & Kiper, 2003).

The postulated higher-order mechanisms are often considered as recombinations of the
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cardinal channels (Krauskopf et al., 1986; Webster & Mollon, 1991), but as Eskew (2009)

points out, the idea of higher-order mechanisms is two pronged. The first part of the

argument is that there are further chromatic channels beyond the cardinal channels, the

second is that the mechanisms are to be found at some later point in the visual pathway.

Eskew (2009) goes on to argue that given our lack of knowledge over which cortical areas

are even the most important for colour processing, and that there are numerous feedback

connections from cortex to the LGN, it is speculative at best to posit that higher-order

colour mechanisms must exist at a cortical level - if they even exist at all (as mentioned

above, Eskew’s group favours the six mechanisms explanation).

1.5 Colour Constancy

It has been proposed that trichromatic colour vision evolved to enable the detection of ripe

fuit against the foliage (Mollon, 1989). Although this explanation for the natural pressures

that led to trichromatic vision in humans is debated (Gegenfurtner & Kiper, 2003), there

are studies that show the usefulness of colour in visual processing. The addition of colour

information has been shown to enable faster object recognition and improve visual memory

(Gegenfurtner & Rieger, 2000; Spence, Wong, Rusan & Rastegar, 2006). However, if a

percept of colour is to provide useful information about the properties of objects in the

world, then our percept of colour must be somewhat invariant, and indeed, the human

visual system is said to be approximately colour constant, maintaining a relatively stable

colour percept of surfaces across illumination changes (Brainard & Radonjić, 2014; Foster,

2011; Hurlbert, 1998; Maloney, 1999; Smithson, 2005).

This is no easy feat. As we have already detailed, the trichromatic human visual system

maps an infinite dimensional stimulus space to a space with only three dimensions. This

is a mapping from the space of all theoretically possible reflected light spectra to the

isomerisations, or a set of tristimulus values. We have seen that the spectrum of light

reflected from a surface is determined by both the surface’s spectral reflectance function

and the spectrum of the incident illumination. The spectral reflectance function of a
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surface is a fixed property of the object; thus a strategy for colour constancy would be to

perceive a correlate of spectral reflectance that is independent of the incident illumination.

However, the reduction in dimensionality confounds surface reflectance and illumination

information in an irreversible way. Moreover, if the light illuminating an object changes,

changing the spectrum of light reflected to the eye, and so too the corresponding tristimulus

values, it is impossible to tell from the change in the tristimulus values alone that this was

due to a change in the illumination rather than the surface’s spectral reflectance. This

rules out a one-to-one mapping between isomerisations and perceived surface colour. The

mechanisms by which perceived surface colour is determined by the visual system, and

hence by which approximate colour constancy is achieved, remain unknown.

Several seminal studies have shown that the human visual system rarely displays perfect

colour constancy (e.g. Arend & Reeves, 1986; Arend, Reeves & Goldstein, 1991; Brainard,

1998; Brainard, Brunt & Speigle, 1997), although the level of reported colour constancy

varies greatly between studies (see Table 1 in Foster (2011)). Importantly, colour constancy

tends to be better for real scenes (real surfaces under changing illuminations) compared

to simulated scenes (Maloney, 1999). Further, the level of colour constancy achieved by

observers can be modulated by altering task instructions. Arend & Reeves (1986) showed

that when asked to adjust the colour of a reference patch seen under one illumination to

match that of a test patch seen under another illumination in terms of hue and saturation

(an appearance match), observers display less colour constancy than when asked to make

the patch to look as if it were cut from the same piece of paper. In addition, Radonjić

& Brainard (2016) showed that instructional effects are greater for simpler experimental

stimuli. However, Arend & Reeves (1986) allowed observers to freely move their gaze

between the two scenes (viewed binocularly), meaning adaptation to the illumination

in either the reference or test scene was never complete. Similarly, while Radonjić &

Brainard (2016) restricted the view to a single scene (either monocularly viewed for the

simple stimulus and stereoscopically viewed for the more complex stimulus), multiple

illuminations were present in the scene and observers could shift their gaze to focus on
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either part of the image. Bramwell & Hurlbert (1996) suggested the use of haploscopically

or successively viewed stimuli to allow full adaptation to the illumination in each scene.

In this case, the difference between the two types of instructions is reduced.

Regardless, as real world scenes are likely to contain multiple illuminations (due to factors

like illumination gradients and shadows; Nascimento et al., 2016), a more complicated

definition of colour constancy is required: colour constancy at the colour appearance

or sensory level and colour constancy at the object identification or cognitive level. The

difference between these two types of colour constancy, as we define them, can be thought of

as a distinction between conscious vs. unconscious levels. If colour constancy is happening

at the sensory level, then the observer does not have access to the alternative colour percept

of a surface caused by the change in the illumination. However, if constancy is achieved

at a cognitive level, the observer may be expected to have access to the alternative colour

percept. Note that we do not claim that these two definitions of colour constancy are

competing hypotheses, rather we suggest that colour constancy happens at both levels.

In this thesis, we employ a behavioural task that obtains an upper limit of sensory level

colour constancy as will be discussed later.

1.5.1 Strategies for colour constancy

1.5.1.1 Illumination estimation

It is generally assumed that as part of the colour constancy process, the human visual

system attempts to recover information about the surface reflectance function of the object

by estimating the incident illumination and discounting this from the scene (generally

referred to as the illumination-estimation hypothesis (Maloney, 1999; Maloney & Yang,

2003)). Illumination estimation may be considered as either a sensory or cognitive level

solution to colour constancy. Above, we defined a cognitive solution as a part of the

process that the observer is conscious of. Other researchers (for example Troost & Weert,

1991) use the term to refer to computations that may simply be higher level, in which case,

17



Chapter 1. Introduction

they would consider the computation of separate representations of the illumination and

surface reflectance to be a cognitive mechanism (if both representations were accessible

by the visual system), even if this results in colour constancy at the sensory level (the

observer is unaware of the change in reflected light). If we adopt our use of the terminology

in the previous paragraph, elements of illumination estimation may be both sensory and

cognitive. Part of the process may involve unconscious estimation of the illumination such

that the observer’s phenomenal experience is of a scene where an illumination estimate

has already been discounted. Alternatively, the observer may form a conscious estimate

of the illumination in the image, using this knowledge to assign colour names to objects

that are not a direct correlate of their sensory or phenomenal experience (c.f. the paper

match of Arend & Reeves, 1986).

Most computational algorithms for colour constancy take the illumination-estimation ap-

proach, attempting to recover a representation of the illumination (Hurlbert, 1998; Mal-

oney, 1999; Maloney & Yang, 2003). However, perfect recovery of the spectral reflectance

function and the incident illumination spectrum from the set of tristimulus values is an ill-

posed problem unless the visual system uses knowledge of the statistics of the environment

to form constraints (Maloney, 1999).

1.5.1.2 Natural constraints

One way to do this is to re-express the set of natural surface reflectance functions and/or

the set of natural illumination spectra as linear combinations of a small set of basis func-

tions. Maloney & Wandell (1986) showed that if the representation of possible surface

reflectance and illumination spectra as linear models is to allow the colour constancy

problem to be solved analytically, further constraints must be met. Firstly, the linear

model that characterises illuminations must have dimension less than or equal to the

number of receptor types in the imaging device; secondly, the linear model that charac-

terises surfaces must have dimension strictly less than the number of receptor types. As

the number of photoreceptor types in the retina responsible for colour vision is three, we
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require illuminations to be constrained by a set of at most three basis functions and sur-

faces to be constrained by a set of at most two. Analysis of natural illumination spectra

and sets of surface reflectance functions suggest that this is not the case; linear models

of higher dimensionality are often needed to represent the set of measurements (Jaaske-

lainen, Parkkinen & Toyooka, 1990; Judd, MacAdam & Wyszecki, 1964; Maloney, 1986;

Marimont & Wandell, 1992). However, if the sensitivity of human photoreceptors is taken

into account, a linear model of lower dimension can be found for surface reflectance.

1.5.1.3 Prior knowledge

A second approach to constraining the problem would be the formation of illumination or

surface reflectance priors. Priors place probabilities on the occurrence of different stimulus

characteristics or parameters that may be encountered in the world and are believed to

be formed through experience. They are a cornerstone of Bayesian theories of visual

perception (Allred, 2012; Mamassian, Landy & Maloney, 2003; Brainard, 2009).

The effect of a prior on sensory processing can be modelled as follows. Suppose the observer

receives some noisy sensory input I. A variety of different world states W could have given

rise to the sensory input and we assume the observer knows the generative model that

describes the probability of different world states producing various sensory input. This

gives rise to the likelihood function, or the probability of the sensory input I given the

different world states W , P (I|W ). The observer wants to recover a best guess as to the

state of the world and can do that if they calculate the posterior function P (W |I) (the

probability of different world states given the sensory input). Suppose also that, over time,

the observer has accumulated knowledge of the probability of encountering different world

states, P (W ) (the prior), then Bayes’ Theorem tells us that P (W |I) = cP (I|W )P (W ),

where c is the normalisation constant 1/P (I). Note that Bayes’ Theorem describes the

optimal way to combine two sources of information and hence is also used in the cue

combination literature to describe the optimal way to combine evidence either within or

between senses where the prior in replaced by the likelihood function for the second sensory
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input (e.g. Ernst & Banks, 2002).

In the visual perception literature, there is evidence for the use of priors in judgements

of lighting direction (Adams, Graf & Ernst, 2004), colour (Hansen, Olkkonen, Walter

& Gegenfurtner, 2006), and speed (Stocker & Simoncelli, 2006), as well as evidence of

observers learning priors while performing a novel task (e.g. Bejjanki et al., 2016; Tassinari

et al., 2006; Laquitaine & Gardner, 2017). In colour perception, the human visual system is

thought to learn priors over daylight chromaticities as they display high levels of regularity

- measured daylight chromaticities tend to fall on the Planckian locus (Hernández-Andrés,

Romero, Nieves & Lee, 2001; Judd, MacAdam & Wyszecki, 1964; Spitschan, Aguirre,

Brainard & Sweeney, 2016) - and surface reflectance properties, often thought to be tied

to contextual cues and object perception (Hansen, Olkkonen, Walter & Gegenfurtner,

2006; Olkkonen & Allred, 2014; Witzel, Valkova, Hansen & Gegenfurtner, 2011). As

will become clear, the task that we use here is designed to explore the hypothesis that

observers possess a daylight illumination prior and, more generally, to assess whether

colour constancy mechanisms are optimised to maintain constant surface colour perception

in more natural lighting.

Note that these two approaches to constraining the colour constancy problem are not

distinct. For example, one could use the constraints imposed by requiring illuminations

that are physically realisable to place a uniform prior over the set of possible coefficient

vectors that would be used to recombine the basis functions (Forsyth, 1990). Brainard

& Freeman (1997) took this one step further, specifying priors over the coefficients that

scale the basis functions for both illuminations and surfaces. Specifically, they used a set

of measured daylight chromaticities to specify a “daylight prior” for illuminations. By

incorporating these priors they developed an illumination estimation algorithm that can

recover good estimates of the illumination spectrum present on a scene. They later showed

that a modified version of the model that no longer estimates the illumination spectrum but

rather the illumination chromaticity (using an equivalent illumination approach to colour

constancy (Brainard & Maloney, 2011)) can be fit well to behavioural data. However,
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model performance is improved by incorporating a prior for illuminations that is broader

than the “daylight prior” and includes more atypical illumination chromaticities (Brainard,

Longère, Delahunt, Freeman, Kraft & Xiao, 2006).

1.5.1.4 Lightness algorithms

It may not be necessary, however, to form an explicit estimate of the illumination in

order to achieve the constant perception of colours. Indeed, several early models of colour

constancy employ algorithms that imply colour constancy is achieved through adaptation

to the illumination in distinct chromatic channels. Such methods fall in the general class

of linear transforms (Hurlbert, 1998) and include “lightness” algorithms, and algorithms

such as von Kries scaling and Retinex (see Hurlbert, 1998, Maloney, 1999 or Foster, 2011

for a review of such algorithms). We will only review the most simple of these algorithms

briefly here to emphasise why they fail and why more complex colour constancy algorithms

are needed to explain human behaviour.

von Kries (1878) suggested that the visual system compensates for a change in illumi-

nation (or discounts the illumination) by separately scaling each cone type, a form of

adaptation. In practice, von Kries scaling is implemented as a linear transformation of

the tristimulus values. As the theory assumes that each cone type adapts independently,

the transformation matrix is a diagonal matrix such that the transformed tristimulus

values corresponding to a particular point in the scene, [L′,M ′, S′], are defined as:


L′

M ′

S′

 =


l 0 0

0 m 0

0 0 s



L

M

S

 (1.2)

The diagonal elements of the transformation matrix, l, m, and s, are the factors that each

cone type is scaled by and may be considered a correlate of the illumination. Multiple

methods have been proposed by which to calculate these scaling values. For example, one

is the grey-world hypothesis that assumes the average reflectance across a scene is neutral
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(flat) on average (Evans, 1951). In this case, l, m, and s would be found by taking the

inverse of the average tristimulus values across the whole scene. A second example is the

brightest-is-white hypothesis that assumes that the brightest surface in the scene is white

and reflects exactly the illumination (Land & McCann, 1971; Brill & West, 1981; Barnard,

Cardei & Funt, 2002). In this case, l, m, and s would be taken from the brightest point in

the scene. Estimation of the illumination (or of l, m, and s), is a limiting factor for how

well these algorithms can do; firstly at performing a successful colour constancy correction

and secondly at predicting human behaviour. Indeed, these assumptions often fail to hold.

The average reflectance across scenes is rarely neutral and the brightest point in the image

is likely to be chromatically biased (Foster, 2011).

1.5.1.5 Spatial ratios of cone excitations

Foster & Nascimento (1994) showed that it is possible to compute a signal at the level

of retinal processing that is invariant to global illumination changes. After simulating

daylight illuminations on a set of Munsell surfaces, they found minimal variation in the

excitation coordinates of the M and L-cones recorded from a signal surface across illumi-

nation changes, but larger variations in S-cone signals (their Figure 2). However, when

they considered the spatial ratio between two surfaces under illumination I1(λ) to the

spatial ratio of the same two surfaces under illumination I2(λ), they found almost perfect

invariance (their Figure 3). The same group has since shown that the invariance of spatial

cone ratios holds in natural scenes and hence could be a useful computation for colour

constancy (Nascimento, Ferreira & Foster, 2002; Foster, Amano & Nascimento, 2015).

1.5.2 Measuring colour constancy

Colour constancy is generally assessed using either asymmetric matching (matching of

colours across scenes with either simultaneous or successive views, e.g. Arend & Reeves,

1986; Brainard et al., 1997; Troost & Weert, 1991), achromatic adjustment (adjust a patch

of colour to appear neither blue, yellow, red, or green, e.g. Brainard, 1998), colour naming
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(e.g. Troost & Weert, 1991), or by asking observers to make judgements about illumina-

tion vs. surface reflectance changes (operational colour constancy tasks, e.g. Craven &

Foster, 1992). These types of measures each have methodological issues (Foster, 2003; Mal-

oney, 1999). As we have already mentioned, task instructions can influence surface colour

adjustments, a problem for both asymmetric matching and achromatic adjustment tasks.

Colour naming studies lack the resolution required to detect deviations from constancy,

as often only a fixed set of colour names are allowed. Finally, while operational colour

constancy tasks may avoid these issues, a correct response on the task does not directly

imply colour constancy. One cannot conclude that correct discrimination of illumination

vs. surface reflectance changes implies the colour appearance of objects remained stable.

Pearce et al. (2014) introduced a new method for measuring colour constancy by means of

illumination discrimination thresholds: the illumination discrimination task (IDT). This

task provides a natural measure of colour constancy and is the approach we take in the

current study. On each trial of this task, observers first see a Mondrian-papered scene illu-

minated by a reference light. After small delays they are presented with two comparisons;

one is the target light and the other a test light. The target light is always identical to the

reference while the test varies from the reference along one of four specified axes in the

CIE xy chromaticity plane; the test is either bluer, yellower, redder or greener in colour

appearance than the reference. A staircase procedure that modulates the distance of the

test from the reference along each axis of change (distance measured in a perceptually

uniform colour space - CIELUV) is used to find thresholds for correct identification of

the target among the two comparison illuminations. The recovered threshold may then

be considered as an upper limit of sensory colour constancy. For illumination changes

to an illumination with chromaticity closer to the reference than the threshold, the ob-

server remains colour constant, for chromaticities further away they do not. The logic is

as follows. If an observer cannot correctly and reliably detect the target light, then they

cannot discriminate between the two comparison scenes and the two comparison scenes

must appear the same to the observer. Thus, the observer remained colour constant as
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colour appearance remained stable despite an illumination change.

1.5.3 Evidence for a “blue bias” in colour constancy

An important feature of the IDT is that the bluer and yellower axes of change are

parametrised to fall along the Planckian locus such that their chromaticities match those

typical of daylights. The redder and greener axes of change fall along a line perpendicular

to the Planckian locus in the CIE u′v′ chromaticity plane, taking chromaticities that are

more atypical of natural illuminations. This allows one to probe whether human colour

constancy mechanisms are optimised for daylights. Pearce et al. (2014) found a “blue

bias” in the IDT thresholds, observers displaying better colour constancy for illumination

changes along the bluer axis of change (mean thresholds were higher along this axis sug-

gesting observers are more tolerant to bluer illumination changes from their neutral D67

reference illumination).

Measurements of daylight chromaticities from Hernández-Andrés et al. (2001) are skewed

towards the bluer side of the D67 reference light (but see also Nascimento et al. (2016)

who show that local illumination colours follow a Gaussian distribution centred on ≈ D57

which is in the yellow region of our experimental illuminations). Pearce et al. (2014)

digitised this data from the plots in the original paper to compare it to the illumina-

tions they used in the experiment (their Figure 1.D). They conclude that “[b]lueish il-

luminations are the most common among daylight illuminations”. We obtained the raw

data from http://colorimaginglab.ugr.es/pages/Data#__doku_granada_daylight_

spectral_database and plot it in Figure 1.8.B. In addition, we plot histograms of the

CIE xy coordinates of the measurements, showing that while the chromaticities of the

measured daylights are skewed towards the bluer illuminations used in the IDT, daylights

are more likely to have a chromaticity corresponding to illuminations classified as yellower

in the experiment. This is also a feature of a more recent set of daylight measurements

(Figure 3 in Spitschan et al., 2016). However, if we consider the measurements relative

to the chromaticity of equal energy white ((x, y) = (0.33, 0.33), or illuminant E), then at
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least along the x dimension, one would conclude that illuminations are likely to be bluer

relative to neutral.

Figure 1.8: Measurements of daylight chromaticities (Hernández-Andrés et al., 2001). A. His-
togram of the CIE y values of the measurements. B. The measurements plotted in the CIE xy
isoluminant plane (grey open circles) with the experimental illuminations from the IDT (bluer,
yellower, redder, and greener illuminations) superimposed. The black solid line is the Planckian
locus. C. Histogram of the CIE x values of the measurements. The black cross and black dashed
lines correspond to the reference illumination chromaticity (D65/D67, which are equivalent to 2
d.p.). The grey cross and grey dotted lines correspond to illuminant E, or equal energy white. The
percentages refer to the proportion of illuminations with CIE x/y chromaticity falling to either
side of the reference illumination chromaticity, or the chromaticity of illuminant E.

While this contradicts the claim of Pearce et al. (2014) (if we assume they call illumina-

tions with both x and y chromaticity values smaller than their neutral reference blue and

yellow otherwise), it does not contradict their hypothesis that human colour constancy

mechanisms are optimised for the statistics of the natural world. Of course, a statement

that daylights are more likely to be blueish relative to the neutral reference light used in

the experiment would be incorrect (it should be noted that the reference also serves as
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the average adaptation point during the experiment and is used as the white point of the

perceptually uniform space in which thresholds are calculated). These data (Hernández-

Andrés et al., 2001; Spitschan et al., 2016) are more supportive of the statement that

daylights are more likely to be yellowish (relative to the neutral reference in the experi-

ment). However, there is more variability among daylights whose chromaticities fall in the

bluer region of the experimental illuminations compared to those in the yellower region.

Moreover, the measurements of daylights encompass the bluer illuminations used in the

experiment better than the yellower illuminations (Figure 1.8). Put another way, bluer

daylights may be more saturated than yellower daylights (again, relative to the neutral

reference illumination). It may still be the case that colour constancy mechanisms are

optimised for natural illuminations in the sense that they are optimised to deal well with

the variation in natural illumination chromaticities. In this framework, one would expect

better colour constancy (reduced discrimination) along the bluer axis of change in the

experiment as the more saturated experimental illuminations (further away from the ref-

erence light) along this axis are more likely in the natural world than the more saturated

experimental illuminations along the yellower axis of change.

The results of Pearce et al. (2014) have been replicated by Radonjić et al. (2016b) and

Alvaro, Linhares, Moreira, Lillo & Nascimento (2017). Radonjić et al. (2016b) repeated

the study of Pearce et al. (2014) with a slightly different real scene and also with a well-

matched computer simulated scene. In both cases, their findings agreed with those of

Pearce et al. (2014). Thresholds along the bluer direction of chromatic change in the

illumination were higher than those along the three other axes of change both for the

real and simulated scene. Participants had worse ability to discriminate the illumination

changes along the bluer axis of chromatic change relative to the others, indicating colour

constancy was better or that they remained colour constant for larger chromatic changes

along this axis.

Alvaro et al. (2017) used a modified version of the IDT, rendering hyperspectral images

of natural scenes under daylight illuminations. They used four different scenes, two rural
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and two urban scenes. In this study, the authors only tested colour constancy along the

Planckian locus (the bluer and yellower chromatic directions of change) and did not test

the redder and greener directions of change. Like the previous studies, they found colour

constancy to be better for the bluer illuminations, a finding that also held in a group of

colour vision deficient observers (red-green dichromats).

The idea that colour constancy mechanisms are optimised for natural illumination changes

was explored earlier by Delahunt & Brainard (2004). Initially, Delahunt & Brainard (2004)

had observers adjust a test patch in simulated scenes of matte surfaces to appear achro-

matic (achromatic matching method). In their first experiment, the scene was rendered

under one of five experimental illuminations. A neutral (D65) illumination (relative to

which constancy was calculated), and a blue, yellow, red, and green illumination. The lat-

ter four illuminations were specified such that their chromaticity (measured from a Lam-

bertian surface) was equidistant from the neutral illumination in the isoluminant CIELUV

plane (60 ∆Eu∗v∗ away, see 2.1.5). Importantly, as in the IDT, the blue and yellow illu-

minations fell along the Planckian locus, an estimate of the daylight locus (representing

typical illumination changes), while the red and green illuminations are parametrised to

fall off the axis of daylight changes (atypical illumination changes). While there was no

significant main effect of direction of illuminations change (blue, yellow, red, or green)

on the level of colour constancy achieved by observers, constancy was best for the blue

illumination, suggesting an underlying “blue bias”. In a second experiment, the authors

hypothesised that if prior knowledge of likely illumination changes in the natural world

does promote better colour constancy for natural illumination changes, any such effect

may not be visible in their data as constancy was high in general. To investigate this fur-

ther, they designed a set of stimuli that would result in worse constancy for all conditions

by introducing invalid cues to the illumination change. For these stimuli, the pattern of

constancy levels across the four illumination change conditions is consistent with the first

experiment (blue > green > yellow > red), but they now find a significant main effect. In

a final experiment, the authors confirmed that the effect was independent of the magni-
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tude of the difference between the neutral and experimental illuminations. They repeated

both their first and second experiments with a blue, yellow, red, and green illumination

that were closer to the neutral illumination in the isoluminant CIELUV plane (30 ∆Eu∗v∗

away) and found the same results.

Radonjić & Brainard (2016) found mixed evidence for a “blue bias” in colour constancy.

In this study, observers completed both a colour selection (“find the best match”) and

asymmetric matching task under a blue and yellow illumination change condition. Again,

constancy was calculated relative to a neutral (D65) illumination. The blue and yel-

low illuminations were defined to fall along the Planckian locus (colour temperatures of

12000 K and 4500 K, respectively). Colour constancy was significantly better for the

blue compared to the yellow illumination change when scenes were more complex (sim-

ulated three-dimensional scenes), but not for more simple scenes (diffusely illuminated

two-dimensional scenes of matte surfaces). Other studies also found no evidence for op-

timisation of colour constancy mechanisms for the illuminations that are most likely in

nature (Brainard, 1998; Foster, Amano & Nascimento, 2003; Rüttiger, Mayser, Sérey &

Sharpe, 2001).

In sum, there is mixed evidence for a “blue bias” in colour constancy, or for an optimisation

of colour constancy mechanisms to properties of the natural world. In addition, it is

unclear what the underlying mechanisms are that would mediate such a behavioural effect.

The bias may come about through a learnt illumination prior that captures the natural

variability in daylight illuminations (daylights are more variable along the bluer end of

the spectrum). Alternatively, the bias may arise through reduced sensitivity to “blueish”

global changes in scene chromaticity, the human visual system having evolved to be less

sensitive to these types of changes, promoting colour constancy under bluer illumination

changes. While it is also true that the ability to learn an illumination prior will have been

selected for during evolution, we consider these two hypotheses as different due to the

following distinction. The former hypothesis, that will be referred to from here on as the

nurture hypothesis, suggests that colour constancy mechanisms will develop differently
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during different individuals’ lifetimes due to different illumination exposures - observers

will develop their own specific prior. This may be expected to manifest as individual

differences in behaviour (see Chapter 4). The latter hypothesis, that we will refer to

as the nature hypothesis, suggests that in some sense, the human visual system has an

engrained illumination prior, learnt during evolution, in the form of a reduced sensitivity

to bluer changes in illumination - a species prior. In this case, constancy mechanisms

are expected to be consistent across observers. The experiments of this thesis attempt to

distinguish between these two hypotheses.
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1.6 Publications arising from this thesis

1.6.0.1 Peer reviewed papers

Aston, S., & Hurlbert, A. C. (2017) What #theDress reveals about the role of illumi-

nation priors in color perception and color constancy. Journal of Vision. (From Chapter

5).

Aston, S., Gross, N., Fitzpatrick, D., Olkkonen, M. & Hurlbert, A. C. (in prep) Memory

effects, central tendency, serial dependency or just task bias? An investigation using

illumination hue discrimination. (From Chapter 6).

Aston, S. & Hurlbert, A. C. (in prep) Illumination Discrimination for Chromatically

Biased Scenes. (From Chapter 3).

1.6.0.2 Conference abstracts

Aston, S., Groombridge, J., Pearce, B. & Hurlbert, A. (2015) Thresholds for colour

constancy measured via illumination discrimination depend on adaptation point. ECVP

2015 - PERCEPTION. (From Chapter 3).

Aston, S., Olkkonen, M. & Hurlbert, A. C. (2017) Memory bias for illumination colour.

VSS 2017 - Journal of Vision. (From Chapter 6).

Aston, S., Olkkonen, M. & Hurlbert, A. C. (2017) Memory effects, central tendency, serial

dependency or just task bias? An investigation using illumination hue discrimination.

ECVP 2017. (From Chapter 6).
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Chapter 2

Measurements and Calibration

2.1 Quantifying Visual Responses to Light

2.1.1 Photometry

Photometric measurements characterise light in terms of what the human eye perceives.

In photometry, radiometric measurements are weighted by the luminosity function, V (λ).

Weighting radiometric measurements by the luminosity function accounts for the fact

that the eye is not equally sensitive to light at all wavelengths. In section 1.2.2.1, we

introduced spectral radiance R(λ) and spectral irradiance I(λ). Equivalent photometric

measures can be defined by weighting the spectral radiance and the spectral irradiance by

the luminosity function and multiplying by 683 to transform to photometric units; this

gives us the spectral luminance, Sl(λ), and spectral illuminance, Si(λ), respectively. We

can express these quantities as:

Sl(λ) = 683R(λ)V (λ) (2.1)

and

Si(λ) = 683I(λ)V (λ) (2.2)

As we did with the radiometric quantities, we can drop the spectral information and

consider just luminance and illuminance. The units for luminance are candelas per square

meter (cd/m2) and the unit for illuminance is lux which is equal to lumens per square

meter (lux = lm/m2).

2.1.2 Colour-matching Functions

The colour matching functions (CMFs) were introduced through psychophysical exper-

iments of trichromatic matching and they are used to represent lights and surfaces by
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[X,Y, Z] tristimulus values (Hunt, 1998). The functions x̄, ȳ and z̄ are illustrated in

Figure 2.1. Again, the [X,Y, Z] tristimulus values of a particular light or surface can be

found by integrating over all wavelengths the point-wise multiplication of the three colour-

matching functions by the SPD of the illumination or the spectral radiance of the light

reflected from a surface. Formally, suppose a light has SPD S(λ), then

X = 683

∫
λ
x̄(λ)S(λ)dλ, (2.3)

Y = 683

∫
λ
ȳ(λ)S(λ)dλ, (2.4)

Z = 683

∫
λ
z̄(λ)S(λ)dλ. (2.5)

Figure 2.1: The CIE 2006 colour-matching functions. (Stockman & Sharpe (2000); CVRL.org)

2.1.3 Chromaticity

The CMF ȳ is identical to the luminosity function, and hence, Y represents luminance.

Luminance can be considered separately to chromaticity, a measure of ‘colour’. A trans-

formation of the [X,Y, Z] tristimulus values takes us to the CIE xy chromaticity plane
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at some level of luminance Y . We call these the [Y, x, y] values. They are found using the

following formula:

x =
X

X + Y + Z
, (2.6)

y =
Y

X + Y + Z
. (2.7)

2.1.4 A cone-opponent colour space

The CIE Y xy colour space is useful for characterising illuminations and surfaces colori-

metrically, but sometimes we may wish to represent them in terms of the excitation or

response of different visual mechanisms. We have already seen that the first stage of visual

processing (isomerisations of the cones in the retina) can be represented by a set of tris-

timulus values, [L,M,S], calculated using the spectral sensitivities of the three cone types.

Similarly, methods have been developed to calculate the responses of the three second-

order mechanisms postulated by (Derrington et al., 1984). The same authors defined one

of the most widley used such colour spaces that has been coined the DKL colour space

after the authors. Brainard (1996) provides a detailed development of the space as well as

MATLAB code to compute values in the space that we utilise for colour conversions during

this thesis. Briefly, suppose the current adaptation state (or background) has tristimulus

values [Lb,Mb, Sb]. If the tristimulus values of the stimulus of interest are [Ls,Ms, Ss] then

the differential tristimulus values can be defined as [∆L,∆M,∆S] where:

∆L = Ls − Lb, (2.8)

∆M = Ms −Mb, (2.9)

∆S = Ss − Sb. (2.10)
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The responses of the three second-order mechanisms, [RLum, RL−M , RS ] are defined as:


RLum
kLum

RL−M

kL−M

RS−(L+M)

kS−(L+M)

 =


1 1 0

1 −Lb
Mb

0

−1 −1 Lb+Mb
Sb



∆L

∆M

∆S

 (2.11)

The ki are free constants and we follow the procedure for defining them suggested by

Brainard (1996), choosing the ki so that each mechanism has a response of 1 when stimu-

lated in isolation by a stimulus with a pooled cone contrast of 1 ((∆L/Lb)
2+(∆M/Mb)

2+

(∆S/Sb)
2)1/2 = 1)).

2.1.5 Perceptually uniform colour spaces

Another desirable property of a colour space is perceptual uniformity. MacAdam (1942)

showed that tristimulus values that are equidistant in the CIE Y xy colour space are not

necessarily perceived to have equal colour difference; the space is not perceptually uniform.

Further colour spaces have been developed that utilise behavioural data of colour discrimi-

nation thresholds, colour appearance data, and suprathreshold data to create colour spaces

that are perceptually uniform. To do so, they transform the co-ordinates obtained from

the CMFs ([X,Y, Z]).

One such example is the CIELAB colour space. CIELAB, like other colour spaces, is

a three co-ordinate system. L∗ represents the lightness dimension (higher values are

brighter), a∗ the red-green dimension (negative values are green, positive are red), and

b∗ the blue-yellow dimension (negative values are blue, positive are yellow). All points in

CIELAB are defined relative to a white point. The transformation to CIELAB is defined
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as follows:

L∗ = 166f

(
Y

Yn

)
− 16 (2.12)

a∗ = 500

(
f

(
X

Xn

)
− f

(
Y

Yn

))
(2.13)

b∗ = 500

(
f

(
Y

Yn

)
− f

(
Z

Zn

))
(2.14)

where

f(t) =


3
√
t, t > δ3

t
3δ2

+ 4
29 , otherwise

with δ = 6/29, and [Xn, Yn, Zn] are the tristimulus values of the white point.

A second example is the CIELUV colour space. CIELUV has a similar three dimensions

to CIELAB (a lightness (L∗), red-green (u∗), and blue-yellow (v∗) dimension) and is also

defined relative to a white point. The transformation to CIELUV is defined as follows:

L∗ =


(
29
3

)3
(Y/Yn), (Y/Yn) ≤

(
6
29

)3
166(Y/Yn)1/3 − 16, (Y/Yn) >

(
6
29

)3 (2.15)

u∗ = 13L∗(u′ − u′n) (2.16)

v∗ = 13L∗(v′ − v′n) (2.17)

where

u′ =
4X

X + 15Y + 3Z
(2.18)

v′ =
9Y

X + 15Y + 3Z
(2.19)

and [Xn, Yn, Zn] are the tristimulus values of the white point.

Once in a perceptually uniform colour space, colour differences can be represented by

a colour difference metric, defined as the Euclidean distance between the points. For
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example, the distance between two points in CIELUV, [L∗1, u
∗
1, v
∗
1] and [L∗2, u

∗
2, v
∗
2] is:

∆Eu∗v∗ = ((L∗2 − L∗1)2 + (u∗2 − u∗1)2 + (v∗2 − v∗1)2)1/2. (2.20)

A similar equation defines differences in CIELAB.

2.2 Testing for Colour Vision Deficiencies

In the studies presented in this thesis, participant’s were screened for colour vision defi-

ciencies using the 24-plate Ishihara Test and the Farnsworth-Munsell 100 Hue Test.

The Ishihara Test screens participants for red-green colour vision deficiencies. During

the test, participants view a series of pseudo-isochromatic plates that contain a set of

dots that have various sizes and colours. Hidden within the dots is a number that can

only be seen by observers with normal colour vision as distinguishing the dots that make

up the number from those that do not requires a certain level of colour discrimination.

Participants read each number aloud as they go through the plates and errors are recorded.

Specific combinations of errors (errors on a certain collection of plates) are indicative of

different types of colour blindness and participants who display such a combination of

errors were excluded from experiments.

In the Farnsworth-Munsell 100 Hue Test participants are required to sort coloured caps

according to a hue gradient. The test consists of 85 coloured caps and participants sort

these in subsets of 21/22 caps per tray. For each tray, the experimenter mixes up the

caps, leaving the two end points fixed in the tray. The participant is then required to

place the caps back in the tray to create a hue gradient between the two end points.

After completion of the task, the ordering of the caps is used to assign participants a

score at each of the 85 equally spaced points around the hue circle. If scores spike at two

opposing points around the hue circle this can be indicative of a colour confusion line for

the participants, suggesting a specific type of colour blindness. Any such participants were

excluded from the experiments.
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2.3 The Light Sources

In all experiments, lighting is provided by spectrally tunable LED light modules. These

light modules are a form of solid state lighting (SSL). Prior to the introduction of SSL,

the SPD of a light source was fixed, being pre-determined by the physical properties of

the materials in the light source. Using a computer, the SPD of the light emitted by these

LED light modules can be controlled in real-time via either a Bluetooth, USB or local

wireless network (WiFi) connection. Each LED light module is multi-channel, meaning

it contains a number of unique LEDs. The SPDs of each LED constitute a set of basis

functions for all possible spectra that can be emitted by the light source. The spectrum

emitted by the light modules is controlled by specifying the power of each individual LED

channel (or basis function), which amounts to sending a list of weights to the light module

consisting of a list of numbers bounded by zero and one. If there were n LED channels

in the light module then a list of n weights must be sent to the light source, one for each

channel, or one for each basis function. Hence, all SPDs that can be emitted by the light

modules consist of all possible linear combinations of the basis functions. The methods for

generating a set of weights to send to the light sources such that the SPD of the emitted

light has particular specified characteristics will be discussed in Section 2.4. Depending on

the experiment, different tunable LED prototypes were used that have a variable number

of channels and communication method. The details of the two prototypes will be covered

in the following subsections.

2.3.1 Mark I LEDMOTIVE Luminaires

The first prototype LED light module is the Mark I LEDMOTIVE luminaire (Figure

2.2.A) The Mark I Luminaire has 13 unique channels. The basis functions can be seen in

Figure 2.3. Communication to the Mark I luminaire can be mediated by either a Bluetooth

or a USB connection.
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Figure 2.2: The luminaires. A. Mark I LEDMOTIVE luminaire. B. Hi-LED prototype I luminaire.

Figure 2.3: Basis functions for the Mark I LEDMOTIVE luminaire. The Mark I luminaire has 13
unique channels.

2.3.2 Hi-LED prototype I Luminaires

The second prototype LED light module is the Hi-LED prototype I luminaire (Figure

2.2.B). The HI-LED prototype I luminaire has 10 unique channels, two of which are

duplicated. The basis functions can be seen in Figure 2.4. Communication to the HI-LED

prototype I luminaire can be mediated by either a USB or WiFi connection.
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Figure 2.4: Basis functions for the Hi-LED prototype I luminaire. The HI-LED prototype I
luminaire has 10 unique channels, with two duplicates.

2.4 Spectral Fitting Procedures

Fitting a SPD amounts to finding an array of weights that can be sent to the light modules

that results in a light of given [X,Y, Z] tristimulus values. When we do this, we always

require the smoothest SPD possible as we want to use lighting conditions that are as

natural as can be (lights in nature have relatively flat SPDs). The smoothness of a SPD

S(λ) can be defined as ∫
λ

(
dS

dλ

)2

dλ. (2.21)

To see this, consider what dS
dλ represents; it is the gradient of the S(λ) at any given

wavelength λ. Thus, |dSdλ | is a measure of the variation of S(λ) at any given wavelength λ.

To find the total variation in S(λ) we can sum the variation at every wavelength; however,

as there are infinitely many wavelengths at which we could measure the variation of S(λ)

this sum becomes an integral. Hence, the total variation (TV ) of S(λ) can be defined as

TV =

∫
λ

∣∣∣∣dSdλ
∣∣∣∣p dλ, (2.22)
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where p is an optional constant that can be used to assign different weights to smaller

or larger values of |dSdλ |. We wish to highlight areas of large variability, so we choose a

positive integer p such that we assign larger weights to larger values of |dSdλ | and smaller

weights to smaller values of |dSdλ | (as opposed to choosing a negative integer p that would

do the opposite). For our purposes, we set p = 2.

For a set of SPDs, Si(λ), of a set of metamers, the smoothest SPD will be given by

min
i

∫
λ

(
dSi(λ)

dλ

)2

dλ. (2.23)

Now, following Li & Luo (2001) we have

∫
λ

(
dS

dλ

)2

dλ =
∆λ

2

[(
dS(λ1)

dλ

)2

+

(
dS(λN )

dλ

)2

+ 2
N−1∑
k=2

(
dS(λk)

dλ

)2
]

(2.24)

by the trapezium rule. Using differentiation from first principles for a discrete set of points

we have

dS(λk)

dλ
=
S(λk+1)− S(λk)

∆λ
, ∀k ∈ [1, N − 1] (2.25)

and

dS(λk)

dλ
=
S(λk)− S(λk−1)

∆λ
, for k = N. (2.26)

Equations 2.25 and 2.26 can be substituted in to equation 2.24 to give

∫
λ

(
dS

dλ

)2

dλ =
∆λ

2

[(
S(λ2)− S(λ1)

∆λ

)2

+

(
S(λN )− S(λN−1)

∆λ

)2

+ . . .

. . .+ 2

N−1∑
k=2

(
S(λk+1)− S(λk)

∆λ

)2]
.

(2.27)
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Pulling out the factor of 2

(
1

∆λ

)2

gives

∫
λ

(
dS

dλ

)2

dλ =
1

∆λ

[
1

2
(S(λ2)− S(λ1))

2 +
1

2
(S(λN )− S(λN−1))

2 + . . .

. . .+
N−1∑
k=2

(S(λk+1)− S(λk))
2

]
.

(2.28)

This becomes

∫
λ

(
dS

dλ

)2

dλ =
1

∆λ

[(
S(λ2)− S(λ1)√

2

)2

+

(
S(λN )− S(λN−1√

2
)

)2

+ . . .

. . .+

N−1∑
k=2

(S(λk+1)− S(λk))
2

]
.

(2.29)

If we set

r =



S(λ2)− S(λ1)√
2

S(λ3)− S(λ2)

...

S(λN−1)− S(λN−2)

S(λN )− S(λN−1)√
2


, (2.30)

then ∫
λ

(
dS

dλ

)2

dλ =
1

∆λ
||r||2, (2.31)

where we consider ||x|| to be the usual Euclidean norm, i.e. ||x|| =
√
x21 + x22 + · · ·+ x2n.

If we take the matrix

D =



− 1√
2

1√
2

0 · · · · · · 0

0 −1 1 0 · · · 0

...
...

. . .
. . .

...
...

0 · · · · · · −1 1 0

0 · · · · · · · · · −1 1

0 · · · · · · · · · − 1√
2

1√
2


, (2.32)

41



Chapter 2. Measurements and Calibration

then we can write r = Ds where

s =



S(λ1)

S(λ2)

...

S(λN−1)

S(λN )


. (2.33)

Hence, equation 2.23 becomes

min
s

1

∆λ
||Ds||2, (2.34)

and this is the equation we now wish to solve.

For our light modules, the basis functions for any illuminant are known (i.e. we know the

SPDs of the n LED channels). These SPDs can be represented in an (N × n)-matrix A.

So, any illuminant s can be expressed as s = Aw, for a vector of weights w. We can now

reformulate equation 2.34 further to say that the smoothest SPD will be found by solving

min
w
||DAw||2, (2.35)

where we omit
1

∆λ
as it is constant and will not affect the minimum.

By definition of matrix multiplication

||DAw||2 = (DAw)TDAw, (2.36)

= wTATDTDAw, (2.37)

so our problem is to find

min
w

(wTATDTDAw). (2.38)

If we require a smooth SPD with [X,Y, Z] = [X1, Y1, Z1] then we wish to solve equation
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2.38 subject to

6.83×RTAw =


X1

Y1

Z1

 , (2.39)

where R is a matrix representing the CMFs; each column of R is a CMF..

This is now a quadratic programming problem and can be solved in MATLAB using the

quadprog command.
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Chapter 3

Illumination discrimination under chromatically biased

illuminations

3.1 Introduction

Pearce et al. (2014) found a “blue bias” in illumination discrimination thresholds using

the illumination discrimination task. Average thresholds were highest when the change

in the illumination was along a bluer direction of chromatic change. This was interpreted

as evidence for better colour constancy under blueish illuminations (observers were more

tolerant to bluer illumination changes). However, as we mentioned, it is still unclear how

this bias is encoded in the visual system. The experiment we present here allows us to

further address this question.

The results of Pearce et al. (2014) were replicated by Radonjić et al. (2016b) in both real

and simulated scenes. Radonjić et al. (2016b) also found that relative thresholds for the

different directions of illumination change depend on the average chromaticity of surfaces in

the scene (where by surface chromaticity we mean the chromaticity that the surface would

have under a hypothetical equal energy white light). In particular, when the chromaticities

of surfaces in the scene are biased towards reddish-blue, they find increased sensitivity to

illumination changes when the illumination becomes more red, and decreased sensitivity

when it becomes more green (relative to a neutral average surface chromaticity condition).

A similar trend appears when the surfaces in the scene are biased such that their mean

chromaticity is yellowish-green; sensitivity is decreased for bluer and redder illumination

changes, but increased for greener illumination changes. In summary, thresholds tend to

increase in directions chromatically opponent to the bias and decrease in the direction of

bias.

Radonjić et al. (2016b) conclude that sensitivity to different directions of chromatic change

in the illumination must be defined with respect to the surfaces in the scene. They offer an
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explanation of these results by suggesting that as the bias in surface chromaticities leads

to an increase in surfaces reflecting certain wavelengths of light (i.e. longer wavelengths

are reflected more in the reddish-blue condition), there will be an increase in sensitivity

to changes in illumination that contain more light at those wavelengths.

With this study, we address two questions. Firstly, if the explanation offered by Radonjić

et al. (2016b) is correct, then we may expect that the same mean scene chromaticity bias

caused by biasing the chromaticities of the illuminations in the task, while maintaining

a surface ensemble with neutral average chromaticity, will not have the same effect on

relative thresholds. In other words, we ask if sensitivity to different directions of chro-

matic change in the illumination must be defined with respect to the mean illumination

chromaticity (temporally over the course of the experiment) in addition to the surface

ensemble. Secondly, if relative thresholds do change with the reference illumination, do

they change only when the reference illumination is moved away from the Planckian locus

but not otherwise? Put differently, we first ask if the “blue bias” is specific to bluer illumi-

nation changes that mimic daylight changes. If such a distinction can be made it may be

suggestive of the underlying visual mechanisms that mediate the “blue bias”. Specifically,

the behavioural data may be able to distinguish between our two competing hypotheses;

the nature vs. nurture hypotheses (see Section 1.5.3). In the case of the nurture explana-

tion, we may expect that observers will be more colour constant for illuminations that are

closer in chromaticity to the daylight locus. Alternatively, the nature explanation would

predict a reduced sensitivity to bluer illumination changes in general, not just ones that

fall along the daylight locus.

To answer these questions, we examined performance of a group of observers who com-

pleted five versions of the IDT. One version was the standard IDT used by Pearce et al.

(2014) and Radonjić et al. (2016b). In the other four versions of the task, the reference

light became the most extreme test light (50 ∆Eu∗v∗ away) from one of the four axes of

change used in the original experiment. The corresponding test lights were also shifted in

chromaticity space such that all illuminations used within a given condition were all either
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blue, yellow, red or green in appearance. Our results show that the reference illumina-

tion, and hence the mean chromaticity of the stimulus during an experimental condition,

modulates relative thresholds for the different directions of chromatic change. This is also

true for reference illuminations that fall on the Planckian locus. However, we still see a

“blue bias” in all reference illumination conditions. We show that the biases we see are

not explained by a bias in low-level scene statistics.

3.2 Methods

3.2.1 Overview

Participants viewed a Mondrian-papered scene illuminated by LED lamps. After viewing

the scene under a reference illumination, participants were required to indicate which of

two successively presented comparison illuminations most closely matched the reference.

One of the comparison illuminations would always match the reference (the target). The

other comparison illumination (the test) varied from the reference such that it nominally

became either bluer, yellower, redder or greener in colour. In a 5 × 4 repeated measures

design, all participants (n = 9) completed the task for five different reference illumination

conditions (neutral, blue, yellow, red and green). A staircase procedure was used to find

thresholds for discrimination of an illumination change along each of the four axes of

change for each reference condition.

3.2.2 Ethics

Ethical approval for this and all studies discussed later in the thesis was received from the

Newcastle University Ethics Board. Written consent was received from all participants

prior to participation in the studies.
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3.2.3 Participants

Nine participants were recruited (4 male, 5 female, mean age of 23.4±2.88 years). All par-

ticipants had normal or corrected to normal visual acuity and no colour vision deficiencies,

assessed using Ishihara Colour Plates.

3.2.4 The Scene

The scene was viewed through a porthole in a box of dimensions: height 45 cm, width

77.5 cm, depth 64.5 cm. The front of the box extended out towards the participant so

that when looking through the porthole the viewing distance from the viewing plane to

the back of the box was 81 cm (Figure 3.1.A). Both the scene and participants were

immersed in the illumination (the only source of light in the room); their view, however,

was restricted to inside the box (Figure 3.1.B). The top of the box was open to allow

illumination of the scene. The bottom, rear and sides of the box were papered with

a matte printed Mondrian, designed such that its average reflectance was flat (Figure

3.2.B). Each patch of the Mondrian was one of 24 unique chromaticities, chosen such that

their average chromaticity was neutral (mean CIE xy chromaticity (x, y) ≈ (0.33, 0.33)

under a hypothetical equal energy white). The height and width of each patch varied

in size from 2 mm to 42 mm (0.14 to 2.97 degrees of visual angle). The Mondrian was

created by generating 100, 000 patches of varying pixel size and chromaticity and randomly

placing them inside a 1001× 1001 pixel frame that was initially set to (R,G,B) = (0, 0, 0)

everywhere. After the Mondrian generation process was complete, we checked for RGB

values equal to (0, 0, 0) to ensure that no black patches remained.

The spectral reflectance distribution of each unique patch used to make up the Mondrian

lining was found by first taking a radiance measurement from one sample of each unique

patch with a CS2000 Konica Minolta spectroradiometer (Konica Minolta, Nieuwegein,

Netherlands). The location of each patch is shown in Figure 3.2.A. These measurements

were then subject to pointwise division by a measurement of the incident illumination
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Figure 3.1: The experimental chamber. A. Participants positioned their head against the goggles,
restricting their view to inside the stimulus box. The box was illuminated by two spectrally tunable
LED luminaires. B. The participant’s view inside the box (shown here illuminated by an arbitrary
illumination that was not used during the experiment).

spectrum taken from a calibration tile to find the spectral reflectance distributions (Fig-

ure 3.2.B). We then calculated the chromaticity that each patch would have under a

hypothetical equal energy white light using the CIE 2006 Y xy colour matching functions

(Table 3.1).

Figure 3.2: Parameters of the Mondrian. A. The locations of the 24 measured patches on the back
wall of the stimulus box. B. The surface reflectance of each of the 24 unique patches used to make
up the Mondrian lining of the box. Black solid line is the average reflectance of these 24 patches.

3.2.5 The Illuminations

The illuminations used in the experiment can be split into five subgroups corresponding

to the five different conditions; a neutral, blue, yellow, red and green set (Figure 3.3). In
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Table 3.1: CIE xy chromaticities of each unique patch in the Mondrian under a hypothetical equal
energy white light. Also shown is the mean of these patches (M24) and the mean taken across the
whole hyperspectral image (Mh).

Patch CIE x CIE y Patch CIE x CIE y

1 0.35 0.49 13 0.26 0.39
2 0.37 0.26 14 0.39 0.49
3 0.24 0.28 15 0.27 0.17
4 0.21 0.14 16 0.42 0.28
5 0.37 0.23 17 0.42 0.40
6 0.28 0.21 18 0.23 0.23
7 0.49 0.37 19 0.34 0.52
8 0.46 0.38 20 0.25 0.18
9 0.45 0.44 21 0.25 0.28
10 0.46 0.29 22 0.30 0.44
11 0.20 0.18 23 0.37 0.45
12 0.30 0.48 24 0.28 0.39
M24 0.33 0.33 Mh 0.34 0.33

each set, the illuminations were generated such that they varied systematically away from

a central point in the CIE xy chromaticity diagram. These central points were the refer-

ence illuminations for each experimental condition (neutral, blue, yellow, red and green).

The CIE xy chromaticities of the five reference lights were: (x, y) = (0.31, 0.33) (D65),

(x, y) = (0.25, 0.26), (x, y) = (0.39, 0.39), (x, y) = (0.32, 0.26) and (x, y) = (0.30, 0.38),

respectively (Figure 3.3.A). For each reference illumination, 20 test illuminations were gen-

erated that varied away from the reference in each of four distinct chromatic directions:

nominally bluer, yellower, redder and greener. For neutral, blue and yellow reference illu-

minations, bluer/yellower test illuminations were parametrised to fall along the Planckian

locus in order to mimic the chromaticities of daylight illuminations (defined in the CIE

xy chromaticity plane as y = 2.870x − 3x2 − 0.275; Wyszecki & Stiles (1967)); whereas

for the red and green reference illuminations, the bluer/yellower test illuminations varied

along a linear transformation of the Planckian locus. For neutral, blue and yellow refer-

ence illuminations, redder/greener test illuminations were parametrised to fall along the

CCT line to the Planckian locus at the location of the reference illumination. Finally, in

the red and green reference illumination conditions, the redder/greener test illuminations

fell along a linear translation of the CCT line to the Planckian locus at x = 0.31 (D65),
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maintaining orthogonality with the bluer/yellower changes in the CIE u′v′ chromaticity

plane. Each set of 20 test illuminations were spaced one ∆Eu∗v∗ apart (using the neutral

reference illumination as the white point) (Figure 3.3.B). All illuminations were generated

such that the luminance of a white polymer calibration tile was Y = 50 cd/m2 when

illuminated by these lights.

Figure 3.3: The IDT illumination chromaticities. A. Plotted in the CIE xy chromaticity plane.
B. Plotted in the CIE u∗v∗ chromaticity plane. The black open symbol marks the chromaticity
of the reference illumination in each of the five conditions. The different axes of chromatic change
are shown in their respective colours for each reference illumination condition.

We generated a further 30 illuminations along each axis that were 21 to 50 ∆Eu∗v∗ away

from the reference. While these illuminations were not used as part of the staircase proce-

dure, one of them appeared every 10 trials from a randomly decided chromatic direction of

change. We know from previous studies that these stimuli are supra-threshold for trichro-

mat observers. The purpose of including such trials in the experiment was to ensure that

the participant remained engaged with the task even when the staircases were approaching

threshold and they were unlikely to detect the target. In addition, these trials can be used

to ensure that our participants were attentive and performing the task to the best of their

ability. If participants respond incorrectly to a large percentage of these trials (i.e. they

display a high lapse rate), we can use this information to exclude participants from the

analysis. For this reason, we will refer to these trials as catch trials. It was not necessary

to use these trials in this particular experiment. We will meet them again in Chapter 4

however when they will prove useful for a different purpose.
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The illuminations were produced using two 10-channel (9 unique) spectrally tunable LED

lamps (see Section 2.3.2). The spectral power distribution of the light emitted from the

lamps can be controlled in real-time by controlling the pulse width modulation of each

individual LED channel, allowing the spectral power distribution to be specified by a set

of 10 weights. In order to find a set of weights that produce a spectral power distribution

with a certain luminance and CIE xy chromaticity (as measured from the white cali-

bration tile), we used custom MATLAB scripts to find the smoothest possible fit to the

specified illumination characteristics. The smoothness constraint ensures that the spectra

are comparable in smoothness to natural daylights. Full details of the spectral fitting

procedure are reported elsewhere (Pearce et al., 2014; Radonjić et al., 2016b; Finlayson

et al., 2014) and in Chapter 2.

3.2.6 Spectral Calibration

Calibration was performed in two stages. Initially, we measured the spectral power distri-

bution of each individual LED channel at maximum power. These will be referred to as the

basis functions of the lamps. To measure the basis functions, a polymer white reflectance

tile was placed flush against the back wall of the stimulus box with the Mondrian lin-

ing removed. A CS2000 Konica Minolta spectroradiometer (Konica Minolta, Nieuwegein,

Netherlands) was used to take radiance measurements from the tile when illuminated sep-

arately by each LED channel. These basis functions were input to the spectral fitting code

to find the weight vectors that would give illuminations of the specified chromaticities and

luminance. The spectral power distributions of the fitted weights were then measured

using the same procedure used to obtain the basis functions (Figure 3.4).

3.2.7 Hyperspectral Imaging and Illumination Modelling

Hyperspectral imaging with a Specim V10E camera was used to obtain image data for the

analysis of scene statistics. A surface reflectance image of the back wall was obtained by

first imaging the back wall under an arbitrary white light before removing the Mondrian
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Figure 3.4: The spectral power distributions of the IDT illuminations. Each pair of plots across
a row show bluer/yellower and redder/greener test illuminations for a given reference illumination
condition.

lining from the box and then obtaining an image of the white reflectance tile covering the

back wall. Because the tile is smaller than the wall, the latter image was obtained by

combining three images, in which the white tile was placed either flush to the right wall

of the box, in the centre of the box or flush to the left wall of the box. Thus, we obtained
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a complete representation of the spatial gradients of irradiance on the back wall. Both

hyperspectral images (the image of the Mondrian-papered back wall and the combined

image of the white reflectance tile) were then cropped to remove any areas of the image that

were above, below or to either side of the back wall of the box. The cropped hyperspectral

image of the white reflectance tile was smoothed using a 2D Gaussian kernel. Finally, this

smoothed image of the white reflectance tile was used to remove the illumination from

the image of the Mondrian-papered back wall using point-wise division at each pixel (each

pixel being a point in a data cube that represents a measured spectrum of light). To

model the appearance of the Mondrian-papered back wall under each illumination, the

measured SPDs of each illumination were combined with the measured surface reflectance

at each pixel using point-wise multiplication. These images were used to find the mean

scene chromaticity under each illumination used in the experiment in order to form the

scene mean chromaticity look up table detailed in the data analysis section below.

3.2.8 Procedure

Participants visited the laboratory on five occasions, once for each reference illumination

condition. On their first visit to the laboratory, all participants were tested for colour

vision deficiencies using the Ishihara Colour Plates. In the experiment room, participants

read the standardised instructions and were permitted to ask questions. All participants

then received the same verbal instructions: “On each trial, you will see the reference

illumination followed by two comparison illuminations. You will use the gaming pad to

indicate which of the two comparison illuminations most closely matched the reference”.

These instructions were repeated on subsequent visits but the participants did not read

the standardised instructions a second time. On the first and all subsequent visits, before

beginning the task, there was a two minute dark adaptation period. On each trial, the

reference illumination was visible for 2000ms. Each comparison illumination was displayed

for 500 ms and between each illumination was 400 ms of darkness (Figure 3.5). The

correct match randomly switched between the first and second comparison. Thresholds
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for each direction of change were found using a 1-up, 3-down, transformed and weighted

staircase procedure (Kaernbach, 1991). Three staircases were completed for each direction

of change. Staircases terminated after six reversals (as this was an optimal amount of

reversals to ensure the experiment was not too long and the staircases converged sufficiently

according to simulations). There was no time limit on how long participants could wait to

make their response and participants were told that they had the opportunity to take a

break at any time during the experiment by remembering their response but not entering

it until they were ready to continue. Participants were required to take a mandatory

break after every 100 trials. This break could last for as long as the participant required;

however, they did not leave the dark room during this period.

Figure 3.5: The illumination discrimination task (IDT).

3.2.9 Data Analysis

Thresholds were calculated by taking the mean of the last two reversals from each of the

three staircases (a mean of six reversals in total). A look up table was created mapping

each nominal staircase step (1 to 20) to a ∆Eu∗v∗ between the measured chromaticities of

each test light and the relevant reference (fixed white point illumination look up table).

All reversal indices were first converted using the look up table and then an average taken
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over the ∆Eu∗v∗ values.

In addition, we also created a look up table mapping each nominal staircase step (1 to 20)

to a ∆Eu∗v∗ between the mean scene chromaticity under each test light and the relevant

reference (scene mean look up table). The mean scene chromaticity was calculated from

the surface spectral reflectance of the Mondrian-papered back wall (measured as above)

and the measured illumination spectra, for each point in the scene. Converting nominal

staircase steps to ∆Eu∗v∗ values using this table accounts for any bias introduced by a

bias in the scene statistics.

The neutral reference illumination (D65) was used as the white point for calculation of

∆Eu∗v∗ in all reference illumination conditions (for both of the look up tables detailed

above). However, it could be argued that if the participant adapts to the temporal average

of the illumination during each condition of the experiment, then the reference illumination

from each condition is a more appropriate choice for the respective white point that ∆Eu∗v∗

values are defined with respect to. Hence, we made a third look up table in this way

(variable white point illumination look up table). We show in the results section that our

overall conclusions remain the same regardless of the look up table that we use.

All data are presented as mean and standard error unless stated otherwise. Graphed

error bars also represent standard error. Where pairwise comparisons and simple main

effects are reported, p-values have been corrected for multiple comparisons by applying a

Bonferroni correction.

3.3 Results

3.3.1 Using the fixed white point illumination look up table

The data show that relative illumination discrimination thresholds for the different chro-

matic directions of illumination change depend on the reference illumination (Figure 3.6,

Table 3.2). A qualitative look at these data reveals a pattern. While overall thresholds
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are highest for the bluer direction of change regardless of reference illumination condition,

thresholds for the direction of change that is chromatically opponent to the bias in the

reference illumination (e.g. thresholds for the greener direction of change in the red ref-

erence condition) are increased relative to the other directions of chromatic change. In

other words, whilst the “blue bias” prevails overall, a bias also emerges in the chromatic

direction that is opponent to the reference chromaticity.

A 5 × 4 repeated measures ANOVA reveals a significant interaction effect of reference

illumination and chromatic direction of illumination change on illumination discrimina-

tion thresholds (F (12, 96) = 9.11, p < .001). Moreover, there was a significant main

effect of reference illumination, regardless of the direction of chromatic change (F (4, 32) =

12.84, p < .001), and a significant main effect of chromatic direction of illumination change,

regardless of reference illumination condition (F (3, 24) = 8.35, p = .001). When thresholds

are averaged over the different reference illumination conditions, thresholds for the bluer

and yellower chromatic direction of change are significantly higher than redder thresholds

(p = .024 and p = .008, respectively). There were no other significant differences between

the different directions of chromatic change (Figure 3.6.A).

Figure 3.6: IDT thresholds calculated using the fixed white point look up table. A. Illumination
discrimination thresholds for each chromatic direction of change and for each reference illumination
condition. Transparent bars represent the main effect of chromatic direction of change. They
are the thresholds for each chromatic direction averaged over reference illuminations. B. Mean
thresholds plotted in the CIE u∗v∗ chromaticity plane, with a discrimination contour formed by
interpolating between the points, showing how the asymmetry in the discrimination ellipse changes
as the reference moves around the colour space.
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Table 3.2: Mean IDT thresholds using the fixed white point look up table. Values in brackets show
the standard error.

Reference Bluer Greener Redder Yellower

Neutral 10.96 (1.42) 8.30 (0.75) 7.48 (1.21) 8.51 (0.79)
Blue 11.84 (0.86) 8.91 (0.87) 6.63 (1.05) 14.98 (0.94)

Green 10.47 (1.01) 7.41 (0.60) 10.73 (1.49) 7.21 (0.85)
Red 13.53 (1.17) 13.87 (1.08) 6.80 (0.83) 11.74 (1.08)

Yellow 9.00 (1.31) 6.14 (0.51) 7.47 (0.74) 6.57 (1.08)

As the interaction term was significant, we explored simple main effects. There was a sim-

ple main effect of chromatic direction of illumination change for the blue, green and red

reference illumination conditions (F (3, 24) = 15.45, p < .005; F (3, 24) = 5.37, p = .030;

and F (3, 24) = 11.48, p < .005, respectively), but not in the neutral and yellow refer-

ence illumination conditions (F (3, 24) = 4.32, p = .070 and F (3, 24) = 2.88, p = .285,

respectively). In the blue reference illumination condition, thresholds differed between the

following directions of change: bluer vs. redder (p = .017); greener vs. yellower (p = .041);

and redder vs. yellower (p = .004). In summary, thresholds were highest for the yellower

direction of change, but they were only significantly higher than the thresholds for the

redder and greener directions, not bluer. For the red reference illumination condition,

thresholds differed between the redder direction of chromatic change and all other direc-

tions of change (p = .006, p = .012, and p = .008, for blue, green, and yellow, respectively).

Thresholds in the redder direction of change were significantly lower than thresholds in all

other directions, with thresholds highest for the bluer and greener directions of change.

No pairwise comparisons were significant for the green reference illumination condition,

although the highest thresholds were for the bluer and redder directions of change.

There was a simple main effect of reference illumination on illumination discrimination

thresholds in all chromatic directions (F (4, 32) = 4.38, p = .024 for bluer, F (4, 32) =

14.15, p < .004 for greener, and F (4, 32) = 18.13, p < .004 for yellower) except redder

(F (1.64, 13.11) = 4.32, p = .168, with a Greenhouse-Geisser correction). Illumination dis-

crimination thresholds for the bluer direction of change were lowest in the yellow reference

illumination condition and highest in the red reference illumination condition, although no
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pairwise comparisons among these thresholds were significant. For the greener direction

of change, the red reference illumination produced a threshold significantly higher than

all other reference illumination conditions except blue (p = .039, p = .003, and p < .001,

for the neutral, green, and yellow reference illumination conditions, respectively). Finally,

for the yellower direction of change, the highest threshold was in the blue reference illumi-

nation condition and this was significantly higher than in the neutral, green, and yellow

reference illumination conditions (p = .006, p = .002 and p = .005, respectively). In

addition, thresholds for the yellower direction of change in the red reference illumination

condition were significantly higher than for the green and yellow reference illumination

conditions (p = .011, and p = .005, respectively).

3.3.2 Using the scene mean look up table

If we repeat the ANOVA analysis above on the data obtained using the scene mean look

up table a similar pattern of results emerge (Figure 3.7.A, Table 3.3). We can quantify

the strength of the correspondence between the two threshold sets by calculating Pear-

son’s correlation coefficient (r = .979, p < .001; Figure 3.7.B). We still find a significant

interaction effect of reference illumination and chromatic direction of illumination change

on illumination discrimination thresholds (F (12, 96) = 7.58, p < .001), a significant main

effect of reference illumination (F (4, 32) = 9.67, p < .001), and a significant main effect of

chromatic direction of illumination change (F (3, 24) = 3.87, p = .022). However, although

thresholds in the bluer direction of change are still the highest when averaged over refer-

ence illumination conditions, no pairwise comparisons between the different directions are

significant.

Using this look up table, there was only a simple main effect of chromatic direction of

illumination change for the blue and red reference illumination conditions (F (3, 24) =

7.27, p < .005 and F (3, 24) = 11.67, p < .005, respectively), but not in the neutral,

green, and yellow reference illumination conditions (F (3, 24) = 2.32, p = .505; F (3, 24) =

4.40, p = .065, and F (3, 24) = 2.87, p = .285, respectively). In the blue reference illumina-
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Figure 3.7: Thresholds calculated using the scene mean look up table. A. Thresholds across
the different directions of change for the five reference illumination conditions. Transparent bars
represent the main effect of chromatic direction of change. They are the thresholds for each
chromatic direction averaged over reference illuminations. B. Scatter plot of the threshold data
calculated using the scene mean look up table (LUT) plotted against threshold data calculated
using the fixed white point illumination look up table (LUT).

Table 3.3: Mean IDT thresholds using the scene mean look up table. Values in brackets show the
standard error.

Reference Bluer Greener Redder Yellower

Neutral 9.13 (1.25) 7.47 (0.73) 7.08 (1.18) 7.18 (0.72)
Blue 9.49 (0.73) 9.03 (0.92) 6.49 (1.12) 11.99 (0.80)

Green 9.10 (0.92) 6.98 (0.60) 9.90 (1.46) 6.72 (0.84)
Red 10.98 (1.01) 13.45 (1.09) 6.53 (0.85) 9.38 (0.94)

Yellow 8.45 (1.29) 5.66 (0.50) 6.83 (0.72) 6.33 (1.10)

tion condition, thresholds for the yellower direction of chromatic change were significantly

higher than for the redder direction (p = .028). No other comparisons were significant. For

the red reference illumination condition, thresholds in the redder direction of chromatic

change were significantly lower than those for the bluer or greener direction of change

(p = .029 and p = .010, respectively). No other comparisons were significant.

There was a simple main effect of reference illumination on illumination discrimina-

tion thresholds for the greener and yellower chromatic directions of change (F (4, 32) =

16.10, p < .004 and F (4, 32) = 10.76, p < .004, respectively), but not for bluer and redder

(F (4, 32) = 1.86, p = .568 and F (1.69, 164.76) = 3.62, p = .244, with a Greenhouse-Geisser

correction, respectively). For the greener direction of change, the red reference illumination
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produced a threshold significantly higher than all other reference illumination conditions

except blue (p = .019, p = .002, and p < .001, for the neutral, green, and yellow reference

illumination conditions, respectively). For the yellower direction of change, the highest

threshold was in the blue reference illumination condition and this was significantly higher

than in the neutral, green, and yellow reference illumination conditions (p = .011, p = .012

and p = .028, respectively).

3.3.3 Using the variable white point illumination look up table

When thresholds are calculated using the reference illumination from each condition as

the white point, the ordering of mean thresholds within each condition and across con-

ditions remains the same (Figure 3.8.A, Table 3.4). Again, we quantified the strength of

the correspondence between the two threshold sets by calculating Pearson’s correlation

coefficient (r = .999, p < .001; Figure 3.8.B).

Figure 3.8: IDT thresholds calculated using the variable white point illumination look up table.
A. Thresholds across the different directions of change for the five reference illumination condi-
tions. Transparent bars represent the main effect of chromatic direction of change. They are the
thresholds for each chromatic direction averaged over reference illuminations. B. Scatter plot of the
threshold data calculated using the variable white point illumination look up table (LUT) plotted
against threshold data calculated using the fixed white point illumination look up table (LUT).

Once again we can repeat the ANOVA analysis on these data. We find a significant inter-

action effect of reference illumination and chromatic direction of illumination change on

illumination discrimination thresholds (F (12, 96) = 9.11, p < .001). Moreover, there was
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Table 3.4: Mean IDT thresholds using the variable white point illumination look up table. Values
in brackets show the standard error.

Reference Bluer Greener Redder Yellower

Neutral 10.65 (1.47) 7.86 (0.77) 7.45 (1.25) 8.25 (0.82)
Blue 11.63 (0.89) 8.81 (0.90) 6.34 (1.09) 14.64 (0.98)

Green 10.20 (1.05) 7.36 (0.63) 10.51 (1.55) 7.39 (0.91)
Red 13.17 (1.21) 13.61 (1.11) 6.59 (0.85) 11.18 (1.11)

Yellow 8.73 (1.34) 5.98 (0.53) 7.23 (0.76) 6.39 (1.11)

a significant main effect of reference illumination, regardless of the direction of chromatic

change (F (4, 32) = 12.70, p < .001), and a significant main effect of chromatic direction of

illumination change, regardless of reference illumination condition (F (3, 24) = 8.34, p =

.001). When thresholds are averaged over the different reference illumination conditions,

thresholds for the bluer and yellower chromatic direction of change are significantly higher

than redder thresholds (p = .024 and p = .007, respectively). There were no other signifi-

cant differences between the different directions of chromatic change (Figure 3.8.A).

As the interaction term was significant, we explored simple main effects. There was a

simple main effect of chromatic direction of illumination change for the blue and red ref-

erence illumination conditions (F (3, 24) = 15.80, p < .005 and F (3, 24) = 11.80, p < .005,

respectively), but not in the neutral, green, and yellow reference illumination conditions

(F (3, 24) = 4.20, p = .064; F (3, 24) = 4.57, p = .055; and F (3, 24) = 2.88, p = .285, re-

spectively). In the blue reference illumination condition, thresholds differed between the

following directions of change: bluer vs. redder (p = .013); greener vs. yellower (p = .045);

and redder vs. yellower (p = .003). For the red reference illumination condition, thresh-

olds differed between the redder direction of chromatic change and all other directions

of change (p = .006, p = .010, and p = .010, for blue, green, and yellow, respectively).

Thresholds in the redder direction of change were significantly lower than thresholds in all

other directions, with thresholds highest for the bluer and greener directions of change.

There was a simple main effect of reference illumination on illumination discrimination

thresholds in all chromatic directions (F (4, 32) = 4.49, p = .020 for bluer, F (4, 32) =

14.54, p < .004 for greener, and F (4, 32) = 17.17, p < .004 for yellower) except redder
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(F (1.63, 13.07) = 4.57, p = .148, with a Greenhouse-Geisser correction). Illumination dis-

crimination thresholds for the bluer direction of change were lowest in the yellow reference

illumination condition and highest in the red reference illumination condition, although no

pairwise comparisons among these thresholds were significant. For the greener direction

of change, the red reference illumination produced a threshold significantly higher than

all other reference illumination conditions except blue (p = .028, p = .004, and p < .001,

for the neutral, green, and yellow reference illumination conditions, respectively).

Finally, for the yellower direction of change, the highest threshold was in the blue reference

illumination condition and this was significantly higher than in the neutral, green, and

yellow reference illumination conditions (p = .005, p = .004 and p = .004, respectively). In

addition, thresholds for the yellower direction of change in the red reference illumination

condition were significantly higher than for the green and yellow reference illumination

conditions (p = .029, and p = .007, respectively).

3.4 Discussion

A group of observers completed five versions of the IDT that is considered a measure

of colour constancy. One version (the neutral condition) was the standard IDT used by

Pearce et al. (2014) and Radonjić et al. (2016b). In the other four versions (the blue,

yellow, red and green conditions) the reference illumination, and all corresponding test

illuminations, were shifted in chromaticity space such that the scene was chromatically

biased in appearance. We had two main goals. Firstly, we aimed to establish if the

results of Radonjić et al. (2016b), where relative thresholds to the different directions of

chromatic change in the illumination depend on the mean scene chromaticity, is specific

to a chromatic bias in the retinal image caused by a change in the scene surfaces, or if

the effect is also seen when the chromatic bias is introduced by biasing the chromaticity

of the illuminations. Secondly, we asked if the “blue bias” in thresholds for illumination

discrimination (and so colour constancy), previously illustrated using the IDT, is a trait

specific to versions of the task where bluer changes in the illumination occur along the
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daylight axis.

We found that relative thresholds to the different directions of change are modulated by

chromatically biasing the illumination set used in the task in a similar way to how biasing

the mean scene surface reflectance affects thresholds. Like Radonjić et al. (2016b), we

find that illumination discrimination thresholds are increased in the chromatic direction

opponent to the direction of chromatic bias introduced to the scene. In our experiment, the

chromatic bias is introduced by biasing the illumination set used during the experiment,

while Radonjić et al. (2016b) introduced bias by modulating the mean surface reflectance

of the scene but keeping the illumination set fixed. However, unlike Radonjić et al. (2016b),

we do not consistently find that thresholds are decreased in the direction of chromatic bias.

Regardless, these results show that illumination discrimination thresholds must be defined

not only relative to the scene surface ensemble, but also with respect to the illumination

set used in the task.

The results cannot be accounted for by simple adaptation (to the illumination) effects

that would seem to predict opposing results to those that we find. Suppose, for example,

that in the red reference illumination condition, the participant becomes adapted to the

chromaticity of the reference illumination. Then we would predict a decrease in sensitivity

to redder changes in the illumination and an increase in sensitivity to greener changes.

This is the opposite of what our results show, suggesting simple adaptation effects cannot

account for the asymmetry in thresholds. In future studies, all reference illumination

conditions could be interleaved to equate adaptational state in all conditions of the task.

If threshold asymmetries are still present, this would completely rule out this explanation.

Radonjić et al. (2016b) offered an explanation for their results that attributed the effect

to a reduction of information about the illumination change. They suggest that in scenes

where the mean surface reflectance is biased to reflect particular wavelengths of light,

illuminations made up of wavelengths that the mean surface reflectance does not favour are

harder to discriminate between as the scene reflects fewer wavelengths in the areas of the

visual spectrum where the two illuminations differ. This explanation cannot be extended
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to our results as the mean surface reflectance of the scene is kept constant across the

different conditions of the task. In fact, in this experiment, the mean surface reflectance

is relatively flat (Figure 3.2.B) and so illumination changes that result in perceptually

equivalent colour changes should be equally perceptible on average across the whole scene.

We offer an alternative explanation for the effect in terms of a daylight illumination prior.

Suppose our observers each have strong daylight illumination priors (P (I), for illumina-

tions I); their prior assumption is that the probability of different illumination chromatic-

ities, for any particular scene, follows the frequency of daylight illumination chromaticities

that they have experienced. Let’s also suppose that our observers utilise a generative

model that describes how illuminations of different chromaticities interact with surfaces

in the world to give rise to different patterns of retinal excitation (although we could have

a generative model that predicts stimulation to a later stage of visual processing and the

same logic applies). Considering the vast amount of possible surface spectral reflectance

functions that could be encountered in the world, the variety of scene configurations that

are possible, and the number of metameric illumination spectra, this will give rise to a

likelihood function (the probability of different retinal excitations E, given different illu-

minations chromaticities, I, or P (E|I)) that is highly variable. In this case, the prior will

be given more weight in computations of the posterior (P (I|E) = cP (E|I)P (I), where c is

a normalisation constant that ensures the posterior integrates to 1), from which the illu-

mination chromaticity is estimated. This will bias estimates towards daylight illumination

chromaticities. Thus, observers will generate better (closer to the true value) illumination

chromaticity estimates when the true illumination chromaticity is closer to the variation

in daylights. The closer the estimate of the illumination chromaticity is to the true chro-

maticity, the better the colour constancy correction will be for the scene and the more

likely it is that the colour appearance of surfaces in the scene appear close to the chro-

matic correlate of their fixed surface reflectance property. This makes a prediction that

participants will display a bias for colour constancy (worse illumination discrimination)

along the axis of change closest to daylight chromaticities, the effect that we see in the
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behavioural data.

This explanation though is only half the story. Once an observer estimates the illumina-

tion chromaticity, they must still discount this from the scene to recover surface reflectance

information. It is desirable then to form a spectral (rather than just chromatic) repre-

sentation of the illumination. One such method for recovery of a spectral representation

of an illumination from a chromatic one relies on a linear model of illuminations, where

all illumination spectra can be re-expressed as a linear combination of a small number of

basis functions (Brainard & Stockman, 2009). Linear models of illuminations are generally

based on measurements of natural illumination spectra (Marimont & Wandell, 1992; Judd

et al., 1964). While some of the illuminations used in our experiment are constrained to

have chromaticities on the Planckian locus, their spectral distributions differ from those of

natural illuminations. If linear models formed through experience with natural illumina-

tions are utilised by the visual systems of our observers to recover the spectral distribution

of the experimental illuminations, then our illuminations must be well described by lin-

ear models of natural illuminations (or at least they must in cases where the observer

remains colour constant). In Appendix A, we show that on average 64.95% ± 12.87%

(mean ± SD) of the variation in the experimental illuminations can be captured by the

CIE 3-component model of daylights (CIE, 2004); although the model explains a larger

percentage of the variance in illuminations whose chromaticity is closer to the daylight

axis.

Previously, we suggested our results may be explained by our observers invoking a prior

over daylight chromaticities. As we now know that a large proportion of the variance

in our illuminations can be captured by a linear model of natural daylight spectra, we

could also take the approach of Brainard & Freeman (1997) who specified priors over the

coefficients that recombined the basis functions of the linear model. Specifically, they used

the CIE linear model of daylights to specify a “daylight prior” for illuminations. They

incorporated this prior as part of an illumination estimation algorithm that recovered

good estimates of the illumination spectrum present on a scene. They later showed that
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a modified version of the model that no longer estimates the illumination spectrum but

rather the illumination chromaticity (using an equivalent illumination approach to colour

constancy (Brainard & Maloney, 2011)) can be fit well to behavioural data. However,

model performance is improved by incorporating a prior for illuminations that is broader

than the “daylight prior” and includes more atypical illumination chromaticities (Brainard

et al., 2006). It remains to be seen whether such a model would predict the biases we see

in the behavioural data.

Our data show that the “blue bias” prevails in all reference illumination conditions and is

not an effect specific to bluer illumination changes along the daylight axis. This suggests

that if the “blue bias” that we see is evidence for an optimisation of colour constancy

mechanisms for the statistics of the environment, this comes about through a reduction in

sensitivity to global chromatic changes in a scene when the change is in a bluer direction

(the nature hypothesis). This may seem contradictory to our previous explanation for

increased colour constancy in the direction chromatically opponent to the change in the

reference illumination in terms of a daylight prior. However, it is plausible that mecha-

nisms of both kinds are at work. A reduction in sensitivity to global “blueish” chromatic

changes in a scene could be a trait that has been engrained in the human visual system

through evolution - a long term solution to colour constancy; whereas the formation of a

daylight prior may be a more short term solution, observers learning the statistics of their

environment through development.

Contrary to previous results, we do not find a main effect of direction of illumination

change for the neutral reference illumination condition (Pearce et al., 2014; Radonjić et al.,

2016b). However, note that in the present study, due to multiple experimental conditions

(different reference illuminations), we actually perform simple main effects analyses. In

other words, our p-value is Bonferroni corrected. If left uncorrected it is .014 and we would

conclude a main effect of direction of illumination change, with thresholds highest for the

blue direction of change.

Finally, we showed that the biases in our behavioural data are not explained by a bias in the

66



Chapter 3. Illumination discrimination under chromatically biased illuminations

mean scene chromaticity, or the use of a fixed white point across experimental conditions,

by analysing the results using three different look up tables. The reason for using the mean

scene look up table is to determine whether representing the change between illuminations

is better represented by the change between the average chromaticity of the scene under

the two illuminations, effectively using the average scene chromaticity as our experimental

estimate of the illumination chromaticity. It might be, for example, that the observer

estimates the illumination by averaging the reflected light from the entire scene. If this

average changed less evenly per step in the staircase than the generated illumination

chromaticities, it might be that an uneven pattern of thresholds would emerge when

thresholds are plotted as the generated illumination chromaticities. The fact that the

pattern of thresholds still varies with chromatic direction of change means that the average

scene chromaticities are not changing unevenly enough to explain the asymmetries in the

data. Similarly, perceptually uniform colour spaces are known to become less perceptually

uniform the further away one moves from the white point. In addition, the choice of white

point will effect the transformation to the space (or really, the space itself). By repeating

our analysis using the variable white point look up table we showed that the behavioural

biases in thresholds are independent of such choices.
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Chapter 4

Individual differences in illumination discrimination ability

4.1 Introduction

In Chapter 3 we showed that thresholds for discrimination of chromatic changes in illumi-

nation must be defined not only relative to the set of surfaces in the scene (Radonjić et al.,

2016b), but also with respect to any chromatic bias in the illumination set used during the

experiment. Additionally, we showed that despite the effect that a chromatic bias in the

illumination set has on relative thresholds, the “blue bias” (Pearce et al., 2014) prevails

overall. Thus far, we have only considered thresholds for illumination discrimination at a

group level. We are yet to establish if the “blue bias” is a universal trait of our observers

or if individual differences are present in the data, the bias stronger in some than others.

There are two types of individual differences: intra-individual differences that are observed

within an individual across different task conditions or repeats, and inter-individual dif-

ferences that are observed between different individuals within a given task condition and

are preserved in different task conditions or repeats. In this Chapter, we are primarily

interested in discovering whether inter-individual differences are present in observer per-

formance on the IDT. If we find evidence of inter-individual differences, especially in the

level of “blue bias” that an individual displays, this suggests variations in colour constancy

mechanisms that may arise through differences in development and experience with the

world (the nurture hypothesis). Put differently, this would be supportive of the hypothe-

sis that observers possess a learned illumination prior that has been formed during their

lifetime and hence is different in different observers leading to variations in performance.

Alternatively, if we find no evidence of inter-individual differences, this suggests univer-

sal mechanisms for colour constancy that have become engrained through evolution (the

nature hypothesis). In order to establish if differences in performance on the IDT across

observers can be considered reliable evidence of inter-individual differences, we must first

establish that differences in task performance across observers are greater than differ-
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ences within observers. In other words, we must first ascertain whether the magnitude of

intra-individual differences on the task are smaller than the magnitude of inter-individual

differences.

We investigate these individual differences by first re-examining the data from Chapter 3

at an individual level. We find evidence of inter-individual differences in illumination dis-

crimination ability, showing that the ordering of thresholds among our observers remains

consistent across different directions of chromatic change in the illumination and across

different reference illumination conditions. By collecting a new data set from a group of

observers who completed the original (neutral) version of the IDT three times each, we

show that although there are intra-individual differences in performance on the IDT that

are suggestive of a learning effect, inter-individual differences are independent of them.

Inter-individual differences remained consistent across multiple runs of the task. Finally,

we collect a larger data set to investigate the extent of inter-individual differences in the

strength of the “blue bias”. The observers in the larger data set also completed a test of

chromatic contrast detection ability. We compare these data to illumination discrimina-

tion data to show that chromatic contrast detection thresholds do not predict the “blue

bias” in illumination discrimination thresholds, although they do explain a small amount

of the inter-individual variation. In addition, we check the validity of our comparison be-

tween illumination discrimination and chromatic contrast discrimination thresholds with

a control experiment and develop ideal observer models for the IDT.

Our motivation for these studies is as follows. Firstly, we believe that if observers learn

an illumination prior during their lifetime (the nurture hypothesis) then we may expect

to see larger inter-individual differences in the level of “blue bias” that observers display

than if the prior was learnt during evolution (the nature hypothesis) and manifests as a

reduced sensitivity to global, bluer chromatic changes in a scene. In order to assess this,

we must first establish that the IDT can reliably pick up on inter-individual differences.

We establish this in Experiment 2. In Experiment 3, we aim to further investigate whether

the “blue bias” in the IDT can be attributed to a reduced sensitivity to bluer chromatic
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changes by comparing observer performance on the IDT to performance on a low-level

chromatic contrast detection task. If the same biases are not present in chromatic con-

trast detection thresholds, this is evidence that the IDT taps into higher-level processes

beyond colour discrimination - such as invoking the use of a learnt illumination prior (the

nurture hypothesis). Similarly, by developing a retinal processing model using ISETBIO

in Experiment 5 we are able to rule out the influence of information loss at the retina on

threshold asymmetries in the IDT.

4.2 Experiment 1: Chapter 3 revisited

In Experiment 1, we take another look at the data from Chapter 3. We use these data

to take a first look at inter-individual differences in performance on the IDT. To do so,

we will consider data from each of our observers separately and ask if their performance

relative to one another is preserved across the chromatic directions of change and across

different reference illumination conditions.

4.2.1 Results

We find evidence of inter-individual differences in illumination discrimination thresholds.

Thresholds are consistently ordered among our observers across the different directions of

chromatic change and across the different reference illumination conditions. Consider the

black threshold trace (filled circles) across the different directions of chromatic change for

the neutral reference condition in Figure 4.1.A. This participant (participant 8) always

has one of the lowest, if not the lowest, illumination discrimination thresholds. Looking

across the rest of the figures (Figure 4.1.B-E), it is clear that this participant maintains

a low threshold value throughout the conditions. Similarly, participant 9 always displays

high threshold values. To quantify the level of consistency in the ordering of the threshold

values, we took an average threshold (for each participant) from each reference illumination

condition (averaged over the different directions of chromatic change) and correlated these
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across the different conditions (Table 4.1). The mean correlation coefficient is r = .694±

.100 (M ± SD; mean coefficient of variation is 49.04±13.51), however, only one correlation

coefficient meets a Bonferroni adjusted significance level of α = .05/10 = .005.

Figure 4.1: Inter-individual differences are consistent across different reference illumination con-
ditions in the IDT. A-E. Individual threshold traces across the different directions of chromatic
change in the illumination for each reference illumination condition. The traces for each participant
are consistently coloured in each plot.

Table 4.1: Pearson’s correlation coefficient between mean thresholds (across the different directions
of chromatic change) in each reference illumination condition. Presented as r(p).

Blue Green Red Yellow

Neutral .491(.179) .638(.065) .660(.053) .657(.054)
Blue .754(.019) .668(.049) .797(.010)

Green .765(.016) .666(.050)
Red .843(.004)

The main result that we find using the IDT is a reduced sensitivity to bluer chromatic

changes in the illumination compared to the other directions of change. We have hypoth-

esised that this effect is due to a learnt illumination prior for daylight illuminations whose

variation can be captured by the Planckian locus. If such a prior is learnt through experi-

ence with the world, we may expect that different individuals possess different illumination

priors due to differences in the illuminations to which they are most often exposed. In
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this case, in addition to the overall differences in illumination discrimination ability that

we highlight above, we may also expect to see inter-individual differences in the amount

of “blue bias” that observers display. To assess this we must quantify each individual’s

“blue bias”. We do this by subtracting thresholds for each of the greener, redder and yel-

lower directions of change from thresholds for the bluer direction and then averaging over

these differences and call this the “blue bias”. Higher values indicate more bias and vice

versa. For the neutral reference illumination condition, there is variability in the amount

of “blue bias” displayed by each observer (minimum = −0.94, maximum = 9.02 ∆Eu∗v∗).

However, while the average “blue bias” does not differ across the different reference illumi-

nation conditions (repeated measures ANOVA, F (4, 32) = 0.51, p = .729; Figure 4.2.A),

the ordering of the participants is only partially maintained (mean correlation coefficient

of r = .460± .215 (M SD); mean coefficient of variation is 25.26±18.86; all non-significant

at the α = .05/10 = .005 Bonferroni adjusted significance level; 4.2.B-K).

Figure 4.2: Quantifying the “blue bias” in different reference illumination conditions. A. The mean
“blue bias” in the five reference illumination conditions. B-K. Scatter plots comparing the “blue
bias” in each pair of reference illumination conditions with Pearson’s correlation coefficient shown
above.

4.2.2 Interim discussion

These data show that there are inter-individual differences in generic illumination discrim-

ination ability; those who display increased/decreased sensitivity to illumination changes

continue to do so across multiple directions of change and across different task conditions.

What is less clear from these data is whether intra-individual differences are also present
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in the level of “blue bias” displayed by observers. While we will return to these data in

Section 4.6 when we begin to model individual differences in illumination discrimination

ability, we need a different and larger data set initially in order to assess the extent of

inter-individual differences in performance. In addition, to examine intra-individual dif-

ferences we must assess how observers perform in repeated runs of the task. This is the

route we take in the following Experiments.

4.3 Experiment 2: Reliability of the IDT

To establish the reliability of the IDT we recruited a group of participants who completed

the original (neutral) version of task on three separate occasions. This allows us to assess

whether there are intra-individual differences across repeated runs of the task. More-

over, whether intra-individual differences are present or not, we can ask if inter-individual

differences are stable across repeated runs; do observers who display increased/decreased

sensitivity to illumination changes, relative to the average, continue to do so in subsequent

runs of the task?

4.3.1 Methods

4.3.1.1 Participants

Twelve participants were recruited (3 male, 9 female, mean age of 34.19 ± 16.40 years).

All participants had normal or corrected to normal visual acuity and no colour vision

deficiencies, assessed using Ishihara Colour Plates and the Farnsworth-Munsell 100 Hue

Test.

4.3.1.2 The IDT

The task was the same as the neutral version of the IDT detailed in Chapter 3 with the

addition of one extra feature: a set of trials were added at the start of the task to find a
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range of values in which we were sure the participant could discriminate the test from the

target. In short, the trials were in place to establish a range of values in which to start

each staircase. In addition, the number of test illuminations along each axes of change

was increased to 50 such that the maximum distance from target to test was 50 ∆Eu∗v∗

along each axis of chromatic change. The experimental procedure, instructions and data

analysis protocol were identical to those detailed in Chapter 3 (using the fixed white point

LUT). Each participant attended the laboratory on three separate occasions (at least one

day between each visit) and completed the neutral IDT on each visit.

4.3.2 Results

4.3.2.1 Intra-individual differences across repeated runs of the task

A 4× 3 repeated measures ANOVA with direction of chromatic change (4 levels) and run

(3 levels) as the independent variables and threshold value (in ∆Eu∗v∗) as the dependent

variable revealed a main effect of run on thresholds regardless of direction of change

(F (2, 22) = 11.37, p < .001; Figure 4.3). Observers’ performance on the IDT improved

with practice, thresholds in the first run were significantly higher than thresholds in both

the second and third runs (p = .014 and p = .005, respectively). There was no difference

between overall thresholds in the second and third run (p > .05). There was also a

main effect of direction of change on thresholds regardless of run (F (1.80, 19.83) = 10.27,

p = .001, with a Greenhouse-Geisser correction). Thresholds were highest for the bluer

direction of chromatic change. They were significantly higher than for the redder and

greener directions of change (p = .008 and p = .009, respectively), but not for the yellower

direction (p = .096). There were no significant differences between any other directions

of change. Moreover, there was no significant interaction effect of run and direction of

chromatic change on thresholds (F (2.77, 30.42) = 0.92, p = .439, with a Greenhouse-

Geisser correction).
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Figure 4.3: Intra-individual differences across runs on the original (neutral) IDT.

4.3.2.2 Inter-individual differences are consistent across directions of change

and repeated runs of the task

Inter-individual differences in thresholds are consistent across the different directions of

chromatic change and across multiple runs of the task. Considering data only from the

first run of the task, we see that thresholds for the different directions of chromatic change

are strongly related; although the correlation is only significant in two of the six cases

(note that we set the significance level at α = .05/6 = .0083 here to account for multiple

comparisons; Figure 4.4). In addition, inter-individual differences in thresholds for a

given direction of change are preserved across runs of the task with thresholds for a

given direction of change strongly correlated across runs (six of the twelve correlations are

significant at a Bonferroni adjusted significance level of α = .05/12 = .0042; Figure 4.5).

4.3.2.3 Consistency of the blue bias

We quantified the amount of “blue bias” displayed by each observer in the three runs of

the IDT in the same way as we did for the different reference illumination conditions in

Experiment 1 (this Chapter). Here, we find large variability in the amount of “blue bias”
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Figure 4.4: Inter-individual differences are consistent across the directions of chromatic change for
the neutral IDT (data from the first run of the task only). A-F. Scatter plots comparing thresholds
for the different chromatic directions with Spearman’s correlation shown above.

across observers, which is strong evidence for the presence of inter-individual differences

(minimum = −4.49, maximum = 15.86 ∆Eu∗v∗). The average “blue bias” does not differ

across the runs (repeated measures ANOVA, F (2, 22) = 1.20, p = .159; Figure 4.6.A). In

addition, the correlations between the “blue bias” values calculated from the repeated runs

of the task are significant in two out of three cases (at a Bonferroni adjusted significance

level of α = .05/3 = .017; Figure 4.6.B-D).

4.3.3 Interim discussion

Taken together, Experiments 1 and 2 provide strong evidence for the existence of inter-

individual differences in performance on the IDT that are independent of intra-individual

variation. While the decrease in average thresholds (across the chromatic directions of

change) in repeated runs of the task suggest a learning effect on the IDT, the inter-
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Figure 4.5: Inter-individual differences are consistent across multiple runs of the neutral IDT. A-L.
Scatter plots comparing thresholds for the different chromatic directions of change across runs with
Spearman’s correlation shown above.

individual differences that we observe are well-maintained across the repeated runs of

the task. A particularly interesting feature of these data is the inter-individual variabil-

ity in the amount of “blue bias” displayed by observers. In Experiment 3, we asked if
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Figure 4.6: Quantifying the “blue bias” across repeated runs of the neutral IDT. A. The mean
“blue bias” in the three repeats of the task. B-D. Scatter plots comparing the “blue bias” in each
pair of repeats with Pearson’s correlation coefficient shown above.

inter-individual differences in chromatic contrast discrimination ability explain the inter-

individual differences we observe in the IDT.

4.4 Experiment 3: Inter-individual differences

In Experiment 3, we asked all participants from Experiment 2 to return to the laboratory

to complete a chromatic contrast detection task (CCDT). In addition, we recruited further

participants who completed the CCDT and one run of the IDT. The goal of this study was

to ascertain whether performance on the CCDT (a measure of low-level colour contrast

detection ability) can predict the inter-individual differences in performance on the IDT.

4.4.1 Methods

4.4.1.1 Participants

In addition to the 12 participants from Experiment 2, a further 43 participants were

recruited, a total of 55 for the study (23 male, 32 female, mean age of 27.83±12.10 years).

All participants had normal or corrected to normal visual acuity and no colour vision

deficiencies, assessed using Ishihara Colour Plates and the Farnsworth-Munsell 100 Hue

Test.
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4.4.1.2 The CCDT

The chromatic contrast detection task (CCDT) was originally introduced by Cranwell,

Pearce, Loveridge & Hurlbert (2015). The data we present here were collected using a

later version of the task that differed from the task described by Cranwell et al. (2015) in

several ways, although the premise of the task remained the same. Rather than detail the

differences between the two tasks, we describe the parameters of the later version in full

here.

The CCDT is designed to find chromatic (and achromatic) contrast detection thresholds

along the three cardinal axes of DKL colour space (Derrington et al., 1984, see also Section

2.1.4). These axes describe the red-green (L−M), blue-yellow (S−(L+M)) and luminance

(L + M) channels at the second stage of visual processing. In the CCDT, arrows are

presented against a neutral background (D65 at a luminance of 50 cd/m2; CIE Y xy =

[50, 0.31, 0.32]). If the participant detects the arrow they are required to respond using a

button press to indicate whether the arrow was pointing left or right (left or right control

keys on the keyboard). In the version of the task that we used here, luminance noise

(+5,+2.5,−2.5 or −5 cd/m2) is added to both the background and the arrow by dividing

the whole screen into 2 mm squares (≈ 0.23 degrees of visual angle at the fixed viewing

distance of 50 cm) and randomly deciding, for each pixel, whether to add no noise or to

jitter the luminance by one of the four values listed previously. The noisy background

was set to change at a rate of 6 Hz (every 10 frames of our 60 Hz screen) throughout

the task. The arrows vary in chromaticity from the background along one of the axes

of DKL space. The resolution along each axis is determined by the capabilities of the

monitor which varies according to the background luminance that is chosen. We found

the smallest possible step size along each cardinal DKL axis that could be achieved on

our monitor using a background luminance of 50 cd/m2. These were step sizes of 0.01

along the luminance axis, 0.002 along the red-green axis, and 0.008 along the blue-yellow

axis. We generated 50 steps along each half-axis. The arrow was specified such that it fits

inside a square of side length 3.75 mm (≈ 4.3 degrees of visual angle at the fixed viewing
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distance of 50 cm). The horizontal position of the arrow’s centre was fixed at the centre of

the screen throughout the experiment. The vertical position of the arrow’s centre varied

by 0 to 4 cm (≈ 4.6 degrees of visual angle at the fixed viewing distance of 50 cm) on each

trial, a parameter that varied at random. The start of a new trial was indicated by the

appearance of a small 5 mm square (≈ 0.58 degrees of visual angle at the fixed viewing

distance of 50 cm) appearing in the centre of the screen. The task was run on a 10-bit ASUS

Proart LCD screen. A head rest was used to ensure participants maintained a distance

of 50 cm from this screen. The monitor was controlled using a 64-bit Windows machine,

equipped with an NVIDIA Quadro K600 10-bit graphics card, running MATLAB scripts

that used Psychtoolbox routines (Brainard, 1997; Kleiner, Brainard & Pelli, 2007; Pelli,

1997). The stimuli were colorimetrically calibrated using a linearised calibration table

based on measurements of the monitor primaries made with a Konica Minolta CS2000

spectroradiometer (Konica Minolta, Nieuwegein, Netherlands). Calibration checks were

performed regularly throughout the study period and the calibration table was updated

when needed.

4.4.1.3 Procedure

The 12 participants from Experiment 2 returned to the laboratory to complete the CCDT

(Figure 4.7). The 43 participants that were recruited for this study attended the laboratory

to complete the CCDT in addition to one run of the original (neutral) version of the IDT.

The order in which the participants completed the two tasks was randomised to account

for any generic learning effects.

The procedure for the IDT was the same as that described in Chapter 3. For the CCDT,

participants first read the standardised instructions before being asked if they had any

questions. All participants then received the following verbal instructions prior to starting

the task: “On each trial, an arrow will appear on the screen. If you see the arrow, indicate

the direction that the arrow points using the control keys. Press the left control key if the

arrow points left and the right control key if the arrow points right. On some trials, you
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will not see an arrow. In this case, you will be signalled the start of a new trial by the flash

of a small white square in the centre of the screen”. Prior to the practice trials and main

trials, the instructions regarding how to issue a response were repeated to the participant

by showing text on the screen that was read out by a text-to-speech engine. At the start

of the task, participants were adapted to a uniform D65 background for 2 minutes, being

asked to fixate on a small black cross in the centre of an otherwise uniform screen (CIE

Y xy = [50, 0.31, 0.32]). On each trial, after an inter-stimulus interval between 1 and 3

seconds, an arrow was presented for 166.67 ms (10 frames of the 60 Hz screen). The

participant had 5 seconds to respond by pressing either of the control keys to indicate the

direction of the arrow. If they did not respond within this time period, a random response

(correct/incorrect) was generated. Once a response was issued (or randomly generated) a

small white square presented for 166.67 ms (10 frames of the 60 Hz screen) was presented

to indicate the start of a new trial (Figure 4.7).

The task was run in three blocks, one for the luminance axis, one for red-green, and one for

blue-yellow. Thresholds for each half-axis were determined using a 1-up, 3-down, trans-

formed and weighted staircase procedure (Kaernbach, 1991). There were two staircases

for each half-axis and so four staircases were interleaved in each block of the task. The

staircases terminated after 50 trials or six reversals, whichever came first.

Each block of the task began with five unrecorded practice trials that were chosen to be

supra-threshold for trichromat participants according to pilot data and previous studies

(between 40 and 50 steps away). After this, a sequence of trials were completed that

established a starting point for each pair of staircases; we call these the range finding

trials. These began with five trials along each half-axis that were 20 steps away from the

background. If the participant got four of these five correct, staircases for that half-axis

started between 10 and 20 steps away (decided at random). If they got less than four

correct, they completed five trials 30 steps away and so on such that staircases started in

the intervals 10− 20, 20− 30, 30− 40 or 40− 50 steps away.
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Figure 4.7: The chromatic contrast discrimination task CCDT (not to scale).

4.4.1.4 Data Analysis

Thresholds for the CCDT were calculated by taking the mean of the last two reversals

from each of the two staircases (a mean of four reversals in total). A look-up table was

created mapping each nominal staircase step (1 to 50) to the ∆Eu∗v∗ value between the

measured chromaticities of each arrow and the background. All reversal indices were first

converted and then an average taken over the ∆Eu∗v∗ values. The average background

chromaticity (D65) was used as the white point for calculation of ∆Eu∗v∗ .

4.4.2 Results

4.4.2.1 The distribution of blue bias values in the IDT

Considering the data from all 55 observers, there is a main effect of chromatic direction

of change on threshold values (Friedman’s test, χ2 = 56.35, p < .001; Figure 4.8.A).

Thresholds for the bluer direction of change were significantly higher than for the yellower,

redder, or greener directions (p < .006 in all cases). In addition, thresholds for the yellower

direction of change were significantly higher than for the redder or greener direction of

change (p = .018 and p < .006, respectively). The redder and greener thresholds did not

differ (p > .05).

This is evidence once again for a “blue bias” in illumination discrimination ability. How-

ever, if we consider the data at an individual level (Figure 4.8.A-B), we see that the blue
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Figure 4.8: Inter-individual differences in relative performance on the IDT. A. Individual threshold
traces for each observer. The average threshold trace is the solid black line. B. The distribution
of “blue bias” values.

bias is not present in all individuals. On average, the “blue bias” values are significantly

higher than zero (t = 7.59, p < .001). The mean “blue bias” is 4.83± 4.72 ∆Eu∗v∗ (M ±

SD). However, the largest value is 19.13 ∆Eu∗v∗ while the minimum value is −4.49 ∆Eu∗v∗ ,

suggesting that the level of “blue bias” is highly variable across observers. In the following

section, we ask if inter-individual differences in chromatic contrast discrimination ability

can explain the variability we see in performance on the IDT.

4.4.2.2 Do colour contrast discrimination thresholds predict global illumina-

tion discrimination ability?

There is a main effect of chromatic direction of change on CCDT thresholds (χ2 = 122.55,

p < .001; Figure 4.9.A). Blacker and whiter thresholds did not differ significantly from each

other (p > .05), but both were significantly lower than thresholds for all other directions

of change except redder (p < .015 in all cases). In addition, thresholds for the greener

direction of change were not significantly different from redder or bluer thresholds (p =

0.06 and p = 0.27, respectively), but were significantly smaller than yellower thresholds

(p < .015). Finally, thresholds for the redder direction of change were significantly smaller

than for the bluer and yellower directions of change (p < .015 in both cases) which also
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differed significantly from each other (p < .015). In short, thresholds for chromatic axes

of change in the CCDT do not follow the same pattern as thresholds for the IDT (Figure

4.9.B).

Figure 4.9: Thresholds for the chromatic contrast discrimination task. A. CCDT thresholds across
all half-axes of change in the CCDT. B. CCDT thresholds compared to IDT thresholds. Error bars
show ± 1 SEM.

We have already established that the “blue bias” seen in the IDT thresholds is not present

in the CCDT data. We further illustrate this by computing Spearman’s rank correlations

between each chromatic axis of change in the IDT and each chromatic axis of change in

the CCDT (Figure 4.10). If we adjust the level at which we accept significance using a

Bonferroni correction we have α = 0.05/16 = 0.003. In this case, only three of the 16

correlations are significant. With 16 comparisons, a Bonferroni correction is very conser-

vative, but regardless, the average amount of variation that thresholds for a particular

axis of the CCDT explain in IDT thresholds is only 12.41± 5.31% (M ± SD). This is not

too surprising considering the differences in the axes of chromatic change used in the two

tasks (Figure 4.11). In fact, if we make the assumption that the cardinal axes as they are

defined in DKL colour space are an accurate and full description of second stage visual

processing, then discrimination along each axis of chromatic change in the IDT will be

governed by a pair of these mechanisms. For example, changes along the bluer axis in the

IDT could be detected by both the blue and green half-axis (S − (L + M) and M − L).

If we make a further assumption that the second stage mechanisms act independently to
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detect changes in the illumination in the IDT then we can use the CCDT thresholds to

predict IDT thresholds.

Figure 4.10: IDT vs. CCDT thresholds.

We first fit a psychometric function (PF) to the data for each half-axis of chromatic change

in the CCDT for each observer. We chose to fit a PF from the family of Weibull func-

tions. To fit the Weibull functions to the data, we used Palamedes Toolbox for MATLAB

(Kingdom & Prins, 2010). We fixed the guess rate (γ) at 50% and allowed the threshold

(α), slope (β), and lapse rate (λ) to vary; although the lapse rate was bounded such that

0.01 ≤ λ ≤ 0.05. The resulting PF represents the probability that the observer would re-

spond correctly for each stimulus value. We would like the probability that they detected

the stimulus. We converted the correct response probabilities to detection probabilities

using the formula below to form PFs for detection of the stimulus (see Figure 4.12 for a
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Figure 4.11: The chromatic axes of change in the IDT and CCDT.

derivation of this formula).

P (detect) =
P (correct)− 0.5

0.5− P (lapse)
. (4.1)

For each test illumination used in the IDT, we calculated its chromaticity in DKL space

by considering each test relative to the reference illumination (D65, the white point or

background in the calculation). We then used the PFs for detection of the stimulus along

each half-axis in the CCDT to calculate the probability that at least one of the cone-

opponent mechanisms (Luminance, red-green or blue-yellow) would detect the change in

chromaticity from the reference illumination to each test illumination in the IDT. This is

defined as:

P (detectIDT ) = 1− [(1−P (detectLUM )) + (1−P (detectL−M )) + (1−P (detectS−(L+M)))].

(4.2)

This formula can be used to find the probability of the visual system detecting a change

at each stimulus level. We can then convert back to correct response probabilities for the
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IDT as follows:

P (correct) = P (detect)(1− P (lapse)) + (1− P (detect))P (guess). (4.3)

By fitting a PF to these values, we can find the stimulus level where the participant is

predicted to respond correctly 75% of the time based on their CCDT thresholds. For these

fits, we again fit a PF from the family of Weibull functions. Here, however, we also fix the

lapse rate at the value obtained from the catch trials in the IDT for each individual. In

some cases, this leads to a maximum percentage correct p% for certain observers such that

p < 75, making it impossible to infer the 75% correct probability from fitted PF. For these

observers, we took the stimulus level that corresponded to a percentage correct of (p−1)%,

where it is sensible to assume the staircases would converge for such a participant.

Predictions of IDT thresholds made in this way still fail to capture the pattern of thresh-

olds that we observe in the IDT (Figure 4.13.A). While predicted thresholds are close to

measured thresholds for the redder and greener directions of chromatic change in the IDT,

they fail to capture the elevation of yellower and bluer thresholds completely. However, if

we calculate the correlation between each predicted and measured threshold set, we find

that the predictions do represent inter-individual variability well (r = .349, p = .009 for

the yellower direction, r = .378, p = .005 for the bluer direction, r = .610, p < .001 for

the redder direction, and r = .572, p < .001 for the greener direction; Figure 4.13.B).

4.4.3 Interim Discussion

Having shown in Experiments 1 and 2 that there are inter-individual differences in perfor-

mance on the IDT, we asked in Experiment 3 whether these differences are explained at

the level of chromatic contrast detection ability. In particular, such a comparison allows

us to address the question of whether the “blue bias” in IDT thresholds is explained by a

reduced sensitivity to bluer global changes across a scene.

Firstly, we do not see the same pattern of thresholds across the chromatic directions of
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Figure 4.12: Calculating the probability of detection from a response probability in a 2AFC
task. First, there is a detection phase where the participant detects the stimulus with proba-
bility P (detect). Then, there is a response phase where the participant must issue one of two
responses. If the participant detected the stimulus, they will respond correctly if they do not lapse
with probability 1−P (lapse). If the participant did not detect the stimulus, they will guess and re-
spond correctly with probability P (guess) = 0.5 in a 2AFC task. There are two possible branches
that lead to a correct response. The sum of the probabilities of traversing each of these branches is
the probability of a correct response P (correct). The resulting formula can be rearranged to find
the probability of detecting a stimulus.

change in the CCDT as we do in the IDT - there is no “blue bias”. In addition, we

do not see consistent correlations between the corresponding chromatic directions in the

two tasks (plots across the diagonal in Figure 4.10). However, we acknowledge that there

are differences between the chromatic axes of change used in the IDT and CCDT. The

axes of change used in the CCDT are specified to fall along the cardinal axes of DKL

colour space, generally assumed to represent the second stage of visual processing. By

making the assumptions that these axes accurately and exhaustively represent the second

stage of visual processing and that they act independently, we use the CCDT thresholds to

predict thresholds on the IDT. We find that while CCDT thresholds can explain an average

of 24.10% of the variation in the IDT thresholds (averaged over chromatic directions of
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Figure 4.13: Predicting IDT thresholds from CCDT data. A. Comparing predicted and measured
IDT thresholds. B. A scatter plot of measured against predicted thresholds for each direction of
chromatic change in the IDT. Error bars show ± 1 SEM.

change), they do not predict the “blue bias”. In fact, the CCDT thresholds predict more

of the variation along the redder and greener directions of chromatic change in the IDT

than they do for the bluer and yellower directions of change (32.49% compared to 19.32%).

This suggests that illumination discrimination thresholds along these two pairs of axes are

influenced differently by visual mechanisms. As the bluer and yellower illuminations fall

along the daylight axis, representing the chromaticities of natural daylight illuminations,

and as chromatic contrast detection thresholds do not show a similar bias, we take the

results of Experiment 3 as further evidence for the influence of an illumination prior,

representing the statistics of natural illuminations, on behavioural results in the IDT.

There are multiple reasons, however, why the comparison between IDT and CCDT data

may not be valid. Firstly, there is disagreement in the colour vision community about

the number of chromatic mechanisms that exist in the visual system, whether they act

independently, and what the weightings of the different cone types are in the cardinal

mechanisms (see Sections 1.4.1 and 1.4.2). In order to make predictions of IDT thresholds

from CCDT data, we made the assumption that there are only two second stage mecha-

nisms, that they are well-represented by the cardinal axes of DKL colour space, and that

they act independently to detect chromatic changes in a stimulus. Secondly, there are
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several important differences between the two tasks. The CCDT is a contrast detection

task where the participant must detect the appearance of a target against a background.

The participant is not required to make comparisons temporally across time as they are

in the IDT, a task that involves a memory component. In the IDT, the participant must

hold a representation of the reference and two comparison lights in memory in order to

make a decision about which comparison was most similar to the reference. These issues

mean that the predictions we make must be interpreted with caution. However, the fact

that we do not see a “blue bias” in the CCDT data but do in the IDT data is still strong

evidence that the bias is not caused solely by a reduction in sensitivity to bluer changes

in a scene. If this was the case we would expect to see a manifestation of this reduced

sensitivity in the data from both tasks.

4.5 Experiment 4: The validity of IDT predictions

In Experiment 3, we asked if individual differences in illumination discrimination ability

could be explained by individual differences in chromatic contrast detection ability. By

assuming that the cardinal mechanisms of DKL colour space accurately and exhaustively

describe the second stage of visual processing, and that they independently detect chro-

matic changes in a stimulus, we used detection ability along these axes of DKL colour

space from a chromatic contrast detection task (the CCDT) to predict illumination dis-

crimination thresholds (in the IDT). We highlighted several reasons why results from the

CCDT may not be predictive of results in the IDT. One such reason is that it is still

debated whether the chromatic cardinal mechanisms (the S− (L+M) and L−M , or the

blue-yellow and red-green channels) provide an accurate description of the second stage

of visual processing and, if so, whether these mechanisms act independently to detect

chromatic changes in a stimulus. We explore these questions using the CCDT with this

Experiment.

Here, we make predictions of thresholds within the same experimental paradigm. Namely,

we remove the differences between the two tasks to ask if chromatic detection ability along
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the cardinal axes of DKL colour space in the CCDT can be used to predict thresholds

along different axes of change (intermediate axes) within the same experimental paradigm.

If we find this to be the case, then our assumption that there are only two second stage

mechanisms that act independently to detect chromatic changes in a stimulus is supported.

Furthermore, this could increase confidence in our illumination discrimination predictions,

i.e., the predictions of the level of chromatic discriminability between two scenes in the

IDT prior to any higher-level colour constancy processes taking effect. Conversely, if we

find this not to be the case, we must interpret the predictions that we made of illumination

discrimination thresholds from chromatic contrast detection thresholds more cautiously. In

addition, the latter finding would suggest that either the chromatic cardinal mechanisms

do not act independently, or that there are in fact additional, higher-order chromatic

mechanisms.

We define two axes that are intermediate (at 45 degree angles) to the chromatic cardinal

mechanisms in an equiluminant plane in DKL colour space. We refer to these as the lime-

magenta and orange-cyan axes and hypothesise that chromatic contrast detection along

each of the half axes is governed by the following pairs of cardinal chromatic half axes:

green (M − L) and yellow ((L + M) − S) for the lime half-axis, red (L −M) and blue

(S − (L+M)) for the magenta half-axis, red (L−M) and yellow ((L+M)− S) for the

orange half-axis, green (M −L) and blue (S − (L+M)) for the cyan half-axis. Using the

same prediction procedure that was used to predict IDT thresholds, we find that lime and

cyan thresholds are systematically under-predicted while orange and magenta thresholds

are systematically over-predicted. This suggests that if the chromatic cardinal axes of DKL

colour space provide an accurate representation of the second stage of visual processing

they do not act independently, but rather that the stimulation of one axis affects the

sensitivity of the other.
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4.5.1 Methods

4.5.1.1 Overview

A group of observers who contributed to the data set discussed in Experiment 3 were

invited back to the laboratory to complete a new version of the CCDT. In this version,

the chromaticity of the arrow was modulated along intermediate rather than cardinal axes

in DKL colour space. We then asked if chromatic contrast detection ability along the

chromatic cardinal axes of DKL colour space (used as the chromatic axes of change in the

original CCDT task) predict chromatic contrast detection ability along these intermediate

axes.

4.5.1.2 Participants

Twenty of the 55 participants discussed in Experiment 3 returned to the laboratory for

further testing (10 male, 10 female, mean age of 21.89± 2.91 years).

4.5.1.3 The iCCDT

We modified the CCDT so that the chromaticity of the arrow was modulated along inter-

mediate (rather than cardinal) axes in DKL colour space (the iCCDT). Two intermediate

axes were defined and we refer to them as the orange-cyan and lime-magenta axes. The

orange-cyan axes is defined such that the orange half-axis forms a 45 degree angle at the

origin of DKL colour space in an equiluminant plane with both the red (L−M) and yellow

((L + M) − S) half axes and the cyan half-axis forms a 45 degree angle with both the

green (M − L) and blue (S − (L+M)) half axes. The lime-magenta axes is defined such

that the lime half-axis forms a 45 degree angle with both the green (M − L) and yellow

((L+M)− S) half axes and the magenta half-axis forms a 45 degree angle with both the

red (L−M) and blue (S− (L+M)) half axes (Figure 4.14). All other aspects of the task

remained the same.
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Figure 4.14: The axes of chromatic change used in the CCDT and iCCDT in DKL colour space.

4.5.1.4 Procedure and Data Analysis

All participants returned to the laboratory to complete the iCCDT. The iCCDT procedure

was identical to the CCDT procedure detailed in Experiment 3.

Thresholds for the iCCDT were calculated from the mean of the last two reversals from

each staircase, the same as in the CCDT, using a look up table to map nominal staircase

values to ∆Eu∗v∗ values between measured stimulus chromaticities. To predict iCCDT

thresholds from CCDT data we used the same algorithm that was used to predict IDT

thresholds from CCDT data in Experiment 3.

4.5.2 Results

Pooling data from the CDDT and iCCDT, there is a significant main effect of chromatic

direction of change on thresholds (F (3.77, 71.71) = 21.06, p < .001, with a Greenhouse-

Geisser correction; Figure 4.15). Orange and magenta thresholds did not differ significantly

from one another, but both were significantly lower than thresholds for all other chromatic
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directions of change (p < .034, in all cases). In addition, thresholds for the yellower

direction of change were significantly higher than for the redder, lime, and cyan directions

(p < .002 in all cases).

Figure 4.15: CCDT and iCCDT thresholds along the different chromatic axes of change. Error
bars show ± 1 SEM.

Our motivation for this experiment was to assess whether CCDT thresholds can be used to

predict iCCDT thresholds. Before we use the modelling procedure to investigate this, we

can look at correlations between the thresholds for the different directions of change. The

assumption we are testing is that chromatic contrast detection along the intermediate axes

in the iCCDT is governed by the opponent colour mechanisms described by the cardinal

axes of DKL colour space used in the original CCDT task. Thus, we hypothesise that

chromatic contrast detection along each intermediate half-axis is mediated by chromatic

contrast detection along two cardinal half-axes, namely, green and yellow for the lime half-

axis, red and blue for the magenta half-axis, red and yellow for the orange half-axis, and

green and blue for the cyan half-axis. Indeed, if we compare thresholds for the intermediate

half axes to average thresholds over the two cardinal half-axes that we hypothesise are

responsible for detecting such chromatic contrast changes (average predictions), we find

that intermediate half axes thresholds are always over-predicted. Intermediate half-axis

thresholds are always significantly lower than the average thresholds along the two cardinal

half-axes that it falls between (Figure 4.16).
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Figure 4.16: Comparing thresholds along intermediate half-axes to thresholds along the two car-
dinal half-axes that it falls between. A-D. Scatter plots between intermediate half-axis thresholds
and average thresholds for the two half-axis hypothesised to mediate detection along said half-axis.
Pearson’s correlation coefficient between the two variables is shown above each plot. E-H. Average
thresholds for the intermediate half-axes and over the two corresponding cardinal half-axes. We
conducted paired t-tests between each pair of variables, shown above each bar plot. Error bars
show ± 1 SEM.

These results, lower thresholds along intermediate half-axes than the two corresponding

cardinal half-axes, is further motivation to model intermediate half-axis thresholds accord-

ing to the modelling procedure used in Experiment 3. A reduction in thresholds along

intermediate half-axes compared to the cardinal half-axes is supportive of our hypothesis

that chromatic contrast detection along intermediate half-axes is governed by two cardinal

half-axis mechanisms. If two mechanisms are responsible for detecting changes along the

intermediate half-axes, with probabilities of detecting the stimulus equal to p1 and p2, re-

spectively, then the combined probability of detecting the change with either mechanism

is

pcombined = p1 + p2 − p1p2. (4.4)

Note that as 0 ≤ p1, p2 ≤ 1, pcombined ≥ p1, p2, and so it must be the case that detec-

tion thresholds reduce along the intermediate half-axes relative to the two corresponding

cardinal half-axes.
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When we employ the modelling technique detailed in Experiment 3 we predict thresholds

(probability predictions) for the iCCDT that are closer in magnitude to the measured

thresholds than those predicted from the average thresholds along the two corresponding

cardinal half-axes (Figure 4.17.A). However, predicted thresholds for each chromatic direc-

tion of change still differ significantly for each half-axis, although now predicted thresholds

are only significantly higher for the magenta and orange half-axes and significantly lower

for the lime and cyan half-axes (t = 2.46, p = .024, t = 3.83, p = .001, t = −3.49, p = .003,

and t = −3.74, p = .001, respectively. Note that p - values are not corrected for multiple

comparisons here. If we were to accept significance at the α = .05/4 = .013 level there

is no difference between thresholds for the lime half-axis). This result can be visualised

in a scatter plot where is it clear that the model over-predicts thresholds for the magenta

and orange half-axes but under-predicts thresholds for the lime and cyan half-axes (Figure

4.17.B).

Figure 4.17: Predicting iCCDT thresholds from chromatic contrast detection data along the cardi-
nal axes of change used in the CCDT. A. Comparing predicted and measured iCCDT thresholds.
The probability predictions are the predictions made according to the modelling procedure in
Chapter 4. The average predictions are the predictions made according to average thresholds
along the two corresponding cardinal half-axes. B. A scatter plot of measured against probability
predicted iCCDT thresholds for each intermediate half-axis. Error bars show ± 1 SEM.

In addition, the relative ordering of thresholds is not predicted by the model (Pearson’s

correlation between measured and predicted thresholds for each half-axis: lime r = .342,
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p = .140, magenta r = .088, p = .711, cyan r = .479, p = .033, and orange r = .639,

p = .003). While there is a consistent pattern in the under and over prediction of thresholds

for the different half-axes, the model fails to predict the inter-individual differences in

performance. This is also true of the average predictions except for the orange half axes

where the average of thresholds along the red and yellow half axes explains a significant

proportion of the variation in the data (R2 = .398, 39.8% of the variation in orange

thresholds is explained by variation in the average thresholds). However, it could be the

case that inter-individual variability on the CCDT (and iCCDT) is not greater than the

level of intra-individual variability on the task. As part of a separate study, 10 observers

repeated the CCDT on three separate occasions. The average standard deviation of their

thresholds was 1.67± 2.19, 2.46± 3.65, 2.05± 2.05, and 1.76± 1.59 ∆Eu∗v∗ for the green,

red, yellow, and blue half-axes, respectively. In comparison, the standard deviations in

thresholds for the corresponding four half-axes for the 20 observers in this experiment

are 1.58, 0.89, 1.57, and 1.99 ∆Eu∗v∗ , respectively. Thus, we see higher levels of intra-

individual variability than inter-individual variability in the CCDT, except for the blue

half-axis. Another way to quantify the level of intra-individual variability is to correlate

thresholds for the different directions of change across repeated runs of the task (Figure

4.18). We only find evidence of inter-individual variation for the blue half axis.

4.5.3 Interim Discussion

We modified the CCDT such that the chromaticity of the arrow was modulated along

two intermediate axes in an equiluminant DKL plane (the iCCDT). We hypothesised

that chromatic contrast detection along these axes is governed by the cardinal chromatic

mechanisms - the cone-opponent, red-green (L−M) and blue-yellow (S − (L+M)) axes

of DKL colour space.

Thresholds for each intermediate half-axis were always significantly smaller than the av-

erage of those for each pair of cardinal half-axes (average predictions) hypothesised to be

responsible for chromatic contrast detection in the relevant quadrant of the equiluminant

97



Chapter 4. Individual differences in illumination discrimination ability

Figure 4.18: Correlations between thresholds for the different directions of change across multiple
runs of the CCDT. Spearman’s correlation coefficient between the two variables is shown above
each plot.

DKL plane. This fits with our assumption that the cardinal cone-opponent mechanisms

act in tandem to detect chromatic contrast changes in a stimulus. In addition, we em-

ployed the modelling procedure detailed in Experiment 3 to predict thresholds along the

intermediate axes from chromatic contrast detection data along the cardinal axes (prob-

ability predictions). On average, the probability predictions are of the same magnitude

as the measured threshold values (unlike the average predictions which are significantly
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higher). However, we find systematic deviations in our probability predictions that are

half-axis dependent. Thresholds for the lime and cyan half-axes are under predicted while

thresholds for the magenta and orange thresholds are over predicted.

The commonality between the lime and cyan half-axes is the green (M − L) half-axis

while the commonality between the magenta and orange half-axis is the red (L−M) half-

axis. As thresholds are under predicted for the lime and cyan half-axes but over predicted

for the magenta and orange half-axes, it seems that chromatic contrast sensitivity along

the red-green (L−M) chromatic cardinal mechanism is modulated when the blue-yellow

(S − (L + M)) half-axes are also stimulated. This suggests that when the blue-yellow

channel is also active, sensitivity to increments along the red-green axes is decreased while

sensitivity to decrements is increased.

Our original goal was to establish if the cardinal axes of DKL colour space may be consid-

ered as accurate and independent descriptions of second-order colour mechanisms and if

detection of stimuli within different quadrants of DKL colour space can be predicted from

detection data along these axes. We find evidence that the cardinal axes either do not act

independently (they may show dependent adaptation, see Section 1.4.1) or that there are

higher-order mechanisms (see Section 1.4.2). In this case, we must be cautious about how

much weight we assign to our conclusions from Experiment 3.

4.6 Experiment 5: An ISETBIO model

In Experiments 1-4, we explored inter-individual differences in illumination discrimination

thresholds obtained using the IDT. By taking a look back at the data presented in Chapter

3, we showed that inter-individual differences in illumination discrimination thresholds

are not only consistent for different chromatic directions of change in the illumination but

also for different reference illumination conditions. In addition, we collected a larger data

set from a group of participants who also completed a task that established chromatic

contrast detection thresholds (the CCDT). Using this data set, we showed that there is
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large variability in illumination discrimination ability and that a moderate amount of the

variability is explained by differences in chromatic contrast detection ability; however, we

fail to predict the “blue bias”. We investigated the validity of our extension of performance

on the CCDT to performance on the IDT. We concluded that our predictions must be

interpreted with caution, as we failed to accurately predict thresholds for intermediate

axes in the CCDT. In this Experiment, we use a different approach to modelling inter-

individual differences in performance on the IDT. A possible source of variability in human

trichromatic colour processing mechanisms is differences in L : M cone ratios. This source

of variability occurs at the initial stage of visual processing and may be a limiting factor in

chromatic detection and discrimination ability at later stages. Here, we model the initial

stages of visual processing to assess what impact, if any, differences in L : M cone rations

may have on illumination discrimination ability in the IDT. We can also consider this an

analysis of whether the statistics of the distal stimulus or the limiting factors of the human

optical system account for the asymmetries in IDT thresholds.

A classic way to approach this problem is to develop an ideal observer. Ideal observer

analysis is often used in the analysis of psychophysical data to establish an upper limit

on performance by designing an algorithm for optimal performance of the task given the

information available on each trial (Geisler, 2011). We take this approach, forming our

ideal observer at the level of the photoreceptor mosaic after simulating the passage of light

through the human optics, accounting for optical effects such as chromatic aberration and

noise during phototransduction. The ideal observer vectorises matrices of isomerisations

that represent the photon catches of each cone in a pre-specified cone mosaic in response

to the reference and two comparison illuminations in the IDT. By calculating the vector

norm between the vectorised isomerisations for the reference and two comparison stimuli,

the ideal observer decides which comparison illumination is the best match to the target.

Finally, we assign a lapse rate to the ideal observer such that they respond randomly on a

set percentage of trials. Hence, our ideal observer is only optimal up to the point allowed

by the human optics, noise at the level of the photoreceptor mosaic and attentional lapses.
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We develop five categories of ideal observers, each category having one of five cone density

triplets taken from measurements of cone densities in trichromatic human observers (Hofer,

Carroll, Neitz, Neitz & Williams, 2005). Within each category, there are three ideal

observers who share a cone density triplet but are distinguished by their cone mosaics.

We simulated the performance of each ideal observer on the five different versions of the

IDT used in Chapter 3 three times each (five reference illumination conditions: neutral,

blue, yellow, red, and green).

4.6.1 Methods

4.6.1.1 Using ISETBIO to simulate photoreceptor isomerisations for an IDT

scene

The image system engineering toolbox for biology (ISETBIO) is a freely available MAT-

LAB toolbox that can be used to simulate the processing of light through the front end

of biological visual systems (ISETBIO.org, Brainard, Jiang, Cottaris, Rieke, Chichilnisky,

Farrell, Joyce & Wandell (2015)). In ISETBIO, an optical system (the eye), a sensor (the

photoreceptor mosaic), and a scene are represented by different components. The toolbox

provides functions to combine these components, simulating the response of each pho-

toreceptor in a mosaic upon viewing a scene. The algorithms for combining the different

components account for imperfections in human visual processing such as optical blurring,

filtering by the lens and macular pigment, chromatic aberration and photoreceptor noise.

We will use ISETBIO to simulate photoreceptor isomerisations, for specified cone mosaics,

to different illumination views in the IDT.

First, we must form an ISETBIO scene structure (Figure 4.19 - Step 1). In Chapter

3, Section 3.2.7, we explained how we obtained a hyperspectral image of the Mondrian

used in the IDT that we then used to find a representation of the spectral reflectance

distribution across the part of the Mondrian that lined the back wall of the stimulus box -

the reflectance image. Using the reflectance image, an intensity map (that represents the
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illumination gradient across the scene and is found from measurements of the calibration

tile), and a spectral radiance measure of an illumination used in the experiment (Figure

3.4), we can define an ISETBIO scene structure. Using different illumination spectra,

we can define a scene that represents any given view of the back wall of the stimulus

box during the experiment. As part of the ISETBIO scene structure, we also specify the

viewing distance (81 cm) and the size of the stimulus. We will compute photoreceptor

isomerisations for a cone mosaic that spans the whole field of view. For that reason, we

restrict the field of view to a central square of the back wall. We repeated the simulations

multiple times for different side lengths of the square. These were 38.75, 19.38, 9.69, 4.84,

and 0.61 cm (25.57, 12.78, 6.39, 3.20, and 0.40 degrees of visual angle, Figure 4.20).

Secondly, we must define an optical system and its sensing device (Figure 4.19 - Step

2). We use the default human optics structure in ISETBIO that adopts the Marimont &

Wandell (1994) shift-invariant, wavelength-dependent model of the human optics. Other

default parameters specify the lens optical density function (taken from CVRL.org) and

the pupil radius (1.5 mm). The sensor is a human trichromatic cone mosaic. We use

the default human cone mosaic structure in ISTEBIO (rectangular packing) but vary the

triplet of cone densities. We take five cone density triplets from Hofer et al. (2005) who

used an adaptive optics system to image human cone mosaics. The five that we use come

from observers HS, AP, MD, RS and BS (the five observer types, Table 4.2). The default

cone spectral sensitivities are from Stockman & Sharpe (2000). Each cone covers an area

of 2 µm in the mosaic and the size of the mosaic was set to the field of view for the scene.

The arrangement of cones in the mosaic is determined at random while ensuring that the

proportions are as specified. We generated three cone mosaics for each observer type, 15

observers in total.

Finally, we use ISETBIO routines to first combine the optics structure with the scene

structure. This models the passage of light through the optical system to produce a

retinal irradiance image. Then we combine the retinal irradiance image with the sensor

structure to obtain a matrix of photoreceptor isomerisations. The integration time for
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Figure 4.19: An overview of the ISETBIO modelling procedure. The different steps are explained
in detail in the text.

each cone was set at 500 ms to control exposure time to the stimulus, including the

scene under a reference illumination (exposure time is 2000 ms during the experiment).

As isomerisation values are cumulative, this ensured that the isomerisation values for

the reference illumination scene were in a similar range to those for the test and target
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Figure 4.20: The stimuli used in the different simulations. The white dashed lines show which
section of the scene was cut out to form the smaller fields of view.

Table 4.2: The cone density triplets used in the ideal observer models.

Observer L-Cone (%) M-Cone (%) S-Cone (%)

HS 25.7 67.9 6.4
AP 52.4 42 5.6
MD 61.7 32.5 5.8
RS 67.2 28.2 4.6
BS 89.1 5.4 5.5

illumination scenes. Poisson noise is added to all isomerisation values with mean equal to

the mean over all values.

4.6.1.2 Ideal observers at the level of the photoreceptor mosaic

For each of the 15 observers we created, we developed an ideal observer algorithm at the

level of their photoreceptor isomerisations. The algorithm governs responses to each trial in

the IDT. To simulate a response for a single trial, we compute two sets of isomerisations for

500 ms exposure to the reference/target illumination (they are equivalent) and one set of

isomerisations for 500 ms exposure to the test illumination. We vectorise the isomerisation

matrices to form ~vref , ~vtar, and ~vtest, the vectorised responses to the reference, target and
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test illumination scenes, respectively. The observer responds correctly if:

||~vtar − ~vref ||2 < ||~vtest − ~vref ||2, (4.5)

otherwise, they respond incorrectly. Each observer is also assigned a lapse rate between 1%

and 5%. On that percentage of trials, they respond randomly. By generating responses to

individual trials in this way we are able to run the staircase procedure from the experiment

to establish thresholds for each observer. We simulated thresholds for all 15 ideal observers

for all four directions of chromatic change in all five reference illumination conditions for

the experiment discussed in Chapter 3. There were three staircases for each axis of change

and thresholds were calculated as the mean of the last two reversals from each staircase.

Each simulation was repeated three times (three runs for each of the 15 observers).

4.6.1.3 Modelling adaptation effects

In ISETBIO there is an option to implement a biophysical model of the phototransduc-

tion cascade, accounting for adaptation of the cones. The model was proposed by Rieke

and colleagues (Angueyra & Rieke, 2013; Rieke, 2014; Soo, Detwiler & Rieke, 2008) who

specified a set of differential equations that would transform a stream of computed iso-

merisations (over a time interval) into a current. This is a computationally intensive task.

For each cone in a mosaic, isomerisation counts must be computed at small time intervals

(every millisecond in our calculations). The biophysical model component of ISETBIO

takes this stream of isomerisation counts as input and outputs the computed current over

time. We did not use this option in our ideal observer model due to computational re-

quirements. However, to establish whether adaptation may cause us to make different

conclusions from our model, we computed the current from single cones over the duration

of an IDT trial as if they were observing a neutral surface (flat reflectance) illuminated

by the experimental illuminations (Figure 4.21). We computed the current 5000 times for

each sequence of trials (target in first or second comparison position) for a single cone of

each type (L, M or S-Cone). We restricted the test illuminations to those 5, 10, 15 or 20
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∆Eu∗v∗ away from each of the five reference illuminations along each chromatic direction

of change. We simulated a 2 second dark adaptation period at the start of each trial.

To establish whether an ideal observer that incorporated cone adaptation would predict

a different pattern of thresholds in the IDT we compared the contrast between the test

and target illuminations calculated from the current model to the contrast between raw

isomerisations and, as a baseline comparison, to standard cone contrast values.

To calculate the standard cone contrast (sCCj for j = L,M,S) between the target and

test light, we first computed the L, M or S cone tristimulus values for both the target

and test illuminations (V j
tar and V j

test for j = L,M,S, respectively) and then calculated

standard cone contrast using the equation:

sCCj =
V j
test − V

j
tar

V j
tar

. (4.6)

To calculate the isomerisation cone contrast (iCCj for j = L,M,S) between the target

and test illumination, we first computed the mean isomerisations during the final 300 ms

of the illumination presentation (Figure 4.21) for each of the 5000 simulations for each trial

ordering. We dropped the first 200 ms of the simulated values to allow stabilisation of the

current values. We then took the mean over all 5000 simulations for each trial ordering

separately to get the mean isomerisation count for each cone type for both the target and

test illuminations (Ijtar and Ijtest for j = L,M,S, respectively). The isomerisation cone

contrast was then calculated as:

iCCj =
Ijtest − I

j
tar

Ijtar
. (4.7)

Finally, to calculate the current cone contrast (cCCj for j = L,M,S) between the target

and test illumination, we first computed the mean current during the final 300 ms of

the illumination presentation (Figure 4.21) over the 5000 simulations for each trial order-

ing to form an average current trace during the final 300 ms (~ctar and ~ctest). We took

the minimum value from the average traces (min(~ctar,~ctest)) and baseline corrected both
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current traces to this value. We found the mean current for each of the target and test

illuminations by averaging over all time points in the baseline corrected traces (Cjtar and

Cjtest for j = L,M,S, respectively). The current cone contrast was then calculated as:

cCCj =
Cjtest − C

j
tar

Cjtar
. (4.8)

Figure 4.21: Modelling adaptation effects. Example L-cone current traces in the neutral reference
illumination condition when the test illumination is 10 ∆Eu∗v∗ away along each chromatic direction
of change and the target is in the first comparison position. While the images below the plot are
representative of the illumination presentation sequence during the trial, they do not represent
what the single cone was viewing during the simulation. All simulations were of the experimental
illuminations reflected from a hypothetical neutral surface with flat reflectance.

4.6.2 Results

4.6.2.1 Ideal observers

Simulated IDT thresholds do not match the behavioural data reported in Chapter 3 (Figure

4.22). Firstly, regardless of stimulus size (25.57, 12.78, 6.39, 3.20, and 0.40 degrees of visual
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angle) simulated thresholds do not show the same pattern of bias as the behavioural data.

Secondly, simulated performance of the ideal observers is generally better than of the

observers tested in Chapter 3, and in some cases, the ideal observers produce the lowest

possible threshold on the task (1 ∆Eu∗v∗ , effectively perfect performance). Performance of

the ideal observers worsens (higher discrimination thresholds) as the size of the stimulus

decreases. This is not as clear for the yellow reference illumination condition compared to

the others, but this is also the condition in which the human observers display the lowest

average thresholds.

Figure 4.22: Behavioural and simulated IDT data. A-E: Behavioural and simulated thresholds for
the four directions of chromatic change in each reference illumination condition. Error bars show
± 1 SEM.

We were also interested in whether incorporating different cone density triplets in our

ideal observer models would predict inter-individual differences in performance on the

IDT (Figures 4.23-4.27). Considering ideal observer performance at an individual level,

we see that all five ideal observer types are at ceiling task performance in the neutral

reference illumination condition when the stimulus size is 25.57◦ (Figure 4.23.A). However,

performance is not at ceiling for the other reference illumination conditions with this

stimulus size and we see individual differences beginning to emerge, especially in the blue

and red reference illumination conditions (Figure 4.23.B and D). Ideal observers of type
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BS consistently have the highest thresholds in these conditions while ideal observers of

type HS consistently have the lowest.

Figure 4.23: Simulated IDT data for a stimulus of size 25.57◦. A-E: Individual simulated threshold
traces for the four directions of chromatic change in each reference illumination condition for each
of the five ideal observer types. For each observer type, an average is taken over the three cone
mosaics and the three runs for each ideal observer. Error bars show ± 1 SEM.

As the stimulus size is decreased (Figures 4.24-4.27), we see the individual differences

begin to emerge more. They are clearly visible by the smallest stimulus size condition

(Figure 4.27) for all reference illumination conditions, although overall performance in the

yellow reference illumination condition does not decline at the same rate. On average, HS

observer types have the lowest thresholds, followed by AP types, MD types, and RS types,

with BS observer types having the highest thresholds. The pattern in overall thresholds

reflects the L : M cone ratios of the five observer types. Higher L : M cone ratios lead to

higher than average thresholds (worse discrimination) in the IDT.

4.6.2.2 Adaptation effects

We computed current, isomerisation and standard cone contrast values (cCC, iCC, and

sCC, respectively) between the target and test illuminations for four different test lights

along each chromatic axis of change, for each reference illumination condition and for both
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Figure 4.24: Simulated IDT data for a stimulus of size 12.78◦. A-E: Individual simulated threshold
traces for the four directions of chromatic change in each reference illumination condition for each
of the five ideal observer types. For each observer type, an average is taken over the three cone
mosaics and the three runs for each ideal observer. Error bars show ± 1 SEM.

Figure 4.25: Simulated IDT data for a stimulus of size 6.39◦. A-E: Individual simulated threshold
traces for the four directions of chromatic change in each reference illumination condition for each
of the five ideal observer types. For each observer type, an average is taken over the three cone
mosaics and the three runs for each ideal observer. Error bars show ± 1 SEM.

possible orderings (target first or second) of the comparison illuminations on a trial. Here,

we show the contrast values only for the neutral reference illumination condition when

the target was in the first comparison position (Figure 4.28), all other results are in the
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Figure 4.26: Simulated IDT data for a stimulus of size 3.20◦. A-E: Individual simulated threshold
traces for the four directions of chromatic change in each reference illumination condition for each
of the five ideal observer types. For each observer type, an average is taken over the three cone
mosaics and the three runs for each ideal observer. Error bars show ± 1 SEM.

Figure 4.27: Simulated IDT data for a stimulus of size 0.40◦. A-E: Individual simulated threshold
traces for the four directions of chromatic change in each reference illumination condition for each
of the five ideal observer types. For each observer type, an average is taken over the three cone
mosaics and the three runs for each ideal observer. Error bars show ± 1 SEM.

appendix (Figures B.4-B.12). As the three types of values are of a different magnitude

all contrast values were normalised to the 20 ∆Eu∗v∗ contrast value separately for each

type of contrast measure. The first point of note is that the relative change in iCC values
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follows that of sCC values well. This serves as a good sanity check, as computed L,M, and

S tristimulus values from the cone fundamentals should be representative of the number

of photon catches by each cone type, albeit on a different scale. Secondly, in the large

majority of cases, cCC values do not tell a different story to iCC values, suggesting that

adaptation does not affect discriminability of the test and target illuminations and hence

that adaptation cannot explain the biases in the behavioural data. However, if there are

differences between the between cCC and iCC values, these tend to occur in the S-cone

contrast values; in particular for the yellower direction of chromatic change regardless

of reference illumination condition and for the greener direction of chromatic change in

the red, yellow and green reference illumination conditions, although this observation

is less clear than the former. The difference, in all cases, is that the current values

predict larger contrast (better discriminability) in S-cone contrasts in these conditions

than the isomerisations do. It is not the case, however, that thresholds for yellower

chromatic changes in the illumination are consistently lower (better discrimination) in our

behavioural data; the same is true for greener chromatic changes in the illumination. In

fact, in the behavioural data, thresholds for redder chromatic changes in the illumination

are lowest overall. A final feature of these simulations is that the order of the comparison

illuminations (target first or second) does not affect the contrast values. In summary,

it seems we can rule out the adaptation effect as an explanation of the biases in the

behavioural data.

4.7 Discussion

We investigated inter and intra-individual differences in illumination discrimination ability.

To do so, we first took a second look at the data presented in Chapter 3, this time

at an individual level. These data revealed inter-individual differences in illumination

discrimination thresholds that were consistent across the different directions of change

and different reference illumination conditions. In addition, we collected two new data

sets, one in which a group of observers completed the original (neutral) version of the IDT
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Figure 4.28: Simulated current (cCC), isomerisation (iCC) and standard (sCC) cone contrast
values for the neutral reference illumination condition when the target is in the first comparison
position. Each column of plots shows the contrast values for a different cone type and each row of
plots for a different direction of chromatic change in the illumination. Along the horizontal axis is
plotted the distance in CIELUV between the test and target illuminations. The vertical axes show
the normalised contrast values.

three times and one in which the observers completed the original (neutral) IDT and a

test of chromatic contrast detection ability (the CCDT). The former of these two data sets

allowed us to show that while we do see intra-individual differences across multiple runs of

the IDT, these differences are similar in all observers and appear to be due to a learning

effect. The latter data set illustrated that the “blue bias” in illumination discrimination

thresholds is not explained by chromatic contrast detection thresholds. That said, some

of the inter-individual differences in illumination discrimination ability are captured by
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differences in chromatic contrast detection ability.

In Experiment 1, we found evidence for inter-individual differences in illumination discrim-

ination ability and introduced a metric to capture the amount of “blue bias” displayed by

each observer. Our motivation for introducing such a metric was to establish if the “blue

bias” in illumination discrimination ability was the same or different in all observers. If

the “blue bias” was similar in all observers, this would lead us to conclude that the bias

is brought about by a reduced physiological sensitivity to bluer chromatic changes in the

illumination, possibly established through evolution to optimise colour constancy mecha-

nisms for natural illumination changes (the nature hypothesis). However, we find that the

“blue bias” is not the same in all observers, some displaying a stronger “blue bias” than

others. In addition, we find that while the “blue bias” is present on average across all

reference illumination conditions, inter-individual differences in the level of “blue bias” are

not preserved across the different reference illumination conditions. This is suggestive of

multiple colour constancy mechanisms, both a reduced physiological sensitivity to global

bluer chromatic changes in a scene and the influence of a learnt illumination prior for day-

light chromaticities that differs across individuals (both hypotheses: nature and nurture).

A reduction in sensitivity to bluer chromatic changes in a scene predicts a “blue bias” in

all reference illumination conditions. Conversely, a learnt illumination prior for daylight

chromaticities predicts inter-individual differences in the level of “blue bias” (depending

on the parameters of the prior). In addition, an illumination prior mechanism would dif-

ferentially affect thresholds for the different reference illumination conditions. Rather than

expecting the level of “blue bias” to be preserved across different reference illumination

conditions, we may instead expect the level of bias in the chromatic direction opposite

to the chromatic bias in the scene illuminations to be preserved across reference illumi-

nation conditions; a property that would be associated to the strength of the prior or to

the amount of weight that an observer’s visual system assigns to it during computations.

However, this is not a feature of our data (Figure B.1).

In Experiment 2, we showed that the level of “blue bias” displayed by a given observer
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is consistent across multiple runs of the task. In addition, observers with a higher “blue

bias” maintain a higher level of “blue bias” across multiple runs of the task relative to

other observers and vice versa. This is evidence of a mechanism that governs illumination

discrimination ability (a colour constancy mechanism) that is present in all observers but

differs between them, supportive of the idea of a learnt illumination prior that would vary

with experience rather than evolutionary colour constancy mechanisms.

Experiment 2 also highlights a learning effect on the IDT, overall illumination discrimi-

nation thresholds decreasing from the first to second, but not second to third, repeats of

the task. In Appendix A, we show that while the CIE 3-component model of daylights

explains an average of 64.95% of the variation in the spectra of the illuminations used

in the IDT (75.12% for the neutral condition that we used in the current experiment), a

moderate percentage of the variation in the experimental spectra is not explained. This

suggests that while the use of an illumination prior formed over natural daylight illumina-

tions may lead to improved colour constancy in the IDT through improved illumination

estimates, this is not the optimal prior for the task. If observers were to begin to learn the

statistics of the illuminations that are used in the IDT, forming a prior specific for the task,

then we may expect the opposite results to what we see - colour constancy should improve

leading to increased discrimination thresholds on subsequent runs of the task. The fact

that we see decreased discrimination thresholds (worse colour constancy) on subsequent

runs suggests that observers are not learning the illumination statistics, but are learning

a strategy for performing the task. Indeed, the aim and instructions for the task are to

correctly discern the target from the test illumination. Remaining colour constant during

the task does not lead to optimal task performance. In fact, to perform optimally, colour

constancy should be overcome. We will return to this point in the general discussion.

Having shown in Experiments 1 and 2 that there are inter-individual differences in perfor-

mance on the IDT, we asked in Experiment 3 whether these differences are explained at

the level of chromatic contrast detection ability. In particular, such a comparison allows

us to address the question of whether the “blue bias” in IDT thresholds is explained by
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a reduced sensitivity to S-cone increments (bluer chromatic changes). Firstly, we do not

see the same pattern of thresholds across the chromatic directions of change in the CCDT

as we do in the IDT - there is no “blue bias”. In addition, we do not see consistent

correlations between the corresponding chromatic directions in the two tasks (plots across

the diagonal in Figure 4.10). However, we acknowledge that there are differences between

the chromatic axes of change used in the IDT and CCDT. The axes of change used in the

CCDT are specified to fall along the cardinal axes of DKL colour space, generally assumed

to represent the second stage of visual processing. By making the assumptions that these

axes accurately and exhaustively represent the second stage of visual processing and that

they act independently, we used the CCDT thresholds to predict thresholds on the IDT.

We find that while CCDT thresholds can explain an average of 24.10% of the variation

in the IDT thresholds (averaged over chromatic directions of change), they do not predict

the “blue bias”. In fact, the CCDT thresholds predict more of the variation along the

redder and greener directions of chromatic change in the IDT than they do for the bluer

and yellower directions of change (32.49% compared to 19.32%). This suggests that illu-

mination discrimination thresholds along these two pairs of axes are influenced differently

by visual mechanisms. As the bluer and yellower illuminations fall along the daylight

axis, representing the chromaticities of natural daylight illuminations, and as chromatic

contrast detection thresholds do not show a similar bias, we take the results of Experiment

3 as further evidence for the influence of an illumination prior in IDT performance.

There are multiple reasons, however, why the comparison between IDT and CCDT dis-

crimination ability may not be valid. Firstly, there is disagreement in the colour vision

community about the number of chromatic mechanisms that exist in the visual system,

whether they act independently, and what the weightings of the different cone types are in

the cardinal mechanisms (see Section 1.4). In order to make predictions of IDT thresholds

from CCDT data, we made the assumption that there are only two second stage mecha-

nisms, that they are well-represented by the cardinal axes of DKL space, and that they

act independently to detect chromatic changes in a stimulus. Secondly, there are several
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important differences between the two tasks. The CCDT is a contrast detection task

where the participant must detect the appearance of a target against a background. The

participant is not required to make comparisons temporally across time as they are in the

IDT, a task that involves a memory component. In the IDT, the participant must hold

a representation of the reference and two comparison lights in memory in order to make

a decision about which comparison was most similar to the reference. These issues mean

that the predictions we make must be interpreted with caution. However, the fact that we

do not see a “blue bias” in the CCDT data but do in the IDT data is still strong evidence

that the bias is not caused solely by a reduction in sensitivity to S-cone increments. If

this was the case we would expect to see a manifestation of this reduced sensitivity in the

data from both tasks.

In Experiment 4, we assessed the validity of our predictions of IDT thresholds from CCDT

data by making predictions of further CCDT thresholds along intermediate axes of change

in DKL colour space (the iCCDT task). Neither our average or probability predictions

of iCCDT thresholds were sufficiently accurate, suggesting a more complicated model of

second-order visual mechanisms in required or at least of how the mechanisms work in

tandem. The fact that lime and cyan half-axes thresholds are under predicted while ma-

genta and orange half-axes thresholds are over predicted suggests that the two mechanisms

interact, the sensitivity of the red-green axis altered when the blue-yellow axis is also stim-

ulated. The results of this experiment are cause for further caution when interpreting the

predictions of IDT thresholds made in Experiment 3.

Finally, in Experiment 5, we simulated IDT thresholds using ISETBIO to ask whether

the statistics of the distal stimulus or the limiting factors of the human optical system

account for the asymmetries in IDT thresholds we saw in Chapter 3, and if differences

in L : M cone ratios account for individual differences in performance on the task. The

“blue bias” and other biases seen in Chapter 3 are not an obvious feature of the simulated

data, suggesting that higher-level processes are responsible for the effect. However, the

simulations using the different cone density triplets did differ, mimicking the individual
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differences that we observed in the real data. We found that higher L : M cone ratios

predict worse performance (better colour constancy) in the IDT. This effect was much

clearer for smaller scenes. Decreasing the scene size decreases the size of the cone mosaic

and hence the number of samples obtained from the image. Therefore, decreasing the

stimulus size can be equated to ramping up the level of noise in the data that is fed to

the decision rule. Hence, while the ideal observer performance is near perfect for the

largest stimulus size, this is a prediction that performance on the IDT would be perfect if

observers had direct access to isomerisations across the cone mosaic. It is likely, however,

that the decision is made at a higher-level in the visual hierarchy after multiple processing

stages have taken effect, each introducing further noise. In this sense, it seems logical that

the smaller the stimulus size is, the similar the magnitude of simulated thresholds to the

real data, especially since we ignore the memory component of the task in our simulations.

There are factors that could explain inter-individual differences in performance on the

IDT that are independent of colour processing mechanisms, for example, age and cogni-

tive factors (due to the memory requirement of the IDT). Age could not account for the

inter-individual differences in our data (Figure B.2). We did not perform any cognitive

measures on our observers to assess differences in cognitive processes such as working

memory that may affect performance on the task. The closet correlate of such a mea-

sure that we have is an attentional measure, the lapse rate collected in the IDT via the

catch trials. Unsurprisingly, lapse rate correlated significantly with thresholds for all chro-

matic directions of change (Figure B.3). In future studies, it would be beneficial to assess

participants who perform the IDT with a battery of cognitive tests to see whether such

differences can explain differences in performance. It is unlikely, however, that such mea-

sures will fully explain inter-individual differences IDT performance. While we do see

evidence of global inter-individual differences in illumination discrimination ability (in-

creased or decreased thresholds across all directions of chromatic change), we also see

inter-individual differences in the level of “blue bias” displayed by our observers. Global

inter-individual differences may be explained by differences in performance on cognitive
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tasks. Inter-individual differences in the level of “blue bias”, however, are more suggestive

of underlying differences in perceptual mechanisms.

Experiment 4 could be subject to the effects of self-selection bias as the observers who

participated in this study were invited back from the previous experiment (Experiment

3). All observers were invited to return and take part in Experiment 4, however, only the

first 20 respondents were used for the study. It could be that the first 20 respondents were

more motivated to take part in the study and hence that their responses in the task were

more accurate that than the responses of others would have been. However, firstly, one

could argue that all psychology studies where participants volunteer or sign-up to take

part in a study are subject to the same issue, as only the most motivated will apply to

participate. Secondly, the analyses for this experiment are within subject, therefore, if

these participants are more motivated to take part in the study they will have displayed

the same level of motivation when completing both the CCDT and iCCDT.
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Chapter 5

What #theDress reveals about the role of illumination

priors in colour perception and colour constancy

This Chapter has appeared almost in its entirety as a peer reviewed Journal of Vision

publication:

Aston, S., & Hurlbert, A. C. (2017) What #theDress reveals about the role of illumina-

tion priors in color perception and color constancy. Journal of Vision.

5.1 Introduction

The division between people who named #theDress (the dress photograph that first ap-

peared on social media in February 2015; Figure 5.1) “blue and black” vs. “white and

gold” illustrates the subjectivity and individuality of colour perception. While there are

many examples of illusions in which an individual observer sees a coloured object differ-

ently in different viewing conditions (e.g. colour contrast and colour assimilation; Brainard

& Hurlbert (2015)), #thedress phenomenon differs from these in eliciting striking inter-

individual differences under identical viewing conditions.

Figure 5.1: The photo of the dress taken from Wikipedia. Photo credit Cecilia Bleasdale.

When #thedress first appeared people immediately fell into two groups: one group re-

ported a blue dress with black lace and the opposing group a white dress with gold lace.
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As controlled studies have since shown, these naming differences are not due to different

viewing devices (Gegenfurtner, Bloj & Toscani, 2015; Lafer-Sousa, Hermann & Conway,

2015). In addition, the stark division of people into only two naming groups seems to have

occurred only due to the way the question was posed on social media. When participants

were allowed to free-name the colours of the dress, a continuum of colour names emerged,

but with three modal groups: blue and black (B/K), white and gold (W/G) and blue and

gold (B/G) (Lafer-Sousa et al., 2015).

Previous studies have also shown that observers differ not only in how they name the dress

but also in the colours to which they match it (Chetverikov & Ivanchei, 2016; Gegenfurtner

et al., 2015; Lafer-Sousa et al., 2015), leading to the conclusion that the phenomenon

is a perceptual one and therefore not explained solely by differences in colour naming

and/or colour categorization. However, previous studies differ somewhat in their matching

results. In one study, where 53 laboratory participants made matches to the dress body

and lace using a colour picker tool, matches to both regions differed between B/K and

W/G observers in both lightness and chromaticity (Lafer-Sousa et al., 2015). In another,

Gegenfurtner et al. (2015) asked participants to make colour matches to both the dress

body and lace as well as to select the best matching chip from the glossy version of the

Munsell Book of Colour. Contrary to the results of Lafer-Sousa et al. (2015), both sets of

matching data did not differ in chromaticity between the two groups of observers but did

differ in luminance (or value in the case of the Munsell chips). A later online survey found

differences in the matches for the B/K and W/G observer groups along all axes of CIELAB

colour space (Chetverikov & Ivanchei, 2016). It is clear from these results that representing

an individual’s perception of the photograph only by the colour names they assign is not

enough to capture the variability in perception across the population. Clearly, there are

substantial individual differences in the processes of colour perception that are responsible

for the phenomenon, but the detailed characteristics of these underlying factors remains

somewhat elusive.

Brainard & Hurlbert (2015) suggested the colour constancy hypothesis to account for the
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differences. The colour constancy hypothesis for #thedress phenomenon implies that in-

dividual differences in perception of the photograph arise because observers make different

inferences about the incident illumination spectrum in the scene. The information that

the photograph itself provides about the illumination spectrum is ambiguous, because the

colours in the photograph could be produced by illuminating a blue dress with yellow light

or white dress with blue light (see Figure 2 in Brainard & Hurlbert (2015)). If a difference

in inferred illumination is responsible for the difference in perception then we must ask,

what causes different observers to infer different illuminations? It might be that observers

rely on previous experience - unconsciously embedded in the perceptual process as illumi-

nation priors - to determine the most likely illumination and overcome the uncertainty in

the visual information.

If illumination priors do play a role in how the visual system calibrates itself for envi-

ronmental illumination changes, then observers with different experiences of illumination

changes may exhibit different perceptions. To test this reasoning, one needs a measure that

predicts behavioural exposure to particular illuminations. Given that daylight illumina-

tion chromaticities are known to vary throughout the day (Hernández-Andrés et al., 2001;

Wyszecki & Stiles, 1967, see also Section 1.5.3) and traditional indoor lighting is much

yellower than daylight (in particular for incandescent bulbs, see figure 2 in Webb (2006)),

it is plausible that the observers illumination prior may be conveyed by the observers

chronotype (Lafer-Sousa et al., 2015), where chronotype refers to whether an individual is

a morning or evening type (more colloquially, whether an individual is a lark or an owl).

Morning types might be more likely to experience the blues of daylight illuminations while

evening types might be more likely to experience the yellows of artificial illuminations.

The colour constancy explanation of the dress phenomenon is partially supported by the

recent finding that the illumination inferred by observers in the photograph is negatively

correlated with their dress colour matches (yellower illumination implies bluer dress match

and vice versa) (Witzel, Racey & O’Regan, 2016). However, Witzel et al. (2016) conclude

that differences in inferred illumination chromaticity are not due to illumination priors,
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but rather because each observer implicitly estimates the illumination on a scene in an ad

hoc manner. This interpretation implies that two observers who fall into different colour

naming categories for the dress (e.g. blue/black vs. white/gold) will not display other

distinct and predictable behavioural characteristics due to different inherent illumination

priors. The results we present here allow for the possibility that illumination priors are

responsible for differences in inferred illumination chromaticity, and hence bias dress colour

perception, given that we find a correlation between chronotype and colour matching data.

This correlation is weak and non-significant at the 5% level. On the other hand, we show

that colour constancy thresholds obtained using the IDT are not related to dress colour

perception, implying that generic biases in colour constancy do not explain variations in

dress colour perception.

In addition, we show a dependence on luminance of subjective achromatic settings, which

leads to the conclusion that subjective white point settings may be predictive of dress

colour perception in the photograph but only if the settings are made at a luminance level

that represents each individual’s perceived level of brightness in the scene. Moreover, we

present results that suggest perception and naming are disconnected, by showing that

the colour names observers report for the dress photograph differ to those that they give

to their dress matches when shown them in isolation, with the latter best capturing the

variation in the matches.

5.2 Methods

5.2.1 Overview

Participants completed a set of computer-based matching tasks in which they provided

colour appearance matches to the dress body and lace, matches to the perceived illumi-

nation in the image and achromatic settings for an isolated disk. After completing the

matching tasks, participants were shown their matches to the dress body and lace and

asked to name them (disk colour names). They were also asked to report (without re-
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strictions) the colours that they named the dress the first time they saw it (dress colour

names). Observers who had not seen the dress before participating in the study were

shown the dress photo and asked to name the colours of the dress. Each participant also

completed the morningness-eveningness questionnaire (MEQ; Horne & Ostberg, 1976) as a

measure of chronotype. In addition, all participants completed the IDT to measure colour

constancy thresholds. The study was conducted between the months of January and July

2016. (Note that hereafter, the phrase “the dress” refers to the image of the dress in the

original photograph).

5.2.2 Participants

Participants were recruited from the Institute of Neuroscience (Newcastle University) vol-

unteer pool, undergraduate courses and by word of mouth. Thirty-five participants were

recruited in total. Two participants were unable to complete the matching task without

the aid of an experimenter who used the Xbox controller to adjust the patch according

to the participants instructions. Experimenter bias could not be ignored in these cases

and the data from these participants were removed from the analyses. In addition, one

participant gave identical matches to dress body and lace, neither of which matched the

colour names they reported for their first view of the dress photo. It was assumed that

this participant misunderstood the task and their data were also removed from the anal-

yses. All data for the remaining 32 participants were included in the following analyses

(20 female, mean age: 29.3 years, age range: 18.7 to 60.5 years).

All participants had normal or corrected to normal visual acuity and no colour vision

deficiencies, assessed using Ishihara Colour Plates and the Farnsworth-Munsell 100 Hue

Test. Each participant received cash compensation for their time.

5.2.3 Stimuli and apparatus

In the matching task (Figure 5.2), participants were instructed to match the colour ap-

pearance of the dress body and lace (one match each), by adjusting the colour of a disk
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presented adjacent to the image of the dress. For each match, a black arrow appeared

for three seconds indicating the region of the dress (body or lace) to be matched. Once

the arrow disappeared, the matching disk became adjustable. Participants used an Xbox

controller to adjust the disk’s hue, chroma and luminance (in steps of 0.1 radians in hue, 1

in chroma and 2 cd/m2 in luminance in HCL colour space). For the illumination matches

(5 matches each), the disk was overlaid on the image and participants were instructed to

adjust the disk to appear as if it were a white piece of card present in the scene. Lastly,

two conditions of achromatic matches (5 of each type) were collected. For both types, a

disk was presented in the center of an otherwise black screen and participants adjusted

the disk’s chromaticity until it appeared neutral; specifically, neither blue, yellow, red or

green. For one condition, the luminance of the disk was fixed at 24 cd/m2. For the other

condition, luminance was fixed at the luminance of that particular participant’s dress body

match. Hence, for the achromatic settings, only hue and chroma were adjustable by the

participant. Dress body and lace matches were always completed first and the order of

all remaining matches (illumination and achromatic) was randomised. The chromaticity

(and luminance for all but the achromatic matches) was set to a random value at the

start of each trial. After all matches were complete, participants were shown two disks

on the screen, on the left their dress body match and the right their dress lace match,

and asked to name the colours of the disks. The matching disk was the same size on

all trials (diameter 4.58 degrees of visual angle). The photograph of the dress was pre-

sented in 8-bit-colour and subsumed 20.41 by 26.99 degrees of visual angle. Stimuli were

shown on a 10-bit ASUS Proart LCD screen and matches made with 10-bit resolution.

A head rest was used in all tasks to ensure participants maintained a distance of 50 cm

from this screen. The monitor was controlled using a 64-bit Windows machine, equipped

with an NVIDIA Quadro K600 10-bit graphics card, running MATLAB scripts that used

Psychtoolbox routines (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The stimuli were

colorimetrically calibrated using a linearised calibration table based on measurements of

the monitor primaries made with a Konica Minolta CS2000 spectroradiometer (Konica Mi-

nolta, Nieuwegein, Netherlands). Calibration checks were performed regularly throughout
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the study period and the calibration table was updated when needed. All matches were

converted to CIELUV for analysis according to the measured white point of the monitor

having coordinates Y xy = [180.23, 0.32, 0.33] in CIEY xy colour space.

Dress body match (x1)

“Adjust the coloured patch 

on the right to match the 

body of the dress in the 

area indicated by the 

arrow.”

Dress lace match (x1)

“Adjust the coloured patch 

on the right to match the 

lace of the dress in the area 

indicated by the arrow.”

Achroma�c match 

(x5, x2)

“Adjust the coloured patch 

to appear neither blue, 

yellow, red or green.”

Illumina�on match (x5)

“Adjust the coloured patch 

to appear as a white piece 

of card would look when 

placed in this scene.”

Match naming (x1)

“Please name the colours of 

the patches that you see on 

the screen.”

Figure 5.2: The matching task.

The different types of matches specified above are motivated by the following. First, the

purpose of the achromatic matches at fixed luminance is to measure any overall bias in

the observer’s representation of neutral chromaticity at a luminance level that is held

constant across observers. Second, collecting matches made at the luminance setting of

each individual’s dress body match has the purpose of assessing any specific bias due to this

particular scene. As the variable that is manipulated here is the fixed luminance setting,

it is assumed that bias specific to the scene may be caused by differences in perceived

brightness. In both types of adjustments above, the whole scene, and hence the global

image statistics, are not available to observers. Under the assumption that computations

on global image statistics are necessary to infer the chromaticity and/or brightness of the

incident illumination for a particular scene, observers make an illumination match in the

context of the scene. In effect, all types of matches can be considered a form of achromatic

adjustment. It is expected, however, that the different methods will yield different data

sets.

Thresholds for colour constancy were obtained using the neutral (original) version of the

illumination discrimination task described in Chapters 3 and 4.

The morningness-eveningness questionnaire (MEQ; Horne & Ostberg, 1976) consists of 19

multiple choice questions. The answers to each question are summed to form a total score,
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ranging from 16 to 86. Chronotype categories are defined by score sub-ranges as follows:

16−30 definite evening; 31−41 moderate evening; 42−58 intermediate; 59−69 moderate

morning; 70− 86 definite morning.

5.3 Results

5.3.0.1 Colour names for the dress differ from those assigned to the matched

disk colours

The colour names that participants reported for the dress body and lace on first view

divided into three groups: blue and black (B/K), white and gold (W/G) or blue and gold

(B/G), in line with previous findings (see Appendix C for further details on categorisation).

Each naming category has similar numbers of participants (B/K = 13, W/G = 11 and

B/G = 8). Three observers had never seen the photo of the dress before participating in

the experiment.

The colour names that participants gave to their disk colour matches for the body and

lace divided into six groups: the original three groups, B/K, W/G and B/G, and an

additional three, purple and gold (P/G), blue and green (B/Gr), and purple and blue

(P/B) (see Appendix C for further details). The number of participants in each group is

highly variable. B/G is now the dominant category, with most of the participants who

originally named the dress B/G remaining in this group and more than a third of those

who originally named the dress B/K and W/G switching to the B/G disk colour names

group. Thus, participants assign different colour names to their matches, when shown

them in isolation compared to the colour names they use for the dress itself.

In the following analyses (MANOVA and ANOVA analysis across disk colour name groups),

only the four largest naming groups are considered, excluding the two individuals who

named the discs B/Gr and B/P, in order to keep the analyses the same as for the dress

colour names groups (MANOVA requires the number in each group to be at least the

number of variables).
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5.3.0.2 Matches to the dress lace but not dress body differ between dress

colour naming groups in 3D colour space

To determine whether dress body and lace matches vary across the dress naming groups,

we used a three-way MANOVA. This analysis differs from previous tests (Gegenfurtner

et al., 2015; Lafer-Sousa et al., 2015; Witzel et al., 2016) in allowing for assessment of

differences in a three dimensional colour space (CIELUV) by combining the three colour

co-ordinates (the three dependent variables) into a composite variable that best represents

the differences in the centroids of the three matching groups (B/K, W/G, B/G, the inde-

pendent variable). For comparison to earlier studies where differences are considered with

respect to each colour co-ordinate separately, we include univariate ANOVA analyses of

group differences in Appendix C.

Colour matches to the dress body did not differ significantly across the dress colour name

groups (MANOVA with dependent variables L∗, u∗ and v∗: F (6, 56) = 1.95, Γp = .35,

p = .089), and so no composite variable representing the maximal difference between

the group centroids was found. Conversely, colour matches to the dress lace show a

significant multivariate difference across dress colour name groups (F (6, 56) = 4.03, Γp =

.60, p = .002) (Figure 5.3.A-C). The MANOVA analysis yields the composite variable

d1 = 0.48L∗ + 1.31u∗ − 0.43v∗. The mean scores for d1 differ significantly between the

B/K and B/G categories (p < .001, Bonferroni corrected) and B/K and W/G categories

(p = .01, Bonferroni corrected) (Figure 5.4.A), with lace matches for the B/G and W/G

naming groups brighter (increased L∗) and more red (higher u∗) than those of the B/K

group. This is confirmed by pairwise comparisons. The B/K group match the dress lace

to be darker (decreased L∗), greener (decreased u∗) and bluer (decreased v∗) than the

W/G and B/G groups (p < .018 in all cases with a Bonferroni correction). The W/G and

B/G dress colour name groups did not differ in their matches to the dress lace along any

axis of CIELUV colour space.
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Figure 5.3: Dress body and lace colour matches. A-C. The dress body and lace matching data
(two points per observer) labelled according to dress colour names. Dress body matches are square,
circles and diamonds. Dress lace matches are differently-oriented triangles. D-F. Same data as
in A-C labelled according to disk colour names, but note that two observers (who named the
disks blue/green and blue/purple) are omitted from this plot as they were excluded from the
corresponding analyses. Black dashed line indicates the Planckian locus. Red dotted line is the
first principal component of the dress body matches. Yellow dot-dash line is the first principal
component of the dress lace matches.

5.3.0.3 Disk colour names better represent dress body and lace match vari-

ability than dress colour names

When participants are grouped according to the colour names they assign to their disk

matches to the dress body and lace, matches differ between groupings more than between

the dress colour name groups, the former better representing the variation in the matches.

With the disk colour name grouping employed (Figure 5.3.D-F), there is a significant

multivariate difference in the matches to the dress body in CIELUV (F (9, 78) = 4.41,

Γp = 1.01, p < .001). Here, the composite variable that best separates the groups is
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Figure 5.4: Composite variables of the matches. A. Scores on the composite variable d1 obtained
from the MANOVA analysis on the dress lace colour matches categorised by dress colour names.
B. Scores on the composite variable d2 obtained from the MANOVA analysis on the dress body
colour matches categorised by disk colour names. C. Scores on the composite variable d3 obtained
from the MANOVA analysis on the dress lace colour matches categorised by disk colour names.
Error bars are ±1 SD. ∗p < .05, ∗ ∗ p < .01, ∗ ∗ ∗p < .001.

d2 = −0.53L∗ − 0.96u∗ + 1.82v∗, with the P/G group having significantly lower scores on

d2 than the B/G and W/G groups (p = .005 and p = .002, Bonferroni corrected) (Figure

5.4.B). Post-hoc pairwise comparisons of the L∗ settings of the matches shows that the

B/K group gave a significantly darker dress body match than the W/G and P/G groups

(mean differences of 31.30, p = .007 and 31.70, p = .006, Bonferroni corrected). The W/G

group matched the dress body to significantly higher v∗ values (less blue), than all other

groups (p < .01, in all cases with Bonferroni correction).

Matches to the dress lace also differ significantly across disk colour name groups along

a multivariate axis defined by the composite variable d3 = −0.68L∗ − 0.34u∗ + 1.96v∗

(F (9, 78) = 3.26, Γp = 0.82, p = .002). The B/K group’s scores on d3 indicate that

their dress lace matches are darker (decreased L∗) and more achromatic (decreased v∗)

than the matches of the other groups, significantly so in comparison to the W/G group

(p = .002, Bonferroni corrected) (Figure 5.4.C). The W/G and P/G group’s d3 scores also

differ significantly (p = .029, Bonferrroni corrected). The differences between the B/K

and W/G group are further highlighted by the post-hoc pairwise comparisons of the v∗

settings, showing that the B/K group gave significantly more achromatic lace matches

(v∗ closer to zero) than the W/G group (mean difference of 19.71, p = .001, Bonferroni

corrected). Moreover, the B/K groups v∗ settings were also more achromatic than the
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B/G group (mean difference of 11.41, p = .037, Bonferroni corrected).

5.3.0.4 Examining individual variations within and between naming groups:

principal components of the dress body and lace matching data

The matching data (above and in previous studies) show clearly that individuals’ colour

matches to the dress vary along a continuum in colour space. Our analyses show that

splitting the continuum into groups using the names individuals give to their disk colour

matches, rather than the colour names they give to the dress itself, better represents the

variation in the matches. This suggests that the variation in the matches is more suited

to being considered on an individual rather than a group level. The MANOVA analyses

show that the dress body and lace matches differ across naming groups in a multivariate

manner, and the scores on the composite variables retrieved from those analyses might

be considered candidates for quantifying the variability. But the composite variables

correspond to variation along an axis that optimally represents the differences in the

naming category centroids. To capture individual variability, we use principal components

analysis (PCA) instead to quantify individual variation.

The first principal component (PC) of the dress body matches is PCb = 0.94L∗+0.18u∗+

0.3v∗, explaining 67.12% of the variation (Figure 5.3, red dotted line). The first PC

of the dress lace matches is PCl = 0.83L∗ + 0.31u∗ + 0.46v∗, explaining 88.92% of the

variation (Figure 5.3, yellow dot-dash line). The two PCs (PCb and PCl) are strongly

correlated (r = .783, p < .001, Figure 5.5.A). The lightness settings of the dress body

and lace matches load highly on to the respective components and are themselves strongly

correlated (r = .687, p < .001, Figure 5.5.B). Thus, lightness seems to drive the association

between these matches, with the lightness of one predicting the other. In the following

analyses, we characterise how other measures relate to individual variations along these

principal components.
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Figure 5.5: Comparing dress body and lace matches. A. The first principal component of the
dress lace matches (PCl) plotted against the first principal component of the dress body matches
(PCb). B. CIE L∗ setting of the dress lace match plotted against CIE L∗ setting of the dress
body match. All markers are pseudo-coloured according to the corresponding dress body (marker
face) and dress lace (marker edge) matches for each participant by converting the CIE Y xy values
of the matches to sRGB for display.

5.3.0.5 Variation of internal white point explains variation in dress body

matches but only when made at the luminance setting of the dress

body match

Achromatic settings at the fixed luminance setting of 24 cd/m2 (Figure 5.6.A) do not

differ between dress or disk colour name groups, nor do the achromatic settings produced

at the luminance settings of the individual dress body matches (Figure 5.6.D; p > .332 in

all cases).

However, the achromatic settings made at the individual body match luminance levels do

explain some of the variation in the dress body and dress lace matches, as revealed by

further principal component analysis. The first PC of the achromatic settings at fixed

luminance of 24 cd/m2 is PCf = 0.71u∗ + 0.71v∗, explaining 67.70% of the variance in

achromatic settings; and the first PC of the settings at the dress body match luminance is

PCm = 0.42u∗ + 0.9v∗, explaining 74.63% of the variance. PCm in turn explains a small

amount of the variation in the dress body and dress lace matches (17.56% and 21.34%

respectively).

While the first PC of the achromatic settings at a fixed luminance of 24 cd/m2 (PCf )
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Figure 5.6: Comparing dress and achromatic matches. A. Achromatic settings with luminance
fixed at 24 cd/m2. B. The first principal component of the dress body matches (PCb) plotted
against the first principal component of the achromatic settings at fixed luminance of 24 cd/m2

(PCf ). C. The first principal component of the dress lace matches (PCl) plotted against the
first principal component of the achromatic settings at fixed luminance of 24 cd/m2 (PCf ). D.
Achromatic settings with luminance set at luminance of dress body match (and therefore varying
across participants). E. The first principal component of the dress body matches (PCb) plotted
against the first principal component of the achromatic settings at the luminance of the dress
body matches (PCm). F. The first principal component of the dress lace matches (PCl) plotted
against the first principal component of the achromatic settings at the luminance of the dress body
matches (PCm). Red dotted lines are the first principal components of the data. Black dashed
line in A and D is the Planckian locus. Black dashed lines in remaining plots are lines of perfect
negative correlation. All markers are pseudo-coloured according to the corresponding dress body
(marker face) and dress lace (marker edge) matches for each participant by converting the CIE
Y xy values of the matches to sRGB for display.

does not correlate with either of the first PCs of the dress body or lace matches (PCb and

PCl) (Figure 5.6.B-C; r = .045, p = .806 and r = −.002, p = .990, respectively), the first

PC of the achromatic settings made at the luminance setting of the body match (PCm)

does (Figure 5.6.E-F; r = −.419, p = .017 and r = −.462, p = .008, respectively). This

result suggests that the two sets of achromatic matches are unrelated and indeed they are

(Figure 5.7; r = .180, p = .326).

The differences in the two sets of achromatic adjustments may be explained by the lu-
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Figure 5.7: Comparing the achromatic matches. The first principal component of the achromatic
settings made at the dress body match luminance (PCm) plotted against the first principal com-
ponent of the achromatic settings made at a fixed luminance of 24 cd/m2 (PCf ). Black dashed
line is line of perfect correlation. All markers are pseudo-coloured according to the corresponding
dress body (marker face) and dress lace (marker edge) matches for each participant by converting
the CIE Y xy values of the matches to sRGB for display.

minance settings. For one set of adjustments, all participants were required to make the

disk appear achromatic at the same fixed luminance (24 cd/m2). For the other, the lumi-

nance setting was unique to each individual, and specifically related to their perception

of the dress. In the latter case, when luminance levels are high, achromatic settings are

bluer than when luminance levels are low (negative correlation between L∗ and adjusted

v∗ settings, r = −.379, p = .032).

5.3.0.6 Variation in illumination estimates for the dress photo explain some

of the variation in dress colour matches

PCA of the illumination matches in CIELUV colour space uncovers a PC (red dotted

line in Figure 5.8.A) that explains 80.21% of the variance defined by PCi = 0.57L∗ +

0.357u∗ + 0.73v∗. While illumination matches do not differ across dress or disk colour

name groupings (p > .177 in all cases), the first PC of the illumination matches (PCi)

correlates significantly with the first PC of the dress body matches (PCb; Figure 5.8.B;

r = −.395, p = .026). There is a similar trend for the first PC of the dress lace matches
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(PCl; Figure 5.8.C; r = −.343, p = .055). These relationships are not predicted by

correlations between any of the univariate variables (L∗, u∗ or v∗), except in the case

of the lace matches where the v∗ setting of the dress lace match is negatively correlated

with the v∗ setting of the illumination match, with a bluer illumination match implying a

yellower lace match. The fact that L∗ and v∗ load highly on to all PCs considered (PCb,

PCl and PCi) highlights a relationship between brightness and blue-yellowness perception.

Perceiving illuminations as bluer is linked to perceiving illuminations as darker, and in

turn to a brighter, more achromatic dress body match, while yellower is linked to brighter

in illumination perception, and to a darker, bluer body match. This relationship between

perceived illumination colour and brightness is clearly visible in the relationship between

CIE L∗ and correlated colour temperature (CCT) of the illumination match (Figure 5.8.D,

r = −.778, p < .001). There is a similar relationship between CIE L∗ and CCT of the

dress body matches (r = −.502, p = .003).

-30 -20 -10 0 10 20

CIE u*

-40

-30

-20

-10

0

10

C
IE

 v
*

-40 -20 0 20 40
PC

i

-40

-20

0

20

40

PC
b

-40 -20 0 20 40
PC

i

-40

-20

0

20

40

PC
l

5000 10000 15000

Illumination match CCT

50

60

70

80

90

100
Il
lu

m
in

at
io

n
 m

at
ch

 L*
A. B. C. D.

Figure 5.8: Comparing dress and illumination matches. A. Illumination matches plotted in the
CIE u∗v∗ chromaticity plane. Black dashed line is Planckian locus. Red dotted line is first
principal component. B. The first principal component of the dress body matches (PCb) plotted
against the first principal component of the illumination matches (PCi). C. The first principal
component of the dress lace matches (PCl) plotted against the first principal component of the
illumination matches (PCi). D. Illumination match CIE L∗ setting plotted against illumination
match correlated colour temperature value (CCT). Black dashed lines in B, C are lines of perfect
correlation. All markers are pseudo-coloured according to the corresponding dress body (marker
face) and dress lace (marker edge) matches for each participant by converting the CIE Y xy values
of the matches to sRGB for display.

The variation in the illumination matches is not related to the variation in the achromatic

settings made at a fixed luminance of 24 cd/m2 (Figure 5.9.A; r = .051, p = .782), but

is related to the variation in the achromatic settings made at the luminance setting of

the dress body match (Figure 5.9.B; r = .367, p = .039). The PC loadings suggest that
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lighter and whiter/yellower (higher L∗ and v∗ settings implying a higher PCi component

score) illumination matches are related to whiter/yellower (higher v∗ setting implying

higher PCm component score) achromatic settings when the luminance is fixed at the

participant’s body match luminance setting. This result is difficult to interpret as the

relationship is not seen between the underlying values (no relationship between the L∗

or v∗ settings of the two adjustments and no relationship between L∗ settings of the

illumination matches and v∗ settings of the achromatic settings, |r| < .280, p > .120, in

all cases). However, there is a relationship between the u∗ settings of the two adjustments

(r = .651, p < .001).
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Figure 5.9: Comparing achromatic and illumination matches. A. The first principal component
of the illumination matches (PCi) plotted against the first principal component of the achromatic
settings at fixed luminance of 24 cd/m2 (PCf ). B. The first principal component of the illumination
matches (PCi) plotted against the first principal component of the achromatic settings at the dress
body match luminance (PCm). Black dashed lines are lines of perfect correlation. All markers are
pseudo-coloured according to the corresponding dress body (marker face) and dress lace (marker
edge) matches for each participant by converting the CIE Y xy values of the matches to sRGB
for display.

5.3.0.7 Individual differences in colour constancy thresholds assessed via a

generic illumination discrimination task do not predict dress colour

perception

With IDT thresholds grouped according to dress colour names (Figure 5.10.A), there is a

significant main effect of direction of illumination change on thresholds (F (1.97, 57.21) =

17.6, p < .001, with a Greenhouse-Geisser correction). Thresholds for bluer illumination
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changes are larger than those for yellower, redder or greener illumination changes (p < .013

in all cases with Bonferroni correction) and thresholds for yellower illumination changes

are significantly larger than for greener illumination changes (p = .029, with Bonferroni

correction). However, there is no interaction effect of group and direction of illumina-

tion change on thresholds (F (3.95, 57.21) = 0.72, p = .578, with a Greenhouse-Geisser

correction). There is also no main effect of group (F (2, 29) = 1.16, p = .329).

With participants grouped according to disk colour name (Figure 5.10.B), the significant

main effect of direction of illumination change remains (F (1.97, 51.12) = 10.78, p < .001,

with a Greenhouse-Geisser correction). Thresholds for bluer illumination changes are

still larger than for redder and greener illumination changes (p < .005 in both cases with

Bonferroni correction), but are not larger than those for yellower illumination changes (p =

.172 with Bonferroni correction). The difference between yellower and greener thresholds

still holds (p = .049 with Bonferroni correction). Again though, there is no interaction

effect (F (5.90, 51.12) = 0.48, p = .820, with a Greenhouse-Geisser correction) or main

effect of disk colour name (F (3, 26) = 2.41, p = .090).

There are also no significant correlations between the dress body and lace match PCs

(PCb and PCl) and IDT thresholds for any direction of illumination change (p > 0.1 in

all cases), nor was there a relationship between the PC of the illumination matches (PCi)

and any direction of illumination change (p > 0.1 in all cases).

5.3.0.8 Does chronotype explain some of the variability in dress colour per-

ception?

Scores on the MEQ do not differ significantly across either the dress or disk colour name

groupings (F (2, 29) = 1.14, p = .335 and F (3, 26) = 0.73, p = .544, respectively). In

addition, the correlation between MEQ scores and the first PC of the dress body matches

was not significant at the 5% level (PCb; Figure 5.11.A; r = .344, p = .054). However,

as the effect size is medium (MEQ scores explain 11.83% of the variation in the matching

data) and we may have lacked enough power for significance, we consider the implications
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A. B.

Figure 5.10: IDT thresholds. A. Mean illumination discrimination task (IDT) thresholds of the
dress colour naming groups. B. Mean IDT thresholds of the disk colour naming groups. Coloured
underlays indicate the direction of illumination change. Error bars are ±1 SD.

of such a correlation. L∗ loads highly onto PCb and v∗ loads moderately. This implies

that a high score on PCb leads to a bright, white/yellow dress body match (i.e., morning

types, with high MEQ scores, make brighter, whiter/yellower dress body matches than

evening types, with low MEQ score, as we hypothesised). There is also a relationship

between MEQ scores and the first PC of the illumination matches (PCi; Figure 5.11.B;

r = −.323, p = .072), although this correlation is also not significant at the 5% level.

Similarly, L∗ and v∗ load highly onto PCi implying that a high score on PCi indicates

a bright, white/yellow illumination match; in other words, evening types make brighter,

whiter/yellower illumination matches than morning types.

5.3.0.9 Age explains some variability in dress colour perception but is also

related to MEQ score

While age does not differ significantly across dress colour name groups (F (2, 29) = 1.12,

p = .340), there is a significant difference in age across disk colour name groups (F (3, 26) =

5.30, p = .005). The W/G disk colour name group are significantly older than both the

B/K and B/G disk colour name groups (p = .014 and p = .006 with Bonferroni correction,

respectively). Moreover, age is related to: MEQ scores (Figure 5.12.A; r = .316, p = .078),
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Figure 5.11: MEQ Scores I. A. The first principal component of the dress body matches (PCb)
plotted against MEQ score. B. The first principal component of the illumination matches (PCi)
plotted against MEQ score. All markers are pseudo coloured according to the corresponding dress
body (marker face) and dress lace (marker edge) matches for each participant by converting the
CIE Y xy values of the matches to sRGB for display.

with older individuals having higher MEQ scores (more morning type); the first PC of

the dress body matches (PCb; Figure 5.12.B; r = .534, p = .002), with older individuals

giving brighter (increased L∗) and whiter (increased v∗) dress body matches (age positively

correlates with L∗ and v∗ settings of dress body matches, r > .427, p < .015 in both cases);

the first PC of the dress lace matches (PCl; Figure 5.12.C; r = .398, p = .024), with older

individuals giving brighter (increased L∗) and yellower (increased v∗) dress lace matches

(age positively correlates with L∗ and v∗ settings of dress lace matches, r > .381, p < .030

in both cases); and the first PC of the achromatic settings made at the luminance value of

the dress body match (PCm; Figure 5.12.E; r = −.343, p = .055). Yet, age is not related

to the latter achromatic settings along any single axis of CIELUV colour space, nor to the

first PC of the achromatic settings made at a fixed luminance of 24 cd/m2 (PCf ) or of

the illumination matches (PCi) (Figure 5.12.D; r = −.191, p = .296 and Figure 5.12.F;

r = −.052, p = .777, respectively).

5.4 Discussion

We set out to test the colour constancy explanation of the dress phenomenon. First, we

further investigated whether differences in perceived colour of the dress are explained by
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Figure 5.12: MEQ scores II. A. MEQ scores plotted against age. B. The first principal component
of the dress body matches (PCb) plotted against age. C. The first principal component of the
dress lace matches (PCl) plotted against age. D. The first principal component of the achromatic
settings made at a fixed luminance of 24 cd/m2 (PCf ) plotted against age. E. The first principal
component of the achromatic settings at the luminance setting of the dress body match (PCm)
plotted against age. F. The first principal component of the illumination matches (PCi) plotted
against age. All markers are pseudo coloured according to the corresponding dress body (marker
face) and dress lace (marker edge) matches for each participant by converting the CIE Y xy values
of the matches to sRGB for display.

differences in inferred illumination chromaticity, asking whether different prior assump-

tions were responsible for variations in inferred illumination by using chronotype as a proxy

for experience (on the assumption that experience governs the formation of an individual’s

prior assumptions). Second, we used an established illumination discrimination task to

measure colour constancy thresholds for illumination changes in our observers, assessing

whether individual differences in generic colour constancy may explain individual differ-

ences in perception. The results of the study support the colour constancy hypothesis of

the dress phenomenon in demonstrating a relationship between the inferred illumination

chromaticity in the image and colour matches to the dress (replicating previous results).

Correlations, although non-significant, between chronotype and dress body matches and

between chronotype and inferred illumination chromaticity suggest that unconsciously
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embedded expectations of illumination characteristics (“illumination priors”), shaped by

experience, may act by biasing perception under uncertainty and be responsible for the

differences in colour names assigned to the dress. In particular, we find that observers

differ not only in the colour names they give to the dress, but also in the chromaticity and

luminance of the illumination they estimate to be incident on the dress, with the variation

in these illumination matches related to both dress body and lace colour matches. Further,

illumination and dress body matches both show some relationship to MEQ scores, suggest-

ing that chronotype may prove useful as a marker for the chromatic bias of an observer’s

illumination prior. In addition, our results demonstrate a disconnect between perception

and naming. Our observers report different colour names for the dress photograph and

their isolated colour matches, the latter best capturing the variation in the matches.

We find, in agreement with the previous report of Lafer-Sousa et al. (2015), that observers

fall into three main groups on the basis of how they named the dress colours on first

view: the blue/black (B/K), white/gold (W/G) and blue/gold (B/G) dress colour names

groups. We find that colour matches to the dress lace differ significantly between the three

groups, in both lightness and chromaticity (along both blue/yellow and red/green axes),

while colour matches to the dress body differ only along a red/green chromatic axis.

These results partially replicate the results of two previous studies. First, Lafer-Sousa

et al. (2015) report significant differences in both dress body and lace matches along a

lightness and chromatic axis between B/K and W/G naming groups, but do not report

any differences between the matches of the B/G group (which they call blue/brown) or

their “other” category and any other group. Secondly, Gegenfurtner et al. (2015) report

differences in dress body colour matches between B/K and W/G observers but only in

luminance settings, a result that has since been replicated by the same group (Toscani,

Gegenfurtner & Doerschner, 2017). The differences in results between studies may be

due to differences in sample sizes (53, 15, 38 and 32 for the Lafer-Sousa et al. (2015),

Gegenfurtner et al. (2015), Toscani et al. (2017) and current study, respectively), and/or to

differences in the luminance and chromaticity of the displayed image and in the chromatic
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resolution of the matches.

Observers’ colour matches to the illumination on the dress vary in both chromaticity and

luminance and correlate negatively with their colour matches to the body of the dress, ex-

plaining 15.52% of the variation in the dress body matching data; these results concur with

the findings of Witzel et al. (2016) and Toscani et al. (2017) and are related to the findings

of Chetverikov & Ivanchei (2016). That is, observers who make illumination matches that

are bluer (than the mean) tend to make dress body matches that are less blue, whereas

observers who make illumination matches that are less blue tend to make dress body

matches that are bluer. A similar trend exists for the dress lace matching data. The fact

that darker illumination matches tend to be more blue than lighter illumination matches

fits with the observation that, in nature, indirect lighting and shadows tend to be bluish,

being due to an absence of direct (yellowish) sunlight (Churma, 1994). Certain visual

illusions suggest that the human visual system might have incorporated this relationship,

perceiving dimmer areas of images as being indirectly lit or in shadow, and therefore

attributing their bluish tints to the illumination rather than the object (Winkler, Spill-

mann, Werner & Webster, 2015). It remains an open question whether the bluish tints in

brighter areas of the image are also more easily attributed to the illumination than bright

yellowish tints. Uchikawa, Morimoto & Matsumoto (2016) have shown that the optimal

colour hypothesis (Uchikawa, Fukuda, Kitazawa & Macleod, 2012) predicts a discrepancy

in the colour temperature of the inferred illumination in the dress image dependent on the

inferred illumination intensity. The peak of the optimal colour distribution for the dress

image varies with intensity: high intensity implies a more neutral/yellower illumination

(light at 5000 K), while low intensity implies a bluer illumination (light at 20000 K). It

remains to be shown though that the optimal colour hypothesis is the algorithm adopted

by observers to estimate scene illumination.

Achromatic settings made at the luminance of each observer’s dress body match explain

more of the variation in the dress body and lace matching data than the illumination

matches (34.30% and 31.78%, respectively), with the achromatic settings at variable lu-
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minance levels showing the opposite trend to the illumination matches: lighter achro-

matic settings are more blue than darker achromatic settings, whereas lighter illumination

matches are less blue than darker illumination matches. Achromatic settings are commonly

used to capture an observer’s internal white point, typically assumed to be a measure of

the chromaticity of the observer’s default neutral illumination (Brainard, 1998). These

results suggest that traditional achromatic settings (adjustments of a small patch of fixed

luminance to appear achromatic, set against a uniform background) do not reflect the

chromaticity of illumination that an observer will estimate for a different and more com-

plex scene; the achromatic settings collected in the present study at a fixed luminance

level of 24 cd/m2 were not associated to dress colour perception or illumination matches.

This lack of association agrees with the findings of Witzel et al. (2016), who also find

that classical achromatic settings (same fixed luminance across all observers, but with

luminance texture), do not predict dress body or lace colour matches.

However, the achromatic settings made at the luminance setting of each participant’s dress

body match suggest that an observer’s internal white point is influenced by luminance,

with settings made at higher luminance levels bluer than those at lower luminance levels. It

therefore seems that achromatic settings reveal an observer’s bias only when an appropriate

fixed luminance is chosen for the achromatic adjustment. It is plausible then that when

processing a scene radiance image, an observer initially estimates the irradiance level

of the illumination, effectively parsing the overall scene radiance (proportional to image

irradiance) into material reflectance and illumination irradiance components. Only after

this initial parsing does the observer infer the illumination chromaticity, calling on their

prior knowledge of the relationship between illumination irradiance and chromaticity to

do so. The bias lies in the balance of that parsing. Indeed, most of the variation in

illumination estimates lie in the luminance settings of the illumination matches.

If we assume that prior knowledge of the relationship between illumination irradiance and

chromaticity is a commonality across observers and that different fixed luminance levels

are the cause of the variation in v∗ settings seen in the set of achromatic adjustments made
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at the luminance setting of each observer’s dress body match, then we expect a higher

fixed luminance to lead to bluer achromatic settings than lower fixed luminance across

all observers. In a control experiment (see control experiment in Appendix C) a subset

of the participants (n = 7) made achromatic settings at each of 5 different luminance

levels, spanning the range from minimum to maximum dress body match luminance in

the main experiment. There was a clear trend towards increasing blueness (lower v∗) with

increasing luminance in all participants.

The discrepancy between the blueness-brightness relationship of these variable-luminance

achromatic settings and the illumination estimation matches reinforces the conclusion that

measurements of subjective white points do not necessarily reflect the chromaticity of the

observer’s internal default illumination. The illumination matches imply that illuminations

that are perceived as brighter are perceived as whiter/yellower, while darker illuminations

are perceived as bluer. Similar conclusions from different methods of illumination estima-

tion (Uchikawa et al. (2016) and Witzel et al. (2016)) support this interpretation. The

fact that achromatic settings vary in the opposite way - being bluer at higher luminance

levels and yellower at lower luminance levels - suggests that they are measuring something

other than the default illumination estimation. Of course, as we pointed out in the meth-

ods section, these differences are to be expected considering the different methods used to

obtain the matches.

The observation that achromatic settings vary with luminance has been made before,

but the underlying cause of this variation remains unclear (Chauhan, Perales, Hird &

Wuerger, 2014; Kuriki, 2015). Conversely, Brainard (1998) found that achromatic settings

made at fixed luminance levels lie along a straight line in a three-dimensional cone space,

concluding from this that changing luminance did not affect the chromaticity setting of

an observer’s achromatic point.

The fact that the principal variation in achromatic settings falls roughly on the daylight

locus (as also reported by Witzel et al. (2016)), which we find to be more so for the variable-

luminance achromatic settings than the 24 cd/m2-fixed-luminance settings, may seem to
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argue that achromatic settings do reflect illumination estimation. Yet if the settings

indicate instead the surface chromaticity that appears neutral under natural illumination

of that luminance, they would be expected to evince the same variation. The fact that

observers require more blue to make the isolated disk appear neutral at higher luminance

levels may indicate that they implicitly assign more yellow to the illumination. In the fixed

luminance achromatic setting task, the only cue to the irradiance of the illumination - the

brightness of the isolated matching disk against a black background - does not vary between

observers, and hence there is less cause for variation in the achromatic point between

observers. The fact that the variation in achromatic setting at fixed luminance occurs

only along an axis roughly orthogonal to the blue-yellow axis also supports the notion that

the coupling between assumed irradiance and chromaticity of the illumination falls mainly

along the blue-yellow axis. Whatever the correct interpretation of this difference between

achromatic settings and illumination estimation, we suggest that care must be taken in

future studies to ensure that fixed luminance levels are not influencing behaviour in tasks

where achromatic settings are taken as a measure of illumination chromaticity. Under

the assumption that our illumination matches do capture the variation in illumination

estimation across observers, these results suggest that conventional achromatic settings

are not indicative of the illumination chromaticity that an observer will estimate on a

particular scene.

The main question we address in this study is whether the observer’s tendency to infer

a particular illumination on the dress is underpinned by a generic bias in illumination

priors, as suggested by Lafer-Sousa et al. (2015). Witzel et al. (2016) conclude from

similar measurements that the bias is specific to the image, not indicative of a general

underlying unconscious expectation of illumination chromaticities. Our additional results

suggest that the bias in people who tend to see the dress as lighter and the illumination

as darker, is at least partly generic. Scores on the MEQ, a questionnaire that quantifies

chronotype, partially predict dress body and illumination matches. We speculate that

the MEQ score provides a quantification of an individual’s internal illumination priors
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as it may predict the illumination chromaticities to which an observer is most frequently

exposed due to their interaction with specific environments engendered by their internal

body clock. In other words, MEQ scores are indicative of an observer’s perceptual biases

due to illumination chromaticity estimation. Indeed, we find that observers who score

highly on the MEQ and hence are considered more morning-type score higher on the first

PC of the dress body match (PCb) than the more evening-type individuals and lower on

the first PC of the illumination matches (PCi). This finding supports the hypothesis that

an observer’s visual system is calibrated for the illuminations in which they find themselves

most often, with morning types making bluer illumination matches compared to evening

types. It is plausible that morning types are more often exposed to bluer illuminations

than evening types as they are more likely to spend time outdoors during the day in bluish

daylights (Hernández-Andrés et al., 2001) and less time in yellowish artificial lighting at

night (Lafer-Sousa et al., 2015).

In a recent study, Wallisch (2017) also found that morning types (strong larks in that

study) are more likely to name the dress W/G than B/K compared to evening types

(strong owls). The results are stronger than the relationship we find here. The difference

might be due to how Wallisch (2017) parcels observers into chronotype groups. Firstly, the

observers are self-categorised and are asked to assign themselves to one of 4 groups (“strong

lark”, “lark”, “strong owl” and “owl”). In our study we use an established questionnaire

(the MEQ) that is widely used to assess chronotype. The MEQ places observers on a

scale rather than into distinct groups allowing for more variability that might reduce our

ability to show the effect. The same is true for how we represent perception. In our study,

observers make colour matches to the dress body and lace and the PCs of these matches

are correlated with scores on the questionnaire. Again, Wallisch (2017) allowed observers

to place themselves into a perceptual category (e.g. W/G observer type).

Age is a confounding factor in our results, with MEQ scores showing a relationship to the

PCs of the colour matches, but age also differing significantly across the disk colour names

groups and correlating with the MEQ scores. From this, one may infer that chronotype
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is not at all related to individual differences in colour perception (by being indicative of

chromatic bias in illumination priors), but that age is the underlying variable that drives

the relationship. The correlation between age and MEQ scores is not a surprise as it

is well known that chronotype varies with age (Adan, Archer, Hidalgo, Milia, Natale &

Randler, 2012). It would be premature, though, to conclude that age and not experience

is the driving factor here as an individual’s illumination priors may change dynamically

during their lifetime as their daily experiences also change. On the other hand, aging is

known to affect lower level visual factors such as lens optical density (Pokorny, Smith &

Lutze, 1987). To separate these two effects, a study is required that controls for age while

sampling from a population of varying chronotypes.

Individual differences in generic colour constancy measurements - via the IDT - did not

predict individual differences in colour matching or naming of the dress. The lack of re-

lationship between dress and illumination matches and IDT thresholds might be because

the blue bias is present in all individuals and that the main driver underlying the in-

dividual differences in perception of the dress photograph is at a higher level than the

illumination discrimination task probes, such as the interpretation of the illumination in

the scene. Different types of colour constancy tasks (e.g. naming the colours of objects

under different illuminations or retrieving the same object under multiple illuminations)

may reveal a relationship between colour constancy measurements and dress colour naming

and matching. Alternatively, it might be that the colour constancy tasks commonly used

in psychophysical experiments do not invoke the use of illumination priors, as the stimuli

are well controlled and lack ambiguity. For illumination priors to be used, it seems logical

that the incoming sensory information must be somewhat uncertain and that weighting

by the prior is necessary to keep perception stable.

Our data also reveal a dissociation between naming and matching, in agreement with our

assertion that the distribution of colour names assigned to the dress do not fully capture

the variety of perceptions experienced by the population. Colour appearance matches to

the dress body and lace fall along a continuum, not into discrete groupings, confirming
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previous results (Gegenfurtner et al., 2015; Lafer-Sousa et al., 2015; Witzel et al., 2016).

Further, when participants are asked to name their matches presented in isolation, these

names differ from those they assign to the dress. The disk colour names also predict the

dress colour matches better than the dress colour names, capturing more of the variation

in the matching data. The effect is not explained by simple local contrast effects, as in

both the naming and matching tasks, the matching disk is surrounded by the same black

background; and at the time of making the match, observers seem generally satisfied that

the match is representative of how they perceive the colours in the image. A speculative

conclusion is that naming the dress B/K, W/G or B/G involves cognitive as well as

phenomenal processes, in that observers do not simply name what they “see”, but that

there is a higher-order judgement about the colour and the linguistic category to which

it belongs based on the object with which it is associated and its surroundings. However,

further work is needed to assess this claim.

This observation is relevant to the historical debate over the level on which colour con-

stancy exists or may be measured: is the stability of object colour maintained by low-level

mechanisms which are inaccessible to conscious influence (Crick & Koch, 1995) or does

colour constancy require an act of judgement or reasoning at a higher level (Hatfield &

Allred, 2012)? The former would entail perfect constancy in the phenomenal sense, i.e.

that colours would appear the same under an illumination change and therefore observers

would make perfectly equivalent appearance matches (e.g. in the forced-choice matching

paradigm of Bramwell & Hurlbert, 1996), whereas the latter would permit the observer to

tolerate differences in colour appearance while still judging the two surfaces under com-

parison to be the same (e.g. in the object selection task of Radonjić et al., 2016a). This

difference has been brought out empirically in previous colour constancy studies, most

notably in the “hue-saturation” (appearance) vs. “paper” (surface identity) matches of

Arend & Reeves (1986) and more recently by Radonjić & Brainard (2016). The matching

and naming results reported here suggest that higher level reasoning does play a role in

everyday colour constancy, and that observers implicitly or explicitly reason about the
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colour of objects in a scene and may report a colour name for an object which is not

uniquely representative of how it phenomenally appears.

Another possible explanation for the dissociation between the matching and naming results

is that the observer is limited in matching the colour appearance of a textured object in

a complex scene to a uniformly coloured matching disk against a black background. Yet

here we are asking the observer to make a single match in the same way that the observer

gives a single colour name to the object. The dress photograph was a social media frenzy

because different individuals named the dress different colours; e.g. “blue body with black

lace” or “white body with gold lace” using a single colour term to describe each part of

the dress. This implies that despite a noisy photograph in which dress colours vary on a

pixel by pixel basis, observers assign a single colour to the dress body and lace. What we

aim to obtain here through our colour appearance matches is exactly that, the colour that

the dress appears to the observer despite the noise, texture, shading and other confounds

in the image. Obtaining appearance matches in such a way is a standard method in colour

science and is a method used by other research groups investigating the dress phenomenon

(e.g. Gegenfurtner et al., 2015) and other aspects of colour perception (e.g. Giesel &

Gegenfurtner, 2010; Poirson & Wandell, 1993). Additionally, anecdotal evidence from

conversations with participants after completion of the task suggests they were generally

satisfied with their matches and thought their selections accurately represented what they

perceived. This reasoning supports the conclusion that the same colour appearance elicits

different colour names depending on its context.

5.5 Conclusions

In summary, these data are supportive of the colour constancy explanation of the dress phe-

nomenon, in demonstrating the relationship between inferred illumination and perceived

dress colour. Furthermore, the results suggest that individual differences in perception of

the dress photograph may be partly explained by chromatic bias in illumination priors and

that these biases are influenced by factors related to individual experiences. However, we
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show that a generic measure of individual differences in colour constancy does not explain

variability in perception of the colours of the dress. In addition, we show that perception

and naming may in fact be disconnected. Our results suggest that the colour names ob-

servers assign to surfaces may depend more on their global perception of the scene rather

than only their local surface perception, as observers name their colour matches to the

dress differently when presented them in isolation from how they name the colours of the

dress in the photograph.
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Chapter 6

Learning illumination priors

6.1 Introduction

Having found evidence in earlier chapters that observers utilise an illumination prior (learnt

during their lifetime - the nurture hypothesis) to aid colour constancy, in this chapter, we

perform an experiment to investigate whether observers can learn an illumination prior

over a specific illumination characteristic (hue value) within the short time frame of a

psychophysics task. To do so, we borrow an experimental paradigm from the central

tendency bias literature.

Central tendency biases in perception are the phenomenon whereby perceptual estimates

tend to be biased towards the average of similar recently seen stimuli. The term can be

traced back to Hollingworth (1910) who illustrated a central tendency bias for judgements

of size. Hollingworth showed participants a square card and, after a delay, asked partici-

pants to choose the card that appeared the same size to them from a set of standards. The

standard that participants chose as the match for a given reference card C was influenced

by the series of reference cards within which C appeared. If C was larger than the average

size of the series it was matched to a standard smaller than its actual size and closer to

the average. Conversely, when C was smaller than the average, the chosen standard was

larger than the actual size and again closer to the average.

Central tendency biases have appeared in the literature under a variety of names (e.g.

adaptation-level theory (Helson, 1964), time-order effects (Jamieson & Petrusic, 1975),

context effects (Schifferstein, 1995) and contraction bias (Ashourian & Loewenstein, 2011))

and have been illustrated using a variety of stimulus types such as judgements of line

length (Ashourian & Loewenstein, 2011; Duffy, Huttenlocher, Hedges & Crawford, 2010;

Huttenlocher, Hedges & Vevea, 2000), sweetness (Riskey, Parducci & Beauchamp, 1979),

facial expressions (Roberson, Damjanoviv & Pilling, 2007), absolute size (Huttenlocher
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et al., 2000), shades of grey (Huttenlocher et al., 2000), time-interval estimation (Jamieson,

1977; Jazayeri & Shadlen, 2010; Ryan, 2011), and most recently, the hue of a coloured patch

presented on a monitor referred to hereafter as a simulated surface (Olkkonen, McCarthy

& Allred, 2014; Olkkonen & Allred, 2014).

In this Chapter, we are interested in central tendency biases in the domain of colour

perception. Olkkonen et al. (2014) showed a central tendency bias for perceptual estimates

of the hue (or colour) of a light-based surface. They showed that the point of subjective

equality (PSE) of a particular reference hue, after a short delay, varied with respect to the

stimulus series (the set of reference hues) within which it was shown. A reference hue that

was bluer (larger hue value) than the mean hue of the series had a yellower PSE and vice-

versa. If bias is calculated as the PSE hue value minus the true hue value then a reference

with a bluer PSE than its true hue will have a positive bias and a reference with a yellower

PSE will have a negative bias. The magnitude of the bias then represents the strength

of the central tendency. Olkkonen et al. (2014) also showed that the strength of the bias

can be manipulated by increasing the delay between the presentation of the reference hue

and the test hue (about which a judgement is made: “is it bluer or yellower than the

reference?”) and by increasing the noise in the stimuli (adding chromatic heterogeneity to

the stimulus). In the former case, their intention is to manipulate internal noise, effectively

the decay of the stimulus representation in memory. In the latter, it is to manipulate

external noise. In both cases they find that increasing the noise increases the magnitude

of the central tendency bias. They interpret this as evidence for the use of prior knowledge

in visual perception that shapes perception under uncertainty.

As we discussed in Chapter 1, the light signal received by the eye depends on variables

such as viewing angle and lighting conditions, creating extrinsic variability. In addition,

the biological constraints of the human visual system give rise to intrinsic noise. It has

long been suggested that the visual system can overcome such ambiguity with the aid of

visual priors. It has been shown that a Bayesian observer model accounts for the central

tendency bias in visual perception (Huttenlocher et al., 2000; Jazayeri & Shadlen, 2010).
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Also in Chapter 1, we discussed how Bayesian models can be used to model human colour

constancy (Brainard et al., 2006; Brainard & Freeman, 1997). If such models of colour

constancy hold, then observers should be able to form an illumination prior over repeated

illumination exposures that manifests as a central tendency bias for perceptual estimates

of illumination hue. We investigate this hypothesis in the work that follows.

In Experiment 1, using the same experimental procedure as Olkkonen et al. (2014), but

changing the stimuli from light-based surfaces to illuminations presented against a grey

background, we show a central tendency bias for perceptual estimates of illumination hue.

This suggests that a prior for illuminations can by quickly learnt during the time frame

of an experiment. However, in Experiment 2, we show that a proportion of the bias may

be explained by an alteration in the observers’ colour term usage, illustrated by showing

how the way an observer categorises the illuminations into colour categories depends on

context (the series of illuminations in which the illumination appears). This implies that

asking participants to use colour descriptors to issue their responses in Experiment 1

exaggerates the central tendency bias. In Experiments 3 and 4, we explore this further by

repeating Experiment 1 with different task designs that avoid the use of colour descriptors.

Experiment 3 shows no evidence of a central tendency bias; however, in Experiment 4, a

bias emerges but only after participants have been trained to do the task.

6.2 Experiment 1

In Experiment 1, we aimed to replicate the results of Olkkonen et al. (2014) but for

perceptual estimates of illumination hue rather than estimates for the hue of a light-based

surface. Using a custom built light box, in a series of trials, participants were exposed to a

reference illumination and, after a two second delay, indicated whether a test illumination

was “bluer” or “yellower” than the reference. A staircase procedure was used to find the

PSE, considered a correlate of the perceptual estimate of the reference illumination held

in memory. Trials were split into three blocks with five reference hues (some overlapping)

in each block. The results reveal a central tendency bias for illumination hue estimates. In
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addition, they show that perceptual estimates of a given reference hue depend on context

as the estimates of reference hues appearing in multiple blocks differ significantly across

blocks.

6.2.1 Methods

6.2.1.1 Participants

Eleven participants (seven female, mean age 22 ± 3 years) participated in Experiment 1.

Six were members of the laboratory in which the study was conducted but all were unaware

of the purpose of the experiment and had no prior exposure to the stimuli. The remaining

five participants were recruited through word of mouth. All participants had normal or

corrected to normal visual acuity and gave consent prior to participation. All were assessed

for normal colour vision using the Ishihara colour plates and the Farnsworth-Munsell 100

hue test. Each participant received a voucher as compensation for their time.

6.2.1.2 Apparatus

Stimuli were shown in a custom built light box (Figure 6.1.A) with dimensions 125 cm

(height) by 80 cm (width) by 53 cm (depth). The light box housed two 13-channel spec-

trally tunable LED luminaires (Section 2.3.1). By controlling the output power of each

individual LED in the luminaires, it is possible to create a spectrum of light that has almost

any desired chromaticity and luminance. The full procedure for generation of such lights

is detailed elsewhere (Finlayson et al., 2014; Pearce et al., 2014; Radonjić et al., 2016b, see

also Section 2.4). During the experiment, the participant’s view was restricted to a piece

of uniform grey mount board attached to the back wall of the light box (Figure 6.1.B).

The viewing port that restricted their view was 13.5 cm wide by 9 cm high. Participants

rested their chin on a chin rest positioned 20 cm from the viewing port. The illuminations

used in the experiment were calibrated to produce a spectral radiance of specified CIE

2006 xy chromaticity with fixed luminance of 15 cd/m2 (Figure 6.1.C) when reflected from
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the grey mount board. To that end, the basis functions used in the fitting procedure were

measured from the grey mount board and all stimuli were controlled with respect to this

surface.

Figure 6.1: The experiment. A. Participants position their head on a chin rest and look into a
custom built lightbox where the illumination is tightly controlled using spectrally tunable LED
lamps (Section 2.3.1). B. The participant’s view is restricted to the backwall of the stimulus box.
On each trial, participants first see a reference illumination (500ms) presented against the backwall.
After a delay during which the adapting illumination is presented (2000 ms), they are presented
with a test illumination (500 ms). Participants then indicate whether the test was “bluer” or
“yellower” than the reference while under the adapting illumination. C. The chromaticities and a
cartoon representation of the three blocks of illuminations used in the experiment.

6.2.1.3 Stimuli

Eleven reference illuminations were specified (Figure 6.1.C, Table 6.1). By design, these

reference illuminations elicit the same response at the retina as the simulated surface

stimuli used by Olkkonen et al. (2014). For each reference illumination, 20 comparison

illuminations were generated in each direction around the hue circle in CIE L∗a∗b∗ colour

space. These form the set of test illuminations and were separated by hue steps of ≈ 1.5
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degrees (≈ 1∆Ea∗b∗ for constant chroma of 40). In addition, aD65 metamer was generated

with the same luminance as the rest of the stimuli (15 cd/m2) to serve as the adapting

illumination.

Table 6.1: CIE Y xy and CIE L∗a∗b∗ values and hue angle (in CIELAB) of the eleven reference
stimuli used in the experiments along with the details of which block(s) they appeared in.

Number Block Hue angle Y (cd/m2) x y L∗ a∗ b∗

1 1 120 15 0.34 0.41 100 -20.00 34.64
2 1 126 15 0.33 0.41 100 -23.51 32.36
3 1 132 15 0.33 0.40 100 -26.77 29.73
4 1,2 138 15 0.32 0.40 100 -29.73 26.77
5 1,2 144 15 0.31 0.40 100 -32.36 23.51
6 2 150 15 0.30 0.39 100 -34.64 20.00
7 2,3 156 15 0.29 0.38 100 -36.54 16.27
8 2,3 162 15 0.28 0.38 100 -38.04 12.36
9 3 168 15 0.28 0.37 100 -39.13 8.32
10 3 174 15 0.27 0.36 100 -39.78 4.18
11 3 180 15 0.26 0.35 100 -40.00 0.00

6.2.1.4 Procedure

The procedure (Figure 6.1.B) followed that of Experiment 1 in Olkkonen et al. (2014)

(also matching the memory condition in Olkkonen & Allred (2014)). The task began

with a 2 minute adaptation to the adapting illumination. On each trial, participants were

presented with one of the 11 reference illuminations (500 ms) followed by a delay under

the adapting illumination (2000 ms) before presentation of a test illumination (500 ms).

After viewing the test illumination, participants indicated via a button press whether

the test illumination appeared “bluer” or “yellower” than the reference (no time limit;

note that in Olkkonen et al. (2014) participants were asked which stimulus is “bluer”

out of the reference and test stimuli, or which stimulus is “yellower”, depending on the

participant). During the response period, the adapting illumination was presented. The

test illumination differed from the reference only in hue (see Stimuli) and, on each trial, the

amount of hue difference between the test and reference stimuli was determined by a 1-up,

1-down staircase procedure (fixed step size of 1, terminating after 30 trials) chosen to target
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the PSE (or equivalently, the 50% correct point on the psychometric function). The task

was completed in three blocks, with a subset of reference illuminations presented in each

block (5 reference illuminations in each, see Table 6.1). In each block, the set of reference

illuminations had different mean chromaticities, varying in appearance from yellow-green

to green to blue-green across blocks 1 to 3. Some reference illuminations appear in multiple

blocks, appearing bluer than the mean reference chromaticity in one block but yellower

in another (larger/smaller hues). For each reference illumination, two staircases were

completed, one starting at a yellower and one a bluer hue (between 24 and 30 degrees

away clockwise/anticlockwise around the hue circle (smaller/larger hues), respectively).

Importantly, staircases starting at smaller/larger hue values than the reference were free

to travel to larger/smaller hue values, unlike a traditional staircase where possible values

that the staircase can take are truncated at the reference value (cf. the staircase used

for the discrimination task detailed later). If the participant responded by a “bluer”

button press, the test stimulus hue value would always increase; if they responded with

a “yellower” button press, the test stimulus hue would decrease. Within each block,

staircases for all reference illuminations were interleaved (10 staircases or 300 trials per

block). Block order was randomised across participants. While participants could break

between the blocks for as long as they liked (with a top up adaptation required if they left

the dark environment of the laboratory between blocks), they were required to complete

all blocks within the same experimental session.

6.2.1.5 Data Analysis

The final value of each staircase (the test illumination hue on the 30th trial) was taken as

the estimated PSE. We took this value to avoid throwing away any data. If we used the

mean of the last two reversals from each staircase one participant had an extremely large

bias value from their yellow staircase for reference 1 in block 1 (participant 4023) as they

did not reverse after the 9th trial. However, the staircase does appear to converge, ending

at the same hue value as the blue staircase. Using the last value of each staircase rather
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than the mean of the last two reversals maintains the general pattern in the data while

reducing individual differences and ensuring all data is usable without correction. Bias was

calculated as PSE hue value minus reference hue value, a positive bias indicating a shift in

the PSE towards bluer (larger) hues and a negative bias indicating a shift towards yellower

(smaller) hues. When calculated from the staircases that started at a test hue larger than

the reference hue (the blue staircase), bias values were larger than those calculated from

staircases beginning at smaller hue values (the yellow staircase) (Wilcoxen signed-ranks

test: z = 5.05, p < .001). However, analysing the data from the blue and yellow staircases

separately did not change the results of the experiment; therefore, all bias values presented

in the main text are an average of the bias values from the respective blue and yellow

staircases. Separate analyses of each set of staircases can be found in Appendix D.

6.2.2 Results

The calculated bias values for each reference hue angle are plotted with respect to block

in Figure 6.2.A. Consider the data from block 1. These data show that the average PSEs

for the two reference hues in this block that are the most “yellow” (lowest hue angle) are

positively biased, or they are “bluer” (higher hue angle) than the true hue. Similarly, the

average PSEs for the two most “blue” (highest hue angle) reference hues in block 1 are

negatively biased, or are “yellower” (lower hue angle) than the true hue. However, the

central reference hue in the block has a bias value close to zero, indicating that the PSE was

close to the true hue value. This trend is maintained in blocks 2 and 3. As certain reference

hues are used in multiple blocks, appearing “yellower” (smaller hue angle) than the mean

reference in one block and “bluer” (larger hue angle) in another, the PSEs for these hues

can be shown to vary with respect to block (e.g. red circles in Figure 6.2.A.). There are

four such reference hues in the experiment (138, 144, 156 and 162 degrees). A 2×4 repeated

measures ANOVA with direction of change from the mean reference hue angle in the block

(to a larger or smaller hue, or becoming “bluer” or “yellower” in appearance; hereafter

referred to as direction of change) and reference hue angle (138, 144, 156 or 162 degrees)
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as independent variables and PSE as the dependent variable confirmed a significant main

effect of direction of change on PSEs (F (1, 10) = 105.73, p < .001). When the reference

hue angle is smaller (“yellower”) than the central or mean reference hue angle in that

block, the PSE hue value is always positively biased (“bluer”) and vice-versa. In addition,

this effect is not dependent upon the hue angle of the reference, with a non-significant

direction of change and reference hue angle interaction term (F (3, 30) = 0.06, p = .981).

Following Olkkonen et al. (2014), we fit a regression line to the bias trend line for each

individual participant in each block of the experiment. The slopes of the fitted regression

lines can be used to quantify the bias, indicating the amount of central tendency bias (the

amount of “pull” towards the mean reference hue angle) in each block. A slope value close

to zero implies no bias, with PSEs close to the true hue value. Small negative slope values

indicate increased bias, as the slope value becomes more negative bias increases. The slope

of every fitted regression line is negative, suggestive of a central tendency bias in all blocks

for all participants (Figure 6.2.B). Indeed, the average slope value is significantly different

from zero in all three blocks (t(10) = −7.67, p < .001, t(10) = −9.17, p < .001 and

t(10) = −8.67, p < .001, all Bonferroni corrected for blocks 1-3, respectively). In addition,

a repeated measures ANOVA with block as the independent variable and fitted slope as the

dependent variable shows that slope values did not differ across blocks (F (2, 20) = 1.64,

p = .219).

6.2.3 Summary

Experiment 1 extends the results of Olkkonen et al. (2014) to show that hue estimates

are susceptible to a central tendency bias not only for light-based surfaces but also for

estimates of illumination hue. We also showed that illumination hue estimates depend on

context, with estimates for a given reference hue differing significantly when embedded

within a different series of reference hues.

The results cannot be explained by a response bias (observers favouring a response of

yellow over blue or vice versa). If this was the case, then the bias would be the same
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Figure 6.2: Central tendency bias in experiment 1. A. The bias for each reference hue angle with
respect to block (1-3). Bias is calculated as PSE hue angle minus reference hue angle in CIE
L∗a∗b∗, with a positive bias indicating that the PSE for a particular reference was “bluer” than
the true hue and a negative bias indicating that the PSE was “yellower”. Bold lines with circle,
square or triangular markers are the mean bias trend lines over all participants. Thin dashed lines
are individual bias trend lines for each participant. Red circles highlight an example of a case where
the PSE for a given reference hue is shown to depend on block. B. The slopes of the regression
lines fit to each individual bias trend line for each participant and the mean over these (error bars
are ± 1 SEM). Note that as all slopes were negative, values on the y-axis have been flipped.

for all reference stimuli. Either all perceptual estimates would be bluer or all would be

yellower. Our results indicate an almost 50/50 split which is characteristic of a central

tendency bias.

6.2.4 Interim discussion

Despite the consistency of these results with those of Olkkonen et al. (2014), there is

reason to believe that other factors may be responsible for the effect. During the task,

movements of the staircase are dictated by the participant’s responses to the test illumina-

tions. Participants are instructed to respond according to whether they perceive the test

illumination to be “bluer” or “yellower” than the reference illumination. For the staircase

to converge on the PSE, it is assumed that when the participant cannot discriminate be-

tween the reference and test illuminations they are equally likely to respond with either a

“bluer” or “yellower” button press. There is an alternative explanation of the participants

behaviour, though. All illuminations used in the experiment are chromatic and could be
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(even if somewhat ambiguously or uncertainly) assigned a colour name. Consider the sce-

nario in which the participant cannot discriminate between the reference and test hue but

is forced into a response of either “bluer” or “yellower”. It is likely that the participant

will issue the response that best describes the colour appearance of the test illumination

under the reasoning that if the test appears blueish, then it is more likely to be bluer than

the reference rather than yellower. If this is the case, then for the bluest reference hues,

when the test is close to the reference in hue and discrimination is not possible, partici-

pants are more likely to issue a “bluer” response as the test appears blue in comparison

to other illuminations within the current block. A string of such responses will bias the

PSE towards hue values yellower than the true reference hue (a “bluer” response results

in a decrease in the test illuminations hue value towards yellower hues), and will only stop

when discrimination between the reference and test hue is possible. This will result in the

PSE representing one extreme of the discrimination interval along the hue circle around

the reference hue, the yellowest hue in the discrimination interval, manifesting as a central

tendency bias. The same is true in the other direction, forcing PSEs for the yellowest

reference hues to be biased towards blue. In sum, this would imply that the bias observed

in the results is caused or at least exaggerated by the experimental design. In Experiment

2, we asked if the argument presented above explains the results of Experiment 1.

6.3 Experiment 2

In Experiment 2 we asked if using colour names to determine responses in Experiment

1 introduced an element of bias to the task that exaggerated the central tendency bias.

We did so by collecting hue discrimination thresholds around each reference hue used

in Experiment 1 for a subset of the original participants. These thresholds are found

separately, without interleaving reference illumination conditions. In other words, we find

typical discrimination thresholds for each reference illumination in each direction around

the hue circle rather than PSEs (they should not be subject to a central tendency bias). In

addition, we established the probability that participants would assign the colour names
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“blue” or “yellow” (also “green” in the second version of the naming task) to each reference

illumination within the context of each block of Experiment 1. We show that the colour

name assigned to a given reference illumination is dependent upon context and is not a

fixed property of colour perception. Combining these results with the hue discrimination

data, we show that participant responses to Experiment 1 can be partially explained by

an adjustment of colour categories and that our finding of a central tendency bias may be

caused or at least exaggerated by the design of the task.

6.3.1 Methods

6.3.1.1 Participants

All participants who completed Experiment 1 were invited back to take part in Experiment

2. Only 7 (6 female, mean age 23 ± 3 years) returned. Each participant received further

compensation for their time.

6.3.1.2 Apparatus and Stimuli

We used the same apparatus and stimuli as in Experiment 1. For the discrimination task,

the reference and test hues were identical to those generated for Experiment 1. For the

naming task, the 11 reference illuminations were combined with 12 intermittent hues taken

from the set of test illuminations for a finer sampling of the stimulus space.

6.3.1.3 Procedure: The naming task

Two versions of the naming task were completed (the 2-naming and 3-naming tasks de-

scribed below). In both versions, participants were required to name the subset of reference

illuminations used for each block of Experiment 1 along with six equally spaced (hue steps

of ≈ 3 degrees) intermittent illuminations taken from the set of test illuminations (11

illuminations per block; Figure 6.3). Accordingly, the naming tasks were also split into

three blocks, completed in the same order as the participants completed the blocks in Ex-
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periment 1. Prior to starting the task, participants viewed the adapting illumination for 2

minutes. On each trial, the illumination to be named was presented for 500 ms before the

adapting illumination reappeared while the participant issued their response via a button

press (no time limit). Each illumination in a block was named 20 times in a random order.

In the 2-naming task, participants could name the illuminations either “blue” or “yellow”.

In the 3-naming task, illuminations could be named either “blue”, “yellow” or “green”.

As in Experiment 1, participants could break between the blocks for as long as they liked

but were required to complete all blocks within the same experimental session. Although

not a requirement, all but one of the 7 participants who returned to complete this task

completed both versions within one visit to the laboratory. The order of task completion

(2-naming or 3-naming task first), was randomised across participants.

Figure 6.3: A cartoon of the stimuli used in the naming tasks.

6.3.1.4 Procedure: Discrimination task

The discrimination task (Figure 6.4) was designed to find hue discrimination thresholds

in each direction (clockwise/anticlockwise) around the hue circle for each reference illu-

mination. To achieve this, discrimination thresholds for each reference illumination were

found in separate runs (only one reference illumination was presented per run to avoid

eliciting a central tendency bias). Again, the task was preceded by a 2 minute adapta-

tion period. On each trial, participants were presented with a reference illumination (500

ms), followed by a 2000 ms delay under the adapting illumination before the presentation

of two comparison illuminations (each for 500 ms, separated by 400 ms of the adapting

illumination). One comparison illumination would always be identical to the reference

illumination (the target illumination) and one would differ in hue from the reference illu-
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mination (the test illumination, taken from the appropriate set of test illuminations used

in the Experiment 1) according to a 1-up, 1-down staircase procedure (fixed step size of 1,

terminating after 30 trials or 6 reversals, starting between 15 and 22.5 degrees away from

the reference illumination hue). Whether the target illumination appeared as the first or

second comparison was randomised on each trial. After presentation of both comparisons,

the adapting illumination reappeared and participants were required to press a button

that indicated whether they thought the first or second comparison was the best match to

the reference (no time limit). If they chose the target illumination the staircase stepped

closer (in hue value) to the reference illumination, otherwise, it stepped further away. For

each reference illumination, two interleaved staircases were completed, one staring from a

bluer (larger) and one from a yellower (smaller) hue value. This comprised one run, with

11 runs (one for each reference illumination) in total for the task. Runs were completed in

a random order. Again, while participants could break between runs, they were required

to complete all runs within one session. All but one of the 7 participants who returned

completed the task twice on two separate occasions (different days). One participant who

completed the task twice did not finish the task in one session and had missing data for

one of the reference hues (162 degrees, effectively they only completed the task once for

this reference hue).

Figure 6.4: The discrimination task. The reference illumination was presented for 500 ms. After
a 2000 ms delay under the adaptation illumination, two comparison illuminations were presented
for 500 ms each, separated by 400 ms of the adaptation illumination. One of the comparisons was
identical to the reference (the target), the other differed from the reference (the test). Participants
had to indicate which comparison was most similar to the reference.
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6.3.1.5 Data analysis and modelling

For the discrimination task, thresholds were calculated as the mean of the last two reversals

from the staircase. Where possible, thresholds for any one staircase were averaged over

the two runs of the task. Average thresholds from the two types of staircases (starting

at larger or smaller hue values) for each reference illumination formed a discrimination

interval for each participant, or, more accurately, a no-discrimination interval within which

a change from the hue of the reference illumination could not be detected.

The naming tasks resulted in a distribution of naming probabilities, the probability that

each illumination would be named either “blue” or “yellow” (or “green” in the 3-naming

task), defined as the number of times a given colour term was used divided by the total

number of presentations (20 in all cases). The illuminations used in the naming tasks

were sampled in hue steps of 3 degrees while stimuli used to determined thresholds in the

discrimination task and PSEs in Experiment 1 were sampled at a higher resolution (every

1.5 hue steps). To obtain naming probabilities for each hue value used in the latter two

tasks, naming probabilities for each block in the 2-naming task were interpolated (sepa-

rately for each participant) to estimate the probabilities of naming intermittent stimuli as

either “blue” or “yellow”.

Data from the discrimination and naming tasks were combined as follows to assess whether

the central tendency bias observed in Experiment 1 can be explained by these results alone.

For each participant, we simulated their response to the task used in Experiment 1. On

each trial, the simulated response was decided differently depending on whether the test

illumination was within the current reference illumination’s discrimination interval or not.

If the test illumination was outside the discrimination interval, then it is assumed that the

participant can perceive the difference between the test and reference illuminations. More

specifically, it is assumed that they can perceive the correct difference between them such

that when the test is bluer (larger hue value) than the reference they respond “bluer” and

when the test is yellower (smaller hue value) than the reference they respond “yellower”.

However, if the test illumination is within the discrimination interval then it is assumed
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that the participant cannot discriminate and bases their response on how they perceive the

test illumination. How they perceive the test illumination is represented by the 2-naming

task data, so they would name it “blue” (respond “bluer”) with probability p and name it

“yellow” (respond “yellower”) with probability 1−p, with p taken from the data collected

in the 2-naming task.

6.3.2 Results

6.3.2.1 The Naming Tasks

Figure 6.5.A shows the data from the 2-naming task and illustrates that the most likely

colour name assigned to a given reference hue changes across the blocks (top plot is block

1, middle plot is block 2 and bottom plot is block 3). Consider, for example, the reference

illumination with hue value 141 degrees. In block 1, participants are most likely to name

this illumination “blue” on average while in block 2 they are most likely to name it

“yellow”.

These data suggest that participants may adjust their colour category boundaries to com-

pensate for the small range of stimuli used in the different blocks, allowing for a more

optimal use of colour terms to partition the stimulus space that they are faced with. If

the colour names that participants assigned to an illumination with given hue value did

not change from blocks 1 to 2, then almost all stimuli in block 2 would be named “blue”

and hence colour terms would not effectively distinguish between the stimuli. Adjusting

the colour category boundaries may aid discrimination in this way.

The majority of stimuli used in the task appeared green to the experimenters. If this is also

the case for the participants then the claim that responses in Experiment 1 are based on

the colour appearance of the test illumination may not be valid (as they always perceive it

as green and neither “bluer” nor “yellower” are good descriptors of the perceived colour).

To determine whether this argument might hold, we conducted a second version of the

naming task for all participants, in which they were also allowed to use the colour term
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“green” (the 3-naming task). Figure 5.B shows the data from the 3-naming task and

illustrates that even when the colour term “green” can be used in addition to “blue” and

“yellow”, participants still use the latter two terms and how terms are assigned still varies

in the different blocks.

Figure 6.5: Naming tasks data. Mean naming probabilities across all participants in the 2-naming
(A) and 3-naming (B) tasks. Yellow bars represent the probability of naming that reference hue
yellow, blue bars represent the probability of naming that reference hue blue and, for the 3-naming
task, green bars represent the probability of naming that reference hue green. The top row of
figures represent colour name assignment in block 1, the second in block 2 and the third in block
3. Error bars are ± 1 SEM.

6.3.2.2 The Discrimination Task

Average discrimination thresholds (across both directions of change towards bluer and

yellower hues) were 5.96±3.43 degrees (Figure 6.6). For bluer (larger) reference hues, dis-

crimination thresholds towards bluer hues seem to increase while discrimination thresholds

for yellower hues decrease relative to those for yellower (smaller) hues. However, a 2× 11

repeated measures ANOVA with direction of change (bluer or yellower) and reference

hue value as independent variables and discrimination threshold as the dependent vari-
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able found no significant interaction effect of direction of change and reference hue value

(F (10, 60) = 1.91, p = .061). Note though that this study was not designed to look for

such an effect and hence is underpowered with such a small sample size (n = 7). Impor-

tantly, the average size of thresholds (5.96) is supportive of our hypothesis that the central

tendency bias in Experiment 1 is exaggerated by responding with the colour term most

representative of the perceived colour of the test illumination as the range of average bias

values in Experiment 1 (Figure 6.2.A, [−6.27, 6.48]) suggests most PSEs fall within these

non-discriminable intervals. For each participant, we checked if the PSE for each reference

hue in each block in Experiment 1 fell within the discrimination interval for that refer-

ence. On average 72.38±9.76% of PSEs for each participant fell within the discrimination

intervals.

Figure 6.6: Discrimination task data. Discrimination thresholds (in hue steps, or the difference
between the termination point of the staircase and the reference hue in degrees) for each reference
hue used in Experiment 1 in CIELAB. Blue bars (leftmost of the pairs) represent the discrimina-
tion thresholds for bluer (larger) hue values. Yellow bars (rightmost of the pairs) represent the
discrimination thresholds for yellower (smaller) hue values.

6.3.2.3 Simulating Responses to Experiment 1

We combined the data from the discrimination and 2-naming tasks to simulate responses

to Experiment 1. As the simulations are probabilistic, multiple simulations will result

in different predictions for Experiment 1. For this reason, we ran 10,000 simulations to
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get an estimate of how well the model accounts for the data collected in Experiment

1. Figure 7 shows an example simulated data set (1 of the 10,000). The simulated

data shows a similar overall pattern to the real results (compare Figure 6.7.A and Figure

6.2.A). However, the fitted slope values suggest the model only partially accounts for the

data, with some slope values now positive and a difference in slope values that is block

dependent (but note a non-significant main effect of block for this particular simulation,

F (2, 12) = 2.85, p = .097). To quantify how well the model predicts the results of

Experiment 1, we calculated Spearman’s correlation coefficients between the real data

collected in Experiment 1 and the 10,000 simulated data sets. The mean correlation was

rs = .66± .02 (for the simulated data set shown in Figure 6.7 it was rs = .65), suggesting

that while the simulated data accounts for the real data reasonably well, there is still a

proportion of variability in the real data that is unaccounted for.

Figure 6.7: Simulated responses to Experiment 1. A. The simulated bias for each reference hue
angle with respect to block (1-3). Simulated bias is calculated as simulated PSE hue angle minus
reference hue angle in CIE L∗a∗b∗, with a positive bias indicating that the PSE for a particular
reference was “bluer” than the true hue and a negative bias indicating that the PSE was “yel-
lower”. Bold lines with circle, square or triangular markers are the mean bias trend lines over all
participants. Thin dashed lines are individual bias trend lines for each participant. B. The slopes
of the regression lines fit to each individual bias trend line for each participant and the mean over
these (error bars are ± 1 SEM). Note values on the y-axis have been flipped for easy comparison
to Figure 6.2.
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6.3.3 Summary

The results of Experiment 2 suggest that the association of colour terms to the responses

in Experiment 1 may have caused or at least exaggerated the central tendency bias we ob-

served. The naming tasks showed that the assignment of colour names to illuminations is

not fixed and that the visual/cognitive system adapts to the current context in a way that

may optimise colour term usage to partition the current stimulus space. By establishing

a discrimination interval for each reference illumination, we also showed that while PSEs

display a central tendency bias in Experiment 1, they fall inside the participant’s discrimi-

nation interval 72.38% of the time, suggesting that something other than perceived colour

contributes to the bias. By combining the results from the 2-naming and discrimination

tasks, we were able to predict the emergence of a central tendency bias in Experiment 1,

although the variability in the data is not fully explained.

6.4 Experiment 3

In Experiment 3, we take this a step further by changing the experimental design of

Experiment 1 such that colour terms are no longer linked to the responses. In the new

task, we separate reference stimuli into overlapping blocks as in Experiment 1. Now

however, instead of determining PSEs by asking participants to respond by indicating if a

test illumination is “bluer” or “yellower” than the reference, we show participants two test

illuminations and ask them which is “most similar to the reference”. The test illumination

that is picked remains the same on the next trial of that staircase (not a staircase in the

traditional sense so we refer to it hereafter as a pseudo-staircase). The test illumination

not chosen steps closer in hue value to the chosen option. This pseudo-staircase is designed

to target the PSE without the use of colour terms to issue responses. We hypothesise that

this will suppress or at least reduce the magnitude of the central tendency bias observed

in Experiment 1 (fitted regression lines will have shallower gradient).
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6.4.1 Methods

6.4.1.1 Participants

Eleven participants (eight female, mean age 24±3 years) participated in Experiment 3.

Three had previously participated in Experiments 1 and 2, the remaining eight participants

were recruited through word of mouth. All participants had normal or corrected to normal

visual acuity and gave consent prior to participation. All were assessed for normal colour

vision using the Ishihara colour plates and the Farnsworth-Munsell 100 hue test. Each

participant received a voucher as compensation for their time.

6.4.1.2 Apparatus and Stimuli

We used the same apparatus and stimuli as in Experiment 1.

6.4.1.3 Procedure

The design of the experiment was similar to Experiment 1 in that there were three separate

blocks of the task with five reference hues interleaved in each block (Table 6.1). However,

in this experiment we did not use a conventional staircase to estimate PSEs (we refer to

it as a pseudo-staircase instead) and there were two comparison illuminations on every

trial. On each trial participants were first presented with a reference illumination (500

ms) then, after a 2 second delay, they were presented with comparisons one (500 ms)

and two (500 ms), separated by a small delay (400 ms). After viewing comparison two

participants were required to respond by indicating “which of the two comparisons was

most similar to the reference”. During the response and delay periods, participants viewed

the adapting light (Figure 6.8). It was not a necessity that either comparison illumination

was equivalent to the reference. At the beginning of each staircase, one comparison was

yellower (smaller hue value) than the reference and the other was bluer (larger hue value).

The two comparisons were an equal number of hue steps away from the reference at the

start of the staircase but how far away they were was different for each staircase (randomly
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generated to start between 15 and 34 hue steps away). The comparison chosen by the

participants (“one” or “two”) remained the same on the next trial. The comparison not

chosen stepped towards the chosen comparison (one nominal step, equivalent to a hue step

of 1.5). In other words, if the most yellow (smallest hue value) stimuli was chosen, the one

not chosen became yellower (hue value decreased) on the next trial and vice-versa. On

trials where both comparisons were identical, the hue value of the non-chosen comparison

increased or decreased with probability 0.5. All staircases terminated after 40 trials.

Figure 6.8: Experiment 3 overview. Participants were first shown a reference illumination (500
ms) then, after a short delay, (2000 ms) they were presented with two test illuminations (500 ms
each separated by 400 ms of the adapting illumination). The participant had to chose the test
that was most similar in appearance to the reference.

6.4.1.4 Data analysis

PSEs for each reference were calculated as the mean of the last 10 chosen comparison hue

values in that reference’s pseudo-staircase. Bias was calculated as PSE hue value minus

the reference hue value.

6.4.2 Results

The calculated bias values in Experiment 3 are very different to those we collected in

Experiment 1 and to those predicted in Experiment 2 (Figure 6.9.A). The pattern of bias

values do not suggest a central tendency bias. Repeating the analysis of Experiment 1,

a 2 × 4 repeated measures ANOVA with direction of change and reference hue angle as
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independent variables and PSE as the dependent variable showed that direction of change

did not affect PSEs for the four repeated hues (F (1, 10) = 0.15, p = .707). In addition,

the fitted slope values are not significantly different from zero for any reference block

(t(10) = −1.26, p = .235, t(10) = −0.195, p = .849 and t(10) = −0.335, p = .744, for

blocks 1-3, respectively), nor did slope values differ across blocks (F (1.33, 13.26) = 0.46,

p = .563, with a Greenhouse-Geisser correction).

Figure 6.9: Results of Experiment 3. A. The bias for each reference hue angle with respect to
block (1-3). Bias is calculated as PSE hue angle minus reference hue angle in CIE L∗a∗b∗, with a
positive bias indicating that the PSE for a particular reference was “bluer” than the true hue and
a negative bias indicating that the PSE was “yellower”. Bold lines with circle, square or triangular
markers are the mean bias trend lines over all participants. Thin dashed lines are individual bias
trend lines for each participant. B. The slopes of the regression lines fit to each individual bias
trend line for each participant and the mean over these (error bars are ± 1 SEM). Note values on
the y-axis have been flipped for easy comparison to Figure 6.2.

6.4.3 Summary

Experiment 3 does not provide any evidence for a central tendency bias in perception of

illumination hue; average PSEs are close to the true hue values of the reference illumina-

tions. Although the individual traces in Figure 6.9.A show that PSEs are quite variable

across the participants, note that the majority of PSEs fall within the discrimination in-

terval limits established in Experiment 2, suggesting that PSEs are generally falling within

a range of non-discriminable hue values.
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6.4.3.1 Interim discussion

It would be rash to conclude from the results of Experiments 2 and 3 that a central

tendency bias does not exist for illumination hue perception; the explanation offered here

(that the central tendency is caused by categorisation or naming of stimuli) cannot account

for the central tendency bias observed in different domains where different experimental

paradigms were used. For example, when Huttenlocher et al. (2000) illustrated a central

tendency bias for perceptual estimates of absolute size, line length and shades of grey they

required participants to adjust the test stimulus to reproduce the reference. To be sure,

we ran a third and final experiment that used a reproduction task to establish PSEs.

6.5 Experiment 4

Experiment 4 again involves the use of a task designed to ask the same questions as

Experiment 1, but without assigning colour names to the responses. In this task, PSEs

for the set of reference hues within block 2 are established using a reproduction task. On

each trial, participants see the reference illumination but now, after the delay, the test

illumination can be adjusted by the participant until they judge its appearance to match

that of the reference. Pilot testing revealed this to be a hard task for participants, and for

this reason, participants were trained to complete the task by completing three sessions.

6.5.1 Methods

6.5.1.1 Participants

Thirteen participants (9 female, mean age 25 ± 4 years) were recruited for Experiment 4.

None of these participants had previously taken part in Experiments 1-3. Two participants

(both female) did not complete the required three repeats of the task, only doing the first

session. All participants had normal or corrected to normal visual acuity and gave consent

prior to participation. All were assessed for normal colour vision using the Ishihara colour
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plates and the Farnsworth-Munsell 100 hue test. Each participant received a voucher as

compensation for their time.

6.5.1.2 Apparatus and stimuli

We used the same apparatus and stimuli as in Experiments 1 and 3.

6.5.1.3 Procedure

The design of the experiment was similar to Experiments 1 and 3. On each trial, partic-

ipants were presented with the reference illumination for 500 ms. After a 2000 ms delay

under the adapting illumination, participants were presented with the test illumination.

The test illumination was on for 2000 ms, off for 400 ms (replaced by the adapting illumi-

nation), on for 2000 ms, off for 400 ms and so on until the participant indicated that they

had matched the test to the reference illumination (Figure 6.9). During periods when the

test illumination was on, participants could use two buttons to adjust its hue. One but-

ton increased the test hue (it became bluer), the other decreased it (it became yellower).

Participants matched each reference hue 40 times with matches for all reference hues in-

terleaved. The starting hue value for the test was randomly chosen on each trial. As the

time demands of this task were greater than of Experiments 1 and 3, and as participants

found the task difficult prior to training in pilot tests, the task was only completed for

one block of reference hues from Experiments 1 and 3 (block 2; Figure 6.1.C; Table 6.1).

However, participants repeated the task three times on three separate days. We expected

that participants’ matches would become less variable over the course of the repeats as

they became more familiar with the task. Experimenters avoided the use of colour terms

when explaining the task to the participants (i.e. they told participants that the two

buttons would adjust the appearance of the test illumination but did not say that they

would make the test illumination bluer or yellower). We believed this to be an important

aspect of task design considering our conclusions from Experiment 2; we did not want to

encourage participants to assign colour terms to their responses or to categorise colours
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as a method for completing the task.

Figure 6.10: The reproduction task. On each trial, participants were presented with the reference
illumination for 500 ms. After a 2000 ms delay under the adapting illumination, participants
were presented with the test illumination. The test illumination was on for 2000 ms, off for 400
ms (replaced by the adapting illumination), on for 2000 ms, off for 400 ms and so on until the
participant indicated that they had matched the test to the reference illumination.

6.5.1.4 Data analysis

PSEs were taken as the mean over the 40 matches for each reference hue. Bias was

calculated as PSE hue minus reference hue value.

6.5.2 Results

6.5.2.1 Match variability decreases with training

To assess whether the variability of the matches made by the participants decreased with

training we obtained the standard deviation of each participant’s bias for each reference

illumination across the repeated runs of the task (Figure 6.11). For all reference illumina-

tions, the data show a similar trend; the standard deviation of the participant’s bias seems

to decrease with training (a decrease from first to third run). Indeed, a 3 × 5 repeated

measures ANOVA with run (3 levels) and reference (5 levels) as the independent variables

and standard deviation of the bias as the dependent variable finds no main effect of refer-

ence (F (4, 40) = 1.04, p = .400) or interaction effect of reference and run (F (8.80) = 1.13,

p = .350), but there was a significant main effect of run (F (2, 20) = 4.47, p = .025).
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However, no pairwise comparisons between the average standard deviations, regardless of

reference illumination, were significant (p > .05 in all cases).

Figure 6.11: Reproduction task training effects. A-E. The standard deviation of each individual
participant’s matches across the repeated runs of the task for each reference illumination (coloured
dashed lines) with the mean over all participants superimposed (solid black line). F. The mean
standard deviation of each individual participant’s matches over all reference illuminations across
the repeated runs of the task (coloured dashed lines) with the mean over all participants superim-
posed (solid black line). Error bars are ± 1 SEM.

6.5.2.2 A bias emerges in the third run of the task

As we found a main effect of run on the variability of bias values within an individual, we

analysed the data from each run of the task separately. We expect that any bias present

in the results will be more prevalent in the data from the third run where the bias values

are less noisy. Two extra participants completed the first run of the task (only 11 did all

three runs) and we include these participants in the analysis of the first run here.

The average slope value is negative for all runs of the task (Figures 6.12-6.14). However,

the average slope value is only significantly different from zero in the third run of the task

(t = −1.72, p = .112, for run 1; t = −1.92, p = .084, for run 2; t = −3.06, p = .012, for

run 3). In the first run of the task, only 8/13 participants have the negative slope value
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associated with a central tendency bias. However, after training, in the third run of the

task, slope values are consistently negative; 10/11 participants show a central tendency

bias. Note though that the magnitude of this bias is much smaller than the magnitude of

the bias observed in Experiment 1. The average slope value here is −0.14 ± 0.15 (M ±

SD) compared to −0.50± 0.18 (M ± SD) in Experiment 1.

Figure 6.12: The bias in the first run of Experiment 4. A. The bias for each reference hue.
Bias is calculated as PSE hue angle minus reference hue angle in CIE L∗a∗b∗, with a positive bias
indicating that the PSE for a particular reference was “bluer” than the true hue and a negative bias
indicating that the PSE was “yellower”. Bold line is the mean bias trend line over all participants.
Thin dashed lines are individual bias trend lines for each participant (n = 13). B. The slopes of
the regression lines fit to each individual bias trend line for each participant and the mean over
these (error bars are ± 1 SEM). Note values on the y-axis have been flipped for easy comparison
to previous figures.

6.6 Discussion

Using the same task as Olkkonen et al. (2014) we showed a central tendency bias for illu-

mination hue perception (Experiment 1). Previous demonstrations of a central tendency

bias for other types of stimuli are well-accounted for by Bayesian models of perception

(Huttenlocher et al., 2000; Jazayeri & Shadlen, 2010). If we consider the central tendency

bias observed in Experiment 1 in the same framework, then we found evidence that hu-

man observers can learn an illumination prior in a short space of time, a tool that may

aid colour constancy. However, in further experiments (Experiment 2) we found evidence
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Figure 6.13: The bias in the second run of Experiment 4. A. The bias for each reference hue.
Bias is calculated as PSE hue angle minus reference hue angle in CIE L∗a∗b∗, with a positive bias
indicating that the PSE for a particular reference was “bluer” than the true hue and a negative bias
indicating that the PSE was “yellower”. Bold line is the mean bias trend line over all participants.
Thin dashed lines are individual bias trend lines for each participant (n = 11). B. The slopes of
the regression lines fit to each individual bias trend line for each participant and the mean over
these (error bars are ± 1 SEM). Note values on the y-axis have been flipped for easy comparison
to previous figures.

Figure 6.14: The bias in the third run of Experiment 4. A. The bias for each reference hue.
Bias is calculated as PSE hue angle minus reference hue angle in CIE L∗a∗b∗, with a positive bias
indicating that the PSE for a particular reference was “bluer” than the true hue and a negative bias
indicating that the PSE was “yellower”. Bold line is the mean bias trend line over all participants.
Thin dashed lines are individual bias trend lines for each participant (n = 11). B. The slopes of
the regression lines fit to each individual bias trend line for each participant and the mean over
these (error bars are ± 1 SEM). Note values on the y-axis have been flipped for easy comparison
to previous figures.
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that the bias we observed may be caused or at least exaggerated by an element of the

task where observers are required to link their responses to colour terms; observers were

asked: is the test “bluer” or “yellower” than the reference? We showed that as the stim-

ulus range presented within a particular block of the experiment changes, the way that

participants assign colour terms to the stimuli also changes. It seems that participants

may assign colour names differently in order to optimally partition the stimulus space.

If we assume that participants resort to using these colour terms to issue responses on

the task when the reference and test illumination become indiscriminable, then we can

predict the central tendency bias. We then changed the method by which we estimated

PSEs for the reference illuminations after the short delay in Experiment 1 such that colour

terms were no longer linked to the responses (Experiment 3). Changing the task in this

way eliminated the central tendency bias. However, the data were particularly noisy and

previous central tendency bias studies find an effect using reproduction tasks that also

avoid assigning categorical terms to the responses. Finally, we also used a reproduction

task to estimate PSEs for the reference illuminations after the delay and found evidence of

a central tendency bias but only after participants were trained on the task. In addition,

the magnitude of the bias was much smaller than that observed in Experiment 1.

Considering the findings of Experiments 1-4 together, we find evidence of a central ten-

dency bias for illumination hue perception (and evidence that observers can learn a prior

over illumination hue if we adopt the Bayesian explanation for the effect), but we also

find that the magnitude of the bias is likely exaggerated in Experiment 1 due to the as-

signment of colour names to the responses. Interestingly, the central tendency bias only

emerges in Experiment 4 in the final run of the task after participants have been trained.

It could be that the residual bias is still caused by participants assigning colour names

to the stimuli and response options during the task. Following completion of Experiment

4, we asked participants to fill in a short questionnaire designed to assess if participants

used a particular strategy to complete the task (Figure D.3). Only seven of the eleven

participants who completed the three runs of the task filled in the questionnaire. Of these
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seven, four self-reported the use of colour names during the task; either as a method for

encoding the reference, as labels assigned to the response buttons, or both. One partic-

ipant (participant 4059) said that they adopted this strategy for the second and third

runs of the task but did not use it in the first run. However, whether or not participants

adopt a strategy of this kind is not predictive of the level of bias they display in the third

run of Experiment 4. For example, the participant with the most negative slope value

(participant 4061) claimed to only take a visual snapshot of the reference and adjust the

test until its appearance matched the remembered reference. Conversely, the participant

whose slope remains positive throughout all runs of the task (participant 4068) reported

using the colour names strategy. It seems then that the residual bias seen in the final run

of Experiment 4 is independent of categorisation effects (using colour names during the

task).

Why though do we only find significant evidence of a central tendency bias in the final

run of Experiment 4 but not in the first two runs or in Experiment 3? In Experiment

3, we changed the temporal statistics of the experimental stimuli; two test lights are

now seen per trial rather than one (as in Experiment 1) and could make formation of a

prior over reference illuminations more difficult given the added interference of an extra

illumination view on each trial. A similar argument may explain the lack of bias in the

first two runs of Experiment 4. As participants can adjust the test, they view it for much

longer than the reference on each trial. In addition, the test illumination is flashing on

and off and this could be considered multiple illumination presentations. On top of that,

participants are adjusting the test illumination. Again, this could hinder formation of a

prior over the reference illumination parameters due to the extra interference. It may be

that participants carry on learning from one repeat of the task to the next in Experiment

4, however, and that they have not formed an adequate prior until the final run of the

task. Indeed, once a participant begins to show a negative slope in one of the task runs,

they do not go back to a positive slope, with the exception of participant 4056.

We must also ask why we do not find evidence of a central tendency bias in Experiment
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3. In Experiment 3, observers must hold not only the reference in memory, but also the

first comparison illumination. Hence, when making the decision of whether comparison 1

or 2 is most similar to the reference, comparison 1 may be subject to the same memory

reconstruction bias (by a learnt prior) as the reference and this could be what produces

such noisy data. To test this explanation, this experimental paradigm could be used on

a monitor for perceptual estimates of coloured patches when both comparisons can be

presented simultaneously.

Our results can be compared directly to those of Olkkonen et al. (2014) as the stimuli were

controlled such that they produce the same retinal excitation. Our data from Experiment 1

are suggestive of a slightly stronger central tendency bias than their data (an average slope

of approximately −0.3 in Olkkonen et al. (2014) across the three blocks compared to −0.47

in Experiment 1). However, in the final run of Experiment 4, we find an average slope

value of −0.14, suggestive of weaker central tendency bias than that of Olkkonen et al.

(2014). It could be that the task used by Olkkonen et al. (2014) is not as susceptible to the

effects of categorisation (like the task used in Experiment 1) due to one small difference

between the tasks. In our Experiment 1, we ask participants if the test illumination was

bluer or yellower than the reference. Olkkonen et al. (2014) asked participants whether

the test or reference was bluer. While it would be easy to extend the model we present in

Experiment 2 to predict data for the task used by Olkkonen et al. (2014), we do not have

naming or discrimination data for these individuals so cannot ask how much of the bias

can be explained by this model as we did for our task in Experiment 2.

An emerging stream of literature has illustrated a perceptual bias towards the most re-

cently viewed stimulus, a one-back bias in perceptual estimates (although note that studies

report a dependence on stimuli seen further back in the stimulus stream; for example, up

to three-back (Fischer & Whitney, 2014)). This type of bias is treated separately in the

literature from a central tendency bias (a bias towards the stimulus one trial back com-

pared to a bias towards the mean of all stimuli within a series) and has been coined serial

dependence. Serial dependence is seen in estimates for a range of stimulus characteristics
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such as numerosity (Cicchini et al., 2014; Corbett et al., 2011), orientation (Fischer &

Whitney, 2014), face identity (Liberman et al., 2014), face gender (Taubert et al., 2016a),

and attractiveness (Kondo et al., 2012; Taubert et al., 2016b; Xia et al., 2016).

The distinction between central tendency bias and serial dependence seems unclear. In-

deed, when the effects of serial dependence were noted in the past, albeit under the guise

of assimilation effects (McKenna, 1984), they were considered in the same vein as the

central tendency bias (Hellström, 1985; Ryan, 2011). Indeed, some more recent studies

seek to investigate how the central tendency bias evolves during an experimental session,

assessing the weighting placed on stimuli seen n trials back in the running average and

effectively asking when central tendency is in fact serial dependence (Hubert-Wallander

& Boynton, 2015; Mattar et al., 2016). To that end, it seems that if there should be -

and is - a distinction between the two types of bias then the distinction comes down to

the two mechanisms having different temporal integration constants. One must consider

then that the central tendency bias we see in Experiments 1 and 4 is only a bias towards

the mean of the most recently seen stimuli (only a few stimuli back) rather than towards

the mean of the whole stimulus set. In our experiments, the stimulus series from which

reference stimuli are drawn always consists of five stimuli following a uniform distribution.

As the sample mean of variables drawn from such a distribution quickly converge on the

expected value (the central tendency, see Appendix D), only a few stimuli are needed

before an accurate estimate of the mean of the stimulus set can be formed.

In this chapter, we have considered the manifestation of a central tendency bias in per-

ceptual estimates of illumination hue as evidence that observers have learnt a prior over a

set of reference illumination hues. We draw such a conclusion due to models in the central

tendency bias literature that attribute the effect to observers learning and using priors to

bias perception (e.g. Huttenlocher et al., 2000). The behavioural data we present can-

not easily be explained by other perceptual phenomena such as adaptation or perceptual

learning. Firstly, at the start of the task observers are adapted to a D65 illumination.

Considering the short exposure time to the reference and test stimuli and the constant
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adaptation top-up periods (to D65 again), it is fair to assume that the observers adapta-

tion state remains consistent across the different blocks of the experiment. Secondly, in the

perceptual learning literature, through repeated testing and exposure to stimuli, observers

generally get better at discriminating differences between stimuli (Fine & Jacobs, 2002).

This is the opposite to a central tendency bias where all reference stimuli are remembered

as more similar than they actually are (all perceptual estimates are pulled towards the

mean).

The results of the 2 and 3-naming tasks and the discrimination intervals collected in

Experiment 2 are interesting in their own right. Firstly, we are unaware of a previous

study that has illustrated how colour category boundaries may shift with the stimulus set,

a result that is suggestive of range adaptation and/or the optimal usage of colour terms for

information transmission (but see Appendix B in Brown et al. (2011)). Of course, in the

naming tasks used here we restricted participants to two or three colour terms and only

used a small range of stimuli from the hue circle. It remains to be seen how consistent

colour category boundaries are when the number of colour terms that can be used is

increased or free naming is used and if the range of stimuli shown is varied. Secondly, the

discrimination interval data is relevant to the questions we raised about the “blue bias”

in Chapters 3 and 4. We will return to this point in the general discussion.

All participants in Experiment 2 and three participants in Experiment 3 had taken part

in previous parts on the study. For Experiment 2, this was considered an important factor

as we wished to ensure that simulated data corresponded to that collected in Experiment

1. For Experiment 3, this could mean that participants carry forward learning from the

previous Experiments. However, considering that there are three blocks of reference illu-

minations used in the Experiment, participants must relearn the the reference illumination

within each block and therefore, carrying forward a learnt prior from previous runs of the

task is not helpful.
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6.7 Conclusion

By using the same experimental design as Olkkonen et al. (2014) we showed a central

tendency bias for estimates of illumination hue. Further experiments showed that the

magnitude of the bias may be exaggerated by the use of colour terms as response labels,

but that this did not account for all of the variability in the data. In illustrating this

we also showed that colour categories are not a fixed property of colour perception and

category boundaries may move with the stimulus range.
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Implications and Future Work

7.1 Purpose of this work

Previous work using an illumination discrimination paradigm (the IDT) found that colour

constancy was better for illumination changes that became nominally bluer (relative to a

neutral D67 reference illumination) along the Planckian locus (an estimate of the varia-

tion in daylight chromaticities) compared to illuminations that became nominally yellower

along the Planckian locus, or that varied along an axis that represented atypical illumina-

tion changes (nominally, they became either redder or greener; Pearce et al., 2014; Radonjić

et al., 2016b; Alvaro et al., 2017). As measurements of daylight chromaticities vary more

in the region of bluer illuminations used in the experiment compared to yellower illumina-

tions (even though both are defined to fall on the Planckian locus), and the redder/greener

illumination chromaticities are not likely in the natural world (Hernández-Andrés et al.,

2001; Spitschan et al., 2016, see also Section 1.5.3), these findings suggest that human

colour constancy mechanisms are optimised for the statistics of the environment, in the

sense that they have developed or evolved to cope best with natural illuminations. Other

authors have found a similar optimisation for bluer changes in illumination chromaticities

that correspond to those likely to occur in nature (Delahunt & Brainard, 2004; Radonjić

& Brainard, 2016), although not all the literature on this topic is in agreement (Brainard,

1998; Foster et al., 2003; Rüttiger et al., 2001).

We focused our efforts on understanding the results of the IDT where better colour con-

stancy for the bluer illumination changes in the task is a reliable finding, referred to as

a “blue bias” for colour constancy (Pearce et al., 2014; Radonjić et al., 2016b; Alvaro

et al., 2017). We hypothesised two possible mechanisms that may mediate the effect and

investigated which of the two is more plausible with the studies in this thesis, although it

should be noted that both mechanisms could be operating in tandem.
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The first of our hypotheses (referred to as the nurture hypothesis) suggests that the effect

is mediated by a learnt illumination prior that observers obtain through repeated illumi-

nation exposures throughout their lifetime - an observer specific prior. This hypothesis

makes multiple predictions that were tested in this thesis. Firstly, it predicts that a similar

bias (better colour constancy for bluer illumination changes) will not be seen in different

versions of the IDT where the reference illumination (and all comparisons) are specified

to fall in a different location in colour space such that the natural variation in measured

daylight chromaticities does not coincide with the bluer illuminations used in the exper-

iment. This prediction is tested in Chapter 3. Secondly, the nurture hypothesis predicts

that, as observers have their own individual prior shaped by their personal experience

with illuminations, there will be inter-individual differences present in the level of “blue

bias” displayed by observers. We test this prediction primarily in Chapter 4 but also in

Chapter 3. As we find evidence in support of the nurture hypothesis in both Chapters 3

and 4, we ask in Chapter 5 if individual priors can explain a recent visual illusion and,

finally, in Chapter 6, we look for evidence that observers can learn a prior over illumination

characteristics that influences behaviour.

The second hypothesis (the nature hypothesis) suggests that the effect is mediated by a

reduced sensitivity to global changes in scene chromaticity that are in a bluer direction

in a chromaticity plane. A reduced sensitivity to such changes would be expected if

the human visual system has become optimised for the statistics of natural illuminations

through evolution and visual mechanisms less sensitive to such changes have been selected

for, effectively producing a species specific illumination prior. This hypothesis also makes

multiple predictions that were tested in this thesis. One prediction is that the “blue bias”

we see in the IDT results will also be present in other, more classical, colour discrimination

or detection tasks. We investigate this in Chapter 4. In addition, the nature hypothesis

makes contrasting predictions to the nurture hypothesis. It predicts that the level of “blue

bias” will be less variable across observers and that a “blue bias” will be seen for other

versions of the IDT where the reference illumination (and all comparisons) are specified
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to fall in a different location in colour space. The results of both Chapters 3 and 4 are

relevant to this controversy.

7.2 Summary of main findings

7.2.0.3 Evidence for the nature vs. nurture hypotheses

In Chapter 3, we find that thresholds for illumination discrimination in the IDT show

different patterns of asymmetry when the reference illumination (and all comparison il-

luminations) are shifted in chromaticity. Specifically, if we consider the shift relative the

neutral reference illumination condition that was used in previous studies (Pearce et al.,

2014; Radonjić et al., 2016b; Alvaro et al., 2017), then thresholds are enlarged for the

direction of illumination change that is chromatically opponent to the chromatic change

in the illuminations; for example, when the experimental illuminations all become greener,

the largest thresholds are in the redder direction of chromatic change. In other words,

thresholds are enlarged along the chromatic axis of change along which the illuminations

approach the distribution of daylight chromaticities. This suggests that colour constancy

mechanisms are optimised for illuminations with similar chromaticities to those of day-

lights. This is an effect one may expect to see if observers utilise a daylight prior (either an

observer specific or species prior), and we provide an explanation of why a model of this

kind may predict these data in the Discussion to Chapter 3. However, we also find that

thresholds for the bluer direction of change (regardless of reference illumination condition)

are still the highest on average. This supports the nature hypothesis, suggesting a reduced

sensitivity to chromatic changes in the illumination that are “blueish” that, importantly,

is not specific to the changes typical of changes in daylight illuminations. In addition, by

comparing our results to those of Radonjić et al. (2016b), we find that the explanation of

their results in terms of the biased set of surfaces in the scene may not hold as it cannot

be extended to our results.

In Chapter 4 we explored individual differences in illumination discrimination ability,
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specifically by looking at inter-individual differences in the level of “blue bias” displayed

by observers. We find that the “blue bias” is variable across observers, the magnitude of

the variability exceeding that of intra-individual differences. In fact, some observers show

no “blue bias” at all. These results are suggestive of individual priors (nurture hypothesis)

rather than species priors (nature hypothesis). In addition, we show in Chapter 4 that illu-

mination discrimination ability (in the IDT) is not easily predicted by chromatic contrast

discrimination ability (in the CCDT); although we point out several issues in the Discus-

sion to Chapter 4 with the comparison between the two tasks. In addition, we show that

a bias in the retinal information, caused by asymmetries in cone ratios or the biological

constraints of human optics, cannot account for the “blue bias”. However, differences in

cone ratios may begin to explain some of the individual differences in overall illumination

discrimination ability; but this idea needs further exploration and development.

Chapter 5 considered the idea of daylight illumination priors in the context of #theDress

(the internet phenomenon of 2015). It has previously been hypothesised that observers

infer incident illuminations of different chromaticities, relying on illumination priors to

overcome the ambiguity of the image, and that a cue to differences in illumination priors

may be an observers’ chronotype. We found a relationship between illumination matches

and matches to the dress (as others before us, Witzel et al., 2016), and a weak relationship

between chronotype and illumination matches (morning types giving bluer illumination

matches than evening types). In other words, the dress photograph may be considered as

evidence of the influence of illumination priors on colour perception.

Finally, in Chapter 6 we conducted a study to assess if observers can learn a prior over

illumination parameters during the time frame of a psychophysics experiment. In a first

experiment, we found strong evidence of a learnt illumination prior. However, we pos-

tulated another explanation for the results that was related to the task design. When

we altered the experiment to account for these effects, we still found evidence of a learnt

illumination prior, but the effect was much smaller.
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7.2.0.4 Contribution to the literature on second and higher-order colour

mechanisms

After making certain assumptions about the second-order mechanisms in Chapter 4 to

make what we called “probability predictions” of illumination discrimination thresholds

using chromatic contrast discrimination data, we went on to perform a second task (the

iCCDT) to assess how valid these predictions were. The assumptions that we made were

firstly that the cardinal axes of DKL colour space are an accurate and exhaustive represen-

tation of the second-order colour mechanisms and, secondly, that they act independently

to detect chromatic changes in a stimulus. The validation experiment that we performed

suggests that these assumptions cannot be made; we found evidence of either higher-order

colour mechanisms or that the cardinal mechanisms do not act independently. It Section

1.4 we briefly reviewed the literature on this topic and concluded that there is currently no

consensus in the field on the number or independence of chromatic mechanisms. Our data

have implications for this debate, supporting the argument that there is an interaction

between the cardinal mechanisms or that higher-order colour mechanisms also exist.

7.2.0.5 Contribution to the literature on central tendency biases in percep-

tion

The results we present in Chapter 6 are also relevant to the literature on central tendency

biases in perception (and possibly also the literature on serial dependencies in percep-

tion, see the Discussion in Chapter 6 where we discuss if these two phenomenon should

really be considered separately). We began in that Chapter by replicating an experiment

originally performed by Olkkonen et al. (2014) that showed a central tendency bias for

perpetual estimates of simulated surface hues, although we used real illuminations rather

than simulated surfaces as our stimuli. Like Olkkonen et al. (2014), we found a central

tendency bias for perceptual estimates of illumination hue. However, we postulated that

the effect may be exaggerated by the design of the task and found evidence of such in a

second experiment. In further experiments, we find mixed evidence for a residual central
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tendency bias after the effect of the task design is counteracted. These results should

be considered in relation to other studies on central tendency biases in perception where

similar task design elements may be exaggerating the central tendency bias effect.

7.2.0.6 Contribution to the literature on the Bayesian brain hypothesis

We cannot draw conclusions from this work as to whether the brain does indeed behave

like a Bayesian hypothesis tester or predictive machine, rather, that is the framework

that we adopted when conducting these experiments. A different stream of research is

necessary to assess whether the brain is actually performing these types of computations

or heuristics of them such as studies that ask whether observers show behavioural qualities

that Bayesian computation would predict (e.g. Ernst & Banks, 2002), or studies that

perform model comparison (e.g. asking whether a Bayesian or switching observer model

best fits behavioural data; Laquitaine & Gardner, 2017).

7.3 Limitations of this work

To measure thresholds for colour constancy in this thesis, we adopted the illumination

discrimination task. In the illumination discrimination task, observers must find the illu-

mination, among two comparisons, that best matches a reference. The instructions for the

task are: “On each trial, you will see the reference illumination followed by two compar-

ison illuminations. You will use the gaming pad to indicate which of the two comparison

illuminations most closely matched the reference”. This means that optimal performance

on the task requires colour constancy mechanisms to fail; i.e. in order to always detect the

changes in the proximal stimulus caused by a change in the illumination, the participant

should not remain colour constant. Indeed, we find evidence of learning along these lines

over repeated runs of the neutral (original) IDT in Experiment 2 of Chapter 4.

When an experimenter says they are measuring thresholds, it is generally considered that

they are measuring an upper limit in performance. While we can say we are measuring
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an upper limit of illumination discrimination ability with the IDT (the smallest change in

illumination detectable to the participant), we cannot be sure that we are also measuring

an upper limit of colour constancy (the largest change in the illumination under which the

participant remains colour constant) as this is not the participant’s goal in the task.

This highlights a second criticism of the IDT: it is yet to be established how thresholds

on the IDT relate to colour constancy in the standard sense. We will return to this point

when we discuss ideas for future work (Section 7.4 below).

A common question asked of the IDT results is how much the threshold asymmetries

depend on the colour space that thresholds are calculated in. In a previous paper (Radonjić

et al., 2016b), we showed that using a different colour space (S-CIELAB) the asymmetries

are still present.

7.4 Future work

There are possible avenues for future work that follow on from the studies in this thesis.

In the Discussion to Chapter 3 we suggested that a Bayesian model that incorporates a

daylight prior, or even a daylight-manmade prior, for illuminations may explain the biases

that we see in the tasks. However, for such a model to be developed, one would need: (i) a

database of man-made illumination spectra to combine with measurements of daylights to

form the prior; (ii) to choose a method by which observers extract illumination estimates

from the scene (e.g. the-grey-world or brightest-is-white hypothesis); (iii) a generative

model that captures how different illuminations interact with surfaces in the scene (making

assumptions about the likely surface reflectance properties of surfaces in the scene) in order

to form the likelihood function on each trial. On top of that, one would need to decide

whether to deal with spectral quantities or just tristimulus values (actually, a mixture of

both will likely be necessary). The first of these requirements is the most easy to meet,

the second requires a subjective choice by the modeller, but the third is particularly hard

to achieve and is one of the reasons why such a model was not developed as part of this
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work. However, a future long term project may be able to achieve this goal as we gain

more of an understanding of the statistics of natural and man-made scenes.

There is also scope to extend the ideal observer models developed using ISETBIO in

Chapter 4. In ISETBIO, it is possible to model the transmission of signals through the

bipolar and ganglion cell layers of the retina. In addition, the ISTEBIO team intend

to extend this further, taking into account processing in the LGN and visual cortex.

We showed in Chapter 4 that an alteration to the modelling procedure that amounts to

increasing the level of noise in the model leads to predicted thresholds of a more similar

magnitude to those observed in the task. Adding these extra stages of visual processing will

also add further noise to the model and could even lead to predictions of the asymmetries

in thresholds. Furthermore, the output of the ISETBIO model could be used as the sensory

input in the formulation of a Bayesian model of the type discussed above.

In Chapter 4, we only considered the effects that individual differences in chromatic con-

trast discrimination ability or L : M cone ratios may have on IDT thresholds. The

inter-individual differences that we observe in overall ability on the IDT, however, may

be explained by factors unrelated to the mechanisms of colour vision, such as working

memory or other cognitive factors. It would be useful in the future to perform a cognitive

test battery on participants who complete the IDT to investigate whether inter-individual

differences in cognitive abilities can account for inter-individual differences in performance

on the IDT.

In addition, as mentioned in the previous section, it is unclear how thresholds on the IDT

relate to classical measures of colour constancy; especially since optimal performance on

the IDT encourages a lack of colour constancy. One way to assess this would be to design

a task in which observers are required to find the corresponding object across changes in

illumination. The IDT makes a prediction of the probability that an observer finds the

correct object under each illumination change used in the IDT. For example, if we fit a

psychometric function to the staircase data for the redder direction of change in the neutral

(original) IDT task for one observer, then the reciprocal of probabilities read out from the
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fitted function can be used to predict the probability of correct object identification under

each illumination change along this axis of change (or at least it can for objects whose

surface spectral reflectance functions are similar to those of the Mondrian patches used in

the experiment).

Finally, it remains to be seen whether the “blue bias” will translate to experiments using

more naturalistic scenes. Alvaro et al. (2017) provide a promising contribution along these

lines that suggests the effect is not specific to Mondrian papered scenes like the one used

in the IDT, rendering illuminations on hyperspectral images of natural scenes.

7.5 Overall conclusions

To conclude, in the experiments of this thesis, we found further evidence that the colour

constancy mechanisms of the human visual system are optimised for the statistics of the

natural world; i.e. they are optimised for natural daylight illuminations. In addition, we

found evidence that this optimisation comes about through the use of a learnt prior over

the characteristics of daylight illuminations (the nurture hypothesis - individual priors).

However, we also find evidence of a generic reduction in sensitivity to bluer changes in an

illumination (the nature hypothesis - a species prior), but this same reduction in sensitivity

is not present in measures of chromatic contrast discrimination ability. In this case, at

present, we must conclude that there are colour constancy mechanisms that relate to both

of our hypotheses. We do not yet know how a daylight illumination prior or its influence on

colour perception would be represented in the visual system but suggest that a Bayesian

model may predict the results in future.
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Chapter 3 appendix

A.1 Fitting the 3-component CIE daylight model to our

illuminations

To assess how much the spectral content of the illuminations used in the experiment

match that of daylights, we asked how well our illuminations could be model using the

3-component CIE daylight model (CIE, 2004). The CIE daylight model consists of three

basis functions: S0, S1 and S2 (Figure A1.A). To fit the CIE daylight model to our illu-

minations we first normalised the CIE daylight basis functions by their vector norm (L2

norm). We then took each experimental illumination spectrum (Figure A1.B), normalised

it by its vector norm, and used multiple least squares regression to find the weightings

of the three CIE daylight basis functions that provide the best fit to the experimental

illumination. Taking a combination of the basis functions with these weightings applied

gives the recovered spectrum (Figure A1.C). The quality of the fit was assessed using the

R2 statistic (the coefficient of determination, the square of Pearsons correlation coefficient

between the true and recovered spectra). Averaging over all illuminations, the mean good-

ness of fit was R2 = 64.95% ± 12.87% (mean ± SD), indicating that the CIE daylight

basis functions explain a large proportion of the variation in the experimental illumina-

tions. In Table A1, we show the mean proportion of variance explained (mean R2) for

each chromatic axis of change used in the experiment. We see that the CIE daylight

model provides a better approximation of the illuminations in the conditions where the

reference illumination is parametrised to fall on the Planckian locus (neutral, blue and

yellow conditions).
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Figure A.1: Fitting the 3-component CIE daylight model to the IDT illuminations. A. The L2

normalised CIE daylight basis functions. S0 is in black, S1 is in medium grey and S2 in light
grey. B. The measured spectral power distributions of all illuminations used in the experiment.
C. The recovered spectral power distributions of all illumination spectra obtained from fitting the
3-component CIE daylight model.

Table A.1: Table of goodness of fit values (R2) for the CIE daylight model to each axis of chromatic
change used in the experiment.

Reference Bluer Greener Redder Yellower

Neutral 76.07% 74.35% 77.80% 72.27%
Blue 68.16% 71.62% 72.47% 66.62%

Green 60.21% 55.07% 61.21% 54.76%
Red 44.78% 42.95% 49.03% 39.67%

Yellow 79.72% 76.37% 76.13% 79.68%
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B.1 Quantifying the “chromatic bias” in IDT Thresholds

Figure B.1: Quantifying the “chromatic bias” in different reference illumination conditions. A.
The mean “chromatic bias” in the five reference illumination conditions defined as the average of
the difference between the chromatic direction of change in the opposite chromatic direction to the
bias in the illuminations and all other directions. B-K. Scatter plots comparing the “chromatic
bias” in each pair of reference illumination conditions with Pearson’s correlation coefficient shown
above.

B.2 Extra sources of individual differences

B.3 Extra adaptation effects plots
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Figure B.2: Correlating the thresholds for the different directions of chromatic change in the IDT
with age. A-D. Correlations of thresholds for each direction of change with age. Spearman’s rank
correlation coefficient between the two variables is shown above each plot.

Figure B.3: Correlating the thresholds for the different directions of chromatic change in the IDT
with lapse rate. A-D. Correlations of thresholds for each direction of change with lapse rate.
Spearman’s rank correlation coefficient between the two variables is shown above each plot.
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Figure B.4: Simulated current, isomerisation and standard cone contrast values for the neutral
reference illumination condition when the target is in the second comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.5: Simulated current, isomerisation and standard cone contrast values for the blue ref-
erence illumination condition when the target is in the first comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.6: Simulated current, isomerisation and standard cone contrast values for the blue ref-
erence illumination condition when the target is in the second comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.7: Simulated current, isomerisation and standard cone contrast values for the green
reference illumination condition when the target is in the first comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.8: Simulated current, isomerisation and standard cone contrast values for the green
reference illumination condition when the target is in the second comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.9: Simulated current, isomerisation and standard cone contrast values for the red reference
illumination condition when the target is in the first comparison position. Each column of plots
shows the contrast values for a different cone type and each row of plots for a different direction of
chromatic change in the illumination. Along the horizontal axis is plotted the distance in CIELUV
between the test and target illuminations. The vertical axes show the normalised contrast values.
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Figure B.10: Simulated current, isomerisation and standard cone contrast values for the red ref-
erence illumination condition when the target is in the second comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.11: Simulated current, isomerisation and standard cone contrast values for the yellow
reference illumination condition when the target is in the first comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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Figure B.12: Simulated current, isomerisation and standard cone contrast values for the yellow
reference illumination condition when the target is in the second comparison position. Each column
of plots shows the contrast values for a different cone type and each row of plots for a different
direction of chromatic change in the illumination. Along the horizontal axis is plotted the distance
in CIELUV between the test and target illuminations. The vertical axes show the normalised
contrast values.
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C.1 Categorisation of colour names

Table C.1 shows the colour names that participants reported for the dress photograph

the first time they saw it and the categorisation of these colour names into original dress

colour name groups. The colour names reported by the participants were categorised

independently by four members of the Hurlbert Colour Vision Laboratories at Newcastle

University. The categorisations of all four lab members agreed.

Table C.2 shows the colour names that participants reported for their matches to the

dress body and lace when presented in isolation. As with the original dress colour names,

four members of the laboratory independently categorised these data into groups. In 29

out of the 32 cases, all four experimenters agreed. In two cases (participants 2050 and

2053), there was a 50/50 split in the categorisation (2050: blue/gold vs. white/gold;

2053: blue/black vs. blue/white). Here, the categorisation of the most experienced re-

searcher was favoured. Similarly, for one participant (2009) all categorisations disagreed

(white/gold vs. blue/green vs. purple/green vs. blue/gold). Again, the categorisation of

the most experienced researcher was favoured.

C.2 ANOVA analyses of dress body and lace colour matches

With dress body matches grouped according to original dress colour names (B/K, W/G,

B/G), there is no difference across groups on the lightness (L∗) or blue-yellow (v∗) axes

(F (2, 29) = 2.66, p = 0.087 and F (2, 29) = 1.73, p = 0.196). There was a difference along

the red-green dimension (u∗ : F (2, 29) = 5.42, p = 0.01), with the B/K group matching

the dress body to significantly lower u∗ values (more green) than the W/G group (mean

difference of 6.97, p = 0.01, Bonferroni corrected). However, the same grouping for dress

lace matches results in significant differences along all axes of CIELUV colour space (L∗,
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Table C.1: Categorisation of the colour names that participants reported for the dress photograph
the first time they saw it. The original dress names column shows the colour names as reported
by the participant. The categorised column shows the categorisation of these colour names.

Participant ID Original Dress Names (Body/Lace) Categorised (Body/Lace)

2000 white/gold white/gold
2001 blue/black blue/black
2002 blue/gold blue/gold
2003 blue/black blue/black
2005 blue/black blue/black
2009 blue/black blue/black
2021 white/gold white/gold
2022 blue/(black/brown) blue/black
2023 white/gold white/gold
2024 white/gold white/gold
2031 white/gold white/gold
2033 blue/black blue/black
2034 blue/black blue/black
2039 blue/black blue/black
2040 white/gold white/gold
2041 blue/gold blue/gold
2044 blue/gold blue/gold
2045 blue/black blue/black
2046 blue/black blue/black
2047 white/gold (yellow) white/gold
2049 blue/gold blue/gold
2050 white/metallic gold white/gold
2051 grey blue/gold blue/gold
2052 light blue/chocolate brown blue/gold
2053 blue/black blue/black
2057 blue/black blue/black
2059 blue/gold blue/gold
2061 blue/gold blue/gold
2062 white/gold white/gold
2063 blue/black blue/black
2064 white/gold white/gold
2065 white/gold white/gold

u∗ and v∗: F (2, 29) = 8.03, p = 0.002; F (2, 29) = 13.21, p < 0.001 and F (2, 29) = 6.42,

p = 0.005).

With dress body matches grouped according to disk colour names (B/K, W/G, B/G, P/G)

there are significant differences along L∗ (F (3, 26) = 6.32, p = 0.002) and v∗ (F (3, 26) =

7.56, p = 0.001). Matches did not vary along the u∗ dimension (F (3, 26) = 2.47, p =
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Table C.2: Categorisation of the colour names that participants reported for their matches to the
dress body and lace when presented in isolation. The disk names column shows the colour names
as reported by the participant. The categorised column shows the categorisation of these colour
names.

Participant ID Original Dress Names (Body/Lace) Categorised (Body/Lace)

2000 lavender/bronze purple/gold
2001 purpley blue/brown blue/gold
2002 blue/gold blue/gold
2003 sky blue/dark grey brown blue/gold
2005 blue/black blue/black

2009
light grey with tiny hint

of blue and a breath of lilac/
greeny mustard yellow ochre

white/gold

2021 lilac/fawn purple/gold
2022 blue/brown blue/gold
2023 very pale grey blue/dirty brown gold blue/gold
2024 white/gold white/gold
2031 blue/brown blue/gold
2033 blue/black blue/black
2034 pastel blue/reddy brown blue/gold
2039 blue/green blue/green
2040 pale blue/muddy yellow blue/gold
2041 light blue/orangy brown blue/gold
2044 blueish grey/sandy burnt yellow/gold blue/gold
2045 duck egg/mustard blue/gold
2046 lilac/khaki purple/gold
2047 white/dark yellow white/gold
2049 pale violet/fleshy tan purple/gold
2050 grey bluey white/yellow blue/gold
2051 grey blue/sandy orange blue/gold
2052 light blue/dark orange blue/gold
2053 blue/grey blue/black
2057 blue/purple blue/purple
2059 pale blue/mustard yellow blue/gold
2061 light blue/gold blue/gold
2062 blue/black blue/black
2063 light grey/mustard white/gold
2064 white/thorn white/gold
2065 purple/mustard purple/gold

0.084). Matches to the dress lace also differ significantly between disk colour names groups

on the v∗ (F (3, 26) = 6.16, p = 0.003) and u∗ axes (F (3, 26) = 3.73, p = 0.024). Dress

lace matches did not differ across disk colour name groups on the L∗ axis (F (3, 26) = 2.41,
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p = 0.09).

C.3 Control experiment 1: achromatic matches at different

luminance levels

C.3.1 Methods

Seven participants from the main experiment returned to the laboratory at a later date

to complete a control experiment. The main purpose of the control experiment was to

ascertain whether the fixed luminance setting of the matching disk affects the chromaticity

of the achromatic settings. In particular, we asked if an increased luminance level leads to

a bluer achromatic setting by requiring that all participants adjusted the matching disk to

look achromatic at each of five different fixed luminance levels (7.35 cd/m2 , 18.20 cd/m2,

34.46 cd/m2, 54.78 cd/m2 and 96.49 cd/m2; equivalent to the minimum, lower quartile,

median, upper quartile and maximum luminance settings of the dress body matches from

the main experiment and later referred to by their L∗ (lightness) value relative to the

monitor white point: 23.93, 38.01, 50.83, 61.99, 78.19, respectively). Participants repeated

the adjustment three times at each luminance level. In addition, each participant repeated

their matches to the dress body and lace as well as completing three illumination matches.

All matching procedures followed the same protocol as the main experiment.

C.3.2 Results

CIELUV v∗ values of the achromatic settings differed significantly across the different

luminance levels (Figure C.1.A; Friedman test, χ2(4) = 17.257, p = 0.002). Achromatic

settings became bluer as luminance increased, with significantly lower v∗ values at a lumi-

nance setting of 34.46 cd/m2 (L∗ = 50.83) compared to 7.35 cd/m2 (L∗ = 23.93) (mean

difference of 2.739, p = 0.024, with a Bonferroni correction). However, CIELUV u∗ settings

did not differ significantly (Figure C.1.B; Friedman test, χ2(4) = 3.886, p = 0.422).
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Figure C.1: The chromaticity of the achromatic settings in the control experiment. A. CIELUV
u∗ values of the achromatic settings across the different luminance levels, in L∗ units. B. CIELUV
v∗ values of the achromatic settings across the different luminance levels. In both figures, each
participants matches are plotted separately (solid coloured lines) as well as the average over all
participants (black dashed line). The legend shows which participants took part in the control
experiment and whether they were categorised in the blue and black (B/K), white and gold (W/G)
or blue and gold (B/G) original dress colour groups.

The matches that participants gave to the dress body and lace did not differ significantly

from their original matches along any dimension of CIELUV (Figures C.2.A and C.2.C;

Wilcoxen Signed Ranks Tests, p > 0.128 in all cases). Mean illumination matches also did

not differ from original mean illumination matches (Figures C.2.B and C.2.D; Wilcoxen

Signed Ranks Tests, p > 0.176 in all cases).
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Figure C.2: Matches to the dress body, dress lace and illumination made during the control
experiment. A. Original dress body (blue ◦) and lace (brown ◦) matches and those made during the
control experiment (squares) plotted in the CIELUV chromaticity plane. B. Original illumination
matches (◦) and illumination matches made during the control experiment (squares) plotted in the
CIELUV chromaticity plane. C. Original dress body (blue ◦) and lace (brown ◦) match luminance
settings and the luminance settings of those made during the control experiment (squares). D.
Original illumination match luminance settings (◦) and luminance settings of those made during
the control experiment (squares). In A and B, the black dashed line represents the Planckian locus.
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D.1 Experiment 1: Supplementary

The final value of each staircase was taken as the estimated PSE, with bias calculated

as PSE hue value minus reference hue value. The blue staircases (starting at a hue value

larger than that of the reference hue) and yellow staircases (starting at a hue value smaller

than that of the reference hue) gave significantly different bias values (Wilcoxen signed-

ranks test: z = 5.048, p < .001). The analysis below shows that conclusions are the same

regardless of whether bias values are taken from blue staircases, yellow staircases, or are

considered to be an average over the two (cf. the results in the main text).

Figures D.1.A and D.1.C show bias values calculated from the blue and yellow staircases

in the different blocks of reference hues used. The overall pattern of results are the same

as presented in the main text for both figures. However, the two sets of bias values differ

as those calculated from yellow staircases are significantly lower on average than those

form blue staircases (mean bias values of -0.89±5.54 and 0.68±5.40, respectively). For

both staircase types, there is a main effect of direction of change on PSEs for the four hue

values that are repeated between blocks (138, 144, 156 and 162 degrees; 2 × 4 repeated

measures ANOVAs: F (1, 10) = 77.95, p < .001 for blue staircases and F (1, 10) = 124.98,

p < .001 for yellow staircases).

Like in the main text, regression lines were fit to the bias values within each block. For

bias values from both blue and yellow staircases all fitted regression slopes are negative

(Figure D.1.B and D.1.D). In addition, the average slope values are significantly different

from zero in all three blocks for bias values from both blue (t(10) = −7.22, p < .001,

t(10) = −7.05, p < .001 and t(10) = −6.10, p < .001, all Bonferroni corrected) and

yellow staircases (t(10) = −7.12, p < .001, t(10) = −10.02, p < .001 and t(10) = −9.13,

p < .001, all Bonferroni corrected). Finally, a repeated measures ANOVAs with block
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Figure D.1: Central tendency bias in experiment 1 for both blue and yellow staircases. A. The bias
for each reference hue angle with respect to block (1-3) calculated from just the blue staircases.
Bias is calculated as PSE hue angle minus reference hue angle in CIE L∗a∗b∗, with a positive bias
indicating that the PSE for a particular reference was “bluer” than the true hue and a negative
bias indicating that the PSE was “yellower”. Bold lines with circle, square or triangular markers
are the mean bias trend lines over all participants. Thin dashed lines are individual bias trend
lines for each participant. B. The slopes of the regression lines fit to each individual bias trend line
calculated from only blue staircases for each participant and the mean over these (error bars are
± 1 SEM). C. The bias for each reference hue angle calculated from just the yellow staircases. D.
The slopes of the regression lines fit to each individual bias trend line calculated from only yellow
staircases Note that as all slopes were negative, values on the y-axis have been flipped in B and D.

as the independent variable and fitted slope as the dependent variable shows that slope

values did not differ across blocks for either blue staircase (F (2, 20) = 0.14, p = .868) or

yellow staircase bias values (F (2, 20) = 3.23, p = .061).
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D.2 Convergence of central tendency estimates for draws

from a uniform distribution over five values

Figure D.2.A shows the estimated expected value of samples from a discrete uniform

distribution over the values 1 to 5 with respect to sample size. We generated 10,000 sets

of 100 samples from the distribution and the traces in Figure D.2.A show the cumulative

estimates of the expected value. In Figure D.2.B we show the mean estimated expected

value across the 10,000 sets for each number of samples along with the 95% confidence

intervals. We have marked the values 2.5 and 3.5 on the plots for an easier comparison of

the change in the confidence interval (and also because values in this interval would round

to 3, the true expected value).

Figure D.2: Convergence of random samples from a discrete uniform distribution. Samples are
from a discrete uniform distribution such that X ∼ DU(1, 5). A. The trace of the estimated
expected value (the mean) for 10,000 sets of 100 samples (the cumulative mean). B. The mean
estimated expect value over the 10,000 sets of sample. Error bars are 95% confidence intervals.
Red dotted lines mark the values 2.5 and 3.5 in each plot.
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D.3 Experiment 4 Questionnaire

 
 

Visual Memory and Serial Dependence in Colour Vision 
 

Questionnaire 
 

Thank you for completing our study. We would be very grateful if you could answer this quick questionnaire 
and return it to us. Many thanks, Colour Lab. 
 
You were asked to do a task which involved remembering the colour of a reference light and adjusting the 
colour of a test light to match it.  
 

1. Which of the following best describes how you remembered the reference light: 
 

☐ I took a mental snapshot of the light and visualised the colour 
 

☐ I used colour names to describe the light and remembered them 

 

☐ I associated the colour with a familiar object and used that to keep it in mind 
 

☐ Other, please explain:   
 
 
 
 
 
 
2. Which of the following best describes how you made your adjustments to the test light: 
 

☐ I gave the A and B buttons a colour name label and used these to help me know how to change the 
light 

- How did you label the buttons?  
- A –  more Yellow 
- B -  more Blue 

 
 

☐ I used A and B to adjust the colour of the test light to match a mental snapshot/visualised image of the 
reference light 
 

☐ I used A and B to adjust the test light to something that I would call the same colour as I verbally 
labelled the reference light 
 

☐ Other, please explain:  
 
 
 
 
 
 

Figure D.3: The questionnaire used in Expeirment 4.
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Radonjić, A. & Brainard, D. H. 2016 The Nature of Instructional Effects in Color

Constancy. Journal of Experimental Psychology: Human Perception and Performance

42 (6), 847–865.
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