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Abstract 

Abstract 

The cornea is the anterior most structure at the front of the eye and its most important 

function is to transmit light to the retina for a clear vision. The external surface of the 

cornea is composed of an epithelium which is continuous with the surrounding 

conjunctiva. The corneal limbus forms the narrow transition zone between the corneal 

and conjunctival epithelia and is believed to harbour the cornea stem cells. Limbal stem 

cell (LSC) deficiency (LSCD) is a painful and blinding condition of the eye. The recent 

technique of ex vivo expansion of healthy autologous limbal epithelia for transplantation 

is the mainstay of cellular therapy for this condition. Successful outcome of ex vivo 

expanded LSC transplantation is dependent on the quality of the transplanted tissues. 

The main aims of this thesis are;  i) to characterise human LSC from both primary LEC 

(LEC) and from a human telomerase-immortalised corneal epithelial cell (HTCEC) line, 

ii) to enrich for LSC by utilising the side population (SP) discrimination assay. Further, 

adult stem cells are promising candidates for promoting donor-specific tolerance and 

adult stem cells have immunosuppressive mechanisms to protect them from 

immunological reactions which are damaging to the survival of the transplanted tissues. 

Therefore, another aim of the study was iii) to investigate the immunobiological aspects 

of LSC including HLA expression and cellular migration which can promote the 

success of cellular transplantation. LSC markers were characterised in both LEC and 

HTCEC. Using an optimised protocol, SP were identified in LEC and HTCEC. Isolated 

limbal mesenchymal stem cells (MSC) fulfil the minimum requirement of a human 

MSC. These limbal MSC (LMSC) exhibited plasticity, could maintain the expression of 

limbal markers and demonstrated viable growth on a biological substrate, qualities 

making them a suitable alternative to cultured limbal explants for clinical 

transplantation. SP cells in HTCEC and LMSC expressed known common limbal 

markers, stem cell antigens and the chemokine CXCR4.  The presence of CXCR4 and 

CXCL12-mediated cellular migration were demonstrated in HTCEC. Further, HTCEC 

constitutively expressed HLA Class I antigens, while HLA Class II expressions were 

induced by Interferon-γ stimulation. In this study, HTCEC HLA-typing was presented 

and that HTCEC were in many ways comparable to LEC, therefore suitable as a LSC 

replacement or as a robust model for further understanding of LSC biology.  



ii 

 

Acknowledgement 

Acknowledgement 

The successful completion of this thesis is attributed to my supervisors, my family, my 

work colleagues and friends. I would like to express my heartfelt gratitude to the Ministry 

of Education, Malaysia and my employer - Universiti Sains Malaysia, for providing 

financial assistance and sponsorship for my PhD.  

 

Firstly, I would like to thank my supervisors Dr Annette Meeson and Professor Simi Ali, for 

imparting their knowledge and wisdom, for giving me direction, support and 

encouragement personally and professionally. Dr Meeson and Professor Ali have provided 

constant guidance and support throughout my stay in Newcastle and during my PhD 

candidature; and taught me valuable things which I will carry through in life. Hopefully this 

mentorship will continue and will be useful as I embark on mentoring my future students. I 

would also like to thank Dr Sajjad Ahmad, although not being my official supervisor, has 

started me on limbal work during my pre-PhD days. He has provided priceless advice and 

support during the ups and downs of my PhD journey. My gratitude goes to Professor John 

Kirby (Institute of Cellular Medicine) and Dr Gabrielle Saretzki (Institute for Ageing and 

Health) who were my project assessors for their valuable contribution.  

 

My sincerest thanks to my husband, Mr Izaham Musa Lope Sapien and my three children, 

Nurul, Aiza and Aidid who have withstood the test of time, soldiered on through thick and 

thin,  and survived the 3.5 years of living abroad. I would also like to our collaborators Dr 

Rachel Oldershaw and Dr Gendie Lash, my friends Dr Charles Osei-Bempong and Miss Evi 

Mallini, who have always provided me with support and encouragement. My gratitude goes 

to all the staff at the Institute of Genetic Medicine, Institute of Cellular Medicine and the 

International Centre for Life for their support. Without their help my experiments and 

analysis of data would surely be overdue, and this thesis would not materialise. 

 

I am also grateful to those who have kindly donated their tissues for this research, the 

donors of cornea/limbal tissues and their families, Manchester Eye Bank, NHS Blood and 

Transfusion Service and Newcastle University Uteroplacental Bank for the tissues used in 

this project.  

 

Thank you from the bottom of my heart, 

 Bakiah Shaharuddin, 

Newcastle Upon-Tyne,  

July 2015. 



iii 

 

Table of Contents 

Table of Contents

 

Abstract ......................................................................................................................... i 

Acknowledgement ........................................................................................................ ii 

Table of Contents ......................................................................................................... iii 

List of Figures ............................................................................................................ viii 

List of Tables ............................................................................................................... xi 

Abbreviations ............................................................................................................. xii 

Declaration and Copyright Statement .......................................................................... xv 

Publications, Abstracts and Awards ........................................................................... xvi 

 

Chapter 1 LITERATURE REVIEW ......................................................................... 1 

1.1 Corneal Blindness ................................................................................................... 1 

1.1.1 Definition, epidemiology and patho-physiology ............................................ 1 

1.1.2 Anatomy of the cornea and limbus ................................................................ 1 
1.1.3 Development of the human cornea ................................................................ 4 

1.1.7 Enrichment method for LSC – Side population assay .................................. 14 
1.1.8 Alternative sources of stem cells at the limbus: MSC .................................. 15 

1.1.9 Limbal stem cell deficiency ......................................................................... 15 
1.1.10 Diagnosis of LSCD ................................................................................... 17 

1.1.11 Management of LSCD ............................................................................... 17 
1.1.12 New techniques in the treatment of LSCD (ex vivo expanded limbal 

epithelium) .......................................................................................................... 19 
1.1.13 Alternative sources for LSC transplantation .............................................. 20 

1.1.14 Biological substrates for limbal stem cell transplantation ......................... 22 
1.1.15 The outcome of ex vivo expanded limbal epithelial transplantation ........... 22 

1.1.16 Current prospective on tissue engineering for limbal stem cell 

transplantation .................................................................................................... 23 

1.2 Immunological Aspects of Corneal Transplantation .............................................. 25 

1.2.1 Corneal transplantation .............................................................................. 25 
1.2.3 Rejection in corneal transplantation ........................................................... 29 

1.2.4 Methods to prevent rejection ....................................................................... 33 

1.3 Conclusion ............................................................................................................ 34 

1.4 Objectives ............................................................................................................. 35 

1.4.1 Experimental Approaches and Techniques .................................................. 36 

 



iv 

 

Table of Contents 

Chapter 2 GENERAL MATERIAL AND METHODS ........................................... 37 

2.1 Ethics and Research Approval ............................................................................... 37 

2.2 Project Approval ................................................................................................... 37 
2.3 Human Tissue Authority License .......................................................................... 38 

2.4 Material Transfer Agreement (MTA) .................................................................... 38 
2.5 Ethics/Project approval ......................................................................................... 38 

2.6 Ethics/Project approval ......................................................................................... 38 
2.7 General Laboratory Practice .................................................................................. 38 

2.8 Tissue Culture ....................................................................................................... 38 

2.8.1 3T3 Fibroblast culture ................................................................................ 38 

2.8.2 3T3 Fibroblast Culture medium .................................................................. 39 
2.8.3 Cryopreservation of 3T3 fibroblast ............................................................. 39 

2.8.4 Re-culturing of cryopreserved 3T3 fibroblast .............................................. 39 
2.8.5 Inactivation of mouse 3T3 fibroblast feeder layer with mitomycin C (MMC)

............................................................................................................................ 40 
2.8.6 Inactivation of 3T3 fibroblast feeder layer with X-irradiation ..................... 40 

2.8.7 Cell counting .............................................................................................. 40 
2.8.8 Plating of 3T3 fibroblast as a feeder layer .................................................. 41 

2.9 Primary LEC Culture ............................................................................................ 41 

2.9.1 Isolation of LEC ......................................................................................... 41 
2.9.2 LEC medium ............................................................................................... 43 

2.9.3 Plating and subculturing of LEC ................................................................ 43 
2.9.4 Culture of LEC on coating matrix using serum-free medium ....................... 44 

2.10 Human telomerase-immortalised cornea epithelial cell line (HTCEC) ................. 45 

2.10.1 Maintenance of human telomerase-immortalised cornea epithelial cell line

............................................................................................................................ 45 

2.10.2 Cryopreservation and reculturing of HTCEC............................................ 46 

2.11 Mycoplasma detection and treatment ................................................................... 47 

2.12 Other Cell Lines .................................................................................................. 48 

2.12.1 Breast cancer cell MCF-7 ......................................................................... 48 

2.12.2 Breast cancer cell MDA-MB-231 .............................................................. 48 
2.12.3 Ovarian cancer cell HeyA8MDR .............................................................. 48 

2.12.4 Human Epstein-Barr Virus (EBV)-negative cell line (Ramos) ................... 49 

2.13 Primary cells – Other........................................................................................... 49 

2.13.1 Human peripheral blood leukocytes (PBL) ............................................... 49 

2.13.2 Human bone marrow-derived MSC ........................................................... 49 

2.14 Flow cytometry ................................................................................................... 50 

2.14.1 Definitions and principles ......................................................................... 50 

2.14.2 Forward scatter and side scatter............................................................... 54 
2.14.3 Principles of cell sorting ........................................................................... 54 

2.15 Immunocytochemistry (ICC) ............................................................................... 55 

2.15.1 Titration of antibodies .............................................................................. 55 
2.15.2 Staining for markers ................................................................................. 56 

2.16 RNA isolation ..................................................................................................... 57 

2.16.1 RNA quantification ................................................................................... 58 

2.16.2 RNA integrity ............................................................................................ 58 



v 

 

Table of Contents 

2.17 Reverse transcription ........................................................................................... 60 

2.18 Semi-quantitative Polymerase chain reaction (sq-PCR) ....................................... 60 

2.18.1 Primer design ........................................................................................... 60 

2.18.2 Semi quantitative-PCR (sq-PCR) .............................................................. 61 
2.18.3 Gel Extraction for DNA sequencing .......................................................... 61 

2.18.4 Validation of target gene primer(s) by gene sequencing ............................ 62 
2.18.5 Gel electrophoresis ................................................................................... 64 

2.19 Quantitative Real-timer PCR (QRT-PCR) ........................................................... 65 

2.19.1 Primer design ........................................................................................... 65 
2.19.2 Primer validation...................................................................................... 65 

2.19.3 Quantitative Real-time polymerase chain reaction (qRT-PCR) and analysis

............................................................................................................................ 66 

2.20 Imaging methods and quantification software ...................................................... 67 

2.20.1 Phase contrast inverted microscopy .......................................................... 67 
2.20.2 Fluorescence microscopy.......................................................................... 67 

2.21 Statistical Analysis .............................................................................................. 67 

 

Chapter 3 CHARACTERISATION OF CORNEAL LIMBAL STEM CELLS 

AND HUMAN LIMBAL MESENCHYMAL STEM CELLS ................................. 69 

3.1 Introduction .......................................................................................................... 69 
3.2 Specific Aims........................................................................................................ 71 

3.3 Materials and Methods .......................................................................................... 72 

3.3.1 Primary LE) and HTCEC Cultures ............................................................. 72 
3.3.4 Semi-quantitative Polymerase Chain Reaction (sq-PCR) ............................ 73 

3.3.5 Immunophenotyping ................................................................................... 74 
3.3.6 Histological analyses .................................................................................. 75 

3.3.8 Haematoxylin and eosin (H&E) staining..................................................... 77 
3.3.8 Harvesting cells for RNA extraction............................................................ 77 

3.3.9 Immunohistological analysis of LMSC on AM ............................................ 78 
3.3.10 Microscopy and Imaging .......................................................................... 78 

3.3.11 Statistical analysis .................................................................................... 78 

3.4 Results .................................................................................................................. 79 

3.4.1 HTCEC as a viable model for LEC ............................................................. 79 

3.5 Discussion ............................................................................................................. 94 
3.6 Conclusion ............................................................................................................ 98 

 

Chapter 4 CHARACTERISATION OF LIMBAL SIDE POPULATION CELLS 99 

4.1 Introduction .......................................................................................................... 99 

4.1.1 Limbal side population assay .................................................................... 102 

4.1.2 Are LSP cells stem cells? .......................................................................... 104 

4.2 Specific Aims...................................................................................................... 106 

4.3 Materials and methods ........................................................................................ 106 



vi 

 

Table of Contents 

4.3.1 LEC and HTCEC ...................................................................................... 106 

4.3.2 Reagents ................................................................................................... 107 
4.3.3 LEC and HTCEC sample preparation....................................................... 107 

4.3.4 Flow Cytometry Analysis and Fluorescence Activated Cell Sorting .......... 108 
4.3.5 ICC of LSP and NSP cells ......................................................................... 109 

4.3.6 Image quantification ................................................................................. 109 
4.3.7 Measurement of cell diameter ................................................................... 110 

4.3.8 Semi quantitative-Polymerase chain reaction (sq-PCR) ............................ 110 

4.4 Results ................................................................................................................ 111 

4.4.1 Optimisation of LSP protocol ................................................................... 111 

4.4.2 LSP in primary LEC cultures .................................................................... 115 
4.4.3 ABC-transporters in LSP cells .................................................................. 116 

4.4.4 Effects of cell confluence on SP yields ...................................................... 119 
4.4.5 Side population and hypoxia ..................................................................... 122 

4.4.6 Characterisation of SP cells from HTCEC ................................................ 122 
4.4.7 Cell diameter and SP ................................................................................ 125 

4.4.8 Colony formation of SP cells .................................................................... 126 

4.5 Discussion ........................................................................................................... 128 

4.6 Conclusion .......................................................................................................... 134 

 

Chapter 5 IMMUNOBIOLOGICAL CHARACTERISATION OF CORNEAL 

LIMBAL EPITHELIAL CELLS; IMPLICATIONS ON LIMBAL STEM CELL 

TRANSPLANTATION........................................................................................... 136 

5.1 Introduction ........................................................................................................ 136 

5.1.1 MHC Gene Complex ................................................................................. 136 

5.1.2 Stem cells as a potential therapeutic strategy to overcome rejection ......... 137 
5.1.3 Pro-inflammatory cytokines ...................................................................... 138 

5.1.4 Chemotaxis ............................................................................................... 139 

5.2 Specific Aims...................................................................................................... 139 
5.3 Materials and methods ......................................................................................... 140 

5.3.1 Human Leucocyte Antigen (HLA) typing for HTCEC ................................ 140 
5.3.2 Optimisation of HLA antibodies and treatment with pro-inflammatory 

cytokines ........................................................................................................... 140 
5.3.3 Flow cytometry ......................................................................................... 142 

5.3.4 Chemotaxis assay: Transwell Migration Analysis ..................................... 144 
5.3.5 Side Population assay ............................................................................... 144 

5.3.6 ICC of LSP and NSP cells ......................................................................... 145 
5.3.7 Imaging methods and quantification software ........................................... 146 

5.3.8 Image quantification ................................................................................. 147 
5.3.9 Statistical Analysis.................................................................................... 147 

5.4 Results ................................................................................................................ 147 

5.4.1 Human Leucocyte Antigen (HLA)-typing and HLA expression in HTCEC . 147 
5.4.2 Expression of CXCR4 in HTCEC and LMSC ............................................ 151 

5.4.3 mRNA expression of CXCL12 in HTCEC and LEC ................................... 154 
5.4.4 Chemotaxis in HTCEC and LMSC ............................................................ 154 

5.4.5 Expression of CXCR4 in SP-sorted HTCEC .............................................. 156 



vii 

 

Table of Contents 

5.5 Discussion ........................................................................................................... 157 

5.6 Conclusion .......................................................................................................... 161 

 

Chapter 6 GENERAL DISCUSSION .................................................................... 162 

6.1 Summary of aims ................................................................................................ 162 

6.2 Summary of outcomes ......................................................................................... 162 
6.3 Implications of the project and recommendations for future work........................ 166 

 

BIBLIOGRAPHY ................................................................................................... 171 

APPENDIX ............................................................................................................. 192 

 

 



viii 

 

List of Figures 

 

List of Figures 

 

Figure 1.1 Key facts on sight loss and eye conditions................................... 2 

Figure 1.2  Anatomy of the eye and the limbus............................................. 3 

Figure 1.3 Diagrammatic representation of human cornea........................... 4 

Figure 1.4  Fetal cornea development........................................................... 5 

Figure 1.5 The corneal limbus....................................................................... 7 

Figure 1.6  Six isoforms of the transcription factor p63............................... 10 

Figure 1.7  Asymmetric division of a corneal epithelial stem cell................ 13 

Figure 1.8  XYZ hypothesis on LSC maintenance........................................ 14 

Figure 1.9  Membrane topology models for ABC transporters..................... 15 

Figure 1.10  Clinical signs of LSCD............................................................... 17 

Figure 1.11  Management options of LSCD................................................... 19 

Figure 1.12  Components of ocular surface immunity.................................... 28 

Figure 2.1 Confluent 3T3 fibroblast cultures................................................. 42 

Figure 2.2 Harvesting a cornea from an enucleated cadaveric eye............... 42 

Figure 2.3  LEC grown on mitotically inactivated 3T3 fibroblast in 

different stages of cultures........................................................... 

44 

Figure 2.4 Human primary limbal cultures (Passage 2) grown on a 

collagen II coating matrix at different stages.............................. 

46 

Figure 2.5  Principles of flow cytometry-1.................................................. 50 

Figure 2.6  Fluorescence spectra of commonly used fluorochromes............ 51 

Figure 2.7  Light Scattering, 2-parameter histogram………………………. 52 

Figure 2.8  Principles of flow cytometry-2................................................... 53 

Figure 2.9  Principles of cell sorting............................................................. 55 

Figure 2.10  Gel electrophoresis of an RNA sample from LEC to examine 

RNA integrity............................................................................... 

59 

Figure 2.11 Efficiency values (E) for validation of Taqman probes............... 66 

Figure 3.1 Plating of LMSC on cryopreserved AM...................................... 77 

Figure 3.2  Results of immunocytochemical analysis of limbal markers in 

LEC.............................................................................................. 

80 

Figure 3.3  Results of immunocytochemical analysis of limbal markers in 

HTCEC....................................................................................... 

81 

Figure 3.4 Results of immunocytochemical analysis of stem cell markers 

in HTCEC..................................................................................... 

82 



ix 

 

List of Figures 

Figure 3.5 mRNA expression of stem cell markers and ABCB5.................. 83 

Figure 3.6 mRNA expression of common LSC markers.............................. 84 

Figure 3.7 Characterisation of common limbal stem markers and ABCB5 

in LMSC....................................................................................... 

85 

Figure 3.8  Results of LMSC immunophenotyping. .................................... 86 

Figure 3.9  Histological analysis of LMSC differentiated cells................... 87 

Figure 3.10  Adipogenic differentiation of LMSC......................................... 88 

Figure 3.11  mRNA expression of trilineage committed cells........................ 89 

Figure 3.12  Growth of LMSC (white arrows) on cryopreserved AM ........... 91 

Figure 3.13  Haematoxylin and eosin staining of LMSC grown on AM........ 91 

Figure 3.14 mRNA expression of CK3 and P63 in LMSC grown on AM ..... 92 

Figure 3.15 mRNA expression of CK3 and CK12 in LMSC and LEC ......... 92 

Figure 3.16 Results of immunohistochemical analysis of AM sections with 

LMSC growth .............................................................................. 

93 

Figure 4.1  Flow cytometry profiles of murine bone marrow SP................. 105 

Figure 4.2 Schematic diagram for arbitrary division of areas for 

microscopic quantification of markers-positive cells................... 

110 

Figure 4.3 Optimisation steps to limbal SP protocol .................................... 112 

Figure 4.4 Representative FACS data plots showing SP protocol 

optimisation ................................................................................ 

113 

Figure 4.5 Step by step gating strategy for SP............................................. 114 

Figure 4.6 Representative FACS dot plots showing SP cells in LEC.......... 115 

Figure 4.7  LSP from primary LEC ............................................................. 115 

Figure 4.8 Representative FACS dot plots showing SP cells in HTCEC 

and LEC ...................................................................................... 

116 

Figure 4.9 Representative images of gene expression of ABCG2 and 

ABCB1 and protein for ABCG2 in unsorted HTCEC and LEC.. 

117 

Figure 4.10 RT-QPCR showing variability in the relative expression of 

ABCG2 and ABCB1…………………………………………… 

118 

Figure 4.11  SP and cell confluence................................................................ 119 

Figure 4.12  Representative FACS dot plots showing cell confluence and 

SP yield on Day 4 (1) ................................................................. 

120 

Figure 4.13  Representative FACS dot plots showing cell confluence and 

SP on Day 4 (2) ........................................................................... 

121 

Figure 4.14  Cell confluence and SP in HTCEC............................................ 122 

Figure 4.15 Representative images of ICC analysis of SP and NSP cells ...... 124 

Figure 4.16 Representative images of dual labelling ICC analysis for 

ABCB5 and ABCG2 coexpression in SP-sorted HTCEC ......... 

125 



x 

 

List of Figures 

Figure 4.17 Representative ICC images of HTCEC stained with ABCG2 

antibody ..................................................................................... 

126 

Figure 4.18 Colony formation of SP and NSP-sorted HTCEC on Day 5 of 

culture......................................................................................... 

127 

Figure 5.1 Results of HLA antibody titrations ........................................... 141 

Figure 5.2 Histograms showing detection of anti human HLA-DP antibody 

in (unstimulated) peripheral blood leucocytes........................... 

142 

Figure 5.3 Representative images of transwell migration test for 

chemotaxis assay....................................................................... 

145 

Figure 5.4 FACS analysis of HLA expression in HTCEC of unstimulated 

cell populations........................................................................... 

148 

Figure 5.5 Representative FACS histograms out of 3 replicates showing 

HLA expression of Class I and Class II antigens in 

HTCEC....................................................................................... 

150 

Figure 5.6 Median Fluorescence Index of HLA Class I-A,B,C and Class II 

expression in HTCEC.................................................................. 

150 

Figure 5.7 Results of immunocytochemical analysis for expression of 

CXCR4 in unsorted HTCEC and LMSC..................................... 

152 

Figure 5.8 FACS histograms for anti-human CXCR4 antibody 

expression.................................................................................... 

153 

Figure 5.9 Median fluorescence index for expression of anti-hCXCR4 at 

three antibody concentrations in HTCEC and LMSC................ 

153 

Figure 5.10 Transwell chemotaxis assay........................................................ 155 

Figure 5.11 Mean number of migrant cells/high power fields from three 

biological replicates for CXCL12-mediated migration of 

LMSC, HTCEC and MDAMB231 ............................................ 

156 

Figure 5.12 Results for CXCR4 expression (arrow heads) in SP cells and 

NSP of HTCEC.......................................................................... 

156 

Figure 5.13 The key elements in the JAK/STAT pathway............................ 159 

Figure 6.1 Graphical presentation of important outcomes……………....... 165 

 

  



xi 

 

List of Tables 

List of Tables 

 

 

 

Table 1.1 Classification of causes of LSCD...................................................... 16 

Table 2.1 Composition of the medium for 3T3 fibroblast culture..................... 39 

Table 2.2 Composition of limbal epithelial medium (LEM).............................. 43 

Table 2.3 Primary and secondary antibodies used for ICC................................ 57 

Table 2.4 Components of an sq-PCR reaction.................................................... 61 

Table 2.5 List of other primers validated by gene sequencing............................ 64 

Table 2.6 Efficiency values for validation of Taqman primers.......................... 65 

Table 3.1 List of oligonucleotides primers and amplification conditions.......... 73 

Table 4.1 Summary of publications on LSP...................................................... 103 

Table 4.2 Oligonucleotide sequences and amplification conditions.................. 111 

Table 4.3 Statistics for ABCG2 and ABCB1 expression in LEC by RT-PCR.... 118 

Table 4.4 SP yields in cultures grown at 5% and 1% oxygen levels................... 122 

Table 4.5 Statistics for fluorescence intensities (arbitrary units) for positively stained  

cells with LSC markers....................................................................... 123 

Table 4.6 Cell diameter from SP- and NSP-sorted cells.................................... 126 

Table 5.1 HLA antibodies used in flow cytometry............................................ 143 

Table 5.2 List of antibodies used in immunocytochemistry............................... 146 

Table 5.3 Statistics for HLA expressions in unstimulated HTCEC................... 149 

Table 5.4 mRNA expression of CXCL12 in HTCEC and LEC......................... 154 

Table 5.5 Statistics for CXCR4 expression in SP and NSP-sorted cells ........... 157 



xii 

 

Abbreviations 

Abbreviations 

 

ABCG2 Adenosine tri-phosphate binding cassette G2 

ABCB1 Adenosine tri-phosphate binding cassette B1 

ABCC1 Adenosine tri-phosphate binding cassette C1 

ACAID anterior chamber induced immune deviation 

AM Amniotic membrane 

APC Antigen presenting cells 

BRCP Breast cancer resistance protein 

BrdU 5-bromo-2’-deoxyuridine  

CCL C-C Ligand 

CD Cluster of differentiation 

C/EBPδ CCAAT/enhancer binding protein-delta 

CF Counting fingers 

CFE Colony forming efficiency 

CK Cytokeratin 

CTL Cytotoxic T cells 

CTLA4Ig Cytotoxic T lymphocyte antigen 4 immunoglobulin G 

Cx Connexin 

CXCL C-X-C Ligand 

DAPI 4',6-diamidino-2-phenylindole 

DC Dendritic cell 

DKSFM Defined keratinocyte serum free medium 

DMEM Dulbecco's modification of Eagle's medium 

DMSO Dimethyl sulphoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide phosphate  

DTH Delayed type hypersensitivity 

ECM Extracellular matrix 

EDTA Ethylene diaminetetraacetic acid  

EGF Epidermal growth factor 

EGFR Epidermal growth factor receptor 

ESC Embryonic stem cell 

FA Formaldehyde 



xiii 

 

Abbreviations 

FACS Fluorescence activated cell sorting 

FITC Fluorescein isothiocyonate  

FSC Forward scatter 

FTC Fumitremorgin C 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase  

GDNF Glial derived neurotrophic factor 

HESC Human embryonic stem cell 

HER-2 Human epidermal growth factor receptor (HER) factor-2 

HGF Hepatocyte growth factor 

HIF Hypoxia inducible factor 

HTA Human Tissue Authority 

HTCEC Human telomerase-immortalised corneal epithelial cell 

ICAM-1 Intercellular adhesion molecule-1 

ICC Immunocytochemistry 

IFN-γ Interferon-γ 

IHC Immunohistochemistry 

IL Interleukin 

IL-1Ra IL-1 receptor antagonist 

IPSC Induced Pluripotent Stem Cells 

KGF Keratinocyte growth factor 

LC Langerhans cell 

LEC Limbal epithelial cell 

LFA-1 Leucocyte function-associated antigen-1 

LSP Limbal SP 

LSC Limbal stem cell 

LSCD Limbal stem cell deficiency 

MAPK Mitogen-activated protein kinase 

MIP-2 Macrophage inflammatory protein-2 

mESC Mouse embryonic stem cell 

MHC Major Histocompatibility Complex 

MIP-2 Macrophage inflammatory protein-2 

MSC Mesenchymal stem cells 

N Number 

NKT Natural killer T cells 

NSP Non-side population 



xiv 

 

Abbreviations 

P Probability 

PBL Peripheral blood leucocytes 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PD-1-B7-H1 Programmed death-1 Ligand-B7-H1 binding 

PFA Paraformaldehyde 

PK Penetrating keratoplasty 

Rho-X Rhodamine X 

RNA Ribonucleic acid 

RT Reverse transcription 

SC Stem cell 

SP Side population 

SSC Side scatter 

T3 Tri-iodothyronine 

TA Transactivation 

Ta Annealing temperature 

TAC Transient amplifying cell 

TBE Tris/Borate/EDTA 

TDC Terminally differentiated cell 

TGF-β1 Transforming growth factor β1  

Th1 T helper type  

Th2 T helper type 2 

Tm Melting temperature 

TNF-α Tumour necrosis factor-α 

TSP-1 Thrombospondin-1 

T reg Regulatory T cells 

VIP Vasointestinal peptide 

WHO World Health Organisation 

  

  



xv 

 

Declaration and Copyright Statement 

Declaration and Copyright Statement 

 

Parts of the material offered have been presented at conferences or submitted and/or 

published as acknowledged or cited. Some contents of this thesis were taken from 

published materials where the writer was the first author. Material from the work of 

others has been acknowledged, and quotations and paraphrases suitably indicated. 

 

The copyright of this thesis rests with the author. No quotation from it should be 

published without prior written consent, and information derived from it should be 

acknowledged. 

 

 

Signature:  

 

Date: 10 July 2015 

 

 

 

 

 

  



xvi 

 

Publications, Abstracts and Awards 

Publications, Abstracts and Awards 

Publications* 

“Limbal Side Population cells; a future treatment for limbal stem cell deficiency.”  

Bakiah Shaharuddin, Sajjad Ahmad, Simi Ali, Annette Meeson (2013). Regenerative 

Med. May; 8(3):319-331. 

 

“Immunological Properties of Ocular surface and Importance of Limbal Stem Cells for 

Transplantation”.  Bakiah Shaharuddin, Sajjad Ahmad, Annette Meeson, Simi Ali 

(2013). Stem Cells and Translational Medicine, 2:614-624. 

 

“Optimisation of the Side population assay; for identification of limbal stem cells from 

both an immortalised corneal epithelial cell line and corneal limbal tissues.” 

Bakiah Shaharuddin, Sajjad Ahmad,  Ian Harvey, Simi Ali
 
, Annette Meeson (2014). 

Stem Cell Reviews and Reports, 10:240-250. 

Chapter 9. Adult and Embryonic Stem Cells - Controversies in Corneal Epithelial Stem 

Cell Biology”. Haifa Ali, Charles Osei-Bempong, Ani Ray-Chaudhuri, 

Bakiah Shaharuddin, Arianna Bianchi, Mohit Parekh and Sajjad Ahmad (2012). Stem 

Cell Biology and Regenerative Medicine, Kursad Turksen (Editor). © Springer 

Science+Business Media. 

 

“Human limbal mesenchymal stem cells grown on AM express ABCB5 and are an 

additional source of limbal stem cells.” 

Bakiah Shaharuddin, Charles Osei-Bempong, Sajjad Ahmad,
 
Paul Rooney, Simi Ali, 

Rachel Oldershaw, Annette Meeson. 

(Submitted) 

 

“A human corneal epithelial cell line, a model for understanding limbal stem cell 

biology.”  

Bakiah Shaharuddin, Sajjad Ahmad,
 
Simi Ali, Annette Meeson. 

(Manuscript in preparation) 

 



xvii 

 

Publications, Abstracts and Awards 

Abstracts 

“Characterisation of limbal stem cells” poster presentation at NESCI Research Day 

(Durham, May 2012). 

 

“Limbal Side Population cells; a future treatment for limbal stem cell deficiency”  

poster presentation at Regenerate, The Baltic (Newcastle Upon Tyne, September 2012). 

 

“Limbal Side Population cells; a future treatment for limbal stem cell deficiency”, 

poster presentation at Institute of Aging Health-IGM Research Day, Newcastle 

University (Newcastle Upon-Tyne, September 2012). 

 

“Limbal Mesenchymal Stem Cells; Alternative Stem  Cells for Transplantation”, poster 

presentation at Tissue and Cell Engineering Society Meeting, (Newcastle Upon-Tyne, 

June 2014). 

 

“Limbal Side Population cells; a future treatment for limbal stem cell deficiency”, 

poster presentation at Tissue Engineering and Regenerative Medicine International 

Society –EU chapter Meeting, (Genoa, Italy, July 2014). 

 

Awards 

School of Medical Sciences Graduate School Travel award £400.00 

North East Stem Cell Institute (NESCI) Travel award £315.00 

 

*Publications and abstracts are sourced from the research outlined in this thesis. 

 

 



1 

 

Chapter 1: Literature Review 

Chapter 1 LITERATURE REVIEW 

1.1 Corneal Blindness 

1.1.1 Definition, epidemiology and patho-physiology 

According to the World Health Organisation (WHO) fact sheets on visual impairment 

and blindness, there are 285 million people who are visually impaired worldwide 

(WHO, 2014). Out of this, 39 million are blind, while 246 million have low vision. In 

the United Kingdom (UK), currently there are 2 million people living with sight loss. It 

was estimated that this will rise to 2.3 million by the year 2020 (Fight-for-Sight, 2014). 

There are 335,000 adults and 25,000 children in the UK who are registered as blind or 

partially blind according to “Fight for Sight” key facts (Figure 1.1).  

 

Diseases affecting the cornea are the second most important causes of blindness after 

cataracts. The epidemiology of “corneal blindness” is complicated and covers a wide 

variety of patho-physiologies which mostly arise from infectious and inflammatory 

conditions and differ from one country to another. Corneal blindness carries a morbidity 

which affects quality of life and is often associated with an increased economic burden 

(Whitcher et al., 2001).  

1.1.2 Anatomy of the cornea and limbus 

The cornea is the anterior most structure at the front of the eye (Figure 1.2). Its most 

important function is to transmit light onto the retina. Hence, the cornea has a smooth 

and transparent avascular surface. It also contributes as part of the physical, 

physiological and immunological defence mechanisms of the ocular surface. The cornea 

is tough with high tensile strength and flexibility to resist mechanical damage. It has 

inherent mechanisms to maintain the eye shape and eye pressure. The cornea has an 

overlying tear film which plays a major role in ocular surface immunology. 
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Figure 1.1 Key facts on sight loss and eye conditions.  [http://fightforsight.org.uk/sight-

loss-facts] 
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Figure 1.2 Anatomy of the eye and the limbus. 

 

The cornea is a highly specialized structure with five distinct layers (Figure 1.3). The 

outermost layer of the cornea is the thin epithelial cell layer, which is composed of 5-6 

layers of squamous, stratified, and non-keratinised cells (Sevel and Isaacs, 1988). The 

epithelium continues into the edge of the cornea towards the conjunctiva. The 

Bowman’s layer is the basement membrane of the epithelium which is an acellular 

membrane, at the outer part of the corneal stroma.  

 

The majority (80%) of corneal thickness is contributed by the stromal layer; the cornea 

enjoys beneficial physical properties which constantly keep it in a dehydrated state due 

to the organisation of tightly packed collagen lamellae and the presence of compact 

keratocyte networks within the stroma. The next layer is the thick Descemet’s 

membrane, which is the basement membrane of the corneal endothelium - the most 

posterior part of the cornea. The endothelium faces the aqueous humour, and supplies 

the stroma with nutrients. It is equipped with physiological tight junctions with integral 

transport systems to maintain corneal functions. The corneal stroma continues up to the 

sclera and the endothelium is connected to the trabecular meshwork through a transition 

zone. The corneal limbus is a narrow strip of pigmented transitional zone between 

cornea and conjunctiva, located circumferentially peripheral to the cornea.  
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Figure 1.3 Diagrammatic representation of human cornea.  The three main layers; 

epithelium, stroma and endothelium. The Bowman’s membrane is an acellular layer 

which lies in the anterior stroma, just beneath the basement membrane of the 

epithelium. The Descemet’s membrane is the basement membrane of the endothelia 

(Shaharuddin et al., 2013b). 

 

1.1.3 Development of the human cornea 

The fetal cornea can be identified at the 6
th
 week of gestation; it is formed from the 

surface ectoderm overlying the lens (Figure 1.4). In the beginning, the cornea consists 

of two layers; the epithelium and endothelium with an acellular space in between, the 

primary stroma (Sevel and Isaacs, 1988). Studies in quails and chicks demonstrated a 

huge contribution of neural crest cells in periocular structures, refractive media, and the 

cornea (Creuzet et al., 2005). 
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Figure 1.4 Fetal cornea development. (A) Forebrain and developing optic vesicles as 

seen in a 4-mm embryo. (B) Double-layered optic cup and invaginating lens vesicle as 

seen in a 7.5-mm embryo. The optic stalk connects the developing eye to the brain. (C) 

Ocular structures as seen in a 15-week fetus when all the layers of the eye 

are established. The hyaloid artery traverses the vitreous body from the optic disc to 

the posterior surface of the lens. (Modified from Mann IC, The Development of 

the Human Eye. New York, Grune and Stratton, 1974)  

 

1.1.4 LSC niche 

Adult stem cells are now believed to reside in most tissue populations for regenerative 

purposes and tissue repair. The defining characteristics of stem cells are self-renewal, 

which is the ability of the cells to replicate themselves and produce progenitor cells with 

high fidelity, and the capacity to differentiate into multiple different cell lineages. To 

ensure stem cells maintenance, stem cells are protected from hostile external factors in a 

specialized microenvironment i.e. stem cell niche. Within this protective niche, stem 

cells maintain cell-cell interactions with their neighbouring cells. They are able to 

secrete extracellular matrix and other factors that allow the resident stem cells to 

http://www.eyecalcs.com/DWAN/pages/v7/ch021/001f.html
http://www.eyecalcs.com/DWAN/pages/v7/ch021/001f.html
http://www.eyecalcs.com/DWAN/pages/v7/ch021/001f.html
http://www.eyecalcs.com/DWAN/pages/v7/ch021/001f.html
http://www.eyecalcs.com/DWAN/pages/v7/ch021/001f.html
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maintain their stemness in an undifferentiated state. This potentially makes stem cells 

last as long as the life span of the organism.  

 

There is mounting evidence that corneal LSC may reside in the basal layer of the limbus 

(Davanger and Evensen, 1971), (Schermer et al., 1986), (Schlotzer-Schrehardt and 

Kruse, 2005),(Yeung et al., 2008), (Sun et al., 2010). When comparing the proliferative 

potential of limbal versus corneal cells, limbal cells showed greater growth rates than 

corneal cells when they were serially transplanted (Graziella Pellegrini et al., 1999) 

(Wei et al., 1993).  

The limbus consists of multi-layers of cells, which are dispersed in the stroma, rich in 

blood vessels, contains melanocytes and have an abundant nerve supply (Figure 1.5). 

There are associated changes at the limbus; whereby the epithelium thickens from 5-6 

layers at the corneal centre, to 10-12 layers in thickness.  The Bowman’s layer is also 

absent at this region, which results in the undulated corneal epithelium  lying directly on 

the corneal stroma, in which the stromal collagen is also less organised and there is 

abundant fibroblast-like cells. These configurations are now referred as the “Palisades 

of Vogt” (Shanmuganathan et al., 2007; Yeung et al., 2008; Nubile et al., 2012). The 

Descemet’s membrane is also absent, and the endothelial cells appear bigger and flatter 

here.  

 

There are others cells lying in close proximity to LSC, namely the transient amplifying 

cells (TAC), melanocytes and Langerhan’s cell (LC) (Figure 1.5). It remains to be 

determined whether these cell types act as niche cells. It is believed that early TAC will 

differentiate into late TACs located at the corneal basal layer, then into suprabasal post-

mitotic cells (PMC), and finally into superficial terminally differentiated cells (TDC). 

Structurally, the basement membrane separates the epithelium from the underlying 

stroma. The limbal stroma contains mesenchymal cells, which may also serve as niche 

cells (Schlotzer-Schrehardt and Kruse, 2005). 

 

Supporting evidence also come from the fact there is absence of the major corneal 

epithelial differentiation markers, CK3 and CK12 keratins in limbal basal cells. The 

exclusive location of slow-cycling and label retaining cells in the limbal basal layer was 

also observed (Cotsarelis et al., 1989). The presence of 64K keratin in all layers of 

rabbit corneal epithelium but localized to the suprabasal area of the limbus showed that 
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the limbal epithelium is less differentiated (Schermer et al., 1986).  A seminal work by 

Pellegrini et al, also points to ocular surface epithelium  consisting of  holoclones with 

the properties of stem cells (Graziella Pellegrini et al., 1999).  

 

Figure 1.5 The corneal limbus and the LSC niche. (Shaharuddin et al., 2013b). 

 

The hypothesis that limbal stem cells are only confined to the limbus has been 

challenged by Majo et al, who suggested that the limbus is an equilibrium zone where 

the conjunctiva and corneal epithelia are confronted, similar to the tectonic plates (Majo 

et al., 2008; Sun et al., 2010). Factors like the dome-shaped of the cornea, lid blinking, 

ocular pressure and corneal stromal elasticity, hold the conjunctiva and corneal epithelia 

in two opposite directions, by way of confronting the limbus. In brief, disturbance to the 

equilibrium i.e limbal stem cell deficiency causes migration of limbal stem cells onto 

the cornea.  

 

To support this, recent findings have demonstrated that self-renewal capacity of corneal 

epithelium is also shared by central corneal cells as a response to central corneal 

wounding (Ki-Sook Park et al., 2006; Chang et al., 2008). More interestingly, 

peripheral limbal and central corneal regenerative capacity remains the same with 
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limbal ablation for at least 24 hours after corneal wounding (Chang et al., 2008). This 

clearly shows  that oligopotent corneal stem cells are spread throughout corneal basal 

epithelium (Majo et al., 2008) and not exclusive to the limbus.  Despite this 

controversy, decades of scientific evidence and reports have localised the limbus as the 

location of corneal epithelial stem cells. 

 

In response to corneal injury, limbal cells are induced to migrate and differentiate 

centripetally (Wei et al., 1993). Removal of the limbus also diminishes the capacity of 

cornea to regenerate  itself (Huang and Tseng, 1991). More recent advances using the 

lineage tracing technique in K14+ve Confetti mice supported the evidence that mouse 

limbus significantly contributed to self renewal and regeneration of the mouse cornea 

(Amitai-Lange et al., 2015; Di Girolamo et al., 2015). Limbal cells also responded 

rapidly to major wounding compared to the wound healing potential of the long-term 

corneal clones which mainly responded to minor injury (Amitai-Lange et al., 2015). 

 

It has been estimated that up to six limbal epithelial crypts may be present in the human 

cornea. The unique structure of the column and the undulating junctions between limbal 

epithelium and stroma also protect the cells from shear forces.  These are papilla-like 

columns, richly vascularised and highly innervated. They extend radially into the 

conjunctiva or circumferentially at the periphery of the cornea (Dua et al., 2005).  

 

Melanin pigments which causes dark discolouration in these cells, offer a protection 

against possible insults of ultraviolet light and the generation of reactive oxygen 

species. The presence of limbal blood vessels close to the underlying stroma also 

provides nourishment to the cells. The limbal stroma is also highly innervated. These 

characteristics make the limbal region an ideal protective micro-environment and fulfil 

the requirements of a stem cell niche.  

 

1.1.5 Molecular Characterisation of LSC  

p63 is a homolog of transcription factors belonging to a family of tumour suppressor 

proteins which include p53 and p73 (Benard et al., 2003). It is involved in Notch 

signalling and plays a role in the regulation of epithelial morphogenesis. All isoforms of 

the p63 protein consist of a DNA-binding domain and a carboxyl-terminal 

oligomerisation domain. There are 2 forms of p63; isoforms with an added amino-



9 

 

Chapter 1: Literature Review 

terminal transactivation domain are termed TAp63 and those without are ∆Np63. In 

addition, there are three forms of the carboxyl-terminal oligomerisation domain – α, β, 

and γ. This results in a total of six p63 isoforms (Figure 1.6). p63 is expressed at the 

limbal basal epithelium, and co-expression of p63 with Connexin43 was evident in the 

central corneal epithelium (Du et al., 2003). Although not specific to limbal cells, p63 

may be a marker of undifferentiated precursor cells, either stem cells or TAC.   

 

Mutations in the p63 gene have been associated with ectrodactyly, ectodermal 

dysplasia, and facial clefts syndrome (Celli et al., 1999). The inheritance is by 

autosomal dominant and is characterised in part by the lack of normal stratified 

epithelium (Celli et al., 1999; Mills et al., 1999).  p63 knockout mice show severe 

abnormalities of ectodermal differentiation (Mills et al., 1999) where the skin in these 

mice is composed of a single layer, lacking any normal stratification.  

 

Studies have localised p63, and in particular the ∆Np63α isoform, to the nuclei of 

progenitor cells in various epithelial structures (Yang et al., 1998). Specifically in the 

case of corneal epithelial progenitors, immunohistochemistry and cell culture studies 

have localised this particular isoform of p63 to the LSC (G. Pellegrini et al., 2001). 

There has however been growing evidence that ∆Np63α is also expressed by early TAC 

(Espana et al., 2004; Harkin et al., 2004a; Dua et al., 2005; Anshu et al., 2011), 

although these findings may be as a result of poor p63 isoform specificity of the 

antibody (Enzo Di Iorio et al., 2005; Kawasaki et al., 2005). In addition, Pellegrini and 

co-workers have recently shown using molecular biology techniques (rather than 

immunohistochemistry alone) that the ∆Np63α  isoform is specific to LSC (Enzo Di 

Iorio et al., 2005; E. Di Iorio et al., 2006).  
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Figure 1.6 Six isoforms of the transcription factor p63. All isoforms consist of a DNA-

binding domain. Some of these p63 isoforms have an added transactivation (TA) 

domain, the so-called TAp63 isoforms. Those without the TA domain are termed 

∆Np63. All isoforms have an oligomerisation domain of which there are three different 

forms (α, β, and γ). These variations result in a total of six p63 isoforms – TAp63α, 

TAp63β, TAp63γ, ∆Np63α, ∆Np63β, and ∆Np63γ. (Murray-Zmijewski et al., 2006)   

 

Integrins are integral cell membrane glycoproteins which aid cell-cell and cell-matrix 

interactions (Belkin and Stepp, 2000). Although previous studies have proposed α9β1 

integrin as a putative marker for LSC (Stepp et al., 1995), recent studies suggest that 

the α6β4 and α3β1 integrins are associated with BrdU label retaining basal cells of the 

limbal epithelium (Ahdeah Pajoohesh-Ganji et al., 2006). This suggests α6β4 and α3β1 

integrins as putative LSC markers, and the α9β1 integrin as a marker for early transient 

amplifying cells.  

 

Adenosine tri-phosphate binding cassette G2 (ABCG2) is a cell surface transport 

protein, which is preferentially expressed in a variety of adult stem cells (Zhou et al., 

2001; Naylor et al., 2004). This protein is a member of the White subfamily, and is 

alternatively referred to as a breast cancer resistance protein (BRCP). It functions as a 
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xenobiotic transporter which may play a major role in multi-drug resistance. It has 

recently been shown that ABCG2 expression can be localised to basal cells of the 

limbal epithelium and that approximately 3% of LEC express ABCG2 (Satoko Hori et 

al., 2004; Budak et al., 2005; Cintia S. de Paiva et al., 2005a).  

 

The protein encoded by cytokeratin 3 (CK3) gene is a type II cytokeratin; consisting of 

basic or neutral proteins which are arranged in pairs of heterotypic keratin chains. It is 

co-expressed during differentiation of simple and stratified epithelial tissues. This type 

II cytokeratin is specifically expressed in the corneal epithelium with family member 

CK12. CK3  and 12 are intermediate filament, which together with microfilaments and 

microtubules, form the cytoskeleton of all vertebrate cells (Strelkov et al., 2003). CK3 

associates with CK12 to form the CK3/12 dimer. Using ICC, it has been shown that 

CK3/12 identifies the more differentiated cells in the corneal epithelium (Schermer et 

al., 1986; Kurpakus et al., 1990). This CK dimer is therefore absent in the LSC and 

early TACs of the limbal epithelium, and is therefore an important negative marker for 

LSC.  

 

Connexin43 is an integral membrane protein of the connexin family, alpha-type (group 

II) subfamily. Functionally, Connexin43 is involved in gap junction formation, while 

the absence of functional gap junctions has been reported to be an important property 

possessed by stem cells in order to maintain a distinct intracellular environment (Matic 

et al., 1997; Trosko et al., 2000). It has been localized to the basal cells of the corneal 

epithelium (Matic et al., 1997; Wolosin et al., 2002), but shown to be absent from the 

basal cells of the limbal epithelium where both the LSC and the early TACs reside (Du 

et al., 2003). It is therefore an important negative marker for LSC.  

 

CCAAT/enhancer binding protein-delta (C/EBPδ) is an important transcriptional 

activator in the regulation of genes involved in cellular proliferation, differentiation, 

metabolism and inflammatory responses (Ramji and Foka, 2002). Recently, it has been 

shown that it plays an important role in the cell cycle and cell renewal of LSC. Co-

expression of C/EBPδ, Bmi-1, and ΔNp63alpha was used to identify mitotically 

quiescent LSC (Barbaro et al., 2007).  

 

Bmi-1 (B lymphoma Mo-MLV insertion-region 1) is a component of a Polycomb 

group, a complex class required to maintain the transcriptional repressive state of many 
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genes, including Hox genes, throughout development and is believed to prevent 

unnecessary proliferation and differentiation of leukaemic stem cells (Lessard and 

Sauvageau, 2003) and thought to play a role in cell renewal (Molofsky et al., 2003; In-

kyung Park et al., 2003).  

 

Importin 13 is a recently investigated marker of  LSC markers (Wang et al., 2009). It is 

involved in the bidirectional transfer of substrates through the nuclear pore complexes 

between the nuclear and cytoplasmic compartments (Mingot et al., 2001; Liang et al., 

2008; Bono et al., 2010). Expression of Importin 13 in human limbal basal cells has 

been shown to be related to maintaining the properties of corneal progenitor cells.  

 

Keratin 10 (K10) has been detected in the suprabasal limbal region in the late 

embryonic rat cornea at 20.5 days post conception and also in neonatal rats but was 

absent in adult rats (Waters et al., 2009). K10 is hypothesized to be important in the 

development, but not the maintenance of the LSC niche. However, the role of K10 in 

the LSC niche remains unclear. 

 

Identification and verification of LSC specific markers is still an ongoing challenging 

process. Isolation of LSC currently uses some non-specific markers. Often this would 

require a panel of positive and negative markers, a technique similarly observed in the 

haematopoietic and renal systems. Unfortunately, there are minimal cell surface markers 

that are associated with LSC. The use of specific cell surface markers would allow 

techniques such as fluorescence activated and magnetic cell sorting to be used for better 

isolation  of  LSC (Antonelli et al., 2004). Enriched cell populations could then be 

further characterised by gene expression, immunofluorescence or protein expression 

studies.  

 

1.1.6 Maintenance of corneal epithelium 

Stem cells divide asymmetrically to maintain cellular homeostasis by the processes of 

self renewal and differentiation. In contrast to symmetric cell division, stem cells divide 

asymmetrically to produce two daughter cells with different cellular fates (Figure 1.7). 

One daughter cell has the same stem cell characteristics with the original stem cell 

including its proliferative capacity and maintenance of the dedifferentiation state, and 

the other daughter undergoes differentiation. The daughter stem cell’s fate is normally 

to replenish the stem cell depot.  
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Figure 1.7 Asymmetric division of a corneal epithelial stem cell. The stem cell produced 

will replenish the pool, while the transient amplifying cell further divides and 

subsequently differentiate to terminally differentiated cells.  

 

The XYZ hypothesis by (Thoft and Friend, 1983) has revolutionised the understanding 

on the LSC maintenance. It clarifies the corneal epithelial homeostasis in normal 

conditions and in response to injury, and aging. The hypothesis states that aged or 

damaged central corneal epithelial cells (through exfoliation, trauma or disease) are 

continuously replenished through centripetal migration of LSC.  

 

The balance between cell proliferation and cell loss is directed by the equation 

X + Y = Z where; X represents basal corneal epithelial cell movement towards the 

surface, Y represents movement of peripheral epithelial cells towards the central cornea 

and Z represents desquamation of the surface epithelium (Figure 1.8). 
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Figure 1.8 XYZ hypothesis on LSC maintenance explained by centripetal migration of 

LSC. The balance between cell proliferation and cell loss is directed by the equation 

X + Y = Z where; X represents basal corneal epithelial cell movement towards the 

surface, Y represents movement of peripheral epithelial cells towards the central cornea 

and Z represents desquamation of the surface epithelium (Fernández et al., 2008).  

 

1.1.7 Enrichment method for LSC – Side population assay 

The side population (SP) discrimination assay is based on the differential potential of 

cells to efflux vital dyes; the most widely used of these is Hoechst 33342 dye. This 

efflux potential is due to expression of members of the ATP-binding cassette (ABC) 

family of transporter proteins expressed within the cell membrane (Zhou et al., 2001).  

 

When bone marrow cell populations were incubated with Hoechst dye and subjected to 

flow cytometry, active efflux of the dye caused a population of cells to appear as a 

segregated cohort known as SP. The SP phenotype of these cells was confirmed by the 

addition of a transporter inhibitor to cells from the same cell preparation that prevents 

dye efflux, FTC.  

 

All ABC transporters contain two transmembrane-spanning domains (TMD) and ATP-

binding domains (ABC). Typically, the transmembrane regions provide a translocation 

pathway for a specific substrate which allows transport of variety of substrates (Figure 

1.9). The release of energy occurs intracytoplasmic which is a molecular compartment 

provided by the nucleotide binding domains. As the ABC cassettes bind and hydrolyze 

ATP, conformational changes occur and transmitted to the membrane-spanning 

domains, where they induce rearrangements that translocate the substrate from one side 

of the membrane to the other. The SP phenotype is lost upon inhibition of ABC 

transporter activity. 
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Figure 1.9 Membrane topology models for ABC transporters. The green bars represent 

predicted transmembrane helices, the purple circles represent the ABC domains, the 

gold trees are glycosylation sites at the extracellular surface. (Szakács et al., 2008).  

 

1.1.8 Alternative sources of stem cells at the limbus: MSC 

The limbal epithelium also possesses stromal cells which are adherent to plastic, have 

fibroblastic morphology and are able to differentiate into multiple lineages suggestive of 

MSC (Branch et al., 2012; Garfias et al., 2012; Gui-Gang Li et al., 2012). These cells 

can be isolated using protocols as described by previous investigators (Polisetty et al., 

2008). Human corneal mesenchymal stromal stem cells, unlike bone marrow-derived 

MSC, develop from neural crest cells (Hoar, 1982)  and are believed to support the 

growth of limbal epithelial cells (Pinnamaneni and Funderburgh, 2012; Bray et al., 

2014).  

 

1.1.9 Limbal stem cell deficiency 

LSCD refers to a condition caused by abnormal maintenance of the LSC, as a result of a 

reduction in the frequency of LSC resulting in abnormal maintenance (Ahmad, 2012). 
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It can be broadly categorised into unilateral or bilateral involvement, acute or chronic 

conditions (Table 1.1). Among the causes are hereditary genetic disorders called 

aniridia, where there is developmental dysgenesis of the anterior chamber of the eye due 

to PAX6 gene mutation (He et al., 2012; Smith et al., 2012). Acquired causes of LSCD 

include chemical and thermal injury, inflammatory conditions i.e Steven-Johnson 

syndrome, ocular cicatricial phemphigoid and chronic limbitis. Cryotherapy to the 

limbus, radiation and topical instillation or subconjunctival injection of toxic drugs are 

some iatrogenic causes. Persistent traumatic friction to the limbus due to contact lens 

wear and chemical irritation due to contact lens solution can also contribute to this.  

Excessive surgery to the limbal region e.g. removal of pterygium is also a known cause 

for loss of LSC.  

 

Table 1.1 Classification of causes of LSCD 

PRIMARY (inherited) SECONDARY (acquired) 

Aniridia Injury 

Ectodermal dysplasias Mechanical trauma 
 Chemical or thermal burns 

 Iatrogenic 
 Extensive limbal surgery  

 Cryotherapy  

 
Topical or subconjunctival application of 

cytotoxic agents 

 Contact lens associated LSCD 
 Inflammatory eye disease 

 Stevens-Johnson syndrome 

 Ocular cicatricial pemphigoid 

 Chronic limbitis  

  

 

 

Pathologically, the causes of LSCD may be the result of any one or a combination of 

these mechanisms; true loss of LSC, dysfunctional LSC, an alteration in the LSC niche 

micro-environment, or in the case of corneal inflammation or infection, a transient 

‘distress’ or a disruption in the growth or proliferation of LSC. 

 

Signs of LSCD include intense vascularisation, chronic inflammation, recurrent 

epithelial defects, and stromal scarring (Figure 1.10). Intense inflammation will 

inadvertently cause secondary problems like increased eye pressure, which can result in 
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the development of glaucoma and death of the optic nerve ganglion cells. Most patients 

will lose their vision due to the primary or secondary causes during the course of the 

disease. LSCD is usually clinically diagnosed although the use of confocal microscopy 

and impression cytology is substantially supported (Nubile et al., 2012). 

 

 

Figure 1.10 Clinical signs of LSCD. (A) Acute ocular changes showing  limbal 

ischaemia, vascularisation, stromal opacity and epithelial erosion (B) and (C) chronic 

changes with conjunctivalisation of the cornea and corneal opacity. (D) Clearing of 

visual axis after treatment with cultivated corneal epithelium-AM scaffold.  [Photos 

courtesy of (A) Sajjad Ahmad, (B) Scheffer Tseng [Downloaded from 

http://www.revoptom.com/content/c/21674/ on 15 February 2013, (C) and (D) courtesy 

of Dr Tsutomo Inotomi]  

 

1.1.10 Diagnosis of LSCD 

Patients with this condition present with redness in the eye, eye discomfort, excessive 

tearing, and reduced vision or blindness. Clinical signs of LSCD involve conjunctival 

epithelial outgrowth on the cornea or “conjunctivalisation” which gives rise to most of 

the symptoms. Other signs include recurrent epithelial erosion, corneal haziness or 

opacity and late fluorescence staining. Definitive diagnosis would require impression 

cytology to look for conjunctiva cells or goblet cells in the corneal surface. 

Immunofluorescence studies for CK3 and 19 would also support the diagnosis of 

LSCD.  

 

1.1.11 Management of LSCD 

Historically, LSCD was treated with whole cornea transplantation to replace the stem 

cell loss or dysfunction. However, whole cornea transplantation will only invoke failure 

in the absence of healthy limbal cells because of the absence of host stem cells and 

inadequate stem cells in the graft. Thus, re-epithelisation will only take place when 

http://www.revoptom.com/content/c/21674/
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there are residual healthy limbal cells in the diseased eye, or a sufficient number of 

limbal cells are replaced. 

 

Management of LSCD includes transplantation of healthy limbal tissue or cells to the 

damaged limbal areas. This is conventionally done by transplanting whole pieces of 

healthy limbal tissue (Kenyon and Tseng., 1989). However, this surgical method will 

usually involve a large area of graft taken from a donor site, thus rendering it 

susceptible to secondary LSCD. 

 

In cases where cadaveric tissues or tissues taken from another healthy living donor are 

transplanted, measures to control graft allorejection have to be taken. Patients receiving 

allogeneic grafts have to be prescribed oral cyclosporine and prednisolone and put on 

topical steroids and antibiotic for extended period of time post-operatively. Limbal 

autografts also carry several adverse complications which are related to the grafts i.e. 

graft dislodging and misalignment. Inappropriate graft size leads to chronic ocular 

surface exposure, which potentially results in epithelial breakdown and 

conjunctivalisation of the cornea (Baradaran-Rafii et al., 2012). The algorithm for the 

management for LSCD is described in Figure 1.11. 
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9

 
 

Figure 1.11 Management options of LSCD. This includes conservative (non-surgical) 

and surgical management. Surgical management strategies for mild partial LSCD and 

severe partial or total LSCD are highlighted. 

 

1.1.12 New techniques in the treatment of LSCD (ex vivo expanded limbal 

epithelium) 

A landmark report in 1997 by Pellegrini revealed a successful transplantation of ex vivo 

expanded limbal epithelium from a contralateral healthy limbal tissue grown on a fibrin 

carrier (Graziella Pellegrini et al., 1997). The advantage of using autologous ex vivo 

expansion of limbal epithelium is the small sized-biopsy taken from the healthy eye 
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which will prevent secondary LSCD in the donor eye. The need for immune-

suppression is also eliminated.  

 

Since then, numerous reports have used the method of cultivating a corneal epithelial 

sheet on a substrate before transferring this tissue construct to the eye. In addition, there 

have also been reports on the use of cultivated oral mucosa epithelial transplantation for 

severe bilateral conditions (Nakamura et al., 2004; Inatomi et al., 2006). In the explant 

method, a small biopsy taken from the contralateral eye is placed on AM, which 

provides a surrogate environment for a stem cell niche. 

1.1.13 Alternative sources for LSC transplantation 

The lack of donor corneas in sufficient quantity and of sufficient quality to generate 

LEC for transplantation has motivated many clinicians and scientists to search for 

alternative sources of cells for cellular therapy. The option for replacement of adult 

limbal epithelial stem cells sourced from outside the cornea includes human embryonic 

stem cells (hESC) which can be directed to the corneal epithelial lineage (Kobayashi et 

al., 2013).   

 

The use of appropriate extra cellular matrix i.e. collagen IV, laminin or fibronectin in a 

differential protocol successfully directs hESC into corneal epithelia (Ahmad et al., 

2007).  In a mouse derived ESC, the use of collagen IV as a culture substrate has 

resulted in corneal progenitors which expressed PAX6 and CK12 genes. PAX6 is 

important for ocular development while CK12 has been regarded as a specific marker of 

corneal epithelial differentiation. Indeed, transplantation of these corneal progenitors on 

denuded cornea produced epithelial surface re-epithelisation after 24 hours. However, 

restrictions surrounding ESC, namely ethical issues, technique of differentiation, 

accessibility and the costs, have limited the use of ESC for larger scale translational 

approach.  

 

In the meantime, the advent of human induced pluripotent stem cells (iPSC) has partly 

resolved the ethical issues surrounding ESC.  The use of transcription factors;  Oct3/4, 

Sox2, c-Myc and Klf4 (Kazutoshi Takahashi and Yamanaka, 2006), on somatic cells 

can induce pluripotency in these cells, a process called “reprogramming”. Hayashi et al 

successfully induced cornea epithelial cells from human adult dermal fibroblast-derived 

iPSC and human adult corneal LEC-derived iPSC (Hayashi et al., 2012) by using the 
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stromal cell-derived inducing activity method. In an animal model, mouse iPSC had 

been demonstrated to differentiate into corneal epithelial-like cells when co-cultured 

with a corneal stromal cells in the presence of additional factors such as β-FGF, EGF 

and NGF (Yu et al., 2013). 

 

Derivation of whole cornea from a parthenogenetically activated oocyst (hpSC) 

(Revazova et al., 2007; Ostrowska et al., 2011; Turovets et al., 2011) is also an option. 

Parthenogenesis is asexual reproduction of eggs without contribution of the 

spermatozoa. hpSC lines have similar morphology to hESC, express pluripotent stem 

cell markers, have high alkaline phosphatase level and telomerase activity, and have the 

ability to differentiate in vitro and in vivo into derivatives of the three embryonic germ 

layers. Production of HLA-homozygous hpSC lines is also advantageous as being 

compatible with segments of human population, other than the 1 

donor. This makes these cell lines a more favourable option as a transplantation therapy 

than ESC (Revazova et al., 2007; Turovets et al., 2011). 

 

Likewise, transcriptionally induced pluripotent cells could also be a source of tumour 

formation (Hentze et al., 2009; Cunningham et al., 2012) and poses the problem of 

immunogenicity when used in transplantation (Boyd et al., 2012). By re-programming 

stage-specific embryonic antigen-4 (SSEA4), SSEA4+ve limbal fibroblasts isolated 

from corneal stroma keratocytes and bone-marrow derived MSC could be differentiated 

into corneal epithelium (Katikireddy et al., 2014). This was grown in under specific 3D 

culture system in embryonic stem cell media. 

 

From the cord lining stem cells obtained from the waste birth products of fetal umbilical 

cord, investigators have isolated MSC and epithelial stem cells sourced from the 

external lining which comprises of umbilical cord AM. The bilayered lining of the 

membrane is advantageous for many epidermal and dermal keratinocytes derivatives. 

They also have potential to derive the epithelia for skin, liver and cornea(Matsuura et 

al., 2014).   

 

In the case of total and bilateral LSCD, cultivated oral mucosa epithelial transplantation 

on AM has also been clinically applied with promising results (Koizumi et al., 2000; 

Nakamura et al., 2004). This approach when reviewed for 15 treated eyes showed a 

success rate of 67% total re-epithelisation, without any major complications for a period 
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of at least 34 months. Similar method, but in the absence of 3T3 feeders and animal 

serum has also been trialled in two patients with successful regeneration of corneal 

epithelium (Kolli et al., 2014). 

 

1.1.14 Biological substrates for limbal stem cell transplantation 

Historically, the strategy for LSC transplantation utilized fibrin sheet to treat LSCD 

(Graziella Pellegrini et al., 1997). A mixture of fibrinogen and thrombin was placed on 

a plastic ring to allow a coagulation cascade. Primary limbal keratinocytes were grown 

on feeder layers on this fibrin sheet and the cell to matrix construct were then 

transplanted to patients’ eyes (Rama et al., 2001). A clinical trial involving larger 

number of patients showed a success rate of 76.6% up to 10 years (Rama et al., 2010). 

 

Amniotic membrane (AM) as part of the carrier system to transfer limbal epithelial 

sheets has been the substrate of choice to restore ocular surface disorders (Saw et al., 

2007). AM facilitates re-epithelisation and has been shown to have anti-inflammatory 

(Shimmura et al., 2001), anti-angiogenic (Jae Chan Kim and Tseng, 1995; S. C. G. 

Tseng, 2001),  and anti-scarring properties (Scheffer C. G. Tseng et al., 1999).   

 

To date, AM has been the most widely used substrate to deliver LSC to the ocular 

surface. Several modifications have been tried to provide different forms of AM to 

improve its quality as a carrier, including the use of denuded AM over an intact 

membrane (Koizumi et al., 2000). However, the drawbacks are the difficulty to sustain 

the donor supply, ineffective and costly screening of the tissues, and clinical variations 

in the tissues which might affect the growth conditions. Hence, researchers have 

explored the potentials of other materials and used new strategies to develop tissue-

engineered constructs to improve the outcome of limbal transplantation for ocular 

surface regeneration.  

 

1.1.15 The outcome of ex vivo expanded limbal epithelial transplantation 

Short term review of 28 clinical studies on cultivated corneal epithelial transplantation 

since 1997 to 2010 shows a  success rate of 67% (Baylis et al., 2011). This would 

probably be due to the majority of tissues used in these studies being autologous in 

nature (84%). Another long term study on the outcome of cultured limbal epithelial 
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transplantation using fibrin as a carrier gave 66% of full success, 19% for partial 

success and 15% of failure rate respectively (Graziella Pellegrini et al., 2013).  

 

In a review of clinical outcomes (Shortt et al., 2007b), despite the heterogeneity of the  

type of grafts, the biological carrier to transplant LSC, culture methods, and the clinical 

cause of the disease, the overall outcome of 17 studies was 67% success rate.   

It could not be emphasized enough that long term success of LSC transplantation 

depends on the quality of the grafts or the frequency of LSC on the grafts. This can be 

overcome by more effective identification or isolation of LSC, or the use of enrichment 

methods for LSC. It would also be expected that a major issue with allogeneic limbal 

tissue or cell transplants remains their immunogenicity. 

 

1.1.16 Current prospective on tissue engineering for LSC transplantation 

Tissue engineering was first introduced as an interdisciplinary approach to restore or 

enhance the biological functions of tissues and organs using substrates (Langer and 

Vacanti, 1993). The issue of cell sourcing was initially addressed by the use of adult 

stem cells or ESC. Although ESC have better differentiation and expansion potential 

than adult stem cells their use is hampered by ethical issues, regulatory problems and 

associated funding limitations. On the other hand, adult stem cells have limited 

differentiation capability. The advent of the Nobel Prize-winning development of 

human induced-pluripotent stem cells (IPSC) by Yamanaka group (Kazutoshi 

Takahashi and Yamanaka, 2006) seemed to offer a solution to the problems concerning 

the use of adult stem cells and ESC. However, the use of IPSC has been under scrutiny 

for possible genetic and epigenetic aberrations and tumorigenesis after transplantation. 

 

The second major component in tissue engineering is the biomaterials used as the 

substrate or scaffolds for cell delivery. The initial focus was to replicate the physical 

and mechanical properties of the target tissues. Prospectively, more emphasis is being 

given to the integration of the substrates with the biological environment resembling 

closely the supportive extra cellular matrix (ECM).  

 

The use of hydrogels which are biocompatible, inert and biodegradable is more 

attractive to replace or to complement AM. Hydrogels are more structurally uniformed 

and the physical and mechanical properties can be modified to suit cellular proliferation 
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(Wright et al., 2013b). Hydrogels are made up of a 3D network of polymers and water, 

comprised of macro-molecules connected by electrostatic forces, hydrogen bond, or 

covalent links. As a scaffold, hydrogels can encapsulate cells and biomolecules as a 

cellular niche. Cross-linking of plastically compressed collagen hydrogels (Levis et al., 

2010; Mi et al., 2011; Levis et al., 2012) and alginate hydrogels are some of the 

examples useful for clinical epithelial transplantation (Wright et al., 2013a; Wright et 

al., 2013b; Wright et al., 2014). 

 

An artificial niche environment for LSC is an innovative mechanism to refine the LSCD 

treatment.  Bioartificial alginate hydrogel systems provide a LSC microenvironment 

which allows slow release of therapeutic factors by the LSC to promote epithelisation 

and wound healing. In this model, growth factors such as epidermal growth factor, 

keratinocyte growth factor and hepatocyte growth factor migrate through the gel micro 

structure to facilitate the repair of the damaged corneal surface (Fritchley et al., 2000).  

 

Collagen forms the majority of constituents in the human cornea. Scaffolds of 

compressed collagen gel when compared to denuded AM have been demonstrated to be 

a better support for the growth of LEC (Groves and Jiang, 1995). This proved to be 

mechanically strong, thin and transparent. However, further investigations to study its 

immunogenicity based on its purity are needed. The use of recombinant collagen type I 

and IV has raised the issue of replacement of naturally occurring collagens, however 

this might come with increased costs (Feng et al., 2014). 

 

Other strategies like decellularisation of tissues and organs have emerged, where 

complete removal of cells and cellular materials is done to reduce immunogenicity 

(Lynch and Ahearne, 2013). This is performed by using chemical and enzymatic 

methods for decellularistion, followed by re-seeding with new cells, a process called 

“scaffold recellularisation”. However, maintaining a close balance of preserving 

structural, mechanical and physiological properties of the scaffold and reducing cellular 

immunogenicity still remain the challenges in this area. 

 

Fabricated nanofibers are a new substrate which is biocompatible with LEC and use of 

these with cells resulted in  good cellular adhesion and cell proliferation (Sharma et al., 

2011). Fibrous nanoscaffolds from poly-ε-caprolactone (PCL) are highly porous, have 
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high surface: volume ratio and as a 3D biocompatible structure, this can mimic the 

physiological extra cellular matrix, used for synthetic ocular surface regeneration. 

 

There is an increasing need to develop a synthetic, biocompatible and slowly 

biodegradable material which could be used as substitute for the AM. The use of a 

synthetic material would avoid the risk of infection. A biodegradable material has the 

advantage of variable degradation rate for the viable cells to be released at the site of 

injury. A contact lens which is resilient, biocompatible, and able to adapt to the surface 

of the eye is also an ideal carrier system for delivering of cultured corneal epithelium 

(Fiorica et al., 2011).  This is an interesting finding which needs further investigations 

to materialize as a cellular-based therapy. 

 

A technique developed to escape from any use of carrier system is a new temperature-

responsive polymer e.g.  poly N-isopropylacrylamide (PIPAAm) as a cell sheet 

engineering system. This method allows transfer of cells and the extra cellular matrix to 

the ocular surface (Nagase et al., 2009) at different temperature conditions in the 

absence of a scaffold (Kobayashi et al., 2013). PIPAAm polymer and its co-polymer 

show a hydrophobic state at 37 °C and at this temperature cells would adhere and 

proliferate. At 32 °C and below, the cells are detached because of polymer hydration, 

which allows harvesting of the cells in a mono layer cell sheet while maintaining  cell-

to-cell  and cell to-extra cellular matrix contact (Matsuura et al., 2014).  

 

Bioprinting is a new technology where scaffolding materials, living cells and extra 

cellular matrix can be delivered for regenerative purposes into a chosen material in an 

organized manner by a previously determined bio-printer (Pati et al., 2014). As an 

example, human cardiomyocyte progenitor cells were successfully bio-printed on 

alginate scaffolds suitable as a cardiac construct (Gaetani et al., 2012). This technique is 

still obscure in the field of LSC.   

 

1.2 Immunological Aspects of Corneal Transplantation  

1.2.1 Corneal transplantation 

The cornea is the most transplanted organ in UK (with 3061 transplantations or 49.6 

performed per million populations in 2009-2010 (Johnson, 2010)). This is the highest 

recorded rate of transplantation surpassing solid organ transplantation such as adult 
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kidney transplantation which was 892, pancreas – 200, cardiothoracic organ transplants 

- 272 and liver – 679 cases during the same period.  

 

Corneal transplantation is the definitive therapy for most causes of corneal blindness. 

Importantly, transplantation is also performed to replace rejected or failed previous 

grafts in 20% of cases (K A Williams et al., 2008). Approaches to corneal 

transplantation surgeries have evolved from whole cornea or partial thickness 

transplantation, to single layer keratoplasty, with very promising outcomes (Lee et al., 

2009; Borderie et al., 2012).   

 

However, corneal transplantation is contraindicated in the treatment of LSCD, which is 

an important cause of corneal blindness. Failure of grafts in this condition is due to loss 

of host stem cells and inadequate self renewing cells to replenish the surface of graft 

from the donor. In the case of LSCD, cellular therapy such as ex vivo limbal epithelial  

transplantation has shown impressive advances as future treatment in the past decade or 

so (Graziella Pellegrini et al., 1997; S. C. G. Tseng, 2001; Shortt et al., 2007b; Shortt et 

al., 2008; Rama et al., 2010).  

 

The cornea is devoid of blood vessels and assumed to be protective of immune rejection 

of transplanted grafts, a condition termed “corneal immune privilege” (Azar, 2006). Its 

avascularity implies a lack of angiogenic factors or the possibility of it secreting anti-

angiogenic factors. Vascularisation evokes an immune response and has implications 

for graft allorejection. In addition, absence of corneal lymphatics prevents the 

channelling of antigen presenting cells to the regional lymph nodes thus not allowing 

alloantigen-specific T cells to be activated. Activated T cells travel to the graft bed and 

initiate the crucial process of graft rejection. However, the relative ease of topical 

steroid application on the cornea and the immune tolerance in the anterior chamber also 

add to its relative success rate.  

 

Despite being the most frequent organ transplanted, the immunology of corneal 

transplantation and rejection is not fully studied. For the most part, outcomes for whole 

cornea transplantation (penetrating keratoplasty) are dependent on the indications for 

surgery. The mechanism of rejection in cornea transplantation is a delayed type; T cell- 

mediated immune response which is accelerated by inflammatory process. 
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1.2.2  Mechanisms of immune privileges in the cornea  

Cornea transplantation has been regarded differently from other organ transplants due to 

the immune privileged nature of the anterior chamber of the eye and the lack of direct 

allorecognition. Medawar revolutionised the concept of immune privilege in the cornea 

in 1940s (Medawar, 1948). He observed how skin grafts transplanted in the brain and 

the anterior chamber of the eyes could remain intact for extended periods of time in the 

absence of any vascularisation (Medawar, 1948). Medawar suggested that the immune 

reaction is mediated by blood plasma or by cells transported in it. During corneal 

transplantation, vascularisation caused the breakdown of the immunologically 

privileged status of the cornea, resulting in graft rejection. It was also suggested that the 

epithelium rather than the stroma played a role in the immune reaction (Billingham and 

Boswell, 1953).   

 

The immune privilege of the cornea depends on multiple mechanisms to prevent 

immune destruction of grafts by allogeneic responses. At present, three major lines of 

thought prevail regarding the molecular mechanisms of immune privilege in the eye: (1) 

anatomical, cellular, and molecular barriers in the eye; (2) anterior chamber associated 

immune deviation (ACAID); and (3) immune suppressive microenvironment in the eye.  

 

Firstly, there is a direct absence of anatomical lymphatic drainage and a physiological 

blood-ocular barrier in the cornea which defines the immunological tolerance. Without 

lymphatic drainage, the antigens are unable to leave the grafts to the draining lymph 

nodes.  The blood-ocular barrier effectively presents a physiological block for the 

immune cells to enter the tissues. These factors collectively act as physical barriers to 

stimulate immune response to grafts. 

 

ACAID was first described as an aberrant immune response of the eye (Kaplan and 

Streilein, 1977). This refers to the phenomenon where antigen-specific systemic 

immunological tolerance is induced to an antigen that has been introduced to the 

anterior chamber (Figure 1.12). In this situation, antibody responses are preserved while 

cellular responses such as delayed type hypersensitivity (DTH) and cytotoxic T cells 

(CTL) are suppressed. These include alloantigens involved in transplantation, soluble 

protein antigens, viral antigens, and tumour antigens (J. Y. Niederkorn and Mellon, 

1996).  
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Vascularisation causes an allograft to be deemed high risk and robs its immune 

privilege status. Immunological rejections in high risk vascularised allografts occurs due 

to increased level of chemokines and inflammations at the site of the grafts, attracting 

allospesific activated T cells to the site (Y. Sano et al., 1995; Azar, 2006; Amescua et 

al., 2008). Chemokines are heparin-binding pro-inflammatory proteins that are 

responsible for directing leucocytes migration. Chemokines are categorised into CXC, 

CC, C and CX3C based on the cysteine residue at the protein terminal. CXC 

chemokines i.e. CXCL1, play a major role in recruiting activated allospecific T cells, 

macrophages and other potent inflammatory mediators to the graft site, causing 

immunogenic rejection (Amescua et al., 2008). 

 

Figure 1.12 Components of ocular surface immunity. They include physiological barrier 

of the precorneal tear film, induction of ACAID and immunosuppressive environment 

in the eye.  Immunomodulatory molecules in the cornea consist of neuropeptides, 

cytokines, growth factors and soluble immune peptides which have anti-inflammatory, 

anti-angiogenic, and pro-apoptotic activities that lead to death of allospecific T cells. 

[Abbreviations: GDNF= glial derived neurotrophic factor, APC=antigen presenting 

cells, TGF-β=tumour growth factor-beta, VIP=vasointestinal peptide, TSP-1= 

thrombospondin-1,  PD-1-B7-H1= programmed death-1 Ligand-B7-H1 binding, T reg= 

regulatory T cells, MIP-2= macrophage inflammatory protein-2, CXCL2= C-X-C 
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ligand-2, NKT= natural killer T cells, IL-10=interleukin-10, CCL5=C-C ligand-5). 

(Shaharuddin et al., 2013b)] 

 

The anterior chamber contains tumour growth factor (TGF)-β and thrombospondin- 

(TSP)-1, and antigen presenting cells which capture the antigens and secrete these into 

the blood stream through the trabecular meshwork and reach the marginal zone in the 

spleen. TGF-β stops proliferation of cells, induces differentiation, or promotes apoptosis 

while TSP-1 has an inhibitory effect on angiogenesis. Furthermore, there is production 

of TGF-β, macrophage inflammatory protein- (MIP) 2 and CXC-ligand 2 (CXCL2) in 

the spleen. These in turn attract and binds to NKT cells and stimulate the production of 

TGF-β, IL-10, TSP-1 and CC-ligand 5 (CCL5). In the spleen there is formation of 

clusters of T cells and subsequent induction of regulatory T cells, or ACAID-inducing-T 

regulatory cells (ACAID-T Reg). CD8+ T regulatory cells down regulate Th1 and Th2 

effector functions in the eye, while CD4+ T regulatory cells inhibit differentiation of 

Th1 cells in the lymph node. 

1.2.3 Rejection in corneal transplantation 

Common indications for penetrating keratoplasty are keratoconus, corneal dystrophies, 

corneal opacities and post cataract surgeries.  Comparisons on the outcome of corneal 

transplantation are difficult because of the non-uniformity of data on surgical 

indications, patient demography, type of grafts, survival analysis and range of follow-

up. In general, uncomplicated low risk grafts give the highest survival rate with topical 

steroidal immune-suppression. Based on surgical indications, the Australian Corneal 

Graft Registry reported keratoconus has the highest 10-year survival rate (89%), 

compared to Fuch’s corneal dystrophy (73%), non-herpetic corneal opacity (70%), 

herpetic corneal opacity (60%), pseudophakic and aphakic corneal oedema (40%), and 

regrafting (30%) (K A Williams et al., 2008).  

 

A breakdown of survival analysis shows the fate of allogeneic penetrating keratoplasty  

for correcting visual acuity  was highest in the first year follow-up i.e. 87% and reduced 

to 52% after 10 years among Asians (Tan et al., 2008). Generally, failed grafts are due 

to irreversible immunological rejection (34%), while corneal endothelial cell failure due 

to glaucoma (24%) and infection (14%) are common causes of failed grafts (K A 

Williams et al., 2008). A similar trend is observed in a study of second grafts; in the 
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majority of cases immune rejection is the main cause of graft failure, although 

recurrence of disease and endothelial decompensation are also important causes 

(Kirkness et al., 1990). 

 

Clinically, other associated factors which are implicated include degree of pre-

vascularisation of the recipient bed, size of donor corneal button, position of the donor 

corneal button in the recipient bed, preservation methods for the donor corneal button, 

choice of immunosuppression and immune status of the recipient.  

 

Generally, the immune response to alloantigens is polarised in two directions; A) 

Activation of T helper type 1 (Th l) effector cells which results in production of 

interferon (IFN)-γ, introduction of CD4+ as a surface determinant and mediation of 

delayed immune response. B) Activation of the T helper type 2 (Th2) pathways, may 

produce cytokines which cross regulate Th1 factors and inhibit their mediator functions. 

IFN-γ is an important pro-inflammatory cytokine in the rejection of MHC-matched 

corneal allografts. It has been shown that manipulating the alloantigenic response from 

Th1 to Th2 pathways by blocking IFN-γ production in MHC-matched allografts 

significantly reduces graft rejection rate (Hargrave et al., 2004).  

 

The mechanism of rejection in cornea transplantation is a delayed type T cell- mediated 

immune response which is accelerated by inflammatory process. In a rat corneal 

transplantation, CD4+ cells had an important role in the mechanism of rejection, while 

the role of CD8+ T cells was not clearly shown. Interleukin (IL)-2, IL-4 and IFN-γ are 

regarded as important inflammatory markers for corneal rejection(Torres et al., 1996).  

 

This finding is in agreement  with an experimental sheep corneal transplantation model, 

where acute rejection is associated with graft neovascularisation, infiltration of CD4+ 

and CD8+ T cells, and production of IFN-γ and IL-2 in the graft (Ka Williams et al., 

1999). But production of tumour necrosis factor (TNF)-α, IL-4 and IL-10 was not 

evident, which the investigators hypothesised might be due to rapid T cell death due to 

Fas-FasL interactions (Yamagami et al., 1997). The expected result of this interaction 

would be induction of apoptosis in Fas bearing infiltrating leucocytes such as CD4+ T 

cells, CD8+ T cells, neutrophils, and macrophages (K A Williams et al., 2005). The role 
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of TNF-α in initiating, maintaining and resolving inflammatory processes, has been 

observed to show dynamic changes in allograft transplantation (Chan et al., 1999). 

 

Corneal epithelium and stroma both peripherally and centrally, contain  dendritic cells 

(DC) which undergo maturation by expressing MHC Class II and B7 co-stimulatory 

molecules during inflammation (Hamrah et al., 2003).  B7 co-stimulatory molecules 

provide potent stimulation for MHC/peptide-T cell receptor interaction to result in 

activation of T cells. B7 molecules are present as dimers on the surface of DC or other 

forms of APC.  

 

A novel negative regulatory molecule has been described recently, which is a new 

member of the B7-CD28 super family, and it is referred to as programmed death-1 (PD-

1) (Junko Hori et al., 2006). B7-H1is a potential ligand for PD-1 (Freeman et al., 2000). 

B7-H1 has been found in corneal epithelium and endothelium and is believed to have 

pro-apoptotic actions on T cells, thus prolonging the survival of corneal grafts (Junko 

Hori et al., 2006). 

 

1.2.4 Major Histocompatibility Complex (MHC) expression in cornea 

transplantation 

The MHC gene complex present antigen to T cells and determines the compatibility of 

donors for organ transplants. The Human Leucocyte Antigen system (HLA) represents 

MHC which encodes for genes related to immune system and cell surface antigen 

presenting proteins. MHC class II antigen presentation pathways are expressed by 

professional antigen presenting cells (APC) e.g. dendritic cells, macrophages, B-cells, 

or epithelial LC.  

A critical factor influencing corneal graft rejection is the presence and the high density 

of such dendritic cells in the graft (donor APCs). Avoiding placement of a graft near the 

limbal area where the APCs are abundant is a logical surgical strategy in this instance.  

An approach towards a donor specific-immnosuppression by regulatory T cells to 

achieve graft tolerance may be taken to eliminate the risk of a violent rejection when 

donor’s and recipient dendritic cells coexist.  

 

The most important antigen presenting cells in the cornea is bone marrow-derived MHC 

Class II+ LC which are responsible for the sensitisation of the host to alloantigens. 
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Under normal conditions LC reside in the limbal area but may migrate to the cornea in 

response to inflammatory conditions (Jerry Y Niederkorn, 1995). Activation of 

alloreactive T cells is dependent on the antigen presenting cells for the host to recognise 

foreign antigens on the grafts. 

 

There is uneven distribution of LC which express HLA class II molecules in the cornea; 

this could possibly be the answer for prolonged survival of these grafts (Hamrah et al., 

2002).  LC were originally thought to be exclusively abundant in the limbal and 

conjunctival region, but not at the central cornea (JY Niederkorn et al., 1992; D. L. 

Williams, 2005). HLA class II expression in normal corneal stroma and endothelia is 

also lacking, and mostly confined to the limbal region of the epithelium (Foets et al., 

1991).  

 

Expression of Class II is also absent without stimulation by inflammatory mediators 

(Nicholls et al., 2006). However, more recent findings demonstrated that a 

heterogeneous population of immature and precursor dendritic cells also reside in the 

central corneal region (Hamrah et al., 2002). These cells labelled as “MHC Class II-

negative” are believed to be progenitor or immature LC. Although these immature cells 

are capable of antigen uptake and processing them, they are incapable to furnish naïve T 

cells with requisite B7 co-stimulatory molecules, thus unable to activate T cells 

(Thomson et al., 1995). This mechanism of active suppression of LC maturation could 

be an important mechanism of corneal immune privilege. 

 

Not surprisingly, there is low incidence of corneal graft rejection although HLA antigen 

matching of donor and recipient is not normally performed, especially in low risk grafts. 

In a study performed by The Collaborative Corneal Transplantation Studies Group in 

high risk corneal transplantation patients,  HLA-A, B and HLA-DR matching did not 

reduce the rate of graft failure in this high risk group (1992). Additionally, a recent 

finding showed that although matching of HLA-A and -B did not significantly affect the 

rejection rate in low risk group, it certainly benefitted the high risk group. (Khaireddin 

et al., 2003). HLA-DR matching was also demonstrated to significantly reduce allograft 

rejection by 40%, 3 years after surgery in the high risk group(Khaireddin et al., 2003). 

The disadvantages of HLA matching include the costs and extended waiting time for 

suitable grafts. However, these need to be seriously weighed against the risk of failed 
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grafts and further therapeutic complications, regrafting and the overall impact on the 

pool of available donated corneas. 

 

Despite encouraging results from MHC matching, grafts can still be rejected due to 

incompatibility in the minor MHC antigens. Th1 pathway and IFN-γ production was 

shown to be the mechanism involved in rejection of MHC-matched corneal allografts 

where minor MHC antigens are presented to the host (Hargrave et al., 2004). Minor 

MHC antigens are naturally occurring polypeptides processed and presented by MHC 

molecules, shown to increase risk of grafts failure in grafts-versus-host disease. Minor 

MHC antigens induce activation of T cells and also play an important role in allograft 

rejection of solid organs following transplantations (Yoichiro Sano et al., 2000; Kwun 

et al., 2011; Pabón et al., 2011). Minor H antigens are loaded to MHC molecules in 

corneal grafts allowing for indirect T cell allorecognition (Sonoda et al., 1995). 

Alloreactive T cells recognise allogeneic peptides “indirectly” when they are introduced 

to self-MHC class I and II molecules. On the other hand, “direct” allorecognition occurs 

when T cells recognise donor alloantigens directly, irrespective of the peptides 

associated with the MHC molecules. 

 

Experimental stimulation of human corneal epithelial cells with recombinant human 

IFN-γ demonstrated increased expression of MHC Class II antigens (Iwata et al., 

1992)
,
(Iwata et al., 1994)

 
and significant  ability to stimulate allogeneic lymphocytes 

(Iwata et al., 1994).  Another study revealed corneal epithelium and  endothelium 

express MHC class II antigens when stimulated by  IFN-γ, whereas it had no effect on 

the expression of MHC class I antigens (el-Asrar et al., 1989).   

 

1.2.4 Methods to prevent rejection 

Strategies to reduce rejection rate must take into consideration immunosuppressive 

reagents and gene therapy. The use of anti-inflammatory mediators is an additional 

strategy to prolong survival of grafts. Soluble TNF-α receptor type I in a topical 

instillation form has shown favourable results in reducing murine allogeneic reactions 

(Qian et al., 2000). TNF-α is a potent pro-inflammatory cytokine in alloimmune 

response. It is a macrophage derived cytokine responsible for expression of adhesion 

and co-stimulatory molecules, neutrophils activation, chemokine stimulation and 

inducing the nuclear factor-ΚB signalling pathway.  
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More recently, administration of IL-1 receptor antagonist (IL-1Ra) was shown to be a 

promising as an effective modality for suppressing IL-1-mediated processes to counter 

rejection in corneal transplantation (Dana et al., 1997; Stapleton et al., 2008) to 

corticosteroid immune suppression in mice allogeneic grafts. IL-1 is involved in 

mediation of acute phase reactions, chemotaxis, stimulation of new vessels and most 

importantly, the migration and recruitment of LC. IL-1Ra is produced in abundance at 

the apical epithelial region in fresh cornea (Heur et al., 2009). This potent inflammatory 

cytokine is derived from monocytes, macrophages and resident corneal cells and is 

expressed at high levels during corneal transplantation immune response. IL-1 receptor 

antagonist (IL-1Ra) has the effect of neutralising IL-1 by suppressing LC migration, 

thus prolonging survival of allografts. Interestingly, the success of experimental ex-vivo 

transduction of IL-1Ra in rat cornea will be a new landmark in corneal gene therapy to 

treat corneal inflammatory conditions and corneal transplantation (Yuan et al., 2012).  

 

NGF gene therapy in combination with a cytotoxic T lymphocyte antigen 4 

immunoglobulin G (CTLA4Ig) has shown to prolong rodent corneal allografts survival 

by mediating its anti-inflammatory and anti-apoptotic pathways (Gong et al., 2007). 

This is not surprising since NGF and its receptors are abundantly present in a densely 

innervated organ like the cornea and are responsible for the wound healing process 

(Kinoshita and Ueta, 2010). 

 

In other pharmacological developments, suppression of inflammation by interleukin-10 

(IL-10)(Boorstein et al., 1994) and inhibition of intercellular adhesion molecule-1 or its 

ligand (Whitcup et al., 1993) are prospective potential therapies. 

 

1.3 Conclusion 

A challenging aspect of LSC is the absence of specific markers to uniquely identify 

these stem cells and to distinguish them from other adult stem cells, or LSC derived 

from TAC. This necessitates the characterization process involving several modalities 

i.e. RT-PCR, immunochemistry or cell cycling methods. A consistent isolation method 

for LSC should also be instigated, to include protocols to enrich for LSC such as 

functional phenotypic assays like the SP assay. 
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Ex vivo expanded limbal epithelial transplantation has proven to be able to reconstruct 

the ocular surface in LSCD eyes. However, this method needs to be further refined to 

include protocols to assess tissue viability, the quality of   tissue constructs and safety 

assessment. In order for LSC to be successfully translated into favourable clinical 

outcomes, a good manufacturing practice (GMP)-compliant protocol would be a 

positive step towards achieving high quality tissues to fulfil the requirements for clinical 

transplantation(DiIorio et al., 2010).  

 

As the most transplanted organ, the importance of understanding corneal immunology is 

of considerable interest. A major issue with whole cornea transplantation, allogeneic 

limbal tissues or ex vivo LSC transplants remains their immunogenicity. Questions arise 

whether the ocular immune system is similar in all regions of the eye, and does the 

immune privilege status of the anterior chamber apply to other ocular tissues? It would 

be interesting to explore immunogenicity of grafts placed on the cornea in an ocular 

reconstruction surgery where no breach of the anterior chamber happens at all. 

 

Further investigation on the immunological factors in the cornea that allow tolerogenic 

potential of the organ to respond to ocular antigens is necessary to exploit corneal 

immune privilege to its full advantage. Identification of inflammatory molecules and 

apoptotic markers, their signalling pathways, and role of HLA matching, are some of 

the strategies to promote the survival of whole corneal and LSC transplantation. 

Furthermore, differential expressions of HLA antigens during inflammation and 

rejection process may elucidate the role of antibodies alone, or in combination with 

other soluble factors in donor antigen-specific immune suppression. This approach of 

immune suppression by regulatory T cells may potentially achieve graft tolerance to 

eliminate the risk of a violent rejection.  

 

1.4 Objectives 

This project will aim to address a deficit in our knowledge of LSC biology, namely the 

characterization of LEC from both primary LEC and a human telomerase-immortalized 

corneal epithelial cell (HTCEC) line, limbal SP cells (as an enriched adult stem cell 

population) and studying the biological and immunological properties of corneal 

epithelial cells with implications on LSC transplantation. A novel therapeutic approach 
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to culture an alternative stem cell population sourced from the corneal limbus on 

cryopreserved AM, thawed from frozen will be tested as a preferred biodegradable 

scaffold. 

1.4.1 Experimental Approaches and Techniques 

Aim 1 

To achieve these objectives, specific aims will involve these techniques;  

1) Isolation of human LEC from primary donor corneas. 

2) Characterisation methods for both human LEC and HTCEC. 

3) Optimisation of LSP protocol for both human LEC and HTCEC. 

4) Characterisation of human limbal SP (LSP) cells. 

 

Aim 2  

To study the biological and immunological properties of corneal epithelial cells with 

implications on LSC transplantation, these techniques will be employed;  

1) Examine the expression of HLA class I & II molecules in corneal epithelial cells. 

2) Determine the HLA expression under stimulation of pro-inflammatory cytokines.  

3) Study cellular migration in corneal epithelial cells. 

 

Aim 3:  From the results defined in Aim 1, research grade cryopreserved AM obtained 

from NHS Blood and Transplant will be used as a substrate to promote cellular 

proliferation and differentiation of LMSC.  .  
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Chapter 2 GENERAL MATERIAL AND METHODS 

2.1 Ethics and Research Approval 

This project was conducted according to the ethical principles of the Declaration of 

Helsinki for human experiments. Project and ethical approvals received for this project 

were as listed: 

2.2 Project Approval 

This project had received project and ethical approval from the Ethics Committee, 

Faculty of Medical School, Newcastle University on 18 January 2013 (No. 00617/2012) 

and amended on 24 April 2013 (N0. 00617_1/2013) (Appendix 1). 

The corneal tissues were harvested by the The Eye Bank and stored in Optisol media 

contaning dextran. All requests for human cells, tissues and organs from the bank were 

peer-reviewed for merit and procurement feasibility and in order to apply for tissues we 

provided proof that we had ethical approval from Newcastle University for this research. 

We did not require any identifiers to the donors, other than age, gender, time of death to 

preservation in the media mentioned above and death to delivery interval. Therefore 

there was no issue with storage of personal data.  

 

Data generated from our study were kept on computers housed within Newcastle 

University.  Results of our studies were available to other researchers and the public via 

publication in peer reviewed journals, the university website and by presentation at 

conferences.  

 

As a general rule, we received donor corneas which had satisfied the General Organ 

Donor Criteria, with the exception of age and blood type. All tissues had undergone 

screening for infective diseases e.g. HIV, Hepatitis B or C, syphilis, cytomegalovirus 

and Epstein Barr Virus. In addition, the donors did not have known corneal trauma or 

diseases or intra-ocular eye surgery. Additional exclusion criteria were as at the 

discretion of the Eye Banks. Alternatively, donor cornea which was not suitable for 

transplantation was assigned for research and training.  
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2.3 Human Tissue Authority License 

For use of human tissues in research, the Institute of Genetic Medicine has been 

approved for handling, storage and research on human disorders and functions in the 

body (Appendix 2).  

2.4 Material Transfer Agreement (MTA) 

The approval for use of human corneascleral rings was obtained through a material 

transfer agreement with the Central Manchester and Manchester Children’s University 

Hospitals (NHS Trust) (Appendix 3). Donor corneas were either unused whole cornea 

from clinical transplantation, or whole cornea/corneoscleral rims suitable for research 

and training. 

2.5 Ethics/Project approval  

The ethical approval for the use of human AM was obtained through Newcastle 

Uteroplacental Bank Ethics Committee, application reference number 13.04 (Appendix 

4).  

2.6 Ethics/Project approval  

Human cryopreserved AM were supplied by the National Health Service (NHS) Blood 

and Tissue bank, Liverpool, United Kingdom. Donors had undergone medical and 

social history interviews and tissue screening for infective diseases as mentioned above.  

2.7 General Laboratory Practice 

All experiments were performed according to the Control of Substances Hazardous to 

Health (COSHH and BIOCOSHH) regulations. All procedures were in compliance with 

Newcastle University current safety policies. Tissue culture was carried out in 

compliance with regulations for containment of Class II pathogens. 

2.8 Tissue Culture 

2.8.1 3T3 Fibroblast culture 

Immortalised Swiss mouse embryonic fibroblasts from the J2 strain (a gift from Dr. 

Fiona Watt originally from Howard Green’s Laboratory, Harvard) were thawed from 

frozen. The resulting cell suspension was centrifuged with 3T3 medium (Table 2.1) at 

1,000 revolutions per minute (rpm) for 3 minutes at room temperature. 
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2.8.2 3T3 Fibroblast Culture medium 

3T3 fibroblasts were routinely grown in T25cm
2
 flasks [Iwaki/VWR] at 37

°
C, 5% CO2 

in a humidified incubator until 80-100% confluency determined microscopically (Figure 

2.1). Medium was removed and cells washed with Dulbecco’s Phosphate Buffer Saline 

(DPBS) [Sigma].  3ml 0.05% trypsin-EDTA was added into the flask and incubated for 

2 minutes at 37°C. Flask was examined for cell detachment and subsequently agitated. 

Cell suspension was then removed and transferred to a 15ml centrifuge tube and 

centrifuged at 1,000 rpm for 3 minutes.  The supernatant was discarded and the cell 

pellet re-suspended in 5ml 3T3 medium and subcultured into a new T75cm
2 

flask in a 

total medium volume of 10ml. Medium was changed every other day. 

Table 2.1 Composition of the medium for 3T3 fibroblast culture 

Reagent Composition Supplier 

High glucose DMEM (4,500mg/l) 89% Gibco 

FCS 10% Gibco 

Penicillin/Streptomycin 1% Gibco 

 

2.8.3 Cryopreservation of 3T3 fibroblast 

Cells were frozen using Recovery Cell Culture Freezing Medium [Gibco], which 

contains DMSO 10%, high glucose DMEM, and fetal bovine serum. The medium was 

first removed from flask and washed with DPBS. 5ml of 0.05% trypsin-EDTA was 

added to the flask and incubated for 3 minutes at 37°C. Cells were agitated collected in 

a 15ml centrifuge tube which was then centrifuged at 1,000 rpm for 3 minutes. The 

supernatant was removed and 1ml of freezing medium was added to cell pellet 

containing about 1 x 10
6
 cells and transferred to a cryogenic vial and put in a cell 

freezing container [Nalgene], which contains 250ml of 100% isopropyl alcohol [VWR 

BD Prolab]. This provides -1°C/minute cooling rate required for successful cell 

cryopreservation and recovery, and then frozen at -80°C.  

2.8.4 Re-culturing of cryopreserved 3T3 fibroblast  

Frozen cell suspensions were rapidly thawed and cytotoxic cryopreservants were 

inactivated by washing in 3ml of 3T3 media in a 15ml conical centrifuge tube at 1,000 
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rpm for 3 minutes. The supernatant was discarded and the pellet was resuspended with 1 

ml of 3T3 media and transferred to a T25cm
2
 or 75cm

2
 flask containing 10ml 3T3 

medium. The media was changed on the next day and every other day following that.  

2.8.5 Inactivation of mouse 3T3 fibroblast feeder layer with mitomycin C (MMC) 

When cells reached 80% confluence, MMC [Sigma] was added at the concentration of 

10µg/ml of the volume of medium. The tissue culture flask was then incubated for 2 

hours at 37°C. After which, 5ml of 0.05% trypsin-EDTA was added and incubated at 

37°C for 3 minutes. The detached cells were harvested, into 3T3 media and centrifuged 

at 1,000 rpm for 3 minutes at 4°C and the cell pellet was then resuspended in 2ml 3T3 

medium and counted. The cells were plated at 2.4 x 10
4
/cm

2
 in a 6-well plate. The cells 

are amitotic but still living and can be used as a feeder layer. 

2.8.6 Inactivation of 3T3 fibroblast feeder layer with X-irradiation 

Alternatively, confluent 3T3 were exposed to 60 Gy units at 0.01 Gy units per second 

[Astrophysics Research Corporation X-Ray Inspection System]. The medium was 

removed and briefly washed with DPBS, and replaced with 10ml 3T3 medium. The 

cells were then detached from the flaks using 5ml 0.05% trypsin-EDTA and centrifuged 

and the cell pellet then re-suspended in 3T3 media and plated at a density of 2.4 x 

10
4
/cm

2
 in a 6-well plate.  

2.8.7 Cell counting 

Cells were counted prior to experiments/cryopreservation using a haemacytometer 

[Scientific Laboratory Supplies]. 10μl of cell suspension was pipetted onto the 

haemacytometer and allowed to diffuse under the cover slip and examined under a light 

microscope.  Cells in the 25 squares of the grid were counted and the total multiplied by 

1 x 10
4
 to obtain the number of cells/ml. To ascertain cell viability, 20µl sample of the 

cell suspension to be counted was placed in a solution containing 50µl 0.4% trypan blue 

solution [Sigma] and 30µl DPBS [Gibco] and incubated for 10 minutes at room 

temperature. This resulting cell suspension was counted as above. Blue cells were non-

viable cells and excluded from the count. The final count was multiplied by a factor of 5 

to allow for the dilution of volume of cells to volume of trypan blue and PBS (1:5). 

 



41 

 

Chapter 2: General Materials and Methods 

2.8.8 Plating of 3T3 fibroblast as a feeder layer 

After performing a count of the viable cells, 24,000 cells/cm
2
 in 3T3 medium were 

added to the 9.6cm² tissue culture wells [VWR], containing inactivated 3T3 fibroblasts 

as feeder cells (refer section 2.8.2 and 2.8.5 on culture and preparation of 3T3 feeder 

layer).  

2.9 Primary LEC Culture 

2.9.1 Isolation of LEC 

LEC culture was conducted according to (Graziella Pellegrini et al., 1999)  – Cadaveric 

limbal tissues were obtained in agreement with the UK Eye Bank.  All tissue culture 

work was routinely carried out in a containment level II microbiological safety cabinet. 

Limbal tissues were sourced from discarded corneo-scleral rings as left over from 

penetrating keratoplasty surgeries, or harvested as research grade whole corneas (Figure 

2.2).  

 

The tissue was cut into 4 quadrants and cut further into 1 mm² pieces. These limbal 

pieces were incubated with 0.05% trypsin-EDTA [Gibco] for 20 minutes at 37
°
C, 5% 

CO2 in a humidified tissue culture incubator with gentle agitation of the suspension at 

the 10 minute point of a 20 minute cycle. The resulting cell suspension was removed 

from the limbal pieces, and 1ml limbal epithelial medium (Table 2.2) was added to this 

suspension. The cell suspension was then centrifuged for 3 minutes at 1,000 rpm at 4°C 

and the supernatant discarded. The remaining cell pellet was re-suspended in limbal 

epithelial medium (LEM). This process of trypsinisation of the limbal pieces and 

centrifugation of the resulting cell suspension was repeated for a further three times 

using the same limbal tissue. Finally, the resulting limbal cell suspensions were pooled 

together and centrifuged.  
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Figure 2.1 Confluent 3T3 fibroblast cultures.  

 

 

 

 

Figure 2.2 Harvesting a cornea from an enucleated cadaveric eye. 
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2.9.2 LEC medium 

The composition of reagents and additives for LEC media is listed in Table 2.2.  

Table 2.2 Composition of limbal epithelial medium (LEM). 

Reagent Quantity Supplier 

DMEM (Low Glucose 1g/L) 375 ml (75%) Invitrogen 
Ham’s F12 Medium 125 ml (25%) Invitrogen 
Foetal calf serum 10% Invitrogen 
Penicillin/Streptomycin 1% Invitrogen 
Hydrocortisone 0.4μg/ml Sigma 
Insulin 5μg/ml Sigma 
Triiodothyronine 1.4ng/ml Sigma 
Adenine 24μg/ml Sigma 
Cholera Toxin 8.4ng/ml Sigma 
Epidermal Growth Factor 10ng/ml Sigma 

 

2.9.3 Plating and subculturing of LEC 

The cells in the limbal media suspension were counted for viable cells. 30,000 viable 

LEC in epithelial medium were added to the 9.6cm² tissue culture wells [VWR], 

containing inactivated 3T3 fibroblasts as feeder cells.  

 

Sub-culturing was done according to  (Rheinwald and Green, 1975a) - To expand the 

number of LEC, the primary cultures were sub-cultured prior to confluence of the 

colonies (Figure 2.3). The medium was removed from the culture well and the culture 

was briefly irrigated with PBS. The culture was incubated with 0.05% trypsin-EDTA 

solution for 5 minutes in a tissue culture incubator. Epithelial medium was then added 

to the resulting cultured LEC suspension. The suspension was centrifuged for 3 minutes 

at 1,000 rpm at 4°C and the supernatant was removed. The resulting cell pellet was re-

suspended in epithelial medium. After performing a count of viable cells, the cells were 

plated in a 9.6cm² well containing 3T3 feeder cells. The sub- cultures were then treated 

in the same way as primary cultures above (refer section 2.8.4).  

 



44 

 

Chapter 2: General Materials and Methods 

 

Figure 2.3 LEC grown on mitotically inactivated 3T3 fibroblast in different stages of 

cultures. (A) Formation of holoclones on Day 3 (white arrows) (B) enlarging colonies 

on Day 7 (C) spindling of cells at a differentiated stage on day 12 (black arrows).  

 

2.9.4 Culture of LEC on coating matrix using serum-free medium 

Subcultures of LEC were plated in tissue culture well 9.6cm
2
 or 25cm

2
 flask without 

feeder-cells and under serum-free culture conditions (Figure 2.4A, 4B, 4C). Wells and 

flasks were Coated using Coating Matrix Kit [Gibco] which contains 0.5ml sterile 

recombinant human Type-1 collagen as a Coating Matrix (Item # 50-9700) and 50ml 

Dilution Medium (Item # 50-9701) were used. Dilution Medium was added to each 

flask (5ml per each 75cm
2
 flask, or 1.7ml per each T25cm

2 
flask or 0.65ml for a 9.6cm

2
 

well). Coating Matrix was directly added to the Dilution Medium in each flask (50 µl 

per each T75cm
2
 flask, or 17µl per each T25cm

2
 flask or 6.5µl per each 9.6cm

2 
well). 

To ensure uniform distribution of the coating matrix over the surface of the flask, the 

flasks were rocked back and forth gently. The flasks were capped and incubated for 30 

minutes at room temperature.  Excess Coating Matrix/Dilution Medium was removed 

from each flask. The flasks could be used immediately, or stored at 2° to 8° C for short 

periods of time. 
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Prior to plating of LEC the flasks and wells were briefly washed with PBS and cells 

plated in defined keratinocyte serum free medium (DKSFM) [Gibco]. This is a medium 

optimised for expansion of keratinocytes without supplementation of bovine pituitary 

extract or the use of feeder layers. Growth promoting agents were added to enhance 

consistent product performance. Plating of cells was performed as described above. 

2.10 Human telomerase-immortalised cornea epithelial cell line (HTCEC) 

We received a frozen vial of HTCEC from Professor Winston Kao’s laboratory in 

University of Cincinnati, USA. The cell line was originally derived by Professor James 

Jester (University of California, Irvine, USA). We successfully expanded HTCEC and 

maintained this cell line in feeder- and serum-free conditions (Figure 2.4D).  

 

Frozen suspensions of HTCEC were rapidly thawed and mixed and washed with 

DKSFM [Gibco] for 3 minutes at 1,000 rpm at 4°C. The supernatant was discarded and 

the resulting pellet was re-suspended in DKSFM into a T25 cm² tissue culture flask 

[Scientific Laboratory Supplies] and maintained in a tissue culture incubator at 37ºC, 

5% CO2. The medium was changed on the next day and then every three days. 

2.10.1 Maintenance of human telomerase-immortalised cornea epithelial cell line 

For the purpose of maintaining HTCEC, the medium was removed from subconfluent 

cell cultures and the cells washed with DPBS. The cells were detached from the flask 

with a tissue dissociation buffer [Gibco] (the buffer is an enzyme-free aqueous 

formulations of salts, chelating agents, and cell-conditioning agents in either Ca
2+

- and 

Mg
2+

-free Hanks balanced salt solution which is suitable for gentle dissociation of cells 
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Figure 2.4 Human primary limbal cultures (Passage 2) grown on a collagen II coating 

matrix at different stages. (A) Day 2 (B) Day 8 (C) Day 15 (D) HTCEC in serum-free 

and feeder free conditions on Day 3. 

 

from support substrates and each other, or in this case, firmly adherent cells) for 20 

minutes at 37ºC and then incubated with 0.05% trypsin-0.53 mM ethylene 

diaminetetraacetic acid (EDTA) solution [Gibco] for 3 minutes in a tissue culture 

incubator also at 37ºC. The trypsin was then inactivated by the addition of DMEM 

containing 10% fetal bovine serum. The resulting cell suspension was centrifuged for 3 

minutes at 1,000 rpm. The supernatant discarded and the cell pellet re-suspended in 

DKSFM. The cell suspension was then split into two T25 cm² flasks or being put into 

one T75 cm² tissue culture flask [Scientific Laboratory Supplies] containing DKSFM. 

The HTCEC cultures were maintained in a tissue culture incubator and the medium was 

changed every three day. The HTCEC was repeatedly sub-cultured for a maximum of 

20 passages. 

2.10.2 Cryopreservation and reculturing of HTCEC 

For the purposes of maintaining stocks, 1 x 10
6
 cells was suspended in 1ml of Recovery 

Cell Culture Freezing Medium [Gibco], the suspension was then transferred to a 

cryogenic vial and put in a cell freezing container [Nalgene], which contains 250ml of 
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100% isopropyl alcohol [VWR BD Prolabo]. This provides -1°C/minute cooling rate 

required for successful cell cryopreservation and recovery, and then frozen at -80 °C or 

in liquid nitrogen. 

 

The frozen cell suspension was rapidly warmed and washed in DKSFM and centrifuged 

at 1,000 rpm for 3 minutes. The supernatant was discarded and the pellet was 

resuspended in 1ml of DKSFM and transferred to a 25cm
2
 or 75cm

2
 flask containg a 

further 10ml DKSFM. The media was changed on the next day and then every three 

days.  

2.11 Mycoplasma detection and treatment 

Mycoplasma are small and simple prokaryotes which depend on their host for nutrients 

due to their limited biosynthesis. As they compete with the cells for the nutrients in the 

culture media, this will affect cellular growth and proliferation and cause changes in the 

gene expression. Cells were regularly tested for mycoplasma contamination every six 

months. Mycoplasma detection was carried out using the MycoAlert
TM

 assay [Lonza] 

according to the manufacturer’s protocol. In principle, this assay is a selective 

biochemical test that exploits the activity of certain mycoplasma enzymes which upon 

lysis, reacts with the MycoAlert
TM 

substrate and catalyses the conversion of ADP to 

ATP. The level of ATP before and after the addition of the MycoAlert
TM 

substrate 

indicates the presence or absence of mycoplasma and can be measured using a 

luminometer ‘Luminoskan’ [Thermo Scientific]. The bioluminescent reaction involved 

is as follows: 

                                       Luciferase 

ATP + Luciferin + O2                    Oxyluciferin + AMP + PPi + CO2 + LIGHT 

                                           Mg
2+ 

 

Briefly, after dissociation, cells were centrifuged and 100μl of cleared fresh supernatant 

was suspended with 100μl reconstituted MycoAlert
TM 

reagent in assay buffer, and left 

for 5 minutes in a luminometer cuvette. Luminescence was then measured using a 

Luminometer TD-20/20 [Turner Biosystems, Inc.USA] and labelled as Reading A. 

Following that, 100μl MycoAlert
TM

substrate was added to the sample and left for 10 

minutes, after which the second luminescence reading was labelled as Reading B. The 

ratio of Reading B/Reading A is used for the interpretation of mycoplasma 

contamination. The ratio of <0.9 is negative for mycoplasma, 0.9-1.2 is borderline, and 
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> 1.2 signifies mycoplasma contamination. Cells represented with borderline results 

were quarantined and retested within the next 24 hours. Cells with mycoplasma 

infection were discarded and fresh stocks obtained.  

2.12 Other Cell Lines  

Other cell lines were grown in appropriate culture conditions: 

2.12.1 Breast cancer cell MCF-7 

This is a human breast adenocarcinoma cell line. MCF-7 is a cell line that was first 

isolated in 1970 from the breast tissue of a 69-year old Caucasian woman. The cell line 

retains several characteristics of mammary epithelium. It is an oestrogen receptor (ER) 

positive progesterone receptor positive cell line (Yamaguchi et al., 2005). 

MCF-7 cells were grown in complete Dulbecco’s Modified Eagle’s medium (cDMEM) 

that contains 10% fetal bovine serum (v/v) and 1% Penicillin/Streptomycin under 

standard TC conditions, while still subconfluent the medium was removed and the 

adherent cells washed briefly with with PBS, incubated with 0.05% trypsin-0.53 mM 

ethylene diaminetetraacetic acid (EDTA) solution [Gibco] for 5 minutes in a tissue 

culture incubator at 37ºC with 5% CO2. The trypsin was then inactivated by the addition 

of DMEM containing 10% fetal bovine serum. The resulting cell suspension was 

centrifuged for 3 minutes at 1,000 rpm. The supernatant was removed and the resulting 

pellet was resuspended in cDMEM for subculturing. For cryopreservation, 1.0 x 10
6
 

cells were cryopreserved as described previously (refer section 2.8.3). 

2.12.2 Breast cancer cell MDA-MB-231 

This cell line was obtained from pleural effusion of a 51-year old patient at M.D. 

Anderson Cancer Centre, Texas, USA in 1973. It appears spindle-shaped and has 

epithelial morphology, with an invasive phenotype. These cells are oestrogen and 

progesterone receptor negative. The cells were propagated in DMEM. Subculturing, 

cryopreservation and revival of cells follows similar steps as described previously (refer 

section 2.8.4). 

 

2.12.3 Ovarian cancer cell HeyA8MDR 

These malignant ovarian epithelial cancer cells are counterpart to HeyA8. It is taxane-

resistant and was recently demonstrated as secreting endoglin, an angiogenic marker 
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which is associated with chemo-resistance (Ziebarth et al., 2013). The cells were 

propagated in RPMI 1640 Complete Culture medium [Sigma Aldrich] with NaHCO3 

and without L-glutamine. Subculturing, cryopreservation and revival of cells follow 

similar steps as described above in section 2.8.4. 

 

2.12.4 Human Epstein-Barr Virus (EBV)-negative cell line (Ramos) 

These cells were derived from a Caucasian Burkitt's lymphoma patient. It does not 

possess the Epstein Barr Virus (EBV) genome, however these cells may be infected in 

vitro with a prototype strains of EBV (Trivedi et al., 2001). These are non-adherent 

cells and propagated in RPMI 1640 Complete Culture medium [Sigma Aldrich] with 

NaHCO3 and without L-glutamine.  

 

2.13 Primary cells – Other 

2.13.1 Human peripheral blood leukocytes (PBL) 

Peripheral blood leukocytes were used as negative control gating in flow cytometry for 

optimisation of antibodies. PBL isolation was conducted together with Dr Gendie Lash 

(Institute of Cellular Medicine, Newcastle University). Briefly, venous blood was 

acquired from the antecubital vein and collected in a heparinised universal tube. 10ml 

PBS was added to 10ml of blood. In a new universal tube, 5ml lympholyte-H 

[CedarLane Laboratories] was added. Following this, diluted blood was carefully 

layered on top of the lymphoprep. The tube was then centrifuged at 800G for 20 

minutes with no brake (set at 0). This separated the blood into layers, the serum was 

gently removed. The leukocytes were then harvested into a fresh universal tube and 

washed  with PBS 25ml, followed by centrifuged at 400G for 10 minutes, with the 

brake set at 3., this step was repeated a second time and the final cell pellet was 

resuspended in 5ml of media  ready for use. 

2.13.2 Human bone marrow (BM)-derived MSC 

BM-derived MSC [courtesy of Dr Rachel Oldershaw] was used as positive control for 

immunofluorescence. The cells were maintained in MSC-enriched media and incubated 

in hypoxic condition with 5% oxygen, 5% CO2 incubator at 37°C, prior to use. 
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2.14 Flow cytometry 

2.14.1 Definitions and principles 

Flow cytometry is a technological process that involves light scattering, excitation and 

emission of fluorochromes to provide data of cells or particles. Samples were hydro-

dynamically focused in a sheath of PBS before intercepting a light source (usually a 

laser) (Figure 2.5).  

 

Figure 2.5 Principles of flow cytometry-1. The sample is injected into the sheath and 

hydro-dynamically focused at the centre of the stream. When it intercepts a laser source, 

they scatter light and the fluorochrome is excited to a higher energy state.  When the 

molecule goes to a relaxed state, it will release a photon of light that has unique specific 

spectral properties to the fluorochrome (From Current Protocols In Cytometry, Unit 

1.2, p 1.2.2 ). 

 

When a cell intercepts a laser source, light is scattered and the fluorochrome is excited 

to a higher energy state.  When the molecule goes to a relaxed state, it will release a 

photon of light that has unique specific spectral properties to the fluorochrome (Figure 

2.6).  
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Figure 2.6 Fluorescence spectra of commonly used fluorochromes. The bottom part of 

the table summarizes the emission wavelengths of various light sources used in flow 

cytometry. The 488nm line of the argon ion laser is extended over the spectra. (From 

Practical Flow Cytometry, Third Edition, Howard M. Shapiro. P. 245) 

 

Several dichroic mirrors and filters separate the scattered and emitted light into different 

wavelengths which divide the light to a series of photomultiplier tubes (PMT) (Figure 

2.7). PMT processed the potential difference by a series of linear and log amplifiers 
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which give signal pulses proportional to the number of photons reaching the 

photodetector.  

 

Figure 2.7 Light Scattering, 2-parameter histogram. Logarithmic amplification is used 

to measure fluorescence in cells. Different signals or pulses are amplified to allow for 

events to be plotted on histograms. 

 

Logarithmic amplification is most often used to measure fluorescence in cells. After the 

different signals or pulses are amplified they are processed by an Analog to Digital 

Converter (ADC) which in turn allows for events to be plotted on a graphical scale e.g. 

One Parameter or Two parameter Histograms (Figure 2.8).   
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Figure 2.8 Principles of flow cytometry-2. Several dichroic mirrors and filters separate 

the scattered and emitted light into different wavelengths which divide the light to a 

series of photomultiplier tubes (PMT). PMT processed the potential difference by a 

series of linear and log amplifiers which give signal pulses proportional to the number 

of photons reaching the photodetector. 

 

This information can be used to sort subpopulations of cells. Data generated from flow 

cytometry are available in a multiparameter acquisition display software programmes. 

Flow cytometry analysis data of a single suspension yields multi parameter data which 

correspond to Forward Light Scatter and 90 Light Scatter. This information allows 

characterisation of subpopulations and this separation process is called “sorting”. 
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2.14.2 Forward scatter and side scatter 

Forward scatter or low angle scatter is detected in the plane of incident light. The 

amplitude of the signal often corresponds to cell size or cell diameter of cells with the 

same refractive index. 

While SSC or the 90˚ light scatter or “right angle scatter” refers to the internal 

granularity or complexity of a cell. Light tends to scatter at larger angles to the incident 

beam by cells that are more dense or granular. 

2.14.3 Principles of cell sorting 

A cell sorter can rapidly separate the cells in a suspension on the basis of size and the 

properties of the fluorochromes. A cell sorter like FACS DiVa [BD] uses the droplet 

method, where a cell suspension containing cells which are labelled with a fluorescent 

dye is hydronamically focused in the cell sheath to allow single passage of droplets. 

This stream emerges from a nozzle vibrating at some 40,000 cycles per second which 

breaks the stream into 40,000 discrete droplets each second. A laser beam is directed at 

the stream just before it breaks up into droplets. As each labelled cell passes through the 

beam, its resulting fluorescence is detected by a photocell which is electrically charged. 

 

If the signals from the two detectors meet either of the criteria set for fluorescence and 

size, an electrical charge (+ve or -ve) is given to the stream. The droplets retain this 

charge as they pass between a pair of charged metal plates. Positively-charged drops are 

attracted to the negatively-charged plate and vice versa. Uncharged droplets (those that 

contain no cell or a cell that fails to meet the desired criteria of fluorescence and size) 

pass straight into a third container and are later discarded (Figure 2.9).  
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Figure 2.9 Principles of cell sorting. The suspension in the sheath intercepts a laser 

beam, becoming droplets which then pass an electrical field which causes the droplets to 

retain positive or negative charges. Positively-charged drops are attracted to the 

negatively-charged plate and vice versa, the cells are “sorted” according to the desired 

criteria of fluorescence and size.   

 

2.15 Immunocytochemistry (ICC) 

2.15.1 Titration of antibodies  

For antibody optimisation, primary antibodies were diluted in 0.5% Normal goat serum 

(NGS) [Sigma]/PBS to 1:50, 1:100, 1:300, and 1:500 dilutions. For transcription factor 

p63 and ABCB5 antibodies, optimum antibody concentration was determined by 

performing ICC on HTCEC. The optimum expression for p63 was at 1:50 dilution. For 

ATP-binding casette (ABC)-G2 transporter antibody, optimised expression was 

obtained using a rabbit polyclonal anti-human ABCG2 antibody at 1:100 dilutions 

[Novus Biologicals]. In the case of stem cell markers NANOG, Oct 3/4 and Sox2, 

antibody concentrations were optimised using embryonic stem cell (ESC) courtesy of 
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Dr Rachel Oldershaw (Institute of Genetic Medicine). The optimum expression for 

these primary antibodies was observed at 1:100 dilutions. 

 

2.15.2 Staining for markers 

40,000 cells were seeded on an 8-chamber slide [BD Falcon] in appropriate tissue 

culture medium and allowed to proliferate until 80% confluence in 5% CO2 incubator at 

37°C. Upon reaching confluence, culture medium was removed and cells washed with 

PBS three times. Cells were then fixed with cold methanol [BDH Laboratory Supplies] 

at-20°C for 10 minutes. Slides were then washed with PBS and then permeabilised for 

10 minutes in 0.3% (v/v) Triton X-100 [Fisher Scientific] diluted in PBS, and then 

washed again with PBS. Blocking of non-specific binding sites in 5% normal goat 

serum and PBS was performed for 30 minutes in a humid chamber in the dark. Cells 

were incubated with primary antibodies in 0.05% FBS/PBS overnight at 4°C. Cells 

were then washed with PBS 3 x 5 minutes. Cells were incubated with secondary 

antibody for 30 minutes in a humid chamber in the dark. Following that, slides were 

washed with PBS three times/5 minutes and the chamber was removed from the slide.  

 

The slide was then mounted in vectashield anti-fading medium [Vector Laboratories] 

and slides were covered with a cover slip. Slides were stored at 4°C in the dark or taken 

immediately for viewing under a fluorescence microscope. For longer term, storage 

slides were kept at -20°C. Negative controls were cells stained without primary 

antibody, but with secondary antibody. A list of primary and secondary antibodies is 

presented in Table 2.3. 
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Table 2.3 Primary and secondary antibodies used for ICC. 

Antibody 
Cellular 

localisation of 
antigen 

Optimal 
Dilutions Supplier 

PRIMARY 
  

 

Mouse monoclonal anti-human p63 
(clone 4A4)  

 
Nuclear/ 
cytoplasmic 

 
1:50 

Santa Cruz 
Biotechnology 

Mouse monoclonal anti-human ABCB5 
(clone 5H3C6) 
 

 
Transmembrane 

 
1:100 Abcam 

Mouse monoclonal anti-human Oct3/4 
 
Intracellular 

 
1:100 BD Biosciences 

Mouse monoclonal anti-human NANOG 
 
Intracellular 

 
1:100 Abcam 

 
Rabbit polyclonal anti-human ABCG2 
(clone 5D3) 

 
 
Transmembrane 

 
 
1:100 

 
 
Novus Biologicals 

 
Rabbit polyclonal anti-human Sox2 
 

 
Nuclear 

 
1:100 Abcam 

SECONDARY 
  

 

FITC-conjugated secondary goat  
anti-mouse immunoglobulins 

 
Intracellular 

 
1:25 

 
Jackson Immunology 
Research Laboratories 

FITC-conjugated secondary goat  
anti-rabbit immunoglobulins 

 
Intracellular 

 
1:25 

 
Jackson Immunology 
Research Laborotories 

Rhodamine-conjugated secondary goat  
anti-rabbit immunoglobulins 

 
Intracellular 

 
1:25 

 
Jackson Immunology 
Research Laborotories 
 

 

2.16 RNA isolation 

RNA isolation was performed using RNEasy Plus Micro Kit [Qiagen] as per 

manufacturer’s instructions on 500,000 – 1,000,000 cells. Briefly, 350 µl Buffer RLT 

Plus was added to the cells. The lysate was then homogenized by centrifuge at 11,000 

rpm for 30 seconds. The lysate was transferred to gDNA Eliminator spin column in a 2 

ml collection tube. This will remove the genomic DNA. It was then centrifuged for 30 
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seconds at 11,000 rpm. The spin column was discarded and total RNA was collected in 

the 2 ml collection tube. 

 

350µl 70% ethanol was added and mixed by pipetting. It was then transferred to an 

RNEasy MinElute spin column in a 2ml collection tube, and centrifuge at 11,000 rpm 

for 15 seconds. The flow through was discarded. 700µl Buffer RW1 was added to the 

spin column, centrifuged for 15 seconds at 11,000 rpm and the follow through 

discarded. 500μl Buffer RPE was then added to the spin column, and centrifuged at 

11,000 rpm for 15 seconds. The flow through was discarded. 500µl 80% ethanol was 

added to the spin column, and centrifuged at 11,000 rpm for 2 minutes. The flow 

through was then discarded.  

 

In a new 2ml collection tube, then cap of the spin column was opened, and centrifuge at 

11,000 rpm for 5 minutes to dry the spin column membrane. The collection tube was 

then discarded. The spin column was then placed in a 1.5ml collection tube. 14µl 

RNase-free water was added directly to the centre of the spin column membrane, and 

centrifuged for 1 minute at full speed (13,000 rpm) to elute the RNA. 

 

2.16.1 RNA quantification  

RNA was quantified using Nanodrop Spectrophotometer 2000 [Thermo Scientific]. 

Initially the spectrophotometer was calibrated with 1µl blank solution and followed by 

the RNA sample. A260/280 is the absorbance ratio for nucleotides:protein, and  used to 

determine the purity of RNA and DNA. A value of ~1.8 is acceptable for DNA purity 

while a slightly higher level ~2.0 is acceptable for RNA purity.   A260/230 which is the 

absorbance ratio for nucleotide:chemical contamination i.e phenols, alcohol, was also 

documented.  

 

2.16.2 RNA integrity 

As a measure of RNA integrity, RNA were electrophoresed on 1% agarose gel [NBS 

Biologicals] at 90V for 45 minutes in tris-borate-EDTA (TBE) buffer [Sigma]. Agarose 

gel electrophoresis is a technique used to separate DNA or RNA fragments by size. The 

sugar-phosphate backbone results in the nucleic acids being negatively charged. When a 

current is applied, the RNA or DNA migrates towards the positive electrode and the rate 

of migration is dependent on the nucleic acids size, the smaller fragments will migrate 
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faster than the larger fragments. The RNA sample was examined for 28S and 18S 

bands.  

 

To make 50 ml 1% agarose gel, 50 ml 1X Tris/Borate/EDTA buffer was added to 0.5g 

agarose to dissolve it by heating.  The solution was allowed to cool down prior to 

addition of 2µl of 0.5µg/ml ethidium bromide [Bioline]. Ethidium Bromide is a 

fluorescent compound which intercalates into DNA and fluoresces when a UV light is 

exposed. The gel was poured into a cast and allowed to solidify for approximately 30 

minutes. The gel was then placed in an electrophoresis tank and covered with 1X TBE 

buffer. 

 

5µl hyperladder IV [Bioline] was loaded to determine the size of products for each 

sample. 0.5µg – 1.0µg of samples were added to 2µl of 5X Blue DNA loading buffer 

[Bioline] and the mix was made up with RNAse-free water to 20µl final volume. A 

loading dye allows the progress of DNA to be tracked during electrophoresis and the 

presence of glycerol in this solution ensures the DNA remains at the bottom of the well 

prior to electrophoresis. The gel was then visualized under a UV gel documentation 

system [UVP Ltd, Cambridge, UK]. 

 

The ratio of   28S to 18S is approximately 2.1.  This 2:1 ratio is a good indication that 

the RNA is completely intact. Partially degraded RNA will have a smeared appearance, 

will lack the sharp RNA bands, or will not exhibit the 2:1 ratio of high quality RNA 

(Figure 2.10). 

 

 

Figure 2.10 Gel electrophoresis of an RNA sample from LEC to examine RNA 

integrity. [Lane 1 DNA hyperladder, Lane 2 template RNA]. 
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2.17 Reverse transcription  

cDNA was synthesised using a cDNA Synthesis Kit [Bioline]. The following was 

prepared on ice: 

(1 µg) RNA n µl 

Oligo (dT)18  1 µl 

10 mM dNTP 1 µl 

DEPC-treated water  Up to 10 µl 

 

The samples were incubated at 65°C for 10 minutes. Then the samples were cooled on 

ice for 2 minutes. After which, the following reaction mix were prepared: 

5x RT Buffer 4 µl 

RNase inhibitor 1 µl 

Reverse Transcriptase (200u/ µl) 0.25 µl 

DEPC-treated water  Up to 10 µl 

 

10µl of the above reaction mix was added to the tube containing the primed RNA. The 

samples were incubated at 42°C for 50 minutes. The reaction was terminated by 

incubating at 70°C for 15 minutes and then chilled on ice.  

 

2.18 Semi-quantitative Polymerase chain reaction (sq-PCR)  

2.18.1 Primer design 

Gene sequences were obtained from National Centre for Biotechnology Information 

(NCBI) and Basic Local Alignment Search Tool (BLAST®) databases. Invitrogen 

OligoPerfect™, a designer application tool was used to obtain the forward and reverse 

primers. Sequences were designed from two different exon sequences in order to avoid 

genomic contaminants being identified. Designed primers were generally 17-25 

nucleotides in length within the 100-300bp product size, containing 40-60% genomic 

content. The melting temperature (Tm) was determined for both the forward and reverse 

primers using the formula: 

Tm = 4(G+C) + 2(A+T). 

The initial annealing temperature (Ta) used for each PCR reaction was generally 5°C 

below the lowest Tm of the primer pair (forward and reverse primers). However, for 

each primer pair the Ta was optimised by performing serial PCR at temperatures 

varying around the initial Ta.  
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2.18.2 Semi quantitative-PCR (sq-PCR) 

Sq-PCR was performed using a PCR master mix [Promega]. This master mix is a ready-

to-use solution containing Taq DNA polymerase (50 units/ml) in a pH 8.5 reaction 

buffer, dNTPs, and 3mM MgCl2, and reaction buffers at optimal concentrations for 

efficient amplification of DNA templates. A 25µl final solution containing the 

following was prepared in a PCR tube [Scientific Laboratory Supplies] as listed in 

Table 2.4. 

  

Table 2.4 Components of an sq-PCR reaction 

Component Volume (µl) 

PCR Master Mix, 2X 12.5 

Forward primer, 10µM 0.5 

Reverse primer, 10µM 0.5 

cDNA 2.5 

Nuclease-Free Water to 25 

 

Denaturation was set at 94°C for 30 seconds and elongation took place at 72°C for 1 

minute at primer pair specific annealing temperature, and maintained at 4ºC. The final 

PCR product mixture was either stored at +4ºC or electrophoresed on an agarose gel. 

 

For each primer pair the annealing temperatures were optimised by performing serial 

PCR at gradient temperatures from 51°C to 60.0°C using G-storm thermocycler for 30, 

35 or 40 cycles. For the purpose of primer annealing temperature and cycles 

optimisation, template cDNAs were derived from different sources e.g. breast cancer 

cell line (MCF-7), ovarian cancer cell line (HayA8 MDR) and LEC where appropriate. 

Optimum amplification conditions for oligonucleotide primers are provided in separate 

relevant chapters. 

  

2.18.3 Gel Extraction for DNA sequencing  

Gene sequencing was performed to validate detection of target genes. PCR was 

performed and products were electrophoresed and the gel extracted for DNA elution. 

Briefly, 50µl PCR reactions were prepared containing 25µl Master Mix, 1.0µl forward 
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and reverse primers, 5µl cDNA template and 18 µl nuclease-free water. PCR was 

performed at this volume for 35 cycles with annealing temperature of 55.0°C.  

 

Subsequently, 1% agarose gel containing 5µl of Gel Green Nucleic Acid stain [Biotium] 

was prepared in 1x TBE buffer. 2µl of Gel Green loading buffer [Biotium] was mixed 

with PCR product then loaded on the gel and electrophoresed at 85V for 45 minutes. 

5µl of DNA Hyperladder IV [Promega] was also electrophoresed. Gel was viewed on a 

blue illuminator [Claire Chemical Research] and bands removed for gel extraction. 

 

DNA was eluted using QIAquick Gel Extraction Kit [Qiagen] according to the 

manufacturer’s protocol. In brief, DNA fragments were excised from the agarose gel 

and weighed. 3 volume of buffer GQ was added to 1 volume of gel, and incubated at 

50°C for 10 minutes. To ensure complete solubilisation, samples were vortexed every 2-

3 minutes. The reactions were checked for colour changes, to ensure an appropriate pH 

of ≤7.5 (yellow colour) was maintained. 1 gel volume of isopropanol was mixed to the 

reactions.  

 

For DNA binding, the reactions were placed in a spin column in a 2ml collection tube, 

and centrifuged at 13,000 rpm for 1 minute. Flow through was discarded and spin 

column placed back in the collection tube. 0.5ml Buffer GQ was added the reaction 

centrifuged again. To wash, 0.75ml buffer PE was added and centrifuged again for an 

additional 1 minute. Then the spin column was placed in a clean 1.5ml centrifuge tube. 

To elute DNA, 50µl buffer EB was added to the centre of column membrane for 1 

minute and centrifuge at 13,000 rpm for 1 minute. Eluted DNA was sent for sequencing 

to Source BioScience. 

 

2.18.4 Validation of target gene primer(s) by gene sequencing  

Chromatograph of the gene sequences for both forward and reverse primers were 

examined for evenly-spaced peaks, minimal noise, signal intensity (>100) and mis-

spaced nucleotides which are characteristics of unacceptable “noisy” chromatogram. 

 

Gene chromatographs: 

a. ABCG2_Forward  

Signal: G:124 Gene sequences:  
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GGGCTTTGGCCGAAGAAGGGAGAGGCAGTGCCCGCCACTCCCACTGAGATTGAG

AGACGCGGCAAGGAGGCAGCCTGTGG 

AGGAACTGGGTAGGATTTAGGAACGCACCGTGCACATGCTA 

 

  

 

b. ABCG2_Reverse 

Signal: G:143  Gene sequences: 

ATAATAGGTTTCTCCAAGGGCTGCCCTCCTTGCCGCGTCTCTCAATCTCAGTGG

GAGTGGCGGGCACTGCCTCTTCCCTC 

CTGCGCGCCCGGAACCTTTTGAGTGGGCACAGCACGC 

 

 

Gene sequences obtained from the above was entered into the National Centre for 

Biotechnology Information (NCBI) and Basic Local Alignment Search Tool (BLAST®) 

databases and the results showed the sequences were described for  ABCG2 gene as 

follow: 

i. Sequences producing significant alignment with ABCG2 forward primer (121 

bases) shows 94% coverage for ABCG2 gene transcript no. NM_004827.2
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ii. Sequences producing significant alignment with ABCG2 reverse primer (117 

bases) shows 93% coverage for ABCG2 gene transcript no. NM_004827

 

 

Other target genes that were validated by sequencing are listed in Table 2.5:  

 

Table 2.5 List of other primers validated by gene sequencing. 

Genes Primers 

 

 
Cytokeratin 3 (CK3) 

 

Forward: GGATGTGGACAGTGCCTATATG 
Reverse: AGATAGCTCAGCGTCGTAGAG 
 

 
C/EBPD 

 

Forward: ACTCAGCAACGACCCATACC 
Reverse: CGCTCCTATGTCCCAAGAAA 
 

 
Connexin 43 (Cx43) 

 

Forward: ATGAGCAGTCTGCCTTTCGT 
Reverse:  TCTGCTTCAAGTGCATGTCC 
 

 
Bmi-1 

 

Forward: CTGGAGAAGGAATGGTCCAC 
Reverse: GCCTTGTCACTCCCAGAGTC 
 

 

2.18.5 Gel electrophoresis 

PCR products were electrophoresed on 2% agarose gel. To prepare 50ml 2% (w/v) 

agarose gel, 50ml 1X Tris/Borate/EDTA buffer was added to 1.0g agarose and 

dissolved by heating.  The solution was allowed to cool down prior to addition of 5µl of 

Gel Green [Bioline] following the steps as previously described (refer section 2.16.2).  
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2.19 Quantitative Real-timer PCR (QRT-PCR) 

2.19.1 Primer design 

Primer probes were designed and commercially purchased from Life Technologies. The 

probes were customised using the Taqman® Gene Expression Assays. Probes would be 

exon-spanning in order to avoid genomic contaminants, and selected for best coverage.  

 

2.19.2 Primer validation 

Table 2.6 Efficiency values for validation of Taqman primers. 

Assay ID Gene symbol Efficiency (%) 

Hs02758991_g1 GAPDH 88.0 

Hs01053790_m1 ABCG2 60.0 

Hs00184500_m1 ABCB1 74.1 

 

Efficiencies for qRT-PCR primer probes as listed in Table 2.6 were validated using 

cDNA template from MCF-7 cell line diluted in 1:10 fold dilutions in triplicates. 

Average of cycle threshold (CT) values was plotted against log10 [concentration of 

cDNA]. Linear regression analysis was performed with 95% confidence interval for the 

slope of the validation curve, where y is expressed as mx + c, m is the value for the 

slope and c was the value where it intercepts at the y axis.  Slopes between -3.1 and -

3.6, giving reaction efficiencies between 90 and 110% are typically acceptable. The 

value for the slope was then entered into the efficiency formula; 

  E= -1+10
(-1/slope)

. 

Efficiency graphs and values are presented in Figure 2.11. 
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Figure 2.11 Efficiency values (E) for validation of Taqman probes. Linear regression 

analysis gave a standard curve y=mx + c. The slope of a standard curve (m) indicates 

PCR efficiency. Y axis represents CT value, X axis represents log [10] cDNA 

concentration. 

 

2.19.3 Quantitative Real-time polymerase chain reaction (qRT-PCR) and analysis 

For qRT-PCR reactions, each sample was prepared in triplicates. Each reaction contains 

2µl cDNA, 1µl Taqman Gene Expression Assay [Applied Biosystems], 10µl Brilliant II 

QPCR master mix with High ROX [Agilent] and DNase-free water [Promega/Sigma] to 

make up 20µl of reaction mix. No template reaction (NTR) for negative control for each 

gene expression was also included. All reactions were prepared in nuclease-free 0.2 ml 

microcentrifuge tubes. Tubes were capped and inverted several times to mix the 

reactions. Samples were then loaded onto a 96-well plate [Applied Biosystem], and 

sealed with a plastic cover and centrifuged briefly. The plate was then placed in a Light 

Cycler [Applied Biosystems]. qRT-PCR was performed at 95°C for 10 minutes, 

followed by 40 cycles of 95°C for 15 seconds, and 60°C for 1 minute, with a single data 
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acquisition step for comparative cycle threshold (ΔΔCT). Values for CT, ΔCT, ΔΔCT 

and relative expression to genes/fold change were calculated and plotted on a graph. 

 

2.20  Imaging methods and quantification software 

2.20.1 Phase contrast inverted microscopy 

For the purpose of examining cells in cultures, plates, and flasks, we used an Axiovert 

200M microscope [Zeiss] which allows the performance of transmitted light brightfield, 

phase contrast and epifluorescence technique. Images were then processed using the 

AxioVision40 version 4.8.2.0 software [Zeiss]. We also used Nikon Digital Sight–

DSFi1 camera and Nikon NIS-Elements D software [Nikon Metrology] for brightfield, 

phase contrast, and differential interference contrast (DIC). 

 

2.20.2 Fluorescence microscopy 

Fluorescence microscopy was undertaken using an Axiovert 200M [Zeiss] for cells in 

wells and by Axioplan F [Zeiss] for cytological slides.  Images were then processed 

using the AxioVision40 version 4.8.2.0 software [Zeiss]. 

 

2.21 Statistical Analysis 

Descriptive statistics were used to handle data according to the location, dispersion or 

shape. Measurement of location was described as means, median, or mode. Dispersion 

of data where described in range, variance or standard deviations (SD). Standard error 

(SE) of means was measured to show the precision of the sample means. The choice of 

the most appropriate statistical methods often depends on the shape of distribution. A 

normal distribution assumes a “bell-shaped” symmetrical data, which is often used in 

many statistical tests. 

 

Quantitative data which were normally distributed were analysed using parametric 

statistical tests including independent t-test and one way ANOVA.  

For 2 groups of independent data, independent t-test was used to compare the means 

between the groups. For 3 or more groups of univariate data with single factor, one-way 

analysis of variance (ANOVA) was used to obtain p values. Results with p values of 

less than 5% (p < 0.05) were considered statistically significant. 
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For hypothetical testing, the null hypotheses (H0) are tested when the difference in 

means equals to zero (no effect). The alternative hypotheses (H1) is defined and holds 

when the null hypotheses is rejected at a significance level of less than 5% (p < 0.05).  

Data which are not normally distributed were analysed using non-parametric tests which 

make no assumption about the probability distribution. These tests include: sign 

test,Wilcoxon signed-ranks test, Mann-Whitney U test or Kruskal-Wallis test. Sign test 

and Wilcoxon signed-ranks test were used for measurement of mean in one sample. 

Mann-Whitney is the equivalent of independent t-test, where means are measured in 2 

samples. Kruskal-Wallis is equivalent to one-way ANOVA and used when there were 

three or more groups of variables. Results with p values of less than 0.05 (p < 0.05) 

were considered statistically significant. 
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Chapter 3 CHARACTERISATION OF CORNEAL LIMBAL STEM 

CELLS AND HUMAN LIMBAL MESENCHYMAL STEM CELLS 

3.1  Introduction 

Most LSC characterisation techniques have involved in vitro animal studies and/or the 

use of histological specimens (Zhuo Chen et al., 2004; Hyun-Seung Kim et al., 2004; 

Schlotzer-Schrehardt and Kruse, 2005). A limited knowledge of LSC identification has 

been produced using  in vivo techniques such as   live imaging  (Shortt et al., 2007a) or 

observation of label retaining cells (Cotsarelis et al., 1989), which have been  critical in 

studying LSC biology.  

 

In the last twenty years, a lot of studies have focused on trying to identify molecular 

markers for LSC, and the transient amplifying cells of the limbus. However, there are 

species variations in what marker expression clarify and variations in the techniques 

used for these analysis. To this date, there are still no specific markers for LSC and the 

molecular characteristics of LSC remain poorly understood.  

 

To summarise findings to date, basal cells of limbal epithelium strongly express 

cytokeratin 19, vimentin, α-enolase, p63, β1 integrin, ABCG2, TGF-β and EGF-R 

(Zhuo Chen et al., 2004; Hyun-Seung Kim et al., 2004; Schlotzer-Schrehardt and 

Kruse, 2005).  The putative polycomb proto-oncogene, Bmi-1 (Lessard and Sauvageau, 

2003; Molofsky et al., 2003) and C/EBPδ (Barbaro et al., 2007) have also been 

suggested to be potential LSC markers. On the other hand, cytokeratin 3 and 12, gap 

junction protein Connexin 43 and involucrin (Zhuo Chen et al., 2004; Hyun-Seung Kim 

et al., 2004; Schlotzer-Schrehardt and Kruse, 2005) have been put forward as negative 

markers. 

 

The location of the LSC has been identified under the surface of Palisades of Vogt, now 

termed as the “limbal epithelial crypts”. In addition, limbal epithelium also possess 

stromal cells which are adherent to plastic, have fibroblastic morphology and are able to 

differentiate into multiple lineages, characteristics of a human MSC (MSC) (Branch et 

al., 2012; Garfias et al., 2012; Gui-Gang Li et al., 2012). These MSC like cells can be 

isolated using protocols as described previously (Polisetty et al., 2008).  
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As described in Chapter 1, there are three major layers of the cornea which are derived 

from different germ layers. The epithelial layer of the cornea develops from ectoderm, 

while the stroma and endothelium are mesenchymal in origin. Corneal stroma makes up 

90% of corneal volume, is populated by mesenchymal keratocytes which are quiescent 

after birth, but undergo differentiation in response to wound, trauma, inflammation or 

infection (Darby et al., 1990). This suggests plasticity of the cells to adapt to its 

environment.  

 

The corneal limbus has been reported to possess stromal cells which have fibroblastic 

morphology, are adherent to plastic and able to differentiate into multiple lineages, 

suggestive of a MSC population (Branch et al., 2012; Garfias et al., 2012; Gui-Gang Li 

et al., 2012). Human corneal mesenchymal stromal stem cells, unlike bone marrow-

derived MSC, develop from neural crest cells (Hoar, 1982)  and are believed to support 

the growth of limbal epithelial cells (Pinnamaneni and Funderburgh, 2012; Bray et al., 

2014).  

 

MSC are non-haemopoietic stem cells with regenerative ability and can differentiate 

into cell lineages of mesenchymal origin i.e. adipocytes, chondrocytes and osteocytes. 

Due to variable defining characteristics for MSC, the Mesenchymal and Tissue Stem 

Cell Committee of the International Society for Cellular Therapy (ISCT) has defined 

several minimal requirements (Dominici et al., 2006): 1) MSC must be plastic adherent, 

2) they must express CD105, CD73 and CD90, but lack of expression to CD45, CD34, 

CD14, CD11b, CD79α, CD19 and HLA-DR surface molecules. The third minimal 

criteria 3) they have to satisfy the multi potentiality to differentiate into adipocytes, 

osteoblast and chondroblast in vitro.  

 

Paracrine secretions of many bioactive molecules i.e. cytokines, trophic and growth 

factors, by human MSC have been well documented making it an important player in 

regenerative medicine and transplantation (Langer and Vacanti, 1993; Miguel et al., 

2012; Levis et al., 2013; Graziella Pellegrini et al., 2013).   

 

Bone-marrow-derived MSC (BM-MSC) have shown excellent anti-inflammatory and 

wound healing properties when introduced to corneal injury models in animal studies 

(Ma et al., 2006; Augello et al., 2007; Omoto et al., 2009; Jiang et al., 2010; Hsu et al., 
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2012; Jia et al., 2012). In support of that, BM-MSC has been investigated in the repair 

of corneal damage (Ma et al., 2006), and the proposed mechanism is suppression of   

new vessel formation and inflammation post-transplantation.  

 

In this study we look at HTCEC line as a model for primary limbal cultures, by looking 

at molecular markers, stem cell properties, immune-biological response and functional 

assays i.e. side population protocols and migration analysis. The use of primary limbal 

cultures in many optimisation assays is limited due to low availability, especially in 

countries with limited access to donor corneas. There is also the issue of donor-to-donor 

variations which may interfere with optimisation steps or screening protocols.   

 

HTCEC exhibit genetic stability, as evident by normal cell cycle kinetics in the 

presence of high telomerase activity. It could maintain the capacity to differentiate into 

normal human corneal epithelium in vivo (Robertson et al., 2011). Cell immortalisation 

is done to extend cells’ finite life span by eliminating a critical cell cycle point or 

suppress cellular tumorigenesis by incorporating an oncogene (Robertson et al., 2008). 

Telomerase is a specialized cellular reverse transcriptase that can compensate for the 

erosion of telomeres by synthesizing new telomeric DNA. Infection with human 

telomerase reverse transcriptase (hTERT) leads to the activation of telomerase, 

preventing telomere erosion and subsequent telomere-dependent senescence (Morales et 

al., 2003). Side by side comparison of HTCEC with normal primary corneal epithelium 

validated this cell line as a viable model for the study of ΔNp63 isoforms (Robertson et 

al., 2008). 

 

This study aims to improve the current methods of ex vivo expanded corneal epithelial 

transplantation by investigating alternative stem cells sourced from the limbal region. 

LMSC were characterised by immunophenotyping, histology and mRNA expression of 

selected MSC markers for lineage differentiation. LMSC were grown on AM; a 

biological substrate used in limbal transplants which was thawed from frozen.  

3.2 Specific Aims 

1. To isolate LEC andLMSC from whole corneas or corneo-scleral rings by serial 

trypsinisation method. 

2. To establish LEC cultures from cell suspension by co-culture method with 

inactivated mouse 3T3 fibroblasts. 
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3. To establish LMSC cultures from cell suspension by growing in MSC-growth 

promotion media (MGPM) in low oxygen (5%). 

4. To establish HTCEC cultures in serum-free and feeder-free conditions. 

5. To characterise LEC and HTCEC by immunohisto/cytochemistry and mRNA 

expression. 

6. To screen for stem cell antigens expression in LEC and HTCEC cultures by 

immunohisto/cytochemistry and mRNA expression. 

7. To characterise LMSC using LSC markers ABCG2, ABCB5 and p63. 

8. To perform immunophenotyping in LMSC and characterise LMSC by tri-lineage 

differentiation by histological analysis and mRNA expression. 

9. To study growth of LMSC plated on cryo-preserved AM and characterise LMSC 

using limbal markers and stem cell antigen expression. 

3.3 Materials and Methods 

3.3.1 Primary LE) and HTCEC Cultures 

Isolation of LEC and HTCEC were  conducted as previously described  (Shaharuddin et 

al., 2013c) and detailed in Chapter 2.  LEC were isolated and the pooled cell 

suspensions were centrifuged and the resulting cell pellet containing a mixed 

heterogeneous cell population was then resuspended in a selective MSC growth 

promotion media (MGPM) which was made up of; alpha-modified Eagle’s medium (α-

MEM) [Lonza], L-glutamine [Sigma],10% (vol/vol) FBS [Lonza], 5ng/ml human 

recombinant fibroblast growth factor-2 (FGF2) [Pepro Tech] and seeded at a cell 

density of 1×10
6
 cells in a T75cm

2
 flask, incubated at 37°C, 5% CO2, and 5% oxygen 

tension. Non-adherent cells were removed the next day and media was changed every 3 

days. Established cultures of LMSCs were passaged at 90 % confluence by enzymatic 

digestion using TrypLE™ Express [Gibco]. 

 

3.3.2 LMSC tri-lineage differentiation 

Osteogenic differentiation of LMSC 

LMSC were seeded in MGPM into 12-well cell culture at a cell density of 2.5×10
4
 

cells/well until confluence. Media was then removed and replaced with osteogenic 

differentiation medium (α-MEM, 10% (vol/vol) FBS, 10nM dexamethasone, 

10mM β-glycerophosphate and 100μM L-ascorbic acid-2-phosphate; all supplementary 

reagents purchased from [Sigma Aldrich], UK. Cultures were incubated at 37°C, 5% 

CO2, under low oxygen tension (5%) O2  for 4 weeks.  Media was changed every 3 days. 
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Chondrogenic differentiation of LMSC 

LMSC were seeded into three 15 ml centrifuge tubes at a cell density of 500,000 

cells/tube in chondrogenic differentiation medium (α-MEM, 100μM L-ascorbic acid-2-

phosphate [Sigma], 10nM dexamethasone [Sigma], 400μl ITS
+1

 (10 μg/ml insulin, 

5.5μg/ml transferrin, 5ng/ml selenium, 0.5mg/ml bovine serum albumin, 4.7μg/ml 

linoleic acid) [Sigma] and 10ng/ml transforming growth factor (TGF)-β1 [R&D 

Systems]. Cell suspensions were centrifuged at 1,000 rpm for 3 minutes to form 

spherical pellets and left incubated at 37°C, 5% CO2, under low oxygen tension (5%) O2 

for 2 weeks.  Media was changed every 3 days.  

 

Adipogenic differentiation of LMSC 

LMSC were seeded in MGPM into a 12-well cell culture plate at a cell density of 5×10
4
 

cells/well until confluence. MGPM was then removed and replaced with osteogenic 

differentiation medium, STEMPRO® adipogenesis differentiation kit [Gibco]. From 

this point onwards, cultures were incubated in atmospheric oxygen (22%), 5% CO2 at 

37C. Cells were cultured in this condition for 30 days with media change every 3 days. 

 

3.3.3 Immunocytochemistry 

This was carried in HTCEC, LEC and LMSC to characterize for limbal and stem cell 

markers as detailed in Chapter 2.  

3.3.4 Semi-quantitative Polymerase Chain Reaction (sq-PCR)  

sq-PCR reactions were assembled with 12.5 µl PCR master mix [Promega, UK], 0.5 µl 

forward primer,  0.5 µl reverse primers and 2 – 2.5 µl cDNA template and DEPC-

treated water to a final volume of 25 µl reactions. PCR reactions were amplified for 

each gene and the conditions are summarised in Table 3.1. 

 

PCR was performed on this final reaction mixture for 30-35 cycles. Denaturation was 

set at 94°C for 30 minutes and elongation took place at 72°C for 1 minute at primer pair 

specific annealing temperature, and maintained at 4ºC. The final PCR product mixture 

was either stored at +4ºC or electrophoresed on 2% agarose gel, at 90V for 60 minutes.  

Table 3.1 List of oligonucleotides primers and amplification conditions.   

Gene Primers Sequences Product  
Length 

Annealing 
temperatu

Amplifica
tion 
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(bp) re 
(°C) 

Cycles 

CHONDROGENIC  
 

   
Collagen X   730 55 35 
 Forward CAA GGC ACC ATC TCC AGG AA    
 Reverse AAA GGG TAT TTG TGG CAG CAT ATT    
Aggrecan   129 55 35 
 Forward TGA GTC CTC AAG CCT CCT GT    
 Reverse TGG TCT GCA GCA GTT GAT TC    
Sox9   150 55 35 
 Forward GACTTCCGCGACGTGGAC    
 Reverse GTTGGGCGGCAGGTACTG    
OSTEOGENIC      
Bone 
sialoprotein-1 

  161 55 35 

 Forward AAA GTG AGA ACG GGG AAC CT    
 Reverse GAT GCA AAG CCA GAA TGG AT    
Alkaline 
phosphatase 

  187 55 40 

 Forward GGT GAA CCG CAA CTG GTA CT    
 Reverse CCC ACC TTG GCT GTA GTC AT    

      

ADIPOGENIC      

SREBP-1   230 55 35 
 Forward GGA GCC ATG GAT TGC ACT TTC    
 Reverse ATC TTC AAT GGA GTG GGT GCA G    
Adipocyte 
binding protein-2 
(aP2) 

  130 55 35 

 Forward ATGGGATGGAAAATCAACCA    
 Reverse GTGGAAGTGACGCCTTTCAT    
Adipophilin   200 55 35 
 Forward CGCTGTCACTGGGGCAAAAGA    
 Reverse ATCCGACTCCCCAAGACTGTGTTA    
LIMBAL STEM 
CELL MARKERS 

     

ΔNp63α  
 

143 55 35 
 Forward GTGATGATGGTTCACGTTGG    
 Reverse ACATGACGTCGGGTGTTTTT    
CK3   145 53 35 
 Forward GGATGTGGACAGTGCCTATATG    
 Reverse AGATAGCTCAGCGTCGTAGAG    
ABCG2  

 

143 55 35 
 Forward GCGTGCTGTGCCCACTCAAA    
 Reverse AGCATGTGCACGGTGCGTTC    
ABCB5* 
Hs 02889060_m1 

 N/A 98 55 35 

GAPDH   100 55 35 
 Forward ATG GGG AAG GTG AAG GTC G    
 Reverse TAA AAG CAG CCC TGG TGA CC    
      

*Taqman probe [Applied Biosystems]. 

3.3.5 Immunophenotyping  
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LMSC from passage 1 were characterised for CD19, CD44, CD45, CD90, CD105, 

CD146, CD166, MHC Class I and MHC Class II which were FITC-conjugated [R&D 

System]. Cells were detached from tissue culture flasks with 3ml trypLE express and 

resuspended in flow cytometry buffer solution (PBS/0.1% bovine serum albumin). For 

direct immunofluorescence, 200,000 cells were added into each tube and stained with 5 

μl primary antibodies in 100µl cell suspension. After incubation for one hour in 4
0
C, 

cells were washed with buffer solution and resuspended in 200μl and ran through BD 

FACSCanto™ II [BD Biosciences].  

 

For indirect immunofluorescence, 200,000 cells were added into each tube and stained 

with 5μl primary antibodies in100µl cell suspension. After incubation for one hour in 

4
0
C, cells were washed. Following that, goat anti-mouse IgG FITC-conjugated 

secondary antibody was added at 1:25 dilution in 100µl cell suspension; this was 

incubated again for 30 minutes at 4
0
C. At the end of incubation, cells were washed and 

then resuspended in 200 µl of flow cytometry buffer solution before running through 

FACS Canto II and analysed with FACS Diva software {BD Biosciences].    

 

Flow cytometry was performed using BD FACSCanto™ II and analysed using BD 

FACSDiva™ software [BD, Oxford,UK]. Antibodies used for flow cytometry analysis 

were purchased from R&D Systems. Cell populations were labeled with antibodies 

specific for cell surface antigens expressed by human MSC (CD44, CD90, CD105, 

CD106, CD146 and CD166), haematopoietic cell surface antigens (CD19 and CD45), 

MHC Class I and Class II, and murine Ig G as negative control. 

 

3.3.6 Histological analyses 

LMSC from passages 2-3 were used from three biological replicates for tri-lineage 

differentiation: 

 

Chondrogenic differentiation  

Cell pellets were removed from chondrogenic differentiation media after two weeks, 

and covered with an embedding media to ensure optimal cutting temperature (OCT).  

Blocks were wrapped in aluminium foil and stored at -80C prior to sectioning which 

was done using a cryostat [Leica CM3050]. 5µm sections were placed on histology 

glass slides for staining with Safranin O to determine the presence of collagen 
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deposition. Briefly, 0.1% (vol/vol) Safranin O was prepared with 0.1% acetic acid; 

0.010g  Safranin O powder [Sigma] was added to 1ml 1% acetic acid in 10ml water, 

and filtered through a 0.45µm filter [Sartorius]. At room temperature, OCT was 

dissolved by rinsing the sections with 70% ethanol followed by PBS washes. Slides 

were flooded with Safranin O for 5 minutes and then rinsed with deionised water. 

 

Osteogenic differentiation 

Cell layers cultured in osteogenic differentiation media was stained with Alizarin Red to 

determine areas of mineralisation. Briefly, Alizarin Red stain was prepared by 

dissolving 2g of Alizarin Red in deionised water over night. To adjust the pH of the 

solution between 4.2 and 4.4, 10% ammonium hydroxide in deionised water or HCl 

were used. The required amount of Alizarin Red was filtered through a 0.45µm pore 

size syringe filter [Sartorius] prior to use. The culture media were removed and the 

wells were covered with Alizarin Red and left for 2 hours at room temperature and then 

rinsed with PBS ready for viewing. 

 

Adipogenic differentiation  

 Media was removed from the cultures and cells were rinsed with PBS for staining with 

Oil Red O. A stock solution of Oil Red O was prepared by dissolving 150mg Oil Red O 

powder with 50ml 99% Isopropanol. To prepare a working solution of the stain, 6 ml of 

the stock solution was diluted with 4 ml deionised water and pre-filtered using a 0.45µm 

filter and left at room temperature for 10 minutes before use. Subsequently, the cell 

layers were covered with 2ml of Oil Red O working solution and left for 5 minutes at 

room temperature. The working solution was then removed and rinsed with tap water 

until the water rinses were clear. 2ml Haematoxylin was then added to cover the 

monolayer for 1 minute and rinsed off with tap water before viewing. 

 

3.3.7 Growing LMSC on AM 

LMSC from passages 4-5 were cultured in MGPM in a T75cm
2 
tissue culture flask in 

low oxygen (5%) until 80% confluence. Research grade cryopreserved AM obtained 

from NHS Blood and Transplant was used as a substrate for growth of LMSC. The AM 

was stretched under tension with two 22mm x 22mm cover slips placed in a 6-well plate 

(Figure 3.1). 24,000 cells/cm
2 
were plated directly onto the membrane, initially 

suspended in MGPM. On the following day the media was partially substituted 50:50 
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with DKSFM and on the third and subsequent days, with DKSFM only. 100μl DKSFM 

was supplemented daily directly onto the AM. Cultures were placed in 5% CO2 

incubator with normal oxygen (20%) at 37C for 5 days. At the end of 5 days, the media 

was drained from the well and the AM was rinsed with PBS and embedded in OCT for 

cryostat sectioning. 

 

 

Figure 3.1 Plating of LMSC on cryopreserved AM. The membrane was kept stretched 

and taut using two 22mm x 22mm cover slips. The cells were plated into an area 

confined to an area within a make shift plastic ring, suspended in culture media.  

 

3.3.8 Haematoxylin and eosin (H&E) staining 

Cryostat sections on silane-adhesion pre-coated slides [CellPath] were placed in 95% 

ethanol for 2 minutes to dissolve OCT then fixed with cold methanol for 30 minutes. 

Slides were then placed in 70 % ethanol for 2 minutes and placed in running tap water 

for 5 minutes. Subsequently, the slides were flooded with haematoxylin for 4 minutes 

and washed in running tap water for 5 minutes. Slides were then placed in Schott’s 

water for 2 minutes and washed in running tap water for 5 minutes. Next, the slides 

were flooded with eosin for 2 minutes and washed in running tap water for 5 minutes. 

Following this, slides were briefly placed in 70% ethanol, 95% ethanol and 100% 

ethanol for 30 seconds each. Finally the slides were mounted in vectashield and 

coversliped ready for viewing using brightfield microscopy.  

3.3.8 Harvesting cells for RNA extraction  

Cells grown on AM were detached from the membrane using 0.05% trypsin-EDTA for 

3 minutes, deactivated with 10% fetal bovine serum/PBS and centrifuged to get a cell 

pellet (labeled L-AM). LMSC were detached from T75cm
2
 flask using TrypLE express 
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and centrifuged to get a pellet and subsequent RNA extraction (labeled LMSC). An 

area devoid of any LMSC growth (based on microscopy) but only the epithelia of AM 

(labeled AM) was cut separately. The cells were detached using 0.05% trypsin-EDTA 

for 3 minutes, deactivated with 10% fetal bovine serum/PBS and centrifuged to get a 

cell pellet. Subsequent steps for RNA extraction followed the manufacturer’s 

instructions using RNEasy Plus Micro Kit [Qiagen]. PCR was performed as described 

in Chapter 2. 

 

3.3.9 Immunohistological analysis of LMSC on AM  

The LMSC-AM construct was covered with an embedding media (OCT) and then 

frozen in a -80C freezer before taking to the cryostat.  5 µm sections were placed on 

silane-adhesion pre-coated slides for optimal histology staining [CellPath]. Slides were 

air-dried overnight and stored at -20C. Before staining, slides were flooded with PBS 

for two minutes to wash away the OCT. Subsequent steps followed the ICC protocol (as 

described earlier. Due to the strong background fluorescence from the tissue, Sudan 

Black [Fisher Scientific] was used to reduce autofluorescence, this was done by 

incubating the sections in 0.1% (w/v) Sudan Black for 10 minutes. The slides were then 

washed with PBS and cover slipped for imaging. 

 

3.3.10 Microscopy and Imaging 

All images were taken using a Nikon Digital Sight–DSFi1 camera and Nikon NIS-

Elements D software [Nikon Metrology U.K. Ltd., Derby, UK]. Images were assembled 

using Adobe Photoshop® CS3 [Adobe Systems]. Fluorescence microscopy was 

undertaken using Axioplan F [Zeiss].  Images were then processed using the 

AxioVision40 version 4.8.2.0 software [Zeiss].  

 

3.3.11 Statistical analysis 

Descriptive statistics were used to describe means, median, or mode. Quantitative data 

which were normally distributed were analysed for comparison between 2 groups using 

independent t-test. Results with P values of less than 5% (P < 0.05) were considered 

statistically significant.  
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3.4 Results 

3.4.1 HTCEC as a viable model for LEC 

LEC have been successfully carried out using cell suspension by the trypsinisation 

method as described previously (Shaharuddin et al., 2014). It is well established that 

epithelial cells can be grown successfully on a “feeder” layer of 3T3 fibroblasts. Feeder 

layers are prepared from inactivated 3T3 fibroblast. Inactivation was carried out by the 

using mitomycin C. Mitotic inactivation of the 3T3 fibroblasts is essential to prevent 

them from overgrowing the epithelial cells in culture. 

 

Cultured human LEC expressed ABCG2, Sox2 and p63 (Figure 3.2). Comparably, some 

HTCEC also expressed ABCG2 and p63, in addition to expressing ABCB5 (Figure 3.3).  

Screening for the stem cell antigens NANOG and Oct3/4 antibodies in HTCEC also 

showed some cells expressed these markers (Figure 3.4).  
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Figure 3.2 Results of immunocytochemical analysis of limbal markers in LEC.  Note 

the presence of cells expressing of anti-human ABCG2, Sox2 and p63 antibodies 

(arrows) in panel A, negative control (secondary IgG) on panel B. (DAPI=blue (nuclei), 

FITC-conjugated secondary antibody= green) N=3. 
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Figure 3.3 Results of immunocytochemical analysis of limbal markers in HTCEC.  Note 

the presence of cells expressing of anti-human ABCG2, p63 and ABCB5 antibodies 

(arrows) in panel A, negative control (secondary IgG) on panel B. (DAPI=blue (nuclei), 

FITC-conjugated secondary antibody= green, Rhodamine-conjugated secondary 

antibody= red),, N=3. 
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Figure 3.3 Results of immunocytochemical analysis of stem cell markers in HTCEC.  

Note the presence of cells expressing of anti-human NANOG, Sox2, and  Oct3/4 

antibodies(arrows) in panel A, negative control (secondary IgG) on panel B. 

(DAPI=blue(nuclei), FITC-conjugated secondary antibody= green, Rhodamine-

conjugated secondary antibody= red), N=3.  
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Results of PCR analysis showed mRNA expression of the stem cell genes NANOG, 

Sox2 and Oct 4, both in HTCEC and LEC (Figure 3.5A). ABCB5 was positively 

expressed in HTCEC and in four human LEC samples (L1-L4) as presented in Figure 

3.5B. 

 

Figure 3.4 mRNA expression of stem cell markers and ABCB5. (A) Expression in 

HTCEC and LEC. (B) ABCB5 expression in HTCEC and LEC, N=3. [Abbreviations: 

MDA – MDAMB-231 breast cancer cell line as positive control, H – HTCEC, L – LEC , 

L1-L4 – four LEC samples, NTR – no template reaction]. 

 

Subsequently, we showed comparable expressions at mRNA level of common limbal 

markers in both LEC and HTCEC, which were ABCG2, ABCB1, p63, C/EBPδ, 

putative oncogene BMi-1 and CK3 (Figure 3.6).  CK3 expression in LEC is a marker 
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for corneal epithelial differentiation, which is poorly expressed in HTCEC in our culture 

conditions.  

 

 

Figure 3.5 mRNA expression of common LSC markers and markers for differentiated 

cells CK3 and Connexin43 (A) Cultured LEC (LEC) and (B) HTCEC. Lane 1 DNA 

ladder, lane 2 ABCG2 (143bp), lane 3 ABCB1 (116 bp), lane 4  ΔNp63 (143 bp), lane 5 

C/EBPδ (111 bp), lane 6 bmi-1 (132 bp) lane 7 cytokeratin3 (125 bp), lane 8 

connexin43 (249 bp), lane 9 GAPDH (100 bp), lane 10 –ve control, N=3.  

 

3.4.2 Characterisation of LMSC 

LMSC cultures were expanded from plastic adherent cell populations in MGPM for 5-7 

days or until 90% confluent and subsequently passaged.  ICC analysis for common 

limbal markers revealed expression of ABCG2, ABCB1 and p63 in some cells in 

standard LMSC cultures (Figure 3.7A). Molecular analysis revealed that LMSC also 

expressed ABCB5 as did LEC and HTCEC. MDA-MB-231 cells were used as a 

positive control (Figure 3.7B).  



85 

 

Chapter 3: Characterisation of Corneal LSC and LMSC 

 

 

Figure 3.6 Characterisation of common limbal stem markers and ABCB5 in LMSC. 

(Top) Results of immunocytochemical analysis of stem cell markers in HTCEC.  Note 

the presence of cells expressing of anti-human ABCB5, ABCG2 and p63 antibodies in 

LMSC antibodies in panel A, negative control (secondary IgG) on panel B. 

[DAPI=blue(nuclei), FITC-conjugated secondary antibody= green, Rhodamine-

conjugated secondary antibody=red], N=3. (Bottom) mRNA expression of ABCB5 in 

HTCEC, LMSC and LEC. [Abbreviations: H – HTCEC, M – LMSC, LEC - primary 

limbal cultures, MDA – MDA-MB-231 as +VE control and -VE (no template reactions), 

N=3. 

 

Using FACS analysis in combination with fluorophore labelled antibodies, we observed 

that LMSC expressed the human MSC surface antigens CD44, CD90, CD105, CD146 

and CD166), but were negative for expression of the haematopoietic cell surface 
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antigens CD19 and CD45. LMSC also expressed MHC Class I and had no expression of 

MHC Class II (Figure 3.8A). Graphical representation of percentage of stained-positive 

cells, from three biological replicates (N=3) showing more than 50% of cell population 

stained positively for CD44, CD90, CD105, CD166 and CD146 (Figure 3.8B). 

 

 

Figure 3.7 Results of LMSC immunophenotyping (Top) Cell populations labelled for 

surface antigens expressed in human MSC; CD44, CD90, CD105, CD146, CD166. 

Negative for haematopoietic stem cells; CD19, CD45, CD106. They are also HLAClass 

I-positive and HLAClass II-negative cells. Murine IgG was used as control. Antibody 

profiles (dark grey) were over layered onto the unlabelled population (light grey). 

(Bottom) Percentage of stained-positive cells, results are from three biological replicates 

(N=3). 
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LMSC were capable of tri-lineage differentiation as assessed by staining for 

adiopogenic differentiation using Oil Red O to detect lipid vesicles (Figure 3.9A), 

chondrogenic sections with Safranin O for cartilaginous deposits (Figure 3.9C) and 

osteogenic differentiation was indicated by Alizarin Red staining for matrix 

mineralisation (Figure 3.9 E). These were compared to cultures with respective stains in 

un-differentiated cells as negative control.  

 

Figure 3.8 Histological analysis for LMSC differentiated cells. (A) Oil Red O staining 

of adipogenic differentiated cells showing lipid vesicles stained bright red, nuclei blue, 

after 30 days in culture, photo inset is a magnification of the same image (C) Safranin O 

staining of cartilaginous deposition (orange) on a representative section of a pellet 

generated after 2 weeks culture in chondrogenic differentiation media, photo inset is a 

magnification of the same image. (E) Alizarin Red staining of mineral deposition in 

osteogenic differentiated cells after 3 weeks in culture, photo inset is a magnification of 

the same image. (B), (D) and (F) are cultures with respective stains in un-differentiated 

cells as negative control. (N=3). 

  



88 

 

Chapter 3: Characterisation of Corneal LSC and LMSC 

We demonstrate further here adipogenic differentiation cultures showing vacuolation 

after 7 days, which started to enlarge and developed lipid vesicles from the second week 

onwards (Figure 3.10).  

 

Figure 3.9 Adipogenic differentiation of LMSC. Cultures were grown in adipogenic 

differentiation media over 30 days. Enlarging size of vesicles containing lipid droplets 

evident from day 7 onwards, N=3. 

 

Standard PCR was performed to study mRNA expression of tri-lineage commitment of 

differentiated LMSC (Figure 3.11). Adipogenic differentiated cells from LMSC showed 

expression of adipophylin, adipocyte binding protein-2 and sterol regulatory-element-

binding protein-1. While chondrogenic differentiation was marked by expression of 

aggrecan and Sox9 but cells failed to express collagen X. Osteogenic differentiation was 

marked by expression of alkaline phosphatase and bone sialoprotein-1. 
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Figure 3.10 mRNA expression of tri-lineage committed cells. (A) Adipogenic: Lane 1 

Adipophylin (150 bp), lane 2 Adipocyte binding protein-2 (130 bp), lane 3 Sterol 

regulatory element-binding protein-1 (230 bp) (B)  Chondrogenic: Lane 1 Aggrecan 

(170 bp), lane 2 Sox9 (150 bp), lane 3 – no expression for Collagen X (730 bp)  (C) 

Osteogenic: Lane 1 Alkaline phosphatase (187 bp), lane 2 Bone sialoprotein-1 (161 bp). 

GAPDH was used as housekeeping gene. (N=3). 
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3.4.3 Growth of LMSC on AM 

LMSC were plated onto AM thawed from frozen and grown in MGPM. The media was 

then changed to serum-free keratinocyte medium once the cells had adhered to the 

surface of the membrane on the next day. The growth of LMSC were recorded daily or 

every other day (Figure 3.12). LMSC were adherent on the membrane and observed to 

proliferate and achieved confluence.  

 

There was a change in cellular morphology from the slender shaped, fibroblastic 

morphology of LMSC (day 3) to rounded cell bodies (day 5). Cryostat sections of 

LMSC on AM at day 5 were stained with haematoxylin and eosin (Figure 3.13), note 

the presence of LMSC on the AM (asterisks) compared with AM alone.  
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Figure 3.11 Growth of LMSC (white arrows) on AM. Representative culture images 

from Day 1 until Day 5. On Day 5, there was distinct LMSC colonies growing on AM, 

a magnified image shows changes in cellular morphology (white arrows) from spindle-

shaped cells to rounded bodies with bipolar projections, N=3.  

 

Figure 3.12 Haematoxylin and eosin staining of a cross section of AM. (A) with areas of 

LMSC growth (asterisks) (B) a cross section of AM without LMSC for comparison, 

photo insets show a magnified view. [Blue –cell nuclei, scale bar: 20 μm]. 
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Molecular analyses for common limbal markers were investigated in cells grown on 

AM (L-AM), LMSC and epithelial cells of the AM (Figure 3.14). L-AM and LMSC 

showed high expression of the transcription factor p63 similar to AM, but low/no 

expression of cytokeratin3 (CK3). CK3 was detected in some LMSC culture, but absent   

in other biological replicates (Figure 3.15). Another corneal differentiation marker 

CK12 was also not expressed. GAPDH was used as a loading control. ICC analysis of 

the LMSC grown on AM construct showed some cells expressed ABCG2 (6A), p63 

(6C) and ABCB5 (6C), compared to the sections devoid of MSC (Figure 3.16).   

 

 

Figure 3.13 mRNA expression of CK3 and p63 in LMSC on AM, GAPDH as the house 

keeping gene. [Abbreviations: L-AM: LMSC on AM, LMSC LMSC alone, AM alone, 

+ve control and NTRm-no template reactions].  

 

 

Figure 3.14 mRNA expression of CK3 and CK12 in LMSC and LEC, GAPDH was 

used as the house keeping gene. [Abbreviations: LMSC – LMSC, LEC - Limbal 

epithelial cells, NTR - no template reaction].  
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Figure 3.15 Results of immunohistochemistry of AM sections with LMSC growth. (6A) 

LMSC expressing ABCG2, (6C) ABCB5 and (6E) p63 (6B) and (6D) are negative 

control sections stained with secondary IgG only (6F) the same cross section used for 

p63 staining with DAPI only (6G) and (6H) are cross sections of AM without LMSC 

growth; (6G) p63 staining (6H) negative control with secondary IgG only. [DAPI=blue, 

FITC-conjugated secondary antibody= green, Rhodamine-conjugated secondary 

antibody=red], N=3. 
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3.5     Discussion 

There are still no specific markers for LSC and the molecular characteristics of LSC 

remainpoorly understood. There are molecular markers for cells of the basal layer of the 

limbus and the clusters of cells within this anatomical region that potentially 

characterised the LSC and the limbal progenitor cells, these are categorised into: (1) 

nuclear proteins – transcription factor i.e ΔNp63 (2) drug resistance transporters i.e 

ABCG (3) cytoplasmic proteins – cytokeratins i.e CK3, 12, 19. (4) cell membrane or 

transmembrane proteins – integrin β1, β4,  α6  receptors i.e  epidermal growth factor 

receptor, and (5) Other genes include C/EBPδ and putative oncogenes that modulate 

stem cell pluripotency, BMI-1.  

 

A new marker, ABCB5 which was recently reported to be an important molecular 

limbal marker for corneal development was also looked at. ABCB5 was first identified 

in skin progenitor cells (Frank et al., 2003) and malignant melanoma cells (Frank et al., 

2005). ABCB5 is an ATP binding cassette membrane transporter P-glycoprotein, that 

plays a significant role in cell fusion. Cell fusion is a molecular mechanism implicated 

in cellular differentiation (Frank et al., 2003). ABCB5 has been associated with tumour 

progression and resistance to cancer treatment in melanoma, colorectal and liver 

carcinomas (Frank et al., 2005; Wilson et al., 2011; Linley et al., 2012; Lin et al., 2013; 

Wilson et al., 2014).  

 

In the human cornea, ABCB5 has been identified as an important marker for LSC 

(Ksander et al., 2014). It has been reported that ABCB5 has an important role in LSC 

maintenance and corneal wound healing. In this study we showed mRNA expression of 

ABCB5 in HTCEC and four sample donors of LEC, in addition our ICC analysis 

demonstrated expression of ABCB5 in some cells of the HTCE cell line. 

 

 In addition, ICC analysis of HTCEC showed some cells expressed of ABCG2, ΔNp63 

and the stem cell marker Sox2. This is comparable with ABCG2, p63 and Sox2 

expressions in primary LEC. In addition, HTCEC also expressed the stem cell markers 

NANOG and Oct3/4. Analysis at the mRNA level of both HTCEC and |LEC revealed 

both cell populations expressed stem cell markers NANOG, Sox2 and Oct4.  

 

We compared mRNA expressions of common limbal markers ABCG2, p63, C/EBPδ, 

BMI-1, and cytokeratins 3 (CK3) between HTCEC and LEC. CK3 is a marker for 
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corneal epithelial differentiation was robustly expressed in the LEC cultures, while its 

expression was low in HTCEC; this may be evidence of that HTCEC cells are poorly 

differentiated in the cell culture conditions employed in this study.  

 

Previous studies have demonstrated the isolation of LMSC from corneal tissue although 

protocols varied among the investigators.  Polisetty et al described  harvesting  spindle-

shaped outgrowths from primary limbal cultures after growing them on AM (Polisetty 

et al., 2008). What where termed  “limbal niche cells” by Tseng group, where cells 

isolated from corneo-scleral rings  using collagenase, or with dispase and grown on 

coated matrigels (Gui-Gang Li et al., 2012). The Funderburgh group used dispase and 

collagenase digestion on minced pieces of stromal tissues and successfully grew these 

cells in a selective media containing 2% FBS;  incubated in humidified atmosphere, at 

5% CO2  (Du et al., 2005; Branch et al., 2012). These cells have all been shown to 

express MSC markers (Du et al., 2005; Polisetty et al., 2008; Branch et al., 2012; Gui-

Gang Li et al., 2012) and have been described as having angiogenic potential (Gui-

Gang Li et al., 2012).  

 

Our group used serial trypsinisation which we believe effectively cleaved the epithelial 

layers from the stroma as shown by haematoxylin and eosin staining on cross sections 

of limbal tissues taken from each cycle (unpublished data). Further use of trypsin 

allowed separation of the epithelial layer into single cells.  In this study LMSC were 

cultivated using an MSC-growth promotion media (MGPM) containing α-MEM, FBS 

and FGF2, according to previous literature (Barbero et al., 2003; Knuth et al., 2013). 

Addition of growth factor(s) in a basic media was found to enhance multi potentiality of 

MSC (Barbero et al., 2003; Du et al., 2005).  

 

LMSC cultures were propagated in a hypoxic condition, with the exception of those 

being analysed for adipogenic differentiation which requires normal oxygen levels . 

Hypoxia or low oxygen tension has been shown to be a critical regulator of stem cell 

biology though the activation of hypoxia inducible factor pathways and the maintenance 

of cellular health (Mohyeldin et al., 2010). Hypoxia or low oxygen tension is more 

physiologically relevant to maintenance of stem cell function and differentiation (Bath, 

2013) and in addition has been shown to be physiologically effective for greater cell 

vitality, enhance tri-lineage differentiation and modulates the paracrine activity of MSC 

(Das et al., 2009).  
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Immunophenotyping was used to demonstrate that the cells isolated in this study had the 

characteristics of human MSC; these cells were positive for expressions of cell surface 

antigens CD44, CD90, CD105, CD146 and CD166. They also had low/no expression 

for the haematopoietic commitment markers CD19 and CD45. This is comparable to 

findings of LMSC immunophenotyping reported in previous studies (Polisetty et al., 

2008; Polisetti et al., 2010; Wilson et al., 2011; Branch et al., 2012; Garfias et al., 

2012). It has been noted that there were variations of cell surface antigen presentation in 

LMSC in different culture media or with addition of growth factors (Du et al., 2005). 

For example, CD146+ve was expressed in cultures with serum supplement, but no 

expression in commercially available serum-free media (Bray et al., 2014). A 

CD34+/CD105+ve LMSC population has also been shown to be stem-like and have tri-

lineage differentiation capabilities (Wilson et al., 2011).  

 

Human MSC showed high expression of MHC Class I, but low/no expression of Class 

II, similar to previous findings (Garfias et al., 2012; Bray et al., 2014). Therefore, 

human MSC should be recognised by alloreactive T cells, however transplantation of 

mismatched MSC in non-human primates did not show proliferation of allogeneic 

lymphocytes (Bartholomew et al., 2002). Further, undifferentiated and lineage-

differentiated bone marrow-MSC suppressed proliferation of reactive allogeneic 

lymphocytes (Le Blanc et al., 2003) making these cells attractive for HLA-mismatched 

clinical cellular therapy (Ringden et al., 2007).  

 

Both in rabbit and human studies, LMSC have also been reported to immunosuppress T 

cell proliferation in two-way mixed donor leukocyte assays (Bray et al., 2014). This 

suppression could be mediated by  soluble factor like TGF-β, that are secreted by 

LMSC (Garfias et al., 2012). This support human MSC has a highly suitable cell 

population for cellular therapy and transplantation.  

 

The current study showed that LMSC fulfils the criteria for tri-lineage differentiation. 

LMSC were committed to be osteogenic, adipogenic and chondrogenic by histology. 

Oil Red O staining shows lipid laden cells undergoing adipogenesis, while calcium 

deposition was indicated by Alizarin Red staining, similar to previous findings in 

LMSC (Polisetty et al., 2008; Wilson et al., 2011). We also showed sections from a cell 

pellet grown in chondrogenic media to have cartilage deposition which was indicated by 
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Safranin O staining. Alternatively, characterisation of chondrogenesis has also been 

performed by using Alcian Blue as reported in other studies (Wilson et al., 2011; Gui-

Gang Li et al., 2012).  

 

Further, LMSC showed mRNA expressions to genes known to be expressed by these 

cell types, except for lacking expression of collagen X. Collagen X is normally 

expressed by hypertrophic chondrocytes during endochondral ossification (Gaetani et 

al., 2012), and the expression might need cellular maturity not observed in our cell 

population. Tri-lineage commitment in LMSC shows a similar multipotentiality 

possessed by human BM-MSC (Polisetty et al., 2008; Wilson et al., 2011; Branch et al., 

2012).  

AM has been widely used for ocular surface diseases in the UK since 1998, the outcome 

of AM transplantation has given varying results under different conditions  (Saw et al., 

2007). The beneficial effects of AM include the anti-angiogenic, anti-inflammatory and 

wound healing properties, making it the most common biological substrate for tissue 

constructs. The long term storage of AM in cryopreserved media also did not alter the 

sterility, histology or biological properties (Thomasen et al., 2011). In the case of 

bilateral LSCD, cultivated oral mucosa epithelial transplantation on AM has also been 

clinically applied with promising results (Koizumi et al., 2000; Nakamura et al., 2004).  

 

LMSC grown on AM rapidly became a confluent cell layer and in addition, underwent 

morphological changes from a fibroblast-like morphology (Barbero et al., 2003; Gui-

Gang Li et al., 2012) to cells with a more rounded cell body with bipolar protrusions. A 

series of morphological changes have previously been observed from outgrowths of 

limbal epithelial cells grown on intact versus denuded AM by Tseng group (Wei Li et 

al., 2006) which might be pertinent to the changes observed in our cultures. In their 

publication, they described the morphological changes of small, cuboidal cells (intact 

AM) versus large, spindle-shaped cells (denuded AM), stratification (intact AM) versus 

two-layer cells (denuded AM), etc. These changes were attributed to a process of 

cellular maturation and differentiation by limbal epithelial cells as they dissolved and 

then reassembled AM basement membrane as they grew on the AM.  

 

In this study we show that LMSC share some expression of limbal markers that have 

been widely used to characterise LSC at both the level of gene expression and protein 
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expression. p63 and ABCG2 have been identified as the two most common limbal 

markers (Zhuo Chen et al., 2004; Enzo Di Iorio et al., 2005; Kawasaki et al., 2005; 

Fight-for-Sight, 2014). p63 is responsible for limbal epithelial proliferation (Hsueh et 

al., 2012) and the isomer ΔNp63α of the transcription factor plays a significant role in 

corneal regeneration and wound healing (Enzo Di Iorio et al., 2005). While expression 

of p63 is generally considered to be nuclear we observed that LMSC grown in culture 

and on AM exhibited both punctuate nuclear staining and cytoplasmic staining, this may 

be indicative of cellular differentiation. Galli et al (Galli et al., 2010) reported that 

certain genes like MDM2 can mediate translocation of ΔNp63 from the cell nucleus to 

the cytoplasm under appropriate stimuli that can include cellular differentiation. 

 

CK3 distinguishes undifferentiated LMSC from epithelial cells, and is a good marker 

for corneal epithelium and also as a negative marker for limbal stem cells (Harkin et al., 

2004b). We found mRNA expression of CK3 was not consistent in all our samples 

which may suggests variability between donors. Variability in patient-derived MSC has 

been reported in other MSC derived from other tissues (D'Ippolito et al., 1999).  

 

3.6 Conclusion 

HTCEC is comparable to primary LEC in the expressions of important molecular 

markers for limbal epithelial stem cells, corneal progenitor cells and stem cell antigens. 

Due to existing problems of primary tissues, donor availability and donor-to-donor-

variability, HTCEC is attractive to provide consistent and reproducible results. This 

study demonstrates a simpler way of isolating LMSC from primary corneal tissues by 

serial trypsinisation alone. The cells grew in MSC-growth promotion media in hypoxic 

condition. The advantages of these conditions include shorter duration of reaching cell 

confluence due to the rapid growth of LMSC (5-7 days) compared to 10-14 days for 

proliferation of outgrowths from limbal explants (Polisetty et al., 2008) or using cell 

suspension from primary tissues (Wilson et al., 2011; Branch et al., 2012). LMSC is a 

vital component of the LSC niche. The LMSC-AM tissue engineered construct has great 

potential for ocular surface regeneration and more importantly in the cellular treatment 

of LSCD. 
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Chapter 4 CHARACTERISATION OF LIMBAL SIDE 

POPULATION CELLS 

4.1 Introduction 

Characterisation of LSC remains challenging in part due to the absence of specific LSC 

markers. Successful outcome of ex vivo expanded LSC transplantation is dependent on 

the frequency of stem cells or limbal progenitors in the transplanted tissues (Rama et 

al., 2010). One of the ways to isolate an enriched population of putative stem cells is by 

utilising ATP- binding cassette (ABC)-transporter mediated efflux of a DNA-binding 

dye, such as the most commonly used Hoechst 33342. A seminal work by  (Goodell et 

al., 1996), demonstrated a population of stem cell enriched cells from within the 

haematopoetic cells of the mouse, these were isolated using high-speed dual wavelength 

flow cytometry analysis combine with vital dye efflux (Figure 4.1).  

 

 

Figure 4.1 Flow cytometry profiles of murine bone marrow side population. (A) SP 

cells are indicated with arrows. (B) Loss of SP cells on addition of verapamil (Goodell 

et al., 1996).  

 

Currently, SP assays have been used to identify stem cell and progenitor populations in 

various tissues i.e. umbilical cord blood, skeletal muscle (Annette P. Meeson et al., 

2004), kidney, liver, pancreas (Lechner et al., 2002), cardiomyocytes (Cindy M. Martin 

et al., 2004), mammary glands, lung, brain and cancer cells (Kelly M. Britton et al., 

2011). In most cases it has been shown that the ABC transporter, ABCG2 is over-

expressed in LSP cells, and is the cause of the SP phenotype (Zhou et al., 2001; 

Scharenberg et al., 2002; Savary et al., 2007). ABCG2  has been implicated as the 

determinant  for SP phenotypes  in other systems i.e. musculo skeletal (Annette P. 
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Meeson et al., 2004; Doyle et al., 2011), cardiac cells (Annette Meeson et al., 2013), 

hepatocytes (Shimano et al., 2003), and the airway epithelia (Hackett et al., 2008). 

Another ABC transporter, ABCB1 has been identified as determining the SP phenotype 

in ovarian cancer cell lines and is responsible in part for resistance to chemotherapy 

(Wright et al., 2013b).   

 

Hoechst 33342 is a fluorescent dye which binds to DNA in live cells. When excited by  

ultra violet light, Hoechst 33342 has an emission peak at 450nm which can be detected 

in what is commonly referred to as the Hoechst Blue channel , in this case using a 

450/50 band pass filter.  Hoechst dye also shows a secondary emission defined as 

Hoechst Red detected in this case by a 675nm long pass filter.  This appears to be 

partially dependent on the DNA conformation; as the intensity of the dye signal in the 

blue channel is proportional to the DNA content of the cell.   

 

The SP is detected as a discrete “tail” attached to the G0/G1 subpopulation in a bivariate 

plot of these two signals. In order to determine that this “tail” of cells are indeed SP 

cells confirmation of the SP phenotype is necessary. This can be determined using an 

ABC-transporter inhibitor which needs to be added to the cells (from the same cell 

preparation) to prevent dye efflux. Some of the ABC-transporter inhibitors responsible 

for preventing vital dye efflux are verapamil which blocks ABCB1 efflux activity and 

partially blocks ABCG2 efflux, cyclosporine A which inhibits ABCC1 and FTC that is  

a specific inhibitor for ABCG2 (Dean, 2002). 

 

ABC transporters are proteins which are embedded in lipid membranes and they 

facilitate the import of nutrients into cells or the release of toxic products into the 

surrounding medium. The largest and most important family of membrane transport 

proteins is the ABC transporters. ABC transporters belong to the super family of 

membrane pumps that catalyse ATP-dependent transport of various endogenous 

compounds and xenobiotics out of the cells. This often occurs against a concentration 

gradient, requiring hydrolysis of ATP. 

  

ABC transporters contain a number of membrane-spanning domains that include a 

translocation pathway for a specific substrate. As the ABC cassettes bind and hydrolyze 

ATP, conformational changes occur and are transmitted to the membrane-spanning 

domains, where they induce rearrangements that translocate the substrate from one side 



101 

 

Chapter 4: Characterisation of  Limbal SP 

of the membrane to the other. The SP phenotype is lost upon inhibition of ABC 

transporter activity. 

 

It should however be noted that ABCG2 expression alone may not be solely responsible 

for conferring on stem cells the ability to efflux vital dyes.  Phylogenetic analysis places 

48 known human ABC transporters into seven superfamilies of proteins (Dean, 2002),  

several of which have been shown to confer on  cells the ability to efflux various 

unrelated compounds. The ABC genes represent the largest trans-membrane proteins 

and these include the ATP-binding cassette sub-family B member 1 (ABCB1), ABCG2 

and ABCC1 genes. 

 

ABCG2, ABCB1 and ABCC genes are the most commonly reported genes that confer 

multi drug resistance phenotypes to cancer stem cells. ABCG2 overexpression has been 

associated with development of many solid tumours; such as laryngeal squamous cell 

carcinoma (Diestra et al., 2003), bladder carcinoma (Sauerbrey et al., 2002), lung 

cancer and leukaemia (Brangi et al., 1999). ABCG2 overexpression is known to cause 

resistance to some currently in use chemotherapeutics which include mitoxantrone and 

camptothecin analogues (Partanen et al., 2012).  In laryngeal squamous cell carcinoma, 

down regulation of ABCG2 through the MAPK pathway  reduced cellular proliferation, 

and led to cancer cell apoptosis (Diestra et al., 2003). Further, amplification and 

overexpression of ABCC3 gene has been implicated in human epidermal growth factor 

receptor (HER)-2 positive breast cancer cell lines (Jin Xie et al., 2014), as well as 

conferring resistance to the chemotherapeutic drug “paclitaxel” in ovarian cancer (Eyre 

et al., 2014).  

 

However, not all cancer SP cells show characteristics of cancer stem cells (CSC), these 

are termed “CSC-like” cells which do not show stem cell activities. SP cells from 

glioblastoma multiforme did not enrich for neurospheres, were not able to self renew 

and had lower tumorigenic potential than the NSP cells (O'Brien et al., 2008). 

Furthermore, SP cells from adrenocortical cancer cell lines did not show a superior 

cellular proliferation,  self renewal capacity or chemoresistance than the NSP cells 

(Broadley et al., 2011).  
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4.1.1 Limbal side population assay 

Studies of ABCG2 expression at mRNA and protein levels have provided convincing 

evidence that ABCG2 is the main transporter implicated in determining the LSP 

phenotype (Zhuo Chen et al., 2004; Budak et al., 2005; Cintia S. de Paiva et al., 2005a; 

Umemoto et al., 2005). 

 

Comparable to other adult tissues, corneal limbal and conjunctival epithelial cells 

derived cells contain SP fraction which is sensitive to the ABCG2-inhibitor FTC 

(Budak et al., 2005). A number of studies have now reported the presence of LSP in 

several species, although the concentration of Hoechst dye used and incubation time of 

cells in the presence of dye are variable between studies, which may reflect on the 

varied percentage of SP populations reported, as summarised in Table 4.1.   
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Table 4.1 Summary of publications on LSP.  

Type of tissues Inhibitors Hoechst  incubation  % SP cell yield References 
 

Human 
-Limbal 

epithelium 

-Corneal epithelium 

(R )+-Verapamil 
Tryprostatin A 
(30min 37°C) 
 
 

Concentration: 3 
µg/ml),Incubation:  
90 min 
at 37 °C. 

Limbal:  0.20% 
gated cells. 
Corneal :0.02% 
gated cells). 

(Watanabe et 
al., 2004)* 

New Zealand White  
rabbits 
-Limbal epithelium 
-Corneal epithelium 

R(+)-verapamil 
(Sigma) or 
tryprostatin-A 
(Alexis 
Biochemicals, 
Carlsbad, 
CA) 
 

Concentration: 3 
µg/ml),Incubation:  
90 min 
at 37 °C. 

Limbal :0.40% 
gated cells 
Corneal:0.01% 
gated cells 
 

(Umemoto et 
al., 2005) 

Wistar rats and New 
Zealand White rabbits 
-Limbal epithelium 
-Corneal epithelium 

R(+)-verapamil 
(Sigma) or 
tryprostatin-A 
(Alexis 
Biochemicals, 
Carlsbad, 
CA) 
 

Concentration: 3 
µg/ml), 
Incubation:  90 min 
at 37 °C. 

Limbal: 
Rabbit: 0.56%  
Rat: 0.40% 
 
Corneal: 
Rabbit: barely  
Rat: 4.6% 
(contaminant) 
 

(Umemoto et 
al., 2006) 

Rabbit 
- limbal epithelial cell 

Tryprostatin-A 
(Alexis 
Biochemicals, 
Carlsbad, 
CA) 

Concentration: 5 
µg/ml),Incubation:  
90 min 
at 37 °C 

0.40% gated cells (Kusanagi et al., 
2009) 

Human  
-corneoscleral tissue 
(primary cultured cells) 

50 µM of verapamil Concentration: 5 
µg/ml), 
Incubation: 
37°C for 120 
minutes  
 

2.1 % gated cells (Cintia S. de 
Paiva et al., 
2005a)* 

Rabbit  and Human 
– cornea and 
Conjunctiva 

 10 µM reserpine 
(Sigma), 10-100 µM 
verapamil 
(Sigma) or 10 µM 
Fumitremorgin C  
 

Conjunctival 
epithelium: 3.0-3.5 
µM for 90 minutes 
Limbal epithelium: 
 2.0-2.5 µM for 60 
minutes at 37° 

SP (% of total) 
Human limbus: 
0.49% 
Human conjunctiva: 
0.58% 
Rabbit limbus: 
0.88% 
Rabbit conjunctiva: 
0.96% 
 

(Budak et al., 
2005)* 

Pig limbal epithelium 
(overnight culture) 
 

Fumitremorgin C Concentration: 5 
µg/ml 1.5 hours 

Limbal: 0.89 % (Akinci et al., 
2009) 

HTCEC 
 
Human primary limbal 
epithelial cultures 

Verapamil (20µM) 
30 minutes 

3 µg/ml 45 minutes 0.2%  
 
 
0.8% 

(Shaharuddin et 
al., 2013c)* 

[* studies involving human tissues. Part of this table was taken from (Shaharuddin et 

al., 2013a)] 
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4.1.2 Are LSP cells stem cells? 

Limbal side population assays have been performed using both animal and human 

cornea tissues. It has been reported that SP cells are present in the conjunctival and 

limbal epithelia of both rabbits and humans but absent from the corneal epithelium 

(Watanabe et al., 2004; Umemoto et al., 2005). A number of studies of LSP cells have 

also determined that the ABC transporter ABCG2 is the main transporter responsible 

for conferring on SP cells their ability to efflux Hoechst 33342 dye (Watanabe et al., 

2004; Budak et al., 2005; Cintia S. de Paiva et al., 2005a; Ki-Sook Park et al., 2006; 

Umemoto et al., 2006; Akinci et al., 2009).  

 

Previous investigations of both human and animals showed LSP cells had features 

consistent with stem cells. In a study of human LSP cells, it was observed that the SP 

cell fraction expressed higher levels of ABCG2 than the NSP using real time PCR and 

immunohistochemical analysis on limbal and corneal tissue sections. ABCG2 was 

expressed in the LEC but not in the corneal epithelial cells (Watanabe et al., 2004). 

Other reported properties of LSP cells include the slow cycling nature, higher in vitro 

proliferation and p63 expression (Wolosin et al., 2000; Cintia S. de Paiva et al., 2005a) 

and data from flow cytometry showed that LSP cells have features which are consistent 

with stem cells; they showed low forward scatter (FSC) and extremely low side scatter 

(SSC) (Budak et al., 2005).  

 

Murine keratinocyte stem cells have also been reported to be slow cycling (Cotsarelis et 

al., 1990; Tani et al., 2000) as have rat conjunctival stem cells (Wensheng Chen et al., 

2003) and LEC (Cotsarelis et al., 1989). These reports support small cell size and slow 

cycling as characteristics of stem cells. 

 

In addition,  LSP cells were shown to express elevated levels of ABCG2, Bmi-1 and 

nestin but lacked expression of CK3 and 12 compared with NSP cells (Umemoto et al., 

2006) (77). CK3 and CK12 are markers of differentiated corneal epithelial cells 

(Chaloin-Dufau et al., 1990; Budak et al., 2005), whereas Bmi-1 has been reported to be 

a marker of a number of stem cell populations (Lessard and Sauvageau, 2003; In-kyung 

Park et al., 2003) including but not exclusive to: neural crest stem cells (Molofsky et al., 

2003), intestinal stem cells (Sangiorgi and Capecchi, 2008.), hematopoietic stem cells 

and neuronal stem cells (Molofsky et al., 2003; In-kyung Park et al., 2003), where it is 

thought to be an important regulator of stem cell renewal. While nestin has been 
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reported to be important for self renewal of neural stem cells (Donghyun Park et al., 

2010).  

 

LSP cells have also been reported to have a higher colony forming efficiency than NSP 

cells (Cintia S. de Paiva et al., 2005a). Colony forming efficiency is also considered a 

stem cell characteristic and has been demonstrated in numerous studies of many 

different stem cell populations including but not limited to retinal stem cells (Tropepe et 

al., 2000), bone marrow stem cells (Friedenstein et al., 1987), and dental  pulp stem 

cells (Gronthos et al., 2000). 

 

As LSP cells are small in size, slow cycling, express stem cells markers and are capable 

of colony formation, this would suggest that they are indeed stem cells. However, to be 

useful in the clinical setting LSP cells need to be expanded in vitro while maintaining 

their stem cell characteristics. A relatively low percentage of SP cells within a large 

NSP cell population pose a challenge in determining the best culture system for cell 

expansion.  In a study by Park et al, 2006, post sorted-SP cells were able to show 

stratification and proliferative capacity in a modified 3-D raft culture (Ki-Sook Park et 

al., 2006).   Swiss 3T3 fibroblasts were plated on a type I collagen gel matrix within a 

12-mm culture insert in supplemented Eagle’s medium to mimic an in vitro stromal 

equivalent. Immunohistochemistry performed on the sorted-SP cells successfully 

demonstrated a high proportion of cells expressing p63, which is a marker for cell 

proliferation.  

 

From wound healing models of the cornea,  in vivo ability of LSP cells to increase in 

number in response to injury was observed (Ki-Sook Park et al., 2006). It is also 

possible to expand SP cells ex vivo while maintaining their stem cell characteristics as 

demonstrated in articular synovial tissues (Teramura et al., 2008).  Proliferative capacity 

of cochlear SP cells were also studied in adherent versus non-adherent conditions, in 

which they favour the former (Chao et al., 2013). Based on these published reports, 

expansion of LSP in culture is something that is probable, once the optimal culture 

conditions have been determined. 

 

SP cells have demonstrated regenerative properties in several studies. Jackson et al, 

2001 transplanted highly enriched haematopoietic SP cells into the ischaemic heart in 

lethally irradiated mice and showed these SP cells  were capable of differentiating into 
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cardiomyocytes and endothelial cells (Jackson et al., 2001). This was later emphasized 

in another study where cardiac SP cells were able to differentiate into multiple lineages 

including cardiomyocytes, fibroblasts, endothelial cells and smooth muscle cells 

(Oyama et al., 2007). The role of SP cells in repair and regeneration of skeletal muscle 

has also been widely investigated, these cells proliferate in response to injury and some 

participate in regeneration while others are thought to replenish the SP cell population 

(Annette P. Meeson et al., 2004; Tanaka et al., 2009; Doyle et al., 2011). Similarly, in 

response to an alkali burn central cornea wound, the SP cell population showed a 

transient increase in cell numbers after 24-hours of injury (Ki-Sook Park et al., 2006). 

Further investigations into the role of SP cells in wound healing are warranted. 

4.2 Specific Aims 

In this chapter we aim to;  

1. To describe the methodology for the identification and isolation of corneal 

epithelial SP in both primary LEC and HTCEC. 

2. To describe the optimisation of a protocol for SP isolation from both LEC and 

HTCEC.  

3. To investigate expressions of ABC-transporters in LEC.  

4. To investigate the association between cell confluence and SP percentage 

5. To characterise LSP cells using LSC markers 

6. To study the association of cell diameter and colony formation and LSP. 

 

4.3 Materials and methods 

4.3.1 LEC and HTCEC 

Isolation and cultivation techniques of limbal epithelial sheets followed the protocol 

described in Chapter 2 and published earlier (Shaharuddin et al., 2013c). It was based 

on the keratinocyte culture system by Rheinwald and Green (Rheinwald and Green, 

1975a; Rheinwald and Green, 1975b; Green et al., 1977) and described in many reports 

(Notara et al., 2007; Shortt et al., 2007b; Osei-Bempong et al., 2009; Meyer-

Blazejewska et al., 2010). The cells were propagated in a co-culture system with murine 

3T3-J2 fibroblast feeder layer (a kind gift from Professor Fiona Watt, King’s College, 

London, United Kingdom). 
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Our stock of HTCEC line (Robertson et al., 2005; Robertson et al., 2008; Robertson et 

al., 2011) was generously contributed by Dr James Jester and Winston Kao, of the 

University of Cincinnati, Cincinnati, Ohio, USA. We successfully expanded HTCEC 

and maintained this cell line in feeder- and serum-free conditions using defined 

keratinocyte serum free medium (DKSFM) [Gibco].  

 

4.3.2 Reagents 

Hanks balanced salt solution (HBSS) medium  

This was prepared as follows; 500ml HBSS [Sigma] containing 2% fetal bovine serum 

(FBS) [Lonza], and 5ml of 5,000 units of penicillin/streptomycin [Gibco]. 

 

Verapamil [Sigma Aldrich ] 

Verapamil is a general calcium channel inhibitor, which inhibits efflux of drugs at the 

ATP-dependent pumps e.g. Hoechst 33342 dye in SP discrimination assay. Verapamil is 

made into a 5mM stock solution in H2O and stored frozen at -20
0
C, once thawed it can 

be stored at 4
0
C for 1 month and is used at 20 – 40µM concentration.  

 

Fumitremorgin-C [Axxora]  

FTC is a specific inhibitor of ABCG2. FTC is diluted in DMSO to make a 10mM stock 

and stored at -20
0
C and is used at a final concentration of 5µM.  

 

Hoechst 33342 [Sigma]  

25mg Hoechst 33342 in powder form was dissolved in 25ml H2O to a final 

concentration of 1mg/ml, filter sterilized and aliquots frozen at-20°C. Once thawed 

Hoechst was kept at 4°C for 1-2 months. 

 

Propidium iodide (PI)  

25mg PI powder was dissolved in 2.5ml H2O to a final concentration of 10mg/ml, filter 

sterilised and aliquots were stored at -20°C, once thawed vials were kept at 4°C. 

 

4.3.3 LEC and HTCEC sample preparation 

On Day 10, cells from LEC were detached from  tissue culture wells by first adding 1ml 

of Ethylenediaminetetraacetic acid (EDTA) for 3 minutes to remove any residual feeder 
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cells, and subsequently adding 1 ml of 0.05% trypsin-EDTA and placed in a CO2 

incubator at 37°C for 3 minutes. To inactivate trypsin, 1ml of medium containing 10% 

Fetal Bovine Serum (FBS) [Lonza] was added to the well subsequently. The cell 

suspension was then centrifuged and the cell pellet resuspended in Hank’s medium.  

 

For HTCEC sample preparation, DKSFM was first removed and cultures irrigated with 

Dulbecco’s Phosphate Buffer Saline (DPBS) [Sigma]. Cells in a 75cm
2
 tissue culture 

flask were then treated with a cell dissociation buffer – enzyme free, Hank’s based 

[Gibco] in a CO2 incubator at 37°C for 20 minutes and then rinsed with PBS. 5ml 

0.05% Trypsin-EDTA was then added and incubated for another 3 minutes. The steps as 

described above were repeated. 

 

Cells were counted manually using an improved Neubauer haemocytometer [Reichert], 

1.0 x 10
6
 cells/ml were resuspended in Hank’s media and placed into micro centrifuge 

tubes [Fisher] to be stained with either Hoechst 33342 dye alone or with Hoechst dye in 

the presence of ABC-transporter inhibitors. As a control to the confirm the SP 

phenotype, cells from the same cell preparation as those being analysed (prior to 

addition of Hoechst)were incubated in the presence of inhibitor for 30 minutes in a 5% 

CO2 incubator at 37°C in a MACsMix rotator [Miltenyi Biotec]. After this, Hoechst dye 

was then added to all tubes as described above.  

 

All reactions were terminated by placing the contents of the tubes in a 15ml centrifuge 

tube [Fisher] containing 10ml ice cold Hank’s/FBS medium. The tubes were then 

centrifuged at 2,500 rpm for 5 minutes and cells resuspended with 500µl Hank’s 

medium and passed through a 70µm pore size cell strainer [BD Falcon] and stored on 

ice prior to FACS analysis. 

 

4.3.4 Flow Cytometry Analysis and Fluorescence Activated Cell Sorting 

FACSanalysis and cell sorting was done using either an LSR2 SORP analyser or a 

FACSAria IIu sorter [Becton Dickinson]. Both machines used identical filter sets and 

laser configurations. Propidium iodide (PI) was added immediately prior to analysis at a 

final concentration of 2µg/ml.  Initial gating was designed to exclude non viable cells, 

these were defined as PI positive and were detected using 488nm excitation and a 

610/20 emission filter (data not shown). SP cells were identified on a bivariate plot 
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showing Hoechst Blue (355nm excitation, 450/50 emission) versus Hoechst Red 

(355nm Excitation, 675LP emission). For analysis, at least 50,000 events were 

collected. For sorting SP and NSP, cells were collected into either culture media for 

molecular characterisation and cell culture or directly onto microscope slides for 

immunofluorescence studies. 

 

4.3.5 ICC of LSP and NSP cells 

100 HTCEC SP and NSP cells were sorted directly onto glass slides. Slides were fixed 

with cold methanol [BDH Laboratory Supplies] at -20 °C for 20 minutes and then 

washed with PBS. Cells were permeabilised in 0.3% (v/v) Triton X-100 [Fisher 

Scientific] in PBS for 10 minutes and then washed again with PBS. Non-specific 

binding sites were blocked with 5% normal goat serum [Invitrogen] in PBS for 30 

minutes in a humid chamber in the dark. Cells were then incubated with primary goat 

anti-mouse monoclonal antibody to ABCB5 (1:100 dilution) [Abcam], CXCR4 (1:100 

dilution) [R&D Systems], p63 (1:50 dilution) [Santa Cruz biotechnology] and goat anti-

rabbit polyclonal antibodies to ABCG2 (1:100 dilution) [Novus Biologicals] in 0.05% 

FBS/PBS overnight at 4°C. Cells were then washed 3x5 minutes PBS and incubated 

with appropriate secondary antibody either goat anti-mouse FITC or anti-rabbit 

Rhodamine [Jackson Immunology Research Laboratory] 1:25 dilution for 30 minutes in 

a humid chamber in the dark, then washed with PBSX3 5 minutes and mounted in 

vectashield anti-fading media containing DAPI [Vector Laboratories], cover slipped and 

examined using an Axioplan F microscope [Carl Zeiss]. In the case of ΔNp63 slides, 

vectashield without DAPI was used. Negative controls were cells incubated without 

addition of primary antibody, but with secondary antibody.  

 

4.3.6 Image quantification 

Under 20X magnification, the collection site for cells on the slides were arbitrarily 

divided into 5 quadrants (Figure 4.2). For each quadrant, all cells were selected for 

image quantification using image quantification software [Image J version 1.44]. The 

means (± standard deviation) of fluorescence signal intensities were averaged and 

analysed to compare the means between SP and NSP cell fractions, using independent  

t-test [IBM SPSS Statistics Version 19].  P value of < 0.05 was taken as a significant 

difference in means between two groups.    
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Figure 4.2 Schematic diagram for arbitrary division of areas for microscopic 

quantification of markers-positive cells in NSP and SP cells.  

[Abbreviations: UL – Upper left quadrant, UR – Upper right quadrant, MD – Middle 

quadrant, LL – Lower left quadrant, LR – Lower right quadrant].  

 

4.3.7 Measurement of cell diameter 

Cell diameter was measured using the Axiovision software version 4.8.2.0 [Zeiss], by 

drawing a straight line at the longest diameter across a cell.  The fluorescent filter was 

switched off during this measurement. The mean values for SP and NSP cells were then 

entered into IBM SPSS statistical software Version 19 and analysed with independent t-

test for difference in means between two groups. P value of < 0.05 was taken as 

significant. 

 

4.3.8 Semi quantitative-Polymerase chain reaction (sq-PCR) 

sq-PCR reactions were assembled with 12.5µl PCR master mix [Promega, UK], 0.5µl 

forward primer,  0.5µl reverse primers and 2 – 2.5µl cDNA template and DEPC-treated 

water to a final volume of 25µl reactions. Denaturation was set at 94°C for 30 minutes 

and elongation took place at 72°C for 1 minute at primer pair specific annealing 

temperature, and maintained at 4ºC or electrophoresed on a 2% agarose gel [NBS 

Biologicals]. PCR reactions were amplified for each gene and conditions are 

summarised in Table 4.2.   
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Table 4.2 Oligonucleotide sequences and amplification conditions. 

Gene Primers Oligonucleotide Sequences Product  
Length 
(bp) 

Cycles Annealing 
temperature 
°C 

ABCG2  
 

143 35 55.5 
 Forward GCG TGC TGT GCC CAC TCA AA    
 Reverse AGC ATG TGC ACG GTG CGT TC    
      
ABCB1   116 35 55 
 Forward GAC GTC ATC GCT GGT TTC GAT    
 Reverse TCA TTT CCT GCT GTC TGC ATT GT    
      
GAPDH   150 30 55 
 Forward GCA CCG TCA AGG CTG AGA AC    
 Reverse GCC TTC TCC ATG GTG GTG AA    
      

 

4.4 Results 

4.4.1 Optimisation of LSP protocol 

Due to the limitations associated with primary limbal tissues and its culture conditions 

which involve co-culture expansion with animal-sourced feeders or AM, and often 

limited cell numbers, optimisation for LSP was performed using the HTCEC line based 

on bone marrow SP as established by Goodell (Goodell et al., 1996). The steps involved 

optimising for Hoechst dye concentration and duration of incubation, and verapamil 

concentration. FTC was used at a concentration of 5µM based on  pre-optimisation by 

other investigators (Rabindran et al., 2000)  (Figure 4.3). We achieved a final LSP 

protocol using Hoechst dye concentration 3.0µg/ml for 1.0 x 10
6
 cells/ml, 45 minutes 

incubation at 37
O
C, using Verapamil 20µM as an SP-inhibitor for 30 minutes.  
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Figure 4.3 Optimisation steps to limbal side population protocol.  

[*pre-optimised in previous literature (Rabindran et al, 2000). This figure was 

previously  published (Shaharuddin et al., 2013c)] 

 

To determine the optimal Hoechst concentration, a Hoechst concentration curve was 

first determined. Cells were incubated in the presence of a range of concentrations from 

0.5µg/ml to 5.0µg/ml. In the presence of 3µg/ml of Hoechst dye, an SP population of 

0.2% could be detected with cell death of 37% (Figure 4.4A), furthermore the efflux 

ability of these cells could be blocked in the presence of verapamil (Figure 4.4B).   A 

higher concentration e.g. 5μg/ml of Hoechst dye led to reduced SP resolution or loss of 
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the SP phenotype.  Cell viability was severely reduced at 47% (Figure 4.4C), and in the 

presence of verapamil further cell death occurred - 54% (Figure 4.4D). Using a lower 

concentration of Hoechst than the optimum concentration, will lead to under saturated 

SP profile where NSP cells will be introduced into the SP gate giving a high, but 

unlikely SP phenotype (Golebiewska et al., 2011).    

 

Figure 4.4 Representative FACS data plots showing SP protocol optimisation. Gating 

indicates SP cells. (A) Cells stained using Hoechst concentration of 3µg/ml, note the 

presence of SP cells in the gated region (B) Absence of cells in the SP gate in the 

presence of VP. (C) Cells incubated with 5μg/ml of Hoechst and (D) Cells from the 

same preparation but with the addition of VP. In both C and D no SP phenotype was 

observed. [Abbreviations:  SP – side population, VP – Verapamil. Part of this figure 

was previously published (Shaharuddin et al., 2013c)] 
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The gating strategy for isolating a final population of cells by SP discrimination is 

presented in Figure 4.5. The steps involved initial debris exclusion, followed by a 

strategy to gate out cell doublets and cellular aggregates using the properties displayed 

by FSC and SSC. Next, dead cells were distinguished by its affinity to a cell death 

discrimination marker e.g. propiodium iodide (PI). Due to the function as a DNA-

binding dye, Hoechst dye fluorescent signals give indication for DNA content in the 

cells, thus specific cellular phase i.e G0/G1, S and G2/M can be identified. SP cells 

appear as the “tail” at the left hand side of the G0/G1 cell population. A gating tree 

gives information to the final SP population as a percentage to the parent gated events 

or as a percentage of the total recorded events.  

 

Figure 4.5 Step by step gating strategy for SP. (A) Cells are distinguished from debris 

by FSC (based on cell size) and SSC (based on granularity) (B) To ensure signals are 

directed from single cells, cell doublets and aggregates are singled out based on FSC-

Area (FSC-A) or SSC-A against FSC-Height (FSC-H) or SSC-H.(C) Dead cells are 

gated out by its positivity to a  dead cell discrimination marker e.g. Propiodium iodide 

(PI) (D) DNA-binding property of Hoechst gives off fluorescent signal which gives 

information on the specific cell cycle indicated by the DNA content of the cells (E) SP  

cells are recognised as a dim “tail” which appears first  at the left hand side of the 

G0/G1  population (F) The gating tree is a sequential events leading to isolation of an 

SP population. %Parent refers to percentage of gated events relative to the preceding 

gate. %Total refers to percentage of gated events relative to total events recorded.  
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4.4.2  LSP in primary LEC cultures 

Using our optimized SP protocol, harvested limbal colonies from co-cultures with 3T3 

feeder layer were analysed for the presence of SP. SP cells were present as shown in 

Figure 4.6A. Cells from the same culture but incubated in the presence of verapamil 

were used to confirm the SP cell phenotype (Figure 4.6B). Samples from 11 donor 

corneas were processed and the epithelia cultured and prepared for SP assays with the 

final SP phenotype being confirmed by addition of either verapamil or FTC. SP yields 

from these are presented in Figure 4.7. Range of SP yields was between 0.1 to 0.8% 

with a median value of 0.2 (SE 0.07).  

 

Figure 4.6. Representative FACS dot plots showing SP cells in LEC. (A) SP in primary 

LEC (SP gate indicated by arrows). (B) The same preparation but with the addition of 

Verapamil . Note the absence of SP cells in the gated region on addition of verapamil. 

(Shaharuddin et al., 2013a; Shaharuddin et al., 2013c). 

 

 

Figure 4.7 SP yields in primary LEC, N=11. SP yield ranges from 0.1 – 0.8%  
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4.4.3 ABC-transporters in LSP cells 

The ability of both primary limbal epithelial SP and HTCEC to efflux Hoechst dye 

could be inhibited by the addition of verapamil or FTC alone. This inhibition was either 

complete or partial, which was the same for both cell line and primary epithelial 

cultures, but partial inhibition is a phenomenon more frequently associated with primary 

epithelial cultures, an example is given in Figure 4.8A, 4.8B and 4.8C. In the presence 

of 3 µg/ml of Hoechst dye, an SP population of 0.4% could be detected (4.8A), which 

was partially inhibited by verapamil, note the reduced number of SP cells in the SP gate 

(4.8B), with the addition of FTC note no SP cells can now be seen in the SP gate (4.8C).  

 

 

Figure 4.8. Representative FACS dot plots showing SP cells in HTCEC (A) SP gates 

are indicated with arrows (SP=0.4%). (B) Note reduction of SP on addition of 

Verapamil 0.3%), and (C) Loss of SP cells on addition of FTC (Shaharuddin et al., 

2013c). 

 

When a partial inhibition was observed we hypothesised this was due to there being 

more than one ABC transporter being responsible for the SP phenotype. Both ABCG2 

and ABCB1 transporter genes were expressed by both primary LEC and HTCEC, as 

evident by sq-PCR results (Figure 4.9A and 4.9B). Results from immunocytochemistry 

showed ABCG2 was expressed in HTCEC and LEC (Figure 4.9C and 4.9D). The co-

culture system for culture of primary epithelial  cells called for further investigations on 

the possible role of 3T3 fibroblast to contribute to the SP cell populations. However sq-

PCR and ICC results suggest this is not the case as no gene (ABCG2 and ABCB1) or 

protein expression (ABCG2 ICC only) could be detected (Figure 4.9E and 4.9F). 
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Figure 4.9. Representative image of gene expression  of ABCG2 and ABCB1 and 

protein for ABCG2  in unsorted HTCEC and LEC (A) sq-PCR results for mRNA 

expression in HTCEC and (B) primary LEC, (N=3).  Note both expressed ABC G2 and 

ABCB1 (C) Results of immunocytochemical analysis showing representative images of 

ABCG2 expression in HTCEC (N=3), and (D) primary LEC (N=2).  (E) sq-PCR results 

for mRNA expression  showed  no expression of ABCG2  and ABCB1 in 3T3 murine 

fibroblast (feeder layer), (N=2)  (F) No ABCG2 expression could be detected in 3T3 

fibroblast using ICC  (N=2). [DAPI=blue, ABCG2  green. Part of this figure was 

previously published ]..  

 

Quantitative RT-PCR was performed using  primary LEC (N=5) to study the expression 

of ABCG2 and ABCB1.A differential expression of ABC transporter genes in the LEC 

samples  was observed (Figure 4.10). Results were normalised to GAPDH and HTCEC 

was used as a reference sample. Statistics for relative expression, standard error and P 

values for up- and down-regulated genes are presented in Table 4.3.  
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Figure 4.10. RT-QPCR showed variability in relative expression of ABCG2 and 

ABCB1 in 5 samples of LEC, data normalised to GAPDH, using HTCEC as reference 

(control).  

 

Table 4.3 Statistics for ABCG2 and ABCB1 expression in LEC by RT-PCR. 

Donor ID Genes Relative 
expression 

SE P value  Results 

 
B29804A 

 
ABCG2 
ABCB1 

 
3.268 
1.147 

 
3.0-3.6 
1.0-1.2 

 
*0.000 
0.186 

 
UP 

M17760A ABCG2 
ABCB1 

0.910 
0.181 

0.6-1.2 
0.1-0.2 

0.851 
0.104 

 

M17761A ABCG2 
ABCB1 

1.48 
0.27 

1.2-1.6 
0.1-0.2 

*0.032 
*0.000 

UP 
DOWN 

M17859B ABCG2 
ABCB1 

5.356 
0.733 

4.5-6.1 
0.6-0.7 

*0.032 
*0.000 

UP 
DOWN 

M17963A ABCG2 
ABCB1 

2.952 
0.785 

2.5-3.4 
07-0.8 

*0.022 
*0.031 

UP 
DOWN 

*Significant difference in relative gene expression compared to control. 

 

In four samples of LEC (B29804A, M17761A, M17859B and M17963A) significant 

upregulation of ABCG2 gene was demonstrated compared to control group. In three 

LEC samples (M17761A , M17859B and M17963A) there was significant 

downregulation of ABCB1 gene compared to control group.   
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4.4.4 Effects of cell confluence on SP yields 

Analysis of the impact of low  cell confluence on SP cell yields has been reported to 

increase SP yields in cancer  cell cultures (Tavaluc et al., 2007). We further investigated 

this in LSP. HTCEC were plated at different cell densities; 250,000, 500,000, and 

1,000,000 cells in T75cm
2
 flasks and incubated in 5% CO2, 37C.  

 

After four days, different cell confluence was observed using brightfield microscopy 

(Figure 4.11). The cells were then harvested and the SP assay performed. Cell density 

was counted as total cell count divided by 75cm
2
 tissue culture flask area to obtain the 

number of cells/cm
2
.  

 

 
 

Figure 4.11 SP and cell confluence. Representative photo micrographs of cultures at day 

4. Each figure represents different cell densities plating (A) 250,000 cells, (B) 500,000 

cells, (C) 1,000,000 and (D) 2,000,000 cells. 

 

 

Experiments were performed twice (Figures 4.12. and 4.13). Harvesting densities 

(number of cells/cm
2
) were calculated and plotted against SP yields. We found the cell 

populations with lower cell confluence gave higher SP percentages (Figure 4.14). 
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Figure 4.12. Representative FACS dot plots showing cell confluence and SP yield on 

day 4 of culture. SP gates are indicated with arrows. [A(i)] initial plating density of 

250,000 cells/cm2: note SP 0.5% was detected, [A(ii)] Cells from the same preparation 

lost the SP phenotype on addition of verapamil (B) Cultures with initial cell density of 

500,000 cells (C) 1,000, 000 cells/cm2 and (D) 2,000,000 cells; note no SP cells are 

detected in B, C and D.  
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Figure 4.13 Representative FACS dot plots showing cell confluence and SP yield on 

day 4 of culture. SP gates are indicated with arrows. (A) Initial plating density of 

250,000 cells/cm
2
 [B(i)] Cultures with initial cell density of 500,000 cells: note SP 0.9% 

was detected, [B(ii)] Cells from the same preparation lost the SP phenotype on addition 

of verapamil (C) Cultures with initial cell density of 1,000, 000 cells/cm2. Note no SP 

cells are detected in A and C.  
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Figure 4.14. Cell confluence and SP in HTCEC. SP percentage (Y axis) plotted against 

harvesting densities (X axis).  

 

4.4.5 Side population and hypoxia 

We prepared HTCEC from cultures growing under normal atmospheric oxygen level 

(20%), 5% oxygen and 1% oxygen for side population assays (N=2). There was no 

significant difference between SP in the two oxygen levels (Table 4.4). 

 

Table 4.4 SP yields in cultures grown at 5% and 1% oxygen levels. 

Oxygen (%) SP (%) Cell death (%) 

5 0.4 15.3 
0.3 6.3 

1 0.4 9.9 
0.4 10.8 

 

4.4.6    Characterisation of SP cells from HTCEC 

Using our optimised LSP protocol, we sorted SP and NSP cells of the HTCEC directly 

onto slides and stained them with antibodies to p63, Sox2, ABCG2 and ABCB5. Under 

20x magnifications, areas were arbitrarily divided into five fields for image 

quantification.  

 

Using Image J software, the fluorescence intensity for each marker in SP and NSP 

fractions were quantified, values were analysed using independent t-test for parametric 

data by IBM SPSS software.  
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For ABCG2, ABCB5 and Sox2, the expression of all three markers was significantly 

higher in the SP versus NSP cells, while NSP signal intensities for p63 were 

significantly higher than in SP fraction. Statistics for signal intensity (ICC) 

quantification for SP and NSP cells with limbal markers are tabulated in Table 4.5.  

Table 4.5 Statistics for fluorescence intensities (arbitrary units) for positively 

stained cells with LSC markers. 

 

Markers  N Means (±) SD P value* 

ABCG2 
-SP 
-NSP 

 
131 
131 

 
18.43 
16.33 

 
7.40 
5.91 

 
0.012 

 
Sox2 
-SP 

 
 

33 

 
 

29.17 

 
 

4.19 

 
 

0.000 
-NSP 34 18.36 7.16  
 
ABCB5 
-SP 
-NSP 

 
 

160 
160 

 
 

26.35 
24.17 

 
 

8.70 
8.07 

 
 

0.020 

 
p63 
-SP 

 
 

170 

 
 

40.17 

 
 

7.10 

 
 

0.000 
-NSP 165 44.25 7.31  
     

[Abbreviations: ABCG2= ATP-binding cassette sub-family G member 2, ABCB1= ATP-

binding cassette sub-family B member 1, ABCB5 = ATP-binding cassette sub-family B 

member 5, SP= side population, NSP= non side population].  

*Independent t-test. 

 

Representative ICC images for SP and NSP cells stained positive for limbal markers 

ABCG2, ABCB5, p63 and stem cell marker Sox2 are shown in Figure 4.15.  
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Figure 4.15. Representative images of ICC analysis of SP and NSP cells. Note 

Expression of ABCG2, ABCB5, p63 and Sox2 antibodies in both SP and NSP cel 

populations, N=3. [FITC-conjugated secondary anti-mouse antibody= green, 

Rhodamine-conjugated anti-rabbit secondary antibody = red. DAPI = blue. Part of this 

figure was previously published (Shaharuddin et al., 2013c)]. 

 



125 

 

Chapter 4: Characterisation of  Limbal SP 

FACS-sorted LSP cells were stained using ICC to examine the expression of ABC 

transporters ABCG2 and ABCB5 in HTCEC. In addition to ABCG2 expression, SP-

sorted HTCEC also expressed ABCB5 (Figure 4.16A). An overlay of these images 

showed a number of cells had dual expression of these transporters in the SP fraction 

(Figure 4.16B).  

 

 

Figure 4.16 Representative images of dual labelling ICC analysis for ABCB5 and 

ABCG2 expression in SP-sorted HTCEC, N=3. (A) Expression of ABCG2 and ABCB5 

in SP cells. Arrow heads indicate cells that express both. (B) Image overlay showing co-

expression by some cells in the SP fraction of both transporters. ([FITC-conjugated 

secondary anti-mouse antibody= green, Rhodamine-conjugated anti-rabbit secondary 

antibody = red, DAPI –nuclear, stain blue].  

 

 

4.4.7 Cell diameter and SP 

Analysis of ABCB2 stained HTCEC derived SP and NSP showed SP cells were smaller 

in size compared to the NSP cells (Figure 4.17)  Image J was the used to to measure 

diameter of stained cells in both population fractions and values were analysed using 

independent t-test for parametric data by IBM SPSS software. The cell diameter was 

significantly smaller for SP fraction 11.49 (±1.59) µm, than the NSP fraction 11.94 

(±1.91) µm, as presented in Table 4.6.  
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Figure 4.17 Representative   images of HTCEC stained with ABCG2 antibody 

demonstrating  SP cells to  have smaller cell diameter  compared to NSP cells., (N=3). 

[ABCG2 FITC = green, DAPI = blue (cell nuclei)]  

 

Table 4.6 Cell diameter from SP- and NSP-sorted cells. 

                   N Means (µm) (±) SD P value 

SP 179 11.49 1.59 0.019* 
NSP 163 11.94 1.91  
     

[Abbreviations: SP = side population, NSP = Non-side population.This table was 

previously published (Shaharuddin et al., 2013c)] 

*Independent t-test 

 

4.4.8 Colony formation of SP cells 

Next we examined the colony forming potential of SP and NSP cells of the HTCEC line 

in a plastic adherent mono layer culture conditions which demonstrated SP-sorted 

HTCEC formed colonies in tissue culture wells (Figure 4.18A). The NSP cells also had 

colony formation (Figure 4.18B) but the colonies were smaller and contained fewer 

cells/colony than the SP counterpart.  The difference in the cell number per colony 

between the SP and NSP cell fractions was calculated by using the cell counter in Image 

J and statistically analysed by IBM SPSS. There was a significantly higher number of 

cells/colony in SP than NSP, P=0.01 (Mann-Whitney) (Figure 4.18C).  
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Figure 4.18 Colony formation of SP and NSP-sorted cells on Day 5 of culture. (A) SP 

fraction (B) NSP fraction (C) Number of cells per colony plotted against cell count in 

SP and NSP cells in HTCEC.  
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4.5 Discussion 

One of the advantages of SP assay is the feasibility for further analysis on the viable 

cells such as in vitro and in vivo functional characterisation, some of the examples are 

molecular characterisation using stem cell markers (Pfister et al., 2010). After an initial 

wash out with PBS, the two cell fractions may further be characterised by PCR 

(Watanabe et al., 2004; Cintia S. de Paiva et al., 2005a), immunophenotyping by FACS 

(Pfister et al., 2010), propagated for proliferative studies such as colony forming 

efficiency (Cintia S. de Paiva et al., 2005a) or spheroid formation (Ostrowska et al., 

2011). 

 

Optimisation of the SP protocol 

There are critical parameters that can challenge the design of experiments and 

interpretation of the results which necessitates the process of optimising an SP protocol. 

When an established or stable cell line is used, factors that needed to be looked into are 

the cell density, nutrient used, serum or oxygen levels (Tavaluc et al., 2007), therefore it 

is advisable to keep to the same culture conditions. It is also important to maintain 

similar cell concentration/number of cells to gather the equilibration of the dye with the 

intracellular components.  

 

It is crucial to obtain a single cell suspension with limited cellular damage because the 

assay is based on active physiological process which depends on viability and protein 

integrity at the cellular membrane. This poses a challenge when processing tissues using 

enzymatic digestion which is potentially damaging to the cells.  

In a critical appraisal for SP methods, Golebiewska et al listed a number of  parameters 

that need to be optimised to ensure reproducibility and standardisation of SP data 

(Golebiewska et al., 2011). The optimisation included several steps such as appropriate 

dye concentration, stable incubation conditions such as incubation time, temperature, 

darkness and inhibition controls all essential to obtain a high resolution SP FACS plot 

and to allow for discrimination between the SP and NSP fraction.  

 

Cumulative data from previous SP protocols showed differences exist between various 

tissues of the same species, or the same tissues from different species. Furthermore, 

human tissue sourced SP cells often required different Hoechst concentration and 

contact times from those of their animal counterparts. For example, in  murine bone 



129 

 

Chapter 4: Characterisation of  Limbal SP 

marrow and skeletal muscle assay, 5 µg/ml Hoechst dye was  used, while in liver, 

spleen and kidney, 10 µg/ml of dye was used (Asakura and Rudnicki, 2002).  The SP 

assays for murine cardiac progenitor cells, has been reported to use between 1 – 5 µg/ml 

of Hoechst dye and a 90 minute incubation period (Pfister et al., 2010; Annette Meeson 

et al., 2013). However, a study in a human developing heart used 1.25 µg/ml of Hoechst 

dye and a 60 minutes incubation time (Alfakir et al., 2012).  

Although the cell count of 1.0 x 10
6
 cells/ ml is standard for SP cell analysis, it is 

particularly important especially when doing a profile on primary tissues/cultures to 

include only viable cells or nucleated cells. Therefore, adequate gating during analysis, 

paying attention to single, viable and nucleated cells is crucial when determining an SP 

phenotype. Hoechst dye stains all DNA regardless if cells are alive or dead, therefore 

dead cell discrimination is an important step in FACS analysis. Appropriate gating for 

cell debris and dead cells should be integrated during analysis.  

 

For a consistent temperature control, Hoechst incubation should be carried out under 

stable temperature control. We advise the use of a 37C incubator using a gentle shaker 

or rotator. It is also important to note that to maintain Hoechst  within cells after 

staining is complete, all activities post staining which include washing, centrifugation 

and data analysis should be  performed cold (4°C).    

 

LSP in LEC and HTCEC 

In the rat, SP cells have been shown to be present in both limbal and central cornea 

(Umemoto et al., 2005) suggesting species variations as this contradicts findings from 

rabbit and human LSP studies. A number of studies have demonstrated the presence of 

LSP cells in both animal and human limbus. They have provided evidence that these SP 

cells have some stem cell characteristics; however few have looked at optimisation of 

the SP assay.  

 

In the field of limbal corneal SP, a noticeable variation among species was also 

observed. As examples, in the pig – Hoechst concentration of 5 µg/ml for 90 minutes 

was used (Akinci et al., 2009) and rabbit –3 µg/ml for 90 minutes (Umemoto et al., 

2006).  Budak and colleagues (Budak et al., 2005) commented that optimisation of their 

protocol for LSP cells (rabbit and human) was initially done on rabbit cells and from the 

results of these they concluded what the optimal Hoechst dye concentration and 
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incubation time would be for the human cells. Whereas de Paiva and colleagues (Cintia 

S. de Paiva et al., 2005a) used both freshly isolated primary human cell cultures  as a 

source of LSP cells but did not optimise the SP cell assay, instead they based  their SP 

protocol on a method previously used to isolate SP cells from hematopoietic stem cells. 

Watanabe and colleagues (Watanabe et al., 2004) also reported on the identification of 

human LSP cells from human limbus but again did not report on optimisation of the SP 

assay used.  However they did use a Hoechst concentration of 3µg/ml and an incubation 

time of 90 minutes.   

 

In this study we optimised our SP protocol using HTCEC and achieved an optimal 

Hoechst concentration of 3µg/ml which gave a consistent and reproducible SP 

percentage of 0.2%. The optimal incubation time for Hoechst dye was 45 minutes, as 

more HTCEC death occurred at a longer incubation times (90 minutes) (data not 

shown). The shorter exposure of cultures to Hoechst dye was preferred to prevent 

cellular toxicity as Hoechst 33342 has proven to cause cytotoxicity by causing single 

and double strand breaks in DNA and markedly increase sensitivity of DNA and cells to 

ultra violet damage (R. F. Martin and Denison, 1992; Singh et al., 2004).  

 

A number of studies have determined that the ABC transporter ABCG2 is the main 

transporter responsible for conferring on SP cells their ability to efflux Hoechst 33342 

dye (Watanabe et al., 2004; Budak et al., 2005; Cintia S. de Paiva et al., 2005a; Ki-

Sook Park et al., 2006; Umemoto et al., 2006; Akinci et al., 2009). Confirmation that 

the cells identified are SP cells is important due to issues that can be caused by under or 

over saturation therefore the inhibitor and its concentration need to be validated. We 

opted for the use of verapamil, a calcium channel which blocks both ABCG2 and 

ABCB1 instead of FTC which is a specific inhibitor for ABCG2. 

 

In our laboratory, a median value of 0.2% of SP yield was obtained from 11 primary 

LEC samples (range: 0.1 – 0.8%), which is comparable to previous investigations on 

human LSP (summarised in Table 4.1). Data in previous literatures showed a broad 

range of SP yields in human LSP from 0.2% to 2.1%. Differential expression of 

ABCG2 and ABCB1 has also been demonstrated in the SP cells derived from fine 

needle aspiration biopsy of the breast (K. M. Britton et al., 2012).   
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We demonstrated here SP yields in HTCEC were consistent at the value of 0.2% for 

cells cultured under normal atmospheric oxygen levels. The use of established cell lines 

as sources of SP cells have been reported previously (Hirschmann-Jax et al., 2005; 

Yamazaki et al., 2008; Kelly M. Britton et al., 2011; Rizzo et al., 2011).  

 

While the percentage of SP cells is relatively small in the HTCEC, stem cells are in 

many systems rare cells, moreover it was also demonstrated that as few as 500 rabbit 

LSP cells were able to regenerate cornea like epithelium which was p63+ve in a 3-D 

culture system (Ki-Sook Park et al., 2006). The convenient use of an established cell 

line surpasses the difficulty in the isolation and identification of LSC from primary 

cultures and enables studies to be performed when valuable primary tissue is 

unavailable. 

 

ABC-transporters and inhibition of SP phenotype  

We observed that both LEC and HTCEC could be inhibited by verapamil and FTC, and 

that both the ABCG2 and ABCB1 transporters were expressed in primary LEC and 

HTCEC by ICC and PCR. Data on ABCG2 and ABCB1 expression in primary cultures 

of LEC showed co-expressions of both genes at variable levels of expressions. 

However, the ABCG2 gene was more upregulated and ABCB1 gene more down 

regulated in LEC compared to HTCEC. This explains the partial inhibition of SP profile 

by verapamil which blocks ABCB1 but partially blocks ABCG2 efflux activity. This 

effect was more evident in LEC compared to HTCEC line. Incomplete inhibition by 

verapamil is not exclusive to LSP cells, it has also been observed in the SP assays of 

murine skin and muscle (Montanaro et al., 2004).  

 

Cell confluence and hypoxia in SP 

We also show that cell confluence affects SP yields in our results, which is an important 

parameter when a cell line is being used in SP protocols. Lower cell confluence has 

shown a higher SP yields in colonic and breast cancer cell lines (Tavaluc et al., 2007). 

Cell confluence was demonstrated to be more important than the duration of cultures for 

cellular differentiation (Tavaluc et al., 2007).  Reduced cell density would be perceived 

as a stressor which stimulate proliferative and renewal capacity of stem cells which 

directly results in increased expression of ABC transporters and Hoechst dye efflux. In 

the current study we demonstrated harvesting densities between 4,000 to 6,000 

cells/cm
2 

gave increased SP percentages above that of higher densities.  
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Hypoxia was also a factor that gave an increased SP yield in malignant colonic and 

breast cancer stem cells (Tavaluc et al., 2007). Hypoxia is a significant factor towards 

stabilisation of the hypoxia inducible factors (HIF). HIF targets the ABC transporter 

genes, among others; which leads to more efflux of Hoechst dye and increased SP 

percentages. In a malignant condition, this confers the cancer SP cells to be more 

malignant. 

 

We studied HTCEC cultures incubated at O2 level of 1% and 5%, as this closely mimics 

the physiological relevant state of cells, as demonstrated by (Bath, 2013), in a series of 

oxygen levels from 2% to 20%, they found cultures grown at 2% oxygen had higher 

proliferative capacity, higher expression of ABCG2 and p63, higher colony formation 

potential  and lower number of cells in  the S/G2 cell cycle. 

 

In our project, at the two oxygen levels tested, we did not find any significant difference 

in SP percentage. However, there was an increased of SP to 0.4% compared to 0.2% at 

normal atmospheric oxygen of 21%, although this result was inconclusive due to limited 

number of biological repeats. Further investigations on different hypoxia levels i.e. 

0.2%, 0.5%, 1%, 2% and/or 5% needs to be conducted to see the true effects of hypoxia. 

Due to logistic and cost limitations, this has not been performed in the current study. 

 

LSP characterisation 

Studies of ABCG2 expression at mRNA and protein levels have provided convincing 

evidence  that ABCG2 is the main transporter implicated in determining the LSP 

phenotype (Zhuo Chen et al., 2004; Budak et al., 2005; Cintia S. de Paiva et al., 2005a; 

Umemoto et al., 2005). However, in previous studies of human LSP cells, while 

ABCG2 expression has been reported to be upregulated in SP cells versus NSP cells, 

this has been focused on gene expression (Watanabe et al., 2004; Cintia S. de Paiva et 

al., 2005a).  

 

Several studies have used immunohistochemical staining to examine tissue sections to 

show the location of ABCG2 expressing cells in the human eye and have reported that 

ABCG2 positive cells can be found in the limbal epithelial basal layer (Zhuo Chen et 

al., 2004; Watanabe et al., 2004; Cintia S. de Paiva et al., 2005a), however this does not 

prove that they are stem cells.  
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de Paiva and colleagues also selected out ABCG2-positive and ABCG2-negative cells 

using an anti-ABCG2 antibody combined with flow cytometry from their primary 

limbal cell cultures (Cintia S. de Paiva et al., 2005a). They showed that these cells 

expressed ABCG2 and ΔNp63 mRNA whereas the ABCG2-negative cells did not, 

moreover the positive expressing cells had a great colony forming efficiency than the 

negative cells, suggesting that within the ABCG2-positive population there were stem 

cells. Moreover they also selected SP and NSP cells from the primary human limbal cell 

cultures and showed that these SP cells showed upregulated expression of ABCG2 and 

ΔNp63 mRNA and that these SP cells had a greater colony forming efficiency than 

NSP; however they did not look at protein expression for either of these markers.  

 

In our study we not only looked at protein expression for ABCG2, ABCB5, ΔNp63 and 

Sox2 in SP cells and NSP cells from the HTCEC, we also quantitated the level of 

expression, this is important as NSP cells can also express some level of all these 

markers.   

 

We showed that SP cell fraction when stained with ABCG2 antibody also presented 

with significantly higher expression compared to NSP , supporting previous results by 

mRNA expression in both human and animals (Watanabe et al., 2004).  The functional 

role of ABCG2 as a putative marker for  limbal progenitor cells has been explored in a 

study of oxidative stress in ABCG2-knock out mice and immortalized corneal epithelial 

cells (Kubota et al., 2010). Although ABCG2-knock out mice had morphologically 

normal corneal epithelium, the cornea cells were susceptible to oxidative stress and 

prone to cellular damage induced by mitoxantrone in a dose and time dependent 

manner. Further, we also provide evidence of expression of mRNA for another ABC 

transporter ABCB5, in HTCEC which co-localised with ABCG2. The expression of 

ABCB5 in SP fraction was also significantly higher than in NSP. This is the first data 

which relates co-localisation of ABCG2 and ABCB5 in LSP phenotype, which supports 

further the evidence of LSP as an enrich population of LSC. 

 

However, LSP in the HTCEC line showed that the mean fluorescent intensity in the SP 

cell fraction was significantly lower than NSP for the transcription factor p63. p63 is a 

common molecular marker present at the nucleus of basal cells in stratified epithelial 

cells in the skin, oral mucosa, cervix, vaginal epithelium, urothelium, prostate and 
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others (Di Como et al., 2002). p63 marks for cellular proliferation and its expression is 

lost with reduced DNA-content (cell cycle arrest) and decreased cellular proliferation. It 

is also downregulated during terminal differentiation (Westfall et al., 2003).  A study in 

the rat LSP showed that the percentage of p63-+ve expression was low at the start of 

cultures in a day-to-day analysis of LSP cells (Epstein et al., 2005).  We conclude that 

LSP cells from HTCEC are more quiescent, slow cycling in nature and lack cellular 

proliferation, which are defining characteristics of stem cells. 

 

Cell diameter 

We observed the SP cell fraction of HTCEC contained cells with a smaller cell diameter 

compared to NSP cells. This supports previous finding in rabbit LSP which contained a 

high proportion of cells with a smaller  diameter then the NSP cells  (Umemoto et al., 

2006). The same findings were also observed in skeletal muscle SP, where the SP cells 

had a relative small diameter and a high nuclear to cytoplasmic ratio than NSP  (Annette 

P. Meeson et al., 2004). Cell size was a  parameter used to describe stem cell 

populations, including epidermal stem cells (Juxue Li et al., 2008) and epithelial stem 

cells (Tani et al., 2000).  

 

Colony formation 

LSP cells have also been shown to be enriched for stem cell activities such as increased 

colony-forming and high proliferative capacity (Budak et al., 2005; Cintia S. de Paiva et 

al., 2005a; Akinci et al., 2009) than NSP cells. Colony forming efficiency is considered 

a stem cell characteristic in other adult stem cells such as retinal stem cells (Tropepe et 

al., 2000), bone marrow stem cells (Friedenstein et al., 1987), and dental  pulp stem 

cells (Gronthos et al., 2000).  Our SP cells had a higher colony forming potential that 

the NSP cells. 

4.6 Conclusion 

The sensitivity of SP assay to different species and cell types makes standardisation of 

SP protocols mandatory to ensure reliability and reproducibility of SP data. This will 

ultimately result in better interpretation of SP results and enable more accurate 

comparison between data generated in multiple studies. In the past 17 years since 

Goodel, et al demonstrated SP in murine haematopoietic stem cells, accumulating 

evidence has shown this assay to be useful for functional characterization of putative 

stem cells and cancer stem cells, especially in the absence of specific molecular 
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markers. Characterisation of LSP using ABCG2, ABCB5, p63 and stem cell antigen 

Sox2 in HTCEC show that SP cells mark for LSC and HTCEC is a useful and robust 

model for LSC. An enrichment method by SP has a lot of potential for increasing the 

quality of LSC in a cellular-based therapy to treat LSCD or to be used in ocular surface 

regenerative surgery.   
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Chapter 5 IMMUNOBIOLOGICAL CHARACTERISATION OF 

CORNEAL LIMBAL EPITHELIAL CELLS; IMPLICATIONS ON 

LIMBAL STEM CELL TRANSPLANTATION 

5.1 Introduction 

The cornea has a potentially proliferative and self-renewal capacity due to the presence 

of corneal stem cells which are believed to be located at the limbal region (reviews 

(Daniels et al., 2001; Limb and Daniels, 2008)). Replacement of donor cells by the 

host-derived cells is a feature of tissue transplantations, which takes place in the cornea 

1 – 2 years after surgery (Wollensak and Green, 1999). In most cases, all types of donor 

cells; epithelial, stromal keratocytes and endothelial layers, were observed to be taken 

over by the host cells (Hatanaka et al., 2013) .  

 

However, corneal transplantation is contraindicated in the treatment of LSCD an 

important cause of corneal blindness. Failure of grafts in this condition is due to loss of 

host stem cells and inadequate self renewing cells to replenish the surface of the graft 

from the donor. In the case of LSCD, cellular therapy such as ex vivo limbal epithelial  

transplantation has shown impressive advances as a treatment in the past decade or so 

(Graziella Pellegrini et al., 1997; S. C. G. Tseng, 2001; Shortt et al., 2007b; Shortt et 

al., 2008; Rama et al., 2010). In addition, endothelial cell transplantations have also 

shown promising results in animal studies (Okumura et al., 2009; Okumura et al., 2011; 

Koizumi et al., 2012; Okumura et al., 2012). 

 

Tolerance towards allogeneic organ grafts represents one of the major aims of 

transplantation medicine. Stem cells are promising candidates for promoting donor-

specific tolerance  (Imberti et al., 2011). Adult stem cells have immune-suppressive 

mechanisms to protect them from immunological reactions and apoptosis which are 

damaging to the survival of the transplanted tissues (review (Baraniak and McDevitt, 

2009). 

 

5.1.1 MHC Gene Complex 

The human MHC is located on chromosome 6. MHC genes control several antigens 

most of which influence allograft rejection. These genes or antigens are divided into 
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three classes; Class I, II and III. Class I and II are expressed on cells and tissues while 

Class III are associated with serum proteins and body fluids.  

 

The Class I gene complex has three significant major loci antigens; A, B and C, and 

some other less significant undefined loci. Each loci codes for antigenic polypeptide α 

chains which have many alleles (polymorphic) and each are associated with β chains e.g 

β-2-microglobulins. A non-functional α-β-chain causes non-expression of Class I 

antigens on the cell surface and deficiency in cytotoxic CD8 T cells.  

 

The MHC Class II gene complex also contains three major loci; DR, DP and DQ. Each 

of these loci is associated with one α and variable β polypeptide chains, making up the 

Class II antigens. MHC Class II genes feature polymorphism. HLADRB has more than 

700 alleles at population level, HLADRA has three variants. Both chains of HLADP 

and HLADQ are also polymorphic. For HLADP, a few alleles are present in the 

heterodimer DPA1/DPB1.  

 

MHC Class II molecules play an important role in the immune system. They are 

essential in the immune system for defence against infection and are the main player in 

transplantation immunology. MHC Class II present antigens from extracellular sources 

to CD4+ T cells and also mediate thymic selection of helper T cells.  

 

The Human Leucocyte Antigen system (HLA) represents MHC which encodes for 

genes related to immune system and cell surface antigen presenting proteins. MHC class 

II antigen presentation pathways are expressed by professional antigen presenting cells 

(APC) e.g. dendritic cells, macrophages, B-cells, or epithelial LC.  

 

5.1.2  Stem cells as a potential therapeutic strategy to overcome rejection 

Evidence for immunological privilege of corneal stromal stem cells was supported by 

the absence of T cell mediated immune rejection, when  these stem cells were injected 

in mouse corneal stroma (Du et al., 2009). Proliferative capacity of corneal stroma stem 

cells and its immune privilege clearly play an important role in corneal stromal tissue 

engineering (Alaminos et al., 2006; Jian Wu et al., 2012)
,
 (Zajicova et al., 2010).  

 



138 

 

Chapter 5: Immunobiology of LEC 

In a study conducted in adult mice, a small population of LSC effectively inhibited 

lymphocyte proliferation and modulated cytokine production.  LSC were also noted to 

display an enhanced expression of genes for the anti-apoptotic proteins like induced 

myeloid leukaemia cell differentiation protein (Mcl-1), B cell lymphoma-2 (Bcl-2), X-

linked inhibitor of apoptosis protein (XIAP), and survivin. The LSC were  more 

resistant to CTL-mediated or apoptotic cell death compared to other limbal cells which 

are necessary for tissue survival (Holan et al., 2010). These regulatory properties are 

important to safeguard LSC from the damaging effects of inflammatory processes and 

cell toxicity in the anterior chamber of the eye. 

5.1.3  Pro-inflammatory cytokines 

Interferon-gamma (IFN-γ) 

IFN-γ is a Type II interferon secreted by thymus-derived T cells. It is secreted under 

certain activated conditions, by CD4+ T helper cells (Th1 lymphocytes), CD8+ 

cytotoxic lymphocytes, natural killer (NK) cells, B cells, NKT cells and professional 

APCs.  

 

IFN-γ potentially upregulates antigen presentation through Class I and II MHC 

pathways. IFN-γ may induce the pro-apoptotic effect of TNF-α by increasing surface 

expression of TNF-α receptors in human endometrial stromal cells (Fluhr et al., 2007) 

and human foetal astrocytes (Wosik et al., 2001). 

 

Tumour necrosis factor-alpha (TNF-α) 

TNF-α is a cytokine involved in general inflammation and induces acute phase 

reactions. It is chiefly produced by activated macrophages, although other cells like 

CD4+ lymphocytes, endothelial cells, mast cells, fibroblast and NK cells also produce 

it. The main function of TNF-α is to regulate the immune response. It also produces a 

synergistic anti-proliferative effect when combined with IFN-γ on the growth of human 

salivary gland (HSG) cell line (AJ Wu et al., 1994) due to  apoptotic cell death 

(Kamachi et al., 2002) .  This synergistic effect was also observed in the IFN-γ 

mediated epithelial dysfunction in the intestinal epithelial mucosa of patients with 

inflammatory bowel disease (Fish et al., 1999). 
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5.1.4 Chemotaxis  

Chemokines are important molecules for leukocyte migration and immune cell 

trafficking in pathological and physiological conditions. Chemokines mediate their 

effect through G-protein coupled 7-transmembrane chemokine receptors (Trosko et al., 

2000) on the cell surface of specific and well-defined leucocyte subsets (Groves and 

Jiang, 1995).  However, some chemokine receptors are found on non-haematopietic 

cells, including neuron and microglia (Cheung et al., 2011), epithelial (Lin et al., 2013) 

and endothelial cells (Linley et al., 2012).   

 

Chemokines are especially important in endothelial cell functions for proliferation, 

migration and differentiation and wound healing process, whereby CXCR4 has been 

shown to play an important role in vascularisation during angiogenesis (Linley et al., 

2012), migration of neural crest cells to the dorsal root ganglia (A. Pajoohesh-Ganji et 

al., 2005), homing mechanism of renal transplanted cells  (C. S. de Paiva et al., 2005b) 

and adhesion of MSC to target sites (Budak et al., 2005). CXCR4 signalling was also an 

important indication of growth and metastases of germ cell tumours (Gilbert 2009). In 

the cornea, CXCR4 proved to be important in maintaining the physical contact between 

corneal stem cells with the subjacent stromal mesenchymal cells or the “niche cells” for 

the maintenance of LSC (Hua-Tao Xie et al., 2011). 

 

5.2 Specific Aims 

 

The aims in this chapter are: 

1. To present data on HLA typing in HTCEC. 

2. To optimize HLA antibodies concentration by flow cytometry. 

3. To optimize concentration and duration of pro-inflammatory cytokines 

treatment in HTCEC for HLA expression. 

4.  To study HLA expression in unstimulated and stimulated HTCEC with pro-

inflammatory cytokines. 

5. To examine CXCR4 expression in HTCEC and LMSC 

6. To examine cellular migration in HTCEC and LMSC in CXCL12-mediated 

migration. 
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5.3 Materials and methods 

5.3.1 Human Leucocyte Antigen (HLA) typing for HTCEC  

The HTCEC line was HLA typed, the procedure was outsourced to NHS Blood and 

Tissue Bank (Newcastle), courtesy of Dr Vaughan Carter.  

 

5.3.2 Optimisation of HLA antibodies and treatment with pro-inflammatory 

cytokines  

Anti-human HLA antibodies to Class I (A,B,C) and Class II HLA-DR were optimized 

for concentrations using HTCEC stimulated with IFN-γ. Anti-human HLA-DP and 

HLA-DQ antibodies were optimized using peripheral blood leukocytes (PBL) because 

of very low expression of these antibodies in HTCEC at initial optimisation methods. 

The concentrations used for the antibodies were 0.05, 0.25, 0.5 and 1.0μg/ml.    

 

Briefly, 100,000 HTCEC were plated in T25 cm
2 
tissue culture flasks and incubated in 

5% CO2. On day 2 of culture, at approximately 20-30% confluence, the cells were 

treated with either interferon-γ (IFN-γ) or tumour necrosis factor-α (TNF-α) or with a 

combination of both. For optimization of dose and time of stimulation with the 

cytokines, each treatment lasted for 1 day, 3 days or 5 days. The concentrations used 

were 0.25ng/ml, 0.5ng/ml and 10ng/ml for IFN-γ, and 5ng/ml, 10ng/ml and 20ng/ml for 

TNF-α. At cut-off points, cells were detached from tissue culture flasks and 

resuspended in flow cytometry buffer solution (0.1% (w/v)/FBS/PBS, ready to run 

through flow cytometry (Figure 5.1).  
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Figure 5.1 Results of HLA antibody titrations. (A) Percentage of stained positive-cells 

for Class I (HLA-A,B,C) and Class II HLA-DR antibodies using IFN-γ stimulated 

HTCEC cells. (B) Anti-HLA-DQ and (C) HLA-DQ antibody titration using 

unstimulated peripheral blood leucocytes.  
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In the case of peripheral blood leukocytes, titrations for anti- HLA-DQ antibodies were 

performed at 0.05, 0.25, 0.5 and 1.0μg/ml and for HLA-DP, the concentrations used 

were 0.25 and 0.5μg/ml. CD45+ve and secondary IgG only populations were used as 

negative controls to isolate only the signals from HLA-DP antibody (Figure 5.2).  

 

Figure 5.2 Histograms showing detection of anti human HLA-DP antibody in 

(unstimulated) peripheral blood leucocytes. (A) CD45+ve antibody expression (red) is 

distinguished from  unstained (control) population (green) (B) Anti-HLA-DP antibody 

expression (red) as a distinct population from CD45+ve cells (green) (C) CD-45+ve 

population only.  

 

Finally, the individual concentration of IFN-γ and TNF-α which gave the highest 

expression of HLA antibodies, was used in the combined stimulation experiment and 

subsequent repeats. This concentration was 10ng/ml, for the duration of 3 days. Direct 

and indirect immunofluorescence was performed using FACS Canto [BD Sciences] and 

analysed with FACS Diva software [BD Sciences] to obtain median fluorescence index 

(MFI). Experiments were performed using two biological replicates to get average MFI 

values. 

 

5.3.3 Flow cytometry  

For screening of purified antibody on HTCEC, cells were detached using cell 

dissociation buffer and trypsin/EDTA, centrifuged and resuspended in 100µl 

2%FBS/PBS. 200,000 cells were added into each tube and stained with primary 

monoclonal antibody conjugated to Allophycocyanin [R&D system] at 10µl, 20µl and 

30µl for antibody optimisation.  
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For HLA expression, HTCEC were incubated with anti-HLA Class I-A,B,C 

[BioLegend], HLADR [BioLegend] or HLADQ [Biolegend] monoclonal antibodies in 

100 µl 2%FBS/PBS. After 1 hour incubation at 4ºC, cells were washed twice with 2% 

FBS/PBS and resuspended into 200µl of FBS/PBS before running through FACS Canto 

II [BD Biosciences] and analysed using a FACS Diva software [BD Biosciences]. 

 

For indirect immunofluorescence, cells were stained with primary antibody and 

incubated for 30 minutes at 4C. After incubation, cells were washed twice with 2% 

FBS/PBS and stained with secondary antibody for 20 minutes at 4
0
C. After incubation, 

cells were washed twice with 2% FBS/PBS and resuspended into 200µl of FBS/PBS 

before run through FACS Canto II [BD Biosciences] and analysed using FACS Diva 

software [BD Biosciences]. A list of antibodies used in flow cytometry is listed in Table 

5.1. 

Table 5.1 HLA antibodies used in flow cytometry. 

Antibodies 
 

Optimum dilution Manufacturer 

PRIMARY  
Mouse monoclonal FITC anti-
human HLA-DR (Clone L243) 

 
1:20 Biolegend 

Mouse monoclonal FITC anti-
human HLA-A,B,C (Clone W 6/32) 

1:20 
Biolegend 

Mouse FITC anti-human HLA-DQ 
(Clone HLADQ1) 

1:20 
Biolegend 

Mouse monoclonal Anti-human 
HLA-DP (Clone HI43) 

1:20 
Abd Serotec 

Mouse monoclonal 
Allophycocyanin anti-Human 
CXCR4- (Clone 12G5) 

 
1:20 R & D Systems 

 

SECONDARY 

Goat anti-mouse FITC-conjugated 

IgG 

 

 

1:25 

 

 

Jackson Immuno 

Research Lab 
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5.3.4 Chemotaxis assay: Transwell Migration Analysis 

For the purpose of optimization for CXCL12 concentration and duration of treatment, 

100,000 cells were suspended in 300µl of media and added to the upper chamber of a 5 

um pore diameter 24-well plate transwell filter. The lower chamber was filled with 200 

µl media without cells but supplemented with CXCL12 at 0ng/ml (internal control), 

200ng/ml and 300ng/ml. Treatment was repeated for 3, 5 and 7 hours in 5% CO2 at 

37C (Figure 5.3).  

 

At the end of incubation, the lower chamber was removed. The inner part of the insert 

was swabbed with a cotton bud to remove non-migrant cells. Following that, the filters 

were washed in tap water and stained in haematoxylin for 1 minute, then washed by 

submerging in Scott’s water to help develop the colour. The migrant cells were captured 

in 5 randomly selected fields under 20X magnification and cells were counted using a 

light microscope [Nikon Digital Sight–DSFi1]. The optimum concentration of CXCL12 

used was 300ng/ ml for 5 hours incubation.  

 

5.3.5 Side Population assay 

Following our optimised side population protocol, cells were counted manually using an 

improved Neubauer haemocytometer [Reichert], 1.0 x 10
6
 cells/ ml were resuspended in 

Hank’s media and placed into micro centrifuge tubes [Fisher] to be stained with either 

Hoechst 33342 dye alone or with Hoechst dye in the presence of ABC-transporter 

inhibitors. Prior to addition of Hoechst the cells were incubated in the presence of 

inhibitor for 30 minutes in a 5% CO2 incubator at 37°C in a MACs Mix rotator 

[Miltenyi Biotec]. After this, Hoechst dye was then added to both tubes. All reactions 

were terminated by placing the contents of the tubes in a 15 ml centrifuge tube [Fisher] 

containing 10 ml ice cold Hank’s medium/2% FBS. The centrifuge tubes were then 

centrifuged at 2,500 rpm for 5 minutes and the cells resuspended with 500µl Hank’s 

medium and passed through a 70µm pore size cell strainer [BD Falcon] and stored on 

ice prior to FACS analysis. 
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Figure 5.3 Representative images of transwell migration test for chemotaxis assay. Cells 

were treated with 200 and 300ng/ml for 3, 5 and 7 hours or in DKSFM as negative 

control (0ng/ml CXCL12). Migrant cells (arrows) were examined under at least 5 high 

power fields, photographed and analysed.  

 

5.3.6 ICC of LSP and NSP cells 

Post sorting, 100 HTCEC from each SP and NSP fractions were directly concentrated 

onto glass slides. Slides were fixed with cold methanol [BDH Laboratory Supplies] by 

incubation at -20°C for 20 minutes and then washed with PBS. Cells were 

permeabilised in 0.3% (v/v) Triton X-100 [Fisher Scientific] in PBS for 10 minutes and 

then washed again with PBS. Non-specific binding sites were blocked with 5% normal 

goat serum in PBS for 30 minutes in a humid chamber in the dark. Cells were then 
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incubated with primary goat anti-mouse monoclonal antibody to ABCB5 (1:100 

dilution) [Abcam], CXCR4 (1:100 dilution) [R&D Systems], p63 (1:50 dilution) [Santa 

Cruz biotechnology] and goat anti-rabbit polyclonal antibodies to ABCG2 (1:100 

dilution) [Novus Biologicals] in 0.05% FBS/PBS overnight at 4°C. Cells were then 

washed 3x5 minutes PBS and incubated with appropriate secondary antibody, either 

goat anti-mouse antibodies conjugated with FITC or anti-rabbit secondary antibodies 

conjugated to rhodamine [Jackson Immunology Research Laboratory] at a dilution of  

1:25 for 30 minutes in a humid chamber in the dark, then washed with PBS three times, 

5 minutes and mounted in vectashield anti-fading media containing  DAPI [Vector 

Laboratories], cover slipped and examined using an Axioplan F microscope [Carl 

Zeiss]. Negative controls were cells incubated without addition of primary antibody, but 

with secondary antibody only. Antibodies used in ICC are listed in Table 5.2. 

Table 5.2 List of antibodies used in immunocytochemistry. 

Antibody 
Cellular localisation 

of antigen 
 

Dilution Manufacturer 

PRIMARY 
  

 

Mouse monoclonal anti-human ABCB5 
(clone 5H3C6) 
 

 
Transmembrane 

 
1:100 Abcam 

Mouse monoclonal anti-human CXCR4 
(clone 44716.111) 

 
Cell surface  

 
1:100 R & D Systems 

SECONDARY 
  

 

FITC-conjugated secondary goat 
anti-mouse immunoglobulins 

 
 
Intracellular 

 
 
1:25 

 
Jackson 
Immunology 
Research 
Laboratories 
 

 

5.3.7 Imaging methods and quantification software 

For the purpose of examining cells in cultures, plates, and flasks, Axiovert 200M 

[Zeiss] microscope which allows the performance of transmitted light bright field, phase 

contrast and epi-fluorescence technique were utilised. Images were then processed using 

the AxioVision40 version 4.8.2.0 software [Zeiss]. Nikon Digital Sight–DSFi1 camera 
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and Nikon NIS-Elements D software [Nikon Metrology] for bright field and phase 

contrast were also used. Fluorescence microscopy was undertaken using Axiovert 200M 

[Zeiss] for cells in wells and by Axioplan F [Zeiss] for immunocytological slides. 

 

5.3.8 Image quantification 

All images were taken using a Nikon Digital Sight–DSFi1 camera and processed with 

Nikon NIS-Elements D software [Nikon Metrology U.K. Ltd., Derby, UK]. Images 

were assembled using Adobe Photoshop® CS3 [Adobe Systems. Cell count or cell 

signal intensities were performed using Image J [Image J version 1.44].   

 

5.3.9 Statistical Analysis 

IBM SPSS statistics processor (Version 19) was used for descriptive and statistical 

analysis. A normal distribution assumes a “bell-shaped” symmetrical data. Quantitative 

data which were normally distributed were analysed using parametric statistical tests 

and the equivalent non-parametric tests were used for data which were skewed or 

outside the normality curve. For 2 groups of independent data, independent t-test or 

Mann-Whitney U test was used to compare the means between the groups. Results with 

p values of less than 5% (P < 0.05) were considered statistically significant.  Data 

requiring comparison between more than two groups were analysed by one way 

ANOVA. 

 

5.4 Results 

5.4.1 Human Leucocyte Antigen (HLA)-typing and HLA expression in HTCEC  

HLA-typing for HTCEC demonstrated expression of both Class I-A,B,C and Class II 

(HLA-DR and HLA-DQ) antigens:   

MHC Class I: A*02, A*26, B*38, B*56, BC*01, C*12.  

MHC Class II: DR B1*01, DR B1*13, DQ B1*05, DQ B*06  

 

We further examined HLA expressions in HTCEC when stimulated with IFN-γ and 

TNF-α using flow cytometry. HTCEC expressed HLA Class I and II and are 

upregulated, especially in response to IFN-γ stimulation. We examined HTCEC for 

HLA expression in unstimulated  and stimulated by interferon (IFN)-γ, tumour necrosis 

factor (TNF)-α and combination of both at 10 ng/ml for 3 days (pre-optimised).  
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In unstimulated condition, there was constitutive expression of HLA Class I-A,B,C but 

very low/no expression of Class II antigens compared to unstained (control) population, 

N=3 (Figure 5.4). Statistics for Median Fluorescence Index (MFI) for expression of 

HLA in unstimulated HTCEC is presented in Table 5.3.  

 

Figure  5.4 FACS analysis of HLA expression in HTCEC of unstimulated cell 

populations (A) Histograms showing unstained population (control) and cell 

populations stained with HLA Class I-A,B,C and Class II antibodies. (B) Median 

Fluorescence Index of HLA expression for control and stained populations without 

cytokines stimulation (N=3). Mean MFI for Class I was significantly different to control 

but not for other Class II molecules (One-way ANOVA- Fisher’s LSD test).  



149 

 

Chapter 5: Immunobiology of LEC 

Table 5.3 Statistics for HLA expressions in unstimulated HTCEC. 

 N Mean MFI SD *P value 

Control 3 890.67 211.86  

Class I-A,B,C 3 2171.33 938.68 0.003 

HLA-DR 3 1039.0 57.19 0.668 

HLA-DP 3 1164.67 238.70 0.433 

HLA-DQ 3 997.33 145.55 0.758 

IgG 3 922.0 138.17 0.928 

*One way ANOVA (Fisher’s Least Significant Difference test) 

HLA expression in HTCEC after cytokine stimulation is presented in Figure 5.5 and 

Figure 5.6. After stimulation with IFN-γ 10 ng/ml for 3 days, HTCEC expressed high 

levels of Class I and Class II antibodies compared to unstimulated control samples. The 

highest expression was observed for HLA-Class I and HLA-DR, followed by lower 

expression of HLA-DP and very low expression of HLA-DQ. MFI values were 34,560 

(Class I-A,B,C), 162,000 (HLA-DR), 46,187 (HLA-DP), 17,250 (HLA-DQ) and 1,135 

(Ig G – internal control).  

 

The treatment with TNF-α at the same concentration and duration showed low 

expressions for all HLA antibodies, except for a slight rise in Class I expression 

compared to control, followed by HLA-DR. MFI values were 5,906 (Class I-A,B,C), 

1,129 (HLA-DR), 1,292 (HLA-DP), 1,217 (HLA-DQ) and 1,175 (Ig G). When treated 

with combination of IFN-γ  and TNF-α at the same concentration and duration, HLA 

expression for all antibodies were higher than that observed when treated with TNF-α 

alone, especially in HLA-DR (MFI 9,329) although this did not surpass the levels 

observed in INF-γ treatment (Figure 5.5).  MFI values for HLA Class I (1,450), HLA-

DR (9,329), HLA-DP (3,464), HLA-DQ (3,043) and IgG (1,378).  
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Figure 5.5 Representative FACS histograms out of 3 replicates showing HLA 

expression of Class I and Class II antigens in HTCEC under stimulation of Interferon-γ, 

tumour necrosis-α and combined stimulation of both. Cells were stained with FITC-

conjugated Class I, HLA-DR, HLA-DQ antibodies and HLA-DP. Negative control for 

HLA-DP was secondary IgG only [Light grey – unstimulated cells, red – stimulated 

cells, yellow – IgG only stimulated cells].  

 

 

Figure 5.6 Median Fluorescence Index of HLA Class I-A,B,C and Class II expression in 

HTCEC for control (unstimulated) and stimulated populations in response to cytokines 

treatment at 10ng/ml for 3 days (N=3). Treatment by (A) Interferon-γ alone (B) Tumour 

necrosis-α alone (C) Combined treatment. Results are from two biological replicates.  
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5.4.2   Expression of CXCR4 in HTCEC and LMSC 

CXCR4 expression in HTCEC and LMSC using ICC were examined. HTCEC and 

LMSC expressed anti human CXCR-4 antibody which was localised at the cell surface 

(Figure 5.7). Bone-marrow derived-MSC and breast cancer cell line MDA-MB-231 

were used as positive controls.  Staining with secondary IgG only was used as negative 

control and did not show any staining.  

 

 



152 

 

Chapter 5: Immunobiology of LEC 

 
 

Figure 5.7 Results of immunocytochemical analysis for expression of CXCR4 in 

unsorted HTCEC and LMSC. Bone marrow-MSC and MDAMB 231 were used as 

positive control, N=3. Note presence of cells expressing CXCR4 (arrows) in panel A, 

negative control (secondary IgG) on panel B. IgG-only negative control shows no 

staining (DAPI=blue, CXCR4 FITC-conjugated anti-mouse secondary antibody= 

green).  
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Flow cytometry to look for CXCR4 expression in HTCEC and LMSC using unstained 

cells as negative controls were performed. FACS histogram showed right shift from the 

unstained (control) population (Figure 5.8).  Median fluorescence index (MFI) which is 

the median or the mid-point of the generalised population of events; for anti-human 

CXCR4 antibody titration in HTCEC was also performed for objective quantification 

and showed increased MFI from 258 (no antibody) to 651, for three CXCR4 antibody 

concentrations used for HTCEC staining LMSC gave higher expression with MFI 

values increased from 600 (no antibody) to 1652 (Figure 5.9).   

 

 

Figure 5.8 FACS histograms for anti-human CXCR4 antibody expression at  10, 20 and 

30μl of antibody in  unsorted HTCEC and LMSC. [Light grey -unstained cells (negative 

control), dark grey – stained cells].  

 

 

Figure 5.9 Median fluorescence index for expression of anti-hCXCR4 at three antibody 

concentrations in HTCEC and LMSC.  
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5.4.3   mRNA expression of CXCL12 in HTCEC and LEC 

Real time quantitative PCR was performed to examine CXCL12 expression in HTCEC 

and LEC. Breast cancer cell lines MDAMB-231 and MCF-7 were used as positive 

controls. Delta CT values were calculated normalised to GAPDH. Delta Delta CT 

values were calculated using MCF-7 as a calibrator (reference) sample (Table 5.4).  

 

Table 5.4 mRNA expression of CXCL12 in HTCEC and LEC 

 Mean Δ CT Δ CT SE ΔΔ CT Fold change 

HTCEC Undetermined Undetermined   

LEC 16.5 0.27 11.9 0.00026 

MDAMB-231 18.7 0.11 14.1 0.000056 
MCF-7 4.6 0.07   

 

mRNA expression of CXCL12 was not detected in the triplicate samples of HTCEC. A 

low level of CXCL12 RNA expression was detected in LEC and MDAMB-231 

compared to MCF-7.   

 

5.4.4 Chemotaxis in HTCEC and LMSC  

In order to examine CXCL12-mediated cellular migration in HTCEC and LMSC, 

chemotaxis experiments were performed. As a control (background migration) the 

equivalent number of cells as used for the experimental samples but without addition of 

CXCL12 in the media was used. There was a minimal/negligible number of migrant 

cells in the control samples. Following stimulation with 300ng/ml CXCL12 for 5 hours 

(pre-optimised), HTCEC and LMSC were found to be migratory in response to 

CXCL12 (Figure 5.10).  
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Figure 5.10 Transwell chemotaxis assay. Brightfield images showing cells incubated for 

5 hours with 0 ng/ml (negative control or background migration) and presence of 

migrant cells in transwells with 300 ng/ml CXCL12, 5 hours stimulation in LMSC, 

HTCEC and  breast cancer cell line MDA-MB-231, N=3.  

 

The difference in the means of migrant cells/high power fields in comparison to 

background migration (negative control) were statistically significant for HTCEC 

(P=0.009), LMSC (P=0.01) and MDAMB231 (P=0.01) (Figure 5.11).    
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Figure 5.11 Mean number of migrant cells/high power fields from three biological 

replicates for CXCL12-mediated migration of LMSC, HTCEC and MDAMB231 in 

comparison to background migration (control). Treatment with CXCL12 ligand was at 

300ng/ml for 5 hours. [* Difference in mean values between control and CXCL12 

treated groups (Mann Whitney test)]  

 

 

5.4.5 Expression of CXCR4 in SP-sorted HTCEC  

To examine the expression of CXCR4 in SP and NSP, HTCEC was sorted into SP and 

NSP fractions and stained with anti- human CXCR4 antibody (Figure 5.12).  

 

 

 

Figure 5.12 Results for CXCR4 expression (arrow heads) in SP cells and  NSP of 

HTCEC [DAPI=blue, CXCR4 FITC-= green].  
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Following that, fluorescence signal intensities (arbitrary units) were measured in both 

populations using Image J software. There was a statistically significant difference in 

means for fluorescence signal intensity in SP= 18.0, NSP=9.0, P=0.001 (Table 5.5).   

 

Table 5.5 Statistics for CXCR4 expression in SP and NSP-sorted cells 

Group N Mean 
Std. 

Deviation P values 
SP 46 18.1650 7.21965 0.001* 

NSP 39 8.9036 3.48029  

*Independent t-test 

 

 

 

5.5 Discussion 

Firstly, HLA typing of HTCEC was performed to study the potential of HTCEC line for 

LSC transplantation and to investigate further the immunological response in HTCEC. 

As detailed in the Results section, this cell line expressed HLA class I – A,B,C and 

HLA Class II molecules –DR and DQ. HLA-DP was not expressed in this cell line.  

 

HLA Class I-A,B,C could be detected in the unstimulated HTCEC population, however, 

Class II antigens HLA-DR, HLA-DP and HLA-DQ expression was low/minimal 

compared to control. This finding was similar to previous reports describing Class I 

expression in unstimulated human corneal epithelial cultures where only Class I 

antigens were detected (Whitsett and Stulting, 1984; el-Asrar et al., 1989; Iwata et al., 

1994).   

 

HLA Class II expression in HTCEC was inducible using pro-inflammatory cytokines 

stimulation in a dose and time-dependent manner. Interferon (IFN)-γ in particular, 

upregulated HLA Class I-A,B,C and Class II-HLA-DR, HLA-DP and HLA-DQ 

expression with the highest expression being HLA-DR and HLA-Class I, followed by 

HLA-DP and a lesser expression of HLA-DQ.  
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In human cornea, HLA Class I antigens were readily detected in the epithelium and 

keratocytes but not HLA Class II antigens.  On the other hand, HLA-DR antigen has 

been detected in dendritic cells at the limbus (Whitsett and Stulting, 1984). Induction of 

HLA-DR expression by IFN-γ stimulation in human corneal epithelial and endothelial 

cultures has been demonstrated previously (el-Asrar et al., 1989) (Iwata et al., 

1992)
,
(Iwata et al., 1994). Induction of HLA-DR antigen expression by IFN-γ 

stimulation is not exclusive to the cornea and has been observed in other unstimulated 

cell populations such as thyroid epithelium and melanoma cells (Tsujisaki et al., 1987; 

Yang et al., 1999; Fernández et al., 2008; Yu et al., 2013), liver cells, endothelial cells 

and human fibroblasts (Maurer et al., 1987; Espana et al., 2004; Harkin et al., 2004a). 

 

Importantly, IFN-γ also induced HLA-DP antibody expression in this HLA-DP- 

negative cell line. There is limited literature on induction of HLA-DP in non-marrow 

derived cells or HLA-DP-negative population. However, experimental induction of 

Class II antigens by IFN-γ stimulation in human endothelial cells and dermal fibroblasts 

showed  comparable expression of HLA-DR in all endothelial cells and dermal 

fibroblasts followed by a smaller increase in HLA-DP and a negligible level of HLA-

DQ expression (Maurer et al., 1987; Espana et al., 2004).  In contrast, our study showed 

HTCEC expressed HLA-DQ after IFN-γ stimulation.  

 

When both IFN-γ and TNF-α were combined, expression of all HLA were very much 

lower than of IFN-γ alone. The inhibitory effect on IFN-γ induced uregulation of HLA-

DR expression has been demonstrated in cultured human gingival fibroblasts (Keiso 

Takahashi et al., 1994). Here the investigators had proposed the endogenous secretion 

of prostaglandin E2 to have immunosuppressive effect on HLA-DR expression. 

Alternatively, the suppressive effect when both cytokines were combined  together has 

previously been attributed to the pro-apoptotic effect of TNF-α  through the Fas 

signalling pathway in human endometrial stromal cells (Fluhr et al., 2007), human 

salivary gland cell line (AJ Wu et al., 1994) and human foetal astrocytes (Wosik et al., 

2001).  

 

Our results show that HTCEC closely mimics the immunogenicity of human corneal 

epithelium as demonstrated by Iwata et al, 1992 where HLA Class II (-DR and –DP) 

expression was inducible by IFN-γ treatment, and a very low but concomitant HLA-DQ 

expression was related to cellular differentiation. HLA-DP antigen is not naturally 
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occurring in this cell line but was shown to be inducible under IFN-γ stimulation. IFN-γ 

stimulated HTCEC expressed HLA-DP and HLA-DQ in monolayer cell cultures 

making it a unique and excellent model for inflammatory eye conditions, auto-immune 

diseases or transplantation.   

 

IFN-γ induces expression of HLA class II antigens through the activation of Janus 

kinase (JAK)/signal transducers and activator of transcription (STAT) of the 

JAK/STAT pathway (Watling et al., 2008). Janus kinase is a non-receptor intracellular 

tyrosine kinase that transduces the cytokine-mediated pathway (Figure 5.13). After the 

cytokine binds to the receptor, JAK phosphorylates and activates downstream proteins 

involved in the signal transduction pathway.  

 

The JAK autophosphorylation induces an internal conformational change which attracts 

the phosphorylated STAT proteins to bind to each other forming dimer pairs. The dimer 

moves into the nucleus, binds to the DNA, and causes transcription of genes.  Kamper 

et al 2012 have also shown involvement of B-associated transcript-3 (BAT3) in the 

expression of  HLA Class II whereby they observed strongly elevated levels of BAT3 

transcription in various tumour cell lines and macrophages following IFN-γ treatment 

(Kämper et al., 2012). Expression of Class II antigens was also linked with the 

expression of a Class II transactivator detected within hours of IFN-γ treatment of 

endothelial cells (Fritchley et al., 2000).  

 

 

 

Figure 5.13 The key elements in the JAK/STAT pathway. The JAK-STAT system 

consists of three main components: (1) a receptor (green), which penetrates the cell 

membrane (2) Janus kinase (JAK) (yellow), which is bound to the receptor and (3) 

Signal Transducer and Activator of Transcription (STAT) (blue), which carries the 

signal into the nucleus and DNA. Red dots -phosphates. (Image from Peter Znamenkiy - 

All right released, donated to public domain. Downloaded on 08.01.2015).  
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In the cornea, LC, which are  professional antigen presenting cells (APC) reside in the 

limbal region, but migrate to the cornea in inflamed conditions (Jerry Y Niederkorn, 

1995). LC trigger HLA class II antigen presentation pathways by sensitising the host’s 

alloreactive T cells to recognise foreign antigens on the grafts. Indeed this is an 

important mechanism to explain activation of T lymphocytes in inflammatory eye 

disease such as herpetic keratitis (Yang et al., 1998) and corneal allograft rejection 

(Khaireddin et al., 2003; Joseph et al., 2004). 

 

However, there are evidences that LC are also present in the central cornea (Hamrah et 

al., 2002; Hamrah et al., 2003) and these dendritic cells are capable to express Class II 

antigens after surgery and drain into the regional lymph nodes of the allografted hosts. 

 

The role of corneal epithelial cells to function as APC and produce T-cell response 

needs further investigation. It would also be useful to study whether Class II-bearing 

corneal epithelial cells associate with other signalling factors like intercellular adhesion 

molecules (ICAM) to interact with APC. The role of ICAM-1 and its ligand leukocyte 

function –associated antigen-1 (LFA-1) has been implicated in inflammation, 

immunologic response and wound repair. For example, upregulation of  ICAM in 

activated cornea fibroblasts caused adhesion of eosinophils and subsequent fibroblast 

damage in severe allergic corneal ulcers  (Okada et al., 2005). 

 

Chemokine CXCL12 ligand secretion in LMSC has been published previously (Polisetti 

et al., 2010) and in corneal fibroblast (Wilson et al., 2014). However, our results 

showed that mRNA expression of CXCL12 in the HTCEC cell line was not detected by 

q-RT-PCR, and the fold change expression in LEC was low compared to the breast 

cancer cell line MCF-7. CXCL12-mediated cellular migration in HTCEC could 

probably not be directed due to the unsupported expression of CXCL12 in this cell line, 

as opposed to LMSC. This finding alludes to the role of other potential factors being in 

play to direct cellular migration for corneal repair.  

 

MSC are non-haemopoietic stem cells which have regenerative ability and can 

differentiate into cell lineages of mesenchymal origin i.e. adipocytes, chondrocytes and 

osteocytes. In our project we have successfully isolated and expanded LMSC which 

fulfil the minimum criteria defining them as human MSC. Bone-marrow-derived MSC 

has shown excellent anti-inflammatory and wound healing properties when introduced 
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to corneal injury models in animal studies (Ma et al., 2006; Augello et al., 2007; Omoto 

et al., 2009; Jiang et al., 2010; Hsu et al., 2012; Jia et al., 2012). Bone-marrow-derived 

MSC has been investigated in the repair of corneal damage (Ma et al., 2006), and the 

proposed mechanism is suppression of   new vessel formation and inflammation post-

transplantation. The role of human LMSC for transplantation and ocular regeneration is 

an avenue to be further explored. 

 

Previously we described HTCEC cell line contains side population (SP) cells which 

proved to be enriched for expression of LSC markers ABCG2, p63 and the stem cell 

antigen Sox2 using an optimised human LSP protocol (Shaharuddin et al., 2013c).  SP 

phenotyping can lead to further functional characterization of putative stem cells as 

demonstrated in both humans and animals. Studies have shown that LSP cells had 

features consistent with stem cells (Budak et al., 2005; Cintia S. de Paiva et al., 2005a; 

Umemoto et al., 2005; Umemoto et al., 2006; Selver et al., 2011). In addition, here we 

demonstrated evidence that SP-sorted HTCEC showed higher expression of CXCR4 

compared to the NSP fraction.  

 

Corneal wound healing can be alluded to involve new vascular formation and cellular 

migration. This is possibly regulated by pro-inflammatory cytokines via the CXCR4 - 

CXCL12 axis; similar to that observed to occur in bone marrow-MSC migration for 

bone regeneration (Feng et al., 2014)  and MSC migration to sites of injury in cord 

blood (Deshpande et al., 2013). Additionally, Polisetti et al has demonstrated vascular 

endothelial growth factor (VEGF) was also found in abundance in LMSC (Polisetti et 

al., 2010).  

5.6 Conclusion 

To our knowledge, this is the first study to provide data on HTCEC HLA-typing which 

is an important step to study immunogenicity in this cell line. HTCEC expressed HLA 

expression when stimulated with pro-inflammatory cytokines which suggests that 

HTCEC is a suitable candidate to be an in vitro and in vivo model to study corneal 

inflammation, auto immune diseases and allograft corneal transplantation. Both HTCEC 

and the limbal sourced-LMSC exhibited cellular migration in response to CXCL12 

ligand stimulation which is an important property for angiogenesis and cellular 

regeneration. SP-sorted HTCEC also contained a significant number of CXCR4-

positive cells which may also be useful for studying stem cell migration. 
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Chapter 6 GENERAL DISCUSSION

6.1 Summary of aims  

 

At the beginning of this study, these specific aims were outlined; 

 To characterise LEC and HTCEC by LSC markers and stem cell antigens 

 To isolate human LMSC  

 To study growth and proliferation of LMSC on AM and characterise LMSC 

using limbal markers and stem cell antigens. 

 To isolate and identify LSP phenotypes in both primary LEC and HTCEC 

 To characterise LSP cells using LSC markers and stem cell antigens 

 To study the constitutive HLA expression in HTCEC both unstimulated and 

stimulated by pro-inflammatory cytokines 

 To examine CXCR4 expression in primary HTCEC and LMSC in both SP and 

NSP cells of HTCEC  

 To study chemotactic potential of HTCEC and LMSC in CXCL12-mediated 

cellular migration 

 

6.2 Summary of outcomes 

 

1). HTCEC was comparable to primary LEC in the expressions of common molecular 

markers for LSC and stem cell antigens.  

The challenges in LSC biology and its applications revolve around the identification, 

isolation and expansion of the stem cell phenotype. Characterisation of LSC is made 

more difficult with absence of specific LSC markers.  

2). MSC isolated from the limbus “LMSC” fulfils the minimum requirement defining 

them as human MSC, and they characterised for LSC markers.  

This study demonstrates a simple way of isolating LMSC from primary corneal tissues 

by serial trypsinisation alone. The cells grew in MSC-growth promotion media in 5% 

O2, 5% CO2 incubator at 37°C. LMSC have the characteristics of human MSC being 

plastic adherent and were positive for expressions of cell surface antigens CD44, CD90, 

CD105, CD146 and CD166. They also had low/no expression for the haematopoetic 
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commitment markers CD19 and CD45.  LMSC have the tri-lineage commitment to be 

osteogenic, adipogenic and chondrogenic.  

 

3). LMSC on AM tissue construct showed expression of important limbal markers, in 

addition to rapid growth without the use of feeder layers.  

The advantages of these culture conditions include shorter duration of cell cultures (5-7 

days) compared to 10-14 days for using outgrowths of limbal explants or using cell 

suspension from primary tissues. LMSC characterised for p63, ABCG2 and ABCB5. 

 

4). HTCEC has shown a side population which proved to be enriched for LSC.  

 The fact that ABC transporters are located transmembranously allows a prospective 

strategy for LSC enrichment using SP protocols. The sensitivity of SP assay to different 

species and cell types makes standardisation of SP protocols mandatory to ensure 

reliability and reproducibility of SP data. This will ultimately result in better 

interpretation of SP results and enable more accurate comparison between data 

generated in multiple studies.  

 

5). LSP cells were characterised by common limbal markers, stem cell antigen Sox2 and 

also ABCB5. 

 Here we provide the first data on ABCB5 characterisation in LSP cells which support 

the importance of this marker as an LSC marker.  

 

6). HTCEC was HLA-typed, and they constitutively expressed HLA Class I antigens. 

 

7). HLA Class II expressions were inducible and upregulated in HTCEC after 

stimulation with pro-inflammatory cytokines. 

Expression of HLA Class II molecules in HTCEC had similar trends as observed 

previously in primary human corneal cultures.   

 

8). HLA-DP expression was inducible and upregulated in HTCEC 

From the results of HLA typing, it was noted that this cell line does not possess allelles 

for HLA-DP, but the expression was inducible after stimulation with IFN-γ. Due to the 

limited published data on induced HLA-DP expression, this provides new insight to 

Class II antigen-specific immunological response in the cornea and also other systems. 
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9). CXCR4 was expressed in HTCEC and LMSC and both these cell types were 

migratory in response to CXCL12 ligand stimulation.  

 

10). The high expression of CXCR4 in SP cells is useful to study CXCL12-mediated 

cellular migration of LSC for re-epithelisation during cornea injury. 

As an example, CXCR4 and its specific ligand CXCL12 has been implicated in the 

“homing mechanism” to sites of injury in the renal system. This is an important 

mechanism for LSC to migrate to the site of corneal injury for repair and reconstruction. 

 

The main outcomes of this thesis are graphically represented in Figure 6.1. 
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Figure 6.1 Graphical presentation of important outcomes. Limbus is hypothesised to be 

the location of LSC (i) LEC and HTCEC contain SP cells that characterised for LSC 

markers and stem cell antigens  (ii) LMSC are multipotent stem cells sourced at the 

corneal limbus which characterised for LSC markers(iii) HLA molecules are also 

abundant at the limbus and the Class II expression is inducible following IFN-γ 

stimulation (iv) LMSC express LSC markers (v) LMSC and HTCEC express CXCR4  

and migrate in response to CXCL12.  
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6.3 Implications of the project and recommendations for future work 

 

A major requirement for successful LSC transplantation is viable isolation of these cells 

by identification of its molecular markers. It has been shown that there are no specific 

markers which mark LSC. Thus a panel of positive and negative molecular markers 

would be necessary for isolation of LSC.  

An alternative approach to the reliance on absent/presence of surface markers would be 

the utilization of a stem cell enrichment strategy for LSC such as SP discrimination 

assay. This would also allow for the isolation of more stem cells for transplantation. The 

use of SP assay with an immortalized corneal cell line that contains LSC would be 

useful in addressing questions about LSC biology.  

The LSP discrimination assay could be used as an enrichment or purification method to 

further characterise and/or enrich for LSC. Studies have shown that LSP cells were 

enriched for stem cell activity had an increased colony forming and proliferative 

capacity (Budak et al., 2005; Cintia S. de Paiva et al., 2005a; Akinci et al., 2009). In 

addition, SP cells represent a source of stem cells that does not rely for identification on 

the use of a panel of defined stem cell markers and lineage negative markers and can be 

sourced from the host if healthy corneal tissue remains.  

The LMSC-AM tissue engineered construct has great potential for ocular surface 

regeneration. Currently there are no clinical trials using LMSC for LSC transplantation 

despite many clinical trials using MSC in other organs such as in the lungs, intestine 

and liver. LMSC also have immunomodulatory effects e.g. trophic and growth factors, 

and these cells can be expanded readily in culture, stored frozen and brought back up in 

culture and are therefore a potential cellular tool. 

The challenge would be to achieve an effective SP cells expansion system. The 

problems exist in the low yield of fresh SP-sorted cells, and absence of molecular LSC 

markers. SP cells need to be grown successfully to be transferred on an appropriate 

scaffold system for clinical use. It is reasonable to believe that a stem cell-enriched 

population of cells might proliferate rapidly in appropriate and supportive culture 

conditions. More evidence to address the variations in percentage of SP populations 

across mammalian species needs to be collected, which might be directly or indirectly 

related to SP protocols. However, culture confluence can be a tool for isolation of 

higher numbers of SP. SP cells could readily expand in numbers and colony size 
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compared to NSP. Further, reduced cellular confluence and hypoxic culture condition 

were two factors which might be strategies for SP cellular expansion.  

 

Roles of ABCB1, ABCG2 and ABCB5 transporters with LSP and possible mechanisms 

of signalling factors have been investigated in other systems and shown to confer the SP 

phenotypes. The importance of ABC transporters responsible for the SP phenotype in 

LSC has been previously investigated. Here we have shown the inhibition of efflux 

activity of SP cells by verapamil (which mainly blocks ABCB1 and ABCG2). We have 

also demonstrated mRNA and protein expression of ABCG2, ABCB1 (mRNA) and also 

ABCB5 expression by PCR and ICC in HTCEC and LMSC. Further investigations with 

knock out animal models would reaffirm the role of these genes in LSP phenotypes, and 

their links to LSC maintenance and regeneration.  

 

To our knowledge, this is the first study to provide data on HTCEC HLA-typing which 

is an important step to study immunogenicity in this cell line. HTCEC also expressed 

similar trend of inducible HLA expression as demonstrated in previous human corneal 

cultures when stimulated with inflammatory cytokines, especially by IFN-γ.  On top of 

that, there is a limited knowledge in previous literature on inducible HLA-DP 

expression, such as provided in our results. This alludes to the suitability of HTCEC for 

LEC replacement and as a robust model for corneal inflammations, auto immune 

diseases and allograft corneal transplantation.  

 

Both HTCEC and the limbal sourced-LMSC exhibited cellular migration in response to 

CXCL12 ligand stimulation in the presence of CXCR4 receptors. However, it was 

demonstrated that LMSC was more responsive than HTCEC, which could attribute to 

the presence of CXCR4 and secretion of CXCL12 in LMSC as previously reported. 

Conversely, although CXCR4 was expressed by HTCEC, our results showed this cell 

line did not exhibit CXCL12 gene expression. This finding suggests the role of other 

potential factors such as inflammatory mediators being in play to direct cellular 

migration for corneal repair. 

 

The recruitment of adult stem cells to the site of injury for cellular repair, loosely 

termed as the “homing” mechanism has been observed in the haematopoietic 

(Deshpande et al., 2013) and renal systems and is regarded as essential for tissue 

engraftment (C. S. de Paiva et al., 2005b). Using knock out gene models or neutralizing 
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antibodies to CXCR4, or CXCR7 receptor, a novel endothelial receptor for ligand 

CXCL12, we could further explore into their role in corneal epithelial regeneration in 

response to injury as demonstrated in the renal system (C. S. de Paiva et al., 2005b). 

The role played by adhesion molecules in this signalling mechanism is also an attractive 

area to investigate. 

 

Due to existing problems in donor availability and donor-to-donor-variability, HTCEC 

is an attractive consistent and a reproducible source of corneal stem cells and can be 

used for refinement of methods or optimisation protocols and useful for experiments 

requiring large number of cells. Although cell lines could not be more superior to donor 

samples, the use of cell lines have proven to be economical in term of reducing animal 

experiments and ultimately the results could be translated for therapeutic potentials.  

The outcomes of this project have shown HTCEC has remarkable biological properties 

as a robust model for further understanding of LSC biology.  

 

Future studies will focus on the proliferation and maturation of HTCEC and the limbal 

derived-MSC on biological and non-biological substrates for ocular surface 

reconstruction such as in vivo transplantation for LSCD. Alternatively, to study the 

usefulness of these cells to address a basic problem such as cell signalling and the 

factors involved in LSC biology.  Bone-marrow-derived MSC, these cells have shown 

excellent anti-inflammatory and wound healing properties when introduced to corneal 

injury models in animal studies (Ma et al., 2006; Augello et al., 2007; Omoto et al., 

2009; Jiang et al., 2010; Hsu et al., 2012; Jia et al., 2012) and in the repair of corneal 

damage (Ma et al., 2006). The proposed mechanism is suppression of   new vessel 

formation and inflammation post-transplantation.  

 

Further investigation into the immunological factors in the cornea that allow tolerogenic 

potential of the organ to respond to ocular antigens is necessary to exploit corneal 

immune privilege to its full advantage. Identification of inflammatory molecules and 

apoptotic markers, their signalling pathways, and role of HLA matching, are some of 

the strategies to promote the survival of whole corneal and LSC transplantation. 

Tolerance towards allogeneic organ grafts represents one of the major aims of 

transplantation medicine.  
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Ex vivo expanded LSC transplantation has been proven to be able to reconstruct the 

ocular surface in LSCD eyes using a biological scaffold system which provides transfer 

of proliferative cells to the target site. Alternately, producing a scaffold which 

incorporates stem cell-enriched population from a corneal cell line could be the answer 

to ensure uniformity in the quality of the grafts. However, these methods need to be 

further refined to include protocols to assess tissue viability, the quality of   tissue 

constructs and safety assessment. Needless to say, the quality of cells in the tissue 

construct is vital to ensure permanent tissue repair and successful engraftment. In order 

for LSC to be successfully translated into favourable clinical outcomes, a good 

manufacturing practice (GMP)-compliant protocol would be a positive step towards 

achieving high quality tissues to fulfil the requirements for clinical transplantation.   

 

Currently, it is still unclear how restoration of the damaged ocular surface takes place 

after LSC transplantation. It is very unlikely that it is due to replacement of stem cell 

numbers alone. Studying the LSC fate in different aetiologies of stem cell deficiency 

and the types of tissue transplantation would be a future direction to explain the process 

of cellular restoration. At present, there is no consensus on LSC fate in different types 

of transplantation (Shimazaki et al., 1999; Daya et al., 2005; Djalilian et al., 2005) such 

as in penetrating keratoplasty, alone or in combination with limbal allograft 

transplantation, or in the case of ex vivo LSC transplantation. The problem for case to 

case comparison exists in multiple diagnosis of LSCD, tissue transplantation types, 

methods for cell tracking to determine the cellular fate, and non-standard cut off points 

for cellular analysis to take place.  

Molecular mechanisms regulating the immune plasticity of corneal stem cells could be 

relevant in clinical setting and may explain the differences in the outcomes between 

murine and human systems. Thus understanding these mechanisms will contribute to 

the development of better therapeutic approaches for transplantation of not only the 

cornea, but other organs as well. 

The role of CXCR4/CXCR7 and their unique ligand CXCL12 in the endothelial cells 

has been previously investigated (So and Epstein, 2004). It would be interesting to study 

the roles of these receptors to address the process of angiogenesis and corneal 

vascularisation which occur in LSCD. Corneal conjunctivalisation is due to the 

encroachment of vascularised tissue   into the cornea which leads to blindness and 
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ocular pain. The role of vascular endothelial growth factor receptors and its inhibitors to 

prevent vascularisation is also an interesting area to investigate in the quest for 

improved outcomes of cellular therapy for LSCD.  

 

During the course of this project, the field of LSC has dramatically advanced with a lot 

of research on basic and fundamental sciences and clinical application. LSC has 

acquired a niche in cornea biology and drawn tremendous interest from research 

scientists. Publications in this field have soared remarkably which draws the necessity 

for more translational approach to address the gap in the management of LSCD and 

ocular surface regeneration. This project offers strategies to improve the outcome of 

LSC transplantation by offering a cellular selection strategy, alternative cellular tools 

and also a robust cellular model for further understanding of LSC biology.  
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