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Abstract 

One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells 

(PEMFC) is the low temperature of operation which makes platinum-based anode catalysts 

susceptible to poisoning by trace amounts of CO, typically present in reformed fuel. In order to 

alleviate the problem of CO poisoning and improve the power density of the cell, operating at 

temperature above 100°C is preferred. Nafion® type perfluorosulphonated polymers have been 

typically used for PEMFC but cannot function at temperatures above 100°C. In addition, higher 

temperatures will enable more effective cooling of the cell stacks and provide a means for 

combined electrical and heat energy generation. 

The solution to improved PEMFCs technology is to develop a new polymer electrolyte 

membrane which exhibits stability and high conductivity in the absence of liquid water. A High­

Temperature PEMFC based on a Phosphoric acid (H3P04) doped Polybenzimidazole poly[2,2-

(m-phenylene)-5,5 bibenzimidazole] (PBI) membrane has been developed and demonstrated as 

an alternative to Nafion® for operation at temperatures up to 200°C. PBI membranes, when 

doped with phosphoric acid, do not rely on hydration for conductivity; a significantly lower 

water content of the membrane, compared to Nafion, is required for proton transport. The 

resulting system improvements include; high CO tolerance, simple thermal and water 

management, excellent oxidative and thermal stability, and good proton conductivity at elevated 

temperatures. Two issues associated with phosphoric acid in the PBI based fuel cell are the lower 

activity of the electrocatalysts and the potential loss of the acid into the fuel cell gas/vapour 

exhaust streams. The limited oxygen permeability and slow oxygen reduction kinetics in 

phosphoric acid is a major limitation for the performance ofPBI based PEMFCs. 

The kinetics of oxygen reduction in PBVH3P04 has been studied in electrochemical single 

electrode cells. Several Membrane Electrode Assemblies (MEAs) have been manufactured to 

allow optimisation of the electrode performance. Various electrochemical techniques such as 

chronoamperometry, polarisation curves and Frequency Response Analysis (FRA) were used to 

study and separate the effects of the various phenomena taking place at the electrode surface: IR 

losses, mass transport and kinetics. A new Electrode structure utilizing PTFE has been developed 
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allowing higher oxygen permeability and therefore enhanced performance of 0.55 W cm-2 with 

oxygen and 0.27 W cm-2 with air (atm) at temperature as low as 120 ·C. The Platinum loading 

was reduced to 0.4 mgpt cm-2 at the cathode and 0.2 mgpt cm-2 at the anode. Further reduction of 

cathode platinum loading to 0.2 mgPI cm-2 was achieved without dramatic drop in the 

performance by utilising Pt based binary alloy catalyst (Pt-Co/C). 

A simplified thin film steady-state, isothermal, one dimensional model of a proton exchange 

membrane fuel cell (PEMFC), with a polybenzimidazole (PBD membrane, was developed. The 

electrode kinetics were represented by the Butler-Volmer equation, mass transport was described 

by the multi-component Stefan Maxwell equations and Fick's law, and the ionic and electronic 

resistances described by Ohm's law. The model incorporated the effects of temperature and 

pressure on the open circuit potential, the exchange current density and diffusion coefficients, 

together with the effect of water on the acid concentration and ionic conductivity. The 

polarisation curves predicted by the model were validated against experimental data for a 

PEMFC which included the effect of temperature and oxygen/air pressure on cell performance. 

An additional problem which faces the introduction ofPEMFC technology is that of supplying or 

storing hydrogen for cell operation, especially for vehicular applications. Consequently the use 

of alternative fuels such as methanol and ethanol is of interest, especially if this can be used 

directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol 

is the lower activity of oxidation in comparison to hydrogen, and hence to improve activity and 

power output higher temperatures of operation are preferable. The performance of a high 

temperature direct methanol fuel cell (DMFC) using PBI based electrode assemblies was 

investigated. The performance of the system was limited by poor methanol oxidation kinetics in 

a phosphoric acid environment and consequently power performance was inferior to that 

achieved with low temperature DMFCs based on Nafion membranes. 
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reaction rate constant I mol dm-3 
S-I 

the adsorption rate constant I mol dm-3 
S-1 
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membrane thickness I m 
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the molecular weight of the gas I g mole-! 
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Chapter One: Introduction and Objectives 

1 Introduction and objectives 

1.1 Overview 

Proton exchange membrane Fuel Cells (PEMFC) have been considered as a suitable alternative 

to internal combustion engines because of their high power density, high-energy conversion 

efficiency and low emission level. However the current Proton Exchange Membrane Fuel Cell 

technology suffers several limitations. These limitations are due to the inherent difficulties of 

hydrogen production, purity, distribution and storage, and secondly a function of the membrane 

upon which the technology has been based thus far. For membrane materials such as Nafion®, 

and similar to perform as highly effective proton conducting materials, they need to be fully 

hydrated during operation and therefore operate at temperatures lower than 80°C. Such a 

limitation in operating temperature results in several technical problems, which have delayed 

commercialization and require costly solutions. 

With current PEMFCs; decreased catalytic activity and increased sensitivity to poisonous species 

such as sulphur and carbon monoxide [1], capable of deactivating catalyst materials, are 

significant at low temperatures. The operating conditions dictate that noble metal catalysts and 

high cost polymer membranes are required [2], along with complex system construction and 

operation with respect to water and thermal management [3]. Further challenges for technology 

development include: fuel supply, low value of heat energy [4], low overall efficiency (-30%), 

limited co-generation of heat and power for stationary applications and poor integration with 

hydrogen fuel supply systems (reformers) [5]. 

Developments of High Temperature PEMFC technology will doubtless aid in the rapidly 

growing area of alternative fuels for fuel cells [6]. Direct use of methanol and ethanol is an 

option for many fuel cell applications, since elimination of the fuel pre-processors for reforming 

and CO removal is desirable [7]. However, direct ethanol fuel cell technology is far from 

satisfactory as anode catalysis is not sufficiently active at temperatures below 100 QC. High 

temperature operation will improve the overall fuel cell performance and allow the use of 

renewable and sustainable carbon neutral fuels. 
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The solution to improved PEMFCs technology is to develop a new polymer electrolyte 

membrane which exhibits stability and high conductivity in the absence of liquid water. Many 

different types of alternative high-temperature polymer electrolyte membranes have been studied 

[8-10]. One of the most promising is acid-doped poly [2,2-(m-phenylene)-5,5 bibenzimidazolc] 

known as PBI. Polybenzimidazole (PBI) is a relatively low cost ($70-1 OO/lb) non-perfluorinated 

basic polymer (pKa = 5.5) easily doped with strong acids to form single phase polymer 

electrolyte [11, 12]. PBI was firstly proposed by Aharoni and Litt [13] and later demonstrated 

by Savinell, Wainright et al [14, 15] as a polymer electrolyte in its acid doped form. 

Savadogo and Xing [16] compared the conductivity of PBI membranes doped in various acids, 

and found that the conductivity changes are in the order of H2S04 >H3P04 > HCI04 > HN03 > 

HCI for high doping levels. While PBI films are not stable (dissolve) in hot concentrated 

sulphuric acid, phosphoric acid offers many advantages over the other studied acids at elevated 

temperature, including: excellent thermal, chemical and electrochemical stability at the operating 

conditions of fuel cells [17] and low volatility at temperatures above IS0'C. 

PBI membranes, when doped with phosphoric acid, do not rely on hydration for conductivity; a 

significantly lower water content of the membrane, compared to Nafion, is required for proton 

transport. The resulting system improvements include: 

• High CO tolerance: Li et al [1] report a CO tolerance of 3% CO in hydrogen at current 

densities of 0.8 A cm-2 at 200 ·C and 0.1% CO in hydrogen at 125 ·C and current 

densities lower than OJ A cm-2
, where CO tolerance is defined by a voltage loss less than 

10 m V. Samms et al [3] similarly reported CO tolerance of I % at 170 ·C. 

• Simple thermal and water management, excellent oxidative and thermal stability [11]. 

• Good proton conductivity at elevated temperatures: Acid-doped PBI has a very good 

proton conductivity and thermal stability at temperatures up to 200 ·C [5, 15, 18-20]. 

• Near zero electro-osmotic drag [21]: which means that the proton transport through the 

PBI membrane does not involve water transport. 

• Low gas permeability [22] and methanol crossover [23, 24]. 
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• Excellent oxidative and thermal stability and good mechanical flexibility at elevated 

temperature up to 200 ·C [25]. 

• More effective cooling of the cell stacks and provides a means for combined electrical 

and heat energy generation [4]. 

1.2 Limitations 

Two issues associated with phosphoric acid in the PBI based fuel cell are the lower activity of 

the electrocatalysts and the potential loss of the acid into the fuel cell gas/vapour exhaust 

streams. The limited oxygen permeability and slow oxygen reduction kinetics in phosphoric acid 

(phosphates and impurities within adsorb on platinum) is a major limitation for the performance 

ofPBI based PEMFCs. 

1.3 Project Objective 

The aim of this research is the design, fabrication, electrochemical testing and evaluation of 

electrodes for phosphoric acid doped PBI high temperature PEMFCs. 

The research program was comprised of the following goals: 

• Synthesis and characterisation of PEI polymer and films, as they are no longer available 

commercially for fuel cell research. 

• Obtain kinetic and mass transport information on oxygen reduction at PBIIlhP04 

interface by testing several electrodes' performance in three-electrode cell. 

• Fabricate HT-PEMFCs membrane electrode assemblies and compare and optimise their 

performances from the collected polarisation curves. 

• Utilise other electrochemical techniques such as frequency response analysis and 

chronoamperometry to provide further information about electrode performance. 

• Test system tolerances to CO/C02 in order to estimate the system performance under 

reformate. 
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• Investigation of methanol as an alternative anode fuel for HT-PEMFCs. 

• Development of a simple one dimensional model for PBI fuel cell allowing increase 

understanding of their behaviour, enable prediction of their performance and assist with 

their operational control. 

This thesis is divided into eight chapters. 

In Chapter 1, an overview of high temperature fuel cell with a focus on PBI based is presented. 

Chapter 2, describes PBI and other high temperature polymers synthesise and characterisation in 

terms of proton conductivity, methanol cross-over and mechanical properties. 

Chapter 3, describes half cell tests (three electrode cell) used to obtain kinetics information 

regarding oxygen reduction reaction in PBIIphosphoric acid interface. The three phase 

boundaries are also discussed and the effect of ionomer properties (permeability, density & 

conductivity) and content in the catalyst layer are investigated. 

Chapter 4, data from several fuel cells is presented and discussed. The effects of catalyst 

thickness (PtC ratio), PBI, acid & catalyst loading, and binder/electrolyte materials; for both 

anode and cathodes are investigated along with CO/C02 tolerance. 

In Chapter 5, data from a three electrode cell is discussed for methanol oxidation in phosphoric 

acid/PBI interface. High temperature direct methanol fuel cells are also fabricated and analysed. 

In Chapter 6, chronoamperometry data is presented to establish the contribution of mass 

transport on system performance. EIS (electrochemical impedance spectroscopy) is also used to 

provide further information about electrodes structure and effect on the overall cell performance. 

A simplified circuit model is built and an attempt is made to relate the circuit components to the 

physical phenomenon taking place at the electrode surface in terms of kinetics, mass transport 

and IR losses. 
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In Chapter 7, one dimensional isothermal fuel cell model is developed. The model is used to 

simulate the influence of operating condition, cell parameters and different fuel gas compositions 

on the cell voltage current density characteristics. 

In Chapter 8, conclusions of the study are presented which form the basis for the 

recommendations for future work. 

Due to the diversity of the chapters' topics, the relevant literature reviews are provided 

separately for each chapter. 
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2 Preparation of High Temperature Membranes 

In this chapter, PBI and SPEEK polymers were synthesized and characterized in tenns of degree 

of sulfonation using IH-NMR (SPEEK), molecular weight distribution, using GPC (PBI) and 

chemical structure using FTIR (PBI). 

Membranes were later prepared either directly from the synthesised polymers or with composite 

materials (Ti02). The prepared membranes were characterized in tenns of their mechanical 

properties (tensile stress), methanol penneability and proton conductivity. 

2.1 Introduction 

In the recent years research has been carried out trying to develop ionically conducting polymer 

electrolyte membranes that operate at temperatures above 100 °e. According to the proton 

conduction mechanism, these membranes can be classified in to three main groups [1]: 

Sulfonated polymers: where the polymer is modified by bonding acidic groups (such as sulfonic 

group SO-3) onto the backbone as side chain, making it exhibit ionic conductivity. Most common 

candidates that exhibit good thennal and chemical stability are: flouropolymers (Nafion), silicon­

based (polysiloxanes) or aromatic hydrocarbons such as polybenzimidazoles (PBI), 

polyetheretherketone(PEEK) and polysulfones (PSF). 

Inorganic-organic composite: this is usually obtained by incorporating solid inorganic proton 

conductors such as zirconium phosphates or hetropolyacids into a polymer matrix, which can be 

functionalised (ionic conductive) or not. Incorporating hygroscopic nano-crystalline oxides such 

as Ti02 or Si02 into functionalized polymer matrix, helps in retaining water, increasing the 

operating temperate limit. 

Acid-base polymer complexes: polymers (amide, ether or alcohol) have basic properties (hold 

basic sites) and as such can easily react with strong acids by establishing hydrogen bonds in acid-
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base complex systems, this in some cases can lead to the formation of blend membranes between 

a polymer, exhibiting acidic properties, and another exhibiting basic properties, such as 

polybenzimidazole (basic)-sulfonated polyetheretherketone (acidic) blend [2]. Another good 

example of acid-base complexes is phosphoric acid doped PBI; PBI exhibits good thermal and 

mechanical properties arising from the presence of three benzene rings in the polymer backbone 

while phosphoric acid offers excellent thermal, chemical and electrochemical stability 

accompanied by low volatility under fuel cell operating conditions, at temperatures above 150 

DC. 

Among the three main groups, three candidates were selected for investigation in this research: 

i. Sulfonated polyetheretherketone, a much cheaper to produce polymer compared to 

solfonated flouro polymers. 

ii. Phosphoric acid doped polybenzimidazole, a promising acid-base complex that 

exhibits good proton conductivity at elevated temperatures. 

iii. Titania based composite membranes using SPEEK, acid doped PBI and Nation as 

polymer materials. 

2.2 Polymers Synthesis 

2.2.1 Sulfonated polyether-ether-ketone (S-PEEK) polymer synthesis 

Polyether-ether-ketone is a class of polymers consisting of sequences of ether and carbonyl 

linkages between phenyl rings. PEEK is commercially available under the name of Victrex® 

PEEK™ (lCI advanced materials, U.K). PEEK is a high performance thermoplastic material with 

excellent friction and wear properties, high stability at elevated temperatures (T g 143-145 °C and 

T m 340°C), excellent resistance to wide range of chemical environment and good electrical 

properties over wide range of frequency and temperature. However, PEEK is similar to PBI in 

the fact that its proton conductivity as pristine materials is very low (less than 104 S cm'l) and 

requires function groups to facilitate proton conduction. While in the case of PBI, there is a 

91Page 



Chapter Two: Preparation of High Temperature Membranes 

maximum of two sites available for the acid to bond to, any excess acid will be mobile in the 

polymer matrix; Poly-aryl-ether-ketones can be sulfonated directly by reacting it with 

concentrated sulphuric acid [3], or prepared indirectly from sulfonated monomers [4]. The level 

of sulfonation is dependant on the number of aromatic rings bridged by oxygen atoms (Fig. 2-1), 

as only O-phenyl-O units can be sulfonated, while O-phenyl-CO groups remains un-sulfonated. 

Therefore, increasing the number of ether groups relative to carbonyl groups leads to an increase 

in the available number of sulfonation sites on the polymer backbone. 

S03H 

3O-35°C 
0{ I )-o-{ ;-l H2SO.95·98%wt 

--+ 

n n 
Poly ether ether ketone (PEEK) Sulfonated poly ether ether ketone (S-PEEK) 

Figure 2-1. Direct synthesis of polyetheretherketone. 

A wide range of equivalent weights can be obtained from the direct sulfonation of PEEK 

depending on the reaction conditions; the substitution with sulfonic groups is Ortho directed due 

to the high activity of the four equivalent sites [5] in the hydroquinone unit between the ether 

segments. The extent of sulfonation is a function of: 

Temperature: At room temperature (22°C), the IEC increases slowly with sulfonation time and 

almost reaches a plateau at about 1.7 (mEq g-\ at higher temperature (e.g., 55°C), the lEC 

increases sharply, the first-type substitution (2.56 mEq g-I) nearly comes to an end in about 5 

hrs, then surpasses this value, which corresponds to 100% Ortho substitution. This implies that 

another type of substitution has been initiated at higher temperature (55°C), in other words, 

more than one sulfonic group has been attached to one repeating unit of PEEK [6]. 

Sulphuric acid concentration: increasing the concentration above 98% (100%) leads to cross­

linking due to sulphone formation [7]. 
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Reaction time: as mentioned above the reaction time affects the sulfonation degree, depending on 

the reaction temperature. To achieve 100% Ortho substitution can take up to 700 hrs at room 

temperature [8] and 5 hrs at 55 °C [6]. However the initial PEEK to acid ratio does not affect the 

progress of the reaction [9]. 

2.2.2 Polybenzimidazole polymer synthesis 

Brinker and Robinson disclosed the synthesis of aliphatic polybenzimidazole in 1959 [10]. Two 

years later, Vogel and Marvel [11] were the first to prepare poly[2,2:m-(phenylene)-5,5: 

bibenzimidazole] from 3-3:diaminobenzidine and aromatic dibasic acids at temperatures 200-

350°C. 

Iwakura et al [12] prepared polybenzimidazoles from 3-3:diaminobenzidine hydrochloride 

(DAB) and isophthalic acid (IPA) in poly-phosphoric acid (PPA) by solution poly-condensation 

at temperatures between 170-200 °C, according to the reaction below (Fig. 2-2). Offering lower 

reaction temperature and homogeneous solution polymerization, however, the proposed reaction 

has a major disadvantage arising from the necessity of working at low solid content (3-5 %) and 

therefore the recovery and re-use of Poly-phosphoric acid. 

Isophthalic acid 
Water 

o 0 
I I 

H-O-~C-O-H 
H-O-H 

+ 
PPA 

+ --+ 
170-200 ·C 

:::=00=::: 
poly[2,2:m-(phenylene)-S,S:bibenzimidazole) n 

Diaminobenzidine 

Figure 2-2. Synthesis of polybenzimidazole using solution poly-condensation route. 
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The most practical process fqr an engineering scale is the solid-state polymerization. Plummer 

and Marvel used melt polymerization to produce Polybenzimidazoles [13] following pioneering 

work by Vogel and Marvel [14], starting from diaminobenzidine (DAB) and diphenyl 

isophthalate (DPIP) according to the reaction below (Fig. 2-3): 

Diphenyl isophthalate 

o 

~-O-< > 
~ V~-o1 > 

o 

+ 

::=00=:: 
Diaminobenzidine 

Triphenylphosphite 

--+ 
250-370 DC 

Water 

H-O-H 

+ 
Phenol 

O-H 

6 

n 
poly[2.2:m-(phenylene)-S.S:bibenzimidazole) 

Figure 2-3. Synthesis of polybenzimidazole using melt polymerisation route. 

The synthesis typically involves two stages: Initial heating:, melt polymerization at temperatures 

200-300 °C until a pre-polymer with inherent viscosity of 0.13-0.3 dl gO', on average takes 0.5 to 

3 hours [15]. This is followed by a second step, where the polymer is powdered and reheated to 

390-400 °C for a period 1.5-3 hours increasing the molecular weight of the polymer and 

consequently its inherent viscosity [16]. 

Hedberg and Marvel [17] demonstrated a single stage reaction similar to the poly-condensation 

reaction; however, they have substituted PP A with sulfolane, which is easily recovered by 

distillation. 

Foster and Marvel [18] suggested replacing DAB with Benzophenone-3,3',4,4'-tetracarboxylic 

dianhydride (BTDA) to obtain more soluble polymeric products. 
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Recently, Kim et al [19] and Shin et al [20], prepared a new precursor to prepare 

polybenzimidazoles utilizing a new synthesis route at low temperatures. 

Polymer prepared with both methods exhibit inherent viscosities in the range of 0.6-0.8 dl go. 

when measured as 0.4 g of PBI in 100 cm3 of 97 % sulphuric acid at 25°C in glass capillary 

viscometer. 

= I V = Ln[tzowtimeoJ solution/ flowtimeoJ solvent] 
7];nherenl • 0 Solution concentrat ion in (g drl ) 

[I] 

To be able to obtain membranes with good mechanical properties from polybenzimidazole (PBI) 

polymer, the polymer should have an inherent viscosity from 0.8 to 1.1 dl got [21]. 

The intrinsic viscosity is obtained from the inherent viscosity [22] using the equation: 

[7]] = 1.05857];nherenl [2] 

The intrinsic viscosity directly depends on the molecular weight of the studied polymer [22, 23]; 

the Mark-Houwink equation describes this dependence: 

[3] 

Where [11] is the intrinsic viscosity, K and a are constants the values of which depend on the 

nature of the polymer and solvent as well as on temperature and Mw is the average molecular 

mass. 

Values for K =1.35326x 10-4& a = 0.73287 were given [22,23] for a molecular weight range of 

2.1 to 1800 kDa. Other value for K=3xl0-4 & a = 0.75 were given [24] over a narrower range of 

7 to 51 kDa (Fig. 2-4). The erliear values from [22, 23] were used in this study due to their 

validity over wider range of molecular weight and the good agreement with the values obtained 

using Gel Permeation Chromatography (GPC) for molecular weight distribution analysis. 
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Figure 2-4. Molecular weight & intrinsic viscosity relation using Mark-Houwink equation. 

Polymer with higher molecular weights can be achieved, by either altering the reaction 

conditions, such as the monomer ratio or addition of catalyst or by extracting high molecular 

weight material from the polymer using an appropriate solvent (fractionating) [25]. The latest 

was used by Case Western University to obtain high molecular weight PBI from commercial 

powder [26]. Several catalysts have been suggested for PBI synthesis, most of which are 

phosphorus based [27 , 28] ; such a catalyst was used for the melt polymerization route with one 

stage or two stages [15, 22]. Similarly, in the poly-condensation route, poly-phosphoric acid is 

used as solvent, with or without the addition ofP20 s as catalyst. 

Other suggested catalysts are arylhalo phosphorus based [23] , organosilicon halide based [29] , 

tin based [30] and aryl phosphonic based [31]. 

More recently, Choe [32] studied several phosphorus based catalyst and monomers for PBI 

production usmg melt polymerization; among several catalysts studied, 

dichlorophenylphosphine gave superior results, leading to PBI with an inherent viscosity of 1.5 
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dl gol with an optimum concentration around -1% wt based on the weight of DPIP or IPA 

depending on which mono mer was used for the synthesis. 

For the lab scale production in this research, the poly-condensation route using PPA was more 

favourable over the solid state route, due to the following difficulties encountered in the solid 

state reaction: 

• Monomers used in solid-state reactions are very sensitive to oxygen, so the reactor has to 

be degassed several times and purged continuously with nitrogen during the reaction, or 

operated under high vacuum conditions. 

• Adhesion of polymer product to the reactor walls. 

• Melted ionomers without solvent have very high viscosity make the mixing very difficult. 

• Poor thermal conductivity of the ionomers and the polymer product, lead to slow heat 

transfer from reactor walls to the reacting core. 

In order to enhance the molecular weight of the prepared polymer a small quantity of 

dichlorophenylphosphine (1.5%wt of IPA) can be added as catalyst during the synthesis process 

[32]. Even though the suggested catalyst proved to be useful in the melt polymerisation route, no 

information is available on its effects on the adopted poly-condensation method. 

2.3 Experimental 

2.3.1 PBI polymer preparation 

In the procedure for preparation of PHI, 0.025 moles (5.36 g) of 3-3:diaminobenzidine (99% 

Aldrich) was reacted with 0.025 moles (4.15 g) of isophthalic acid «99% Aldrich) in 311.85 g of 

poly-phosphoric acid (Aldrich) by solution poly-condensation at temperature of 200°C. 

DAB was first added to PP A, at room temperature, while stirring and purging with nitrogen and 

0.063 g (1.5% wt of IPA) of the catalyst dichlorophenylphosphine (97% Aldrich) was then 

injected. The mixture was then heated to 200°C under nitrogen, and the IPA was introduced. 

Initially the mixture colour turned to dark blue/green and after -30 mins the mixture became 

purple. This was accompanied by an increase in volume due to formation of bubbles (foam). 

Even though water vapour (bubbles) formation was rapid, PBI synthesis requires much longer 

151Page 



Chapter Two: Preparation of High Temperature Membranes 

times as the water evolution is the second most rapid reaction in the condensation after the amine 

reaction [33]. After 9 hrs the mixture was poured into cold de-ionised water to stop the reaction. 

PBI was obtained as a yellow precipitate; the precipitate was washed with sodium hydroxide 

solution, until neutralisation. Further washing with dilute hydrochloric acid was introduced to 

remove un-reacted monomers. The powder was then immersed in a saturated solution of sodium 

bicarbonate overnight. Finally, PBI powder was boiled, rinsed thoroughly with de-ionised water, 

dried and pulverized. 

During the synthesis of PBI, addition of catalyst increased the inherent viscosity of the polymer 

product from 0.8 to 2.4 dl g-l, corresponding to an increase in average molecular weight from 17 

to 62 kDa, but also broadened its polydispersity (MWD). For example, when the concentration 

of dichlorophenylphosphine was increased from 0 to 0.57 to 0.86 %wt (of DPIP) the 

polydispersity increased from 2.56 to 3 to 3.3, respectively [32]; comparable results were 

obtained experimentally. Increasing the dichlorophenylphosphine concentration from 0 to 1.5 

%wt (ofIPA) lead to MWD increase from 2.8 to 4.6. 

Two samples from the same PBI batch (using dichlorophenylphosphine as catalyst) were 

dissolved in DMAc, one at room temperature and the other at 250°C and their molecular weight 

distributions were determined. The sample dissolved at room temperature was 100 % soluble, 
I 

whilst the sample dissolved at 250°C required filtration to remove approximately 10 %wt of a 

non-soluble part. The reSUlting molecular weight distributions are given in Table 2-1 and 

compared with those of a commercially available PBI and PBI synthesised without catalyst. PBI 

synthesised using catalyst had a much higher molecular weight. The polymer obtained after 

dissolving in DMAc at low temperature had a' higher molecular weight than that dissolved at 250 

QC. The observed reduction in the average molecular weight and narrowed polydispersity, after 

heat treatment, can be attributed to cross-linking occurring during heat treatment with DMAc, 

where 10 wt% of the polymer become insoluble. Plummer and Marvel [13] found that 

polybenzimidazoles prepared from DAB underwent cross-linking when heated above 350°C 

where they became insoluble in all known solvents. Similarly, Colson et al [34] prepared 

polybenzimidazole films starting from DAB, and found that the prepared polymers became 
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insoluble in common organic solvents after heating above 140 QC (cross linking), especially those 

exhibiting high inherent viscosity (1 - 1.5 dl g-J). 

2.3.2 SPEEK polymer preparation procedure 

In the preparation of the polymer, 30 g of oven dried PEEK 450P Mw-39000 Da (Victrex, U.K) 

was added to 1.5 dm3 of 95-98% sulphuric acid (Aldrich) in a water jacketed flask under 

vigorous stirring at room temperature. The temperature was then increased rapidly to 35°C and 

after 3 hrs the solution colour became reddish-brown and all the PEEK pellets were dissolved. 

The temperature was maintained with a water bath equipped with heating/cooling controller 

(Grant) until the desired reaction time was reached. 

To terminate the sulfonation reaction, the solution was poured gently into a large access of ice­

cold water under continues mechanical agitation. The creamy-white coloured precipitate 

(SPEEK) formed was a difficult to filter colloid, which was then separated with centrifuge. The 

obtained polymer was washed and centrifuged several times until the pH was close to neutral. 

Finally, the powder was filtered using a 0.2 ~m pore size cellulose acetate membrane and dried 

at 100°C under vacuum. 

2.4 Polymer Characterisations 

2.4.1 Sulfonation degree determination using IH-NMR 

The sulfonation degree is given by: 

DS = sulfonated repeating units x 100% 
total number of repeating units 

[4] 

IH NMR spectra of SPEEK was used to determine the degree of sulfonation (DS). A 2-5 wt% 

solution of the SPEEK in DMSO-d6 (Aldrich) was prepared and measurements were obtained 

using a Bruker NMR spectroscope. 
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The presence of sulfonic group causes 0.25 ppm down-field shift in the hydrogen HE signal (-

7.5ppm) compared with that of He and HD of the same hydroquinone ring. All the four HA's 

signals appear at low field (to the left of HE) due to the de-shielding effect of the carbonyl group 

[35]. The intensity of the HE signal is directly related to the HE content in the polymer and 

therefore the degree of sulfonation per repeat unit. 

Sulfonated poly ether ether ketone (S-PEEK) n 

The DS can be derived from the ratio of the area under the HE peak (AHE) and sum of the areas 

. of the all the other aromatic hydrogen peaks (AHA,A',B,B',e,D) using the equation below [36]: 

__ D_S_ = A/f E 

12-2DS "A/f ' , ~ A,A ,B,B ,C,D 

[5] 

For example, for an integrated areas (A) under the peak of HA,A' , HE and HB,B',C,D of 5.97, 1 and 

9.915, respectively, a sulfonation degree of 67.1 % was determined. 

Figure 2-5 shows the typical NMR spectra for SPEEK, the increase in the peak intensities can be 

easily seen with an increase in the sulfonation degree (DS) from 29,05, 49.08, 70.79 & 89.87, 

respectively. 
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Alternatively, the DS was detennined by titration: 1-2 g of SPEEK was placed in 0.5 M sodium 

hydroxide and left for a day to fully react, the solution was then back titrated using 0.5 M Hel 

and phenolphthalein as indicator [37]. The titration method was only used to confinn the results 

obtained from NMR spectroscopy, as it requires large amounts of polymer to carry out the 

titrations with reasonable accuracy (error -20%). 

Figure 2-6 shows the effect of reaction time on sulfonation degree at the studied reaction 

temperature of 35 ·C, where it can be seen that the sulfonation degree exhibited a logarithmic 

dependence with reaction time. 

Increasing the sulfonation degree lead to an increase in conductivity and on the other hand 

greater swelling and brittleness. For sulfonation degrees < 30%, SPEEK is insoluble in most 

organic solvents or water, while for sulfonation degree above 70% the polymer become soluble 

in methanol and partially soluble in hot water. The complete sulfonation of PEEK leads to fully 

water soluble polymer [38]. A sulfonation degree around 60% was found to be a good 

compromise between conductivity and mechanical properties (brittleness and swelling) [39]. 
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Figure 2-6. Effect ofreaction time on sulfonation degree as measured by lH-NMR. 

2.4.2 PBI Molecular weight distribution using GPC 

Gel Permeation Chromatography (GPC) was carried out by RAPRA technologies (U.K) using 

HPLC (Waters model150C, U.S.A) equipped with PLgel guard plus 2 mixed bed-B columns (30 

cm, \ 0 Ilm). Prior to tests the system was calibrated with narrow distribution poly(methyl 

methacrylate) calibrants. The solvent used (for measurements and calibration) was 

dimethylacetamide (DMAc) with 1 % added lithium chloride as stabilizer. 

The nominal flow-rate used was 1.0 mL min-' at operating temperature of 80·C. Refractive index 

was used as the detection method. Data capture and subsequent data handling was carried out 

using Viscotek 'Trisec ' 3.0 software. 

The obtained PBI distribution from GPC with no added catalyst showed a Gaussian normal 

distribution for narrow distributed batches, whilst with catalyst addition a wide bi-modal or 

multi-modal distribution (po\ydispersity) was observed (Fig. 2-7). This behaviour is normally 
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observed in polymers and particularly in radical polymerization. Either there are two different 

reaction routes leading to bi-modal distribution or this is a consequence of the Trommsdorff or 

gel effect. The Trommsdorff effect is a peculiar auto-acceleration phenomenon that takes place at 

intermediate or high conversions and is caused by diffusion limitations that only hinder the 

termination step. This results in an increase in rate of polymerization where a noticeable amount 

of heat is suddenly produced when the viscosity is relatively high and mass and heat transfers are 

hindered [40]. 

Addition of catalyst may have led to radical polymerization, accompanied by the Trommsdorff 

effect, which explains the bi-modal distribution obtained. The presence of radical sites explains 

the cross-linking after the heat treatment. Gehatia and Wiff [41] studied the molecular weight 

distribution of polybenzimidazole polymers and they similarly found it to be of multi-modal 

nature. 

Table 2-1. Effect of catalyst on PHI molecular weight and poly-dispersity. 

Sample Mw Mn Mw/Mn 

Commercial (dissolved) 170,000 65,700 2.6 

Liquid form (Aldrich) 171,000 65,400 2.6 

Synthesised 186,000 66,500 2.8 

without catalyst 179,000 63,000 2.8 

Synthesised with catalyst dissolved at 415,000 88,100 4.7 

250°C 412,000 91,900 4.5 

Commercial 158,000 57,300 2.6 

Powder form (Aldrich) 154,000 58,300 2.6 

Synthesised with catalyst dissolved at 623,000 116,000 5,4 

room temperature 609,000 112,000 5,4 

In Table 2-1 the Mw is the weight average molecular weight given by: 

LN;M/ 
M = -;':::' :----

W IN;M; 
[6] 
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Mn is the number average molecular weight given by: 

M " 

Ni is the number of molecules of molecular weight M j • 
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Figure 2-7. Molecular weight distribution using gel permeation chromatography. 

[7] 
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2.4.3 PBI Chemical structure using Fourier transforms infrared spectroscopy (FTIR) 

The main infrared spectra ofPBI have been discussed previously in several pUblications [42-47]. 

In this study, the focus was in the range of 2000 to 4000 cm-I where most of the informative N-H 

stretching modes occur in order to confirm the chemical structure of the synthesised polymer. 

Below 2000 cm-I the spectrum is characterized by some narrow peaks attributed to localized 

normal vibrations of the phenyl groups (pristine PBI) [44] and hydrogen bonds between acid 

anions and the polymer (doped PBI) [48]. 

The spectra of commercial PBI (Aldrich) and home-made PBI are compared in both film form 

(Fig. 2-9) and in powder form mixed with KBr (Fig. 2-8). The obtained spectra of the 

synthesised polymer match that of the commercial material very closely. The results obtained 

from the powder samples were sharper, with clearer peaks, unlike the spectra from the film 

samples. Spectra from the KBr/powder mixture disc shown in Figure 8 did not contain a medium 

peak at 3615-3618 cm-I corresponding to the stretching of the O-H bond from the absorbed water 

[46] by the polymer. By observing the spectra in figures 2-8&2-9, the following bands can be 

identified: 

• 
• 
• 
• 

Isolated free N-H stretching at 3395-3414 cm-I(strong) [44]. 

Imidazole and benzene rings overtone at 3185 cm-I(weak) [47]. 

Ring associated C-H groups stretching at 3050-3065 cm-I(medium). 

C=C and C=N stretching at 1624-1629 cm-I(very strong). 

• Vibration of the Imidazole ring at 1282-1287 cm-I(very strong). 

• No DMAc traces were found (no C-H stretching from CH3 in DMAc at 2940 cm-I). 

The bands obtained above confirm the structure of PBI and confirm the presence of the 

imidazole ring and the three N-H distinguishable bands at 3410,3145 and 3065 cm-I, which is in 

very good agreement with the previous reported work on PBI spectra [42-47]. 
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2.5 Membrane preparations 

2.5.1 Preparation of SPEEK membranes 

A solution of 5% wt of the SPEEK in DMAC was prepared with the aid of gentle heating. The 

solution was poured onto optical flat Pyrex glass, and spread by means of a doctor blade. The 

solution was left to evaporate in an oven at 80°C for several hours. Finally, the formed 

membranes were cured at 150°C under vacuum for 4 hours. 

2.5.2 Preparation of PBI Membranes 

PBI powder (IV = 0.7-0.9 dl g-I) was dissolved in N,N:dimethylacetamide (DMAc) at a 

temperature of 250°C (80 °c above the boiling point of DMAc) in an autoclave. In this 

procedure, the autoclave was purged with nitrogen and heated gradually to 250°C, whilst the 

equilibrium pressure was increased to 6 bars. The temperature was then held for 5 hours with the 

solution stirred to allow the majority of the polymer to dissolve. Lithium chloride (2 % wt) was 

added to the solution in order to prevent the 'phasing out' phenomenon [49]. The cooled solution 

was then filtered to remove the un-dissolved polymer. The solution was then poured onto an 

optical glass and kept in an oven at a temperature of 90 to 110°C for 12 hours to produce a 40-60 

Jlm thick membrane. The formed membranes were then cured at temperatures of 200°C for 2 hrs 

to remove any traces of DMAc. After cutting the membrane into several samples, residual traces 

of solvent and lithium chloride were removed by boiling in de-ionised water for 1 hour. 

2.5.2.1 PBI membrane doping Level 

Pristine PBI has a negligible conductivity of2-8xl0-2 S m-I (at 25 GC and 0-100% RH [50]) and 

it requires doping with phosphoric acid to facilitate proton conduction: the higher the doping 

level the higher doped-PBI conductivity_ However, PBI mechanical properties and tensile stress 

deteriorate dramatically by increasing the doping level. Doping was achieved by immersing the 

membranes in a phosphoric acid solution of known concentration for a minimum period of 4 

days at room temperature. After doping, the membranes were dried under vacuum at 110°C until 

a constant weight was achieved [51]. The doping level was calculated from the membrane 

weight gain before and after doping [52]. 
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The effects of doping level on membrane tensile stress and proton conductivity were previously 

studied by Li et al [52]; they found that for PBI membranes with medium molecular weights, i.e. 

IV between 0.6 and 0.9 dL g-!, the optimum doping level was around 5 moles H3P04 per PBI 

repeat unit where a compromise between conductivity and mechanical properties was achieved. 

The doping level was affected by the following factors: 

Acid concentration: increasing acid concentration increased the doping level or acid uptake. 

Figure 10 shows this dependency at room temperature for a membrane with thickness in the 

range of 40 Ilm to 60 Ilm. Whilst the maximum amount of bonded acid to polymer backbone 

(imidazole ring) is 2 moles per mole polymer (2 PRU), the rest of the acid is freely mobile in the 

polymer matrix and held by hydrogen bonds. 

Doping temperature: increasing the temperature will enhance acid diffusion to/within the 

polymer film, for example increasing the temperature from 20 to 60°C (at fixed concentration of 

11 M) increased the doping level from 4.5 to 6.8 per repeat unit. 

Membrane thickness: the thicker the polymer film the larger the film equilibrium acid uptake, 

however, such equilibrium might take longer to achieve. For example, for a fixed 85% wtlwt 

H3P04 (14.7 M) concentration, membrane films with thickness of 40 Ilm to 60 Ilm achieved 

doping level of -9.8 per repeat unit, whilst a doping level of 14 per repeat unit was achieved 

when the thickness of the membrane films was in the range of90 Ilm to 110 Ilm. 
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Figure 2-10. VariatIon of PBI dopIng level with phosphorIc acid concentration. 

2.5.3 Preparation of nano-composites membranes 

Watanabe et at [53,54] proposed a self humidifying composite membrane with highly dispersed 

nano-size metal oxides with or without the addition ofnano-size (1-2 nm) platinum. The nano­

crystalline platinum inside the membrane will catalyse the reaction between. H2 which had 

diffused through the membrane (crossover) and oxidant (02), generating water inside the 

membrane. This makes it possible for water dependant membranes to operate at low humidity or 

without external humidification [55]. However, the addition of Platinum to the membrane is an 

expensive solution accompanied by the increasing risk of hot spots generation. On the other 

hand, hygroscopic nano-crystalline oxides such as Ti02 or Si02 will retain some of the produced 

water within the composite membrane. In the preparation of the membrane, titania can be mixed 

directly with an appropriate solution of the ionomers and cast on flat surface [56, 57], or 

impregnated as titanium alk-oxide into the membrane which is hydrolysed to form titanium 
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dioxide [58]. However, when using the latter technique only low percentages (- 2%) ofTi02 can 

be achieved. 

In thi s work the recast from solution technique was chosen to prepare composite membranes of 5 

%wt Ti02 in Nafion®, SPEEK and PBI, due to the ease and prec ision in controlling the amount 

of Ti02 added. Starting from solutions of 5% wt of Nafion 11 7 in low aliphatic alcohol s 

(Aldrich), 5% wt of SPEEK in DMAc (home-made) and 5% wt PBI in DMAc (home-made), an 

appropriate amount (5%wt of dry composite polymer) of nano-metric size «25 nm) titanium 

dioxide (99.7% Aldrich) was added and di spersed by means of ultrasonic bath. After reachin g a 

suitable viscosity, the solution was cast on an optical fl at Pyrex glass at 80 QC, and then 

thermally treated at 150 QC for PBI & SPEEK and 110 QC for Nafion . For comparisons the 

following membranes were used: commercial Nafion 117 ( 184 I.un) and in-house casted Nafion , 

SPEEK and PBI membranes of similar thicknesses 70, 50 & 50 fll11 , respectively, using the 

above procedure without the addition of titania. 

The prepared membranes were evaluated in terms of methanol cross-over and conductivity. SEM 

images of the cross-section of the composite membranes (by fracturing them in liqu id nitrogen) 

are shown in figure 2- 11. A homogenous distribution of titania in the polymer matrices can be 

seen, despite this, large agglomerates oftitania (300-800 nm) were observed. 

Pristine 
fQWlli 

Figure 2-]]. SEM images of pristine and titania composite PHI, SPEEK and Nation membranes. 
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2.6 Mechanical properties 

Several factors affect the mechanical properties of a polymer film including: molecular weight, 

composition, solvent used for casting and uniformity of the membrane (amorphous or crystalline 

structure). The glass transition temperature of SPEEK is about 50°C higher than that of PEEK 

(Tg 143°C) and increases slightly with an increase ofsulfonation [59]. For PBI (Tg 425-436 0c) 

it decreases sharply with increase in the doping level [60]. 

Table 2-2 summarise the tensile stress results and accordingly the elongation at break values 

measured at ambient conditions (temperature and humidity) for the prepared PBI, doped PBI, S­

PEEK and compared with Nafion® 117. It can be concluded that Nafion® 117 with the lowest 

glass transition temperature (T g 132°C) exhibited high elasticity (elongation at break -150 %) 

compared to doped PBI and SPEEK. SPEEK on the other hand exhibited good mechanical 

properties (high tensile strength) superior to that ofNafion, which made it a good candidate for 

membranes in PEMFC applications. The tensile strength values of SPEEK was in the range of 

57-69 MPa which is in very good agreement with the values obtained by Li et al [61]. 

The relationship between sulfonation degree and tensile stress was also examined, and it was 

found that tensile strength fell with increasing the sulfonation degree. For PBI, a severe loss in 

mechanical properties and elasticity was observed when the polymer was doped with phosphoric 

acid. Even at a relatively low doping levels (5.6 PRU), a compromise between mechanical 

properties and conductivity was suggested by Li et al [52]. The tensile strength fell to less than 

one third of its initial value compared with pristine PBI. Li et al reported tensile strength values 

for non doped PBI of 107 MPa and 20 MPa for similar doping level (4 PRU) and molecular 

weight (i.v. -0.7 dL.g-1)[1] which is in good agreement with results of this work. 
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Table 2-2. Summary of tensile stress and elongation at break measurements for PBI, doped PBI, SPEEK & 

Nation 117. 

Room Temp Tensile strength Elongation at Thickness (Jlm) 

(Mpa) break (%) 

NAFION 117 
~ 

20.4 ± 2.68 145.87 ± 28.55 184 
~ 

Du Pont " 

SPEEK 69.13 ± 13.68 31.74 ± 8.63 55, 120 

(DS 45.6 %) 

SPEEK 61.55 ± 1.60 35.86 ± 1.07 'r. 
90 . 

(DS47.3 %) 
< 

SPEEK 57.84 ± 13.29 31.13 ±7.77 80, 115 

(DS 67.1 %) 

Non-doped PBI 113.90 ± 11.3 81.79 ± 8.3 35 

I. V -{).8 dL.g-1 

Doped PBI 34.43 ± 3.4 32.96 ± 4.3 45 

(5.6 PRU) 

2.7 Methanol permeability measurements 

A two-compartment glass cell was utilised for permeability tests. One compartment (V A = 75 

mL) was filled with pure methanol and the other (VB = 75 mL) was filled with deionised water. 

The membrane (area 4.9 cm2
) was clamped between the two compartments and both solutions 

were stirred continuously during the experiment. Methanol concentrations were measured 

continuously during experiments. The methanol concentrations were obtained by measuring the 

refractive index for 0.5 ml sample from each compartment at fixed time intervals and compared 

the corresponding value with the calibration curve. 
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The variation of methanol concentration in the receiving compartment with time is obtained from 

Fick's first law (assuming CB« CA): 

V dCB(t) = S. D.K. C 
B dt L A 

[8] 

Where CA and CB are methanol concentrations in compartment A and B, respectively, Sand L 

are the membrane area and thickness respectively; D and K are the methanol diffusivity and 

partition coefficient between the membrane and the adjacent solution respectively. 

The membrane permeability, P, is defined as the product of D and K. The time lag, to, is 

explicitly related to the diffusivity: 

2L 
t =­
o 6D 

[9] 

Figure 2-12 shows a comparison of methanol permeability at room temperature for Nafion117, 

cast Nafion (-70 J.lm), SPEEK (-50 !lm) and PBI (-50 J.lm) films, and the influence of 5% wt 

Ti02 in the composite membranes. 

Polybenzimidazole films had lower permeabilities, i.e. superior methanol barrier, with values of 

7x 10-8 cm2 S-I for pristine films and 2 x 10-8 cm2 
S-I for PBIITi02 composite, these values are in 

good agreement with reported values for PBI in the range of 10-8 _10-9 cm2 
S-I at room 

temperature [62-64]. SPEEK had a permeability of9xlO-7 cm2 
S-1 and 8xlO-7 cm2 

S-1 with Ti02 in 

close agreement with reported values for SPEEK in the range of 10-7 cm2 s-I[65]. Nafion had the 

highest permeability of 4, 5.2 & 5 xl 0-6 cm2 
S-I for Nafion 117, cast Nation & cast Nation with 

Ti02, respectively. Reported values for Nafion in the literature are in a similar range of 10-6 cm2 

S-1 [65]. 
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Membrane 

o Nafion117 

• Nafion recasted 

o Nafion-Ti02 

o SPEEK recasted 

• SPEEK-Ti02 

o PSI recasted 

. PBI-Ti02 

Figure 2-12. Methanol permeability for PRI, SPEEK & Nation and their titania composite. 

A minor increase in methanol cross-over was noticed with the cast Nation compared with the 

commercial N 117, which can be attributed to different casting conditions and different solvent 

used [66]. Nation cast from low aliphatic alcohols solution containing water produces porous 

membranes, due to the low volatility of water compared to alcohols , a solid film will be fonned 

on the surface of the membrane restricting water removal from the membrane and fonning 

trapped bubbles in the polymer matrix. Sacca et al [67J and Baglio et al [56J suggested a method 

to resolve this problem by using a dry residue of Nation, from the low aliphatic alcohols 

solution, and then dissolving it in appropriate solvent like DMAc or DMSO, followed by hot 

pressing the membrane above its glass transition temperature at 160 QC for 10 mins [56]. 

Figure 2-13 shows water penneabilities for the studied tilms at room temperature (from 

compartment B to compartment A). Values for water penneability across Nation, SPEEK and 

PBI were in the same range as methanol penneability i.e. 10-6, 10-7& 10-8 cm2.s-1
, respectively. 
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Membrane 

D Nafion117 

• Nafion recasted 

o Nafion-Ti02 

o SPEEK recasted 

• SPEEK-Ti02 

D PSI recasted 

. PSI-Ti02 

Figure 2-13. Water permeability for PBI , SPEEK & Nafion and their titania composite. 

Small reductions in MEOH cross-over were obtained when adding 5% wt ofTi02 to membranes. 

Further reductions can be obtained by using higher percentages of Ti02 and new methods to 

prepare the composite, such as sol gel , in order to obtain more homogeneous structures in the 

membrane/fillers interface, as large agglomerates (300-800 nm) were observed using the 

commercial materials (Aldrich) . 

To avoid precipitation of the inorganic composites during the preparation, a chelating agent such 

as acetyl acetone can be added [68]. Otherwise, membrane with non-homogeneous di tribution 

will be obtained, with one (dull) side completely covered with titania agglomerates and the other 

(shiney) side dominated by the polymer matrix [69]. 
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2.8 Conductivity measurements 

2.8.1 Phosphoric acid doped PBI membrane's conductivity 

To assess the acid doped PBI membranes for high temperature PEMFC, their conductivities were 

measured using the four point probe technique, by frequency response analysis (Voltech TF2000, 

UK). The technique used four equally spaced probes (Fig. 2-14) in contact with the measured 

material; two of the probes were used to source current while the other two were used to measure 

the voltage drop. The membranes were cut into 10 mm x 50 mm strips and placed across four 

platinum foils with equal spacing of 5 mm. AC impedance measurements were carried out 

between frequencies of 1 and 20 kHz. The membranes were held at the desired conditions' of 

temperature and humidity for 3 hours to ensure steady state equilibrium was achieved, 

measurements were taken at 30 minute intervals. 

The effect of relative humidity (RH) on membrane conductivity was investigated in a test rig 

incorporating a humidifier capable of supplying a water saturated nitrogen stream to a 

membrane conductivity test cell, and a humidity analyser. For measurements, the membrane was 

maintained at the desired temperature in the test cell and the relative humidity was changed by 

varying the humidifier temperature (low to high), whilst maintaining the nitrogen flow rate at 1.2 

dm3 min-I• Relative humidity was measured using a Vaisala HUMICAp® (Finland) intrinsically 

safe humidity and temperature transmitter. 

PBI conductivity strongly depends on three main factors: acid doping level, temperature and 

relative humidity. During conductivity measurements the temperature and the relative humidity 

were varied using two doping levels: 5 moles of H3P04 per PBI repeat unit for composite PBI 

study & 5.6 moles of H3P04 per PBI repeat unit for standard PBI study. The values of 

conductivities obtained are shown in Figure 2-15. Conductivity increased with an increase in 

humidity and temperature. However, at a similar relative humidity, no significant gain in proton 

conductivity was obtained by increasing the temperature above 175 °C. This effect was a result 

of water lost by phosphoric acid dimerisation [70]. It is known that, at elevated temperatures, 

phosphoriC acid starts to dehydrate; this process occurs in many stages, the first two of which are 

shown below: 
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Second stage: 
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2H3P04 

H4P207 + H3P04 

+-+ H4P20 7 + H20 t 

+-+ HSP3010 + H20 t 

The equilibrium concentrations of these reversible reactions depend on temperature and relative 

humidity and the dimerised products have lower proton conductivity than phosphoric acid [71]. 

This explains the observed increase in dependency of conductivity on humidity at elevated 

temperatures, above 170°C [64]. 

PBI with phosphoric acid doping level of 5.6 per repeat unit had a conductivity between 2 and 6 

S m-I in the temperature range 120 to 200°C under very low humidity (1-7%). These results 

agree very closely with results obtained by He et al [72] and Ma [73]. 
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Figure 2-1 4. Schematic drawing of proton conductivity measurement cell. 
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Figure 2-15. Phosphoric acid doped PHI (5.6 PRU) conductivity in the range of 120-200 Gc. 

2.8.2 Composite membrane conductivity 

2.S.2.1 Nation composite membrane 

I--

I--

I--

I--

I--

Figure 2-16 compares proton conductivities obtained for commercial treated nation 117 with that 

cast nation and its composite membrane in the temperature range of 60-1 00 ·C. 

The conductivity of Nation 117 in its fully hydrated mode (liquid water) approached 10 S m-I 

and was much higher than that in saturated water vapour (100% RH) ca - 5 S m -I. This effect is 

known as the Schroeder's paradox [74], which deteriorates with increase in temperature and 

more apparent in thinner membranes. Nation water uptake from water vapour (saturated RH 

100%) is much lower than that from liquid water (fully hydrated) 21 compared to 14 (mole of 

water per mole of sulfonic group) under the same conditions, respectively [75]. This 

phenomenon is explained by a critical pore size in which liquid or vapour is the favourable state 

[76]. When fully hydrated, Nation 125 (125 J-lm) had a water uptake of 0.225 compared to 0.37 

(g H20 per g dry polymer) for Nation 117 (184 J-lm) at 25 QC [77]. Li et al reported values for 

Nation 117 conductivity in the range of 5-7 S m-I for RH = SO% and a temperature range of 25-

80°C [24]. 
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Figure 2-16. Proton conductivity of Nation 117, re-casted Nation & titania composite Nation. 

The conductivity of re-casted Nation tilms is an order of magnitude lower than that of 

commercial Nation 117, which is attributed to the following three reasons: 

I. Membrane thickness : Nation I 17 has thickness of 184 Ilm compared to that of re-casted 

Nation of ~ 70J.lm. The effect of membrane thickness causing non-linearity in water 

content under the same conditions should always be carefully considered when 

comparing performances of PEFCs [78]. For thinner membranes, such as Nation 115 

(127 Ilm) less water is held by the membrane (uptake) and therefore a lower conductivity 

is expected: values of I to 3 S m-I were reported for the temperature range between 20 

and 100 QC under 100 % relative humidity [65]. Higher values were reported by Yang et 

al for Nation liS in the range of 4 to 6.7 S m-I at 80 QC and relative humidity from 60 to 

80% [79]. However, all the reported values are much lower than that of Nation 117. 

H. Effect of drying at 105 QC during the re-casting procedure: Nation exhibits an irreversible 

conductivity decay (almost an order of magnitude) at temperatures of 120 QC and above; 
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even at very high relative humidity RH 95% [80]. When Nation is dried at a temperature 

of 105°C its water uptake drops dramatically. Hinatsu et al noticed a fall from 0.37 to 

0.18 (g H20 per g dry polymer) [77], while Zawodzinski et al reported a fall from 21 to 

12 (mole of water per mole ofsulfonic group) [75]. As a consequence of the fall in water 

uptake, drop in conductivity is observed under similar conditions. Sone et al [81] reported 

an order of magnitude fall in the conductivity of Nation 117 after heat treatment at 105 

cC; conductivity values before the heat treatment were 1,3 and 7.8 S m-I dropping to 0.1, 

1 and 2 at relative humidity of 40,80 and 100%, respectively. 

Ill. Effect of Solvent: The solvent used during membrane preparation can have a severe 

effect on the cast membrane's conductivity. For example using DMF instead ofDMAc to 

prepare SPEEK (60% DS) membranes resulted in an order of magnitude fall in 

conductivity from 1 to 0.1 S m-I (at room temperature and 100% RH) [59]. Similarly, 

acid doped PBI prepared using trifluoroacetic acid (TF A) had a better proton conductivity 

and poorer mechanical properties (more crystalline) than that prepared using DMAc [71]. 

Sacca et al [67] and Baglio et al [56] suggested using a dry residue of Nation (from the 

low aliphatic alcohols solution) and then dissolving it in an appropriate solvent like 

DMAc or DMSO to improve membrane characteristics. Moore and Martin [66] reported 

large differences in physical properties of Nation membranes prepared using different 

solvents. 

Zawodzinski et al [75] studied the relation between water content and water permeability 

through Nation 117 membranes; they reported values of 4 to 5 (moles of water per mole of 

sulfonic group) at 30°C and corresponding conductivities in the range of 1 to 2 S m-I at 30°C 

for similar water permeabilities to that obtained in this work, in the range of 2-3 x 10-6 cm2 sol. 

Good water retention (uptake) is achieved with the addition of titania nano-particles. This is 

reflected by enhanced conductivity of the composite films at similar relative humidity, from 1.3 

to 3.92 S m-I at 80°C and 100% RH, in comparison to that of pristine materials. However, even 

with the enhancement in the conductivity of the composite membranes it is sti1110wer than that 

of Nation 117 due to the earlier mentioned reasons. This is also reflected in the water 
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permeability values, where composite membranes showed enhancement in the water 

permeability over re-cast Nafion, but aga in the values were sti ll below those of Nafion 117 [75] 

and therefore lower conductivity. As temperature increases from 80 to 100 'C, the conductivity 

of afion 117 remained constant (under the same humidity content) while the composite 

membranes showed an increase (under the same humidity content). 

Further enhancement in water retention can be achieved with better titania dispersion and 

correspondingly smaller agglomerate size. Chalkova et al [69] and Baglio et a l [82] studied the 

effect of Ti02 surface and physio-chemical properties on the performance, and found that the 

effect of filler surface area (for similar functional groups) become important determining the 

water retention properties at high temperatures. 

2.8.2.2 SPEEK composite membrane 
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Figure 2-17. Proton conductivity of re-castcd SPEEK & titani a composite SPEEK with 60% DS. 
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Figure 2-17 shows the proton conductivity ofSPEEK (with sulfonation degree of 60%) and that 

of its titania composite in the temperature range of 60 to 120°C and relative humidity in the 

range of 50 to 100%. The maximum conductivity was achieved at 80 °C for SPEEK (DS 60%) 

over the entire humidity range with maximum value of 0.45 S m-I at 100% RH. The results are in 

very good agreement with the work of Kobayashi et al [8] and Rikukawa et al [38], where they 

found, similarly, maximum conductivity for SPEEK (DS 65%) with 100% RH at 80°C with 

conductivity values in the range of 0.1 S m-I. Mikhailenko et a1 [83] found a similarly maximum 

conductivity for SPEEK (DS 50%) around 90°C and they also reported a shift in the maximum 

conductivity towards 140°C for SPEEK with sulfonation degree of 72% and above. 

While for composite SPEEK the maximum conductivity depended on relative humidity, for high 

humidity content (RH 100%) a maximum value of 0.67 S m-I was obtained at 60°C, and for low 

humidity content (RH 50%) a maximum conductivity of 0.024 S.m-I was obtained at 100°C. At 

relative humidities up to 80%, the composite SPEEK showed advantages over standard SPEEK 

for temperatures up to 100°C: above such temperature no improvements were observed. For 

relative humidity close to saturation (RH 100%), the composite showed enhancement only at low 

temperatures up to 60°C, thereafter the conductivity of compos~te membranes was even lower 

than that of standard SPEEK (60% DS) at 100% RH. 

SPEEK conductivity greatly depends on humidity, more so than that of Nation 117 [84], as well 

as the sulfonation degree. For DS 65% conductivity values were in the range between 0.0079 and 

0.81 S m-I at 100% RH and temperature range of25 to 100°C [85], and for DS 50% between 0.4 

and 0.2 S m-I at 100% RH and temperature range of25 to 100°C [83]. The measured values for 

SPEEK with DS 60% at 100% RH were in the reported range between DS 50 - 65 % with value 

of 0.45 S m-I at 80°C [83, 85]. SPEEK membranes showed similar behaviour to re-cast Nation, 

where they both exhibited poor conductivity and difficulty in water retention at elevated 

temperatures, partially caused by the low film thicknesses (-50 J.l.m). 
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Figure 2-18. Proton conductivity of rc-cast cd acid doped PBI & titania composite acid doped PBI (S PRU). 

Figure 2-18 shows the conductivity of phosphoric acid doped PBI and its titania composite with 

doping level of 5 moles acid per repeat unit of polymer. PBI (5 PRU) conductivity was in the 

range of 1 to 4 S m'l at low humidity (RH ~10%) , close to the reported values for PBI (5.6) (Sec. 

2.8.1). Good conductivities in the range of I to 2 S m' l were obtained even at low operating 

temperatures 60-80 QC at intennediate humidity (RH 50%) which agree with those previously 

reported [86]. 

Titania nano particles did not offer any advantage for PBI based membranes; on the contrary it 

reduced its conductivity. PBI membranes showed good conductivity with doping level of 5 PRU 

even at low humidity and elevated temperatures. The main proton conduction mechanism occurs 

in the free excess phosphoric acid in the amorphous regions [73] , and not in the polymer salt 

complex. The polymer fonns crystalline salts with acid (one acid per imidazole group) which has 

only a small contribution to the conducti vity [71] , which means the interaction between the 

titania and the polymer matrix do not contribute to the overall conductivity. On the contrary, it 
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might have a negative influence by occupying space in the polymer matrix which is normally 

substituted with highly conducting mobile (free) phosphoric acid. 

2.9 Summary and conclusions 

Nation membranes exhibit high proton conductivity under fully humidified conditions (RH-lOO 

%), however Nation conductivity falls sharply above 100°C, due to reduced humidity under 

atmospheric conditions and fall in water uptake from water vapour, in comparison to liquid 

phase. Phosphoric acid doped PBI offers good proton conductivity extending over a wide range 

of operating temperature up to 200°C, with no or very low humidity. PBI conductivity improves 

with increasing humidity; which is more significant at high temperatures. However, this 

dependency is much smaller than that of Nafion and makes PBI the best choice of membrane for 

anhydrous operation above 100°C. 

The conductivity of SPEEK showed an even higher dependency on humidity than that of Nafion; 

the conductivity values depended on the degree of sulfonation. For sulfonation degrees of 70 % 

and above, SPEEK become partially soluble in water and fully soluble in MEOH. A sulfonation 

degree of 60 % was considered to be a good compromise between conductivity and mechanical 

properties; at such sulfonation levels the conductivity was an order of magnitude lower than that 

of PBI, even at high humidity content (RH-lOO %). A fall in conductivity was observed at 

temperatures above 100°C for SPEEK, with sulfonation degree of 60 %. Even though there is 

published work in the literature [84, 87] showing good conductivity of SPEEK in the range of 1-

4 S m-I (similar to PBn at temperatures up to 140°C, the operating conditions of such systems 

are unrealistic requiring pressurised steam and very high sulfonation degree (brittleness and 

swelling / solubility issues). 

In terms of methanol cross-over, PBI is an excellent barrier for methanol with a permeability one 

order of magnitude lower than SPEEK and two orders of magnitude lower than Nation. 
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3 Oxygen Reduction in PBIIH3P04 Interface 

3.1 Introduction 

In electrochemical systems, the exchange current density jo, depends on both temperature and 

concentration. In PEMFC the effective exchange current density, for hydrogen oxidation is 

several orders of magnitude greater than that for oxygen reduction (cathode reaction), ca. 10-4 vs. 

10-9 A cm-2 Pt at 25 ·C and I atm [I]. The slow kinetics of oxygen reduction is a key factor that 

limits the performance of fuel cells. This means that, at a given current density, the voltage 

losses in the cathode are usually significantly higher than those of the anode. Therefore, 

enhancing the cathode activity has been a major focus for PEMFC electrode development. 

In this chapter, the active specific areas of several commercial PtlC catalysts were measured 

using the method based on the hydrogen under potential deposition charge. Half cell tests (three­

electrode cell) were carried out in order to obtain kinetics information regarding oxygen 

reduction at a PBVphosphoric acid interface. The three phase boundaries were discussed and the 

effect of ionomer properties (permeability, density & conductivity) and content in the catalyst 

layer were investigated. The active electrochemical surface area of the electrode was also 

measured and the corresponding platinum utilisation reported. 

3.2 Cyclic Voltammetry and Electrochemical Surface Area (ESA) 

The Electrochemical Surface Area (ESA) is one of the most important parameters for 

characterizing PEM fuel cell electrodes. A higher ESA implies a better electrode, as more 

catalyst sites are available for electrode reactions. The electro-catalysis mechanism is based on 

the electrode-electroactive species charge transfer through the electrode surface. Hence reaction 

rate, and consequently the current, is proportional to the real electrode surface area. 

3.2.1 Cyclic Voltammetry and upn 
When comparing the activity of catalyst surfaces, knowledge of the catalyst electrochemical 

surface area (ESA) is essential. Table 3-1 summarises estimated ESAs, from XRD spectra, 

assuming spherical particles and its variation with the catalyst PtC ratio reported in [2]. 
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The commonly used electrochemical technique for the determination of metal electrode active 

surface area is anodic stripping of hydrogen adsorbed in the under-potential deposition potential 

(UPD) region. This corresponds to the total charge passed during hydrogen 

adsorptionldesorption after accounting for the double layer capacity [3]. 

Table 3-1. Platinum-carbon weight percentage relation with average particle size, data taken from Ref (2). 

Catalyst Pt Particle Size (A) Pt/ (m2 g-I) 

5% 15 185 

10% 20 141 

20% 22 128 

30% 25 112 

40% 28 100 

50% 33 86 

60% 37 76 

80% 49 57 

Hydrogen adsorption on the platinum electrode surface is achieved by applying sufficiently 

negative potentials to the electrode in contact with an aqueous solution. Three regions can be 

distinguished, (shown in Figure 3-1) in the cyclic voltammetric curve of a Pt electrode in contact 

with an acid solution [4] . 

The "oxygen region" is found at positive potentia[s. During the positive sweep prior to O2 

evolution, a hydrated Pt oxide monolayer is formed (anodic current). The reverse process will 

take place in the cathodic sweep. 
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Figure 3-1. Typical observed platinum cyclic voltammogram in acidic media with regions of interest 

indicated, potentials are versus SHE at room temperature. 

In the centre of the voltammetric curve is a region where only low currents (positive anodic for 

the positive sweep and negative for the negative sweep) can be found. This is the double-layer 

region where only capacitive processes take place. The value of the double layer charging 

current LII (non-faradic) is directly proportional to the capacity of the double layer and the scan 

rate: 

Id/ = Cd/ ,u [I] 

Where Cdl is the capacity of the double layer and u is the scan rate. 

Finally, the "hydrogen region" is found at negative potentials. At more negative potentials the 

reduction of H+ and the adsorption of H atoms become stronger: 

H~ (aq) + c .. + site ~ H(ad) 
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This process continues as electrode potentials become more and more negative, until the 

formation of a H(ad) monolayer is achieved. Once the Pt surface is fully covered by hydrogen 

atoms, the adsorption ofH2 molecules will take place: 

2H(ad) ~ H2(ad) 

These adsorbed molecules come together to form hydrogen molecules, which will eventually 

form bubbles that will leave the Pt electrode surface when they have grown large enough: 

The sharp rise in the cathodic current is due to hydrogen evolution [5]. When the potential is 

reversed, the opposite processes (anodic currents in the hydrogen region) take place. 

The electrochemical surface area (cm2 mg- I Pt) of the electrode can be calculated from the 

charge transfer (QH, mC mg- I Pt) for the hydrogen adsorption and de sorption in the hydrogen 

region (0.05-0.4 V vs SHE) of cyclic voltammograms [6]. 

An average value of 210 J.lC cm-2 of the real electrode surface for a clean smooth platinum 

electrode can be considered for rough platinum polycrystalline surfaces- Pt(lOO,lOl&111) [7, 

8]. 

The ESA obtained for a given catalyst layer is highly dependent on the method used to prepare 

the surface under investigation [3]. The use of binding agents (e.g. Nation, PTFE) tends to 

change accessible ESA. A high loading will usually result in a thick electrode, limiting 

electrolyte access to the catalyst and a corresponding drop in the measured ESA. 

The columbic charge for hydrogen desorption (QH) was used to calculate the active platinum 

surface of the electrodes. The value of QH was calculated as the mean value between the charge 

exchanged during the electro-adsorption (Qads) and de sorption (Qdes) of H2 on Pt sites. The 

contribution of charge from the double layer region was subtracted from both Qads and Qdes 

before calculating QH. 
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3.2.2 ESA measurement details 

The experiment was perfonned in a glass cell with a silver/silver chloride reference electrode 

connected to a luggin capillary probe. The working electrode was glassy carbon electrode (GCE) 

with 3.0 mm dia. (BASi) with a geometric surface area of c.a. 0.07 cm2
• The counter electrode 

was a platinum wire. The electrolyte was 0.5 M H2S04, The voltammetric experiment was 

carried out using EG&G Princeton applied research Model 273 digital Potentiostat! Galvanostat. 

Platinum supported on Vulcan XC-72R carbon from E-Tek Corporation (20%, 30%, 40%, 50%, 

60% wt) was dispersed in dilute water-ethanol (1:1 v/v) ink, 0.014 mgpl (2 mgPt cm-2
) was 

applied to the surface of the glassy carbon by means of micro-pipette, then dried in an oven at 80 

"c. 

Three different scan rates were applied 20, 50 and 100 mV S-I. The measurements were carried 

out three times each, the average values was reported with its corresponding standard error. 

3.2.3 ESA results and conclusion 

The ESA is calculated using: 

ESA{cm 2 ) = QH (columb) 
0.21 * 10-3 (columb.cm-2

) 

Where QH is given by: 

QH = J'I ·dt 
I 

[2] 

[3] 

ti is the time when the hydrogen adsorption (or desorption) starts and tf is the moment when the 

monolayer is fully saturated (or cleared). The faradic current, I, is the measured current 

subtracted from the double layer current. 
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Figure 3-2. Cyclic voltammogram of 60% Pt on Vulcan XC-72R from Etek inc. using scan rate of 0.02 V so. in 

O.SM H1S04 potentia Is are versus SHE at room temperature. 

Table 3-2. The electrochemical surface area measured from UPO and the estimated from x-ray diffraction 

ptle ESAuPD XRD* ESAxRD Utilisation 

%wt m gp; nm m gPt - % 

20% 51.1 ±400 202 128 3908 ± 301 

30% 51.9 ± 3.6 2.5 112 46.4 ± 3.2 

40% 4703 ± 4.4 208 100 4700 ± 4.4 

50% 42.1 ± 5.4 3.3 86 48.8 ± 6.3 

60% 3602 ± 3.1 307 76 47.4 ± 400 

• data taken from reference [2] 
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Table 3-3. Double layer charging current and the corresponding double layer specific capacity 

Pt/C I dl@20mV/s (C) I dl@20mV/s (Pt/C) Cdl (C) Cdl (Pt/C) 

%wt A.g - A.g- F.g - F.g-

20% 0.88 ± 0.17 0.71±0.14 45.0 ± 1.2 36.0 ± 0.9 

30% 0.89± 0.16 0.62 ± 0.11 45.6 ± 1.9 31.9 ± 1.3 

40% 1.28 ± 0.11 0.77 ±0.07 65.5 ± 2.3 39.3 ± 1.4 

50% 1.11 ± 0.04 0.55 ±0.O2 56.7 ± 1.9 28.4 ± 1 

100.1 ± 
60% 1.89 ± 0.13 10.75 ± 0.05 40.1 ± 3.3 

8.3 

Table 3-2 summarises the results calculated for the ESA of 20%, 30%, 40%, 50% & 60%wt Pt 

on Vulcan XC-72R supplied by Etek Inc. Comparison of the measured values with the estimated 

values from XRD spectra [2] are reported. 

It can be noticed that the measured ESAs are approximately half those of the estimated values. 

This is explained as follows: 

• The estimate values exhibit large inherent error values arising from several assumptions: 

quoted metal to carbon percentage, homogenous spherical platinum distribution and accuracy of 

XRD average particle size. 

• The measured values are affected by the binder [3] and the thickness of the measured 

layer, due to porosity issues and the hydrophobic properties of the carbon support- not all 

catalytic sites are accessible by the liquid electrolyte. This is clearly observed from the utilization 

of the catalyst, where all the studied catalyst exhibits values close to 50% except for 20% Pt/C, 

which had a value of ca. 40% due to its too thick layer. 

The catalyst specific electrochemical surface area measured using cyclic voltammetery 

correspond to 50-30% of the given value by the manufacture (XRD) when placed in the 

electrode structure [1]. 
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Table 3-3 summarises the results of the double layer charge: two values were reported, one 

denoted as (C) which consider the mass of carbon only, assuming that the charging current arises 

mainly from the carbon (specific area of 250 m2 g-I) and neglecting the contribution from 

platinum (specific area of 30-50 m2 g-I), and the other denoted as (Pt/C) where the total mass of 

the catalyst is considered. 

The reported values of the charging current (scan rate of20 mV S-I) and the specific capacity are 

in close agreement with reported values in the literature: Idl@20mV/s of 0.6 A g-I and Cdl of 22 F g-I 

for untreated Vulcan [9] and Idl@20mV/s of 2 A g-I with Cdl of 92-112 F g-I for porous Vulcan 

electrode [10]. 

3.3 Electrodes and three phase boundaries 

The electro-catalysts used in the PEMFC are usually based on platinum or its alloys for both 

anode and cathode. There have been numerous efforts to minimise the use of platinum in the 

catalyst layer by increasing catalyst activity. This has been achieved by supporting finely 

dispersed platinum nano particles, ca.-1.5 nm, with an area of 185 m2 g-I on suitable carbon 

blacks or graphite- the maximum theoretical area for platinum is 240 m2 g-I [1]-. In addition a 

high degree of optimisation of the electrode structure has taken place to enable low loadings of 

Pt catalyst, of the order of 0.1-0.2 mg cm-2 for anodes and 0.2-0.5 mg cm-2 for cathodes [11, 12]. 

There are three different participants in electrochemical reactions, electrons, protons and 

gaseous-liquid reactant/product. The reaction will only take place on the catalyst surface where 

all the three species have access (Figure 3-3). Electrons travel through electrically conductive 

solids, i.e. from the catalyst particles to carbon substrate (in case of supported platinum). Protons 

travel through the ionomer electrolyte, therefore an intimate contact between the catalyst and 

ionomer is required. Finally, gaseous reactant should be easily transported to reaction sites; 

similarly, product water should be easily removed to prevent flooding, i.e. restricted access of 

oxygen due to pore blocking. This problem can be solved by providing a porous structure next to 

the catalytic sites. 
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Figure 3-3. The three phase boundary for porous catalyst layer. 

The electrochemical reaction will take place at the three phase boundary formed by the ionomer, 

solid and void phases. However, the reaction zone is not limited to a single three phase boundary 

line as gas permeates through the polymer electrolyte too. 

Connecting the catalyst with a binder forms the electrode/catalyst layer in a PEMFC. The binder 

typically used was polytetrafluoroethylene (PTFE): a non-wetting component within the 

electrode. The bound catalyst structure is applied either to the membrane or first to the backing 

layer and then to the membrane. The binder performs very important functions. It " fixes" the 

catalyst particles within a layered structure and enables some degree of electronic conductivity 

between particles (contact between carbon particles) . It also provides the overall architecture of 

the electrode, enabling access of gas into the structure (hydrophobic regions) while enabling 

movement of water (in hydrophilic regions). 

One of the most important features required of any electrode structure is a high degree of 

intimacy of the catalyst particles and the membrane to ensure high proton mobility. 
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Consequently a development in electrode structure design was to incorporate a hydrophilic 

ionomer into the electrode as a binder. This enhanced the membrane/catalyst contact and reduced 

the platinum loading requirements. In most state-of-the-art membrane electrode assemblies 

(MEAs), the catalyst is largely covered in a thin layer of electrolyte ionomer. The optimum 

thickness of such a layer depends on a balance between the proton mobility and oxygen 

solubility/diffusivity through this layer. Thicknesses for Nation based ionomer in the range of 

0.5 to 3 nm were suggested in the literature [13-17]. 

To minimise the voltage losses due to the rate of proton transport and reactant gas permeation in 

the depth of the catalyst layer, it should be relatively thin. On the other hand, the platinum active 

surface area should be maximised. To obtain thin catalyst layers a high PtC ratio should be used; 

however, small Pt particles and therefore larger active areas are achieved with low PtC ratios 

(Table 3-1). 

The influence of catalyst layer thickness and Nation content on the electrode performance 

continues to be an area of study [11, 12, 14, 18-21]. Optimum Nafion contents range from 27 to 

40 wt% depending on the nature of the electrodes: different Pt loading or Pt/carbon support, i.e. 

catalyst thickness and different ink preparations i.e. porosity. 

Reshetenko et al [22] suggested that the Nafion content depended on porosity of the structure for 

high platinum loadings 3-4 mg cm-2 i.e. low overall porosity, the Nation content should be in the 

range of 10 %wt, which increased to 20% when platinum loading fell to 1 mg cm-2
• The porosity, 

on the other hand, is inversely proportional to its ionomer content. The effect of Nafion on the 

catalyst layer pore size, pore size distribution, pore area, and pore volume were reported based 

on porosimetry measurements [23]. Sasikumar et al [20] similarly identified optimum nafion 

content of 20, 40 and 50% wt for lower platinum loadings of 0.5, 0.25 and 0.1 mg cm-2
, 

respectively. 

Qi and Kaufman [11] recommended a Nafion content of 30% for electrodes with low platinum 

loading of 0.2-0.35 mg cm-2
• Similar Nafion contents were considered by Li and Pickup [24] and 

Lufrano [25]. A volcano plot relation was proposed [25] for the effect of nafion content on 
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conductivity and accessible electrochemical surface area (ESA), where increasing nafion content 

above 30% led to electrical isolation of the catalyst or carbon particles. Song et al [12] suggested 

that the sharp drop in performance observed when increasing nafion content above 35% (0.4 mg 

cm-2 using 20% Pt/C) was also attributed to slow oxygen transport through thick ionomer films, 

which became more significant at elevated temperatures. Other researchers suggested that the 

best Nafion content depended on the molecular weight of the ionomer or its ion exchange 

capacity (lEC) [26] or operating oxygen partial pressure and stoichiometry; 35% for oxygen 

operation compared to 22% for air operation [27]. 

Another approach to optimise the catalyst layer was to fabricate electrodes with different 

distribution or loading gradients for both ionomer and catalyst (PtC ratio). 

Antoine et al. [28] studied the effect of catalyst loading gradients on performance. They reported 

a better performance for low porosity active layer when catalyst particles were located close to 

the gas diffusion layer, but for highly porous layers, the performance improved when they were 

located close to the proton exchange membrane. Wang et al. [29] numerically modelled the 

influence of gradients in Nafion contents on performance and concluded that an improvement in 

performance is obtained when the Nafion content increases toward the membrane. These results 

were also verified experimentally [30]. In the cathode catalyst layer, oxygen diffuses through 

two different components: gas pores and electrolyte. When the volume fraction of gas pores is 

sufficiently large, oxygen diffusion in the electrolyte is the dominant process and diffusion in gas 

pores may be neglected. When the volume fraction of gas pores is relatively small compared to 

the volume fractions of liquid or solid electrolyte, oxygen diffusion in gas pore is significant and 

cannot be ne glected [31]. 

An increasing Nafion content distribution in the catalyst layer from GDL towards membrane 

results in a better performance overall, compared to that with a" uniform nafion distribution. This 

is explained by improved oxygen transport near the GDUCL interface by virtue of the increased 

porosity due to lower Nafion content, which leads to a lower electrochemical reaction rate near 

the GOUCL interface than that with a uniform nafion distribution. Similarly, near the CLlPEM 

interface, proton migration is improved because of the higher ionomer content. However, oxygen 
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transport is compromised due to a decrease in porosity, leading to a lower electrochemical 

reaction rate in this region, compared with the uniform Nafion distribution case. In the middle 

region of the CL, the electrochemical reaction rate is larger than that of the uniform Nafion case 

and this is responsible for the increased performance [32]. 

Song et al [32] modelled the effect of platinum distribution with constant Nafion content (30 % 

wt). They used low Pt loading close to the GDL side (using low PtC ratios) and high Pt loading 

close to the membrane (using high PtC ratios). The reaction rate near the GDUCL interface was 

slightly lower than in the case of the uniformly distributed Pt cathode, but the increase of Pt 

loading near the CUPEM interface resulted in a higher reaction rate compared to the uniform Pt 

loading cathode. Because the overall increase of the electrochemical reaction rate near the 

CUPEM interface was larger than the overall decrease near the GDUCL interface, the catalyst 

layer with optimized distribution of Pt loading showed the higher performance than that for the 

uniform distributed case. 

It can be concluded that the CL with a stepwise porosity distribution, with higher porosity near 

the GDL and lower near the membrane, performs better than that with uniform distribution, 

especially at high current density. This is attributed to better O2 distribution in the CL, thus 

extending the reaction zone forward towards the membrane side [27]. 

3.4 Nation, PHI and phosphoric acid 

As mentioned above the optimum ionomer content in the catalyst is a balance between the 

ionomer conductivity and oxygen permeability. Tables 3-4, 3-5, 3-6, 3-7, 3-8 & 3-9 provide 

published values of conductivity, density, and oxygen, hydrogen and methanol permeability 

(diffusion and solubility) for pristine PBI, acid doped PBI, phosPhoric acid, Nafion and PTFE. 
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Table 3-4. Proton conductivity of PRI, phosphoric acid and nation at various temperature and relative 

humidity 

Material Temperature RH Conductivity Ref 

°c % Sem-

PBI 5.6 PRU 120a_200 73_1 % 0.02-0.056 This work 

PBIS PRU 150a-190 101_11)% 0.01-0.04 [33] 

H3P04 99.8%wt 130 0.7% 0.4 [34] 

H3P04 9O%wt 170 10% 0.643 [35] 

Nation 117 60-80 80-85 0.06-0.08 [36] 

PBIOPRU 25 0-100% 2-8x1O [37] 

PBIS.6 PRU 803 -160 80a-l0 % 0.02-0.06 [33,38] 

Nation 115 20-100 100% 0.01-0.03 [39] 

Nation 115 80 60-80% 0.04-0.067 [39] 

Nation 117 100 80% 0.09 [40] 

Table 3-5. Density of PR I, phosphoric acid, Nation and PTFE at various temperatures. 

Material Temperature Density Ref 

°c 
PBI 25 1.34 [41 ] 

H3P04101.6%wt 2S',130D,170c 1.88751,1.797ti,I.764c [34] 

H3P0488.28% wt 2Sa,1301i,IS0c 1.726a,1.632 ,1.614c [34] 

Nafion 25 2 [17,42] 

PT FE 25 2.15 [43] 

The water content in Nafion greatly affects the degree of swelling and therefore gas permeation 

through the membrane, since water content has a significant influence on the diffusivity [44]. 

The permeation of gases through Nafion takes place in the intermediate region, which consists of 

the flexible amorphous part of the polytetrafluoroethylene backbone [45] . When fully hydrated, 
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Nation's permeability is close to that of water and its conductivity is in the range of 0.1 S.cm-I
, 

on the other hand when dry, Nation's permeability is close to that of PT FE and its conductivity is 

negligible. 

Similarly, pristine PBI has negligible conductivity and oxygen permeability. On the other hand at 

extremely high doping levels, PBl's conductivity and oxygen permeability approach those of 

. phosphoric acid under the same conditions. 

When doped with 5 mol of phosphoric acid per mole repeat unit of the polymer, a level 

necessary to obtain high enough proton conductivity for fuel cells, the polymer membrane 

exhibits a volume swelling of 118 %, resulting in separation of the polymer backbones [46], and 

correspondingly increase in permeability. The permeation of both hydrogen and oxygen 

increases with increase in acid doping level [46,47]. 

The ratio of the permeability coefficient for hydrogen and oxygen also varies with doping level, 

i.e. 40 for pristine PBI and 4 for the acid doped PBI [46]. Similarly, it falls from 3.5 to 2 for dry 

Nation and 102 %wt wet nation, respectively [44]. 

Wainright et al. [33] studied the vapour permeability of PBI at elevated temperatures. The 

permeation of methanol vapour at 80 ·C was found to be 300 times lower than that for Nation. 

The gas permeability of PBI membranes at 150 ·C was comparable to that of Nation, for 

hydrogen and lower in the case of oxygen at 80 ·C [46]. 

Ayad et al. [48] studied the oxygen permeability through Nation, sulfonated polyimide & PBI. 

Values differed by almost an order of magnitude: 9x1O-12 mol cm cm-2 
S-I for Nation and O.5xlO-

12 & 10-12 mol cm cm-2 
S-1 for PBI and S-PI, respectively at 25°C. They suggested that the 

optimum amount of ionomer depended on its O2 permeability 25% wt for nation and 15% wt for 

SPEEK and P-IS. 

Unlike Nation based PEMFCs, there is limited data available in the literature on optimizing PBI / 

phosphoric acid based electrodes. Kim et al used platinum loading of 0.55 mg C~-2 (20 %PtlC 

catalyst) and tixed the doping level in the catalyst layer to 6 moles acid per mole polymer (6 
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PRU) or 2: 1 weight ratio, they achieved an optimum amount for acid-PBI of 20 %wt, 

corresponding to PBI and acid loading of 0.23 & 0.46 mg cm-2
, respectively. 

Wang et a1. [49] used platinum loading of 0.5 mg cm-2 (20% Pt/C catalyst) and PBI loading of 0, 

0.3 & 0.9 mg cm-2 with no precise amounts of acid added (few micro litres). They found that the 

best performance was achieved with PBI loadings of 0.9, 0 & 0.3 mg cm-2
, respectively. They 

concluded the preparation method and ionomer-acid content had a severe impact on PBI based 

electrodes. 

Pan et a1. [50] used platinum loading of 0.5 mg cm-2 (20% Pt/C catalyst) and fixed the doping 

level in the catalyst layer to 12-15 moles acid per mole polymer or 4-5: 1 weight ratio; they 

suggested PBI and acid loading of 0.7 & 2.8-3.5 mg cm-2
, respectively. 

Seland et a1. [51] studied different catalyst thickness using different PtC ratios. They concluded 

that the optimum performance was obtained with a thin catalyst layer using 50% pt/C. They 

fixed the acid doping to 6 PRU (acid molecules per repeat PBI unit) and suggested optimum PBI 

loading of 0.4 and 0.6 mg cm-2 for anode and cathode, platinum loading of 0.36 and 0.6 mg cm-2
, 

respectively, accompanied by acid loading of 0.8-1.2 mg cm-2
• 

Scott et a1. [52] and Lobato et at. [53] studied the effect of catalyst ink solvent on the fuel cell 

performance, they reported enhancement using a colloidal ionomer in the ink (Acetone) 

compared" with a standard ionomer solution method (DMAc), using platinum (20 % Pt/C) and 

PBI loadings of 0.5 & 0.7 mg cm-2
, respectively. This was attributed to different pore sizes and 

pore size distributions. Similar work was reported on Nafion systems [54]. 

Kongstein et a1. [55] have recently shown that PBI based catalyst layer performance can be 

improved by using non homogenous platinum distribution, similar to the technique described 

earlier for Nafion. They used low Pt loading close to the GDL side, using 20% PtC ratio, and 

high platinum loading close to the membrane, with 50% Pt/C with total platinum loading of 0.6 

mg cm-2. This electrode showed advantages over standard 0.6 mg cm-2 50% Pt/C. They also 

recommended PBI loading of 0.2-0.4 mg cm-
2

• 
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Table 3-6. Vapour methanol permeability through PBI and nafion at various conditions. 

Material Temperature RH Species 
Vapour 

activity 
Permeability Diffusion solubility Ref 

'i"'- ~, 1O-i2 mol cm 10~ mol ... h~'" 
r _ }'t _ 

QC % 
," , 

~ i ~; ~'"': 
. 

~ ]0-6 cm2 S-I t! 

cm-2 S-I atm-l cm-3 atm-l 

PBI5PRU 180 5-7.5 Methanol 0.25-0.5 280-298.5 [56] 

PBI5PRU 180 0 Methanol 166.4 • - [56] 
;a; !~ ~ 

PBI5PRU 150 0 Methanol 0.01-0.1 6.7-67 0.01 2175-6526 [33] 

PBI3PRU 80 nJa Methanol nJa 92'34 .. ,- [57] - ," ,-
Nafion117 80 n/a Methanol n/a 27360 [47, 57] 

Table 3-7. Liquid mdhanol permeability through PRI and nafion at 2S'C and fully hydrated conditions. 

Material Temperature Water content Species Concentration Permeability Ref 

QC %wt 

Nation 117 25 Fully hydrated Methanol 3% 2300 [58] 

Fully hydrated Methanol 3% 'i~ ~.~\~ ~ ::'; 8.3 _ r: , .... [58] 
\J !" 

110 , 
PBI 25 Fully hydrated Methanol 10-100% 18 [59] 

Fully hy drated Methanol :r ... 3% 
~"","'f 

850 [39] 
'~. 

Nation117 25 Fully hydrated Methanol 3% 2000 [60] 

PBI ..... ··~";i 25 u .' , Fully hydrated Methanol 100% •• I.'l.. 70 This work 

Nation 117 25 Fully hydrated Methanol 100% 4000 This work 
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Table 3-8. Hydrogen and oxygen permeability through pristine and doped PBI, and phosphoric acid at various conditions. 

Material Temperature RH% Species Permeability Diffusion solubility Ref 

10,12 mol cm 
10~ cm2 S·l 

10"' mol cm') 

t, ' °C ~ 
, , % 

cm'2 sol atm,l atm'l ''" ~ ,I,. •... 
" i', 

PRI 0 pru 120 0 O2 0.06 [46] 

PBIOpru 80 0 O2 0.05 L . " [46] 

PRI 0 pru 180 0 O2 0.1 [46] 

PBIOpru 120 0 H2 3 
i 

[46] P' . - .~ .. 
PRI 0 pru 80 0 H 2 1.6 [46] 

PBI 0 pru 
1~ 

180 0 H2 4.3 - - [46] 

PRI 0 pru 25 100 O2 0.5 

PBI3pru 
i. 

150 wa H2 60 
'I .'t "'I' 

PRI3 pru 150 nla O2 3.3 [61 ] 

PBI5pru 120 0 - t' O2 " 70 ~ .. ill' -
..; ;~ , - [46] 

PRIS pru 80 0 O2 

PBI5pru 180 0 O2 
xC 

90 
• L ;:,' .-

I" ,( 

PRIS pru 120 0 H 2 250 

PB[~pru 80 
q; 

0 H2 120 r. ~:'.: t." ~_ 
I, .,00' .. , 

"1"'. ~'. "j ~ 

PRIS pru 180 0 H2 380 [46] 

PBI6pru 150 . , . ' 10 
,. ' " ' O2 - 2.176 3.2 0.68 .. ~ j [62] . ',. 

1". 't , r.1 
. I':', 

',; ;,. '~ " '11 ~ .'.'" ... " 

HJ P04 9S%wt 150 JO O2 7.3 1 17 0.43 [63] 
( 

10 O2 
_ 1~{ 3.6 30 !," 0.12 

;; 

[64] IIJPO.9S-;' wt - 150 r ~'~ 
•• !: 
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Table 3-9. Hydrogen and oxygen permeability through Nafion, PTFE and SPEEK at various conditions. 

Material Temperature Water content Species Permeability Diffusion solubility Ref 

10-11 mol cm 
10-6 cm2 S-I 

10"' mol cmOJ 

°C .. 
~ 

cm-2 S-I atm-I atm-I 

Nafionl17 25 0 O2 2.S 

Nafion117 25 z: .•. 0 
.F 

H2 4.1 
" 

'. 
. : n .. I I 

Nafionl17 SO 0 H 2 15.7 [46] 

Nafion117 80 • 0 O2 
i 

4.1 - - [44] , .. , ;; , 
,!,", ." . ·c . "' - . 

r" ~ .. 
Nafionl17 SO 0 H 2 14.4 [44] 

Nafion117 ,..r" 80 0 
; O2 3.1 -'" [46] 

.';~ . 1.~ 
- , .. .... 

Nafionl17 SO 102% wt H 2 68.4 [44] 

Nafion117 80 102%wt O2 r • 34.2 
• ~ r. ." r 1-

Nafion125 80 0 O2 7.5 

Nafion125 .' 80 
... ; 

7,~ r;. 0 [' t • H2 48 
'~ ~ it. ~ 1::, 3 

Nafionl25 80 0 N 2 3 [65] 

Nafion125 ,:w r"A" 30 ~ '.: " 0 
j . O

2 0.49 0.088 ""1. 5.7 ' [65] .- " 
, ~;.' . Jt'~". ; 

'# t J" '.,., :...~~~. L ~ 

.' Nafionl25 30 0 H 2 4.79 2 2.4 [65] 

Nafionl25 ~ '" . 30 ~ .; . <: 0 N2 
. t .• 

0.223 0.092 ;(., . 2.4 
oq 

[65] .,' ~ T 
. ';r 

. IIIi u 
~ ~ . - , ' 4', .;,.. 

Nafion 25 Fully hydrated O2 9.6 7 1.6 [47, 48] 

SPEEK 
F. +1 

25 Fully hydrated- O2 
',,: • lolL' 2.5 z:rr:!"''1I" .. Q .• " ~,j, ,1_ ill.... [48] -... " ,.. , ~ .. 

,~' '! ~ .l , e . ~ 
PTFE 20 0 O2 L2 0.12 10.3 [66] 

PTFE $Y 80 ,rc:=:;, r \ 0 .. ' O2 
c 

6.1 0.88 
q ., 

6.9 [66] ~ .. ; .w :r I.Jt. ' - !#'~:-' f"; I"' ~,,~ ;~ ·:.13 
\0) t •• \ ....... ,+---

., G, , « Q 

PTFE 20 0 H 2 8.3 0.26 31.3 [67] 

PTFE • .J:;;J 20 " 5'. i 0 O2 3.8 0.14 26.8 [67] - , . 
.~ ': ~ 

~ ........ ~, "" .... "_.rj.~ 
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3.5 Electrode preparation 

The required PBI loadings were initially estimated using published data as shown below. 

Suggested PBI loading in the literature varied between 0.2 and 0.9 mg cm-2 for platinum loading 

of 0.5-0.6 mg cm-2using 20%Pt/C. The acid loading varied in the range of 0.46 to 3.5 mg cm·2• 

As shown earlier PBI conductivity and oxygen permeability depended on its acid content or 

doping level, whilst 25% wt was found to be the optimum amount for nation, under the above 

mentioned conditions, leading to loading of 0.83 mg cm·2• To maintain similar volume fractions 

(27%) and considering the density values, from table 3-5, Nation loading of 0.83 mg cm-2 is 

equivalent to PBI loading of 0.556 mg cm-2
• From Table 3-4 it is seen that PBI (6PRU) exhibits 

half the conductivity of nation under their nominal operating conditions (80'C, 80-90% RH for 

Nation and 150-175'C, 1-10%RH for PBI), requiring twice the volume of PBI to maintain the 

same conductivity. On the other hand, from Tables 3-8 & 3-9 it can be seen that the hydrogen 

permeability for dry PBI (6 PRU) at 150 'c is similar to that of dry Nation at 80 'c and the 

oxygen permeability of PBI (6 PRU) is 25-75 % of that of dry Nation at 80 'C. However, 

Nation's permeability increases almost an order of magnitude (8.5 times) by increasing its water 

content from dry to 102 % wt at 80 'c and RH 90-100 % , a typical operating conditions for 

Nation. On the other hand, PBI's (6 PRU) permeability increases only by a factor of 2 when the 

relative humidity is increased from 1 to 10 % at 150 'c, the typical operative range for PBI. This 

means that the PBI film thickness over the catalyst layer should be 4 times less than that of 

Nation to maintain similar oxygen transport. The above estimations are based on the PBI density 

only and ignore the contribution of the acid. 

In this work a value of 0.72 mg cm-
2 

for PBI's loading was chosen for 20 %Pt/C with platinum 

loading of 0.5 mg cm-2
• Platinum loading was tixed and PBI loading was scaled to 0.27 and 0.12 

for 40% pt/C and 60% Pt/C, respectively, maintaining the ionomer film thickness over the 

catalyst or the volume fraction at 0.32. The acid loading was varied. Two different doping levels 

were investigated for each case; doping levels of 6 & 16 PRU for 20% Pt/C, and 3 & 6 for both 

40% and 60% pt/C. 
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The PBI film thickness 0 is calculated by 

mpHl / 

o = / PpBl 
PHI S +s c Pt 

[4] 

MPBI is the mass of PBI per unit area (PBI loading), P is the density and Se and SPt is the specific 

surface area of carbon and Platinum, respectively, per unit area. 

The catalyst inks were prepared by mixing the required amount of PBI (6% wt in DMAc) with 

acetone under continuous sonication [52]. After achieving a stable colloid an appropriate amount 

of Pt/C catalyst (ETEK) was added, and the ink was airbrushed on top of a teflonised 

GDUMPL(micro porous layer), After the desired weight was achieved the electrodes were dried 

at 160 ·C to remove any traces of DMAc. The electrodes were later boiled in de-ionised water 

and dried at 100 ·C. The necessary amount of high purity (99.999 %, Aldrich) 85% wt 

phosphoric acid was mixed with DI-water and airbrushed on top of the electrodes. The electrodes 

were later hot pressed on top of pre-doped PBI membranes (5.6 PRU) at 150 ·C for 10 min 

applying a load of 40 kg cm'2 and left to cure for two weeks to obtain a uniform acid-PBI 

distribution. 

3.6 Three electrode eJectrochemical cen 

The electrodes were placed in specially designed mica-filled PTFE (Quadrant-EPP) body (Figure 

3-4) equipped with gas inlet and outlet. The electrode was positioned so that the membrane faced 

downwards in contact with the liquid electrolyte and the GDL faced upwards in contact with a 

gold plated phenolic-resin impregnated graphite flow fields (parallel), to ensure good electrical 

contact. PTFE encapsulated Viton® O-ring was used to guarantee good sealing between the 

liquid electrolyte (hot phosphoric acid in the glass cell) and solid electrolyte (doped PBI 

membrane). The glass cell was heated by means of a circulating heating bath (Haake) with 

heating oil (Therminol). Platinum mesh was used as counter electrode as there was hot 

phosphoriC acid electrolyte. A water cooled jacketed silver-silver chloride electrode was used as 

the reference and was connected to the cell by a luggin capillary. 

70 I P age 



Chapter Three: Oxygen Reduction in PBIIH1P04 Interface 

Experiments were conduct at 100, 120 and 140 ·C to ensure that only water vapour is produced. 

Above 140 ·C 85% wt phosphoric acid produced large amounts of bubbles as the operating 

temperature approached the boiling point of 85% wt phosphoric acid (154-158 .C), and above 

such temperature poly-phosphoric acid started to be generated, dissolving the PBI membranes. 
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Figure 3-4. Schematic drawing of the mica-filled PTFE cell used to carry out the half cell tests. 
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3.6.1 Cyclic voltammetry in H 3P04 

The cyclic voltammogram of platinum in H3P04 system is affected by trace amounts of 

phosphorous acid (H) PO) and other impurities [64, 68, 69], and this effect increases at elevated 

temperature because of the following reactions [70]: 

H)P04 +2W +2e- -- H)P03 +H20 (£1 = 0.28 Vat 25 'c) 

H)PO) +2W +2e- -- H)P02 +H20 (£1 = 0.50 V at 25 'c) 

In reagent grade phosphoric acid, the hydrogen peaks (UPD) are not sharply defined, with the 

cathodic current in the hydrogen region tending to be larger, and the anodic current tending to be 

smaller, than in purified phosphoric acid, as a result of impurity adsorption [71] . 

In this study, to reduce the effects of phosphoric/phosphorous acid reductions, the 

electrochemical surface area (ESA) was measured at room temperature from the hydrogen 

adsorption peaks (cathodic sweep) over the IR-corrected voltammogram range of 0.4 to 0.04 V 

(vs. SHE) under argon. 

Table 3-10. Electrochernical surface area measured for the prepared electrodes and the catalyst used. 

20% Pt/C 20% PtlC 40% PtlC 40% PtlC 60% Pt/C 60% Pt/C 
6PRU 16PRU 3PRU 6PRU 3PRU 6PRU 

Electrode 34.81 ± 35.2 ± 3.62 
16.55 ± 15.91 ± 14.46± 14.36 ± 

ESA m1 g-t 3.47 2.02 l.88 l.53 1:41 

Catalyst 
ESA m2 gO' 

51.1 ± 4 51.1 ±4 47.3 ± 4.4 47.3 ± 4.4 36.2 ± 3.1 36.2 ± 3.1 

Utilisation 
% 

68.13 68.89 35 33.64 39.95 39.67 

From Table 3-10 it can be concluded that the PBI doping level in the catalyst layer, after 

correcting for IR effects, did not have a large impact on the accessible electrochemical ~urface 

area of the electrode. This can be explained by the electrodes being covered with a thin polymer 

film initially before being impregnated with the acid later, to provide proton conductivity. On the 

other hand it can be noted that the measured electrochemical surface area using PBr (40 % 

volume) as electrolyte was lower than that of the catalyst measured ESA using 0.5 M sulphuric 
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acid. This is explained by easier access (porosity and wettability issues) to the catalytic sites for 

the liquid acid compared to the acid trapped in the solid polymer matrix, especially with thicker 

layers (1 mgpt of catalyst was studied in electrode case compared to 0.014 mgpt in the catalyst 

case). 

3.6.2 Results and discussion 

Linear sweep scans were carried out at a rate of 5 m V S-I from 1.15 V to 0.1 V vs. SHE. After the 

electrode was held initially at 1.15V for 20 seconds prior to the sweep, differences in current 

densities at fixed potentials were used to measure differences in performance. 

3.6.2.1 Effect of doping level on performance 

With a constant volume fraction of PBI, increasing the doping level (acid content) will initially 

enhance the performance, as pristine PBI has a very low conductivity and oxygen permeability 

and ORR kinetics improves by increasing [H+]. However, on the other hand the electrolyte film 

thickness surrounding the catalyst agglomerates will increase by increasing the doping level until 

it reaches a critical thickness beyond which mass transport will dominate. This can be derived 

from Fick's law for diffusion: 

[5] 

Where DOl, Cdisso)ve & 0 are oxygen diffusion, solubility and film thickness (0= OPB! + OH3P04), 

respectively. 

Figure 3-5 shows the influence of doping level (in PRU) on linear sweep voltammograms for 

20% Pt/C electrodes. Increasing the doping level from 6 to 16 PRU led to deterioration in the 

performance (lower current densities) especially under air operation which demonstrates mass 
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transport limitation. The difference in the performance between air and oxygen was much larger 

in the high doping case of 16 PRU than that of low doping case of 6 PRU. 

0.2 

0.0 

-0.2 

-0.4 

N 

E 
u -0.6 c{ 

- 20%PtJC 6PRU air 120C 

-0.8 
- 20%PtJC 6PRU 0 2 120C 

-1 .0 
- 20%PtJC 16PRU air 120C 

-1 .2 
- 20%PtJC 16PRU 02 120C 

-1 .4 
0.0 0.2 0.4 0.6 

E/V 
0.8 1.0 1.2 1.4 

Figure 3-5. Linear sweep polarisation curves (vs. SHE) for oxygen reduction reaction using 20% PtlC and 

doping levels of6 & 16 PRU at 120 'c. 

On the other hand, increasing doping level from 3 to 6 PRU for 40% Pt/C (Figure 3-6) led to a 

remarkable improvement in the performance when operating with oxygen (no mass transport 

limitation), but not with air. Kinetic enhancement, due to increased acid content, was observed 

with pure oxygen, but at a low oxygen concentration (air operation) mass transport effects 

dominated, leading to lower overall performance, which produced larger differences between air 

and oxygen performance at higher doping levels. 

Similar behaviour was seen for the 60% Pt/C electrodes with doping levels of 3&6 PRU at 100 

°c (Figure 3-7). However, after increasing the temperature (enhancement in kinetics and mass 

transport) to 120 °C (Figure 3-8), under air operation, higher doping level electrodes (6 PRU) 

showed better performance over lower doping level of 3 PRU. With pure oxygen operation, high 
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doping levels showed advantages over lower doping level of 3 PRU at low overpotentials 

(beginning of polarization curve). However at higher overpotentials (below 0.7 V vs. SHE) the 

perfonnance of electrodes with a lower doping level (3 PRU) surpassed (overruns) that of 6 

PRU. This is indicated by a lower value of transfer coefficient (a) for both high doping level 

electrodes, as will be discussed later. 
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0 .0 
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-1 .2 
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-1.4 
0.0 0 .2 0.4 

1.4 
0 .6 0.8 1.0 1.2 

E IV 

Figure 3-6. Linear sweep polarisation curves (vs. SHE) for oxygen reduction reaction using 40% pt/e and 

doping levels of3 & 6 PRU at 120 'c. 
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Figure 3-7. Linear sweep polarisation curves (vs. SHE) for oxygen reduction reaction using 60% Pt/C and 

doping levels of 3 & 6 PRU at 100 ' Co 
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Figure 3-8. Linear sweep polarisation curves (vs. SHE) for oxygen reduction reaction using 60% Pt/C and 

doping levels of 3 & 6 PRU at 120 ' Co 
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3.6.2.2 Effect of surfactant addition on performance 

The addition of small amounts of perfluronated surfactant (as low as 0.1 % wt), known as C6, 

(Trideca-fluroro hexane-I-sulfonic acid potassium salt) was suggested by Li et al [72, 73] to 

enhance the performance of oxygen reduction in phosphoric acid. The surfactant was believed to 

reduce the viscosity of phosphoric acid at elevated temperatures leading to better oxygen 

permeability. 

Considerable enhancement in cell performance was observed (Figure 3-9) by adding 0.5% wt of 

C6 surfactant (Trideca-fluroro hexane-I-sulfonic acid potassium salt, Aldrich) to electrodes with 

high doping level (16 PRU) and operating with air, whilst a small impact was observed under 

oxygen operation. This suggests that surfactant enhancement arose from improved mass 

transport (oxygen permeability). 
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Figure 3-9. Effect of surfactant on linear sweep polarisation (vs. SHE) curves for oxygen reduction reaction 

using 20% ptle and doping level of 16 PRU at 120 °C. 
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3.6.2.3 Effect of catalyst layer thickness on performance 

The effect of the catalyst layer on electrode performance at constant doping level of 6 PRU is 

shown in Figure 3-10 for pure oxygen operation. The 40% PtlC electrode showed the best 

performance. However under air operation, 60% PtlC (thinnest catalyst layer) showed the best 

performance, closely followed by 40% PtlC as the performance was influenced by mass 

transport. 

The data suggest that there was an optimum thickness for the catalyst layer, depending on the 

doping level in the membrane and the catalyst layer. It has already been shown in the literature 

[74] that there was an optimum thickness for a phosphoric acid fuel cell electrode of - 10 J.U11, 

where most of the catalytic reaction takes place. It can be seen from Figure 3-11 that, at low 

doping level of 3 PRU, a small difference in performance was obtained between air and oxygen 

operation for the 40% Pt/C electrode. However, 60% PtlC electrode showed lower performance 

to that of 40% PtlC under air and similar performance with oxygen. Mass transport limitations in 

the 60% Pt/C electrode performance, reflected by the large difference in performance with air or 

oxygen, can be explained by the thin layer 60% PtlC electrode. This meant that most of the 

catalyst agglomerates were deposited or located near the membrane, and the actual doping level 

of the electrode was no longer 3 PRU,' due to acid mobility (flooding) from the membrane (6 

PRU) to the catalyst layer (initially 3 PRU). 

791 P age 



Chapter Three: Oxvgen Reduction in PBIIH 1P04 Inter(ace 

0.2 

0.0 

-0.2 

-0.4 

"I 
E 
0 -0.6 

<t. 
- 20%PtlC 6PRU air 120C 

- 20%PtlC 6PRU 02 120C 
-0.8 

- 40%PtlC 6PRU air 120C 

-1 .0 -40%PtlC 6PRU 02 120C 

- 60%PtlC 6PRU air 120C 
-1.2 

- 60%PtlC 6PRU 02 120C 

-1.4 
L-__________ ----~-

~--------

0.0 E/V 
1.4 0.2 0.4 0.6 0.8 1.0 1.2 

Figu re 3-10. Effect of catalyst thickness usi ng constant Pt loading of 0.5 mgr, cm-
2 

and various Pt:C ratio (20, 

40 & 60% Pt wt) on linear sweep polarisation curves (vs. SHE) for oxygen red uction reaction at doping level 

of6 PRU at 120 ' C. 
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3.6.2.4 Temperature effect on performance 

The effect of temperature on the ORR electrode performance is shown in Figure 3-12. Increasing 

the operating temperature led to enhancement in the electrode performance, mainly in the kinetic 

region, with both air and oxygen operation. This was expected due to an increase in the exchange 

current density and therefore the kinetics of the reaction. 

However the kinetic enhancement, due to increase in oxygen partial pressure (air to oxygen) was 

much more significant than that due to an increase in temperature of 40 °C. This is a typical 

characteristic of phosphoric acid fuel cell electrodes, owing to their low oxygen permeability. 
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Figure 3-12. Effect of temperature on linear sweep polarisation curves (vs. SHE) for oxygen reduction 

reaction at 60% ptle and doping level of 6 PRU. 
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3.6.3 Chronoamperometry 

Chronoamperometric current transients at the platinum micro electrodes have been recorded at a 

potential where the oxygen reduction is entirely diffusion controlled [75] (0.05 V vs SHE). The 

transient current equation obtained from Fick's first and second law of diffusion can be described 

by: 

FiC 'DPBIIH,PO. FiC nPBllH PO 
.( ) n dissolve"l/ 0, + n dissolve'-' 0, ,. 

jt= Jm 8 [6] 

It can be seen from equation 6 that plotting j(t)/nF vs. the inverse of square root of time will give 

a straight line slope of CD
l/2 

and intercept (limiting current)of CD/B. From these two values (for 

known 0) we can obtain Cdissolve & DOl separately. Due to experimental limitations the slope of 

the plot could not be obtained. The potentiostat used had maximum current of -1.4 A which 

limited the transit current drop above such value; however the limiting currents were recorded at 

steady state since their values were below 1.4 A (Figure 3-13). 

From Table 3-8 and reference [62] it can be seen that PBI and H3P04 have similar oxygen 

solubilities (Cdissolve), and increasing the doping level enhanced oxygen diffusion and therefore 

overall oxygen permeability (D.C). It has been shown in [62] that oxygen diffusion varies 

logarithmically with doping level, and doping level is directly proportional to 0H3P04 where 0 = 

OPBI+ OH3P04. This confirms the above observation (Sec. 3.6.2.1) regarding an optimum doping 

level for oxygen permeability. 
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Figure 3-13_ Limitations observed for current transients of 40 % PVC at different conditions (0.5 mgr! cm·! ). 

3.6.3.1 Effect of catalyst layer thickness on limiting ClUTent 

Figure 3-14 shows the effect of catalyst layer thickness on the observed limiting current density. 

It can be seen that the 40% PtlC electrode exhibited the highest limiting ClUTents under air and 

oxygen operation, which suggests that 40% PtlC had the maximum oxygen permeability among 

the studied electrodes, which is consistent with the data obtained from the polarization curves 

earlier. 
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• 20%PVC 6PRU air • 40%PVC 6PRU air • 60%Pt/C 6PRU air 

• 20%PVC 6PRU 02 • 40%PVC 6PRU 02 • 60%Pt/C 6PRU 02 

Figure 3-14. Effect of catalyst layer thickness on limiting current density for 20,40 & 60% Pt/C electrodes 

with doping level of 6 PRU at 120 'c. 

3.6.3.2 Surfactant addition effect on limiting current 

Figure 3-15 shows the effect of surfactant addition on the observed limiting current density. 

Surfactant addition lead to higher limiting currents under air and oxygen operation, compared to 

that of the same electrode (16 PRU) without the surfactant, due to improvement in oxygen 

permeability for 20% PUC electrodes doped with 16 PRU . Increasing the doping level, from 6 to 

16 PRU, lead to a large reduction in the limiting currents with both air and oxygen, indicating a 

decrease in the oxygen permeability, as discussed earlier. 
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• 20%PtlC 16PRU-surf air • 20%PtlC 6PRU air 

• 20%PtlC 16PRU-surf 02 • 20%PtlC 6PRU 02 

Figure 3-15. Limiting current density for 20% Pt/C electrodes with doping levels of 6 & 16 PRU at 120 ·C 

with (16 PRU) & without surfactant (6&16 PRU). 

3.6.3.3 Acid doping level effect on limiting current 

As shown previously (Sec. 3.6.2.1) increasing the doping level above 6 PRU led to a reduction in 

oxygen permeability. Figure 3-16 shows the impact of doping level (from 3 to 6 PRU) on the 

limiting current of 40% Pt/C. An increase in oxygen permeability (limiting current) was 

obtained, with both air and oxygen operation, with increased doping level from 3 to 6 PRU. 

Similar results were obtained with a 60% ptle electrode (Figure 3-17) operating with oxygen. 

However it can be seen that the 60% pt/e electrode with doping level 3 PRU gave higher 

limiting current than that for a 6 PRU doping level, under air operation. Additionally the 60% 

Ptle electrode with doping level of 6 PRU had lower limiting current (oxygen permeability) than 

that of the 20% Ptle electrode, with the same doping level. These results can be explained as 

follows: 
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Although the 60% Pt/C electrode was thinner than the 20% Pt/C, the catalyst layer was flooded 

by phosphoric acid resulted in very low porosity and mass transport limitations in the porous 

structure. Mass transport through the porous media was ignored in equation 6 (Cdisso lve is related 

to the P02 inside the pores), in contrast to that through the electrolyte thin film, which is not valid 

in very thin layers flooded by acid. Additionally, the ESA of 60% Pt/C electrode is lower than 

that of 20% Pt/C electrode (larger Pt particles size). 
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Figure 3-16. Limiting current density for 40% pt/e electrodes with doping levels of 3 & 6 PRU at 100 "C. 
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Figure 3-17. Limiting current density for 60% PtlC electrodes with doping levels of 3 & 6 PRU at 100 'c. 

The measured oxygen penneabilities from Eg.S (at limiting current where C Pt = 0) (Figure 3-18) 

at doping level of 6 PRU and a temperature of 120 ' C for the three studied electrodes 20, 40 & 

60% Pt/C under pure oxygen operation were in the range of 1.3-l.S x 10-12 mole cm cm-2 
S- I atm-I 

which is in very good agreement with the data from [62] (2.2 x lO-12 mole cm cm-2 
S-I atm-I at ISO 

' C Table 3-8). 
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Figure 3-18. Average oxygen permeability through PBI thin film doped with 6 PRU at 120 ·C for various 

electrodes. 

3.7 Oxygen reduction kinetics in PBI-phosphoric acid interface 

3.7.1 Transfer coefficient background literature 

The symmetry factor P is the ratio between the effect of potential on the electrochemical free 

energy of activation and its effect on the electrochemical free energy of the reaction (formation 

of the activated complex). In other words, P is the fraction of an applied potential that influences 

the activation energy and hence the rate of electrochemical reaction. P is fundamental parameter, 

its value varies from 0 to I since it is only di scussed with single step (one electron) reactions, 

i.e. 13a+ pc = I . The 13 value is related to the shape of the free-energy barrier and the position of 

the activated complex along the reaction coordinates [76]. 

a the transfer coefficient, is an experimental parameter obtained from current potential , 
relationship. It is equal to the inverse of Tafel slope b expressed in units of 2.3 RTIF at high 

current densities. 

The reaction rate relation to overpotential loss for a multi-step reaction can be written using the 

well known Butler-Volmer equation as: 
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[7] 

11 is the overpotential, i is the current (rate) and io is the exchange current density. Cla+ (le doesn't 

necessarily add to unity. Generally, Cla+ Cle= n/u [76, 77] where n is the electron transferred in the 

overall reaction. u, the stoichiometric number, is the number of times the rate determining step 

must occur, for the overall reaction to occur once. 

The relationship between Cl and P is dependant on the mechanism of the reaction [78]. Cl can be 

expressed by the following equation [76, 79] using the quais-equilibrium approximation: 

s 
a = -+r{3 

u 
[8] 

Where sand r are the numbers of electrons transferred in steps preceding and in the rate­

determining step, respectively. 

Generally two Tafel slopes are observed for oxygen reduction on Pt in dilute acids. Damjanovic 

et al [80-82] attributed this phenomenon to a change in intermediate adsorption isotherm 

(adsorbed oxygen species) from Temkin conditions (60 mV dec· l
) which is applicable for narrow 

over-potential range (0.2-0.3 V) to Langmuir condition (120 mV.dec· l ) considering the first 

electron transfer as the rate determining step. Tarasevich [83] explained this behaviour by a 

change in the surface coverage of the chemisorbed oxygen-containing species. 

Bagotzky and Tarasevich [84] studied the relationship between the surface coverage by oxygen 

9
0 

and electrode potential in dilute sulphuric acid and found it to be, to a first approximation, 

linear and can be expressed by Temkin adsorption isotherm for medium coverage (1.45 to 0.95 V 

vs. SHE with coverage from 0.95 to 0.15, respectively): 

1 1 zF 
Bo = A+-InPo = A+--l] 

f 2 f RT 
[9] 

Where f is the heterogeneity factor; 15-12 for platinum (assuming adsorbed species z = 2), and 

A is constant related to the standard free energy of adsorption at zero coverage 90• Similar results 

were concluded for concentrated phosphoric acid [85]. 
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At potentials below 0.725 V (vs. SHE) oxygen coverage on a platinum surface approaches zero 

[84]. Similarly, Muller, Mansurov & Petrii [86] showed that alpha was independent of potential 

in the range of 1.6 to 0.8 V in dilute sulphuric acid, where the oxygen coverage depended 

linearly on potential in the studied range. 

Conway et al [87-89] studied oxygen adsorption and oxide formation on platinum, and reported 

several stages of surface oxidation, where more stable oxide is produced at high potentials or at 

longer periods of time at fixed potential. The initial stage of surface oxidation at platinum [88] in 

the range of 0.7 to 0.9 V (vs SHE) in dilute acidic environment corresponds to faradaically 

electro-sorbed OH [89]. This is a reversible stage demonstrated by low Tafel slope (-27 mV dec' 

I) of the reduction process and the lack of hysteresis between anodic and cathodic sweeps [87]. 

The first Tafel slope for ORR on Pt of 60 mV dec·1 suggests a value of a = 1 (at room 

temperature). If the rate determining step (rds) was charge transfer with, typically, a ~ equal to 

0.5 and considering one electron transfer, from Equation 8 this suggests that s/1,) is equal to 0.5. 

Thus either a value for s equal to 1 and value to 1,) equal to 2 should be assumed, which is 

unlikely, as two identical charge transfers have to occur and reaction order of 0.5 with respect to 

oxygen should be observed, which is not the case (typically reaction order = 1) [80]. 

Alternatively, a value of s equal to 2 and value to u equal to 4 can be disregarded as the total 

number of electrons involved in the reaction are 4. 

Ifthe rate determining step was chemical i.e. r = 0 and s/u = 1, several mechanisms can satisfy 

this condition have been proposed; such as the hydrogen peroxide path, metal peroxide path, 

electrochemical oxide path or Hoar's alkaline path. However, Riddiford [90], Appleby [85] and 

Darnjanovic [80] showed that, although all the proposed mechanisms satisfied equation 8, they 

failed under Langmuir isotherm conditions to explain the reaction orders of 3/2 with respect to 

protons and 1 with respect to oxygen and Temkin isotherm should be considered to fulfil the 

observed reaction orders. 

The obtained second Tafel slope for ORR on Pt of 120 mV dec·
1 

suggests a value of 0.5 for a (at 

room temperature). Several suggested mechanisms could explain the observed slope, with the' 

first electron transfer as rate determining step (rds) [85] and f3 equal to 0.5. 
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S+O ~S···O 2 +-r,- 2 

Or [83]: 

S-02+e-~MO; (rds) 

Where S is the available catalytic site. 

Since intermediates of the reaction are adsorbed on the surface of the electrode substrate, 

Conway and Gileadi [91], Damjanovic et al [80, 82] and Appleby [85] gave the following rate 

equation (Eq. 10) for the rate controlling electrochemical step under Temkin conditions at 

potentials sufficiently far from equilibrium, assuming negligible free energy of adsorption for 02 

compared to that of 02H radicals 

[10] 

Where k2 is constant, 0 is the total coverage of all 02H radicals, !!.Go is the Gibbs free energy for 

02H radicals adsorption at zero coverage (negative number), and q, enthalpy-coverage factor, is 

the rate of change (decrease) of free energy of adsorption with coverage (equal to zero for a 

Langmuir isotherm). Under Temkin isotherm (~G6 = ~Go + qO = !!.Ho + q8 -T !!.So). The positive 

sign for qO arise from the fact that 

!!.Go is negative i.e. I~G61 = I~Gol_ qO. 

Assuming !!.So does not vary with 8 and since ~Ho is the heat of adsorption at zero coverage, we 

can write: 

[11] 

For large values of q, i.e. Temkin isotherm and under quasi equilibrium conditions we can write 

[76]: 
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[ 8] (q8) KP (VF) 
1 _ 8 exp RT = 0 °2 exp RT [12] 

Where e is the oxygen species coverage at potential V (vs. SHE), and Ko is the equilibrium 

constant of adsorption at zero coverage. 

Since q is large we can ignore the pre-exponentia1 terms so we can write [85, 92] at constant pH 

q88 = F8V [13] 

And therefore, 

(av) =% 
ae pH 

[14] 

Platinum surface coverage with oxygen species as function of potential and pH can be give by 

[80, 101, 102]: 

2.3RT 
B(V.PH) = KV + K -p pH - Bo [15] 

However from equation (15) we can write: 

(av) = YK 88 pH 

[16] 

Assuming P = 0.5 and er =e, comparing equations (14) and (16) and substituting equation (15) in 

(11) we obtain: 

. [H+] (O.5F1]+O.5RT PH) (O.51]F) 1 oc P exp - exp ---'---
°2 RT RT 

[17] 

Or finally, 

[18] 
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The obtained rate equation describes the observed oxygen partial pressure and pH dependence. It 

also has the observed first Tafel slope under Temkin conditions and the second observed Tafel 

slope under Langmuir conditions (q = 0). 

Conway and Bockris [79] showed that, even under the Quasi-equilibrium approximation 

assumption, the rate constant of the rate determining step is 100 times (or more) smaller than that 

of other steps, there are limits to the overpotential range in which mechanistically significant 

Tafel slope can be derived. They simulated several curves and obtained two linear regions where 

the first slope was equal to the predicted value from the quasi-equilibrium treatment and the 

second slope was c.a -120 m V dec -I. They confirmed that it was the change of the effective 

concentration of the intermediate species involved in the rate determining step, with potential, 

that leads to a decrease in the usual one-electron Tafel slope of 118 mV dec- I
. 

3.7.1.1 Transfer coefficient dependence on temperature 

The transfer coefficient is affected by the double layer structure and adsorption of impurities [78, 

93], and the latter generally increase the value of u. In the presence of impurities the assumption 

of eT = e is not valid, and since the heat of adsorption of impurities and phosphate ions is 

temperature dependant that will give rise to a transfer coefficient which depends on temperature. 

Conway et al [94] showed that the apparent temperature dependence of alpha can be caused by a 

change of j{e) or free sites, I-eT, with temperature (specifically adsorbed anions). This is 

explained by the following equation: 

aIni a[ln!(B)] [JF 
av = av + RT [19] 

Where j{e) involves potential and temperature dependent terms. 

Parsons [95] suggested that the temperature dependence arose from the specific adsorption of 

anions. Anion adsorption will alter oxygen surface coverage because of competition with oxygen 

groupS, columbic repulsion between the adsorbed anions and the adsorbed oxygen species (OH 

or 0), and alteration in the interfacial field in the double layer [96]. It was shown that phosphoric 

acid adsorbs strongly on a platinum surface (114] with enthalpy of adsorption equal to -92 kJ 
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mole-I and entropy of adsorption equal to -219 J mole-I K-1(at standard state of8°= 0.5 & Co= 1 

mole L-1), The adsorption is reported to be [114] potential dependant with an adsorption 

maximum at -0.8V (SHE), where alpha is typically measured. 

The dependence of alpha on temperature can also be explained by a change in the double layer 

thickness with temperature, due to variation in the adsorption of abnormal entities (impurities 

and phosphoric acid)[64]. Bockris and Gochev [115] suggested that, in the presence of adsorbed 

species, alpha will strongly depend on the double layer structure. If a non-aqueous solution 

contains a trace of water (e.g. concentrated phosphoric acid at elevated temperatures), the water 

occupancy of the double layer will depend on temperature. 

Alternatively, Conway et al [94, 97] suggested that the entropy of the reaction may become more 

significant when the enthalpy of the reaction is small leading to an apparent temperature 

dependence of alpha. They explained the experimentally observed dependence of Tafel slope on 

temperature by the following equation: 

b = ±2.3RT I(PH + f3sT) [20] 

PH and Ps are the enthalpic and entropic components of the overall symmetry factor p. 

They attributed the temperature dependence to a change in the entropy of activation, which could 

be caused by potential dependant solvent orientation. 

On a Nafion interface, the variation of a with temperature was linear with slope of 0.0034 KI 

[98, 99]. Two activation energies were obtained, a high value of 73.2 kJ mole-I at low current 

densities (oxide-covered platinum, with a Tafel slope of60 mV dec-
I
) and a lower value of27.6 

kJ mole-I at high current densities (oxide-free platinum, with a Tafel slope of 120 mV dec-'). 

Oxygen reduction in phosphoric acid exhibits higher activation energy than that for nafion, as 

result of the combined effect of heat of adsorption of anions and heat of solution of oxygen 

[100]. 
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3.7.1.2 Transfer coefficient and activation energy in phosphoric acid systems 

Damjanovic and Brusic [80] reported that oxygen coverage in 0.1 M HCI04 changed linearly 

with potential in the range of 1 to 0.8 V (vs. SHE). The iN curves also shifted by 100 mV for a 

unit change in pH in perchlorate acid solutions. In sulphuric acid solutions, at low current 

densities (Temkin conditions) the voltage dependence on pH was 90 mV per pH unit and 

changed to 110 m V per pH unit under Langmuir conditions [81]. 

The surface coverage of oxygen species on platinum, at low current densities, as a function of 

potential and pH can be given by [80, 101, 102]: 

2.3RT 
e(V.PH) = KV + K ---p-pH - eo [21] 

Where K is constant (0.85 V-I), 80 is constant, which depends on the reference potential, 80 = 
KVo = 0.85xO.77 = 0.65, when potentials are referred to SHE. Vo is the potential, where e 
extrapolates to zero, in zero pH solution. Equation 21 suggests that a positive shift in the 

potential range where the adsorption isotherm will change from Temkin conditions (which can 

prevail only in a narrow range of potential [82]) to Langmuir (at c.a. e -0.2) will occur as 

electrolyte pH decreases. 

In hot concentrated phosphoric acid, 85% wt, c.a. 14.7 M (pKal = 2.148 or pH = 0.49 at 25 DC), 

the following equation for the 1 SI proton ionization were given [103]: 

799.31 
pKal = - 4.5535 + 0.013486 T 

T 
[22] 

At 150 DC pKal = 3.041, leading to pH = 0.94. Substituting this pH value in equation 21 with 

value of e = 0.2, we obtain a value of V equal to 0.92 V (vs. SHE). This means that in hot 

phosphoric acid, high oxygen coverage will shift towards more positive potentials, and Langmuir 

(8 -0.2) Tafel slope of 120 mV dec-I is expected at potentials below 0.92 V. Sepa, Vojnovic and 

Damjanovic [102] showed that at pH = 1 for 8 = 0.2 the potential was 0.9 V vs. SHE and 

increased to 0.96 V at pH = O. 
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In hot phosphoric acid above 0.9 V (SHE), ORR using Pt supported on carbon is affected by 

mixed potentials (carbon and platinum oxidation) and therefore cannot be used to obtain Tafel 

slopes [104]. Using unsupported platinum it was possible to obtain the first Tafel slope at 

potentials above 0.9 V (SHE) on oxide-free Pt black in very pure 85% wt phosphoric acid at 

120°C [105]. 

In very high purity phosphoric acid solutions a. was temperature independent [64]. Petrii, Marvet 

and Malysheva [106] studied the effect of impurities in phosphoric acid, and attributed the 

observed hysteresis, between the anodic and cathodic sweeps for oxygen reduction, to inorganic 

(metallic cations) impurities. They also reported increase in oxygen adsorption overvoltage and 

reduction in its reversibility with increase in phosphoric acid concentration, which can be 

suppressed by using platinum oxide instead. 

Appleby [85] studied the effect of impurities in phosphoric acid on the Tafel slope. He observed 

values of 60 m V dec- t to 80 m V dec- t in purified solutions in the temperature range of 25 to 136 

QC, and values in the range of 80 to 90 mV dec- t in analytical grade solutions. A Tafel slope in 

the range of 60 to 120 mV dec- t is typically observed in impure phosphoric acid solutions, 

depending on the adsorption of the impurities and phosphoric ions [85]. This adsorption is 

concentration, temperature and potential dependant. 

The effect of phosphorous acid impurities in phosphoric acid on oxygen reduction was 

investigated by Sugishima et al [68]. Tafel slopes varied from 125 mV dec- t (alpha 0.473) to 215 

mV dec- t (alpha 0.275) when the impurity concentration (phosphorus acid) increased from 0 to 

2.48x 1 0-3 mol L- t
• 

Clouser et al [107], studied the effect of temperature on a. in phosphoric acid, and obtained Tafel 

slopes in the region of -120 mV dec- t
, while alpha varied linearly with temperature with a slope 

of 0.0014 Kt. 

McBreen et al [108] also reported Tafel slope in the region of 120 mV dec- t
, but independent of 

temperature, which suggests a linear dependency of alpha with temperature. They also reported a 
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change in Tafel slope from 120 mV dec-1 to 60 mV dec-1 was observed, with increased oxygen 

partial pressure above 3 atmospheres. 

Appleby [109] reported values of a from 0.49 at 25°C to 0.562 at 95.9 °c in 85% wt phosphoric 

acid. Similarly, O'Grady et al [110] reported values from 0.53 at 25°C to 0.68 at 70 °c in 85% 

wt phosphoric acid, and alpha varied linearly with temperature with a slope of 0.0034 K-1. Huang 

et al [69] observed a value (85% wt H3P04) of 0.47,0.61 & 0.67 at temperatures of 25, 100 & 

150°C, respectively. 

However, Liu et al [62] reported a value of a = 0.92 (Tafel slope 90 mV dec-
1
) at 150°C for 

phosphoric acid doped PBI (doping level is 6 and 1 RH %). The value is in good agreement with 

the work of Kunz and Gruver [104], who reported a = 0.94 (Tafel slope 90 mV dec-1) at 160°C 

(96% wt H3P04) using Pt/C as catalyst. 

In phosphoric acid doped PBI a values varied with doping level; Tafel slopes started from 90 

mV dec-1 and increased with doping level approaching those of phosphoric acid of -120 mV dec-

1 at high doping levels. Liu et al [62] reported values of 92, 94, 101 & 104 mV dec-1 at doping 

levels of 4.5, 6, 8 & 10 PRU, respectively. 

Various values has been reported for the activation energy of oxygen reduction, on platinum in 

phosphoric acid, 92 kJ mole-1 with (a = 0.94) [104], 95.8 kJ mole-1 with (a -I) on oxide-free 

Platinum [85], 54.8 kJ mole-1 (a = 0.5-0.56) [109] and 72.4 kJ mole-1 with (a = 0.53-0.68) [64] 

on oxidized platinum. Similarly, activation energy on oxidised platinum at a nation interface of 

73.2 kJ mole-1 (at a = 1) and oxide-free Pt on nation of 27.6 kJ mole-1(at a = 0.5) has been 

reported [98, 99]. 

3.7.2 Experimental results and discussion 

In this work Tafel slopes measurements were made in the potential range of 0.9-0.8 V (vs. SHE) 

using the linear sweep curves, at potentials above 0.9 V, ORR in H)P04 using carbon supported 

catalyst is affected by mixed potentials (carbon and platinum oxidation) and therefore cannot be 

used to obtain Tafel slopes [104]. Prior to calculations, the i-V curves were corrected for IR 
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losses (R obtained from AC impedance measurements) and mass transport losses using Nernst 

correction [62, 64, 68, 85 , 104-110] (i.iL)/(iL-i) where iL is the limiting current observed for the 

given studied sweep (see Figures 9-1 & 9-2, Appendix: A) . 

Figure 3-19 shows the effect of temperature on the observed transfer coefficient at doping levels 

of 3, 6 & 16 PRU. An approximately linear dependence of alpha on temperature was observed 

experimentally with slope of 0.0043 K-' obtained for high doping level of 16 PRU, 0.0052 K-' 

for doping level of 6 PRU and 0.0053 K-' for doping level of 3 PRU. The values are in good 

agreement with values obtained for phosphoric acid of 0.0034 K' [110]. 
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Figure 3-19. Transfer coefficient dependence on doping level and temperature. 

Table 3-11 summarise the observed activation energy values and the pre-exponential factors (A) 

of ORR using doping levels of 3 & 6 PRU obtained from Arrhenius plots of the exchange current 

density at the temperatures of lOO, 120 & 140 ·C using air and oxygen. 

98 I P a g t: 



Chapter Three: Oxygen Reduction in PBIIH lP04 Interface 

It can be seen that the activation energy increased by lowering doping level. On the other hand, 

as shown in Figure 3-19, alpha decreased with increased doping level. This reflects the direct 

relation between alpha and activation energy where a value of -60 kJ mole-I was obtained for 

alpha in the range 0.75-0.95 and - 40 kJ mole-I for alpha in the range 0.68-0.88. The values lie 

within the range given in the literature for oxidized (a -0.5) and non-oxidized platinum (a -1 ). 

The observed high uncertainty in the calculated activation energy is caused by non-linear 

increase in In(io) with temperature (Arrhenius plot, Figure 3-20). The increase in In(io) from 100 

to 120·C was larger in comparison to the increase from 120 to 140 T . This non-linearity is 

caused by decreased oxygen concentration (solubility) at a given oxygen partial pressure with 

increased temperature (Henry ' s law). 
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Figure 3.20. Arrhenius plot of In (io) with temperature for various studied electrodes. 

Increasing the doping level will increase the acid volume fraction and therefore [H+] and 

explains the increase of exchange current density, jo Pt, with increasing doping level, from 
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reaction rate equation [4] (equation 18). The same conclusion can also be drawn from the 

dependence of alpha on doping level, where higher (l values (at lower doping levels) lead to 

lower exchange current densities due to the dependency of current on potential (alpha). 

Exchange current densities on poly-crystalline 20% Pt/C of 2.1, 3.1 and 6.3 x 10'7 A cm'2pt were 

obtained for doping level of 3, 6 & 16 PRU, respectively at 100°C. These results are in close 

agreement to jo Pt values in ortho-phosphoric acid at 100 °C [69, 85 , 108]. 

Liu et al [62] reported a similar dependency of jo Pt on PBI doping level for ORR on a sputtered 

Pt micro band electrode. jo Pt varied from 0.18, 0.29 & 2.4x 1 0'8 A cm'2pt with doping levels of 

4.5, 6 & 10 PRU, respectively at 150°C. 

Table 3-21. Activation energy and pre-exponential factors for ORR at different doping levels. 

Ea Ea 
Ln(A) Ln(A) 

Catalyst Doping 
Activation Activation 

pre- pre-

Pt/C Level exponential exponential 
energy O 2 energy air 

factor O 2 factor air 

Wt% PRU kJ mole'l kJ mole'! 

20 6 38.8±0.7 30.3±12 7.99 4.18 

40 3 58.5±1O 40.2±25.7 8.771 1.87 

40 6 41.2±12.8 23.S±0.9 13.47 7.18 

60 3 59.8±30 40.3±21.8 7.78 2.92 

60 6 38 .I±S.9 26.8±6.2 14.S7 7.1S 

It can be seen from Table 3-22 that the reaction order increased with increased temperature until 

reaching the typical value of -I (Equation 18) at 140 °C. This can be attributed to different 

reaction mechanisms, where the hydrogen peroxide route would be more favourable in the 

presence of adsorbed impurities [85, 112]. The influence of impurities, on the mechanism, will 

drop with increasing temperature due to their low heat of adsorption [8S]. 

Another explanation for the observed reaction order temperature dependence is the non-linearity 

between e and oxygen partial pressure P02, where under Langmuir isotherm is given by: 

() 
1- () oc Po, [23] 

T 
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The derived reaction rate equation IS, with reaction order of 1 with respect to PQ2, was obtained 

from the assumption that eT = e and e is small enough so that 

B --zB 
I-Br 

[24] 

However, in the presence of impurities eT i- e but eT = e + eimpuriti es , therefore for small values of 

e equation 24 is no longer valid, and e will not linearly depend on PQ2 (smaller dependency 

leading to reaction order lower than 1). At elevated temperature, adsorption of impurities will 

decrease due to their low heats of adsorption, and therefore eT;::; e leading to a reaction order of 1 

with respect to PQ2 . Both explanations are consistent with the effect of temperature on n, from 

described in equation 19 where it depends on e (impurities adsorption) and ~ (reaction 

mechanism). 

Table 3-22. Reaction order with respect to Pm at different temperatures and doping levels. 

Catalyst Doping j at 0.9VSHE j at 0.9VSHE Reaction 
T 

Pt/C level P02=0.21 P02=l order P02 

Wt% PRU ·C A A 

20 6 100 1.89E-03 4.91E-03 0.55 

20 6 120 4.92E-03 1.44E-02 0.62 

20 6 140 6.8IE-03 3.09E-02 0.95 

40 3 100 3.27E-03 8.62E-03 0.55 

40 3 120 4.86E-03 1.97E-02 0.85 

40 3 140 6.82E-03 3.l6E-02 0.98 

40 6 100 1.94E-03 5.06E-03 0.55 

40 6 120 4.84E-03 1.92E-02 0.83 

40 6 140 7.00E-03 3.40E-02 1.02 

60 100 2.93E-03 1.00E-02 0.72 

60 3 120 4.89E-03 2.00E-02 0.86 

60 140 6.82E-03 3.31E-02 1.02 

60 6 100 2.96E-03 1.0SE-02 0.76 

60 6 120 S.S9E-03 2.0SE-02 0.77 

60 6 140 7.73E-03 3.62E-02 0.98 
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3.8 Conclusions 

For oxygen reduction at platinum supported carbon in phosphoric acid doped PBI, the catalyst 

layer structure and composition play an important role in electrode performance. 

The acid doping level in the catalyst layer affects the oxygen permeability, with a doping level of 

6 PRU exhibiting the best oxygen permeability, of those studied. However an optimum doping 

level might lie in the range between 3 and 6 PRU which wasn't investigated. The optimum 

doping level depended on temperature and oxygen partial pressure, as both affects the 

permeability. 

Similar to phosphoric acid systems, the transfer coefficient (a) depended on temperature. The 

dependency is explained by adsorption of impurities and thermodynamic effects. 

The kinetics of oxygen reduction in PBI doped phosphoric acid is similar to that of phosphoric 

acid at high doping levels. Doping level affected the activation energy of the reaction, transfer 

coefficient and exchange current density. Increased doping level increased the exchange current 

density although decreased a values. The influence of doping level 'on electrode kinetics 

depended on temperature and oxygen partial pressure, where a compromise between exchange 

current density and transfer coefficient was realised. A high doping level was favourable at low 

temperatures, high oxygen concentrations or low operating overvoltages whilst low doping was 

favourable at high temperatures, low oxygen concentrations or high operating overvoltages. 

An optimum catalyst layer thickness exists that provides a balance between good oxygen 

transport and fast kinetics. At loading of 0.5 mgpt cm·
2

, 40% Pt/C (estimate catalyst thickness of 

-12 Jlm assuming 40% porosity, see Sec. 6.2) gave better performance than 20% & 60% PtlC 

(estimate catalyst thickness of -7 Jlffi assuming 40% porosity). However, the optimum thickness 

might lie in the range between 40 and 60% PtlC (i.e. 50% Ptlc) due to the fact that, at low 

oxygen concentration and high doping level, 60% Pt/C showed advantage over 40% pt/C. An 

optimum catalyst layer thickness of 10Jlm was reported in the literature for phosphoric acid fuel 

cells. This factor will be looked into more details in the next chapter. 
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4 Optimisation of PBI Membrane Electrode Assembly 

4.1 Introduction 

As discussed in the previous chapter, the catalyst structure plays a major part in determining an 

electrode's performance; whilst on the other hand increasing the ESA of the catalyst layer by 

utilizing catalyst with lower Pt to carbon ratio (smaller particles size) did not necessarily enhance 

the performance of the PBI-phosphoric acid fuel cell. At a loading of 0.5 mgPI cm-2 the best 

performance achieved in this work was with catalysts with Pt content in the range of 40-60% 

pt/C. This can be explained by: 

i) an optimum particle size for mass activity; reported to be -3.5 nm for phosphoric acid fuel 

cells [1]; which was in good agreement with the findings ofthis work 2.8-3.7 nm, and 

ii) an optimum thickness for the catalyst layer, reported to be -10 ).lm [2] for phosphoric acid 

fuel cells and found to be in the range of 5.6-12.7 ).lm in this work (assuming 40 % porosity in 

the catalyst layer 40-60% Pt/C). 

In this chapter data from several fuel cells is presented and discussed. The effects of catalyst 

thickness (Pt:C ratio), PBI loading, acid loading, catalyst loading and binder/electrolyte 

materials; for both anode and cathode are described to enable more detailed study of the catalyst 

layer. 

4.2 PBI based MEA'S 

4.2.1 Experimental 

4.2.1.1 Cell design 

In the corrosive environment of hot phosphoric acid, the choice of materials available to stand 

the operating harsh conditions is limited. Graphite and Titanium are good candidates due to their 

relatively low cost and high stability. For the experimental single cell, titanium was selected due 

to better mechanical properties and low hydrogen permeability over graphite. However it was 

necessary to gold plate the surface in contact with the MEA, as oxide formation in this increase 

its contact resistance. 

The fuel cell is shown schematically in Figure 4-1. The titanium cell body used had a 3 cm x 3 

cm gold plated parallel flow fields. Mica filled PTFE inserts were used to surround the flow 
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fields and provide location for the O-ring seal and dynamic hydrogen electrode (DHE). The solid 

state DHE consisted of two platinum wires on each side of the membrane located outside the 0-

ring: a distance of 10 mm away from the MEA edge to avoid side current effects (the membrane 

used -50flm). A small current of 1.0 mA cm-2 (-10 flA) was applied (to perform hydrogen 

evolution reaction) by means of9 V battery connected in series with appropriate resistance. 

The temperature of the cell was controlled by thermostatically controlled cartridge heaters 

inserted into the cell body The gases were passed into a home-made humidifier at 16 ·C prior to 

entering the cell at ambient temperature, this provided small humidification of 0.36% RH at 150 

·C (unless otherwise mentioned). The flow rates were controlled manually by means of 

appropriate flow meter designated for each gas (Platon (RM&C), U.K). The cell was tested 

under ambient pressure unless otherwise specified. 

4.2.1.2 Instruments 

A Powerstat 20 A potentiostat (Sycopel, U.K) combined with high impedance multi channel data 

acquisition card (national instrument, NI6010) was used to carry out the electrochemical 

measurements, which enabled continuous monitoring of anode, cathode (vs DHE) and cell 

performances separately. Polarisation curves were recorded using a cathodic sweep at a scan rate 

of 5 mV S·I. Previous tests confirmed that this was slow enough to approximate to steady state 

operation. 

The conductivity of each MEA was measured using Gill AC frequency response analyzer (ACM 

instruments, U.K) in the range of 30 kHz to 30 mHz (15 mA amplitude) and the relative 

humidity was obtained from an intrinsically safe humidity sensor (Vaisala HUM ICAP®, 

Finland). 
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Figure 4-1. Schematic diagram of the titanium testing fuel cell. 
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4.2.1.3 Spraying machine and electrode preparation 

A spraying machine was built to deposit catalyst layers; to achieve reproducible spraying pattern 

and catalyst layer structure/porosity. A CNC milling machine (Sherline 2010, USA) was used to 

provide the desired spraying pattern, whilst a fixed stainless steel spraying (0.5 mm) nozzle 

(Schlick 970S8, Germany) and associated metering valve was used to control the spray mixture 

(with nitrogen) and ink flow rate. 

The catalyst ink was prepared either by sonicating the catalyst and PBr in acetonelDMAc, for 

PBI based MEAs, or the catalyst and PTFE dispersion (60% wt, Aldrich) in water-ethanol 

mixture, for PTFE based MEAs. The required amount of P A acid was then added to the surface 

by means of a micro-pipette and the electrodes were left for a week to cure to obtain uniform 

acid distribution. 

Gas diffusion electrodes suitable for high temperature operation (non-woven carbon cloth) 

incorporated with wet proofed micro porous layer (obtained from Freudenberg (FFCCT, 

Germany) were used as substrates to deposit the catalyst layer for both anode and cathode. 

4.2.2 Anode Performance 

4.2.2.1 Effect of PBr content 

Anodes were prepared using 0.2 mgPI cm-2 20% PtlC (ETEK) with PBI loading of 0.28 and 0.7 

mg cm-2 and fixed doping level of 8PRU. 

Figure 4-2 shows the effect of PBI content on the anode performance. Using the higher of the 

two PBI content caused very significant anode polarisation, (e.g. > 200 mV at 100 mA cm-2
) 

even for the fast hydrogen oxidation reaction. Thus, increasing the PBI content above 0.28 mg 

cm-2 lead to severe mass transport limitations, even at elevated temperatures, due to lower 

porosity and hydrogen permeability through a thicker PBI ionomer film. This counteracted any 

potential advantages of increased ionic conductivity provided by PBI in the catalyst layer. 

Notably with the lower PBI content the anode polarisation was low, cf. 20 mV at 500 mA cm-2, 

113lPage 



Chapter Four: Optimisation o[PB! Membrane Electrode Assemblv 

As oxygen penneability through PBI is even lower than that of hydrogen, especially under air 

operation, this suggested that a minimum PBI content would be required for cathodes. 

4.2.2.2 Effect of acid doping 

Figure 4-3 shows the effect of doping level on the anode performance with a PBI loading of 0.7 

mg cm-2• Increasing the doping level dramatically enhanced the anode perfonnance even at very 

high doping level of 20 PRU. Increasing the acid content lead to enhancement in conductivity 

across the catalyst layer, more accessible ESA and better hydrogen permeability over pris tine 

PBI. For anodes using 0.5 mgpt cm·
2 20%PtlC with doping level of 20 PRU a superior 

perfonnance was obtained, for example with an overpotential value of only ~ 10 m V at a current 

density of 600 mA cm-2 and temperature of 150 QC. Increasing the doping level up to 20 PRU did 

not appear to impose mass transport limitation on the anode when operating wi th pure hydrogen . 

250 

- 20%PtlC 0.7 mg.cm-2 PBI8PRU 120C 

200 - 20%PtlC 0.7mg.cm-2 PBI 8PRU 150C 

- 20%PtlC 0.7mg.cm-2 PBI 8PRU 175C -w 150 - 20%PtlC 0.2Smg.cm-2 PBISPRU 120C ::J: 
C 
tJj - 20%PtlC O.2Smg.cm-2 PBI8PRU 150C 
Z. 
> 100 E - 20%PtlC 0.28mg.cm-2 PBI8PRU 175C 

w 

50 

o 100 200 300 400 500 600 

j I mA.cm-2 

Figure 4-2. Effect of temperature and PBI content on anode polarisation performance, potentials measured 

vs. DHE, Anode 20 % Pt/C, platinum loading 0.2 mgpt cm-
2
• 
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Figure 4-3. 20% ptle anode performance vs. DHE with pure hydrogen using 0.5 mgpl cm·
2 

and 0.7 mg cm-
2 

PSI with various acid doping levels at 150 °C. 

4.2.2.3 Reformate gas tolerance 

An advantage of operating at elevated temperatures is improved platinum CO tolerance, which 

enables simpler operation with refonnate gas, e.g. less shift reforming. Figure 4-4 demonstrates 

the effect of using reformate gas on the anode performance in comparison to pure hydrogen. The 

dilution effect of using 50 % vol carbon dioxide, for example, led to an increase in anode over­

potential from 24 to 37 mV (vs. DHE) at 600 mA cm-
2

, 

The cell showed good tolerance to carbon monoxide, for example, at 175 °C, using 10 % vol 

carbon monoxide increased the anode over-potential from 24 to 62 mV at a current density of 

600 mA cm·2 and low platinum loading of 0.2 mg cm·
2

. Above 10% vol CO a dramatic fall in 

anode activity was observed due to poisoning. For example with 30% vol CO, (Fig. 4-4) the 

anode performance was limited and current densities up to 600 mA cm-
2 

were not achievable. 
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Figure 4-4. Effect of CO & C02 on anode performance vs. DHE using 0.2 mgrl cm'2 20% PtlC and 0.28 mg 

cm'2 PBI with doping level of 8 PRU, H2 flow rate of 0.2 lpm and temperature of 175 °C, 

4.2.3 Cathode Performance 

The effect of acid loading, surfactant addition and ionomer on cathode perfonnance were studied 

and described in this section. Cathodes were prepared using 0.5 mg!'t cm·
2 

of 30% Pt/C (ETEK) 

with a PBI content of 0.55 mg cm·2 in order to maintain ionomer volume fraction of - 32% in the 

catalyst layer (see Chapter 3). 

4.2 .3.1 Effect of acid doping 

As seen in Chapter 3 there was an "optimum" acid loading for a given PBI content and catalyst 

layer thickness . Figure 4-5 shows the effect of doping level on cathode performance. Using 

oxygen, increasing the doping level from 0 to 2.5 PRU shifted the polarisation curve to lower 

over-potentials without an apparent change in the slope of the curve; suggesting no considerable 

change in the transfer coefficient, mass transport or resistance. Increasing the doping level 

further to 11 PRU led to a greater reduction in cathode perfonnance, compared to that with 2.5 
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PRU. The slope of the polarisation curve also increased compared to that with 2.5 and 0 PRU. 

The addition of acid should enhance electrolyte conductivity and potentially reduce the potential 

drop through the catalysts layer which may be seen in smaller slope of the polarisation curve. 

However greater quantities of PA may cause kinetic limitations through co-adsorption of 

phosphate, and also mass transport limitations. With pure oxygen and for small over-potentials it 

is not expected that severe mass transport limitation would occur. This is confirmed from 

operation with 1 bar (gauge) oxygen (Figure 4-5) where increasing the oxygen partial pressure 

did not affect dramatically the slope of the polarisation curve, even though the kinetics 

enhancement shifted the polarisation curves to lower over-potentials. Overall, from the data, the 

further addition of the acid decreased the transfer coefficient (a), which was confirmed in 

Chapter 3 (see effect of acid doping on a).The calculated values of a were 0.92, 0.905 & 0.79 for 

doping levels of 0, 3 & 11 PRU at 150 'C, respectively. 

Comparing the electrode performance with air (Figure 4-6) and oxygen (Figure 4-5), it can be 

seen that electrodes with doping level of 2.5 PRU did not suffer major mass transport limitations 

within the current densities used; the slopes of the polarisation curves slope were also similar. 

Similar conclusions can be drawn for the 11 PRU doping level, where even though the slopes 

under oxygen at 0 and 1 bar (gauge) were different from that of low doping level, the slopes were 

similar under air operation which confirmed the influence of acid on the transfer coefficient. 
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Figure 4-5. Effect of doping level on cathode performance under oxygen vs. DH E (IR included) using 0.5 mg"1 

cm-l 30% Pt/C and 0.55 mg cm·l PBI with var ious doping levels. 
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Figure 4-6. Effec t of doping level on cathode performance under ai r & oxygen vs. DH E (IR included) using 

0.5 mgpl cm·l 30% PtlC and 0.55 mg cm·
l 

PBI. 
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Non-doped electrodes (0 PRU) using oxygen produced similar polarisation curve slopes to that 

with 2.5 PRU. However with air the slope decreased compared to that with oxygen operation, 

suggesting mass transport limitations, which is expected due to the very low permeability of 

oxygen through pristine PBI. 

4.2.3.2 Effect of surfactant addition 

As seen from Chapter 3, the addition of per fluorinated surfactant (0.5% wt known as C6) lead to 

enhancement in oxygen permeability through the PBVH3P04 interface. Figure 4-7 shows the 

effect of surfactant addition on cathode performance for 40%PtlC electrodes prepared with 0.5 

mgpt cm-2 40% Pt/C, 0.45 mg cm-2 PBI and doping level of 6 PRU. An enhancement in activity is 

clearly seen with both air and oxygen operation. For example, using air, at current density of 100 

mA cm-2 a potential increase from 100 to 500 m V was observed with the surfactant addition. In 

addition, an apparent limiting current density of -180 mA cm-2 was observed with oxygen, 

without surfactant addition, whilst no limiting current was observed with 0.5% wt surfactant 

within the current density range studied. The measured transfer coefficient was -0.85 and did not 

vary with C6 addition. 
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Figure 4-7. Effect of 0.5% wt surfacta nt addition on cathode performance vs. DHE (IR included) using 0.5 

mgpl cm,2 40% Pt/C and 0.45 mg cm,2 PSI with doping level of 6 PRU. 

4.2.3.3 Doping level influence on conductivity 

Figure 4-8 shows the effect of electrode doping level on the through plane conductivity of 

MEA's. Increasing the doping level above 2.5 PRU led to a slight increase in the overall 

conductivity. Electrodes without doping had very low conductivity, 0.005 S cm" , compared to 

-0.025 S cm" with the doped electrodes, at 150 ·C and RH 2 %. 
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11 PRU _2.5 PRU o OPRU 

120 
Temperature l oe 
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Figure 4-8. Doping level effect on MEA's through plane conductivity using 0.5 mgrl cm-
2 

20% Pt/C at the 

anode and 0.5 mgrl cm-2 30% Pt/C at the cathode, with PHI loading of 0.7 & 0.55 mg cm-
2
, respectively, and 

RH 10% at 100 & 120 ' C and 2% at 150 'c. 

4.2.3.4 Effect of ionomer material s, afion or PB IIH3P04 

From tables 3-8 and 3-9 in Chapter 3, it was noted that hydrated Nation has a much higher 

conductivity and oxygen permeability (at 80 ' C, 34.2x 10-
12 

mol cm cm-
2 

S·I atm-I) [3] than that 

of prlstine PBI (at 80 ' C, O.OSX 10-12 mol cm cm-
2 

S·I atm-
I
) [4]. However Nafion water uptake 

falls dramatically at elevated temperatures (above 80 ' c) and with low humidity. For dry Nation 

the oxygen penneability (at 80 ' C, 3.1-4.1 x 10-
12 

mol cm cm-
2 

5-
1 

atm-
I
) [3,4] is similar to that of 

PTFE (at 80' C, 6.1 x 10-12 mol cm cm·2 S-I atm-
I
) [S] and PBI with doping level of 6 PRU (at 

ISO' C, 2.l8 x 10-12 mol cm cm-
2 

S·I atm·
l
) [6]. 

The Nation conductivity in the temperature range of 100-140 ' C, at low relative humidity «2 %) 

is in the range of 10-6_10-7 S cm-I [7]. In accordance to theoretical models , the apparent Tafel 

slope should be - 240 mV dec-
I 

double the true value of 120 mV dec-
I 

in the situation of very 

large electrolyte resistivity in ide the catalyst layer [8, 9]. Thi s was also demonstrated 
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experimentally for Nation in dry conditions and was explained by the logarithmic dependence of 

IR losses on current density and consequently product water generation [10]. 

1200 
- 40%PtlC 02 atm 120C PBI 6PRU+C6 

- 40%PtlC air 1 bar 120C PBI 6PRU+C6 

1000 - 40%PtlC air atm 120C PBI 6PRU+C6 

- 40%PtlC 02 atm 120C Nation OPRU 
800 

iiJ 
- 40%PUC air 1 bar 120C Nation OPRU 

x 
0 600 - 40%PUC air atm 120C Nation OPRU 
III 
> -> 
E 400 

UJ 

200 

0 
0 50 100 150 200 250 300 350 400 

j I mA.cmo2 

Figure 4-9. Effect of binder/electrolyte on cathode performance vs. DH E (IR included) with nalion 30% wt 

and PBI 0.45 mg cmoz PBI (6 PRU with 0.5 %wt C6) at 120 'c. 

In this study, cathodes with 40% Pt/C 0.5 mgpt cm
o2 

were prepared with 30% wt nation as 

ionomer or 0.45 mg cm·2 PBI with 6 PRU. Both electrodes used the standard 20% Pt/C 0.2 mgpt 

cmo2 anode and were hot pressed on the standard 5.6 PRU PBI 50 !lm thick membrane. 

Figure 4-9 shows the effect of ionomer type (nation or PBIIH3P04) on cathode performance. It 

can be seen that PBII6 PRU (with perfluronated surfactant C6) gave better performance than 

Nation; with greater transfer coefficient; the polarisation curve exhibited lower overpotentials. 

However, Nation has, even under dry conditions, a better oxygen permeabili ty than PBI 6 PRU, 

which was reflected in the similar slopes of the polarisations curves with air, air 1 bar and 

oxygen at the studied high current densities . With PBI 6 PRU the slopes of the polarisation 

curves fell , beyond current density of 50 mA cm
o2

, with lower oxygen partial pressure, even with 

surfactant addition, also indicating mass transport losses. The enhanced mass transport of nation 
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was also seen in its higher limiting current. PBI based electrode had lower limiting current than 

that of nafion based electrode under air operation (Fig. 4-7 & 4-9). 

The measured apparent Tafel slopes were 261 mV dec-lfor nation in comparison to 96 mV dec-l 

for PBI (6 PRU) at 120 ·C. This corresponds to transfer coefficient values of 0.3 & 0.81, 

respectively. The observed high value of Tafel slope for dry Nafion was in close agreement to 

the estimated value of 240 mV dec-
l 

given in [8, 9]. 

On the other hand, the obtained exchange current densities (by extrapolating Tafe! slope to 1.1 

V) for nafion was three orders of magnitude higher than that of PBI. This can be explained by 

higher oxygen solubility and lower ions adsorption. Value of 1.28 x 10-6 A cmpt-2 was obtained for 

nafion with oxygen, which is in good agreement with the reported value of 1.41 x 10-6 A cmpt-2 

(02, 80 .c) [11]. A value of 3.19 x 10-9 A cmpt-2 was obtained for PBI (6 PRU), which is in good 

agreement with the reported value of 2.9x 10-9 A cmpt-2 for PBI (6PRU) at 150 ·C with oxygen 

[6]. Catalyst specific area of 16 m2 g"l was considered in the calculations for the used 40% PtlC 

(roughness factor of 80), this value was obtained from hydrogen under potential deposition 

(UP D) for 40% Pt/C electrode utilising PBI (6 PRU) (Chapter 3). 

4.3 New PEMFC MEA development 

While PBI is considered a good candidate for membrane materials due to its low permeability, 

addition of PBI to the catalyst layer as ionomer for proton conduction through the catalyst layer 

and binder, imposes mass transport limitation on anode and cathode performances depending on 

the thickness of the film formed on the catalyst sites. Furthermore, addition of phosphoric acid is 

necessarily to facilitate oxygen permeability and proton conduction, as the conductivity of non­

doped PBI is very low (in the range of 10-4 S cm-I [12]). 

In this study, it was decided to eliminate PBI from the catalyst structure and rely on the 

conductivity of phosphoric acid as electrolyte, to give the following advantages: 

• Conductivity of Phosphoric acid 0.568 S cm-I at 150 °c is an order of magnitude higher 

than that of doped PBI 6 PRU -0.047 S cm-I at 150 °c and 5% RH [6]. 

• Oxygen diffusion in Phosphoric acid (98% wt) 30xlO-6 cm2 S-I is an order of magnitude 

higher than that of doped PBI 6 PRU 3.2xlO-6 cm2 S-I at 150 °c [6]. 
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Dissolved oxygen concentrations (solubility), 0.68xlO-6 mole cm-3 for doped PBI 6 PRU 

compared to 0.5 xlO-6 mole cm-3 for 95%wt phosphoric acid at 150°C and atmospheric 

pressure [6]. 

PTFE was introduced in the catalyst layer to provide the following functions: 

1. Binder. 

2. Amorphous phase to hold the phosphoric acid. 

3. Enhance porosity. 

4. Facilitate transport of oxygen to the catalyst layer by repelling the phosphoric acid from 

the catalyst structure (hydrophobic properties) and provide higher oxygen permeability 

(two order of magnitude), e.g. at 80 ·C PTFE exhibits an oxygen permeability of 6.1 mol 

cm cm-2 s-I atm-I [5] compared to 0.05 mol cm cm-2 s-I atm-I for pristine PBI [4]. 

In phosphoric acid fuel cells, typically 30-50% wt of PT FE is used [13]. In this work the effect 

on MEA performance of the following factors were investigated: Catalyst loading, PtC 

ratio/thickness, acid content, PTFE content, membrane doping level, dehydration (175°C), air 

flow rate, oxygen partial pressure, reformate operation, PFM addition, heat treatment, catalyst 

carbon support, Pt-alloys effect and flow field pattern. 

4.3.1 Catalyst loading effect 

The effect of catalyst loading (0.4, 0.52 & 0.61 mgPI cm-2
) on cell performance, at 120°C using 

oxygen and air as oxidants, is shown in Figures 4-10 and 4-11 respectively. The anodes used 

20% Pt/C with loading of 0.2 mgPI cm-2 and 2 mg cm-2 acid as electrolyte. The cathodes had no 

added-acid and conductivity purely relied on mobile acid from the membrane (doped at 5.6 

PRU); 40%wt PTFE was added as binder for 0.4 & 0.52 and 20% wt for 0.61 mgPI cm-2 

electrode. The data shows that increasing the catalyst loading, increased the cell potential as a 

result of higher electrochemical surface area (Le. enhanced kinetic region). However, an increase 

in the catalyst loading would increase the catalyst layer thickness, resulting in potential losses 

due to mass transport and resistance. Moreover, there is an optimum catalyst thickness that 

provides maximum accessible surface area in terms of proton conductivity from mobile acid 
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from the membrane and oxygen diffusing from the gas channel. This optimum depends on 

oxygen concentration: at high oxygen concentration higher loading/thickness is favourable whilst 

the opposite case applies at lower oxygen concentration (air operation). 

With oxygen (minimum mass transport limitations), increasing the loading increased the 

performance. However IR losses countered the kinetics enhancement at higher current densities 

when increasing the loading from 0.4 to 0.52 & 0.61 mg cm-2
• Whilst with air operation 

(apparent mass transport limitations) increasing the catalyst loading above 0.52 mg cm·2 (whilst 

maintaining Pt~C ratio) did not significantly improve overall performance as mass transport 

seems to dominate at low oxygen concentration. 

Another effect of changing the cathode layer loading/thickness was on the OCP. With the cell 

running on oxygen, increasing the loading increased the OCP due to smaller influence of 

hydrogen cross-over on the mixed potential. Increasing the cathode thickness means more 

surface area is available for oxygen reduction when hydrogen is oxidized at catalyst sites closer 

to the membrane. 
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Figure 4-10. MEA performance using oxygen at 120 'c with 0.4, 0.52 & 0.61 mgp! cm-2 (50% wt) on the 

cathode and 0.2 mgp! cm-2 (20% wt) on the anode. 
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Figure 4-11. MEA performance using air at 120 ' C with 0.4, 0.52 & 0.61 mgp! cm-2 (50% wt) on the cathode 

and 0.2 mgp! cm-2 (20% wt) on the anode. 
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4.3.2 PTFE loading effect 

Typically, 30-50% wt PTFE is added to the cathode catalyst layer in phosphoric acid fuel cells. 

PTFE offers several advantages; particularly enhancing mass transport through a more porous 

structure. However, excess PTFE will lead to further IR drop, due to a thicker layer (more 

porous) and less ionic & electronic conductivity (PTFE is non-conductive). 

Figure 4-12 shows cell performance at 120 °c using 20 and 40% wt PTFE in the cathode. The 

observed enhancement at high current densities using 40% PTFE resulted from superior oxygen 

transport through the catalyst layer. To investigate the mass transport effect further a mixture of 

oxygen/helium (20% vol oxygen) was passed through the cathode and the performance was 

compared to that of air. While air and hele-ox have similar oxygen concentrations (-20% vol) 

the oxygen binary diffusion with helium is much higher (order of magnitude) than that with 

nitrogen. This can be readily established from Slattery-Bird correlation for binary diffusion [14], 

Dij. The effects of porosity and tortuosity can be accounted for using Bruggeman correlation 

. b' d'f~' D efT D t leading to the effectIve mary 1 luslOn ij = ijXE: 

( )

b 1/2 

eff _!!... T 13 112 _1 __ 1_ T 

D jj - p:;r:; (~J~.j Y (~J~.j Y ( + ) & 
P ~J~.j M j Mj 

[I] 

Where Tc and Pc are the gas critical temperature and pressure, respectively. M is the molecular 

weight of the gas, E is the porosity and 't is the tortuosity. a and b are constants, a is 0.0002745 

for di-atomic gases and 0.000364 for water vapour,' while b is 1.832 for di-atomic gases and 

2.334 for water vapour. 

For example, the binary diffusion for oxygen-nitrogen (air) at 175 °c is 4.4x 10.5 m2 s·1 compared 

to that of oxygen-helium under the same conditions; 1.8 x 10
4 

m2 
S·I. The performance was 

enhanced noticeably by replacing nitrogen with helium, which highlights the fact that the cell 

suffers from mass transport limitation in the gaseous phase (through the porous structure) and is 

not only dominated by permeability through the thin film (acid/polymer); which obeys Henry's 

law (depends on oxygen partial pressure). 
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Figure 4-12. MEA performance using air/heleox at 120 'C with 0.4 mgrl cm·
2 

(50% \Vt) on the cathode and 0.2 

mgpl cm·2 (20% \Vt) on the anode. 

4.3.3 Acid loading effect and surfactant addition 

The acid doping level or acid film thickness over the catalyst site plays an important role on 

overall performance. Increasing film thickness, 8, will lead to better protonic conductivity as the 

volume fraction of the acid in the catalyst layer will increase. On the other hand, increasing 8 

will lead to a smaller oxygen flux across the thin film, which will impose further mass transport 

limitations, as defined from Fick ' s law: 

- D fi ,po, er (C - C ) 
N = O2 PI clisso /\'e 

0, 8 [2] 

Where N02 is the molar flux of oxygen, Crt is the oxygen concentration on the catalyst surface, 

and Cdissolve is the oxygen concentration in the acid film at the studied temperature. 

In this work two separate studies of acid content in the anode and cathode have been carried out. 
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4.3.3 .1 Acid and surfactant effects on cathode perfonnance 

Figure 4-13 shows the acid doping level effect on the cathode perfonnance at 120 DC, with air 

and oxygen operation. Increasing the doping level from 0 to I mg cm-
2 

lead to a shift in the 

polarisation curve towards lower over potentials due to improved kinetics. Note that with no 

added acid to the cathode it was still present due to acid mobility from the membrane. When 

operating with pure oxygen an enhancement in voltage was observed over the entire studied 

current density range. However with air operation the enhancement was observed at low current 

densities (kinetic control) whilst at high current densities (mass transport control) no 

improvement was observed, due to mass transport limitations countering the effect of enhanced 

kinetics arising from the thicker acid film over the catalyst sites. 
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Figure 4-13. MEA performance using air and oxygen at 120 ' C with 0.4 mgpt cm-
2 

(50% wt) doped with 0&1 

mg cm-2 acid on the cathode and 0.2 mgpt cm-
2 

(20% wt) on the anode. 

Figure 4-14 shows the effect of acid doping level and surfactant on cathode perfonnance at 120 

'c with air & oxygen operation. Increasing the doping level above I mg cm-2 to 2 mg cm-2 in the 
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cathode imposed mass transport limitation on the cathode performance with both air and oxygen 

operation. This was seen in lower perfonnance at high current dens ities (mass transport control) 

where the acid film thickness increased beyond a crucial optimum point balancing between 

conductivity and mass transport. 

1.2 - 50%PtlC_02_120C 
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0.8 

> 50%PtlC_air_120C_doped_2mg.cm.2 
w 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Figure 4-1 4. MEA performance using ai r and oxygen at 120 ·C with 0.4 mgpl cm-
2 

(50% wt) doped with 0 & 2 

mg cm-2 acid wit h 0.5% wt C6 on the cathode and 0.2 mgpl cm-
2 

(20% wt) on the a node. 

Also shown in Fig. 4-14 the influence of Surfactant addition (0.5% wt of C6 Trideca-fluroro 

hexane- I-sulfonic acid potassium salt) gave as shown earlier, an improvement in cathode 

perfonnance when using PBI as binder (Fig. 4-7), by enhancing oxygen permeability through 

PBI. Similarly, surfactant addition at low concentrations has been reported to enhance oxygen 

penneability through phosphoric acid by reducing its viscosity, enabling faster oxygen diffusion 

[15 , 16]. Figure 4-14 on the contrary shows that for PBI-free electrode surfactant addition 

reduced cell perfonnance due to mass transport limitations (lower performance at high current 

densities and lower limiting current) in comparison to that with a cathode contain 2 mg cm-
2 

acid 

without surfactant. The different results obtained with PBI and PTFE as binder are explained by 

the hydrophobic properties of PTFE and hydrophilic properties of PBI. The surfactant led to 
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reduction in the surface tension between the added acid and PIFE, increasing cathode flooding 

with acid [17] and reducing the overall cathode porosity and thereby imposing oxygen mass 

transfer limitation. 

4.3.3.2 Acid effect on anode performance 

Figure 4-15 shows the effect of acid and PBI content on the anode potential (vs. DHE) at 120 ·C. 

It can be seen that the addition of PBI to the anode catalyst layer (0.2 mgPI cm-2 20% Ptlc) 

reduced the anode performance (increased potentials) even at the same acid content. Ihis can be 

attributed to slower hydrogen diffusion through and lower conductivity of PBI and the fact that 

free acid (liquid) has greater access to catalytic sites (electrochemical surface area) than the 

polymer/polymer acid mix due to reduced porosity. Increasing the acid content from 0.2 to 2 mg 

cm-2 increased the anode performance substantially; this can be attributed to a smaller IR drop 

across the catalyst layer and more catalyst sites becoming accessible. However, increasing the 

acid loading, beyond 2 mg cm-2
, led to a small enhancement in anode performance at high 

current densities (resistance improvement). 

With a system operating on pure hydrogen the mass transport effect in the anode can be 

neglected, thus increasing doping level in the anode up to 4 mg cm-2 led to the enhancement in 

the performance without apparent mass transport limitation. 
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Figure 4-15. Anode performance vs. DHE using hydrogen at 120 ·C with 0.2 mgpt cm-
2 

(20% wt) on thc anode 

with different acid/PBI contcnt. 

4.3.4 Oxidant flow rate/concentration effect 

Figure 4-16 shows the cell perfonnance with different air flow rates at atmospheric pressure and 

120 °C. An increase in perfonnance, at higher current densities, was observed when flow rate 

was increased, resulting from enhanced mass transport and therefore limiting current density. A 

maximum increase was obtained at 0.45 lpm (STP) (air stoichiometry of A = 2) and increasing A 

any further did not lead to any noticeable improvement. 
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- 0.351pm air 120C 
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- 0.15Ipm air 120C 

1 1.2 1.4 

Figure 4-16. Cell performance usi ng a ir at 120 ' C with 0.2 mgr, cm-
2 

(20% wt) on Ihe anod e and 0.61 mgr, cm-

2 (50% wl) with 40% wt PTFE on the cathode al different ai r fl ow ra tes. 

It is well established that an increase in operating pressure enhances the perfonnance of PAFCs 

due to the low oxygen penneability through phosphoric acid [18, 19]. The effect of oxygen 

partial pressure was examined using; atmospheric air, air 1.0 bar, atmospheric oxygen and 

oxygen at I bar. Figure 4-17 shows that increasing the oxygen partial pressures, at 150 'C, 

enhanced the cell perfom1ance in both the kinetic region (low current densities) and mass 

transport region (high current densities)_ 

Improvements In kinetics an se from an increase in the exchange current density due to an 

increase in oxygen partial pressure (lower diffusion polarisation) and therefore surface 

concentration: 

( )' [ [ Jl . _ ( if a L C PI e _ Ec I T 
) 0 - 0 c c C reJ xP RT - T 

PI reJ 

[3] 
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Where jo (A cm-2 geometric) is the reference current density, io
ref (A cm-2

pt) is the exchange current 

density at reference temperature T ref and concentration Cref, CPt is the oxygen concentration on 

the catalyst surface which directly proportional to oxygen partial pressure. ac (m2 g-I) is the 

catalyst specific (electrochemical surface area) Lc is the catalyst loading, which correspond to the 

weight of platinum per unit area (g cm -2). y is the pressure coefficient or the reaction order with 

respect to oxygen, Ec is the activation energy of oxygen reduction in hot phosphoric acid. 

This reduces the kinetic overpotential losses as defined by the Butler-Volmer equation: 

[4] 

Where 11c is the cathode overpotential losses and (lc is the transfer coefficient for cathode 

reaction. 

The kinetic improvement is also accompanied by a thermodynamic improvement (increase in 

cell reversible potential), using Nernst equation: 

[5] 

Where ~Ho and ~so are the enthalpy and entropy of the reaction, respectively. CO
H2, COO2& aO

H20 

are the reference hydrogen, oxygen concentration and water activity, respectively.C02 is the 

dissolved oxygen concentration on the catalyst surface (referred to earlier as Cpt). 

In the data of Fig. 4-17 improvements in mass transport can be clearly distinguished at higher 

current densities, whilst operation with oxygen did not show apparent mass transport limitation. 

Increasing the air pressure from 0 to 1 bar, increased the limiting current from 1.4 to 1.8 A cm-2 

at 150 °C. In addition, a pressure increase can also enhance the overall cell ionic conductivity, 

where it shifts the equilibrium between phosphoric acid and water vapour, leading to a lower 

acid concentration and therefore higher conductivity. It has been reported that at 169 ·C an 

increase in pressure from 1 to 4.4 atmosphere led to shift in phosphoric acid concentration from 

100% wt to 97% wt [13]. 
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Figure 4-17. Cell performance using different oxygen partial pressure at 150 °C with 0.2 mgpl cm-
2 

(20% wt) 

on the anode and 0.61 mgpl cm-2 (50% wt) with 40% wt PTFE on the cathode. 

4.3.5 Performance under reformate feed and CO influence 

Carbon monoxide and carbon dioxide was introduced in the anode gas stream to study the 

performance with a simulated refonnate feed. Carbon dioxide would impose some mass 

transport limitation at high concentration and current densities (ignoring any effect of reduction 

of carbon dioxide to carbon monoxide by hydrogen at the studied temperature [20]). Carbon 

monoxide would slow the kinetics of hydrogen oxidation because of its adsorption (poisoning) 

on platinum active catalytic sites. As the temperature rises Pt tolerance to CO poisoning 

increases . 

Figure 4-18 shows the cell performance with 20% & 33% vol C02 and 2.5% vol CO at ISO 0c. 
The anode exhibited a high tolerance to impurities in the gas feed even at temperature as low as 

150 0C. The voltage losses at a current density of 1.5 A cm-
2 

were only 8, 12 & 22 mY when 

switching from pure hydrogen to 20%, 33% vol CO2 and 2.5% vol CO, respectively. This 
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demonstrated a major advantage for HT-PEMFC where celIs can operate with high CO tolerance 

offering simpler and lower cost reformer des ign. 
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Figure 4-18. Cell performance under reformate using oxygen at 150 ·C wit h 0.2 mgpl em-2 (20% wt) on the 

anode and 0.61 mgpl cm-2 (50% wt) on the cathode. 

4.3.6 Dehydration and relative humidity effects 

Figure 4-19 shows the effect of dehydration on the I-V curves for HT-PEMFC at temperature of 

175°C and various RH and time intervals . 
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Figure 4-19. Cell performance using oxygen at 175 ' C with 0.2 mgp, cm
o2 

(20% wt) on the anode and 0.61 mgp, 

cmoz (50% \Vt) on the cathode at different RH and time intervals. 

A noticeable decrease in the slope of the I -v curve (mainly attributed to membrane resistance) 

for a cell operating at 175 QC (or above) was observed with no external humidification. The 

polarization curves were obtained immediately after the system has reached 175 QC. Later, the 

data was collected at intervals with a further reduction in perfonnance observed, until a steady 

sate condition was reached after I hour. This effect was likely to be a result of the water loss 

produced by acid dimerisation. At elevated temperatures, phosphoric acid starts to dehydrate, 

which can occur in many stages, the first t\vo of which are illustrated below: 

First stage: 2H3P04 - H4P20 7 + H20 

Second stage: H4P20 7 + H3P04 - HsP30 lo + H20 T 

The equilibrium concentrations of these reversible reactions are temperature and relative 

humidity dependent. The dimerised products are less proton conductive than phosphoric acid 

[21] which explains the above observation. To illustrate the above suggestion , I % RH 
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humidification was introduced into the hydrogen stream and the system was held for 30 mins 

before taking the first measurement. An enhancement in the slope of the 1- V plots was observed, 

presumably due to an increase in conductivity. 

Frequency response analysis was used to measure the cell conductivity at elevated temperatures. 

A frequency range of30 KRz - 30 mHz was used with amplitude of 15 mA around the OCP. The 

resistance value can be obtained when the phase shift is equal to zero (the impedance is pure 

resistance without any capacitance or conductance behaviour). Figure 4-20 shows the effect of 

temperature on the frequency response and thus the overall system resistance at RH <1 %. The 

total through plane resistance was 0.075, 0.068 & 0.0787 ohm for temperatures of 125, 150 & 

1750C, respectively. This results in overall average conductivities of 1.07, 1.18 & 1.02 x 10-2 S 

cm-), considering a membrane thickness of 60 /lm (anode catalyst layer of 20 /lm and cathode 

catalyst layer of 13 /lm). The resistivities were two to three times higher than that of the 

membrane alone. This difference is attributed to protonic and electronic resistance through 

catalyst layers, to contact resistance and electrical resistance in gas diffusion layer and micro 

porous layers. 

The above observations confirm that the loss of conductivity, when the temperature was 

increased to 175°C without humidification, can be explained by dehydration of the phosphoric 

acid (boiling point ofH3P04 85% wt is ca.l54 DC). 
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Figure 4-20. Frequency response analysis Nyquist plots at range of 30 KHz - 30 mHz for MEA operating at 

temperatures of 120,150 & 175 ' C and RH <1 % a round OCP. 

4.3.7 Membrane doping level effect on cell performance 

Pristine PBI has a negligible conductivity and requires doping with phosphoric acid to facilitate 

proton conduction. The higher the doping level, the higher the conductivity. However, the 

mechanical properties and tensile stress of PBI deteriorate dramatically on increasing the doping 

level. A balance between conductivity and mechanical properties is achieved at doping level of 

c.a. 5.6 PRU [22]. Apart from its effect on the overall conductivity, the membrane doping level 

will affect the cathode performance. As seen earlier, whilst the cathode did not contain added 

acid, it relied on acid mobility from the membrane to provide proton conduction and access to 

catalytic sites . The anode utilized 0.2 mgPt cm-
2 

of 20% PtlC with an added acid content of 2 mg 

-2 
cm . 
Each PBI unit can hold 2 acid molecules by hydrogen bonding to the two imidazole rings. After 

the maximum degree of protonation of the nitrogen atoms is reached (at 2 PRU), any further acid 
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will be free mobile acid, held in the membrane matrix. Infra Red spectra has shown the presence 

of free H3P04 at doping level above 2 PRU (2.1 PRU) [23]. 

Figure 4-21 shows a comparison between standard doping membrane (5.6 PRU) and low doping 

membrane (4 PRU) on cell perfonnance at 150 °C. Reducing the membrane doping level , from 

5.6 to 4 PRU, had severe impact on polarisation curves; significantly reducing cell potentials due 

to lower membrane and catalyst layer conductivities. Additionally, the kinetic region was 

severely affected (at low current densities); which can be explained by less accessible catalytic 

sites (ESA) due to less electrolyte available in the cathode catalyst layer. 
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Figure 4-21. Comparison between standard doping membra ne (5.6 PRU) a nd low dopin g membrane (4 PRU) 

influence on cell performance at 150 °C using 50% Pt/C at the cathode with loading of 0.4 mgr, cm-
2
• 

High doping level membranes (20 PRU) were also investigated. The high acid content in the 

membrane means that there was a large quantity (18 PRU) of free acid available to flood the 

catalyst layer. To accommodate this free acid a change in the anode and cathode structures would 

be needed. Figure 4-22 , shows the impact of catalyst layer structure (anode and cathode) on cell 

performance using a highly doped membrane (20 PRU) at 120 °C. 
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Figure 4-22. Catalyst layer structure impact on anode (vs. DHE) & cell performances using highly doped 

membrane of 20 PRU at 120·C. 

The standard anodes utilised 0.2 mgpt cm-2 
20% Pt/C, and did not contain PTFE and were 

impregnated with 2 mg cm-2 acid when using membranes doped with 5.6 PRU. This structure 

had to be modified to include 10 %PTFE in order to accommodate the large quantities of mobile 

acid expected to flood the anode structure when using highly doped membrane. However, this 

measure was not sufficient, where the cell performance was limited by anode mass transport: a 

limiting current was observed in the anode performance at extremely low current densities 

(Figure 4-22). Increasing the anode catalyst layer thickness by increasing the Pt loading from 0.2 

to 0.4 mgpt cm-2 20% Pt/C and maintaining the PTFE content of 10 % led to an increase in the 

observed limiting current value at the anode, although the overall cell performance was still 

dictated by poor mass transport through the flooded anode. Increasing the anode catalyst layer 

hydrophobicity (using 40% wt PTFE) and reducing the cata lyst thickness by maintaining the Pt 

loading of 0.4 mgpt cm-2 and changing PtC ratio to 40% pt/C led to a remarkable increase in 

anode limiting current density to 300 mA cm-
2

• Finally, using anode platinum loading of 0.3 mgpt 
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cm-2 (20% PUC) with high PTFE content (40% wt) resulted in no apparent mass transport 

limitations in the anode performance, at the studied current densities up to '-8 A cm-
2

. 

Similarly, the PTFE content in the cathode was kept fixed (40% wt) , and the platinum loading 

was fixed at 0.4 mgPl cm-2, however, the cathode catalyst layer thickness was increased by 

utilising a lower platinum to carbon ratio (30% PUC instead of 50% PUC). 
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Figure 4-23. Comparison between standard doping membrane (5.6 PRU) and hig h dopi ng memb rane (20 

PRU) influence on cell performance at 150 ·C using 30 % Pt/C at the cathode with loadi ng of 0.4 mgpt cm-z. 

Figures 4-23 and 4-24 compare the cell performance with MEAs utilising the standard doped 

membrane of 5.6 PRU and higher doped membrane of 20 PRU, at temperatures of 150 & 175 ·C, 

respectively. Utilising a hi ghly doped membrane gave no major advantage over the standard 

doped membrane at 150 ·C, and a small improvement in the polarisation curves (resistance 

effects) at 175 .c. However, considerable enhancement in the limiting current was observed with 

air and air at I bar which is attributed to a superior "three phase zone structure" arising from 

more available electrolyte for the thicker electrode layer. Whilst a large difference in the doping 

level was expected to have a major impact on the membrane resistance, the use of thick catalyst 

layers for both anode and cathode, to restrict access of free acid from the membrane flooding the 
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active layer, resulted in large IR losses through the catalyst layer countering the enhancement in 

membrane resistance. 
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Fioure 4-24. Compar ison between standa rd doping me mbrane (5.6 PRU) and high doping membrane (20 .. 
PRU) influence on cell performance at 175 ' C using 30% PtlC at the cathode wi th load ing of 0.4 mgp, cm-

2
• 

4.3 .8 Heat tr eatment effect on electrode performance 

As shown earlier, hydrophobicity of the catalyst layer (PTFE content), membrane acid content 

and cathode catalyst content play major roles in detennining cell perfonnance. All the mentioned 

factors dictate acid (electrolyte) volume fraction in the catalyst layer and therefore the three 

phase boundaries. 

Heat treatment of PTFE, at temperature of 350 ' C for 30 mins under an inert atmosphere 

(sintering) leads to a more hydrophobic structure (for the same PTFE content) where Teflon 

fibres, usually less than 10 nm thick, are fonned spreading over all carbon particles or clusters 

[24]. This process is normally applied to phosphoric acid fuel cell electrodes [25] , where a high 

degree of hydrophobicity is required to stop the electrode flooding from highly mobile acid (no 
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hydrogen bonds between the matrix and the phosphoric acid within) from the fu lly saturated 

silicon carbide matrix (used as solid electrolyte). 
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Figure 4-25. Compares cell performance at 120 ·C of MEAs using standard cathode electrode and heat 

treated cathode electrode utilising 0.4 mgpI cm·
2 

50 % PtlC with 40 % wt PTFE. 

Figures 4-25 & 4-26 show a comparison in cell performance, at 120 cC, between the standard 

cathode and heat treated cathode utilising 0.4 mgPt cm-
2 

with 40% wt PTFE fabricated using 50% 

PtlC and 40% PtlC, respectively. Heat treatment produced a dramatic reduction in cathode 

performance, where the heat treated cathode exhibited a very high degree of hydrophobicity 

repelling any mobile acid coming from the membrane. Therefore, the cathode had a very low 

acid (electrolyte) content, resulting in a very small active three phase zone close to membrane 

boundary, whilst the remainder of the cathode layer remained relatively inactive. This is clearly 

seen in the large fall in potential at low current densities, due to kinetic losses and low active 

electrochemical surface area. 
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Whilst PTFE heat treatment (sintering) has proved useful in the presence of high quantities of 

mobile acid i.e. phosphoric acid fuel cells and perhaps highly doped PBI, it had a negative 

impact for membranes exhibiting low acid mobility (doping) where the inherited high 

hycirophobicity blocked the small amount of electrolyte required in the catalyst layer; resul ting in 

an inactive electrode. 
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Figure 4-26. Compares cell performance at 120 ' C of MEAs using standard cathode electrode and heat 

t reated cathode elect rode utilising 0.4 mgp! cm-
2 

40% PtlC with 40% wt PTFE. 

4.3.9 Effect of catalyst's carbon support on cell 's performance 

The effect of catalyst carbon support on cell performance, using two materials; VuJcan XC-72R 

(ETEK, U.s.A) and ACOl advanced carbon (Johnson Matthey, U.K) was examined. The 

Platinum to carbon ratio was constant to 40% Pt/C, whilst both catalysts exhibited similar 

electrochemical surface area and average particles sizes (as determined from X-ray Diffraction); 

2 .8 nm (ETEK) and 2.3 nm (JM). 
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The two carbons supports had different morphologies and hydrophobic properties, and therefore 

would produce different catalyst layer structures, in tenns of three phase boundaries and their 

interaction with the acid electrolyte (wettability). The density of the carbon support detennines 

the thickness of the catalyst layer and thus electrode perfonnance accordingly. Whilst Vulcan 

XC-72R has a density of 1.7 - \.9 g cm') at 20 ·C [26] , no infonnation was avai lable on the 

density of the advanced carbon support ACO I from JM. 
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Figure 4-27. Shows the effect of catalyst carbon support on cell performance at 175 ' C, electrodes utilised 0.4 

mgpI cm·2 40% Pt/C wit h 40% wt PTFE with Vulcan XC-72R (ETEK) & ACOI Adva nced carbon support 

(Johnson Matthey). 

Figure 4-27 shows the effect of catalyst carbon support on cell performance at 175 ·C, with 

cathodes utilising 0.4 mgPl cm·
2 

40% Pt/C with 40% wt PTFE. At low current densities , Vulcan 

gave superior perfonnance to the ACO I support, suggesting better oxygen reduction kinetics due 

to higher available electrochemical surface area. Similarly, the slope of the I-V curves of the 

cathodes utilising Vulcan as catalyst support exhibited less fR losses, compared to that of ACO I . 

Thi s data suggests that ACO I has a lower interaction with the acid electrolyte (more hydrophobic 
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than Vulcan) leading to a lower acid content in the catalyst layer and therefore lower 

conductivity and accessible e1ectrochemica1 surface area. Another explanation is that ACO 1 had 

a lower density than that of Vulcan leading to thicker catalyst layer thickness (higher IR losses) 

and, since the acid electrolyte can diffuse from the membrane to a limited catalyst layer 

thickness, a large portion of the catalyst surface would become inaccessible, resulting in slower 

kinetics. It is also reasonable to consider the combination of both factors. 

4.3.10 Pt:C weight ratio & catalyst layer thickness 

With a fixed acid content in the membrane, there is an optimum thickness for the cathode 

catalyst layer (with no added acid) that provides the best balance between mobile acid 

electrolyte, from the membrane, and supply by diffusion of gaseous oxygen from the flow 

channel, in other words to maximize the available three phase boundaries. 

Figure 4-28 shows the cell performance using 40,50 & 60% PtlC (at fixed Pt loading of 0.4 mgpt 

cm-2) with oxygen at 120 ·C. At low temperatures and pure oxygen operation (minimum mass 

transport limitations) 40% PtlC gave the best performance, followed by 50% PtlC and 60% PtlC. 

This directly corresponded with the order of electrochemical surface area (smallest average 

particles size). 

Figures 4-29 & 4-30 show cell performance using 40, 50 & 60% PtlC with air at 150 ·C & 175 

·C, respectively. With air operation and high operating temperatures leading to lower oxygen 

solubility and higher phosphoric acid viscosity (dehydration), 50% PtlC showed advantages over 

40% PtlC, suggesting the optimum thickness shifted towards lower values as the oxygen 

concentration fell. As temperature increased from 150 to 175 ·C, the viscosity of phosphoric acid 

increased due to dehydration [21] and furthermore, oxygen solubility feU (Henry's law) leading 

to a greater impact of mass transport on cell performance, reflected by a slightly lower limiting 

current at 175 ·C compared to 150 ·C. This makes selection of the optimum thickness of the 

catalyst layer more critical and therefore broadens the difference between the best performance 

obtained by 50%PtlC and those of 40 & 60% Pt/C. 
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Whilst 60% Pt/C showed the smallest limiting current value (under air) , explained by the flooded 

cathode structure, from acid electrolyte in the membrane, when utilising very thin catalyst layer. 

The slope of the polarisation curves was affected by a combination of mass transport effects (for 

example the difference in the slope between air and oxygen operation) and the typical effect of 

resistance. It can be seen that 60% Pt/C gave the worst polarisation performance and the smallest 

limiting current, while it exhibited the smallest 1R loss through its thin catalyst layer. This 

confirms that the poorer polarisation obtained with the 60% Pt/C layer was attributed to mass 

transport effects (flooded structure). 
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Figure 4-28. Compares cell performance under pure oxygen at 120 ·C of MEAs using 40, 50 & 60% PtlC 

cathode electrodes utilising 0.4 mgp, cm
o2 

with 40% wl PTFE. 
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Figure 4-29. Compares cell performance under a ir a t 150 'c of M EAs using 40, 50 & 60% )}t/C cathode 

electrodes u til isi ng 0.4 mgpl cm'2 wi th 40% wt PTFE. 
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Figure 4-30. Compares cell performance under air at 175 ' C of M EAs lIsing 40, 50 & 60% pt/e cath ode 

electrodes utilising 0.4 mgPI cm'! with 40% wt PTFE. 
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4.3.11 Pt-alloys effect on cathode performance 

4.3.11.1 Introduction 

A correlation between the nearest-neighbour distance (dn-n) and the oxygen reduction activity of 

various platinum alloys has been reported for phosphoric acid electrolytes [27, 28]. The oxygen 

reduction activity in hot phosphoric acid (200°C) on platinum and platinum al\oys increases 

linearly as the nearest-neighbour distance in the electro-catalyst decreases_ A composite analysis 

shows that data for supported platinum alloys [28] are consistent with bulk metal data [27] with 

respect to specific activity, activation energy, pre-exponential factor and percent d-band 

character. The kinetic parameters of the oxygen reduction reaction, in hot concentrated 

phosphoric acid, on highly dispersed platinum have been rationalized in terms of the rate 

determining step being the rupture of the 0-0 bond via various dual site mechanisms [29]. The 

spacing between the sites at which the 0-0 bond rupture occurs would play a critical role in the 

overall reaction rate and an optimum spacing should exist if the rate-determining step was 

assumed to be oxygen reduction involving dual sites mechanism with lateral adsorption of 

oxygen molecules on the electro-catalyst surface (bridge model) followed by rupture of the 0-0 

bond [13]. 

The optimum nearest-neighbour distance (dn-n) will facilitate rapid adsorption and bond rupture, 

while larger dn-n, will lead to restricted adsorption and therefore dissociation might occur prior to 

adsorption. On the other hand smaller dn-n wi1llead to limited adsorption due to repulsive forces 

[28]. The enhanced activity of platinum alloys over platinum can also be explained by the 

number of unpaired electrons in the d band and therefore, the oxygen coverage on the surface, as 

each oxygen requires two electrons from the metal d-orbit to form a bond. There is an optimum 

value for the d-band vacancy (per atom) [13] which controls the strength of the oxygen 

adsorption bond, or the %d character, the extent of the participation of the d orbitals in the 

metallic bond, influencing the heat of adsorption, where a balance between oxygen coverage and 

the strength of the M-O bond of the adsorbed oxygenated groups (-02H) is reached. 

In phosphoric acid the (Pt-MIC) alloyed, disordered structure interact more strongly with 

impurities than the ordered structures (Pt/C). Chromium addition caused a decrease in Tafel 
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slope due to oxide reduction effects [30]. It was found that the Tafel slope measured at room 

temperature and atmospheric pressure on platinum increased from -110 mV dec-I in low H3P04 

concentrations (10% wt) to -134 mV dec-I in 85% wt H3P04. This agrees with the findings of 

this work where the Tafel slope increased by increasing the doping level (Chapter 3). While the 

Tafel slopes for Pt-Co (90:10 alo) and Pt-Cr (65:35 alo) changed from 111 and 101, at low 

concentration, to 126 and 118 mV dec·1 with 85% wt H3P04, respectively [31]. Anodic 

adsorption isotherms indicated that the high H3P04 concentrations also obstructed adsorption of 

oxygen from solution. These effects were attributed to blockage of electro-active sites by the 

adsorption of H3P04 molecules [31]. 

Appleby [32-34] studied oxygen reduction on various metals and alloys in phosphoric acid. For 

Pt-Ru alloys it was concluded that io for ORR decreased and Tafel slope increased by increasing 

the ruthenium content in the alloy. Similarly, the activation energy for ORR in H3P04 fell when 

moving from pure platinum (22.9 kcal mole-I) to pure ruthenium (11.7 kcal mole-I). This means 

that at elevated temperatures the platinum exchange current density will overtake that of pure 

ruthenium at (-SO°C) and Pt-Ru (1:1) at (-100°C). 

Wakabayashi & Watanabe et al studied oxygen reduction on Pt-Fe (54:46), Pt-Co (68:32), and 

Pt-Ni (63:37) alo electrodes in 0.1 M HCI04• The apparent rate constants for ORR at these 

electrodes were found to be 2.4-4.0 times larger than that at a pure Pt electrode, whereas their 

apparent activation energies were comparable to that at the Pt electrode. However, the apparent 

rate constants for ORR at the alloy electrodes decreased with higher temperatures, above 60°C, 

and were almost the same values as for the Pt electrode [35]. 

Pt-Fe (75:25 alo) catalysts were also studied for oxygen reduction in PAFC. The mass activity 

(mA g-I Pt) of the alloyed catalyst is about the same as that of the pure Pt catalyst due to the 

particle sintering in the alloyed catalyst. However, the specific activity (mA m-2 Pt, based on 

UPD) of the alloyed catalyst is estimated at twice that of pure Pt catalyst [36]. 

On the contrary; different Pt-Co activity testing under phosphoric acid fuel cell conditions 

demonstrated that the most highly alloyed catalysts were not significantly more active than pure 
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Pt catalyst of comparable crystallite size [37]. Loss of cobalt in the phosphoric acid environment 

was the lowest in catalysts which were the most alloyed, and where the Pt-Co (3:1) ordered 

phase was present [37]. It was found that the clean annealed surface of the alloy is pure Pt and 

the subsurface is enriched in Co [38]. Furthermore, this Pt surface does not behave like pure Pt 

for the chemisorption of carbon monoxide or oxygen [39]. The alloyed Pt-surface binds CO less 

strongly and oxygen more strongly. However, when heated in oxygen at fuel cell temperatures, 

even at very low pressures, the surface region is de-alloyed by oxidation to form a cobalt oxide 

over-layer [39]. The oxide over-layer dissolves in hot concentrated phosphoric acid, leaving a 

de-alloyed pure Pt surface region on top of the bulk alloy. 

Alloying platinum (Pt-Co/C and Pt-Fe/C) affects the initiation and extent of surface oxide 

formation. Correlation of water activation and surface properties was reported [40]. Shift and 

lowering of water activation on supported Pt alloy electrocatalysts relative to Pt at high water 

activity or high relative humidity (low acid concentrations, trifluoromethane sulfonic acid 

(TFMSA 1 M» was observed. At low acid concentration the alloys shift the formation and extent 

of water activation on the Pt alloy surfaces, namely the formation of oxygenated species above 

0.75 V (typical potential for initiation of surface oxides on Pt) [40]. The lowering of oxide 

formation agrees well with the extent of enhancement of ORR activity. Activation energies at 

low acid concentration (1 M) were similar for Pt and Pt alloys, indicating that the rate iimiting 

step remains unchanged [35]. Comparison between the inherent activity for ORR on supported Pt 

and Pt alloy nano-particles without the effect of oxide formation via activation of water was 

achieved by using high acid concentrations (6 M). At lower water activity (6 M) with negligible 

water activation (and hence surface oxides), the Pt surface was found to possess a higher activity 

for ORR as compared to the alloys [40]. 

The reduction in oxide formation, a surface poison for molecular oxygen adsorption on Pt alloys 

in the fully hydrated state (1 M TFMSA) is correlated to an increase in ORR activity. However, 

lowering of water activity, resulting from a shift in concentration to 6 M, shows that while there 

is an increase in ORR activity for Pt/C, due to lowering of surface oxide formation, a 

corresponding effect with Pt alloys does not occur [40]. This further supports the assumption of 

ORR activity being dependent on surface coverage by oxides [41]. The relatively similar values 
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of activation energy for Pt and Pt alloys seem to indicate that the differences in ORR activity 

arises primarily from contributions to the pre-exponential term in the Arrhenius expression, of 

which the prime contributor is the surface coverage of oxides [40]. 

4.3.11.2 Effect of Pt alloy cathode catalysts 

Four different Pt alloys were studied, 40% Pt-Fe/C, 60%Pt-RulC, 20%Pt-NilC & 20%Pt-Co/C 

(Etek, U.S.A). All the studied alloys exhibited the atomic ratio of (1: 1 alo) while the average 

particles size (from XRD) were in the range of 3-4 nm except for Pt-Ru alloys which was in the 

range of 2-3 nm. Their performance was compared to that of pure PtlC with similar platinum 

weight percentages, i.e. 20, 30 & 40% PtlC, with average particles size (XRD) of 2.2, 2.5 & 2.8 

nm, respectively. The platinum loading was 0.4 mgP! cm-2 for Pt-Fe and Pt-Ru, whilst a loading 

of 0.2 mgP! cm-2 was used for Pt-Ni and Pt-Co, due to the low metal to carbon ratio, to try and 

maintain a desired catalyst layer thickness to minimize mass transport effects on the cell 

polarisation. 

Figure 4-31 compares cell performance under various oxygen concentrations at 150 ·C of MEAs 

using 40% Pt-Fe/C (-30% Pt) & 30% PtlC cathode electrodes utilising 0.4 mgPI cm-2 with 40 % 

wt PTFE. Pt-Fe alloy showed clear advantages in the kinetic region (low current densities) over 

standard platinum at all the studied oxygen concentrations. The observed kinetic enhancement 

was not due to catalyst layer structure, as both electrodes had similar Pt:C ratios (30% wt) and 

loading of 0.4 mgPI cm-2 and therefore similar catalyst layer thickness with close limiting 

currents values (for each oxygen concentration). The data confirms the reported advantage of Pt 

alloying (with iron) for ORR kinetics [35]. 

Figure 4-32 compares cell performance under various oxygen concentrations at 150 ·C of MEAs 

using 60% Pt-RulC (-40% Pt) & 40% PtlC cathode electrodes utilising 0.4 mgp! cm-2 with 40 % 

wt PTFE. From the data it can be concluded that Pt-Ru is not a suitable catalyst for oxygen 

reduction as large overvoltage losses were encountered in the kinetic region. This was seen in the 

large potential losses in the polarisation curves, without an apparent linear region or limiting 

currents; suggesting that the electrode was mainly under pure activation control due to the slow 

kinetics of oxygen reduction in Pt-Ru alloy electro-catalyst surface [32]. 
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Figure 4-3 1. Compares cell per for mance under va rio us oxygen concentra tions at 150 ' C of MEAs using 40% 

pt-Fe/C (-30% Pt) & 30% Pt/C cathode electrodes utilising 0.4 mgr! cm-2 with 40% wt PTFE. 

Figure 4 -33 compares cell performance under various oxygen concentrations at 120 'c of MEAs 

using 20% Pt-NilC (-17% Pt) & 20% pt/C cathode electrodes utilising 0.2 mgp! cm-
2 

with 40% 

wt PTFE. Figures 4-34 & 4-35 compare the alloy perfonnance (0.2 mgPl cm-
2
) with 0.4 mgPl cm-

2 

for 30% Pt/C at temperatures of 120 & 175 "C, respectively. All data show the expected 

improvement in cell performance on increasing the oxygen partial pressure. 
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Figure 4-32. Compares cell performance under various oxygen concentrations at 150 ·C of M EAs using 60% 

Pt-Ru/C (-40%Pt) & 40% Pt/C cathode elect rodes utilising 0.4 mgp, cm,2 with 40% wt PTFE. 
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Figure 4-33. Compares cell performance under vario us oxygen concentrations at 120 ·C of MEAs using 20% 

pt-NilC (-17% Pt) & 20% Pt/C cat hode electrodes utilising 0.2 mgp, cm·
2 

wit h 40% wt PTFE. 
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It can be seen from Fig. 4-33 that the Pt-Ni alloy produced enhanced kinetics for the ORR (Iow 

current densities) when compared to standard platinum (20%PtJC, same loading) at 120°C, even 

though the alloy had a smaller electrochemical surface area, as a result of alloying (average 

particles size of3 -4 nm) in comparison to the standard platinum (2 .2 nm). Additionally, the Pt-Ni 

alloy at loading of 0.2 mgpt cm·2 gave similar cell voltage characteristics in the kinetic region (up 

to a typical operating voltage of 0.6 V) to that of 30% Pt/C with a loading of 0.4 mgpt cm·2. 

However, any enhancement in performance disappeared at elevated temperatures. At 150 °C 

(Fig. 9-3 , Appendix A) the Pt-Ni alloy showed a similar performance to that of platinum 

(20%PtJC , 0.2 mgpt cm·2) and at 175 °C the 0.2 mgpt cm-
2 

Pt-Ni/C alloy gave inferior 

performance to that of 30% PtJC with a loading of 0.4 mgpt cm·
2 

(Fig. 4-34) over the entire 

potential range. 
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Figure 4-34. Compares cell performance under various oxygen concentrations at 120 ·C of M EAs using 20% 

Pt-NifC (-17% Pt) & 30% Pt/C cathode electrodes utilising 0.2 mgp, cm-
2 

for the alloy and 0.4 mgp, cm·2 for 

pure Pt with 40% \Vt PTFE. 
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Figure 4-35. Compares cell performance under various oxygen concentrations at 175 ' C of M EAs using 20% 

Pt-Ni/C (-17% Pt) & 30% PtlC cathode electrodes utilising 0.2 mgrt cm·
z 

for the alloy and 0.4 mg"t cm·
z 

for 

pure Pt with 40% wt PTFE. 

Figure 4-36 compares cell performance under vanous oxygen concentrations at 150 ' C for 

MEAs using 20% pt-Co/e (-17% Pt) & 20% Pt/C cathodes utilising 0.2 mgPI cm·2 with 40% wt 

PTFE. The Pt-Co alloy showed advantage over the standard 20% Pt/C at 120 'C (both with 

loading of 0.2 mgpt cm·2) even though that the alloy had a smaller ESA. The Pt-Co alloy 

maintained its better performance (unlike Pt-Ni) than Pt (20%PtlC, 0.2 mgPI cm-
2
) at a 

temperature of 150 °C. 
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Figure 4-36. Compares cell performance under various oxygen concen trations at 150 ' C of MEAs using 20% 

pt-CofC (-17% Pt) & 20% PtfC cathode electrodes ut il isi ng 0.2 mgp, cm·
2 

with 40% wt PTFE. 

Figure 4-37 shows cell performance under various oxygen concentrations at 175 'C of MEAs 

using 20% pt-CofC (- 17% Pt) & 30% Pt/C cathode electrodes utilising 0.2 mgpt cm-
2 

for the 

alloy and 0.4 mgpt cm-2 for pure Pt with 40% wt PTFE. It is clear that at 175 ·C the 0.2 mgpt cm-2 

Pt-Co alloy had an inferior performance compared to 0.4 mgpt cm·
2 

30% Pt/C, whilst at 150 ·C 

both electrodes shows comparable performance in the kinetic region of the polarisation curves. 

This behaviour suggests that the alloy performance does not depend on temperature as much as 

the standard platinum. However, it has been shown in the literature that Pt-Ni and Pt-Co alloys 

exhibit similar activation energies for oxygen reduction to that of platinum [35 , 37]. 
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Figure 4-37. Compares cell performance under va rious oxygen concent rations at 175 ' C of MEAs using 20% 

pt-Co/C (-17% Pt) & 30% PtlC cathode electrodes utilising 0.2 mgp, cm
o2 

for the alloy and 0.4 mgp, cm
o2 

for 

pure Pt with 40% wt PTFE. 

It is reported that cobalt dissolution was a common problem for Pt-Co alloy in PAFCs [37]. The 

degradation and the dissolution process is expected to occur over hundreds hours of operation 

and not over the short period of experiments (three days) used in this study. In this study it was 

observed that recovery in the performance (or in other words the alloys enhanced performance) 

over standard platinum returned when the temperature was lowered back to 120 ·C in case of Pt­

Ni and 150 ·C in case of Pt-Co. This suggests that the observed effect of temperature was not 

due to dissolution, but due to a drop in water activity at elevated temperatures, where phosphoric 

acid started to dehydrate [21] . The fall in water activity at elevated temperatures results in an 

increase in ORR activity for Pt/C due to lowering of surface oxide formation , a corresponding 

effect with Pt alloys does not occur [40]. 
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4.3.12 Effect of Flow field design effect 

The flow-fields used for this study were with geometry of 29 x 29 mm and channel depth of 1.5 

mm with channel to land ratio maintained at 1.5 ( 1. 5 mm wide channel & I mm wide for the 

contact rib) . Three cells were fabricated with different patterns (graphite blocks inserted into 

titanium cell body) utilising the same flow-fields geometry. The first pattern was a standard 

parallel channel , the second utilised serpentine flow channels and the th ird utilised interdigitated 

flow-fields (same as parallel but with dead-end channels, where gas had to flow through the 

channel across the rib and exit from the opposite side of the next neighbour channel) (Figure 4-

40) . 

It should be noted that as seen earlier in the effect of air flow rate on cell perfonnance, or more 

specifically the observed limiting current under air operation, a lambda value close to 2 is 

sufficient for cell operation with no further enhancement was observed in the li miting current 

beyond this stoichiometry. 
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Figu re 4-38. Compares cell performance under various ai r flow ra tes using standa rd parallel fl ow fi elds at 

120 ' C of MEAs using 40% PtlC cathode electrode utilising 0.2 mgr, cm,2 with 40% wt PTFE. 
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Figure 4-38 shows cell perfonnance at various air flow rates using the standard parallel flow 

fields at 120 ·C with MEAs using 40% Pt/C cathode electrode utili sing 0 .2 mgr! cm-
2 

with 40% 

wt PTFE. When the air flow rate (atmospheric) was increased from 20 to 105 cm
3 

min-! (STP) 

(mLpm) the observed limiting current increased accordingly. Above 105 cm3 min-! (or A of 1.2) 

no clear enhancement was observed as there was no clear limiting current. The observed effect of 

the low value of stoichiometry of 1.2 in comparison to the earlier reported value of 2 is due to the 

lower platinum loading in the catalyst layer (0.2 mgP! cm-
2

) in comparison with 0.6 mgP! cm-
2 

used earlier. The low platinum loading led to large overpotentiallosses, due to kinetic activation , 

and the cell potential reached zero volts at a current density of 0.55 A cm-
2 

in comparison to 1.38 

A cm-2 obtained earlier. 
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Figure 4-39. Compares cell performance under va rious a ir flow rates usi ng parallel, serpentine & 

interdigitated flow fields a t 120 ' C of MEAs using 40% Pt/C cathode electrode utilising 0.2 mgr. em-
2 

with 

40% wt PTFE. 

Figure 4-39 compares the perfonnance of the three flow fields with different air flow rates at 120 

.c using MEAs with 40% p t/C cathode electrode utilising 0.2 mgr! cm-2 with 40% wt PTFE. It 
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can be seen that at 105 cm3 min-I and 50 cm
3 

min-
I 

there was no apparent difference in the 

observed limiting current between the three flow-fields , with air operation_ This is likely to be a 

result of the use of the small 9 cm
2 

geometry as differences are more likely to occur with 

electrodes of large geometry, especially at high operating temperature_ However, reducing the air 

flow rate to 20 cm3 min-I (STP), where the system was under complete mass transport control 

some small difference in the limiting current was observed with the three patterns_ The 

interdigitated flow field offered the highest limiting current, or in other words the best oxygen 

distribution (current) over the electrode surface, followed by serpentine and finally the parallel 

flow field_ 
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Figure 4-40. Schematic drawing of the graphite inserts with the three studied now fields patterns. 
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4.4 Conclusions 

For higher temperature proton exchange membrane fuel cells, phosphoric acid doped PBI 

appears to be good candidate for the membrane material. It exhibits good conductivity at 

elevated temperatures and low hydrogen & oxygen permeability. This however makes 

PBIIH3P04 less attractive as a candidate for the ionomer material in the catalyst layer. 

Alternative structure based on PTFE and H3P04 shows advantages over PBI based electrodes 

due to higher oxygen permeability. 

There was an optimum thickness [2] for the catalyst layer that provided a balance between acid 

content in the catalyst layer (added or mobile from the membrane) and oxygen permeability from 

the flow channel. This optimum thickness was achieved using 40% to 50% pt/e catalyst and it 

depended on the operating temperature and oxygen partial pressure. Lower oxygen 

concentrations required a thinner catalyst layer or higher pte ratio. Electrodes fabricated from 

60% Pt/C (thin catalyst layer) showed limited performance due to flooding from mobile H3P04 

acid from the membrane. 

Pt alloys showed advantages over non-alloyed platinum as cathode catalysts, allowing lower 

platinum loading at 0.2 mgpt cm-2
• However, such enhancement was subject to the operating 

temperature or more precisely the water activity, where at elevated temperatures (under non­

humidified conditions) above 150 ·e, phosphoric acid dehydration started to occur leading to 

low water activity and conductivity. At low water activity, platinum showed advantage over Pt­

Ni alloy at temperatures of 150 ·e and above or Pt-Co at temperatures of 175 ·C and above. 

With a high water content, Pt alloys suppress the initiation and extent of surface oxide formation 

on platinum surface and therefore offers enhanced oxygen adsorption. The fall in water activity 

at elevated temperatures resulted in an increase in ORR activity for Pt/C, due to lowering of 

surface oxide formation, a corresponding effect with Pt alloys does not occur [40]. 

The stability of the Pt alloys in hot phosphoric acid and high operating voltages is also 

questionable. The degradation of the alloyed catalyst in short term testing was not apparent, 
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however, it is evident from the literature that the de-alloying process and formation of cobalt 

oxide and cobalt dissolution in hot phosphoric acid does occur [37]. 

Finally, the impact of flow fields' pattern is minimal at the studied cell geometry (9 cm2
). 

Interdigitated flow-fields offered the best oxygen distribution over the electrode geometry 

followed by serpentine pattern and lastly parallel pattern. The system required an air 

stoichiometry (A.) of 2 at the maximum operating current density under atmospheric air operation 

(1.2-1.4 A cm-2
). 

164IPage 



4.5 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 
14. 

15. 

Chapter Four: Optimisation o(PBI Membrane Electrode Assembly 

References 

Sattler, M.L. and P.N. Ross, The surface structure of Pt crystallites supported on carbon 
black. Ultramicroscopy, 1986.20(1-2): p. 21-28. 
Bevers, D., M. WOHR, K. Y ASUDA, and K. OGURO, Simulation of a polymer 
electrolytefuel cell electrode. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997. 
27: p. 1254-1264. 
Sakai, T., H. Takenako, N. Wakabayashi, Y. Kawami, and E. Torikai, Gas Permeation 
Properties of Solid Polymer Electrolyte (SPE) Membranes. J. E1ectrochem. Soc., 1985. 
132(6): p. 1328. 
He, RH., Q.F. Li, A. Bach, lO. Jensen, and NJ. Bjerrum, Physicochemical properties of 
phosphoric acid doped polybenzimidazole membranes for fuel cells. Journal of 
Membrane Science, 2006.277(1-2): p. 38-45. 
Pasternak, R.A., M.V. Christensen, and J. Heller, Diffusion and Permeation of Oxygen. 
Nitrogen. Carbon Dioxide. and Nitrogen Dioxide through Polytetrajluoroethylene. 
Macromolecules, 1970. 3(3): p. 366. 
Liu, Z.Y., lS. Wainright, M.H. Litt, and R.F. Savinell, Study of the oxygen reduction 
reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at 
elevated temperature and low relative humidity. Electrochimica Acta, 2006. 51(19): p. 
3914-3923. 
Yang, C., S. Srinivasan, A.B. Bocarsly, S. Tulyani, and J.B. Benziger, A comparison of 
physical properties and fuel cell performance of Nafion and zirconium phosphatelNafion 
composite membranes. Journal of Membrane Science, 2004. 237: p. 145-161. 
Springer, T.E. and I.D. Raistrick, Electrical Impedance of a Pore Wall for the Flooded­
Agglomerate Model of Porous Gas-Diffusion Electrodes. l Electrochem. Soc. , 1989. 
136(6): p. 1594-1603. 
Giner, J. and C. Hunter, The Mechanism of Operation of the Tejlon-Bonded Gas 
Diffusion Electrode: A Mathematical Model. J. Electrochem. Soc., 1969. 116(8): p. 1124-

1130. 
Passos, RR and E.A. Ticianelli, Effects of the Operational Conditions on the Membrane 
and Electrode Properties of a Polymer Electrolyte Fuel Cell. J. Braz. Chem. Soc., 2002. 
13(4): p. 483-489. 
Parthasarathy, A., S. Srinivasan, and A.l Appleby, Temperature Dependence of the 
Electrode Kinetics of Oxygen Reduction at the PlatinumlNafion® Interface-A 
Microelectrode Investigation. J. Electrochem. Soc., 1992. 139(9): p. 2530-2537 
Hoel, D. and E. Grunwald, High Protonic Conduction of Polybenzimidazole Films. 
Journal of Physical Chemistry, 1977.81(22): p. 2135-2136. 
Kinoshita, K., Electrochemical oxygen technology 1992, New York: Wiley. 
Scott, K., S. Pilditch, and M. Mamlouk, Modelling and experimental validation of a high 
temperature polymer electrolyte fuel cell. Journal of Applied Electrochemistry, 2007.37: 
p. 1245-1259. 
Li, Q.F., H.A. Hjuler, and N.J. Bjerrum, Oxygen reduction on carbon supported platinum 
catalysts in high temperature polymer electrolytes. Electrochimica Acta, 2000. 45(25-
26): p. 4219-4226. 

1651 P age 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

Chapter Four: Optimisation o(PBI Membrane Electrode Assembly 

Li, Q., G. Xiao, H.A. Hjuler, R.W. Berg, and NJ. Bjerrum, Oxygen Reduction on Gas­
Diffusion Electrodes for Phosphoric Acid Fuel Cells by a Potential Decay Method. 1. 
Electrochem. Soc., 1995.142(10): p. 3250-3256. 
Razaq, M., A. Razaq, E. Yeager, 0.0. DesMarteau, and S. Singh, Perfluorosulfonimide 
as an Additive in Phosphoric Acid Fuel Cell. J. Electrochem. Soc., 1989. 136(2): p. 385-

390. 
McBreen, 1., W.E. O'Grady, and R. Richter, A Rotating Disk Electrode Apparatusfor the 
Study of Fuel Cell Reactions at Elevated Temperatures and Pressures. 1. Electrochem. 
Soc., 1984.131(5): p. 1215-1216. 
Appleby, A.J., The energy crisis: An electrochemical viewpoint. Journal of 
Electroanalytical Chemistry, 1981. 118: p. 31-50. 
Li, Q.F., RH. He, lA. Gao, J.O. Jensen, and NJ. Bjerrum, The CO poisoning effect in 
PEMFCs operational at temperatures up to 200 degrees C. Journal of the 
Electrochemical Society, 2003. 150(12): p. AI599-AI605. 
Ma, Y.L., The Fundamental Studies of PolybenzimidazolelPhosphoric Acid Polymer 
Electrolyte For Fuel Cells. 2004, CASE WESTERN RESERVE UNIVERSITY. 
Li, Q.F., R He, J.O. Jensen, and N.J. Bj errum , PBI-based polymer membrane for high 
temperature fuel cells fuel cells, 2004. 4: p. 147. 
Bouchet, Rand E. Siebert, Proton conduction in acid doped polybenzimidazole. Solid 
State lonics, 1999. 118(3-4): p. 287-299. 
Pebler, A., Transmission Electron Microscopic Examination of Phosphoric Acid Fuel 
Cell Components. 1. Electrochem. Soc., 1986. 133(1): p. 9-17. 
Kunz, H.R and G.A. Gruver, The Catalytic Activity of Platinum Supported on Carbon 
for Electrochemical Oxygen Reduction in Phosphoric Acid. J. Electrochem. Soc., 1975. 
122(10): p. 1279-1287. 
SDS@cabot-corp.com, SAFETY DATA SHEET of Vulcan XC-72 R. 2007, Cabot 
Corporation, France. 
Appleby, AJ., ELECTROCATALYSIS AND FUEL CELLS. Catalysis Reviews, 1970. 
4(1): p. 221 - 244. 
Jalan, V. and EJ. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of 
Oxygen in Phosphoric Acid. J. Electrochem. Soc., 1983. 130(11): p. 2299-2302 
Vogel, W.M. and J.M. Baris, The reduction of oxygen on platium black in acid 
electrolytes. Electrochimica Acta, 1977.22(11): p. 1259-1263. 
Glass, 1.T., G.L. Cahen, G.E. Stoner, and EJ. Taylor, The Effect of Metallurgical 
Variables on the Electrocatalytic Properties of PtCr Alloys. J. Electrochem. Soc., 1987. 
134(1): p. 58-65. 
Glass, 1.T., G.I. Cahen, and G.E. Stoner, The Effect of Phosphoric Acid Concentration on 
Electrocatalysis. J. Electrochem. Soc., 1989. 136(3): p. 656-660. 
Appleby, A.J., Oxygen reduction on platinum-ruthenium alloy electrodes in 85% 
orthophosphoric acid. Journal of Electroanalytical Chemistry, 1970.27(3): p. 347-354. 
Appleby, A.J., Oxygen reduction studies at smooth pre-reduced ruthenium and rhodium 
electrodes in 85% orthophosphoric acid. Journal of Electroanalytical Chemistry, 1970. 
27(3): p. 335-345. 
Appleby, A.J., Oxygen reduction at smooth pre-reduced gold and iridium electrodes in 
85% orthophosphoric acid. Journal of Electroanalytical Chemistry, 1970. 27(3): p. 325-
334. 

1661 P age 



Chapter Four: Optimisation o(PBI Membrane Electrode Assemblv 

35. Wakabayashi, N., M. Takeichi, H. Uchida, and M. Watanabe, Temperature Dependence 
of Oxygen Reduction Activity at Pt-Fe, Pt-Co, and Pt-Ni Alloy Electrodes. J. Phys. Chem. 
B, 2005. 109: p. 5836-5841. 

36. Kim, K.T., J.T. Hwang, Y.G. Kim, and 1.S. Chung, Surface and CatalytiC Properties of 
Iron-Platinum/Carbon Electrocatalysts for Cathodic Oxygen Reduction in PAFC. J. 
Electrochem. Soc., 1993.140(1): p. 31-36. 

37. Beard, B.C. and P.N. Ross, The Structure and Activity of Pt-Co Alloys as Oxygen 
Reduction Electrocatalysts. J. Electrochem. Soc., 1990. 137(11): p. 3368-3374. 

38. Bardi, U., A. Atrei, P.N. Ross, E. Zanazzi, and G. Rovida, Study of the (001) surface of 
the Pt-20at%Co alloy by LEED, LEISS and XPS. Surface Science, 1989.211-212: p. 441-
447. 

39. Bardi, U., B. Beard, and P. Ross, Surface oxidation of a Pt-20% co alloy. J. Vac. 
Sci.Technol. A, 1988.6(3): p. 665-670. 

40. Murthi, V.S., R.C. Urian, and S. Muketjee, Oxygen Reduction Kinetics in Low and 
Medium Temperature Acid Environment: Correlation of Water Activation and Surface 
Properties in Supported Pt and Pt Alloy Electrocatalysts. J. Phys. Chem. B, 2004.108: p. 
11011-11023. 

41. Damjanovic, A. and V. Brusic, Electrode kinetics of oxygen reduction on oxide-free 
platinum electrodes. Electrochimica Acta, 1967. 12(6): p. 615-628. 

1671 P age 



Chapter Five: High Temperature Direct Methanol Fuel Cell 

5 High Temperature Direct Methanol Fuel Cell 

5.1 Introduction 

Pristine PBI has a very low methanol penneability compared to Nafion® 117, which makes PBI a 

potential membrane for Direct Methanol Fuel Cells (DMFCs). For example at 25 ·C 

permeabilities of PBI and Nafion are O.0083x10-12 and 2.3xl0-12 mol cm cm·2 s-I atm-I 

respectively [1]. However, the data are for non-doped PBI films; as the experiment involved 

liquid water which would have leached the doped acid out of the membrane. The methanol cross­

over is expected to increase dramatically at elevated temperature as methanol diffusion in the 

gaseous phase is much higher than that in liquid phase and doped PBI is more penneable than 

non-doped PBI; considering the fact that PBI swells and expand when acid doped, resulting in a 

more porous structure. Moreover typical PBI membranes used are c.a. 50 J.lm thick compared to 

c.a. 180 J.lm for N afion 117 (200 J.lm under humidified conditions). This chapter examines the 

use of PBI membranes in the direct methanol fuel cell. 

5.2 Background and review 

Jones and Roziere [6] showed that, at 80 ·C, methanol's vapour penneability through doped PBI 

(3PRU) and Nation 117 were 92.34xlO-12 & 27360xlO-12 mol cm cm-2 S-I atm-I, respectively. 

Similarly, Wang et al [2] reported methanol vapour penneability, through doped PBI (5PRU) at 

180 ·C, of 166.4xl0-12 mol cm cm-2 S-I atm-I at 0 RH% and increased to 298.5xI0-12 mol cm cm-

2 s-I atm-I at RH 7.5 %. 

Methanol crossover rates through doped PBI membranes have been detennined by direct 

measurement of the methanol penneability [3], by a methanol sorption technique [4] and by real­

time analysis of the cathode exhaust stream of an operating cell using mass spectrometry [2]. 

Each of these measurements yielded crossover rates equivalent to 10 mA cm-2 for (-76 J.lm) thick 

films, at least ten times less than that observed with Nafion [5]. Methanol penneability data are 

summarised in Tables 5-1 and 5-2 for vapour and liquid phases. 
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At a doping level of 5 PRU PBI membrane have been reported to have near zero osmotic drag 

coefficients in the range of (0.0 1-0.09) with vapour water: methanol molar ratio feed in the range 

of (1 :0-1 :1) [3] . 

Table 5-1. Vapour methanol permeability through PSI and nation at various conditions. 

RH Species 
Vapour 

Permeability Material Temperature Diffusion solubility Ref 
activity 

10.12 mol cm 10-6 cmz 1006 mol c 

°C % 
cm-2 S-I atm·1 

""-'; " 
S-I cm-3 atm-1 

" 
5-

PBI5PRU 180 Methanol 0.25-0.5 280-298.5 [2] 
7.5 

PBI5PRU 180 0 Methanol 1 166.4 [2] 

2175-
Methanol PBI5PRU 150 0 0.01-0.1 6.7-67 0.01 [4] 

6526 

PBDPRU 80 n/a Methanol n/a 92.34 

80 n/a Methanol nJa 27360 
[6, 

Nafion1l7 7] 

Increasing cell temperature above 60 ·C in Nafion based DMFCs causes a significant increase in 

cell performance and at 90 ·C and above, high power densities of 200 m W cm -2 were achieved 

[8]. However, this required operation with pressurised oxygen (2-5 bar) to maintain the required 

water content in the nafion membrane and minimise mass transport losses at the cathode. 

Early work [9] on the performance ofDMFC used relatively high loading ofPt-Ru catalyst in the 

range of 4-8 mgPl cm-2 to achieve high power densities (>200 mW cm-
2

) with pressurised oxygen 

and temperature of 130 .c. More recently, an equivalent performance has been reported with half 

the catalyst loading at 110 ·C [8]. 

The feed concentration of methanol is an important consideration in Nafion based DMFCs. Half 

cell studies (0.5 M H2S04) showed enhancement in methanol oxidation with increased 

concentration up to 8 M [10]. However, in practice the enhancement in methanol oxidation 
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above 1-2 M does not translate into higher cell performance due the problem of methanol cross-

over [8]. 

Table 5-2. Liquid methanol permeability through PHI and nalion at 25 ·C and fully hydrated conditions. 

Water 
Material Temperature Species Concentration Permeability Ref 

content 

DC %wt 

Fully 
Methanol Nafion 117 25 3% 2300 [1] 

hydrated 

25 
Fully 

Methanol 3% 8.3 PSI [1] 
hydrated 

~. 

Fully 
PBI 25 Methanol 10-100% 18 [11 ] 

hydrated 

25 
Fully 

Methanol 3% NafioollS hydrated 
850 [12] 

Fully 
Methanol Nafion117 25 3% 2000 [ 13] 

hydrated 

FUlly 
Methanol PSI 25 100% 70 This work 

hydrated 

Fully 
Methanol Nafion 117 25 100% 4000 This work 

hydrated 

Lim et al [14] reported cell performance of 0 .39 V at current density of 100 mA cm,2 at 90 ·C 

with 2 .0 M methanol. The catalyst loadings were 2 mgpl cm,2 unsupported Pt-Ru (I: 1) at the 

anode and 4 .5 mgPl cm,2 60% PtlC at the cathode. AlIen et al [IS] reported cell voltage ofOAV at 

current density of 100 mA cm,2 and 90 'c, with 1.0 M methanol, utilising I mgPl cm-2 of 60% Pt­

RulC (I : I) at the anode and 1 mg Pl cm,2 of 60% PtlC at the cathode. Shen and Scott [16] obtained 

0.39 Vat lOO mA cm-2with 2 M methanol feed at 80 ' C; with I mgpl cm,2 60% Pt-Ru (1 :1) at the 

anode and 1 mgPl cm,2 60% PtlC cathode . Shukla et al [17] obtained higher performance of 0.5 V 

at lOO mA cm,2 and 90 ·C w ith 1.0 M methanol by increasing the cathode loading to 4.6 mgPl 

cm-2 60% PtlC and maintaining the anode loading at I mgPl cm,2 60% Pt-Ru (1: I). 
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Scott et al [18] also showed improved performance of 0.52 V at 100 mA cm-2 and 75 ·C by 

increasing the anode loading to 2 mgPl cm-2 (50% Pt-RulC, 1:1) and maintaining the cathode 

loading at 1 mgPl cm-2 (Pt black). Typical OCPs with Nation based DMFCs were in the range of 

0.6-0.7 V depending on methanol concentration (0.125-2 M), oxygen pressure and temperature 

(25-90 .C). All the reported data were with atmospheric pure oxygen. 

There is limited data available in the literature on PBI based DMFC. Wainright et al [4, 5, 19] 

&Wang et al [20, 21] reported PBIIH3P04 (5 PRU) based MEAs for high temperature direct 

methanol fuel cells. They used high catalyst loadings of 4 mgPl cm-2 on both anode (PtRu 1: 1 

alo) and cathode (Pt-black). Wang et al [21] obtained a current density of 100 mA cm-2 at 0.42 V 

with (water: methanol) molar ratio of 2: I and pure oxygen at 150 ·C. The open circuit voltage 

was 0.8 V with a cross-over current of 10 mA cm-2 for 110 /lm membrane (5 PRU). Wainright et 

al [4, 19] obtained a current density of 100 mA cm-2 at 0.52 V with methanol: water molar ratio 

ofl: 4 and pure oxygen at 200 ·C using the same catalyst loading and membrane thickness. 

More recently, Wainright et al [5] studied the effect of temperature and methanol feed on cell 

performance. They used the same membrane doping level of 5 PRU and reduced its thickness to 

75 Jlm whilst maintaining high catalyst loading of 4 mgPl cm-2 on both anode (PtRu 1: 1 alo) and 

cathode (pt-black). At a tixed anode feed of 2: 1 (water: methanol) and temperatures of 150, 

170,190 & 200 DC they observed cell potentials of 0.42, 0.44, 0.47 & 0.51V, respectively at a 

current density 100 mA cm-2 with pure oxygen. They also observed increase in cell potential 

(performance) from 0.45 to 0.5 to 0.55 V at current density of 100 mA cm-2 when the methanol 

mole ratio in the anode feed was decreased from 1:1 tol: 2 to1: 4, (methanol: water) respectively 

at 200 DC with pure oxygen. 

This suggests that PBI based DMFCs has inferior performance to that of Nation at similar 

catalyst loading, even though PBI based DMFCs operates at higher temperatures than those 

based on Nation. 
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5.3 Experimental 

MEA's (9 cm2 geometry) were fabricated using 1 mgPt cm-2 60% wt Pt-Ru alloy 1:1 alo 

supported on Vu1can XC-72R (ETEK) as anode electro-catalyst and 0.5 mgPt cm-2 30% and 50 

% wt Pt/C as cathode electro-catalyst (ETEK). A 1.0 or 2.0 M methanol solutions (in DI-water) 

was pumped, using a valve-less piston head pump head (Masterflex, U.S.A) through home-made 

vaporizer heated to the desired temperature. The vapour was then fed to the anode of the cell 

held at the studied temperature. Methanol solutions of 1 and 2 M corresponded to a volumetric 

concentration in the vapour of 1.88 and 3.92% vol, respectively. Polarisation curves were 

recorded manually by holding the specific current density for two minutes until a stable voltage 

was obtained. The other cell detailes are given in Chapter 4 (same testing cell). 

5.4 Results and discussion 

5.4.1 Temperature effect on performance 

Higher open circuit potentials around 800 mV have been observed with PBI fuel cells compared 

to those of 650 m V with Nafion 117 with pure oxygen and similar methanol concentration feed 

[18]. This indicates that lower cross-over rate occurred through the PBI membrane leading to 

higher cathode potentials. 

Polarization curves were recorded at different operating temperatures (120, 150 & 175 ·C) and 

with oxygen and air at the cathode (30% Pt/C). Figure 5-1 shows polarization curves using -2 

%vol MeOH in the vapour phase (1.0 M solution). The PBI loadings were 0.35 (6 PRU) and 0.55 

mg cm-2 (6 PRU), in the anode and cathode, respectively. The difference in voltages with air and 

oxygen was similar at all temperatures, ca.72 mV starting from OCP, which suggests that there 

were no mass transport limitations at the cathode in the operating current density range. This was 

expected as the same cathodes operated at very high current densities using hydrogen as fuel 

(limiting current of 1.5 A cm-2 with air at 150°C). Similarly, no major mass transport limitations 

were expected at the anode due to the high operating temperature, and low operating current 

densities (the electrode is under kinetic control). 
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In contrast to the theoretical behaviour the open circuit voltage decreased as the methanol 

concentration increased or temperature decreased due to the fact that the PEM is permeable to 

protons, water and methanol. Consequently, there was a crossover flux of methanol from the 

anode to the cathode; which is a major reason why the observed (rest) cell voltages were lower 

than the theoretical estimated potential. Higher methanol concentrations will increase the rate of 

methanol diffusion across the membrane and thus, under steady state conditions, higher 

concentrations of methanol are present at the cathode. Higher methanol concentrations at the 

cathode will increase the cathode polarisation due to the mixed potential caused by methanol 

oxidation. 

Increasing the operating temperature was expected to enhance both anode and cathode kinetics, 

due to increased exchange current density. This was reflected by a shift in the polarisation curves 

towards lower over-potentials, without apparent changes in the slopes of the polarisation curves. 

Increasing temperature should lead to better CO (adsorbed) tolerance and therefore better 

methanol tolerance at the cathode. Increasing oxygen concentration in the cathode (from air to 

oxygen) will enhance the oxygen reduction reaction activity and help CO removal (oxidize it) 

and therefore the mixed potential in the cathode and consequently the observed open circuit will 

increase. These factors are also accompanied by thermodynamic effect of oxygen concentration 

(Nemst equation). This is clearly reflected in the open circuit voltage values at different oxidant 

concentrations and temperatures shown in Table 5-3. 

Table 5-3. Open circuit voltage of -2%vol (1.0 M) MeO" and air or oxygen as oxidant. 

120°C 150°C 175 °C 

Air PBI (5PRU) 692mV 704mV 712mV 

Oxygen PBI (5PRU) 768mV 778mV 785mV 

Erev Air (Nerust) 1.07mV 1.06mV 1.05 mV 

Ercv Oxygen (Nerust) LlO mV 1.09 mV 1.08 mV 

SO°C 7SoC 90°C 

Air Nation 117 [18] 532mV 555 mV 616 mV 

Oxygen Naflon 117[18] 620mV 642mV 675mV 

Erev Air (Nerust) 1.13 mV 1.11 mV 1.08 mV 

Erev oxygen (Nerust) 1.15 mV 1.13 mY 1.11 mV 
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Figure 5-1. HT-DMFC operating at temperatures of 120, ISO & 175 ·C with oxygen and air with loadings of 

110.5 mg cm-z Pt-Ru/Pt for anode/cathode, respectiyely. 

5.4.2 Methanol feed concentration 

Figure 5-2 shows the DMFC perfom1ance using - 4% vol methanol feed. The performance 

generally is lower than that achieved with a 2% methanol vapour. The difference in performance 

with air and oxygen increased as temperature increased. The difference was also larger in the 

case of - 4% methanol feed in comparison to 2% feed; at a given temperature. Overall, the data 

indicate that increasing the methanol concentration intensified the effect of methanol crossover 

on the cathode, especially when a low cathode loading was used (0.5 mg cm-
2
) . 
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Figure 5-2. HT-DMFC operating at temperatures of 120, 150 & 175 ·C with oxygen and air with loadings of 

1/0.5 mg cm'z Pt-Ru/Pt for anode/cathode, respectively. 

5.4.3 Methanol oxidation in phosphoric acid 

Figure 5-3 shows anode polarisation curves measured In the DMFC (vs. DHE) at vanous 

temperatures, with a 2% vol methanol feed. The high over-potentials, e.g > 400 m V at 100 mA 

cm,2, at relatively low current densities, reflect the slow kinetics and low exchange current 

density of methanol oxidation in hot phosphoric acid (see Fig. 5-6 below). 

The activity of methanol oxidation in hot PBIIH3P04 electrolyte was not as high as might be 

expected, at the elevated operating cell temperature, compared with results obtained at low 

temperatures with Nation or H2S04. This slow enhancement of activity with temperature can be 

caused by strong adsorption of anions from the high concentration of H3P04 and low water 

activity, which blocks adsorption of water or oxygen species necessary to react with the adsorbed 

organic species [22]. It has been previously shown that apart from the effect of un-dissociated 

acid molecules adsorption, the gains in activity arising from the Arrhenius factor (activation 
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energy) may not exceed losses in activi ty due to lower water activity in the concentrated acid 

[23]. While the activation energy of methanol oxidation in phosphoric acid is similar to Nation 

and sulphuric acid c .a. 20.9 kJ mole-I, the exchange current density of methanol oxidation in 100 

% H
3
P04 at 190 QC is 1. 7x 10-7 A cm-2 [24] this is very low compared to that of Nation at 90 QC 

5x 10-5 A cm-2 [17]. 
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Figure 5-3. Anode performance for methanol oxidation operating a t temperatures of 120, 150 & 175 'c using 

2% vol MeOH and a loading of 1 mg cm-
2 

Pt-Ru for anode. 

5.4.4 Electrolyte effect on methanol oxidation 

Because of the observed derogatory influence of phosphoric acid on methanol oxidation the 

effect of the electrolyte on methanol oxidation was studied. A catalyst loading of 0.02 mg Pt­

Rule (60%wt PtRu I : I alo) was placed on a glassy carbon tip , a 20 % wt Nation was used as 

binder. The potential was swept from -180 m V vs. Ag/ AgCl with scan rate of 2 m V S-l . The 

electrolyte was either 0 .5 M sulphuric acid or 0 .5 M phosphoric acid. 
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Figure 5-4 shows the effect of electrolyte on methanol oxidation reaction using pt-Rule I : I alo. 

The performance decreased dramatically when replaci ng sulphuric ac id with phosphoric acid as 

electrolyte, even when Tafion was used as the binder. Although at low overpotentials (the 

beginning of the kinetic region) the perfom1ance was similar, at hi gher current densities there 

was a large reduct ion in current with phosphoric ac id, which can be related to strong adsorption 

of phosphate anions [22 , 23]. 

Another observation was that the limiting current val ue with phosphoric ac id was half that for 

sulphuric acid. Thi s suggests a lower methanol 's surface concentration (adsorbed), or lower 

diffusion coefficient, (or a combination of both) in H3P04 (with respect to H2S0 4). 
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Figure 5-4. Methanol oxidation ( 1.0 1\1) at a temperature of 20 ·C usi ng 0.5 1 sul phu ric a nd 0.5 1\1 

phosp horiC acids. the catalyst loading was 0.02 mg cm·
2 

Pt-Ru. 

Figure 5-5 shows the effects of temperature on methanol oxidation in 0.5 M phosphoric ac id, 

w ith psr as a binder. Increasing the temperature lead to enhancement in kinetics due to an 

increase in the exchange current density iQ. Figure 5-6 shows the Arrhenius plots for methanol 
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oxidation in P A. The activation energy was calculated from the slope of the plot of Ln (io) with 

respect to liT (K-!). 

-E Inio = __ D + InA 
RT 

[1] 

where Ea is the activation energy, A is the pre-exponential factor; the slope of the line is give by 

-EalR. 

The activation energy of methanol oxidation on Pt-Ru (1:1) was 17.7 kJ mole-I, which is in 

close agreement to the value reported in the literature for hot phosphoric acid of 20.9 kJ mole-1 

[25]. 

The obtained transfer coefficient for methanol oxidation in phosphoric acid was 0.825 ± 0.01 in 

the temperature range of 20-80 ·C using 1.0 M methanol. This value is in very good agreement 

with the reported value of 0.832 ± 0.075 in phosphoric acid [24]. 

Scott et al [18] reported transfer coefficient value of 1.425 ± 0.015 for methanol oxidation at a 

Nation interface in the temperature range of 70-95 ·C and methanol concentration range of 

0.125-1 M. The observed lower value in phosphoric acid was caused by the adsorption of 

phosphate anions and other impurities from phosphoric acid [22]. 

Similarly, transfer coefficient values of 0.974, 1.4 & 2.61 were obtained for methanol oxidation 

on PBIIH3P04 interface (6 PRU) at temperatures of 120, 150 & l75·C, respectively using 2% vol 

methanol vapour feed. The higher values of (l in PBIIH3P04; in comparison to pristine 

phosphoric acid, were also observed for oxygen reduction, where (l decreased with doping level 

and approached the value in phosphoric acid at high doping levels (> 16 PRU). Similarly, an 

increase in transfer coefficient with temperature was also observed for oxygen reduction, the 

increase was caused by reduction in phosphate /impurities adsorption with temperature (low heat 

of adsorption) and other thermodynamic effects (Chapter 3). 
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figure 5-5. Methanol oxidation (1.0 M) at different temperatures using 0.5 M phosphoric acids, the catalyst 

loading was 0.02 mg cm-2 Pt-Ru a nd 20% wt PBI. 
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5.4.5 Binder effect on methanol oxidation 

A study was carried out to investigate the effects of binder in the catalyst layer. The amount of 

binder was constant at 20 %wt, the electrolyte was 0.5 M H)P04, and the catalyst loading was 

0.02 mg cm-2 Pt-Ru; similar to that used the previous experiments. Figure 5-7 shows the 

performance comparison between PBI and Nation as binder. It is clear that Nation brought both 

kinetics and mass transport advantages. The data using Nation at 20°C were similar to that for 

PBI at 50°C, and the mass transport limiting current using Nation at 20 °C was similar to that for 

PBI's at 80°C. This can be explained by the lower methanol permeability through the PBI thin 

film in comparison to Nation. Previous measurements showed methanol permeability of 

0.0867x lO-12 mol cm cm-2 
S-I atm-I for pristine PBI compared to 2.5-4.65xl0-12 mol cm cm-2 

S-I 

atrn- I for Nation at room temperature, i.e. a difference of approximately two orders of magnitude. 

Similar results have been reported for oxygen permeability [26]. However PBI permeability 

improves dramatically by increasing the doping level [2]. 

Overall despite the advantages of using Nation as binder the problem with the material is its 

limitations as an ionic conductor at temperatures above 80°C which severely limits its use in 

HT-PEMFC. What is required is a material that will enhance its water retention at higher 

temperatures. 
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Figure 5-7. Methanol oxidation (1.0 M) comparison between PSI and Nation as binder at different 

temperatures using 0.5 M phosphoric acids, catalyst loading was 0.02 mg.cm·
2 

Pt-Ru. 

5.4.6 HT -DMFC Cathode performance 

In this work a low loading of 0.5 mg cm-2 Pt/C was used for the catalyst layer. Figures 5-8 and 5-

9 show DMFC cathode performance (vs. DHE) using air and oxygen, respectively, at various 

temperatures. The voltage loss due to cross over was reflected in the open circuit voltages (vs. 

DHE) of ca. 880 mV with oxygen and 810 mV with air. These values reflect a low cross over 

effect due to a low methanol feed concentration, low methanol permeability through PBI and 

thick cathode layer (30% pt/C was used) . 

It can also be highlighted that, when operating with air, cross-over effects were more apparent 

due to the low oxygen concentration. Only a small gain was observed in the kinetic region when 

the temperature was increased from 120 to 150 QC; this can be attributed to cross-over effects 
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countering the effect of temperature on oxygen reduction kinetics. However, increasing the 

temperature further to 175 QC led to noticeable improvement in kinetics, caused by higher 

cathode tolerance to methanol at elevated temperature (higher CO tolerance). When operating 

with oxygen a reduced effect of cross-over was observed, as the oxygen surface coverage 

increased (high oxygen concentration). Consistent improvements were observed in the kinetic 

region when the temperature was increased from 120 to 150 to 175 Qc. 
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Figure 5-8. Cathode perfor mances fo r oxygen reduction operating at different temperatu res of 120 ·C using 

air with loading of 0.5 mg cm'
z 

Pt. 
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Figure 5-9. Cathode performances fo r oxygen reduction operating at different temperatures of t 20 ·C using 

oxygen with loading of 0.5 mg cm-
2 

Pt. 

5.4.6.1 Cross-over effect on cathode performance 

The effect of using a 50% p t/C as catalyst rather than 30% pt/C was investigates whist keeping 

the loading at 0.5 mgPI cm-2, which meant that cathode thickness was more than halved. This 

ideally should have imposed lower IR drop, lower mass transport, and greater cross-over effects. 

Figure 5-10 shows the effect using 30% & 50% Pt/C on cell performance with 4 % vol MeOH at 

various temperatures. Relatively low open circuit potentials were observed with the 50% pt/c 

catalyst (540 mV 50% pt/C compared to 780 mV 30% Pt/C at 150 QC with oxygen) indicating a 

greater influence from methanol cross-over. Due to the high rate of methanol crossover, the 

kinetic region was not observed very clearly. At higher current densities, an improvement in the 
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performance over the 30% pt/C was observed, due to the higher conductivity through the thinner 

catalyst layer. 
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Figure 5-10. HT-DMFC operating with oxygen and air using 30% and 50% PtlC on the cathode, the catalyst 

loadings was 110.5 mg cm-2 Pt-RufPt for anode/cathode. 

The cross-over rate was measured by supplying inert gas to the cathode, and oxidizing the 

crossed over methanol at 1.1 V vs. DHE (Figure 5-11). The limiting current density jli01 

approached a value of c.a. 17 mA cm-
2 

with the operating conditions of J 50 QC and 4% vol 

methanol. The methanol permeability characteristics can be determined from the limiting current 

density using the following equation 

FI - D.C _ Jlim 
UXmelhanolcross-over - 5 - nF [2] 

Where the product DC is the methanol permeability through a membrane of thickne s 8 and F i 

Faraday constant (96485 C mole-I). 
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The calculated permeability was 1.47x 10-12 mol cm cm-2 
S-I atm- I

• and was in close agreement 

with the reported value in the literature for similar conditions [4]. Similarly, the limiting current 

density for methanol cross-over of c.a. 17 mA cm-2 using a membrane with thickness of 50 ~m 

was comparable to the reported value in the literature of c.a. 10 mA cm-2 for a membrane of 

thickness of 11 0 ~m [4]. 
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Figure 5-11. Methanol cross-over rate determined by steady-state electro-oxidation of crossed-over methanol 

and determining the limiting current on the cathode at 150 ' C using 4% vol MeOH in the anode. 

5.4.7 Performance degradation 

A potential limitation for HT-DMFC using phosphoric acid doped polybenzimidazole is the 

degradation of the performance over time. Similar degradation was observed in phosphoric acid 

fuel cells [24]. and it has been suggested that ruthenium metal dissolves at high temperatures and 

potentials. 

Figure 5-12 shows the typical performance of the HT-DMFC over a week of operation. The 

system was purged with nitrogen for 10 mins before shutting down everyday (7 hours of 
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operation each day).The performance fell continuously on a day by day basis and, for example, 

the current density fell from 37 to 27 to 15 to 10 mA cm-
2 

at 100 mY, on day 2, 4, 6 & 7, 

respectively, operating at 120 °C using air. The degradation in the performance can be attributed 

to two main factors: 

> 

• Losses of ruthenium and activity ofPt-Ru in phosphoric acid [24]. 

• Acid losses in the membrane and catalyst layer leads to high IR drop due to very high 

humidity in the anode stream. 
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Figure 5-12. Cell performance for methanol oxidation operating at temperature of 120 ·C using 2 & 4% vol 

MeOH and a loading of 1 mg cm-2 Pt-Ru for anode over a week of operation. 

To identify the cause of the degradation behaviour, the anode performance was recorded (vs. 

DHE) for a period of one week (data is IR free) and is shown in Figure 5-13. Noticeably anode 

performance did not change significantly; tending to rule out the assumption of a major loss of 

performance due to ruthenium dissolution within the one week period. However if a slight Ru 

loss and consequently migration to the cathode occurred, this may still have a negative impact on 

oxygen reduction kinetics due to the materials lower ORR activity. 
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Frequency response analysis was used to measure the cell conductivity at 120 ·C and 2 % vol 

methanol feed over the studied week and the results are summarised in Table 5-4. 

Table 5-4. MEA through plane resistance variation over different operating days. 

Day 2 4 6 

Resistance n 0.33 0.63 1.5 

A dramatic decrease in the cell conductivity was observed over the week, which was probably 

caused by loss in acid content of both membrane and catalyst layer. It was noticed that the initial 

cell resistance was four times higher than that of the hydrogen PEMFC at similar conditions, i.e 

0.07 Ohm at 120·C and RH 1 %. This can be explained by a thicker anode catalyst layer (loading 

of 1 mgpt cm·2 of 40%Pt-20%Ru IC instead of 0.2 mg cm-2 20% Pt/C), a thicker cathode catalyst 

layer (0.5 mg cm-2 of 30% Pt/C instead of 0.4 mg cm-
2 

of 50% Pt/C) and acid wash-out from the 

membrane due to high water content in (humidity) the methanol feed. 
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Figure 5-13. Anode performances for methanol oxidation operating at temperature of 120 ·C using 2 & 4% 

vol MeOH and a loading of 1 mg cm·
2 

Pt-Ru for anode over a week of operation. 
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In addition, the complete shut down of the system might also have caused fonnation 

(condensation) of liquid water which enhanced wash out of the acid. Slower perfonnance 

degradation was observed when the system was kept at a temperature of 120 ·C during the shut 

down of the system (stopping the fuel vapour feed) for a period of three days. However, due to 

the high water content in the anode feed (2-4% vol methanol feed); loss in phosphoric acid and 

therefore loss in conductivity and perfonnance still occurred. This was con finned by the 

presence of phosphoric acid in the water-methanol condensate from the anode exhaust. 
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5.5 Conclusions 

A vapour feed HT - DMFC was demonstrated with reasonable performance and high open circuit 

potential arising from low cross-over (permeability) of methanol through the membrane and high 

CO tolerance at the cathode at elevated temperatures. The cell suffered from high anode 

polarisation which resulted in significantly lower performance even at higher temperatures than 

that achievable with low temperature cells using Nation as the membrane. A major factor is the 

very poor methanol oxidation kinetics in a phosphoric acid environment. 

An improvement in performance may be possible by using a higher methanol concentration to 

enhance methanol oxidation, which may offset the detrimental effect of increased methanol 

crossover, The latter effect is further compounded by the fact that only relatively low current 

densities have been achieved with PBI membranes, although can be partially overcome by using 

higher catalyst loadings [4, 5, 19-21]. Higher methanol concentrations [5] may also result in 

higher methanol sorption (kinetics) and lower electro-osmotic drag of water Imethanol with 

protons. 

In addition, acid wash out and therefore conductivity loss was a major limitation for HT -DMFC 

based on phosphoric acid doped PBI. 
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6 Chronoamperometry and Frequency Response Analysis for HT -PEMFC 

6.1 Introduction 

It was found earlier that with varying amounts of PBII H3P04 IPTFE there was an optimum 

catalyst thickness that provides a balance between oxygen permeability and proton transfer or on 

other words, mass transport and accessible ESA (kinetics). This layer was found to be in the 

range of 40-50% Pt/C with loading of 0.4-0.6 mgP! cm-2
, this is in good agreement with the 

results reported for PBIIH3P04 system [I). 

This chapter contains SEM (scanning electron microscopy) images used to determine the catalyst 

layer thickness and the results were compared with chronoamperometry data to establish the 

contribution of mass transport on system performance. 

EIS (electrochemical impedance spectroscopy) was also used to provide further information 

about electrodes structure and effect on the overall cell performance. A simplified circuit model 

was built and an attempt was made to relate the circuit components to the physical phenomenon 

taking place at the electrode's surface in terms of kinetics, mass transport and IR losses. 

6.2 Catalyst layer thickness 

To calculate the average catalyst layer thickness for both anode and cathode electrodes a cross 

section of the studied MEAs was made by fracturing them, after the tests, in liquid nitrogen and 

then using the obtained SEM images (Figure 6-1). Analysis was performed using the UTHSCSA 

Image Tool Kit Tool 3.0 program (University of Texas Health Science Centre at San Antonio, 

San Antonio, TX) calibrated prior to measurement in micrometers. Sixty measurements were 

taken from different sections of the fracturedMEAs for each electrode. An average thickness 

value was obtained accordingly with the standard deviation. 

Table (6-1 & 6-2) summarises the results of cathode and anode electrodes, respectively. The 

estimated thickness was calculated based on the following densities measured at 25 ·C: 

• PBI 1.34 g cm-3 [2]. 

• PTFE 2.15 g cm-
3 

[3]. 

• Carbon Vulcan XC-72R 1.8 g cm-
3 [4] (similar value was considered for advanced carbon 

support ACOI form Johnson Matthey 40% pt/e (JM) electrode as no information is 

available on the density of this carbon). 
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• Platinum 21.45 g cm-3 [5]. 

• Cobalt 8.92 g cm-
3 

[6]. 

• Phosphoric acid (88.28-101.6) wt% 1.726-1.8875 g cm-3 [7]. 

The estimated porosity was calculated from the measured and estimated thickness. Phosphoric 

acid was not considered in the thickness calculations as the acid was added after the fabrication 

of the catalyst layer. This means that the actual porosity was lower than the value reported due to 

acid filling some of the available void space. The acid added to the anode layer was 2-4 mg cm-2 

corresponding to 1.06 to 2.32 !lm thickness (similar amounts for cathode layer will be considered 

in the analysis for mobile acid from the membrane). 

The following observations on the electrodes can be made: 

• 

• 

The best performance anode and cathodes had a thickness c.a. 10 !lm, in agreement with 

the reported 10 !lm optimum thickness for P AFCs [8]. 

In-situ measured membrane thickness was in the range of (39.34 ± 6.16 !lm), while the 

pristine membrane was 40 !lm thick and the doped membrane thickness was in the range 

of 55-60 !lm. During hot pressing the membrane was compressed to an average measured 

thickness of (- 40 !lm): this confirms that some of the acid in polymer matrix had to 

move away to the catalyst layer due to compression. The non-uniformity in the catalyst 

layer thickness leads to non-uniformity in the membrane thickness after compression 

reflecting high value of standard deviation (STDEV) in the membrane thickness 

measurement (± 6.l6!lm). 

• The non-uniformity (STDEV) in the catalyst layer increased with increase in catalyst 

layer thickness and carbon to metal ratio. This can be explained by the fact that the 

stability of the aqueous based catalyst ink dispersions was deteriorating by increasing 

carbon content in the ink. Carbon dispersion depends on the carbon surface pre-treatment 

(oxygenated group on the surface), however generally it was easy to disperse carbon in 

ethanol or water: ethanol (1: 1 v/v) inks. On the other hand initial, PTFE dispersions used 

to prepare the catalyst inks were aqueous based due to hydrophobic properties of PTFE. 

Therefore ethanol addition wi11lead to agglomeration in the PTFE dispersion (ethanol 

wets PTFE surface). For PBI based anode electrodes (no PTFE) non aqueous inks were 

used (DMAc/acetone) reflecting small STDEV value and low porosity. 
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• The porosity increased with increasing PTFE content at fixed PtC ratio. PBI based 

electrodes had much lower porosities than those of PTFE electrodes. For similar PTFE 

and PBI content, PBI electrodes were expected to be thicker (PTFE have bigger density 

than PBI) and have lower porosity, therefore poorer mass transport behaviour. 

• Anodes with 10% PTFE had an average porosity of - 55% compared to - 35% for 

anodes with 5% PBI. The porosity fell to 43.6% for PTFE electrode and -10% for PBI 

electrodes when loading of 4 mg cm-2 of phosphoric acid were considered. 

• Considering the same quantity of acid for the cathode meant that, for 60, 50, 40 & 30% 

Pt/C (0.4 mgPI cm-2) electrodes, the acid volume fractions (with no porosity) were 62,47, 

35 & 24% vlv, respectively. On the other hand, taking an average porosity of 50 % for 

the mentioned electrodes or corresponding thickness of 7.48, 9.78, 13.24 & 19.02 Jlm, 

acid addition wi111ead to drop in porosity to 19,26.3,32.5 & 37.8% for 60,50,40 & 30 

% Pt/C electrodes, respectively. Considering Fick's law for diffusion with a Bruggeman 

correlation for a porous structure: 

[1] 

Where e is the porosity, t is the tortuosity and 0 is the diffusion layer thickness. 

The average oxygen concentration in the catalyst layer CPI at a given current density (or oxygen 

flux N02) is inversely proportional to the ratio (etl 0). The values of (etl 8), taking t as 1.5 [9] and 

using the values quoted above for porosity and thickness, were 110.6, 137.7, 139.8 & 122.2 cm-) 

for 60,50,40 & 30% Pt/C electrodes with 4 mg cm-
2 

acid, respectively. 

It can be concluded that electrodes fabricated with 40-50% Pt/C exhibited the highest oxygen 

concentration in the catalyst layer at a given current density and therefore were expected to 

exhibit the best performance (IR effects are minimal due to high conductivity of pristine H 3P04). 

Similarly, the 50-40% Pt/C electrode porosity was -30% (after acid impregnation) with acid 

volume fraction to Pt+C (without porosity) in the range of 47-35% (50-40% Pt/C). This means 

that the 50% Pt/C electrode had one third of its structure as voids (oxygen transport or vapour 
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water removal), one third for catalytic sites and electrical connection (Pt+C) and the last third for 

proton conduction (acid electrolyte). 

As found above the volume fraction of acid electrolyte in the standard anodes (0.2 mgpl cm-2, 

20% Pt/C) & cathode (0.4 mgPl cm-2
, 50% Pt/C), exhibiting similar porosity and thickness (Table 

6-1 &6-2), was around one third of the catalyst layer, which also agrees with the measured 

electrode ESA (from UPD) utilisation of 31.55 ± 5.75% & 35.45 ± 5.05% for cathode & anode, 

respectively. The reported utilisation was with respect to the standard catalyst ESA measured in 

half cell using liquid electrolyte reported in Chapter 3 (42.1 & 68.1 m
2 

g-I for 50% & 20% Pt/C, 

respectively). 

The 60% Pt/C electrodes exhibited the highest acid volume fraction (to PHC) of 62% v/v and the 

lowest oxygen concentration in the catalyst layer (slf 0), therefore its lower performance was due 

to acid flooding in comparison to 50% Pt/C electrodes. Finally, PBI based electrodes 

experienced the lowest porosity and smallest thickness (low density), which makes the layer 

even more critical after acid addition in comparison to PTFE based structures. All the above 

remarks agree with the observation of the experimental electrode performance (see Chapter 4). 

Table 6-1. Cross-section measurements of cathode electrodes fractured in liquid nitrogen. 

Theoretical Estimated Average- Thickn-
mgrl MIC Pt:C PTFE 

thickness porosity measured ess 
-2 (wt %) (wt) (wt%) cm (Jlm) (%) thickness (Jlm) STDEV 

0.4 60% Pt 3:2 40% 3.74 57.56 8.8 ±2.21 

0.4 60%Pt-Ru 1: 1 40% 4.98 33 .21 7.46 ±2.41 

0.61 50% Pt 1:1 20% 5.09 40.1 8.5 

0.4 50% Pt 1:1 40% 4.89 53.12 10.44 ±2.05 

0.44 50% Pt 1:1 40% 5.38 58.44 12.94 

O.4(Etek) 40% Pt 2:3 40% 6.62 42 .03 11.42 ±3.8 

0.4(JM) 40% Pt 2:3 40% 51.89 13.76 

0.4 30% Pt 3:7 40% 9.51 52.71 20.97 ±4 .27 

0.2 20% Pt 1:4 40% 7.81 37.75 12.27 ±2.39 

0.19 200/0Pt-Co 1:5 40% 7.64 37.61 12.51 ±2.57 
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Table 6-2. Cross-section measurements of anode electrodes fracturedin liquid nitrogen. 

20% Pt/C 

(mgrt cm-2
) 

0.22 

0.22 

20% Pt/C 

(mgrt cm-2
) 

0.183 

0.183 

PBI 

(wt%) 

5% 

5% 

PTFE 

(wt%) 

10% 

10% 

Theoretical 

thickness (I1m) 

5.93 

5.93 

Theoretical 

thickness (I1m) 

4.63 

4.63 

Estimated Average-measured Thickness 

porosity (%) thickness (I1m) STDEV 

34.22 9.02 ±2.01 

36.54 9.35 ±2 

Estimated Average-measured Thickness 

porosity (%) thickness (I1m) STDEV 

50.51 10.16 ±4.54 

62.57 7.8 ±3.5 

10% 4.63 54.63 12.34 ±5.48 ----0~.18~3~-------..M7------~~-----.~~----~--~~--~----~~~ 

0.24 10% 6.07 60.77 15.46 ±4.35 

0.24 10% 6.07 58.63 19.92 ±6.06 

0.265 10% 6.7 62.52 14.76 ±3.78 

0.265 10% 6.7 40.71 17.89 ±4.74 

0.27 20% 7.7 54.48 15.55 ±3.39 

0.29 20% 8.27 50.51 10.16 

0.29 20% 8.27 62 .57 7.8 ±3.S 

0.29 20% 8.27 54.63 12.34 ±5.48 

0.2 40% 7.64 69 .55 14.66 ±S.13 
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Figure 6-1. Shows SEM cross-sectional ima ges of the liquid nitrogen fractioned M EAs. 
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6.3 Chronoamperometry and mass transport 

Chronoamperometry is an electrochemical technique in which the potential of the working 

electrode is stepped, and the resulting current from Faradic processes occurring at the electrode 

is monitored as a function of time. 

The double layer capacitance, measured from cyclic voltammetery, were 0.88 & 0.82 Farads for 

11.56 cm2 cathode (0.4 mgpt cm-2 50% PtlC) and anode (0.2 mgpt cm-2 20% Ptlc) respectively. 

corresponding to an average specific capacity (with reference to catalyst PtC) of71-94 F g-l. 

The measured current is the sum of both faradic current and charging current. The current-time 

transient was recorded at 0.01 sec intervals. To separate Faradic and non-Faradic effects the 

measurements were considered at time t ~ 0.8 s of the step potential. This is justified as follow: 

The limiting current, a steady state faradic current at t = 60 sand E = 0.02 V, for the studied 

electrodes varied in the range of 0.4-1.7 A cm-2 under various oxygen partial pressures (air, air at 

1 bar & air at 2 bar). With geometric area of 9 cm2 the total current was in the range of 3.6 and 

15.3 A. The measured current at 0.8 s for all the studied electrodes -with limiting current range 

between 1.7 and 1.4 A cm-2 
- was equal to or below 115 % of the final limiting current value. 

This lead to maximum faradic current for the studied electrodes of 17.6 A. The potentiostat used 

was capable of a maximum current of 20 A which leaves us with a minimum of 2.4 A available 

for the charging double layer current. Considering a potential step of 0.85 V (from OCP to 

diffusion control potential) and maximum double layer capacitance of 1.78 F (measured for the 

anode), using the equation below [10]: 

T 
_ C'oad X v"h arg e 

c-
Icharge 

[2] 

Where C(oad is the capacity of the capacitance to be charged, Vcharge is the voltage step and Icharge 

is the maximum amount of current available for the charging (or discharging) process. The time 

to charge the double layer, Tc. will be 0.76 s which is below the minimum chosen value of 0.8 s. 
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6.3.1 Diffusion in finite and semi-infinite length: 

In this section two diffusion cases were considered to explain oxygen diffusion in the electrode: 

I. Diffusion in semi-infinite length 

11. Diffusion in finite length. 

6.3.1.1 Diffusion in semi-infinite length 

At a potential where the oxygen reduction is entirely diffusion controlled, we can write for a 

planer electrode [11]: 

i{t) = nFACo,.ps;;: + nFADo, Co, 
Jm 8 

[3] 

Where the first term of the equation is the well know Cottrell equation (from Fick's second law 

of diffusion) and the second term is the case ofFick's first law of diffusion (equation 1) when the 

system is running at the steady-state (limiting current) i.e. oxygen surface's concentration CPt = 
O. Chronoamperometry has been commonly used to obtain oxygen mass transport parameters in 

phosphoric acid and nafion [12-15] from the plots of current vs. inverse of the square root of 

time. From the slope and intersect (or CDO.5 & CD values), respectively, the diffusion coefficient 

and concentration (solubility) can be obtained. 

However, in this work plotting the current from 0.8 to 60 s with the inverse of square root of 

time did not lead to a straight line. This was not totally un-expected as the Cottrell equation was 

derived for planar, non-porous structures. Pajkossy et al [16-18] have shown that for porous 

electrode (rough and partially active) the decay of the diffusion controlled current from an 

initially homogeneous medium to a completely absorbing fractal boundary, exhibit to(1 time­

dependence instead of the conventional fl/2 (Cottrell equation) with the exponent (l being 

determined by the fractal dimension, DF, of the interface as (l = (DF - 1)/2 [19]. Where 1< DF <2 

for partially blocked surface or active islands on inactive support. Pajkossy and Nyikos 

suggested [18] the general form ofCottrell equation: 

i(t) = nF~;~ ~A.2 /Dto.s 
[4] 
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Where y & A are geometrical factors and the rest symbols have their usual meanings. 

It can be seen that Cottrell equation is a special case when a= 0.5 for non-porous planar 

structures. 

By plotting log [i(t)] vs log [t] a straight line should be obtained with slope of -a and (at t = Is) 

an intercept of log [crF] (Fig. 9-4, Appendix A), where crF is fractal Cottrell coefficient given by 

[17]: 

[5] 

Table 6-3 shows fractal Cottrell coefficient and fractal dimension for 40% Pt/C electrodes; the 

fractal dimension was around 1.1 and was unaffected by heat treatment. On the other hand the 

fractal Cottrell coefficient increased slightly with increasing temperature and significantly by 

increasing oxygen partial pressure or oxygen binary diffusion (changing the inert gas from 

nitrogen (air) to heleox (80% He- 20% O2)) while maintaining oxygen partial pressure. This was 

expected as the fractal Cottrell coefficient is directly proportional to the oxygen concentration 

and diffusion. This shows that oxygen mass transport to the electrode was not only limited by 

diffusion through electrolyte thin film, but also through diffusion in the gaseous phase; which 

cannot be ignored. Additionally, it can be seen (Table 6-3) that the difference in fractal Cottrell 

coefficient (or observed current) is established at very small time intervals 1 s (or less) between 

air (Log [crF] = 1.041) and heleox (Log [crF] = 1.151) even though the initial oxygen partial pressure 

was the same, suggesting an equilibrium is established quickly in the gaseous phase even at short 

time intervals due to the fast oxygen diffusion in the porous structure (4.53 xl 0.6 & 1.85x 10's m2 

s'\ for air and heleox at 175 ·C, respectively) in comparison to diffusion through the electrolyte 

film 10.9 m2 s'\ at 175 ·C (steady-state current is reached after -60 s). 

Considering steady-state operation at limiting current k and using Fick's first law of diffusion 

we can write equation 6 &7 for oxygen permeability through the thin film electrolyte and the 

porous gaseous phase, respectively: 

N =i= -D02 (CPr -CcJ 
O2 nFA c5 [6] 
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[7] 

Where D02, D'02 are oxygen diffusion coefficient through the thin electrolyte film and porous 

media, respectively. 8 & 8' are diffusion length (thickness) of electrolyte film and porous media, 

respectively. CPI is oxygen concentration at the platinum surface (zero for limiting current 

condition), Ceat is the oxygen concentration or solubility in the polymer electrolyte equilibrated 

with an oxygen partial pressure in the catalyst layer boundary Peal where HCCal = PCal (H is 

Henry's constant for oxygen solubility in the electrolyte) and Pchannel is oxygen partial pressure in 

the channel (assumed constant under high stoichiometry excess of 2.2). 

Considering a planer Pt electrode (roughness factor of I) i.e. A in equation 6&7 is the same, and 

by solving equation 7 for Peal and substituting in equation 6, with re-arranging: 

' D' D (e H-1 p ) N = i = - 0 , 0 , ~ PI - Channel 

0 , nFA H-IDo, 8' +D~, 8 
[8] 

The obtained equation suggests that the system overall behaviour will still follow Fick's law with 

an overall diffusion coefficient equal to Doz D'02 and equivalent diffusion length equal to D02 8 

+ D'02 8' RI. For D02« D'02 equation 8 reduces to Eq. 6. 

Table 6-3. Fractal Cottrell coefficient and fractal dimension for 40% PUC electrodes. 

Electrode TeC) Pm (atm) DF Log IGFl 

40% PtlC heat treated air 120 0.21-N2 1.1 0.658 

40% PtlC no heat treatment air 120 0.21-N2 1.12 1.077 

40% PtlC no heat treatment heleox 120 0.21-He 1.13 1.151 

40% PtlC no heat treatment air 2atm 120 0.42-N2 1.1 1.226 

40% PtlC no heat treatment air 150 0.21-N2 1.1 1.072 

Although, equation 4 showed a good fit for most of the data, it lacked, in some cases, agreement 

over the entire time range (0.8-60 s) whilst good agreement was obtained for all the electrodes in 

the range of 0.8-10 s. This arises from the fact that the Cottrell equation assumes that 

concentration changes due to potential step (known as Nemst diffusion layer) do not reach the 

end of the electrolyte layer during the time of the experiment (i.e. t-oo, i-O) and therefore valid 
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for very short period of time. The finite length diffusion is not appropriate for the presentation of 

the studied electrode case where during the experiment the diffusion layer will reach the end of 

the thin film and equilibrium will be established between gas-electrolyte-electrode (i.e. t-+oo, 

i-+k). 

6.3.1.2 Diffusion in finite length 

The Cottrell equation is derived from the solution of Fick's second law of diffusion for one 

dimensional transport [20]: 

aCo(x,t) = D a
2
Co(x,t) 

at 0 ax 2 

With boundary conditions for semi-infinite system. 

Co(x,O) =C~ 

limCo(x,t) =C~ 
.1-+00 

Co(O,t) = 0 (fort> 0) 

[9] 

[10] 

[11] 

[12] 

The first condition (Eq 10) expresses the homogeneity of the solution before applying the 

potential step. The second condition (Eq 11) states the semi-infinite diffusion condition, i.e. the 

regions distant from the electrode are unaffected by potential step and therefore have constant 

concentration equal to the initial concentration. The third condition (Eq 12) expresses the 

condition at the electrode surface after the potential step (and equal to zero because the system 

under pure diffusion control). 

However, for finite length systems (also known as bonded diffusion) or for diffusion of species 

through thin films (un-stirred electrolyte) of thickness (L) the Cottrell equation is no longer valid 

as the boundary conditions change to: 

0:5 x:5L [13] 

ac (x,t) 
o =0 (forx=L&t>O) 
ax 

[14] 

Co(O,t) = 0 (fort>O) [ 15] 
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The first condition remains unchanged, restricted to the electrolyte thickness (L), while the 

second condition expresses no flow of the diffusing substrate beyond the thickness (L) or in 

other words the phase boundary at x = L is impermeable (reflective boundaries). The third 

condition remains unchanged. The solution for (Eq. 9) using the above boundary conditions is 

either a series of error function (or related integrals) which is suitable for small times or a 

trigonometrical series which converges more satisfactorily at large time values [21, 22] . It has 

been shown [23] that, by neglecting the higher order terms in error function series and 

trigonometrical series, the solutions for (Eq. 9) are equations (16& 17) respectively: 

For short time periods t« L21D 
.() nFACo, JDo, . 
It= . -+l rm L 

[16] 

For long time periods t» L21D .() 2nFACDo, (tr 2

Do,tJ' 1 t = -exp - . + 1 
L 4L2 L 

[17] 

Where k is the limiting current obtained as t approach infinity. 

Equation 16 is the Cottrell equation which is valid for short periods of time (less than L21D) i.e. 

when the concentration effects of the potential step do not reach the finite length L (infinite 

diffusion). While Equation 17 is valid for longer periods of time (more than L21D) for the finite 

length diffusion. 

Considering diffusion through the electrolyte thin film with D02 for oxygen in (85-98 %wt) 

phosphoric acid in the range of 10-5 cm2 
S-1 for temperature range 100-150 ·C [12, 14], while L 

the electrolyte film thickness normally range 0.5-3 nm for nafion [24,25]. The film thickness L 

is calculated by: 

[18] 

MH3P04 is the mass of acid per unit area, p is the acid density and Se and SPt is the specific 

surface area of carbon and Platinum, respectively, per unit area. For acid loading of 2 mg cm-2, 

the corresponding film thickness for cathode (0.4 mgp! cm-2 50% Ptlc) and anode (0.2 mgpt cm-2 
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20% Pt/C) is 5.4 and 9.1 nm, respectively (assuming uniform distribution and 100% ESA 

utilization). 

This means that L2/D = 2.9xlO-8& 8.3xlO-8 s for cathode and anode, respectively and suggests 

that only equation 17 can be used for the studied current transient as L 2/D has an extremely small 

value. 

For diffusion with finite length L with a transmissive boundary i.e. ac(tY &#0, the solution of 

the diffusion equation becomes [26]: 

For short time periods t« L
2
/D 

For large time periods t» L
2
/D 

;(/) = nFACJifi5;; 

.() nFACo,Do 
I t = - 2 

L 

[19] 

[20] 

[21] 

While equation 20 is the same as the Cottrell equation, equation 21 is the limiting current 

expression obtained from Fick's first law of diffusion (equation 3 & 6). The solution given by 

equation 19 should satisfy the observed response, however, it is difficult to extract directly terms 

that can express the observed exponential dependency on time. The applied large amplitude 

transients lead to nonlinear, often exponential, responses [27]. 

Crank [21] has shown that the total amount of diffusing species through unit area of the face x = 

L of the membrane in time t, Qt, for a plane electrode covered by membrane with finite length 

film L is given by a series expression. Taking only the leading terms of this series we can write: 
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[22] 

Where: 

i{t) aQ, 
--=-
nFA at [23] 

Where Cl & C2 are the constant (02) species concentration at the membrane boundary and 

electrode boundary, respectively. Co is the initial uniform concentration within the membrane. In 

our case CO=Cl & C2= 0 (diffusion control) & D is the diffusion coefficient of the diffusing 

species (02) through the membrane. 

Therefore we can write: 

i{t) = DCI _ 2D( Cl - 2Co) exp(- ;r2 Dt) 
nFA L L L2 

[24] 

In this special case where Co = Cl equation 24 becomes similar to the suggested Eq. 17 [23]. 

For t-+oo, i(oo) -+iL limiting current, we can write: 

i{t} :;; DCI 

nFA L 
[25] 

, ... .., 
For t-+O & i(O) we can write: 

i{t} _ DCI 2DC1 -----+--
nFA L L 

[26] 
, ... 0 

Equation 24 can be rewritten consideringj = ilA: 

'{t} . (. .) (;r2Dt) J =h + Jo-h exp -~ [27] 

Or 

[28] 
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Where K, known as the system gain, is equal to jO-jL= 2 nSptFLDCI and t is the response time 

constant equal L2/ 1t2D. SPt is the platinum surface area (covered by thin film acid) per electrode 

unit geometrical area, also known as roughness factor. Cl is the dissolved oxygen in the 

electrolyte film, using Henry's law for solubility at temperature T (Kelvin) we can write P02 = 

HTCo, for example for 96% wt H3P04, H423 = 2 m
3 

atm mole-I [11] . P02 «atm), denoted earlier as 

Peat) is the oxygen partial pressure at the membrane face boundary at x =L. We can thus write K 

as: 

[29] 

6.3.2 Transient response time constant 

The current transient decayed exponentially with time (Fig. 6-2). The time constant, t , is 

obtained from equation 28 where t = t for jet) = jL + 0 .368K and K = jO-jL (data was extrapolated 

based on best fit to obtain j o) . 

Tables 6-4 & 6-5 summarise the values for K & t, for various e lectrodes at 120, 150 & 175 DC 

and with air, air at 2 atm and heleox (21 %02-79% He). 

Table 6-4. Values of cathode electrodes chronoamperometry response gain K in A cm-2
• 

Air (1 atm) Air (2 atm) Heleox (1 at m) 

mgp,-Pt%-mg*H3P04 120C lS0C 17SC 120C lS0C 17SC 120C lS0C 17SC 

0.4-60%-0 0.22 0.17 0.09 0.29 0.25 0.16 0.30 0.25 0.11 

0.15 0.14 iila nla iila nla 

0.4-50%-0 0.21 0.20 0.12 0.39 nla 0.16 0.30 0.25 0.17 

0.4-S0-Vo-2 0.18 0.07 0.04 nla nla nla 0.25 0.13 0.05 

0.4-50%-2-F* nla 0.12 0.07 nla 0.18 0.13 nla 0.19 0.11 

0.4-S0%OLD* 0.13 0.19 0.077 0.22 0.28 0.158 0.23 0.27 0.096 

0.4-40%-0 0.20 0.19 0.09 0.30 0.29 0.16 0.30 0.30 0.15 

0.4-40%-OHT* 0.08 0.12 0.06 0.14 0.16 0.12 0.13 0.13 0.08 

0.4-40%OJM * 0.06 0.06 0.015 0.09 0.12 0.03 0.12 0.07 0.015 
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0.4-30%-OHD* 0.21 0.16 0.11 0.45 0.31 0.19 . 0.24 0.17 0.11 

0.4-30%-0 0.31 0.27 0.14 0.41 0.43 0.22 0.42 0.39 0.19 

0.2-20%-0 0.24 0.26 nla 

0.2-18%-O-Co* 0.13 0.39 0.40 0.26 0.38 0.39 0.15 

0.2-16%-0-Ni* 0.25 0.25 0.16 0.43 0.39 0.30 0.39 0.26 0.16 

It can be observed (Table 6-5) that the response time constant t for a given electrode was 

independent of oxygen partial pressure (dissolved oxygen concentration) and independent of 

diffusion coefficient in the porous media (same for air and heleox). t values varied in the range 

of 2-17 s and decreased with increase in temperature. This confirms that, for a given electrode 

(or L), t depended on oxygen diffusion through the thin film only (Eq. 27), where the latter 

decreases with temperature. For calculated values of L (using equation 18) in the range of 10,8 m 

and time constant values 2-17 s this (t is equal L2/ 1t
2
D) leads to diffusion coefficient (D) values 

in the range of 0.6-5 x 10,14 cm2 
S'I . By considering diffusion coefficient in thin film electrolyte 

(phosphoric acid) D _10'5 cm2 
S'I for temperature range lOO-ISO 'C [12, 14] and the previous 

values for the time constant, we obtain L in the range of 1.4 - 4.1 x 10-4 m. The value is 

unrealistic as it is an order of magnitude larger than the thickness of the overall catalyst layer and 

four orders of magnitude larger than the estimated thin film thickness. 

Table 6-5, Various cathode electrodes chronoamperometry response time constant 'T values in s. 

Air (1 atm) Air (2 atm) Heleox (1 at m) 

mgPt-pt%-mg* f1JP04 UOC lS0C 17SC 120C lS0C 17SC UOC lS0C 17SC 

0.4-60%-0 6.25 3.58 2.815 5.19 3.08 2.8 6.08 3.39 2.6 

0.6-50%-Ot 7.48 3.89 4 

0.4-50%-Of nla nla nla nla 9.08 5.77 4.14 

0.4-50%-0 4.39 3.88 3.59 4.2 nla 3.13 4 2.84 2.65 

0.4-50%-2 3.19 5.51 4.27 ilia ilia nla 2A5 6.02 3.95 

0.4-50%-2-F* nla 5.69 4.8 nla 4.69 4.25 nla 5.92 4.4 

0.4-50%-OLD* 11.5 4.7 3.28 9.65 3.74 2.73 8.14 4.36 2.85 
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0.4-40%-0 4.44 2.72 2.36 3.68 2.13 2.03 4.4 2.38 2.17 

0.4-40%-OHT* 9.01 5.6 3.35 11.5 4.72 2.85 10.3 6.27 3.03 

0.4-40%OJM * 10.46 3.76 0.81 13.26 4.72 1.84 9.9 3.4 0.84 

0.4-30%-OHD* 10.58 11.73 14.71 6.68 5,84 8.55 10.73 13.03 16.67 

0.4-30%-0 9.68 6.02 5.54 8.7 4.61 4.52 10.07 5.7 5.26 

0.2-20%-0 7.25 3.37 nJa 8.05 nJa nJa 7.91 3.16 nJa 

0.2-18%-O-Co* 8.66 4.72 5.2 10.7 4.38 3.78 8.41 4.37 4.76 

0.2-16%-0-Ni* 12.16 6.67 nJa 13.8 6 7.45 9.73 5.21 nJa 

mgHJP04: amount of added acid loading, t: with 20% PTFE content while rest of the electrode contained 40% wt, F: with added 

perfluronated surfactant (0.5% wt), LD: low doping membrane (4 PRU), HT: heat treated cathode, lM: lohnson Matthey with 

advanced carbon support catalyst ACOI , HD: high doping membrane (20 PRU), Ni : 20%Pt-Ni /C catalyst & Co: 20%Pt-Co/C 

catalyst. 

As shown in Table 6-4, K decreased with increased temperature and was greater with a greater 

diffusion coefficient in the porous media and oxygen partial pressure. K should be (Eq. 29) 

directly proportional to Cl and D (diffusion in the thin film). However, it is usually less 

dependant on oxygen diffusion through the porous media, Dporous, which will influence slightly 

P02 and therefore Cl. The observed decrease of K with temperature can be explained by a 

decrease in solubility Cl and decrease in diffusion due to increase in phosphoric acid 

concentration (viscosity) with temperature. However, the product CID increased with 

temperature (at least from 120 to 150 °C) which can be observed from the steady-state limiting 

current values. It is also expected from equation (25 & 26) that K is equal to twice the limiting 

current value or j(O) is equal to 3 j(oo) which was not observed experimentally. 

The above disagreements between observed and predicted K arise from the fact that equations 24 

(or 17), used to derive K, are suitable for long periods of time only and therefore are not suitable 

to estimate j(O) (at t = 0). Similarly using equation 16, suitable for short periods of time, will lead 

to unrealistic j(O)-too. Additionally, there are limitations in the solution due to the assumption of 

constant Cl during the experiment, whilst in reality Cl depended on P02 which in turn depended 

upon jet) through diffusion in the porous media and diffusion of vapour water product. 
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Figure 6-2. Shows typical current-time transient responsc fo r MEA utilising 60% ptle cathodc. 

The large deviation between the observed and estimated time constants and consequently 

between the observed diffusion coefficient values obtained from the transient time constant of 

0.6-5 x 10' 14 cm2 S' I and the values obtained from steady-state conditions (limiting current) or the 

reported values in the literature D _10'5 cm2 
S'I can be explained by slow solubility equilibrium 

between P02 and Cl . As the film was very thin, the diffusion length would have reached the end 

of the film in a very short period of time and the observed diffusion in the thin film would be 

limited by how fast oxygen could dissolve in the thin film. This effect can be considered as a 

diffusion process with coefficient D solubility and how fast dissolved oxygen can diffuse through the 

thin film. So we can write D observed = D x D solubility suggesting D solubility _ 10' 9 cm
2 

S' I. In this 

analysis it was assumed that SPt is independent of oxygen concentration and therefore 

independent of time; however in reality a drop in SPt is expected with increasing j or decreasing 

Cl due to oxygen starvation and therefore SPt is expected to be function of time and therefore 

contribute to T. Additionally, the diffu ion of product water out of the thin film was ignored, 

which was another contribution to T. 
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Another explanation for the small observed values of 0 could be that 0 and L, used to determine 

the time constant "C (given in equation 24) are not the explicit oxygen diffusion coefficient in the 

thin film and the thin film thickness, respectively, but are represented by the diffusion coefficient 

equal to D'02D'H20D02 and diffusion length equal to 

Do, D~/ 20b' + D~20D~2 & r L H / SPI + 2D~2Do/' as will be seen later in equations 30 & 31. 

6.3.3 Oxygen permeability and limiting current 

Table 6-6 summarize the observed limiting current values for the studied electrodes at various 

conditions. 

Table 6-6. Cathode limiting current densities, jL in A cm,I. 

Air (1 atm) Air (2 atm) Heleox (1 atm) 

120C 150C 175C 120C 150C 175C 120C 150C 175C 

0.4-60%-0 1.06 1.05 1.04 1.44 1.48 1.40 1.20 1.18 1.17 

O.6-50%-Ot 1.22 1.32 1.33 nla nla nla 1.30 1.51 

.--------~~--~~--~----~-----,-----~--~~--~~--0.4-50%-Ot 1.03 1.20 nla ilia a nla 1.20 1.39 

0.4-50%-0 1.19 1.28 1.25 1.54 1.82 1.67 1.43 1.46 1.50 

0.4-50%-2 1.13 1.36 1.48 nla fila rila 1.34 1.54 1.71 

O.4-50%-2-F* nla 1.00 1.03 nla 1.22 1.27 nla 1.10 1.13 

O.4-50%-OLD* 0.57 0.63 0.65 0.87 0.95 0.88 0.60 0.68 0.74 

O.4~O%-O 1.13 1.12 1.09 1.65 1.62 1.50 1.31 1.27 1.21 

0.4_40%-OHT* 0.42 0 .52 0 .56 0.69 0.76 0.84 0.46 0.55 0.61 

O.4-40%OJM * 0.67 0.70 0.75 0.98 0.98 1.05 0.73 0.78 0.83 

0.4-30%-OHD* 0.55 0.87 1.11 0.95 1.36 1.58 0.64 1.02 1.29 

0.4-30%-0 0.90 0.87 0.90 1.31 1.35 1.17 0.98 0.97 1.01 

0.2-20%-0 0.78 0.75 0.70 1.10 nla nla 0.85 0.83 nla 

0.2-18%-O-Co* 0.63 0.55 0.49 0.94 0.86 0.68 0.62 0.57 0.53 

0.2-16%-O-Ni* 0.56 0.42 0.40 0.79 0.68 0.56 0.56 0.45 0.43 
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Figures 6-3 , 6-4 & 6-5 show the limiting current density for non-doped 60, 50, 40, 20, 17 & 15% 

PtlC cathodes at different temperatures and oxygen partial pressures. It can be easily concluded 

that 50% PtlC electrodes gave the highest limiting current densities at most of the studied 

conditions apart from a high oxygen concentration (air at 2 atm) and low temperature (120 "C). 

This directly agrees with the polarisation curves results obtained earlier (Chapter 4) where 50% 

PtlC showed the best performance under air operation, while 40% PtlC showed advantages with 

pure oxygen at 120 & ISO"C. 
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Figure 6-3. Shows the effect of Pt:C ratio or catalyst thickness on the observed limiting current density when 

operating with air at temperatures of 120, ISO & 17S·C. 

211 l Page 



Chapter Six: Chronoamperometry and FRA for HT-PEMFC 

1 .6 

1.4 

1 .2 

1 
"I 
E 
.i 0 .8 

=. 
0 .6 

0 .4 

0 .2 

0 
120 150 175 

T , oc 

Figure 6-4. Shows the effect of Pt :C ratio or catalys t thickness on the observed limiting current density when 

operating with heleox a t temperatures of 120, ISO & 17S°C. 
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Figure 6-S. Shows the effect of Pt: C ratio or catalyst thickness on the observed limiting current den ity when 

operating with ai r 2 atm at temperatures of 120, ISO & 175 °C. 
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Figure 6-6 shows the effect of acid content on 30% Pt/C electrodes. The electrode with high acid 

content was denoted as HD where high doping level membrane of 20 PRU was used in 

comparison to a standard doping level of 5.6 PRU. Although electrodes contained no added acid 

the electrode associated with a high doping level membrane should exhibit much higher acid 

content in the catalyst layer in comparison to the other electrodes. It can be seen that a greater 

acid content lead to lower limiting current values at 120 ·C; however the limiting current 

increased rapidly with temperature, where it became similar to that with a Iow acid content at 

150 ·C and much higher at 175 .c. On the other hand the limiting current of electrodes with Iow 

acid content did not vary significantly with temperature or dropped slightly at 175 .c. This can 

be explained by increases in S Pt and L with increase in acid content: therefore the system became 

more dependant on D02 and consequently on T. 
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Figure 6-6. hows the effect of 30% PtlC electrode's acid content on the observed Hmiting current density 

when operating with air at temperatures of 120, 150 & 175 °C. 

Figure 6-7 shows the effect of acid content on 50% Pt/C electrodes. The electrode containing low 

acid content was denoted as LD where a low doping level membrane of 4 PRU was used in 

comparison to a standard doping level of 5.6 PRU. Although two electrodes contained no added 

acid and the third one contained added acid (2 mg cm,2 with standard doping level membrane), 
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the electrode associated with low doping level membrane should exhibit much lower acid 

content in the catalyst layer in comparison to the other electrodes. It can be seen that more acid 

(2 mg cm-2
) lead to lower limiting current values at 120 ·C; however the limiting current 

increased rapidly with temperature where it became higher than that with the standard acid 

content (0 mg cm-2) at 150 ·C and much higher at 175 .c. On the other hand the limiting current 

of electrodes with low acid content (0 mg cm-2 & LD) did not vary significantly with temperature 

or dropped slightly at 175 .c. 
Electrodes with very low acid content (LD) gave very low limiting currents over the entire 

temperature range, due to very low SPI as there was a very small amount of mobile acid in the 

membrane matrix available to move to the catalyst layer and therefore low accessible platinum 

surface area. This was also reflected in the cell performance where low doping electrodes 

showed the worst performance. Similarly, standard doping electrode showed advantages over 

high doping level at high current densities at 120 ·C while the case reversed at 150 and 175 ·C. 

From equation (8) we can write for electrode with platinum surface area SPI: 
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Figure 6-7. The effect of 50% PtlC electrode' acid contcnt on the obser ved limiting current density when 

operating wi th air at temperatures of 120, 150 & 175 ·C. LD denotes membrane with low doping level of 4 

PRU. 
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Figure 6-8 & 6-9 show the effects of electrode hydrophobic properties on the observed limiting 

current for 40 & 50% PtlC electrodes, respectively. Increasing the hydrophobicity of the 

electrode by heat treatment, or by utilising different carbon support (40% PtlC case), will lead to 

lower acid content and therefore lower SPI and accordingly lower limiting current. The lower SPI 

will also lead to slower kinetics as seen earlier from the polarisation curves (Chapter 4). Similar 

conclusions can be drawn for increasing the hydrophobicity of the electrode by increasing PTFE 

content (50% PtlC case) where a high PTFE content, (lower acid content) led to higher porosity 

and therefore higher limiting current at 120 'c. However, the limiting current for electrodes with 

high PTFE content or low acid content did not vary significantly with temperature. On the 

contrary the limiting current with low PTFE content electrodes (high acid) showed greater 

dependency on temperature (increase) and therefore the limiting current value for both electrodes 

became very close at 175 'c. 
These results are in good agreement with the results obtained from the polarisation curves 

(Chapter 4) where higher acid doping was favourable at high operating temperatures. 
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Figure 6-8. The effect of 40% PVC electrode's hyd rophobic properties on the observed limiting current 

density when operating with air at temperatu res of 120, 150 & 175 'c. HT denotes heat treatment & J M 

denotes J ohnson Matthey advanced carbon support ACO l. 
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Figure 6-9. The effect of PTFE content of 50% Pt/C electrodes on the observed limiti ng current density when 

opera ting with hcleox at temperatures of 120, 150 & 175 °C. 

Table 6-7 summarises the limiting current ratio j L(150Y j L( 120) and j L( 17SY j L( ISO for temperature 

ratios of 1501120 ·C and 175/ 150 ·C for all electrodes at various oxygen partial pressure. It can 

be seen by comparison of the limiting current ratio that the second ratio was always lower than 

the first, suggesting that the permeability through the thin film DCl increased from 120 to 150 ·C 

and fell thereafter at 175 ·C. Both the oxygen diffusion coefficient in porous media D' and the 

diffusion coefficient through thin phosphoric acid film, D increased with temperature while Cl or 

(H"l) oxygen solubility decreased with temperature. The rest of the parameters in equation 30 are 

temperature independent. It has been shown [14] that the activation energy of oxygen diffusion is 

around three times larger than the heat of oxygen solution in 85-96% wt H3P04 for the 

temperature range of 100-150 ·C, therefore the overall product DC l increased with temperature 

up to 150 ·C [14] , above which 85% wt phosphoric acid started to dehydrate and became more 

dependant on humidity content and operating temperature which will led to a sharp increase in 

the viscosity and therefore sharp decrease in diffusion coefficient. On the other hand although 

solubility decreases with temperature, it increases with the phosphoric acid concentration for a 

given temperature [28]. At 175 ·C the overall product DC l is expected to decrease in comparison 

to the value at150 ·C under relatively low humidity conditions (RH < 10 %). 
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Table 6-7. Limiting current ratios for various electrodes at different temperatures 

Air (1 at m) Air (2 atm) Heleox (1 atm) 

mgpt-Pt%-mg* HJP04 ISO/120C 17S/IS0C ISO/120C 17S/IS0C ISO/120C 17S/IS0C 

0.4-60%-0 0.99 0.99 1.03 0.95 0.98 0.99 

0.6-50%-0 1.08 1.01 n/a n/a 1.16 1.03 

.------~~----~----------~------------~--~~~~--------~~--~ 0.4-50%-0' 1.l7 nla 1.l6 1.07 nla nla 

0.4-50%-0 1.08 0.98 U8 0.92 1.02 1.03 

0.4-50-;0-2 1.20 1.09 ilia 1.15 1.11 

0.4-50%-2-F* n/a 1.03 n/a 1.04 n/a 1.03 

0.4-S0%-OLD* 1.l1 1.03 1.09 0.93 1.13 1.09 

0.4-40%-0 0.99 0.97 0.98 0.97 0.95 

0.4-40%-OHT* 1.24 1.08 UO 1.20 1.11 

0.4-40%OJM * 1.04 1.07 1.00 1.07 1.07 

0.4-30%-OHD* 1.58 1.28 1.43 1.16 1.59 1.26 

0.4-30%-0 0.97 1.03 1.03 0.87 0.99 1.04 

0.2-20%-0 0.96 0.93 nla 0.98 n/a 

O.2-18%-O-Co* 0.87 0.89 0.91 0.79 ·0.93 

0.2-16%-0-Ni* 0.75 0.95 0.86 0.82 0.80 0.96 

Table 6-8 summarises the limiting current ratios jL heleox / jL air and jL ai r 2atm / jL ai r at 120, 150 & 

175 T. The first ratio reflects losses of mass transport through the porous media by increasing 

D' by a factor of four (air and heleox) and the second ratio reflects losses of mass transport 

through the thin film where POl was doubled (air at 1 atrn and 2 atrn). From equation 30 it was 

expected that the limiting current ratio of j L(air 2atm)/ jL(air) should be equal to 2. However, all the 

observed values were below 2. While equation 30 expresses the oxygen partial pressure in the 

catalyst layer, POl falls with increase in the flux (current density) due to mass transport through 

the porous structure. Equation 30 also lacks terms representing water flux of vapour product out 

of the thin film through the porous media which would lead to a further fall in POl. Including 

such a term with the simplifying assumption that P Channel (H20) = 0, we can write: 
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[31 ] 

Where D' H20 is the vapour water diffusion coefficient through the porous structure. 

Table 6-8. Limiting current ratios using different oxygen partial pressure and diffusion coefficient (porous 

media). 

j L heleox / k air k air him / k air b/a 'Yo 

mgp!,"Pt%-mg*U3P04 

0.4-60%-0 1.13 1.12 1.13 1.36 1.41 1.35 15 .8 14.7 14.9 

1.17 1.16 nla nla n/a nla 19.8 19.0 iila 

0.4-50%-0 1.20 1.14 1.20 1.29 1.42 1.34 24.3 16.8 24.1 

0.4-50%-2 1.19 1.13 1.16 n/a n/a nla 22.4 15.8 18.6 

0.4-50%-2-F* nla 1.10 1.10 nla 1.22 1.23 nla 11.9 11.5 

0.4-50%OLD* 1.05 1.08 1.14 1.53 1.51 1.35 6.2 9.4 16.5 

0.4-40%-0 1.16 1.13 1.11 1.46 1.45 1.38 19.1 16.0 13.1 

0.4-40%-OHT* 1.10 1.06 1.09 1.64 1.46 1.50 11.3 6.8 10.6 

0.4-40%OJM * 1.09 1.11 1.11 1.46 1.40 1.40 10.6 13.6 12.7 

0.4-30%-OIlD* 1.16 1.17 1.16 1.73 1.56 1.42 19.6 20.7 19.4 

0.4-30%-0 1.09 1.11 1.12 1.46 1.55 1.30 10.5 13.7 14.6 

0.2-20%-0 1.09 1.11 nla 1.41 nla nla 10.6 12.7 n/a 

0.2-18%-o.Co* 0.98 1.04 1.08 1.49 1.56 1.39 -1.8 4.3 9.7 

0.2-16%-0-Ni* 1.00 1.07 1.08 1.41 1.62 1.40 0.0 8.4 8.9 

The proposed solution (Eq. 31) still predicts jL(air 2atmY jL(ai r) to be equal to 2 while all the observed 

values were < 2 (Table 6-8). This suggests that Fick ' s first law of diffusion is not suitable to 

represent diffusion in the porous media as it cannot account for interactions between gas 
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molecules;. Additionally the assumption of PChannel(H20) = 0 predicts a linear relation between 

PCal(H20) and j, while in reality an increase in j will lead to an increase in PChannel(H20) and 

therefore an exponential dependence. The Stefan-Maxwell equation is more suitable in this case 

and will be discussed in more details in the Chapter 7. Additionally, the humidity or Pmo effects 

on Hand D02 should be accounted for, especially at elevated temperatures, as they are affected 

by phosphoric acid concentrations which in turn are functions of water content and temperature. 

We can re-write equation 31 as: 

[32] 

The first term in the denominator represents mass transport losses through the thin film while the 

second represents losses through the porous media. It shows that the limiting current will 

increase when we have a structure with a high SPt and low L. For a given acid content, a more 

uniform distribution of acid, wi11lead to an increase in SPI and decrease in L. However increasing 

acid content will also have a counter effect from its effect on the porosity £ and consequently on 

jL' 

The higher jL(heleox) / jL(air) value indicate greater mass transport losses through the porous media. 

Calculations using the Slattery-Bird correlation [29] show that oxygen-helium mixture exhibits 

binary diffusion coefficient four times higher than that of oxygen-nitrogen and water-helium 

mixture exhibits binary diffusion coefficient eight times higher than that of water-nitrogen over 

the studied temperature range. If we considered the first term in the denominator of Eq. 32 to be 

(a) and the second to be (b), then b/a is the ratio of the mass transport contribution between the 

porous phase and the thin film phase. By using the diffusion coefficient ratios obtained from the 

Slattery-Bird correlation we can write: 

1 1 j L(heleo.t) 

. a+ b/ b - j , 
J L(heleox) = 1/7, re-arranging: ~ _ =. L«"r) 

j L(air) a J L(heleox) -1 
a+b 7' 

JL(alr) 

[33] 
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Table 6-8 shows the corresponding b/a% for the studied electrodes. The average values for non­

doped electrodes with 40% PTFE utilising 0.4 mgpt cm-2 of 60, 50, 40 & 30% Pt/C are 15.1, 

21.8, 16.1 & 12.9 %, respectively. While diffusion in the pores of the catalyst layer is controlled 

by its length and porosity Et 18', the diffusion through the electrolyte film is controlled by SPt/L. 

The 60% Pt/C electrode had the smallest catalyst layer thickness, 8' and for a given acid content 

had the smallest porosity. On the other hand it had a relatively high L as it had the highest acid 

volume fraction and a medium value for SPt where most of the catalytic sites are accessible. 

However 60% Pt/C exhibited the largest average Pt particle size. Moving towards 50 %Pt/C the 

catalyst layer thickness increased (8') and correspondingly the porosity (lower acid volume 

fraction) also increased, while L fell and SPt increased therefore the ratio of bla increased; 

reaching its maximum. As the thickness of the cathode catalyst layer increased further (40 & 

30% pt/C), the porosity remained the same (as acid volume fraction became low) and for similar 

L values to 50% Pt/C, SPt fell, therefore b/a values decreased accordingly. 

Values of bla increased from 12.9 to 19.9 for 30 %Pt/C by increasing acid content (from 

standard 5.6 PRU membrane to 20 PRU HD). Also bla values decreased from 21.8 to 10.7 for 

50% Pt/C, by reducing the acid content from the standard 5.6 PRU membrane to 4 PRU LD. This 

is explained by the increased acid content increasing SPt and reducing E" leading to increased b/a 

values and vice versa. 

6.4 Study ofHT-PEMFCs using frequency response analysis 

6.4.1 Introduction 

The PBI based HT -PEMFCs were studied earlier using polarisation curves (linear sweep), cyclic 

voltammogram and chronoamperometry, where the electrodes were driven to a condition far 

from equilibrium through large perturbations on the system. Another approach is to perturb the 

system with very small magnitude signal and monitor the system's response around the steady­

state, allowing the system to be studied over wide range of frequencies (time). Electrode systems 

with non-linear polarisation show linearity when subjected to small perturbations in current or 

potential. For an activation controlled process we can write: 
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.. (a1]ac F ) 
I =loexp--

RT 

For small perturbation of D.i and resulting potential response D.11, we obtain: 

; + M =;0 exp( (1]ac + D.1]aJ ~) 

Subtracting equation 35 from 34 and dividing the result by equation 34, we obtain: 

D.i _ (aFD.1]{lc) I 
j-exp RT -

[34] 

[35] 

[36] 

For small values of a.F~11IRT « 1 or for ~11 ~10 mV at 150 ·C, we can write (with accuracy 

above 99 %): 

exp(aF~1]) = 1 + aF~1] 
RT RT 

[37] 

Combining equations (36) & (37), we finally obtain: 

~i = aF~1]ac ~ RA = ~1]{lr = RT ~ 
i RT ac ~i aF i 

[38] 

The overpotential loss due to kinetic activation at current i can be expressed simply by a resistor 

Ra/'. The physical meaning of this equation is that even when the j vs. 11 relationship is 

exponential, a small interval of this curve near any steady state value can be linearised [27]. 

Figure 6-10 shows the linearisation of the j/E curve around steady-state using small perturbation 

in the current. 
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Figure 6-10. Linearisation of the j/E curve around the steady-state using small perturbation in the current. 

For small current or voltage perturbations, the changes in concentration of reactants/products 

near the electrode surface are small therefore the associated equations can be linearised too . 

Considering that the system is affected by mass transport of reactants, at steady- state equation 

34 becomes: 

. _ . ( C )r ( a1]F ) 
1-/0 - exp--

Co RT 
[39] 

Where y is the reaction order (equal to I for oxygen), Co is the reactant reference surface 

concentration where io is measured (O.C.P) and C is the surface concentration at current i (i > io 

&C<Co). 

If we separate the overpotential losses due to kinetics and mass transport, 11 = llac + 11mass we can 

write: 
, a1] F RT j RT j 

j = 10 exp(_n_C_) =:> 1]ac = -In( -) =:> R = -In(-) 
RT aF' ac aF' , 10 I 10 

[40] 
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Co = C exp( a~TsF ) => 17mass = -;; In( ~) => Rmass = : In( ~) [41] 

Similarly equation 35 becomes: 

[42] 

Where C~ is the oxygen surface concentration at current flux of i+Ai. Subtracting equation 42 

from 39 and divide the result by equation 39, for small values of aFAlllRT « I we can write: 

-=- An-+l -1 Ai CI'J. ( aF ) 
i C '/ RT 

[43] 

If we separate the overpotentialloss due to kinetics and mass transport, we can write: 

RI'J.+RI'J. =A17=A~c+A~ass 
QC mass Ai Ai Ai 

[44] 

[45] 

Substituting Rac~ from 38, and re-arranging: 

[46] 

Therefore: 

[47] 

It can be seen that with a small current perturbation Ai, the mass transport losses can be 

separated from kinetics losses and be represented by a resistor at low frequencies. As C~(O}) = C~ 
is a function of frequency (time), at low frequencies (close to steady-state condition) O}-+O 

C~(O)- C~<C, while at high frequencies as (0-+00 C~(oo)-+C and Rt. mass-+O. This means in very 
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short periods of time, the system will be under pure kinetic control before mass transport effects 

takes place. 

It should be stressed here that Rll ac refers to the activation loss around the steady-state operation 

of current i+~i and overpotential 1'\+~1'\ and is completely different from Rac given by equation 

40. While Rll ac, the charge transfer resistant, does not contain mass transport contribution from 

the ac perturbation signal, i.e. Ct.-C, however it contains inherited mass transport effect from 

the steady state operation as can be seen from equation 38. The current density at the steady-state 

potential 1'\, is measured at a steady-state surface concentration C and not the initial surface 

concentration at rest potential Co. 

Similarly, Rll mass is completely independent from Rmass (equation 41), while Rll mass expresses 

mass transport losses due to perturbation in current ~i and therefore perturbation in concentration 

C-Ct. with respect to the steady-state current i and therefore the steady-state concentration C. 

While Rmass expresses the mass transport losses at concentration C, due to current flux I, with 

respect to the initial rest potential conditions io and Co. 

A focus of this work was to utilise the AC impedance technique to obtain more information 

about the performance of the cathode electrodes, in other words to gain more knowledge about 

conductivity, kinetic and mass transport phenomena in the electrode. 

6.4.2 Model selection 

While EIS is a very sensitive technique used to clarify electrode process and derive its 

characteristic parameters, it does not provide a direct measure of physical phenomena. 

Interpretation of impedance data requires the use of an appropriate model, which can be a 

mathematical model based on probable physical theory (such as kinetics & diffusion processes) 

that predicts theoretical impedance [30, 31], or relatively empirical model [32-35] in which the 

parameters obtained do not necessarily have a clear physicochemical significance, or a hybrid of 

both. 
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The principal disadvantage of the physical method is the level of mathematics required to 

properly analyse impedance data [31]. For example a system with one adsorbed species is 

expected to produce two semi circles in the impedance plan (two time constants), while the 

experimental data often shows only one, this will lead to too many free parameters. Instead a 

simple model using one time constant should be used [26]. 

Another limitation of impedance data modelling is that the same data can be represented by 

different equivalent circuits [36]. For example system displaying two capacitive loops (two time 

constants) can be adequately presented by three types of circuits as shown below (a, b & c): 

Voigt Ladder Maxwell 

(a) (b) (c) 

For a proper choice of parameters the behaviour of the three circuits is indistinguishable, as they 

will display the same impedance spectrum over the entire frequency range [26, 37]. 

In this section analysis of the obtained PBI impedance spectra was carried out, and four 

equivalent circuits were suggested to fit the observed spectra. An attempt was also made to relate 

the components of the circuits to physical phenomenon occurring on the electrode. 

The impedance spectra were obtained by employing Autolab PGSTA T 30 (Eco Chemie, The 

Netherlands) controlled by FRA 4.9. The frequencies were swept from 30 KHz to 10 mHz 

recording six points per decade with an AC signal aptitude of 15 mA. The obtained data was 

fitted to the chosen circuit using ZSimpWin V3.21 software (Princeton Applied Research, 

U.S.A) utilizing Complex Non-linear Least Square errors technique (CNLS). 
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The impedance spectra are commonly plotted in Nyquist diagrams. The X and Y axis of the 

diagram represents the real and the imaginary impedances, respectively with no direct 

information regarding the applied frequency. 

For a monochromatic input signal, v(t) = V m sin (rot), at a given frequency f (f == rol2n) the 

resulting steady-state current is i(t) = Im sin (rot+8). Where 8 is the phase angel between voltage 

and current and is O' for pure resistance, +90' for pure capacitance and -90' for pure inductance, 

ro is the angular frequency, and the impedance magnitude is given by IZI = V ml im• 

The impedance is given by: 

IZ(m)1 = Z· (m) + Z"(jm) [48] 

Where z' is known by the real part of the impedance and Z .. is known by the imaginary part of 

the impedance due to its association withj (the imaginary number). 

Z· = IZlcos(m) & Z .. = IZlsin(m) [49] 

The phase shift and the modulus are equal to: 

8 = tan-I(Z" / Z') & IZI = ~(ZY +(Z'Y [50] 

Figure 6-11 shows a typical obtained Nyquist plot of the impedance spectra for a PBI based 

PEMFC. The spectra were very similar to that reported in the literature [38]. At very high 

frequencies (above 10 kHz) the observed inductive behaviour was due to mutual inductance (i.e., 

cable) effects [37] while the intercept on the real axis in the high-frequency range of the 

spectrum (I-tO kHz) corresponded to the ohmic resistance, Rs (electronic + protonic). The 

overall resistance (anode + cathode), R\otaJ. the sum of mass transport and charge transfer 

resistance, is obtained from the difference between the high-frequency real Z-axis intercept and 

the low frequency real Z-axis intercept. Similarly, in Nafion based PEMFCs, a single semicircle 

is observed in the complex plane, reflecting a combination of the charge transfer resistance, the 

mass transport resistance, and ohmic resistances in the cathode [39]. 
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The lower frequency part of the spectrum, typically when frequency is less than I Hz, represents 

the sum of a capacitive loop in the anode spectrum and an inductive loop in the cathode 

spectrum, which appear in a similar frequency range where it is not possible to extract 

quantitative data from the lower frequency part of the local two-electrode spectra [38]. The low 

frequency inductance is also explained by several factors: instrumental artifacts [40], adsorbed 

intermediates or solution soluble intermediates (thin film) [41], oxygen starvation in the pores of 

PAFCs cathode [42], reaction consisting of two successive electron transfer step proceeded by an 

adsorbed intermediate species [43, 44], an indirect four-electron reaction or a two-electron 

reduction oxygen reduction followed by a disproportionation reaction [45]. 
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Figure 6-11. Typical Nyquist plot of the impedance spectra for PDI based PEMFC. 

By taking closer look at the spectra we can see that there are two semi circles merged together 

rather than one large one, small one at high frequencies and larger one at lower frequencies. 

Bode diagram can give clearer image about the time constants of the system as it shows plot of 

the phase angle and impedance magnitude relation with frequency, separately. 
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Figure 6-1 2. Typical Bode diagram for PBI based MEA running at OCP. 

Figure 6-12 shows typical obtained PBI based MEA Bode diagram. It can be observed from the 

logarithm of impedance magnitude plot Log IZI (also known as amplitude ratio AR) that there are 

four asymptotes corresponding to three break point or corner frequencies . This corresponds to 

three time constants er = 1100 = 1I2rd) [46]. Starting from high frequency towards the low 

frequency we observed the first break point frequency (l /21t't',) from the intersection of the fITst 

two asymptotes. The first asymptote is directly proportional to frequency (positive slope) whjch 

is typical inductance (L) behaviour (ZL =-ooLlj), this can also be concluded from the negative 

values of the phase shift. The second asymptote is inversely proportional to frequency (negative 

slope) which is typical capacitance behaviour; this can also be concluded from the positive 

values of the phase shift. The capacitive behaviour can be represented by either a capacitance (C) 

or constant phase element (CPE) (Zc = 11 jooC & ZCPE = Zo/Uoot) . The first time constant is not 

due to the studied system characteristic but due to a series inductance-capacitor circuit, where the 

inductance is the machine wires self-inductance. The second time constant is obtained from the 

intersection of the second and third asymptotes; where the latter also exhibits capacitive 
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behaviour with a higher dependency on frequency. The third time constant is obtained from the 

intersection of the third asymptote and the fourth asymptote, where the latter is frequency 

independent and can be assigned to pure resistance (phase angle is equal to zero): this behaviour 

is obtained from a parallel capacitance-resistor or parallel CPE-resistor as the impedance 

decreased with frequency and then reaches a steady value at low frequencies (AC--+DC no 

current will flow through the capacitance but through the resistor only). 

While the second time constant was obtained from intersection of two asymptotes with 

capacitive behaviour, circuit connections such as two capacitors (or two CPE (1.2> n >0.8) or 

capacitor with ePE) connected together with serial or parallel connection cannot explain such 

behaviour; they will lead to one observed asymptote (as one equivalent capacitor will be visible 

by the AC signal). To obtain such behaviour a resistor must be connected in parallel to the first 

observed capacitor (2nd asymptote) and this resistor should be connected in series with the next 

capacitor (or CPE) presented by the 3rd asymptote. Such a connection should lead to a horizontal 

asymptote (frequency independent) between the 2nd and the 3
rd 

asymptotes with two time 

constants (t'2 & t"2) arising from its intersection with the 2rd and the 3th asymptotes. However if 

the frequency, where the charging of the second capacitance becomes important, is higher than 

(l/21t t'2), no such horizontal asymptote will be observed and two asymptotes with different 

negative slopes will be seen. This means that the impedance of the second capacitance will start 

to become important at a given frequency higher than the frequency where the impedance of the 

first capacitance becomes negligible. This can also be seen from the Nyquist diagram where the 

second semi-circle starts before the first one is complete. Similarly, there is a possibility of a 

horizontal asymptote between the first and the second asymptote, suggesting a series connection 

between the inductor and resistor, which in turn is connected in series to the first capacitor. 

Simply each semi-circle (time constant) is presented by a resistor connected in series with 

capacitor which in turn is connected in parallel to a resistor (known as Randles circuit). Or in 

some cases the first resistor can be equal to zero and the semi circle is presented by capacitance 

in parallel with resistor. Two circuit configurations (Voigt and ladder) explaining the above 

observations are given below (d, e, f & g) with the two possibilities for the series connection 

between the resistor and capacitor (asymptotes 2 and 3). 
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LWirss 

Ladder Voigt 

(d) (e) 

LWirss 

Ladder 
Voigt 

(f) (9) 

While the suggested four simple circuits can describe the observed impedance spectra, more 

complex circuits involving more elements can also lead to the same impedance spectra, however, 

they will lead to too many free parameters as discussed earlier. 

Inevitably, all the electrolytic cells are disturbed in space, thus their impedance often cannot be 

well approximated by the impedance of an equivalent circuit involving only a finite number of 

ideal circuit elements (C, R & L). The use of disturbed impedance elements (such as CPE) will 

greatly aid in the process of fitting the observed impedance data for a cell with disturbed 

properties [37]. 

Impedance studies on the double layer capacitance at solid electrodes usually show deviation 

from ideal behaviour manifested by frequency dependence [37]. The deviation from ideal 

capacitance behaviour corresponds to a frequency-dependent phase angle which is presented by 

CPE. The capacitance dispersion depends strongly on the state of the electrode's surface 

(roughness) and ion adsorption [26]. 
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As shown earlier the impedance of CPE is given by ZCPE = 2o/(j(O)" = IN o(j(O)" where Yo is the 

admittance in F S"-I. when n = 1. 0.5. 0 & -1. CPE presents pure capacitor. infinite Warburg 

impedance, pure resistance, and pure inductance, respectively. 

Two semi circles were observed in the impedance spectra for the oxygen reduction reaction, the 

high frequency semi circle was assigned to kinetic losses whilst the low frequency semi circle 

was assigned to mass transport losses [47]. 

The mass transport losses in this study can not be represented by introducing the conventional 

Warburg element. The Warburg element (W) is limited to semi-infinite linear diffusion and does 

not take into account the finite size of electrochemical cells, which means that the diffusion layer 

thickness cannot be greater than the cell dimensions or in our case the thin film thickness. This 

difficulty arises at low frequencies [48]. This is clear from the impedance spectra where when 

dealing with the Warburg element a straight line with 45° angle is expected in the Nyquist plot at 

low frequencies (Zw = 0'(0-0.5 - jO'(O-O.5. see equation (53) for 0'), which is not the case. The 

capacitive arc, seen in the low frequency range. was attributed to a finite diffusion process [37]; 

as discussed earlier we are dealing with finite length diffusion with a transmissive boundary. 

Therefore a new element, known as 0 element (or finite length Warburg) with parameters Y 0 & 

B, given by equation 52, is required. 

Holze et al studied [49-51] the kinetics of oxygen reduction at porous teflon-bonded fuel cell 

electrodes and showed that the process was limited by diffusion and adsorption of oxygen 

species. They represented the diffusion impedance Zd by a resistor Rd (or here RAmass) connected 

in parallel with capacitor. The solution of Fick's diffusion equation for finite length layer L, 

using Nemstian diffusion impedance theory was given by Lasia et al [26], Armstrong [52], 

Diard et al [53] and others [54]: 

CA ~ nF JTa;n tanhH~ ) [51] 

Therefore, the diffusion impedance becomes: 

Z, ~ "j.;j) tanhH~)~ ~ tanhH~)~ Yo1ro tanh(BJj@) [52] 
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[53] 

For simplification the assumption that the diffusion coefficients for 0 and R species were similar 

was made (D = Do = DR)' Separation of the imaginary and non-imaginary part is now possible: 

sinh( 2L ~ OJ ) + sin(2L ~ OJ ) _ i[Sinh( 2L ~ OJ ) _ sin(2L ~ OJ ) 
2D 2D 2D 2D 

[54] 
Zd=Rd &;[ &; &;] 2L ~ cosh(2L ~) + cos(2L ~) 

2D 2D 2D 

Where the resistive part (non-imaginary), represented by a resistor Rd, of the equation is given 

by: 

[55] 

Similarly, adsorption can be separated into a capacitive and resistive part connected In 

parallel [5 0]: 

[56] 

[57] 

Where k is the adsorption rate constant, equal to (lIRads.Cads), and C is the adsorbed species 

surface concentration. 

From the diffusion impedance given in equation 52, it can be seen that when L-+oo or 00-+00 (00 

>41tD/L2) we end up with a traditional Warburg element for semi-infinite diffusion as expected 

and a straight line with slope of 45° degree should be observed in the high frequency range 

followed by semi circle. However, such observations are not always found due to the 

coalescence (masking) problem of the double layer semi-circle and the 45° straight line [54]. The 
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same conclusion was drawn, from the chronoamperometry measurements earlier, where the time 

required for the diffusion layer to reach the end of the thin film L (infinite to finite length) is 

smaller than the time required to charge the double layer. 

At low frequencies (ro--+O) the diffusion impedance becomes pure resistance (Cmass or CPE 

works as insulator when AC--+ DC) equal to Rd (or Ra mass) given in equation (55), with a 

diffusion time constant equal to: 

'td=l/romax=RJ.Cd= L21,J2;i D [58] 

This is similar to the time constant expression given earlier during the chronoamperometry 

measurements. 

If we represent mass transfer diffusion in terms of resistor RI and capacitance Cd, from equation 

55 & 58 we can write: 

C = n 2
F2 LCt:. 

d RT,J2;i 
[59] 

This is very similar to the adsorption capacitance Cads given in equation 57. 
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Equivalent circuit (h) has been suggested for simple one step reaction with diffusion limitation 

by Randles [55], Armstrong et al [56] and Franceschetti [57], on the other hand equivalent circuit 

(i) was suggested by Wagner [58] and Wang et al [59, 60] for the oxygen reduction reaction with 

diffusion limitation. 

PBI based PEMFCs have also been represented, with no mass transport effects, as a resistor in 

parallel with CPE (circuit h or i) [61] or by equivalent circuit h with mass transport effects Zd 

expressed as a finite length Warburg element [62] (element 0, or CPEd connected with in 

parallel resistor Rct). Here Rs was the total ionic and electronic resistance of the studied system, 

Cdl was the double layer capacitance, Rac was the charge transfer resistance and Zd was the mass 

transfer impedance expressed in different forms. 

For a single fuel cell consisting from two electrodes circuit (j) was suggested [37], assuming the 

anode and cathode were identical, Cdl in this case was Cd1/2 , similarly, Rac was 2 Rac (Rac anode+ 

Rac cathode) and Zd was 2Zd. An additional capacitance Cg, known as geometric impedance was 

introduced. This capacitance explained the cell capacitive behaviour at high frequencies; in 
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particularly when using a solid electrolyte, due to high surface electrodes with an insulator in 

between, and can be given by: 

c = GGOSA 
g I [60] 

Where e & eo are the dielectric constant of the electrolyte and vacuum, respectively, SA is the 

surface area and, 1, is thickness of the membrane electrolyte (electrodes separation). 

With SA equal to 0.1344 m2 (catalyst loading of 0.4 mgpt cm-2 
50% PtJC, with Pt and carbon 

specific areas of 86 and 250 m2 il), eo = 8.85 x 10-12 F m-I and I = 4x 10-5 m, Cg is equal to 

9.5 x lO-4 F considering a dielectric constant for PBI equal to 3.2 [63], or Cg is equal to 9x10-3 F 

considering dielectric constant for phosphoric acid doped PBI (5.6 PRU) equal to 29.21. The 

latter was obtained from the assumption that the dielectric constant for phosphoric acid doped 

PBI is given by: 

G = G PBlffJPBl + G H,PO, ffJH,PO, [61 ] 

Where <p is the volume fraction and EH3P04= 61 [64]. 

This data show that Cg (10-3_10-4 F) should be between one to two orders of magnitude smaller 

than Cdl (in the range of 0.1-1 F, measured values from cyclic voltammogram were 0.88 & 0.82 

F for 11.56 cm2 cathode (0.4 mgpt cm-2 50% Pt/C) and anode (0.2 mgpt cm-2 20% Pt/C) and 

therefore it should appear (charge) at much higher frequencies before Cdl. 

Annstrong [52] has shown that for electrochemical reactions involving simultaneous adsorption 

and finite length diffusion, the latter cannot be taken into account by simply adding the Warburg 

element, as the mass transfer coefficient, involved in the low frequency limit, will no longer be 

expressed by equation 53 but it will involve much more complex terms; that are beyond the 

purpose of this study. 

The use of the Warburg finite element is unjustified in the case of slow electrode reactions [65] 

or in the case of slow diffusion of species through electrode/electrolyte interface, where even a 
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small surface imperfections would be sufficient to dominate motion of atoms within the 

electrode [66]. 

Gileadi [27] has shown that that the charge transfer time constant (relaxation time) under a 

small-amplitude transient is given by: 

[62] 

And the diffusional time constant is given by: 

[63] 

Where v is the stoichiometric coefficient for oxidized (0) and reduced form (R) ofthe diffusing 

species. 

Assuming v =1 and Do=DR for simplification, we can write: 

'etl n
3
F3 C2D 

/ 'd = 4RT iC
dl 

[64] 

If the ratio tcltd is larger than 103 the reaction can be said to be kinetic controlled. Below such a 

value the system will be under mixed control and separation of kinetic and diffusion processes is 

possible, however when tet ~ td the system is under diffusion control and the separation of kinetic 

from diffusion parameters is not possible [27]. In other words the diffusion limitation will 

become important (at high frequencies) even before the double layer capacitance is charged. 

Considering that the current density (i) is a linear function of concentration (C), tcltd becomes 

also (Eq. 64) a linear function of concentration (C), and therefore drops by increasing i or 

polarising the electrode. 

To estimate tetltd the following data is used: The oxygen solubility in 85% wt Phosphoric acid at 

150·C of 0.25 mol L-I atm-I [14] and the oxygen diffusion coefficient of-1O-5 cm2 
S-I [12,14], 

with the earlier measured double layer capacitance (cyclic voltammogram) 0[0.88 F (or 0.098 F 

cm-2) and minimum current density of 0.015 A (or 0.00167 A cm-2
) around OCP, which is the 
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amplitude of the impedance signal or 0.115 A (or 0.013 A cm-2
) which is the amplitude of the 

AC impedance signal in addition to the minimum stationary (DC) current of 0.1 A used to 

polarise the electrode (9 cm2
). This will lead to fcJfd values of 0.2 & 0.0265, under air operation 

and 5 & 0.658, under oxygen operation, respectively. The obtained fcJfd values suggest that the 

separation of Ztot into Zmass and Zac is not possible. Therefore it is expected that Rac,Cd) & ~,Cd 

are expressed using a single resistor Rtot = Rac + ~ and capacitance CIOI = Cd) + Cd. 

The discussed circuits h, i and j match the suggested equivalent circuits from the PBI impedance 

spectra observation of d, e & f, respectively. Further analysis is required to find the most suitable 

circuit and if possible assign each of the circuit elements to its physical meaning. 

At high frequency, fast processes become visible and as we move towards lower frequencies 

slower processes become visible instead. The following processes are expected to occur from 

high towards lower frequencies: 

• Electron/proton conduction, i.e. Rs. 

• Charging/discharging the smallest capacitance in the system, in this case Cg• 

• Second capacitance (in size) charging/discharging, i.e. double layer (Cd). 

• Kinetic losses (Rac) 

• Finite length diffusion (thin film) accompanied with semi-infinite diffusion (porous 

structure) (capacitance/CPE Cd in parallel with resistor ~). 

There can also be adsorption of oxygen intermediates species on the catalyst surface (capacitance 

Cads in parallel with resistor Rads). However, some of the above processes will occur at similar 

time periods (frequency), making it difficult to clearly separate all the mentioned processes 

individually, for example as seen earlier that diffusion effects will start even before the whole 

double layer is charged. 

The interpretation of EIS data remains a complex problem, however, a simplified model of the 

porous electrode response can help to understand and optimise fuel cell performance [67]. 

Further analysis will be required by studying different operating conditions in order to help in 

understanding the observed spectra and separate the parameters' effects. 
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6.4.3 Cell around OCP impedance 

6.4.3.1 Temperature effect on cell impedance spectra 

Figure 6-13 shows the effect of temperature on impedance spectra. The overall system through 

plane resistance values Rs, which correspond to the first high-frequency real Z-axis intercept, at 

RH <1 % were 0.075, 0.068 & 0.0787 ohm for temperatures of 125, 150 & 175°C, respectively. 

These results suggest overall average conductivities of 0.0107,0.0118 & 0.0102 S cm-I, 

considering a membrane thickness of 60 ~m (anode catalyst layer of 20 ~m and cathode catalyst 

layer of 13 ~m). The resistivities were two to three times higher than that of the membrane alone. 

This difference is attributed to protonic and electronic resistance through catalyst layers, contact 

resistance, and electrical resistance in gas diffusion layer and micro porous layers. 

The above observations confirm that the loss of conductivity, when the temperature was 

increased to 175°C without humidification, was due to dehydration of phosphoric acid (boiling 

point of H3P04 85 %wt is ca -154°C). 

The difference between the high-frequency real Z-axis intercept and the low frequency real Z­

axis intercept correspond to Rtot = Rac + Rmass. The system is idling around the OCP, therefore 

diffusion effects are excepted to be minimum and the reduced arc diameter Ztot with increase in 

teJ.Tlperature indicates enhancement in the kinetics (drop in Zac) due to increase in the exchange 

current density (activation energy). The observed Riot at temperature of 120, 150, 175 ·C were 

0.3,0.126 & 0.06 ohm, respectively. The ratio of Rtot at 120·C 1150 ·C and 150·C 1175·C were 

2.38 & 2, respectively. It can be seen that the higher the temperature, the lower is the decrease in 

the ratio of resistance [61]. In other words the relationship is not the expected exponential 

relation; this is either due to mass transfer countering the kinetic enhancement (concentration) or 

reduction in the kinetics itself due to a fall in water activity [68] especially above ISO·C. 
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Figure 6-13. Impedance spectra at different temperatu re aro und OCP fo r MEA utilizing 4 mgll3Po4 cm-2 in 

the anode and 0.52 mgpI cm-2 (50% pt/C) in the cathode with 40% PTFE. 

Figure 6-13 shows the Bode diagram of the impedance amplitude for the data given in Fig. 6-12. 

While the capacitive behaviour of the first high frequency arc did not seem to vary with 

temperature, a decrease in the second capacitive behaviour was observed with increase in 

temperature. The time constants for the low frequency arc at temperature of 120, 150, 175 °C 

were 0.0583, 0.0245 & 0.0084 s, respectively (frequencies of 2.73, 6.5 & 19 Hz, respectively 

corresponding to max -Z"). The time constant is equal to RtotClf where CIf is the capacity of the 

large low frequency arc. The ratio of '1201 'ISO and '1501 'm were, 2.38 & 2.92 respectively. By 

comparing the time constant ratios we can conclude that the decrease in the time constant from 

120 to 150°C was solely attributed to the decrease in total resistance Ztol (i.e. CIf is unaffected). 

However, the lower time constant (ratio) from 150 to 175 °C is much larger than the fall in the 

Rtot ratio, suggesting a lowering in Clrfrom 0.194 F at 120 & 150 'C to 0.14 F at 175 °C. 

The low frequency arc can be assigned mainly to contributions from the double layer, as mass 

transport effects should be minimal around OCP. This suggests that the additional observed 
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reduction in time constant from 150 to 175 °C was related to a decrease in double layer 

capacitance due to a lower water activity (Phosphoric acid dehydration). 
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Figure 6-14. Bode diagram at different temperature around OCP for MEA utilizing 4 mgll3Po4 cm-
2 

in the 

anode and 0.52 mgp. cm-2 (50% Pt/Cl in the cathode with 40% PTFE. 

6.4.3 .2 Anode/Cathode effects on cell impedance spectra 

Figure 6-15 shows impedance spectra around OCP obtained with hydrogen at the anode and 

oxygen or hydrogep at the cathode. The total resistance largely fell when switching cathode gas 

feed from oxygen to hydrogen due to a change in the reaction occurring at the cathode; from 

oxygen reduction to hydrogen evolution (proton reduction to hydrogen) . The total resi tance fell 

by factor of 2.9 from 0.726 to 0.251 ohm, because the hydrogen evolution reaction is much faster 

than oxygen reduction. 

A straight line with slope of 45° was observed in both spectra at high frequencie . This slope is 

related to fmite length mass transport limitations (as di cussed earlier). The fact that uch a line 

was not observed in the rest of the tudied MEAs and was observed in both spectra (hydrogen & 

oxygen feed) suggests that the mass transport limitation was anode related, due to a large PBI 
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content in the anode of 0.28 mgPBI cm-
2 

(20% Pt/C 0.2 mgpt cm-2). This was also confmned from 

the low limiting current value observed in the anode polarisation (Chapter 4) . 
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Figure 6-15. Impeda nce spectra with hydrogen at the anode a nd oxygen or hydrogen in the ca thode a round 

OCP at 120 ·C for MEA utilizing 2.5 mgmpo4 cm-2 with 0.28 mgpBI cm-2 in the anode and 0.4 mgpl cm-2 (50% 

PtlC) in the ca thode with 40% PTFE. 

On the contrary to Rtot the time constant of the low frequency arc increased by facto r of 4.2 (2 .73 

& 0.64 Hz) when switching from oxygen to hydrogen. This suggests that Cif for the cathode 

under hydrogen was larger than that under oxygen. This can be explained by a larger double 

layer with hydrogen than oxygen, due to under potential deposition of hydrogen (UPD). 

6.4.3 .3 Oxygen partial pressure effects on cell impedance spectra 

Figure 6-16 shows impedance spectra for different oxygen partial pressure in the cathode, using 

air and oxygen, and are compared to that of heleox (0.21 O2 / 0.79 He). It can be seen that 10 se 

in the porous structure did not contribute to the total impedance, where Z tot for air was the same 

241 lP ag l! 



Chapter Six: Chronoamperometrv and FRA {or HT-PEMFC 

as that with heleox, around OCP, even though the oxygen binary diffusion with helium was 

almost four times faster than that with nitrogen. Increasing oxygen partial pressure from air to 

oxygen led to drop in total impedance R IOt from 1.336 to 1.216 ohm (corresponding to ratio of 

0.91). Similar observations were reported in the literature [69]. 

0.66 

-+-150C O.BV H2/02 

--- 150C O.77V H2IHeleox 
0.56 - 150C 0.755V H2/Air 

0.46 

E 0.36 
.<: 
0 -. 
~ 0.26 

0.16 

0.06 

-0.04 
0.00 0.30 0.60 0.90 1.20 1.50 

Z' /Ohm 

Figure 6-16. Impedance spectra for different cathode oxidants around OCP at 150 ' C for MEA utilizing 4 

mgllJP04 cm-2 with 0.05 mgpBI cm-2 in the anode and 0.4 mgp. cm-
2 (50% Pt/C) in the cathode with 40% PTFE. 

It can be seen that the high frequency arcs were identical, while the time constant of the low 

frequency arc (the large arc) slightly decreased when switching from air to oxygen with time 

constant ratio of 0.86 corresponding to a fall in RIot. This suggests that Cif around OCP was not 

affected by oxygen partial pres ure (or concentration) in the film around OCP. 

It can be concluded that the high frequency arc was related to the electrode structure and 

independent of the reaction or reactant concentration and therefore can be assigned to Cg, whilst 

the low frequency arc, around OCP, can be attributed mainly to double layer as it was 

independent of oxygen concentration, it was also affected by water activity. For a polarised 
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electrode this wiIl change as the double layer wiII vary with potential and there wiII be mass 

transport contributions. 

While the intercept at Iow frequency represent Rtot = RI + Rac and considering negligible RI 

around OCP, Rac feIl with temperature and oxygen concentration increase. However, Rac is equal 

to RT/aFio (equation 38) around OCP and therefore it is expected that Rac-02IRac-air= 0.21 while 

the observed value was only 0.91. Rac values varied using the same cathode materials at OCP at 

similar operating conditions (temperature of 150 ·C & pure oxygen) where it increased from 

0.126 to 1.22 ohm, when the rest potential varied from 0.72 to 0.8 V (different MEAs). The 

estimated value for standard potential of oxygen reduction is 1.14 -1.1 V for temperature range 

of 125-180 ·C [12], while the observed OCP is a lower mixed potential, depending on the cross­

over rate icross and other phenomena (carbon corrosion, platinum oxidation, etc .. ). Therefore I :f:. io 

at OCP, and the overvoltage 1 Eo- E 1 is no longer equal to zero. Therefore we can re-write 

equation (38) at OCP as: 

RA = l1'7ae = RT 1 
ae 11· aF· . 

I '0 + zcross 

[65] 

The higher the cross-over rate icross the higher the overvoltage loss 1'\ (or the lower the ob"served 

OCP) and consequently the lower the observed Ztot (Rac"). When switching from oxygen to air 

the OCP feIl from 0.8 to 0.755 V due to a fall in oxygen concentration- thermodynamically 

(Ncrnst) it is expected to fall by -29 mV- therefore the kinetic concentration effect was 

suppressed by the thermodynamic effect and the overvoltage in the case of air was higher than 

that with oxygen, reducing the estimated resistance ratio of 0.21 (at equal overvoltage) to the 

observed ratio of 0.91. 

6.4.4 Impedance of polarisable cathode electrode 

To eliminate the anode contribution in the spectra, a Dynamic Hydrogen Electrode (DHE) was 

used as reference electrode [70, 71] and the cathode impedance was studied for various MEAs. 

As seen earlier the impedance was greatly affected by the steady-state potential, however, in this 

case an external potentiostat Powerstat 20 A (Sycopel Scientific Ltd, U.K) was used to polarise 
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the electrode, as the potentiostat used for FRA measurements was limited to 1 A Autolab 

PGSTAT 30 (Eco Chemie, The Netherlands). The external potentiostat had to operate in the 

galvanostat mode (fixed current) rather than potentiostat mode (fixed potential) due to conflict 

between the two systems in the potentiostatic mode, where the external potentiostat would try to 

hold the potential at the fixed set value and the other would try to perturb the potential (or 

current) with the specified AC amplitude. 

6.4.4.1 Effect of steady-state current 

It should be noted in the case of a polarisable electrode, the measured impedance does not 

correspond to the cell impedance alone but incorporates the impedance of the resistor used to 

polarise the cell Rpolar (external galvanostat) to achieve the desired steady-state current, as shown 

in circuit (k) below: 

AC 
~--------------~ --------------~ 

iAC 

We can therefore write: 

Zcell 
i'AC 

r···"'·"· 
-1 Rpolar=EDdiDc 
i L-______ ...J 

: ....... ~ 

j"AC 

Equivalent circuit 
k 

__ l_=_I_+_l_~Z = ___ _ 
Z Z Z observed 1 . 

observed cell Polar __ + _l _ 

Zcell Ecell 

[66] 
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Similarly, 

And, 

R
ror 

;; (~ G+ ~i)- ~i) 
Ri1 - Ri1 + RtJ. = ---'''''--- = ---~...::....,~----=---!...--,... 

rota I_observed - ac_observed mass_observed i i RT ( C (1 1) 1) 
1+--Rro, 1+---- -- -+- --

Ecel/ Ecel/ aF Ct. i !1i M 

[67] 

[68] 

We can then conclude that the measured (observed) charge transfer impedance of the polarisable 

cell is lower than the actual charge transfer impedance (cathode in this case) by a factor of 

(l+RT/uFEeen), except for the case where Ecen = Eocp as there is no net DC current flowing in 

this case and ZpoJar- 00. 

This means that Zobserved will decline quickly with an increase in, I, due to two effects; the first 

fall in R'\e (directly proportional to the inverse of i) and the second a fall in Eeen (exponentially 

dependant on the inverse of current under kinetic control). Zobserved will continue to fall when i is 

increased until mass transport effects become dominant (C/Cd) and Zobserved will increase. 

However, when mass transport effects become very severe, the value of (ilEcell) will become very 

large and Zobserved will decrease again. Therefore it is expected that Zmass will decrease with 

increasing i, reaching a minimum and then increase again. This behaviour has been reported 

experimentally when studying the polarization-dependent mass transport parameters for ORR in 

perfluorosulfonic acid ionomer membranes (Nafion) [70]. 

Equation 68 also shows that the difference between Zobserved of active and inactive electrodes, 

concentration effects or temperature is minimized (except OCP case) especially at low Eeen 

values. Under a given steady-state current i, the more active electrode will exhibits smaller 

values of Rac or smaller Rmass, however, it will exhibit higher values of Eeell and therefore the 

overall effect will be minimized. 
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Figure 6-17. Nyquist plot for 40% PUC cathode using 40% PTFE and 0.4 mgpt cm'! vs. DHE at 120 ·C under 

air operation and various current loads. 

Figure 6-17 shows impedance spectra for a 40 %Pt/C cathode under various steady-state 

currents. As expected from equation 68 when the current i increased, the potential E cell fell and 

the total impedance decreased rapidly. As the impedance decreased, the large low frequency 

semi circle decreased until it merged with the high frequency semi circle at 5.0 Amps. With a 

further increase in the current, beyond 5.0 A, an increase in cell impedance was observed and an 

additional small semi circle was observed at very low frequencies and a new phase-shift was 

observed at ~3 Hz. This was attributed to mass transport processes leading to additional 

overvoltage losses [37] as the impedance related to diffusion are usually found in the low 

frequency region. 
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Figure 6-1 8. Amplitude ratio Bode plots for 40% Pt/C cathode using 40% PTFE a nd 0.4 mgpl cm-2 vs. DH E at 

120 ·C under ai r operation and various current loads. 

Figures 6-18 & 6-19 show the corresponding Bode diagram of the impedance spectra in Fig. 6-

17. It can be seen that the slope of the high frequency asymptote and therefore the time constant 

(corresponding to the small high frequency semi-circle) did not change with current i. On the 

other hand the slope of low frequency asymptote decreased rapidly with i due to a decrease in 

Rtot_observed and therefore reduced the time constant. At 5.0 A the slope of the low frequency 

asymptote became similar to that at high frequency (time constant); while at 10.0 A, a new 

asymptote (slope) was found at low frequencies; attributed to a mass transfer time constant. 

Similarly, the phase shift peak shifted towards higher frequencies as the current increased. While 

a new phase shift appeared at lOA at low frequencies , caused by mass transport effects [37]. 

Similarly the PTFE content and correspondingly mass transfer effects was found to affect the 

low frequency intercept [72]. 
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Figure 6-19. Phase shift Bode plot for 40% PI/C cathode using 40% PTFE and 0.4 mgrl cm'2 vs. DHE at 120 

. C under air operation and various current loads. 

6.4.4.2 Effect of oxygen partial pressure 

Figure 6-20 shows Nyquist plots for a 40% Pt/C cathode electrode at 150 ·C under air and 

oxygen operation. At 0.1 A, a large difference between Ztot_obscrved was seen for oxygen and air, 

the reduction in Ztot when switching to oxygen was mainly attributed to enhancement in io and 

therefore reduction in Rac, as mass transport effects were minimal under these conditions. When 

the current increased to lOA, a large contribution from mass transport is expected and therefore 

a large difference in Ztot is expected. However, there was a very small difference between 

Ztot_observed (ai r) and Ztot_observed (02) because of the counter effect of the very low value of Ecell under 

air operation in comparison to Ecell under oxygen operation at lOA. 

Even though similar low frequency impedance intercepts were observed under air and oxygen at 

lOA, the shape of the semi circles varied. In the case of oxygen, the high frequency semi circle 
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was larger than the low frequency arc. On the contrary, with air operation the high frequency 

semi circle was smaller than that of the low frequency semi circle. 
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Figure 6-20. Nyquist plot for 40% PUC cathode using 40% PTFE and 0.4 mgpt cm-
2 

vs. DH E at 150 ' C under 

air and oxygen operation and current load of 0.1 & 10 A. 

This can be explained further by observing the corresponding Bode diagrams in Figure 6-21 & 6-

22 . For a 10 A, steady-state current, and under oxygen operation, no new asymptote (slope) was 

observed, whilst a new asymptote was observed under air operation, corresponding to the large 

arc observed at low frequencies arising from mass transport losses . This effect can also be 

confirmed from phase shift diagram where no new phase shift peak was observed under oxygen 

operation, whilst a new low frequency phase shift was observed at - 5 Hz under air operation. 

249 1 P age 



1.000 

0.100 

E 
.r. 
0 

s: 

0.010 

0.01 

Chapter Six: Chronoamperometry and FRA [or HT-PEMFC 

• • • • • • • • • • 

• 

x x • • • I I I ! I I I I I • • I 
: : : x It x • X w • 

• 0.1A 150C air 

0.10 1.00 

• • • • • ; K • • • I • • • • • • 

0.1A 150C 02 • 10A 150C air 

10.00 

Frequency I Hz 

100.00 

I I I I I 

K 10A 150C 02 

1000.00 10000.00 

Figure 6-21. Amplitude ratio Bode plot for 40% Pt/C cathode u ing 40% PTFE and 0.4 mgrl cm'2 vs. DHE at 

t 50 ·C under air and oxygen operation and current load of 0.1 & lOA. 
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Figure 6-22. Phase shift Bode plot for 40% PtlC cathode using 40% PTFE and 0.4 mg pl cm'2 vs. DHE at 150 

.C under air and oxygen operation and current load of 0.1 & to A. 
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6.4.4.3 Effect of temperature 

Figure 6-23 shows Nyquist plots for a 40 %PUe cathode at temperature of 120, 150 & 175 'e 
under air operation. Similar conclusions (to whole cell impedance) can be drawn about 

electrode/membrane interface resistivity, as the high frequency intercept exhibited a minimum at 

150 'e without humidification, due to dehydration of 85% wt phosphoric acid beyond 154 'c. At 

0.1 A, Ztol_observed (low frequency intercept subtracted from high frequency intercept) decreased as 

the temperature increased, due to an increase in io and reduction in Rcl· 
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Figu re 6-23. Nyquist plot for 40% Pt/C cathode using 40% PTFE and 0.4 mgpt cm·2 vs. DH E at 120, 150& 175 

' C under air operation and current load of 0.1 & l OA. 

At lOA, a temperature of 150 ' e gave the smallest ZIOI_obscrved followed by 175 and 120'e . This 

suggests that 150 'e provided the minimum Zmass or the best oxygen permeability. This can be 

linked with the best conductivity observed at 150 'e, where a temperature increase would reduce 

solubility (Henry's law) and enhance diffusivity. However, dehydration above) 54 'e would lead 
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to an increase in phosphoric acid viscosity and consequently a decrease in diffu ivity. This can 

also be observed from the limiting current value which fell from 150 to 175 ·C. 
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Figure 6-24. Amplitude ratio Bode plot for 40% Pt/C cathode using 40% PTFE and 0.4 mgr! cm-2 vs. DHE at 

120,150 & 175 ·C under air operation and current load of 0.1 & 10 A. 

The mass transfer effects are clearly apparent in Bode diagrams shown in Figure 6-23 & 6-24, 

where a new asymptote (slope) appeared in the low frequency region at lOA for all the studied 

temperatures. Similarly, a new phase shift peak appeared ~5 Hz under lOA operation, for all the 

studied temperatures. 150 ·C exhibited the smallest amplitude ratio and phase angle shift in 

comparison to the other electrodes at 10 A. The total impedance at low frequencies R iot_observed 

did not vary at 150 ·C using either air or oxygen (0 .0135 ohm), whilst at 175 ·C it increased from 

0.0151 to 0.029 ohms when switching from oxygen to air. 
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Figure 6-25. Phase shift Bode plot for 40% Pt/C cathode using 40% PTFE and 0.4 mgPI cm'
z 

vs. DHE at 120, 

150 & 175 ' C under air operation and current load of 0.1 & lOA. 

6.4.5 Data modelling using equivalent circuits 

The experimental data were fitted to the three suggested circuits (h, i & j) using ZSimpWin 

V3.21 software (Princeton Applied Research, U.S.A) utilising Complex Non-linear Lea t Square 

errors technique (CNLS) . The data for circuit i (two forms for mass transport element 0 and 

CPE/R),j & h are presented in Tables 6-9, 6-10, 6-11 & 6-12, respectively. 

As stated earlier the inductance in this case was due to mutual inductance, i.e., cable effects in 

the range of 10-7_10-8 Henri . The first resistor related to the high frequency intercept represented 

the ohmic resistance (ionic + electric) in the range of 10-
2 

ohm, the value of the resistance 

decreased slowly with increase in I, due to a fall in Zpolar and increase in proton conductivity with 

increase in water production (relative humidity). It has been shown previously that membrane 

resistance decreased with increase in current density for PBI based MEAs [73]. 
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Table 6-9 shows the result of circuit, e, with mass transport in finite length L represented by 

element 0 with parameters Yo equal to 1/(2°.5a ) (a is the mass transfer coefficient equal to 

R~Jjj) and B2 is equal to L2/D corresponding to diffusion time constant. Values of B 
n2F2CIl 2 D 

were in the range of 0.2-0.3 SO.5 and did not change with current (1) or when switching from air to 

oxygen. These values were smaller than the value, obtained from chronoamperometry 

measurements around the limiting current of 1.64 SO.5, however, they were still three orders of 

magnitude higher than the estimated value from the reported diffusion coefficient and estimated 

film thickness (Sec. 6.3.2). 

On the other hand the admittance of element 0 is expected to be inversely proportional to mass 

transfer coefficient a and consequently directly proportional to oxygen concentration (dissolved) 

in the thin film (Eq. 52). On the contrary, the observed Yo increased with an increase in I and 

increased more rapidly at higher 1 values. Yo also increased when switching from oxygen to air; 

this increase became larger at higher operating currents. This suggests that the observed Y 0 is 

inversely proportional to Ct. rather than directly proportional (Eq. 52 & 53). Additionally. with 

increased current, Rac should decrease (Eq. 38), Rmass should increase (Eq. 46) and, since Rmass is 

equal to BlYo and B is independent of I (B2 
is equal to L21D) , Yo should also decrease. The 

reason behind the unexpected behaviour of the apparent Yo was that Rtot_observed decreased 

continuously with an increase in current (1), especially at high currents, due to a large decrease in 

Zpolar masking the effect of the increase in Rmass which wasn't considered in circuit e. 

It thus can be concluded that circuit e, is not appropriate to describe the studied system. 

While Zpolar is pure resistance and will only affect the values of R in the equivalent circuit (Rmass, 

Rac & Rs), it will have no effect on the capacitance. Zpolar can be included in the equivalent 

circuit, but it will lead to more difficult fitting due to free parameters. On the other hand the 

value of Zpolar should be known from the steady-state value of current I and Eeen and therefore the 

subtraction of its effect is possible. 

Circuits e and h are similar and their parameters are presented in Tables 6-10 & 6-12, 

respectively. Where the high frequency arc is represented with a resistor-capacitance and the low 
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frequency arc is represented by a resistor-CPE. The resistors in both cases are in series, as the 

total resistor is the sum of both resistors (Rtot = Rmass+Rac). In the equivalent circuit e, the 

capacitors are connected in series lICeq=lIC\+ lIC2 and therefore their values are larger than that 

of circuit h, where the capacitances are connected in parallel Ceq= C\+C2. 

Table 6-9. Equivalent circuit (e or i) with 0 element parameters using CNLS technique for 40% Pt/C cathode 

electrode at 150 ·C under air and oxygen operation. 

LR(CR)O (02 150 °C) O.IA O.SA lA SA lOA 

L (Henri) S.59E-OS 7.77E-OS 7.14E-OS 1.04E-07 8.52E-OS 

R(Ohm) 0.009026 0.009292 0.00SS17 0.006776 0.006893 

C (Faraday) 4.348 0.2127 0.1474 0.1024 0.1368 

R(Ohm) 0.02402 0.004363 0.00576 0.00529 0.005011 

O-Yo(Ohm" seeo.S) 1.66 2.207 2.766 6.652 17.22 

0-8 (secM
) 0.2852 0.1967 0.1563 0.09433 0.1291 

LR(CR)O 

(air 150°C) 

L (Heori) 8.08E-08 1.12E-07 9.0SE-08 6.74E-08 1.02E-07 

R(Ohm) 0.008046 0.008751 0.008727 0.007898 0.007376 

C (Faraday) 2.182 0.7106 0.2973 0.09579 0.09762 

R(Ohm) 0.05745 0.001562 0.004375 0.009227 0.003541 

O-Yo(Ohm,J seco.) 1.814 2.47 3.194 7.303 30.91 

0-8 (seeo.S) 0.3352 0.2668 0.225 0.2192 0.3183 

For circuit e (Table 6-10) the capacitance responsible for the high frequency arc remained 

constant at - 0.3 F until a current of 1.0 A, and then slightly increased at 5.0 A and reached 

unrealistic value of 426 F at lOA under oxygen operation. While the CPE, responsible for the 

low frequency arc, decreased and then increased with an increase in (1), in the range of 0.2 -1.0 F 

and had similar values under air and oxygen operation (Table 6-10). 

Circuit e can be discarded as it led to unrealistic values for the high frequency capacitance and 

the low frequency capacitance (CPE) was not affected by mass transport as would be excepted­

(air and oxygen operation led to similar capacitances). 
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Table 6-10. Equivalent circuit (e or i) with CPE/R elements parameters using CNLS technique for 40% Pt/C 

cathode electrode at 150°C under air and oxygen operation. 

LR(CR)(QR) O.IA O.SA lA SA lOA 

(02 150 °C) 

L (Henri) 9.87E-08 8.55E-08 8.35E-08 1.09E-07 1.37E-07 

R(Ohm) 0.008943 0.009607 0.009051 0.007039 0.005838 

C (Farad) 0.2789 0.2828 0.2926 0.4219 426.2 

R(Ohm) 0.1369 0.06004 0.03703 0.009316 0.001564 

Q-Yo (FI sl.n) 1.169 0.6518 0.501 0.2179 1.114 

Q-n 0.5331 0.6249 0.6696 0.8288 0.6497 

R(Obm) 0.06174 0.03507 0.0261 0.01003 0.01346 

LR(CR)(QR) 

(air 150 DC) 

L (Henri) 1.llE-07 1.01E-07 5.48E-08 1.41E-07 1.llE-07 

R(Ohm) 0.007123 0.009461 0.0101 0.006498 0.007123 

C (Farad) 0.3411 0.3995 0.07816 1.524 0.3411 

R(Ohm) 0.1686 0.07635 0.006116 0.01671 0.1686 

Q-Yo (F s .n) 1.737 0.983 0.561 0.6958 1.737 

Q-n 0.4865 0.6119 0.781 0.6469 0.4865 

R(Ohrn) 0.08137 0.03449 0.07485 0.02487 0.08137 

Circuit j and h (Table 6-11 & 12) are very similar. The only difference is that circuit h contains 

two sets of capacitor (or CPE) resistors in a ladder form representing two different time constants 

(high and low frequency arcs), while circuit j contains three sets of capacitor-resistor in a ladder 

form representing three different time constants, in an attempt to separate the kinetics effect from 

mass transport effects or in other words in order to split the low frequency arc into two different 

time constants. To fit circuit j to experimental data was not successful where it can be seen 

(Table 6-11) that the first time constant was extremely smalI with smalI values for the first 

capacitance, in the range 10.3_104 F obtained. AdditionalIy the values of the second and the third 

capacitances-resistor (time constant) were very similar to the first and second capacitances­

resistor of circuit h (Table 6-12), respectively. This confirmed the previous conclusion that the 
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separation of the charge transfer time constant from the diffusion time constant was not possible 

for the studied system. 

Table 6-11. Equivalent circuit (j or f) parameters using CNLS technique for 40% Pt/C cathode electrode at 

150 ·C under air and oxygen operation. 

L(C(R(C(R(QR))))) 
O.lA O.SA lA SA lOA 

(02 150 °C) 

L (Henri) 2.21E-07 1.74E-07 1.61E-07 1.2SE-07 1.77E-07 

C (Farad) 0.001397 0.001095 0.001104 0.000631 8.09E-4 

R(Ohm) 0.01461 0.01311 0.01177 0.007806 0.004862 

C (Farad) 0.03428 0.0346 0.03615 0.05182 9.53E-23 

R(Ohm) 0.02109 0.01697 0.01444 0.008644 4.87E-13 

Q-Yo (FI sl.n) 0.2814 0.2973 0.3116 0.4911 1.708 

Q-n 0.8536 0.857 0.8612 0.8961 0.5633 

R(Ohm) 0.1744 0.0759 0.0466 0.01004 0.01537 

L(C(R(C(R(QR»») 

(air 150°C) 

L (Henri) 2.38E-07 1.75E-07 1.46E-07 2.67E-07 7.24E-07 

C (Farad) 0.001824 0.001051 0.000864 0.002801 0.005288 

R(Ohm) 0.01358 0.01218 0.01108 0.009997 0.01276 

C (Farad) 0.03821 0.04912 0.04882 0.05744 0.2231 

R(Ohm) 0.02043 0.01571 0.01278 0.01113 0.004501 

Q-Yo (F s .D) 0.3373 0.4112 0.5196 1.416 2.406 

Q-n 0.8423 0.8546 0.8254 0.7744 0.8797 

R(Ohm) 0.224 0.09487 0.06295 0.02758 0.03637 

Equivalent circuit h (Table 6-12) seemed to provide the best fit for the studied system as 

discussed below. 

Values of the first capacitance-resistor pair, responsible for the high frequency arc, did not vary 

when switching from air to oxygen. The first capacitance increased slowly with I, in the range of 

10.2 F; the values were very close to the estimated value for the geometric capacitance Cg and 
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very low for the double layer capacitance Cdl. The first resistance (in parallel with the first 

capacitor) had low values in the range of 10-2 ohms and slowly fell with an increase in current I; 

values were similar for air and oxygen. The first resistor does not have a physical meaning but 

corresponds to the end of the first semi circle and the beginning of the second semicircle, in other 

words the end of the effects of the geometric capacitance and the beginning of the double layer 

capacitance effects. 

The second capacitor (CPE) increased with I, where it started from the same value for air and 

oxygen at OCP of 0.291 F (not shown in the table) or close values of 0.291 F and 0.32 F for 

oxygen and air, respectively at 0.1 A. As I increased the capacitance increased slowly under 

oxygen and rapidly under air. This result means that the observed capacitance was the sum of the 

double layer capacitance and mass transport capacitance. 

The double layer capacitance can be obtained at OCP, where the mass transport contribution is 

negligible and is in the region of 10-1 F, which is in good agreement with the results obtained 

from cyclic voltammetry. The mass transport capacitance can be obtained from the subtraction of 

the double layer capacitance (the second capacitance at OCP) from the second capacitance (low 

frequency) at given current I. The increase of Cmass with I is expected, from equation (63) it can 

be seen that the diffusion time constant td was directly proportional to the square of the mass 

transfer coefficient, cr, and consequently inversely proportional to the square of oxygen 

concentration at the Pt surface Ct.. td is equal to RI.Cd (or Rmass.Cmass), and from equation (46) 

Rmass is inversely proportional to i and directly proportional to «C/CA)-I) and therefore the time 

constant value will decrease with I and increase only when CA becomes very small or «C/CA)-I) 

very large. Therefore, Cmass should increase rapidly with a decrease in CA or an increase in I. 

The second resistance (incorporated with the second capacitor) had large values (order of 10-1 

ohm) and fell rapidly with I. This is typical behaviour of RIo I, where at OCP, ignoring cross-over 

current, Rtot is equal to Rac (Rmass is minimal and Zpolar is infinity) and the second capacitance 

associated with it, is equal to Cdl (Cmass ;:::; 0). As I increases Zpolar decreases RIot_observed = 
«Rac+Rmass)/(l +( Rac+Rmass)/ Zpolar» and the associated capacitance becomes equal to Cdl+Cmass. 

RIOt in this case is equal to the low frequency intercept subtracted from the high frequency 

intercept or the sum of the first and the second resistors (in series). 
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Table 6-12. Equivalent circuit (h or d) parameters using CNLS technique for 40% Pt/C cathode electrode at 

150 ' C under air and oxygen operation. 

LR(C(R(QR») 
O.IA O.SA lA SA lOA 

(02 150 °C) 

L (Henri) 6.20E-08 1.02E-07 2.04E-07 2.08E-07 1.20E-07 

R(Ohm) 0.01272 0.01205 0.011 0.008107 0.006731 

C (Farad) 0.03031 0.03331 0.03647 0.06578 0.06496 

R(Ohm) 0.02056 0.01742 0.01539 0.0101 0.004 

Q-Yo (Fl SI'D) 0.2907 0.2986 0.308 0.4969 1.738 

Q-n 0.8463 0.8565 0.8674 0.9533 0.7371 

R(Ohm) 0.1776 0.07653 0.04631 0.008134 0.007462 

LR(C(R(QR))) 

(air 150 °C) 

L (Henri) 1.05E-07 7.64E-09 4.55E-08 8.37E-08 2.04E-07 

R(Ohm) 0.01246 0.0116 0.01082 0.008805 0.008141 

C (Farad) 0.0437 0.04983 0.05249 0.05612 0.1237 

R(Ohm) 0.02046 0.01648 0.01396 0.01225 0.00407 

Q-Yo (V SI.D) 0.3226 0.4085 0.5098 1.396 5.883 

Q-n 0.8767 0.8585 0.8356 0.7807 0.877 

R(Ohm) 0.1966 0.09449 . 0.06174 0.02758 0.009286 

In summary, even though the interpretation of impedance spectra is complicated, vital 

information about electrode performance can be obtained. The double layer capacitance can be 

obtained from the low frequency arc capacitance around OCP. RIOt_observed corresponds to the low 

frequency intercept (subtracted from the high frequency intercept) and is equal to R ac and 

RT --- at OCP. The mass transport capacitance Cmass gives direct information about the 

mass transport coefficient and can be used to compare electrode performances. It can be obtained 

from the double layer capacitance subtracted from the low frequency capacitance. Similarly, 

RIOt_observed can be used to compare various electrodes performance; where low Rtot_observed at 

lower currents suggests better kinetics, while at higher currents suggest better mass transport 

performance. 
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6.4.5.1 Double layer capacitance 

Figure 6-26 shows the double layer capacitance of electrodes with variOus Pt:C ratio at 

temperatures of 120, 150 & 175 ·C with no added acid in the catalyst layer. It can be een that 

increasing the carbon content in the catalyst layer (thickness), with fixed Pt content, lead to an 

increase in the double layer capacitance due to the larger surface area (interface). However, 

increasing the catalyst thickness beyond 40% Pt/C i.e. towards 30% Pt/C, did not lead to a 

further increase in Cdl as the catalyst was too thick and only a fraction of it was accessible to the 

mobile acid electrolyte from the membrane. 

A decrease in the double layer capacitance was also observed with a temperature increase from 

150 to 175 ·C, due to a fall in water activity (dehydration of phosphoric acid); the change in the 

double layer with temperature was one of the reasons given for the observed dependency of the 

transfer coefficient on temperature in phosphoric acid systems (see Chapter 3). 

0.35 0.4mgPt.cm-2 60%PtlC • 0.4mgpt.cm-2 60%Pt-Ru/C • O.4mgpt.cm-2 SO%PtlC 

• 0.2mgPt.cm-2 20%PtlC o O.4mgPt.cm-2 40%PtlC • O.4mgPt.cm-2 30%PtlC 

0.3 

0.25 

0.2 
u.. 
;; 

() 

0.15 

0.1 

0.05 

0 
120 

Figure 6-26. Double layer capacitance of various electrodes with different thickne s (or Pt:C ratio) at 

different temperatures. 
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The effect of acid content on the double layer capacitance is shown in Figure 6-27. Decreasing 

acid content in the catalyst layer, by using a membrane with lower acid dopi ng, LD, (4 instead of 

5.6 PRU) or by increasing the electrode hydrophobic properties with heat-treatment, HT, meant a 

smaller acidlPt-carbon interface and therefore smaller Cdl . It is al 0 shown that the cata lyst 

carbon support affects the double layer, as carbon was responsible for large portion of the 

electrolyte-catalyst interface surface area. Changing the catalyst support fo rm Vulcan XC-72R 

(40% Pt/C, ETEK) to advanced carbon support AC01 from Johnson Matthey. JM, (40 %Pt/C, 

JM) led to sharp increase in the double layer capacitance from 0.3 to 0.47 F at 120 ·C (usi ng 

loading of 0.4 mgpt cm-2 with electrode area of9 cm
2

) . 

0.5 50%PtlC LD .50%PtlC 0 40%PtlC HT 0 40%PtlC . 40%PtlC JM 

0.45 

0.4 

0.35 

0 .3 

u.. 
~ 0.25 
u 

0.2 

0.15 

0 .1 

0.05 

0 
120 150 175 

T 1°C 

Figure 6-27. Double laye r capaci tance of variou electrodes with different acid content at different 

temperatures. 

6.4.5.2 Charge transfer resistance Rac 

Figure 6-28 shows the charge transfer resistance, at OCP, for variou electrodes at temperatures 

of 120, 150 & 175 ·C u ing oxygen. It can be clearly see that there was an optimum thickness for 
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the catalyst layer for a given mobile acid content in the membrane. The smallest charge transfer 

resistance and therefore the fastest kinetics was observed with 50% PtlC followed by 40% PtlC 

electrodes; which agrees with the results obtained from the polarisation curves. The 60% PtlC 

electrode exhibited the largest average Pt particle size, the smallest surface area and therefore the 

largest charge transfer resistance amongst the Pt based catalyst. 

The 60% Pt-RulC (40% Pt -20% Ru) electrode showed very high charge transfer resistance in 

comparison to PtlC catalyst; the value was 17 times higher than that of 40% PtlC (similar Pt ratio 

and average particles size) at 120 ·C, reflecting very slow kinetics (io 17 times smaller) for 

oxygen reduction and therefore a large activation energy. This was also observed in the 

polarisation curves where the electrode was completely under activation control. The large 

activation energy explains the high dependency of Rac on temperature where it fell sharply from 

120 to 150 ·C. 

H should be noticed that there was no considerable change in Rac for PtlC and Pt-Ru/C catalysts 

from 150 to 175 ·C. PBI-based PEMFCs have shown less prominent decrease in Rac from 150 to 

175 ·C in comparison to that from 120 to 150 ·C [61]. It was also shown that Rac did not vary 

considerably in the range of 150 to 180 ·C [38, 73], while an increase in Rac was reported above 

175 ·C [73]. This phenomenon can be explained by a fall in the oxygen solubility and therefore 

concentration countering any kinetic enhancement due to a temperature increase (activation 

energy). 

Whilst the low frequency intercept Rtot at OCP and low currents were governed solely by Rac and 

Rmass was negligible, there were inherent concentration effects in Rac, because it represented the 

charge transfer resistance, at a given steady state condition (OCP or with current I), with a steady 

state concentration. Therefore increasing the steady-state current or increasing the temperature 

will lead to a fall in the steady-state concentration and therefore increase in Rac. The 

concentration effects were different from Rmass, which represented the concentration effects 

(losses) due to signal perturbation and were only visible when C~ (surface concentration with 

perturbation) was sufficiently smaller than C (steady-state concentration) as expected from 

equation (46). 
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Figure 6-28. Charge transfer resistance at OCP for variou electrodes at temperatures of 120, 150 & t 75 ' C 

using oxygen. 

6.4.5.3 Mass transport capacitance and low frequency intercept 

As discussed earlier mass transport capacitance is related to Ct" because as I increases C & Ct. 

decrease, and (C/Ct.) increases. When (C/Ct.) becomes large enough, mass transport effect (due 

to perturbation) become apparent, leading to the appearance of a new arc at low frequencie , 

corresponding to R mass , and a sharp increase in the capacitive ). 

Rmass is more difficult to detect due to the masking effect of Z polar (both resistors are connected in 

parallel) as it only appears at high values of I, where cell voltage becomes low and therefore 

Zpolar becomes very small and the increase in R IO!' due to R mass , becomes invisible, apart from the 

severe mass transport cases, where R mass appears at low current values. On the other hand Q mass 

capacitive behaviour is not affected by Z polar because Zpolar is a pure polarisation resistor and has 

no capacitive behaviour. 
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Figure 6-29 shows the mass transfer capacitance Q mass for various electrodes at temperature of 

120 DC using air. The sharp increase in Qmass indicates the development of new arc due to mass 

transport effects arising from the large value of (C/Ct.) and the low value of C (steady-state 

surface concentration). It is clear from the Q mass values that the mass transport coefficient of the 

electrodes decreased in the following order 40% PtlC, 60% PtlC, 30% PtlC, 20% PtlC & 40% 

PtlC (HT), which agrees with the observed limiting current at the same conditions; 10.17,8.1 , 

9.54,5.67& 3.78 A, respectively. 
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... 40%PtlC HT ... 30% PtlC ... 60%PtlC ... 40% PtlC -+- 20%PtlC 

2 4 6 8 10 12 

i I A 

Figure 6-29. Mass transfer capacitance Qma .. for various electrodes at temperature of 120 'C using air. 

Figure 6-30 shows the mass transfer capacitance Qmass for 60% PtlC electrode at temperatures of 

120, 150 & 175 DC using air and oxygen. It can be seen that mass transport effects became less 

apparent when switching from air to oxygen and more apparent with a temperature increase 

reflected by a shift in the sharp increase of Qmass towards lower operating current. This is because 

Q mass is affected by the square of the transfer coefficient (J (l /CDo.s), and therefore it depend 

more on oxygen concentration (C) than on oxygen diffusion (D). 
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On the other hand, values of the limiting current (C.D) for the 60% PtlC electrode, using air fell 

from 9.54 to 9.45 to 9.36 A when the temperature increased from 120 to] 50 to 175 °c , 
respectively. 

As the concentration decreased rapidly with temperature (enthalpy of solution) and diffusion on 

the other hand increased with temperature (activation energy of diffusion), the overall product 

(limiting current) did not vary considerably with temperature, on the contrary the product 

II(C2.D) and as result Qmass greatly depends on temperature. 

___ 60%PtlC 120C 02 --- 60%PtlC 150C 02 --- 60%PtlC 175C 02 

..... 60%PtlC 120C air --- 60%PtlC 150C ai r ..... 60%PtlC 175C air 

U-
6 

VI 
VI 
IQ 

E 
CS 4 

I 

2 i 
I 

0 

0 2 4 6 8 10 12 14 16 

if A 

Figure 6-30. Mass transfer capacitance Qm ... fo r 60% Pt/C electrode at various temperatures using air and 

oxygen. 

The low frequency intercept, Rtot_observed, can be used to compare electrode performance, in terms 

of kinetics and mass transport, where it is equal to lI((lI(Rac+Rmass» +(llRpolar». At small value 

of current I, Rac dominates (Rmass- O & Rpo1ar _ 00) while at high values of current Rpolar 

dominates as cell potential Ecetr--tO (Rmass-O& Rac -0). 

Figure 6-31 shows the low frequency intercept Rtot for 60% PtlC, 40% PtlC and 40% Pt/C HT 

electrodes at temperature of 150 ' C using oxygen. It can be seen that 40% Pt/C exhibited the 
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sharpest fall in Rtot_observed with a small current increase; from OCP to 1.0 A (0.11 A cm-2
), 

followed by 60% Pt/C and finally 40% Pt/C HT. This corresponds to larger cell voltage at the 

measured operating current and correspondingly faster kinetic, which was also confirmed from 

the observed improved kinetic region in the polarisation curves. 

In the middle current range, an increase In Rtot observed was observed with 40 %Pt/C HT - , 
indicating severe mass transport limitations. This results agrees with the limiting current values 

obtained under the same conditions (150 ·C, 02) where no limiting current was observed for 40% 

Pt/C and 60% Pt/C; a limiting current of - 11 A was observed in the case of 40% pt/C HT (1.22 

A cm-2). At high currents, Rtot_observed became very small and no further useful information could 

be obtained. 

The observed reduction in both mass transport and kinetics of 40% Pt/C HT, suggests that'the 

heat treatment led to a reduction in the accessible electrochemical surface area by the mobile 

acid electrolyte, because of increased hydrophobicity and possible sintering (agglomeration) of 

platinum particles. 
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Figure 6-31. Low frequency intercept Rlo l for various electrodes at temperature of 150 ·C using oxygen. 

Figure 6-32 shows the low frequency intercept R IOt_observed for various electrodes at temperature 

of 120 ·C using air. The 40% Pt/C showed the sharpest drop in R IOt_observed as current increa ed 

and thereby the best kinetic behaviour and on the contrary 40% Pt/C HT showed the slowest 

change in R IOt_observed with current and therefore the worst kinetic behaviour. Once again th is data 

agrees with the data obtained from polarisation curves. In the middle current range, an increase 

in R IOt_observed was observed in the 40% Pt/C HT electrode response, followed by another increa e 

observed for 30% pt/C at higher current, due to R mass, while R tot_observed values for 60% p t/C and 

40% p t/C continued to decrease, with 40% pt/C exhibiting the lowest value. As the current 

became too large, the R tot_ob erved of the 60% p t/C electrode continued to fall whilst the value for 

the 30% pt/C electrode fell again, after the previous increase, below that for the 40% p t/C which 

showed a slight increase. 

The observed limiting current values under the studied conditions had the following order 40% 

Pt/C > 60% Pt/C > 30% Pt/C > 40% Pt/C HT. While the first increase in R tot by 40% pt/C HT 

followed by 30% Pt/C -caused by mass transport effects- confirmed the limiting current 
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observation, the low values for 60% PtlC followed by 30% PtlC and finally 40% PtlC, at very 

high current (10 A under air), might be misleading. Where at high currents, Rtot_observed-+Rpolar 

and the electrode with the lowest R polar will show the lowest Rtol_observed. However, the lowest 

Rpolar corresponded to the electrode with the lowest E cell and correspondingly the worst 

performance (mass transport). The same conclusion can be drawn by observing the behaviour of 

R tot_observed for the 30% PtlC electrode, which decreased below the value for 40% PtlC at high 

currents (9 A) after the observed increase at 6.5 A. Similar behaviour could have occurred in the 

case of 60% PtlC in the range of 5 to 10 A, (increase followed by decrease) where no data is 

available. 

Therefore in the middle current range (5 A) where R mass effects were apparent and Rtot_observed was 

not dominated by R polar, the same sequence of limiting current was obtained for Rtot_observed. 
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Figure 6-32. Low frequency intercept R,o' for various electrodes at temperature of 120 ·C using air. 

Figure 6-33 shows the low frequency intercept RIot_observed for the highly doped 50% PtlC (HD) 

and standard 40% PtlC electrodes at temperatures of 120 & 150 ·C using air & oxygen. It can be 

seen that the highly doped 50% PtlC (2 mg cm-
2 

acid added) had faster kinetics (fall in 
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Rlol_observed) than that of the standard 40% Pt/C, due to a larger acid (electrolyte) volume fraction 

in the catalyst layer and correspondingly higher ESA. However, for a given initial porosity, 

higher acid content leads to lower final overall porosity and as a result poorer mass transport. 

This can be observed from the large difference in R lol_observed between air and oxygen operation 

for the 50% Pt/C HD electrode, in comparison to that for the 40% pt/C electrode or from the 

early increase of R tot_observed at relatively low currents under air operation and the lower 

R IOt_observed values (under air & oxygen) at medium currents (5 A) of 40% Pt/C in comparison to 

50% pt/C HD. 

The temperature increase led to a sharper decrease in R Iot_observed with increased current (for small 

currents) due to the expected enhancement in the kinetics. Whilst at medium and high currents, 

RIot_observed increased slowly with increased current (or remained steady) and the rate of increase 

became faster with increased temperature. This suggests a decrease in ma transport with 

increased temperature caused by fall in oxygen solubility. 

0.4 

0.3 

E 
or: 
o 0.2 ... 
o 
et 

0.1 

o j­
o 

4- 40%PtlC 1S0C 02 

...... SO%PtlC HO 120C air 

4 

...... 40%PtlC 1S0C air 

4- S0%PtlC HO 1S0C 02 

8 

i I A 

..... SO%PtlC HO 120C 02 

..... SO%PtlC HO 17SC 02 

12 16 

Figure 6-33. Low frequency intercept Rtot for highly doped 50% Pt/C (HO) and standard 40% Pt/C electrode 

at temperatures of 120 & 150 ·C u ing air & oxygen. 
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6.5 Conclusions 

Electrodes fabricated with 40-50% pvC exhibited the highest oxygen concentration in the 

catalyst layer at a given current density and therefore exhibited the best performance. Similarly, 

50-40% PVC electrode's porosity was -30% (after acid impregnation) with acid volume fraction 

to Pt+C (without porosity) ratios in the range of 47-35 % (50-40% PVC). This means that 50% 

PVC electrodes have one third of its structure as free space (void) for oxygen transport or vapour 

water removal, one third for catalytic sites and electrical connection (Pt+C) and one third for 

proton conduction (acid electrolyte). 

Chronoamperometry measurements were performed in attempt to obtain mass transport 

information for the studied electrodes. The current transient varied exponentially with time, 

having a time constant which depended on L2/D for finite length (L) diffusion, as the 

conventional Cottrell equation for semi-infinite diffusion is not valid for expressing the system 

response. 

The obtained values for oxygen diffusion in the thin film, D, using the response time constant 

where much smaller than the reported values measured using semi-infinite diffusion in 

phosphoric acid electrolyte (Cottrell equation) or the calculated values obtained from the steady­

state limiting current (D.C/L) of the same system using the reported oxygen solubility values. 

The slow system response or the slow observed diffusion under transient conditions arose from 

the slow equilibrium between oxygen partial pressure and oxygen concentration in the thin film, 

in other words, in very short times the diffusion layer reached the end of the thin film (L) and the 

oxygen diffusion (flux) was limited by the rate of oxygen dissolving into the thin film, which can 

be represented by a diffusion process (DsolubiJity). 

The response time constant did not vary with oxygen partial pressure, and decreased with 

increased temperature as expected. However, there was a larger decrease in the time constant 

from temperatures of 120 to 150 "C in comparison to that from 150 to 175 'c. This was caused 

by phosphoric acid dehydration and consequently increased viscosity slowing down both the 

solubility process Dsolubility and oxygen diffusion through the electrolyte film D 02• 
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Three different relationships for the steady-state oxygen penneability (D.C) or limiting current 

values with increase in temperature (from 120 to 150 to 175 .• C), were observed depending on 

electrode thickness, acid content and oxygen partial pressure. While a temperature increase will 

lead to a decrease in oxygen solubility, it will also lead to an increase in diffusion. However the 

rate of increase in diffusion will fall as temperature increases due to dehydration and increase in 

viscosity. The solubility and diffusion at a given temperature also depends on water activity or in 

other words phosphoric acid concentration. Therefore, the product (D.C) can experience the 

three observed possibilities, either increase, decrease or exhibit a maximum value with an 

increase in temperature. 

The decrease in solubility with temperature has counteracting effect on the increase in kinetics 

with temperature; where both processes vary exponentially with temperature (heat of solution 

and activation energy). This was reflected by the slow increase of kinetics above 150 ·C for PBI­

free electrodes- half cell tests also showed non-linearity in the variation of Ln[io] with 

temperature at a given oxygen partial pressure for PBI-based electrodes (Chapter 3). This was 

also reflected in the kinetic region of the polarisation curves, where no remarkable enhancement 

was observed for PTFE-H3P04 electrodes above 150 ·C, and a slow enhancement was still 

observed in the PBI based electrodes (Chapter 4). Therefore, as temperature increased the 

perfonnance of PBI based electrodes approached that of PBI-free electrode, whilst at lower 

temperatures, PBI-free electrodes had superior perfonnance over that ofPBI-based electrodes. In 

other words, at 150 ·C fast oxygen diffusion in phosphoric acid (liquid) in comparison to 

PBIIH3P04 (gel) gave rise to enhanced perfonnance (solubility values are similar), whilst at 175 

·C this enhancement was suppressed by a lower solubility and slower increase in diffusion due to 

increased viscosity of phosphoric acid caused by dehydration; effecting mainly PBI free 

electrodes. 

Frequency response analysis was used to compare electrode perfonnance in tenns of kinetics, 

ohmic and mass transport losses. Simple equivalent circuit was used to fit the observed spectra. 

For polarisable electrodes under small to medium steady-state current operation, the model was 

capable of identifying electrodes with the best kinetic or mass transport behaviour and 

classifying behaviour in tenns of relative perfonnance. 
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However, care must be taken in interoperating the results at OCP or high steady-state currents. 

fi . . I RT 1 h h . At OCP the charge trans er resIstance IS equa to aF. . • were t e OCP IS no longer 
lo + 'cross 

equal to the reversible potential given by Nemst equation, and electrodes with higher cross-over 

rate (combined with corrosion rate, etc .. ) will have smaller OCP and therefore exhibit smaller 

apparent charge transfer resistance. Similarly the thermodynamic oxygen concentration effects at 

oCP (Nemst equation) will counter the kinetic effect and correspondingly a small difference, if 

any, will be observed in the charge transfer resistance when changing oxygen concentration, 

where lower oxygen concentration will lead to a lower cell voltage and therefore reduce the 

observed charge transfer resistance. 

At high current densities the effect of the equivalent resistance used to polarise the electrode to 

steady-state current i (Rpolar= Ecell/i) dominates the observed circuit impedance and electrodes 

with the worst performance, at a given current i, will exhibits the smallest cell voltage Ecel\ and 

the smallest Rpolar and consequently will show the smallest overall circuit impedance. 

2721 P age 



Chapter Six: Chronoamperometry and FRA for HT-PEMFC 

6.6 References 

1. Seland, F., T. Berning, B. Borresen, and R. Tunold, Improving the performance of high­
temperature PEM fuel cells based on PEI electrolyte. Journal of Power Sources, 2006. 
160(1): p. 27-36. 

2. Mecerreyes, D., H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, and I. Cantero, Porous 
polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting 
solid electrolytes. Chemistry of Materials, 2004. 16(4): p. 604-607. 

3. DuPont. Technical info: Fluoropolymer Comparison - Typical Properties. Mechanical 
Properties 2007 [cited; Available from: 
http://www2.dupont.comrfeflon Industrial/en US/tech info/techinfo compare.ht 
ml. 

4. SDS@cabot-corp.com, SAFETY DATA SHEET of Vulcan XC-72 R. 2007, Cabot 
Corporation, France. 

5. Marks' Standard Handbookfor Mechanical Engineers III (10th Edition). Thermophysical 
Properties of Selected Solid Elements. , ed. E.A. A vallone and T. Baumeister. 1996: 
McGraw-HiIl. 

6. Knovel, Knovel Critical Tables. 2003, 
http://www.knovel.com/knoveI2rfoc.jsp?BookID=761 &VerticaIID=O. 

7. MacDonald, DJ. and lR. Boyack, DenSity, Electrical ConductiVity, and Vapor Pressure 
of Concentrated Phosphoric acid. Journal of Chemical and Engineering Data, 1969. 
14(3): p. 380. 

8. Bevers, D., M. WO HR, K. Y ASUDA, and K. OGURO, Simulation of a polymer 
electrolytefuel cell electrode. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997. 
27: p. 1254-1264. 

9. Scott, K., S. Pilditch, and M. Mamlouk, Modelling and experimental validation of a high 
temperature polymer electrolyte fuel cell. Journal of Applied Electrochemistry, 2007.37: 
p. 1245-1259. 

10. Lambda-Americas-Inc. App Note 500 - Calculating Capacitor Charge Time. 2008 
[cited; Available from: http://www.lambda-
hp. com/pdfs/application%20notes/93008500rC. pdf. 

11. Liu, Z.Y., lS. Wainright, M.H. Litt, and R.F. Savinell, Study of the oxygen reduction 
reaction (ORR) at Pt interfaced with phosphoric acid doped polybenzimidazole at 
elevated temperature and low relative humidity. Electrochimica Acta, 2006. 51(19): p. 
3914-3923. 

12. Schariiker, B.R., P. Zelenay, and J.O.M. Bockris, The Kinetics of Oxygen Reduction in 
Molten Phosphoric Acid at High Temperatures. J. Electrochem. Soc., 1987. 134: p. 2714-
2725. 

13. Parthasarathy, A., S. Srinivasan, and A.J. Appleby, Temperature Dependence of the 
Electrode Kinetics of Oxygen Reduction at the PlatinumlNafion® Interface-A 
Microelectrode Investigation. J. Electrochem. Soc., 1992. 139(9): p. 2530-2537. 

14. Klinedinst, K., lA.S. Bett, J. MacDonald, and P. Stonehart, Oxygen solubility and 
diffusiVity in hot concentrated H3P04. J. Electroanalytical Chemistry and Interfacial 
Electrochemistry, 1974.57: p. 281-289. 

2731 P age 



15. 

16. 

17. 

18. 

19. 

20. 

21. 
22. 

23. 

24. 

25. 

26. 

27. 

28. 
29. 

30. 

31. 

32. 

33. 

Chapter Six: Chronoamperometry and FRA for HT-PEMFC 

Zelenay, O.P., B.R Scharitker, J.O.M. Bockris, and D. Gervasio, A Comparison of the 
Properties of CF3S03H and H3P04 in Relation to Fuel Cells. J. Electrochem. Soc., 1986. 
133(11): p. 2262-2267. 
Pajkossy, T. and L. Nyikos, Comments on 1. C. Wang's paper on the impedance of a 
Jractal electrolyte--electrode interface. Electrochimica Acta, 1988.33(5): p. 713-715 
Pajkossy, T. and L. Nyikos, Diffusion to Jractal surfaces--II Verification of theory. 
Electrochimica Acta, 1989. 34(2): p. 171-179. 
Pajkossy, T. and L. Nyikos, Diffusion to Jractal surfaces--III Linear sweep and cyclic 
voltammograms. Electrochimica Acta, 1989.34(2): p. 181-186. 
Pajkossy, T., Electrochemistry atfractal surfaces. Journal of Electroanalytical Chemistry, 
1991. 300(1-2): p. 1-11. 
Bard, AJ. and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 
1980, New York: Wiley. 
Crank, J., The mathematics of diffusion, 2nd edition 1979, Oxford: Clarendon Press. 
Macdonald, 0.0., Transient techniques in electrochemistry 1977, New York Plenum 

Press. 
Wen, CJ., B.A. Boukamp, R.A. Huggins, and W. Weppner, Thermodynamic and Mass 
Transport Properties of"LiAI". J. EIectrochem. Soc., 1979. 126(12): p. 2258-2266. 
Tada, T., Handbook of Fuel Cells: Fundamentals, Technology and Applications. Part 3: 
Polymer Electrolyte Membrane Fuel Cells and Systems, High-dispersion Catalysts 
Including Novel Carbon Supports, ed. W. Vielstich, A. Lamm, and I-I.A. Gasteiger. Vol. 
3.2003, Chichester, UK: John Wiley & Sons. 
Gasteiger, H.A. and M.F. Mathias. FUNDAMENTAL RESEARCH AND 
DEVELOPMENT CHALLENGES IN POLYMER ELECTROLYTE FUEL CELL 
TECHNOLOGY. in Proceedings of ECS Meeting. October, 2002. Salt Lake City, UTAH, 

USA. 
Bockris, J.O.M., B.E. Conway, RE. White, C.G. Vayenas, and M. Gamboa-Aldeco, 
Modern aspects of electrochemistry, ed. J.O.M. Bockris and B.E. Conway. Vol. 32. 1954-

London: Butterworths Scientific Publications. , 
Gileadi, E., Electrode Kinetics for Chemists, Chemical Engineers and Materials 
Scientists. 1993: John Wiley & Sons. 
Kinoshita, K., Electrocllemical oxygen technology 1992, New York: Wiley. 
Slattery, J.C. and RB. Bird, Calculation of the Diffusion Coefficient of Dilute Gases and 
of the Self-diffusion Coefficient of Dense Gases. J. A.I.Ch.E, 1958.4(2): p. 137-142. 
Wu, x., H. Ma, S. Chen, Z. Xu, and A. Sui, General Equivalent Circuits for Faradaic 
Electrode Processes under Electrochemical Reaction Control. Journal of The 
Electrochemical Society, 1999. 146(5): p. 1847-1853. 
MACDONALD, 0.0., REVIEW OF MECHANISTIC ANALYSIS BY 
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Electrochimica Acta, 1990. 
35(10): p. 1509-1525. 
Ahn, S. and BJ. Tatarchuk, Air Electrode: Identification of Intraelectrode Rate 
Phenomena via AC Impedance. J. Electrochem. Soc., 1995. 142(12): p. 4169-4175. 
Ren, X. and P.G. Pickup, Simulation and analysis of the impedance behaviour of 
electroactive layers with non-uniform conductivity and capacitance profiles. 
Electrochimica Acta, 2001. 46: p. 4177-4183. 

2741 P age 



34. 

3S. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

4S. 

46. 

47. 

48. 

49. 

50. 

51. 

Chapter Six: Chronoamperometry and FRA (or HT-PEMFC 

NISHIKATA, A., Y. ICHIHARA, and T. TSURU, ELECTROCHEMICAL IMPEDANCE 
SPECTROSCOPY OF METALS COVERED WITH A THIN ELECTROLYTE LAYER. J. 
Electrochimica Acta, 1996. 41: p. 1 OS7 -1062. 
JAMNIK, J., J. MAIER, and S. PEJOVNIK, A NEW PENETRATION IMPEDANCE 
TECHNIQUE. J. Electrochimica acta, 1996.41: p. 1011-101S. 
Zoltowski, P., A new approach to measurement modelling in electrochemical impedance 
spectrdscopy. Journal of Electroanalytical Chemistry, 1994.375(1-2): p. 45-S7. 
Macdonald, J.R., N. Wagner, W.B. Johnson, 1.0. Raistrick, and D.R. Franceschetti, 
Impedance Spectroscopy: Theory, Experiment, and Applications 2nd edition., ed. E. 
Barsoukov and J.R. Macdonald. 200S, New Jersey: Wiley-Interscience. 
Jalani, N.H., M. Ramani, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R Staudt, and R. 
Datta, Performance analysis and impedance spectral signatures of high temperature PBI­
phosphoric acid gel membrane fuel cells. Journal of Power Sources, 2006. 160(2): p. 
1096-1103. 
Li, G. and P.G. Pickup, Ionic Conductivity of PEMFC Electrodes Effect of Nafion 
Loading. Journal of The Electrochemical Society, 2003.150(11): p. C74S-C7S2. 
Fleig, J., J. Jarnnik, J. Maier, and J. Ludvig, Inductive Loops in Impedance Spectroscopy 
Caused by Electrical Shielding. J. Electrochem. Soc., 1996. 143: p. 3636. 
ARM STRONG, RD. and RE. FIRMAN, IMPEDANCE PLANE DISPLAY OF A 
REACTION WITH A SOLUTION SOLUBLE INTERMEDIATE. Journal of 
Electroanalytical Chemistry and Interfacial Electrochemistry, 1973. 45: p. 3-10. 
Pyun, S.-I. and Y.-G. Ryu, A study of oxygen reduction on platinum-dispersed porous 
carbon electrodes at room and elevated temperatures by using a.c. impedance 
spectroscopy, Journal of Power Sources, 1996.62: p. 1-7. 
Epelboin, I. and M. Keddam, Faradaic Impedances: Diffusion Impedance and Reaction 
Impedance. J. Electrochem. Soc., 1970.117(8): p. 1052-1056. 
Diard, J.P., B. Le Gorrec, and C. Montella, Calculation, simulation and interpretation of 
electrochemical impedances : Part 3. Conditions for observation of low frequency 
inductive diagrams for a two-step electron transfer reaction with an adsorbed 
intermediate species. Journal of Electroanalytical Chemistry, 1992.326(1-2): p. 13-36. 
ltagaki, M., H. Hasegawa, K. Watanabe, and T. Hachiya, Electroreduction mechanism of 
oxygen investigated by electrochemical impedance spectroscopy. Journal of 
Electroanalytical Chemistry 2003. 557: p. 59-73. 
Tham, M.T., Why Frequency Response?, in Robust Control study notes (Control 3). 
1999, Newcastle University: Newcastle upon Tyne. 
Springer, T.E., T.A. Zawodzinski, M.S. Wilson, and S. Gottesfeld, Characterization of 
Polymer Electrolyte Fuel Cells Using Ac Impedance Spectroscopy. Journal of The 
Electrochemical Society, 1996. 143(2): p. 587-S99. 
ARM STRONG, RD., Equivalent circuits for electrochem ical cells. Journal of 
Electroanalytical Chemistry and Interfacial Electrochemistry, 1972.40: p. 473-476. 
Holze, R. and W. Vielstich, Double-layer capacity measurements as a method to 
characterize porous fuel cell electrodes. Electrochimica Acta, 1984. 29(S): p. 607-610. 
Holze, R, I. Vogel, and W. Vielstich, New oxygen cathodes for fuel cells with organic 
fuels. Journal of Electroanalytical Chemistry, 1986.210(2): p. 277-286. 
Holze, R. and W. Vielstich, The Kinetics of Oxygen Reduction at Porous Teflon-Bonded 
Fuel Cell Electrodes. J. Electrochem. Soc., 1984. 131(10): p. 2298-2303. 

2751 P age 



Chapter Six: Chronoamperometry and FRA for HT-PEMFC 

52. Annstrong, RD., Impedance Plane Display for an Electrode with Diffusion Restricted to 
a Thin Layer. 1 Electroanal. Chem., 1986. 198: p. 177-180. 

53. Diard, J.-P., N. Glandut, C. Montella, and l-Y. Sanchez, One layer, two layers. etc. An 
introduction to the EIS study of multi/ayer electrodes. Part 1: Theory. Journal of 
Electroanalytical Chemistry, 2005. 578(2): p. 247-257. 

54. Gabrielli, C., IDENTIFICATION OF ELECTROCHEMICAL PROCESSES BY 
FREQUENCY RESPONSE ANALYSIS, in Solatron analytical:TECHNICAL REPORT 
NUMBER 004/83.1998 .. 

55. Randles, lE.B., Kinetics of Rapid Electrode Reactions. Faraday Soc., 1947. 1: p. 11-19 
56. Annstrong, RD., M.F. Bell, and A.A. Metcalfe, The AC Impedance of Complex 

Electrochemical Reactions, in Electrochem istry. 1978, Chemical Society Specialist 
Periodical Reports. p. 98-127. 

57. Franceschetti, D.R., Small Signal AC response Theory for Electrochromic Thin Films. J. 
Electrochem. Soc., 1982.129: p. 1754-1756. 

58. W AGNER, N., Characterization of membrane electrode assemblies in polymer 
electrolyte fuel cells using a.c. impedance spectroscopy. Journal of Applied 
Electrochemistry, 2002. 32: p. 859-863. 

59. Wang, D.Y. and A.S. Nowick, Diffusion-Controlled Polarization of Pt. Ag. and Au 
Electrodes with Doped Ceria Electrolyte. J. Electrochem. Soc., 1981. 128(1): p. 55-63. 

60. Wang, D.Y. and A.S. Nowick, Cathodic and Anodic Polarization Phenomena at 
Platinum Electrodes with Doped Ce02 as Electrolyte II Transient Overpotential and A-C 
Impedance. 1 Electrochem. Soc., 1979. 126(7): p. 1166-1172. 

61. Lobato, J., P. Canizares, M.A. Rodrigo, and J.1. Linares, PBI-based polymer electrolyte 
membranes fuel cells - Temperature effects on cell performance and catalyst stability. 
Electrochimica Acta, 2007. 52(12): p. 3910-3920. 

62. Lobato, J., M.A. Rodrigo, J.1. Linares, and K. Scott, Effect of the catalytic ink 
preparation method on the performance of high temperature polymer electrolyte 
membrane fuel cells. Journal of Power Sources, 2006. 157(1): p. 284-292. 

63. GoodFellow, Polybenzimidazole ( PBI ) Material Information. 2008, 
http://WWW.9oodfellow.com/scripts/web.wl?MGWLPN=MNT&PROG=SEARTOW 
&LAN=A&HEAD=BI30&SPAGE-BI30. 

64. Munson, R.A., Dielectric Constant of Phosphporic acid. 1 Chem. Phys. , 1963. 39: p. 
435-439. 

65. Franceschetti, D.R., J.R. Macdonald, and R.P. Buck, Interpretation of Finite-Length­
Warburg-Type Impedances in Supported and Unsupported Electrochemical Cells with 
Kinetically Reversible Electrodes. 1 Electrochem. Soc., 1991. 138(5): p. 1368-1371. 

66. Franceschetti, D.R and lR. Macdonald, Diffusion of neutral and charged species under 
small-signal a.c. conditions. Journal of Electroanalytical Chemistry, 1979. 101(3): p. 
307-316. 

67. SELMAN, J.R. and Y.P. LIN, APPLICATION OF AC IMPEDANCE IN FUEL CELL 
RESEARCH AND DEVELOPMENT. Electrochimica Acta, 1993.38(14): p. 2063-2073. 

68. Murthi, V.S., RC. Urian, and S. Mukerjee, Oxygen Reduction Kinetics in Low and 
Medium Temperature Acid Environment: Correlation of Water Activation and Surface 
Properties in Supported Pt and Pt Alloy Electrocatalysts. J. Phys. Chem. B, 2004. 108: p. 
11011-11023. 

2761 P age 



Chapter Six: Chronoamperometry and FRA for HT-PEMFC 

69. Mirzazadeh, J., E. Saievar-Iranizad, and L. Nahavandi, An analytical approach on effect 
of diffusion layer on ORRfor PEMFCs. Journal of Power Sources 2004.131: p. 194-199. 

70. Xie, Z. and S. Holdcroft, Polarization-dependent mass transport parameters for orr in 
perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes. Journal 
ofElectroanalytical Chemistry, 2004.568: p. 247-260. 

71. Li, G. and P.G. Pickup, Measurement of single electrode potentials and impedances ill 
hydrogen and direct methanol PEM fuel cells. Electrochimica Acta 2004. 49: p. 4119-
4126. 

72. Song, J.M., S.Y. Cha, and W.M. Lee, Optimal composition of polymer electrolyte fuel 
cell electrodes determined by the AC impedance method. Journal of Power Sources, 
2001. 94: p. 78-84. 

73. Tang, Y., J. Zhang, C. Song, and J. Zhang, Single PEMFC Design and Validation for 
High-Temperature MEA Testing and Diagnosis up to 300°C. Electrochemical and Solid­
State Letters, 2007.10(9): p. BI42-BI46. 

2771 P age 



Chapter Seven: ModellinfJ o(HT-PEMFCs 

7 Modelling of HT -PEMFCs 

7.1 Introduction 

A model of a high temperature fuel cell using PBI membranes has been developed using 

thermodynamics, transport and kinetic equations. The model considers mass transport through a 

thin film electrolyte as well as through the porous media. The model uses available experimental 

physical and chemical property data for the related phosphoric acid fuel cell, when appropriate. 

This Chapter reviews the area of PEMFc modelling and introduces a pseudo one dimensional 

model for the cell made up of a membrane (PBI phosphoric acid doped) sandwiched between 

two catalyst layers bounded by gas diffusion layers. The catalyst interface was presented using 

macro-homogeneous model. The model is used to simulate the influence of operating condition, 

cell parameters and different fuel gas compositions on the cell voltage current density 

characteristics. 

7.2 Literature Review 

There are numerous mathematical models of Nafion ® type PEMFCs that have been reported in 

the literature. The models vary from empirical (curve fitting) and zero dimensional; essentially 

coupled thermodynamic; kinetic and resistance approaches; to one/two dimensional 

phenomenological approaches. One of the early phenomenological models of a PEMFC with 

Nafion® membrane was developed by Bemardi and Verbrugge [1]; since then, significant 

developments have been made. Models were used to study concentration and current 

distributions in PEMFCs [2], to map liquid saturation and temperature distributions [3] for 

comparison with experimental data, to solve equations describing multi-component flow in 

diffusion layers and flow channels [4] or to modle mass transport in porous electrodes[5]. 

The mass transport in PEMFC electrodes was considered to be either a single phase [6] where no 

water liquid is formed or a two phase [7] involving an electrolyte/water film. It was found [8, 9] 
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that under the assumption of no liquid water formation, the model consistently over predicted 

measured polarization behaviour. 

On the other hand, results showed that the inclusion of liquid water transport greatly enhanced 

the predictive capability of the model and was necessary to match experimental data at high 

current density [10]. This could be achieved in the form of one dimensional [11], two 

dimensional [12] and three dimensional models [13, 14]. 

In comparison, there has been little modelling of PEMFCs based on PBI membranes. The first 

proposed model was a parametric model; a very low value of 9.2 % was used for cathode 

porosity with a high value for the transfer coefficient (a) equal to 2. However such a model could 

not explain the limiting current observed under air operation [15]. 

A second one dimensional model; assumed the Tafel approximation to describe the electrode 

kinetics, with a transfer coefficient equal to 0.5 while the exchange current density was fitted to 

the polarisation curves using least square error method leading to reaction order for oxygen equal 

to 0.7 [16]. The simulated polarisation curve showed a better fit for air than for oxygen; where 

the model underestimated the performance at the higher current densities. The influence of 

humidity and consequently product water generation on membrane conductivity was given as a 

reason for the observed behaviour (the model assumed constant membrane conductivity). 

A third model considered a three dimensional structure, with transfer coefficient (a) equal to 2 

and reaction order (y) equal to 1. However, once again the model failed to explain the observed 

difference between air and oxygen operation: oxygen simulation underestimated the 

experimental data, whilst with air operation the simulated data over predicted the experimental 

data at high current densities; where contrary to experimental results, no limiting current was 

observed [17]. 

Scott et aI, has also proposed a one dimensional model for PBI based fuel cells. They described 

electrode kinetics by the Butler-Volmer equation and mass transport by the multi-component 

Stefan Maxwell equations coupled with Darcy's law. The model had a good fit with the 

experimental data but failed to show limiting current under air operation [18]. 
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Similarly, one and two dimension degradation models were constructed to simulate the steady 

state polarisation curves recorded at different times during aging test. The models again failed to 

show any apparent mass transport limitations under air operation (limiting current) and used a 

equalto 1 and y equal to 1[19,20]. 

The failure of the reported models to predict the mass transport limitations under air operation 

and therefore over estimating cell performance particularly at high current densities was caused 

by the assumption that mass transport solely occurred through the porous media. This is similar 

to the single phase mass transport observation discussed earlier in Nafion based PEMFC models. 

In reality an electrolyte (PBVAcid) thin film surrounding the catalyst sites (particles) is present 

and mass transport though this phase should be considered. In this film reactants have to dissolve 

in the electrolyte media and diffuse through it to reach the catalytic sites, in a similar way to two 

phase mass transport approach where diffusion through liquid water is considered. Diffusion 

through the acid electrolyte is much slower in comparison to that through porous media and can 

explain the observed PBI-PEMFC mass transport behaviour. The effect of the electrolyte thin 

film has been realised and modelled in phosphoric acid fuel cells [21, 22]. 

This absence of a thin film model approach also explains the relatively thick catalyst layers and 

very low porosity used in previous reported models [15, 16] in attempts to compensate for the 

thin film effects and to try matching the experimental data. 

Similarly, while most the models used value for reaction orders equal to one, alpha values varied 

from 0.5 to 2. This corresponds to; at 150 ·C unrealistic Tafel slopes of 168, 84 & 42 m V dec·1
, 

respectively. No such values have been reported for oxygen reduction in PBI or phosphoric acid 

environment at the studied conditions. As shown erliear (Chapter 3) alpha values change with 

doping level, for example at 150 ·C; the lowest Tafel slope observed at the minimum doping 

level of 4.5 PRU was 92 mV dec·1 (a = 0.91) increasing to 104 mV dec·1 (a = 0.81) at doping 

level of 10 PRU [23, 24] and 90-135 mV dec·1 (a = 0.93-0.62) for phosphoric acid fuel cells [25-

31]. 
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Additionally, empirical models have been developed to study temperature effects in PBI based 

PEMFCs. A change in the transfer coefficient (increase) with temperature was obtained using 

non linear square errors fitting method [32]. This result agrees with the finding of this work 

(Chapter 3) and similar documented behaviour in PAFC [25,27,28,33]. 

Modelling of PBI PEMFCs will increase understanding of their behaviour, enable prediction of 

their performance and assist with their operational control. Thus, a one dimensional (ID) model 

of the high temperature PBI based PEMFC was developed and is described below that includes 

the potential and current distribution in the catalyst layers and considers multi-component mass 

transport through porous media and a thin electrolyte film. 

7.3 Mathematical Model of the Fuel Cell 

The mathematical model of the fuel cell is one dimensional where the gas flow channels are not 

considered. The fuel cell consists of two diffusion layers, anode and cathode catalyst layers and 

the membrane. The assumptions adopted in the model are: 

• Steady state and isothermal operation. 

• Mass transport is solely due to diffusion where convection effects are negligible. 

• Ideal gas behaviour. 

• . Membrane was impermeable to hydrogen and oxygen. 

• Negligible contact resistances between components. 

• No membrane swelling. 

• Only gas phases present (no water condensation T> 120"C). 

• Catalyst layer treated as interface rather than a region (OD). 

• Isotropic macro-homogeneous porous regions. 

Isothermal operation was a reasonable assumption as the test cell temperature was controlled 

using electrical heating. Ideal gas behaviour was appropriate, as the cell was not operated at high 

pressure. As the cell was operated at relatively high temperatures, above the normal boiling point 

of water, it was reasonable to assume there was no liquid saturation and single phase behaviour 
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applied. The flow channel was not included in the model; the boundary conditions between the 

flow channel and the diffusion layer are taken as the feed gas compositions, this can be justified 

by the high gas flow stoichiometry used ( > 2.2). 

The macro-homogeneous model for the catalyst layer [34] assumes that the porous electrode is 

an 'average' of the solid electrode and the electrolyte. Thus, the effective conductance of the 

porous electrode is the weighted volume average of the respective conductance. Diffusion 

coefficients and other properties are similarly averaged. 

The objective of the model is to determine the effect of a range of operating variables and 

parameters on the cell voltage of the PBI based fuel cell. The overall cell voltage is given from a 

combination of the thermodynamic cell potential and voltage losses associated with Ohmic 

resistances in the electrodes and membrane, and kinetic losses at the anode and cathode which 

are influenced by mass transport restriction by: 

[ i] 

Where Erev is the reversible cell potential, 11 refers to electrode polarisation losses and iR is the 

Ohmic resistance losses. 

7.4 Thermodynamic equilibrium potential 

The overall electrochemical reaction in a PEM fuel cell running on H2 as fuel and 02 as oxidant 

at temperature above 100°C can be written as 

H 2 (g) +1I202(g)~H20(g) 

The thermodynamic equilibrium potential can be calculated using the Nemst equation: 
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Where P,,- is the partial pressure of the species x, ~Ho and ~so are respectively the standard 

enthalpy and entropy of the given reaction at temperature T and unit activity, and Ull20 is the 

water activity at the studied temperature. p0
02, pO

H2 & U
O
H20 are the reference oxyg~n, hydrogen 

partial pressure and water activity, respectively. Their values are equal to unity. 

The following equation is proposed [31] to calculate the change in the standard Gibbs free 

energy ~Go for the above reaction with temperature T (K): 

~G~ V.mort = -0.0000487792T 2 + 0.1934130924T - 290.039925263 

The enthalpy of water formation in the gaseous phase can be written accordingly 

mf =mf _mVap 
g,T I T 

[2] 

[3] 

Where ~Ht is the enthalpy of water formation in liquid phase and ~HT Vap IS the heat of 

vaporisation (water) at temperature T (K). 

The change of entropy of water formation in the gaseous phase with temperature was calculated 

from the thermodynamic tables [35]. Least square errors technique (Fig. 7-1) was used to build a 

function representing these changes: 

Mr = -9967.35In{T}+ 12414.83 [4] 

Where ~ST is in J K-) and T in K. 
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400 450 500 

Figure 7-1. Calculated entropy of water vapour [35) and the estimated values from the built logarithmic 

function (Eq. 4). 

The change of heat of vaporisation of water with temperature was obtained from [36], and fitted 

using a third order polynomial (Fig. 7-2): 

till~ap = -3.6985255 X 10-4 T3 + 0.4833076T 2 -152.42584114T + 68260.578987 [5] 

Where ~HT Yap is in Joule and T is in K. 

The enthalpy of vapour water formation (Fig. 7-3) can be easily calculated from equation 3 as 

[37]: 

till f = - 238.41 - 0.012256 T + 2.7656 x 10-<i T2 [6] 

Where ~H f is in kJ and T is in K. 

Figure 7-4 shows the calculated standard cell reversal potential in the temperature range of 273-

500 K using the standard Gibbs free energy from equation 2 or 4 & 6. While equation 2 counts 
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for the change of Gibbs free energy for water formation reaction with temperature including 

phase change (liquid at low temperatures and vapour at higher temperatures), standard Gibbs free 

energy calculated from equation 4 & 6 is for vapour water formation (even at Iow temperatures). 

While water formation is an exothermic reaction (£\H is negative), and water vaporisation is 

endothermic (£\H is positive); the sum is exothermic because the magnitude of the exotherm is 

greater than the magnitude of the endotherm and I£\Hfl increases with temperature. Since the 

entropy of water formation is negative and it is lower for gaseous water than for liquid water, the 

overall standard free energy I£\GTI decreases with temperature, the entropy temperature effects 

counters the enthalpy of formation temperature effects and the standard cell reversal potential 

falls with temperature. 

Equation 2 includes the gradual phase change in water with temperature, therefore it is expected 

that the change in £\GT and consequently Erev with temperature is not linear (in the studied 

temperature range of275-475 K) due to the gradual change in water phase from liquid to vapour, 

however, on the contrary linear dependency was observed for the calculated Erev (from Eq. 2) 

with temperature. On the other hand, £\GT obtained from equations 4&6 assumes water vapour 

generation over the entire studied temperature range and was considered in this study. The 

excepted linear dependency of Ere v on temperature was observed (no phase change) and the two 

simulated lines of Eq.2 and Eq. 4&6 intersects at temperature of 373 K at atmospheric 

conditions. 
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400 450 500 

Figure 7-2. Comparison of the measured heat of water vaporization values from ref (36) with the estimated 

values from the polynomial equation. 
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Figure 7-3. Correlated values for water vapour formation enthalpy in the temperature range of 273-500 K. 
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Figure 7-4. Standard cell reversal potential in the temperature range of 273-500 K using Gibbs free energy 

from equation 2 or 4&6. 

The cell reversal potential will deviate from the standard rever al potential depending on the 

water activity and oxygen/hydrogen partial pressure (Nem t equation). 

The water activity is given by [38]: 

= P I P' = RH% 
a H,O H ,O H ,O 100 [7] 

Where PH20 is the water vapour pressure in equilibrium with the acid electrolyte, p' 1I20 is the 

saturation vapour pressure of pure water at the same temperature. 

Typically PBI based fuel cells can operate under dry condition (negligible humidification), in 

this study the gas reactants where passed through a humidifier at room temperature (16 D ) prior 

to entering the cell (RH = 0.36% at 150 DC), the initial water vapour pressure (0. .P conditions) 

was considered to be equal to water saturation pressure at 16 DC (289 K) i.e. PH20=P·291 =0.017 

atrn. 
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Saturated water vapour pressures were obtained from steam tables [39]. The following 

polynomial function (Fig. 7-5) was build to present this data in the temperature range of 273-500 

K. 

p,SaI· = (142.07682T
4 

-171 026.12676T
3 
+ 78013638 .11584T

2
) x 10-10 [8] 

H,O -15953375633.8471T + 1231888491801.45 

Where P is in atm and T is in Kelvin. 

25 

20 
o Measured saturated H20 Pressure 

15 
-Fitted saturated H20 Pressure 

-: no 10 

5 

250 300 350 400 450 500 
T/K 

Figure 7-5. Comparison of measured saturated water vapour pressure from ref [39] with the estimated values 

from the polynomial equation in the range of 273-200 K: 

Considering that thin electrolyte film covering the catalyst surface, the partial pressure of the 

reactants/products should be replaced with their activity in the electrolyte. The activity of 

hydrogen and oxygen can be replaced by their concentration in the thin film considering their 

activity coefficient is close to I (the concentrations are very low). 

We can then write: 
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[9] 

Where oxygen and hydrogen concentration (solubility) is obtained using Henry's law: 

P, P-
C = H~ C = o~ 

H, HH, °2 H 0 2 

T. CH)PO, T. CII)PO, 

[10] 

Where Px (atm) is the equilibrium partial pressure of species x above the electrolyte film and HX 

(atrn cm3 mole-I) is Henry's constant for the given species-electrolyte (H3P04) pair at a given 

temperature T. 

The term RT inside the logarithm expression in equation (9) was introduced to convert the 

concentration Cx (mole cm-3
) into pressure units (atrn) to calculate the standard cell reversal 

potential. 

In reality the observed cell O.C.P is lower than the estimated value from the thermodynamics 

Erev due to the effect of cross-over and other phenomena (carbon corrosion, etc .. ) where ii=io 

leading to an overvoltage l1cross-over equal to (as will be shown later in the kinetic Sec. 7.7, 

equation 58): 

1] = -RT In[icross-over + 1+(icross-over)2] cross-over F 2 . 2 . 
a 'o,c 'o.c 

[11] 

Where a is the transfer coefficient and io is the exchange current density. 

The observed open circuit will be equal to Erev + l1cross-over; typically for PBI membrane with 

thickness 80-40 !lm the observed OCP with oxygen at 150 ·C was in the range of 0.88-1 V. OCP 

values of 0.95 V [32] and 0.9 V [15, 17] have been previously used for PBI PEMFCs models. 

It should be stressed here that the observed OCP cannot replace Erev as io is solely measured at 

Erev. The effects of cross-over on polarisation curves can be ignored, as it is only important at 

very small currents and become negligible when polarising the electrode, where the total current 

i + icross-over becomes equal to i (i » icross-over) as can be seen in equation 12, in other words the 

overvoltage losses due to mass transport becomes negligible: 
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i + icross-over + 1 + (i + icr~ss_over)2 
17 - _-_R_T In 2io,c 2zo.c 

cross-over - a F ---i --7==(==i =)=2'---~ 
-+ 1+-
2io,c 2io.c 

[ 12] 

7.5 Gas transport in porous media 

7.5.1 Diffusion in the porous cathode 

There are three species in the cathode gas stream; oxygen, nitrogen and water. 

For the purpose of this model only one-dimensional diffusion, normal to the face of the electrode 

is considered. Diffusion of multi-component gas streams through the porous carbon electrode 

can be described using the Stefan-Maxwell equation: 

[13] 

Xi is the molar fraction of species i, N is the molar flux of species i and D i/
IT is the effective 

binary diffusion coefficient for the pair i-j in the porous medium. 

Di/IT can be calculated using the Slattery-Bird correlation [40] and corrected to account for the 

porosity/tortuosity effects using the Bruggeman correlation [18]: 

(14] 
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Where Tc and Pc are the gas critical temperature and pressure, respectively. M is the gas 

molecular weight, & is the porosity and T is the tortuosity. a and b are constants, a is 0,0002745 

for di-atomic gases and 0,000364 for water vapour and b is 1.832 for di-atomic gases and 2.334 

for water vapour. 

The species' flux can be given as follows: 

Since nitrogen is inert species we can write: 

And from mass balance we can write: 

N =-.L 
O"g 4F 

-j 
N =­

Hpg 2F 

[ 15] 

[16] 

[17] 

The sign of the flux determine the direction of flux; negative NH20 means the species is 

produced, while positive N02 means the species is consumed. j is the current density per 

geometric electrode area and F is Faraday's constant. 

Substituting the species flux in equation 14, we obtain: 

[18] 

dX RT [ (N) ( X X)] ~ __ X O"g N 0" + N" 
dz - P Hp Deif - Hp Deif Dcif 

O"H,O O"H,O N"H,O 

[19] 

Re-arranging equation 18: 

[20] 
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Integrating equation (20) with boundary conditions at the electrode channel interface z = 0, 

XN2=XON2 (for air 0.79)) and z = Z, XN2=XN2 at the catalyst layer where Z is thickness of the gas 

diffusion electrode: 

[21 ] 

The oxygen molar fraction is given by: 

X o, =l-XN, -XH,O [22] 

Combining Eq. (22) and (19) and rearranging for XH20 

[23] 

Substituting XN2 from 21 

For simplification, define constants a, b, hand c: 

[25] 

Equation 24 becomes: 

dXHO --'-=aX +cehz_b 
dz H,O 

[26] 

Integrating 26 with boundary conditions (z = 0, XH20 = XOH20) at the channel interface, and (z = 
Z, XH20 = XH2o) at the catalyst layer: 
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X =e ----- +--e +-aZ (x ° b C) C hZ b 
H,O H,O a h-a h-a a 

[27] 

Substituting 16 &17 in 25 leads to 

b . D~ 2D~ 
-=2.h = RTJ N,.H,O- N,.O'.a = 

a 4FP Deff Dcff 
N,.H,O N,.a, 

-RTj [28] 
4FP Deff 

O,.H,O 

2Deff (Deff _ Deff ) 
_c_ = XO N,.O, O"H,O N"H,O [29] 
h - a N, Deff (D eff D cff _ 2D eff Dcff + D eff D'tf ) 

N,.H,O N,.H,O O,.H,O N,.O, O,.H,O N"H,O N,.O, 

And finally. 

xH,o = 

-j~ Z( 2Deff (Deff Deff) 1 e 4FPDo"H,O Xo _ XO N"O, O"H,O - N,.H,O 2 
H,O N, Deff D eff Deff _ 2D 'tf Deff + D'tf D"ff -

N"H,O N,.H,O O"H,O N"O, O,.H,O N,.H,O N,.O, [30] 

( ) 

RTJ o-tf _2D-tf 2Dcff Dcff Deff '.,11-0 '.,0, Z 
+ XO N,.O, o"H,O - N,.H,O e 4FP Ot"H,,,Ot,,U, + 2 

N, Deff D elf Delf _ 2D eff Delf + D eff Deff 
N,.H,O N,.H,O o,.H,O N,.a, O,.H,O N,.H,O N"a, 

Xo2 can therefore be obtained from equation 21. 22 and 30. 

7.5.2 Diffusion in the porous anode 

The anode gas feed consists of a mixture of CH4. C02. CO. H20 & H2 when running on 

refonnate. for five multi-component gas anode species. we can write balances: 

dXc~ = RT xco,( N H 2,g ) 

dz p . Deff 
H2.C02 

[31] 

[32] 

dXco = RT X (NH2,g) 
d co Deff 

Z P H co 2. 

[33] 
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Where: 

This leads to, 

[cl Nil,. ) ] 

X 
_ XO Pl. D;(~2 Z 

co, - co,e 

(Rd N:;'2' )z] 
° Pl. DII2 co 

Xco =Xcoe . 

For pure (low) humidified hydrogen feed XC02= Xco= XCH4 =0. 

7.6 Transport through thin film electrolyte 

[34] 

[35] 

[36] 

[37] 

[38] 

[39] 

[40] 

The macro-homogeneous model (Fig. 7-6) for the catalyst layer assumes that the catalyst layer is 

an 'average' of the solid electrode and the electrolyte. Thus, the effective conductance of the 

catalyst layer is the weighted volume average of the respective conductance: diffusion 

coefficients & film thickness are similarly averaged, and so on. 

Oxygen transport from the porous media to the catalyst active surface area occurs through a thin 

polymer/acid film covering the catalyst agglomerates. The film provides proton conductive paths 

from the catalyst active sites to the membrane. The average film thickness <5 can be estimated 

using the following equation: 
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[41] 

m is the total mass of PBIIH3P04 per unit area(loading), pi the density and c/Spt is the surface 

area of carbon/platinum per unit area covered by the electrolyte. 

Electrolyte 
film 

Gas 
Pore 

Figure 7-6. Shows diagram of catalyst layer u ing the thin film assumptio n. 

Values of oxygen diffusion in pho phoric acid (98% wt) were reported to b 30 x I 0-6 cm2 
-I, an 

order of magnitude higher than that of doped PBI (doping level of 6 PRU) 3.2 x 10-6 cm2 
- I at 

150 °C. Similar values of dissolved oxygen concentration was obtained for doped PBI (doping 

level of 6 PRO) 0.68 x 1 0-6 mole cm-
3 

and for 95% wt phosphoric acid 0.5 mole cm-3 at ISO ° 

and atmospheric pressure [23]. 

Savinell et ai, studied oxygen reduction at the platinwnlpho phoric acid doped PBl interface and 

found that oxygen diffusion wa increased by increasing the volume fraction of amorphou (free) 
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H
3
P04 (i.e. doping level) . They also suggested that the crystalline PBI regions are not involved 

in proton or oxygen transport [23, 24]. 

To determine the oxygenlhydrogen concentration at the catalyst surface, we can derive from 

Fick's law for diffusion: 

No, = -D~,po·(Co,_Pt -CO,(t/issolveJ 

S Pt-cathode 8 Cathode 

[42] 

N H, = - DZ:PO
• (C H,-Pt - C H,(disso/ve)) 

S Pt-anode 8 Anode 

[43] 

N is the molar flux (geometric area) obtained from equations 16 and 36, CPI is the reactant 

concentration on the catalyst surface, Cdissolve is the equilibrium reactant concentration in the acid 

film at the studied temperature. SPt as mentioned erliear is the real platinum surface area (ESA) 

per unit area that is covered with an electrolyte film (also known as the roughness factor RF). 

Due to insufficient data on hydrogen solubility in phosphoric acid at high temperature, it was 

considered that hydrogen solubility is similar to that of oxygen [41] at the same conditions 

(pressure, temperature & phosphoric acid concentration).We can write using Henry's law for 

solubility: 

[44] 

[45] 

Where CH2, CO2 are the dissolved hydrogen and oxygen concentration in phosphoric acid, 

respectively. H is Henry's constant at a given temperature and phosphoric acid concentration. 
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Similarly, for the hydrogen diffusion coefficient in phosphoric acid electrolyte we can write 

[42]: 

[46] 

Figure 7-7 shows the limiting current (steady-state value) for 60%Pt/C at various oxygen partial 

pressures and temperatures. At the limiting current, CPt becomes zero, and j L is directly 

proportional with DCdissolve (Eq. 42). It can be seen that under air (atm) operation the product 

DCdissolve decreased slowly with temperature, while for the same electrode under air (l bar 

relative) the product DCdissolve exhibits a maximum at 150 ·C. This effect is caused by variation 

in diffusion coefficient D and Henry's constant H at a given temperature with pho phoric acid 

concentration and consequently water partial pressure above the electrolyte film, in other word 

the concentration and viscosity of phosphoric acid at a given temperature depend on the 

humidity content. 

2 
_ air 120C - air 150C - air 175C - air 1 bar 120C - air 1 bar 150C - air 1 bar 175C 

1.6 ~ '"I 
E 
u 

<-

1.2 

~ 
0.8 .l.--___ ,-- ----,-- ----r----,-- ---,-- - --,--_ _ ---, 

o 10 20 30 40 50 60 70 

t/s 

Figure 7-7. The current-time transient response to a potential step where the electrode is entirely under 

diffusion control. 
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Klinedinst et al studied oxygen solubility and diffusivity in hot phosphoric acid [43]. They 

suggested that both gas diffusivities and solubilities exhibit exponential reciprocal temperature 

dependencies, therefore: 

D~JPO. = Aexp(-Ea I RT) 

Cdissolved = Bexp(- M/solu I RT) 
O2 O2 

[47] 

[48] 

A and Bare pre-exponential factors, Ea is the diffusion activation energy and ~H is the enthalpy 

of solution. Both Ea and ~H change with the concentration of phosphoric acid. 

7.6.1 Diffusion, temperature and phosphoric acid concentration 

A second order polynomial was fitted using least squared error technique to fit the data obtained 

by Klinedinst et al [43], for the activation energy of oxygen in phosphoric acid at different acid 

weight concentrations (W). The correlation of the data with equation (49) is shown in Figure 7-8. 

Ea (kcal mole-I) = -0.011607142857 W2 + 1.9642142857W ·75.376 [49] 

The high values of the diffusion activation energy were assigned to the extensive hydrogen bond 

network and high viscosity of concentrated H3P04 [44]. This also explains the decrease in 

diffusion coefficient with increasing phosphoric acid concentration. 

The calculated diffusion values were in the range of (10)5.10>6 cm S>I) depending on the 

temperature and phosphoric acid concentration; values were in good agreement with values 

obtained in the literature [31,43,45,46]. 
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93 94 95 96 97 

Figure 7-8. Comparison of the measured acti vation energy of oxygen diffusion in hot phosphoric acid at different 

concentration !Tom ref[43] with the estimated values !Tom the fitted polynomial equation. 

7.6.2 Solubility, temperature and phosphoric acid concentration 

A third order polynomial was built to fit oxygen enthalpy of solution data obtained from ref [43]: 

~H (kcal) = (-O.003125W3 + O.8371429W2 
- 74.95179W+ 2244.786) [50] 

Figure 7-9 shows the variation of enthalpy of solution for oxygen in phosphoric acid with acid 

concentration. The enthalpy of solution (-h.H, as h.H < 0 for W < 96% wt) decreases with 

increase in phosphoric acid concentration until it reaches negative values at 96% wt; this means 

that a smaller decrease in the solubility of oxygen in phosphoric acid with temperature will occur 

as the acid concentrations increases from 85 %wt to 95 %wt; beyond this concentration a slow 

increase in solubility with temperature will occur. 

When calculating the oxygen enthalpy of solution from (In (Co2) vs. lIT plots), oxygen 

concentrations were corrected to one atmosphere pressure assuming Henry' s law. This is because 
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of the corresponding water vapour pressure above the electrolyte (H3P04) at studied temperature 

and electrol yte concentration [31] . 

Figure 7-10 shows the variation in oxygen solubility in hot phosphoric acid at different acid 

concentration and temperatures from ref [43] with the estimated values from the fitted 

polynomial equation. 
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Figure 7-9. Comparison of measured enthalpy of solution for oxygen in hot phosphoric acid at different 

concentration from ref (43) with the estimated values from the fitted polynomial equation. 
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Figure 7-10. Variation in oxygen solubility in hot pho phoric acid at different acid concentration and 

temperatures from ref /431 with the estimated values from the fitted polynomial equation. 

CO2 and D02 can be obtained from equations 47 and 48 for a given acid weight concentration. By 

substituting their values into equations 42 and 43 will fmally lead to CPI , the oxygen 

concentration on the catalyst surface required in the Butler-Volmer kinetic equation. 

7.6.3 Phosphoric acid concentration, temperature and water vapour pressure 

MacDonald and Boyak [47] studied the density, conductivity and equilibrium water vapour 

pressure of concentrated phosphoric acid from room temperature to 170 QC. Data from their work 

was used to detennine phosphoric acid concentrations (wt %) at a given temperature and water 

vapour pressure. 

To obtain a good fit without using polynomials of very high order, they uggested expre sing 

concentrations as mole per cent X, instead ofW (wt %) using the formula: 

O.OlW x =- --- - - --
O.OIW + 0.OS44(100 - W) [5\ ] 
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At any given concentration, a linear relation was obtained between log (PH20 /mmHg) the 

equilibrium water vapour pressure and liT (0C- I
): 

[52] 

Values of a and b are listed in table 7-1 below at different mole % 

Table 7-1. Values of constants a & b used in equation 52, at various acid concentration (expressed as mole %) 

X (moJe%) W (wt%) 

35 74.55 

50 84.5 

65 91 

80 95 .6 

100 100 

Two functions were built to correlate a and b with X 

Values for theses constants are given in the appendix . 

a 

246.92 

278.24 

303.24 

321.6 

344.05 

416.36 

b 

4.7781 

4.7086 

4.5563 

4.3028 

4.1491 

4.2476 

[53] 

[54] 
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During simulation of the model in this work, X and W were continuously updated based on 

water vapour pressure (or relative humidity) and temperature. W was obtained from X using: 

W = 98X 
0.98X +(18.016-0.18016X) 

[55] 

Figure 7-11 compares the measured equilibrium water vapour pressure above phosphoric acid 

solutions at different temperatures and concentrations from ref [47] with the estimated values 

from the built polynomial in equation 52. It can be seen that PH20 (or humidity) is highly 

dependant on phosphoric acid concentration at the typical low humidity conditions for PBI based 

PEMFCs gas feed. This means that phosphoric acid concentrations will vary greatly with the 

water produced by the fuel cell (logarithmic relation) . 
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Figure 7-1 \. Compariso n of measured eq uilibrium water vapour pressure above phosphoric acid solutions at 

different temperatures and concentrations from ref 147\ with the estimated va lues from the built polynomial 

in equation (52). 
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7.7 Kinetics 

The Butler-Volmer equation was used to describe the kinetics at the anode and cathode: 

[56] 

., Rd.e Ox.e ( (-a F ) (a F . )] le = 10.e exp RT (1]J -exp ~(1]c) [57] 

Where the subscripts a & c are for anode and cathode, respectively. a is the transfer coefficient, 

io is the exchange current density at the studied conditions per Pt unit area given by equation 60 

below. 

Assuming a
Rd

•
c 

= aax,e' it is convenient to substitute the hyperbolic sine function in 57 to give: 

( J [ ( J
2] - RT. _ i - RT i i 1] =--smh 1 _c_ =--In _c_+ 1+ _c_ 

c acF 2io,c acF 2io,c 2io,c 
[58] 

Values ofa can be obtained from Tafel slope b = 2.3 RTf a F: as shown earlier (Chapter 3) alpha 

values change with doping level, for example at 150 ·C the lowest Tafel slope observed at the 

minimum doping level of 4.5 PRU was 92 mV dec·1(a = 0.91) increasing to 104 mV dec·1 (a = 

0.81) at a doping level of 10 PRU [23, 24] . 

. Oxygen reduction in PBI-free electrodes environment (or for PBI electrodes with very high 

doping level) is the same as that in phosphoric acid, while for PBI based electrodes, appropriate 

transfer coefficient should be chosen; depending on the doping level. 

Various Tafel slopes have been reported for phosphoric acid fuel cells in the range of 90 and 135 

mV dec·1 (a = 0.93-0.62) at 150 ·C [25-31]. A value of alpha equal to 0.75 (112 mV dec·1) in the 

middle of the reported range was considered. In this work, the closest available experimental 

data for a PBI-free environment at 150 ·C is from half cells results (Chapter 3) with a high 
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doping (16 PRU) PBI electrode at temperature of 140·C, the obtained alpha value was 0.75, thi s 

value agrees with the chosen reported alpha value for phosphoric acid . 

While the discussed value fo r alpha are for temperature of 150 ·e, alpha values vary with 

operating cell temperature. Appleby [48] reported variations in of a with temperature from 0.56 

at 25 °C to 0.66 at 136 °C in 85% wt phosphoric acid. Similarly, O'Grady et al [16] reported 

values from 0.53 at 25 °C to 0.68 at 70 °c in 85% wt phosphoric acid. Huang et al [17] observed 

a value (85 %wt H3P04) of 0.47, 0.61 & 0.67 at temperatures of25, 100 & 150 °C, respectively. 

Kunz and Gruver [18] reported a = 0.94 at 160°C (96%wt H3P04) using PtJC as catalyst. 

The variation of dependency with temperature can be expressed as [49] : 

a =a+cT [59] 

Where a & c are constants. Values for c, the rate change of alpha with temperature, were 0.00 14 

[27],0.0015 [48], 0.0034 [33] & 0.0043 (this work PBI 16 PRU). 

The value of alpha and its variation with temperature (Table 7-2) depend on the catalyst 

treatment and the impurity content in the acid [28, 48]. 

Table 7-2. Summarise alpha variation in temperature values from this work (chapter three) and Ref. 127, 331 

T This work Extrapolated from Obtained from Extrapolated from 

CO 16PRU Ref (331HJP04 Ref (271HJP04 Ref (48IHJP04 

100 0.5864 0.7624 0.6022 0.6098 

120 0.6724 0.8304 0.6302 0.6398 

150 0.8014 0.9324 0.6722 0.6848 

175 0.9089 1.0174 0.7072 0.7223 

The exchange current density was obtained using: 
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• _ .ref L ( C Pt )r [Ec (1 T)] I -I a -- exp -- --
o 0 c c cre! RT T 

Pt re! 

[60] 

i~ef (Acmpt,2 ESA) is the exchange current density measured at a reference temperature T rcr and 

reference dissolved oxygen concentration (solubility) Cref. CPt is the reactant concentration on the 

catalyst surface calculated from equation 42 (or 43 for hydrogen). ac (ml't2 g.l) is the catalyst 

specific accessible electrochemical surface area (covered by electrolyte) in the electrode 

measured using cyclic voltammetry (31.55 & 35.45 m
2 

g'! for cathode and anode electrodes 

utilizing 50% pvC & 20% PVC, respectively); which correspond to 50-30 % of the given value 

by the manufacture (128 m2 g"!for 20% PVC & 86 m2 g'l for 50% pvc [50]) when placed in the 

electrode structure [51]. ac can also be estimated by multiplying the ionomer's volume fraction in 

the catalyst layer by the catalyst ESA. 

Le is the catalyst loading, which corresponds to the weight of platinum per unit geometric area 

(mg cm'2). The product ac.Le is the roughness factor (dimensionless), which is the Pt 

electrochemical surface area divided by the electrode geometric area, referred to earlier as SPt. 

The units of the product io
rcf SPt or io will be A cm'2 (current density per electrode geometric 

area). 

r is the pressure <;:oefficient or the reaction order with respect to oxygen in phosphoric acid/PEI, 

a value of 1 (first order) was reported in references [23, 31]. 

Ec the activation energy of oxygen reduction in hot phosphoric acid was found to be independent 

of phosphoric acid concentration 92 kJ mole'! [21], 54.8 kJ mole'l [15],62.34 kJ mole'l [48] and 

72.4 kJ mole"! [9]. The latter value was used as it lies in the middle of the range. 

Values for io rcf vary in the literature, depending on the temperature, phosphoric acid 

concentration and the dissolved oxygen concentration. Most values (Table 7-3) were in the range 

of 10.8 A cmpt,2 and io value from ref [30,48] was used. 
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Table 7-3. Summarise the reported exchange current densities for oxygen reduction III phosphoric acid. 

io / A.cmp,-l H3P04/Wt% TfC C02 /mole.L-1 Ref 

96 160 4.l3xl0 [52] 

2.8x10-7 85 136 2.61 x l04 [48] 

4x10~ 85 96 3.94xlO:li v [30,48] 

2.4xlO-8 85 136 2.61 x l04 [25] 

3.8x10-9 98 lOO 0.996xl0::.t [30] 

3.9xlO-8 98 125 0.971 x l0- [30] 

2.63xlO:S 98 150 1.07xlO:li [30] 

8xlO..fl 85 60 6.23 x 1 0 [26] 

1.7x10 85 160 2.11 xlO:iJ [26] 

lxlO..fl 85 120 3.05 xl0 [25] 

1.6 xlO~ 85 136.1 2.6IxlO:li [28] 

Calculated concentrations from equations 48&50. 

Similarly, a value ofioref = 0.144 A cm-2 at 160 QC (Cl-I2rcf2.11 x l0-4 mole L- 1
), Ea= 16.9 kJ mole-I, 

Cl = 0.5 and y = I for hydrogen oxidation in phosphoric acid was obtained from [41]. 

7.8 Conductivity and IR losses 

To express the proton conductivity of acid doped PBI at different temperatures a modified 

Arrhenius equation has been suggested initially [53] for polymer/acid (salt) complexes, and later 

used by other researchers [54-57]. 

[61 ] 

Values of A, the pre-exponential factor, and B, the activation energy, are humidity and doping 

level dependant and are given in [54]. 

3071 P n g \.: 



Chapter Seven: Modelling o(}{T-PEMFCv 

Polynomial functions (equations 62 & 63) were fitted for A & B based on the relative humidity 

at a given doping level (membrane doping level of 5.6 PRU in this case), which is given by: 

A = exp[(k.a RH3)+ (k; RH2)+ (k; RH)+ k; ] 

B = (kt RH3)+ (k;RH2)+ (k;RH) + k; 

The values of constants ka & kb are given in the Appendix. 

[62] 

[63] 

The conductivity obtained from equation 61 along with the membrane thickness of (40 ~lm) were 

used to determine the IR losses through the membrane. On the other hand the IR losses 

(protonic) through the catalyst layer where obtained from the catalyst layer thickness (15 ~lm) 

and the effective phosphoric acid conductivity (product of phosphoric acid conductivity at the 

studied condition and its volume fraction in the electrode). The conductivity of phosphoric acid 

varies with temperature T and relative humidity (RH) (or phosphoric acid concentration W (wt 

%». 

The following functions for conductivity were given [47] for 84 ~ W ~ 94%: 

K(S cm) = 1.01365 -1.21548 x 1O-2W - (1.5447 X 10-7 
- 6.42463 x 10-5W)T [64] 

for 95 ~ W ~ 99%: 

K(S cm) = -3.45285 + 7.77294 x 10-2 W - 4.50762 x 10-4 W2 

_ (6.24637 X 10-2 -1.387186 X 1O-3W + 7.18336 x 1O-6 W2 )T 

The overall cell voltage is given by: 

[65] 
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The iR drop is calculated from (61, 64 & 65) using Ohm's law, anode/cathode activation & mass 

transport over-potential from equation 58, and thermodynamic cell reversible potential from 

equation 9. 

7.9 Results and discussion 

Matlab® V.7.3 and Simulink® V.6.S equipped with Ordinary Differential Equation solver (ODE 

45) was used to solve the model governing equations. The model results were compared to that 

of experimental data for a 50 %PtlC (0.4 mg cm'2) cathode and 20 %PtlC (0.2 mg cm'2) anode. 

The cathodic sweep (from OCP to 0 V) was considered under pseudo steady-state conditions (5 

mV s'I); the conditions at which the quoted alpha values were measured. High resolution 

experimental data were sampled every 1.0 mV step in order to allow for good comparison with 

the model results. 

7.9.1 Mass transport losses through the gas diffusion layer 

The influence of the diffusion layer porosity, temperature and current density on the effective 

oxygen concentration at the cathode is simulated to judge the impact of this component on cell 

behaviour. 

Figure 7-12 shows the effect of porosity on the cathode species' mole fraction at the interface of 

the diffusion layer and catalyst. The oxygen mole fraction as well as nitrogen mole fraction show 

exponential dependency on porosity while the water mole fraction shows a logarithmic 

dependency on porosity. This can also be concluded from equations 21, 22 & 30. We can also 

see that at a current density of 5 A cm'2 using air as cathode feed, the oxygen molar fraction is 

only significantly affected at porosities less than 50 % and reaches zero at porosity of -22 %; 

where a limiting current will be observed. 

Figure 7-13 shows the effect of temperature on the cathode mixture mole fraction at a current 

density ~f 5 A cm'2. As temperature increases diffusion becomes faster and mass transport 

limitations reduce, i.e. the mole fraction of species i (X j ) becomes closer to its initial value X jO, 

therefore oxygen and nitrogen mole fractions at the catalyst layer boundary increases with an 

increase in temperature, while the water mole fraction decreases. 
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Figure 7-12. The effect of porosity on the cathode gas mixture (a ir) at 150' C, under operating current den ity 

of 5 A cm-2, li= 200 flm and T = 1.5. 
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Figure 7-13. The effect of temperature on the cathode ga mixture (air) under operating current density of 5 

A cm-2, Z = 200 Ilm, porosity of 30% and T = 1.5. 
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Figure 7-14 shows the effect of current density on water and oxygen mole fraction at the 

cathode boundaries for a 30% porosity and diffusion length of 200 f.U11 . No limiting current is 

visible (X02> 0) even at high current density of 5 A cm-2 using air. This confirms the above 

conclusion (Sec.7.2) regarding the failure of single phase models, with no el ctrolyte thin film 

consideration, to explain the observed low limiting current I -1.5 A cm-2 ofPBI based fuel cell 

under air operation. 
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Figure 7-14. The effect of operating current density on the cathode gas mixture (ai r) at temperatu re of 150 

' C, Z = 200 Jlm, porosity of 30 % and T = 1.5. 

7.9.2 Oxygen partial pressure effects 

Figure 7-15 compares simulated and experimental data for PBI based HT-PEMFC at different 

oxygen partial pressures ; from air (atm) to air (l bar) and pure oxygen. Large increa e in 

voltage were seen in both modelled and experimental data due to enhancement in kinetic and 

mass transport when increasing oxygen concentration (partial pressure) . This effect i due to the 

low oxygen permeability in hot concentrated pho phoric acid. The experimental observed 

limiting current increased from (~ 1.4 to 2.1 A cm-
2

) when doubling oxygen partial pre ur (\ 

atrn to 1.99 atrn). The model data and the experimental data were in good agreement. However 
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small differences were observed in the slope of the polarisation curves, at high current densities, 

where the model over-estimated the cell performance with air and air (1 bar pressure) whilst not 

under oxygen operation. 

The slope of the polarisation curves is affected by a combination of kinetic, mass transport and 

IR effects. The observed difference of the slope at high current densities in this case was 

probably caused by unknown kinetic or mass transport effects, and not IR effects, as a good 

match in the slope was observed at high current densities under oxygen operation. 

1.1 
• Experimental 0 2 150C 

1 
• Experimental air (1 bar) 

0 .9 

0.8 
• Experimental Air 150C 

- Model 0 2 150C 
0.7 

> 0 .6 
....... Model air (1 bar) 150C 

.1 0.5 
-- Model air (atm) 150C 

0.4 
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0.1 

0 
0 0.5 1 1.5 2 2.5 

Figure 7-15. Comparison between modelled and experimental results for HT-PEMFC utilising 50% Pt/C at 

the cathode and 20% Pt/C on the anode at temperature of 150 'c and various pressures- alpha value of 0.75 

was used for the cathode. 

In order to improve the fit between the experimental data and the model prediction, it would 

seem that a correction at high current densities should be made to the kinetic effect (lower a) or 

mass transport (higher y). 

Figure 7-16 shows the same experimental data set (as Fig. 7-15) with a lower alpha va lue for the 

modelled data of 0.72 (-117 mV dec-') opposed to the standard value used in the model of 0 .75 

(-112 mV dec-'). As excepted an improved fit was observed between both modelled and 
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experimental data at high current densities and low oxygen concentrations (partial pressure), 

however, on the other hand the model underestimates cell performance at high current densitie 

under oxygen operation. This effect was observed in previous PBr models [ J 6, J 7]. While th 

authors related such behaviour to a change in membrane conductivity with water produced, thi 

suggestion can not be substantiated in this case as such variation wa considered in thi model 

(Sec. 7.8). The behaviour can be caused by either a variation (increase) in the transfer coefficient 

with current produced due to an increase in humidity [23], or a decrease in cathode's potentia l 

leading to a decrease in impurities [49] and phosphoric ions adsorption [58] on the cataly t 

surface (has a maximum adsorption peak at 0.85 V [45]). However, if such effects were taking 

place then alpha should also improve under air & air (1 bar) operation and the model shou ld 

underestimate cell performances; which weren't observed. This suggests that the observed 

deviation in the slope is caused by mass transport effects rather than kinetic effect . 
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• Experimental Air 150C 

-- Model 02 150C 
0.7 

> 0.6 
-- Model air (1bar) 150C 

B O.S 
-- Model ai r (atm) 150C 

::::I 

0.4 

0.3 

0.2 

0.1 

0 
0 0.5 1 1.5 2 2.5 

Figure 7-1 6. Comparison between modelled and experimental results for I-IT-PEMFC utilising 50% Pt! at 

the cathode and 20% Pt/C on the anode at temperature of 150·C and various pres ures- alpha va lue of 0.72 

was used for the cathode. 
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To introduce increased mass transport losses, the reaction order (r) with respect to oxygen in 

phosphoric acid was increased from the commonly reported value of 1 [3 1] to 1.375, va lues 

above I have also been reported for PBIIH3P04 interface [23]. The reported value of reaction 

order was measured at constant over-voltage 11 (and not constant voltage E) i.e. they where 

measured from the exchange current density ratios (11 = 0) where io was measured at equilibrium 

potential !:rev which in turn is affected by a concentration change (Nemst equation) a w ill be 

discussed shortly. 

Figure 7-17 shows the effect of the higher reaction order (1.375) on the cell voltage polari ation 

curve and maintaining the standard value of alpha (0.75). An improvement in the model fit with 

the experimental data at various oxygen pressures is seen where the model prediction fo llowed 

the experimental data very closely even at high current densities and different oxygen 

concentration 
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Figure 7-17. Comparison between modelled and experimental results for HT-PEMFC utilising 50% PtlC at 

the cathode and 20%Pt/C on the anode at temperature of 150 ·C and Yarious pressures- alpha value of 0.75 & 

., = 1.375 was used for the cathode. 
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A higher value of gamma than 1.0 can be caused by one or a combination of the following two 

factors: 

i- Thermodynamic effect of oxygen concentration losses: 

While the oxygen concentration influence was accounted for in the Butler-Volmer equation (60), 

the cell reversible potential was considered constant over the cell polarisation where the 

equilibrium concentrations at rest potential (zero current) was considered. An additional change 

in the reversible potential will occur due to lower oxygen concentrations (see equation 9). This 

shift is equal to (RT/2F) In (Co2/Co02) as given by the Nemst equation. 

Thus, rather than writing equation 58 for high current densities as: 

The overpotential is given by: 

This can be re-written as: 

RT j yRT Co, 
'7 =-In(-)+-In(--) 

C aF io aF C~ , 

RT J yRT Co, RT Co, 
'7 =-In(-)+-ln(--)+-ln(--) 

C aF i aF CO 2F CO 
o ~ ~ 

RT In( J) y'RT I (CO,) 
'7c = aF i + aF n CO 

o a, 

[66] 

[67] 

[68] 

Where y' is equal to y + al2 or in this case 1+0.75/2=1.375, the value used for gamma in the 

latest simulation. 

ii- Losses of surface area CESA) due to oxygen starvation: 

Losses in the accessible electrochemical surface area might occur due to oxygen starvation, 

where at very low concentrations, oxygen will not be able to reach parts of the catalyst surface 

even though they are available for reaction (covered with electrolyte).This effect would lead to a 

further decline in performance at high current densities and low oxygen concentrations (in 

comparison to gamma =1). Unfortunately, such an effect is not accounted for in this model and is 

one of the limitations of the macro-homogeneous model, where it is assumed that the average 

accessible catalyst layer is constant. However if such effects are present then the ESA can be 
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written as function of In (C02/Co 02) which would effectively cause an increase in the apparent 

reaction order. 

7.9.3 Porous media effects 

The effect of mass transport losses due to diffusion through porous media can be seen by 

comparing cell performances using air (02-N2) and heleox mixture (02-He) as oxidant at the 

cathode. While both mixtures contain the same oxygen concentration (X02 = 0.21), the inert gas 

used in the mixture is different. The binary diffusion coefficients of oxygen-helium and water­

helium are four and eight times higher than that of oxygen-nitrogen and water-nitrogen, 

respectively. 

Figure 7-18 shows the enhancement in cell performance observed when switching from air to 

heleox caused by mass transport enhancement through the porous structure. 

Generally, a larger difference between the limiting currents using air or heleox is due to a greater 

contribution of the porous media mass transport losses or the smaller the value of (eT). Similarly, 

to the earlier observation (Sec. 7.9.2) using a = 0.75 & Y = 1, the model provided good 

predictions of cell performance, however it over estimated the performance at high current 

densities. On the other hand the model successfully estimated the limiting current values with air 

and heleox. This suggests that the chosen value for porosity E of 22 % (t = 1.5 [\8]) is 

appropriate for the studied electrode. 
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F igure 7-18. Comparison between modelled and experimenta l result for HT-PEMFC utili ing 50% PU at 

t he cathode and 20% PI/C on the anode at temperature of 150 ·C using air and hcleox mixturc- alpha value of 

0.75 was used for the cathode. 

Figure 7-19 shows that when increasing the gamma value to 1.375, whil t maintaining the 

standard value of alpha (0.75), an improvement in the mode l fit with the experimental data i 

achieved. The model predictions followed the experimental data very cIa Iy even at hi gh 

current densities and with different oxidant of air and heleox. 
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Figure 7-19. Comparison between modelled and experimental re uIt for HT-PEMFC utilising 50% Pt! at 

the cathode and 20% PtlC on the anode at temperature of] 50 ' C using air and heleox mixture- alpha value of 

0.75 & y = 1.375 was used for the cathode. 

7.9.4 Thin film and electrolyte distribution 

As discussed earlier incorporation of the thin film in the model is essentia l to enhance the model 

ability to predict cell performance at high current densities and low oxygen concentrations. The 

thin film is responsible for the major contribution of the observed mass transport 105 e and 

without it no limiting current will be observed below 5 A cm-
2 

(Sec. 7.9.1 ). 

The electrolyte content is a crucial parameter for optimising the three phase boundaries and 

therefore the electrode performance. Increasing the electrolyte content in the electrode will 

increase the accessible ESA and increase the film thickness whilst reducing the poro ity. The 

electrolyte film thickness can be estimated using equation 41. Values of 50 &160 nm were 

obtained for the studied cathode & anode, respectively. 

Figure 7-20 shows the effect of cathode film thickness on cell performance under air operation. 

Increasing the film thickness by factor of 2 and 4 led to a severe impact on cell performance even 
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at relatively small current densities, as a consequence the limiting current fell from 1.32 to 0.78 

& 0.43 A cm-2, respectively. This shows the crucial impact of electrolyte content on cathode and 

cell overall performance. Similarly, decreasing the film thickness enhanced the overall 

performance due to enhancement in mass transport and correspondingly an increase in the 

observed limiting current. These behaviours agreed with experimental observations (Chapter 4 

and 6), where electrodes with the highest observed limiting current showed the best overall 

performance over the entire potential range. 

While the above analysis assumed fixed ESA, conductivity and porosity, in practice there is a 

minimum film thickness below which the ESA will fall rapidly (conductivity also will fall, while 

porosity will increase). 

Considering a case where the film thickness is maintained constant and the ESA is halved this 

corresponds to decrease in the acid content (volume fraction) in the cathode layer by half. Such a 

change led to dramatic fall in cell performance in both the kinetic (activation) and the mass 

transport regions of the polarisation curve; where the limiting current decreased from -1.4 to 

0.78 A cm-2• On the other hand if the electrolyte content is increased (let say doubled) above the 

optimum content, where no further significant increase in ESA is achieved, then the overall 

performance will decrease due to mass transport effects caused by a doubling in the film 

thickness. 

This behaviour agrees with the experimental finding of the importance of acid loading (content) 

in the cathode layer: excess acid (high doping case) led to severe mass transport limitations and 

heat treatment (low doping case) led to dramatic impact on both the kinetic and mass transport 

losses. 

The effect of electrolyte material was also examined by changing the electrolyte in the cathode 

from phosphoric acid to PBr doped phosphoric acid (6 PRU) and would effectively correspond to 

change in the diffusion coefficient. The oxygen diffusion coefficient in phosphoric acid (98 %wt) 

30 xlO-6 cm2 S-I is almost an order of magnitude higher than that of doped PBI (6 PRU) of 

3.2x l0-6 cm2 S-I at 150 °C, while oxygen solubilities are similar in both cases [23, 24). 

Considering a case where the diffusion coefficient in the thin film was reduced by a factor of 

five, by changing the electrolyte to PBV H3P04, while the film thickness, ESA and oxygen 
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solubility are maintained constant, the performance correspondingly dropped everely due to the 

large impact of mass transport on the limiting current; which fell from - 1.32 to 0.35 A cm-2. This 

behaviour is in accord with experimental observations (Chapter 4) that PBI is not a suitable 

iODomer material for the catalyst layer due to its low oxygen permeability, in comparison to 

H3P0 4 . 
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Figure 7-20. The effect of cathode fil m thickness and electrolyte type/content on cell performance utilisi ng 

50% Pt/C at the cathode and 20% Pt/C on the anode at temperature of 150 ·C using air - alpha value of 0.75 

& "( = 1.375 was used for the cathode. 

The effect of anode ionomer content and film thickness OD cell performance is shown in figure 7-

21. A variation in anode film thickness had a less crucial effect on performance than that of th 

cathode film, even though the anode initial film thickness was - 3 times higher than that of the 

cathode: no limiting current was observed with oxygen operation (no mass tran port limitation 

from the cathode) up to 2 A cm-2 (no experimental data is available beyond 2 A cm-2 due to 

instrument limitations) . This was caused by the high hydrogen concentration in the anode feed 

(pure hydrogen) in comparison to air operation in the cathode. Even when the film thickne was 

increased by factor of 2, no difference in performance was observed (up to 2.1 A cm-2) in the 

first instance and on increa ing the thickness by 4 a limiting current of 2.1 A cm-2 was observed. 
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Similarly a small impact on cell performance was observed by reducing the electrolyte content 

by a factor of four, i.e. maintaining the film thickness and decreasing ESA by a factor of four. A 

small decrease in the performance was observed at very high current densities (>1.5 A cm'2) and 

a limiting current of 2.1 A cm'2 was also visible. 

By changing the electrolyte type in the anode electrode from phosphoric acid to PBI doped 

phosphoric acid (6 PRU) and thereby decreasing the diffusion coefficient in the thin film by a 

factor of five and maintaining the initial film thickness, ESA & hydrogen solubility, a 

considerable reduction in cell performance was observed at high current densities due to mass 

transport effects; where a limiting current was observed at -1.6 A cm'2: such limitation will not 

be visible when the system is operated with air (typical limiting current with air due to the 

cathode is 1.32 A cm,2). 

However, if the electrode film thickness was increased by 4, a major fall is observed in cell 

performance and a limiting current is observed at low current densities of - 0.4 A cm'2 with PBI 

based electrode, cf. PBI-free electrode which exhibited a limiting current of 2.1 A cm'2. 

Overall the model predictions agree closely with the experimental findings (Chapter 4): during 

anode catalyst layer optimisation, acid content was far less crucial than that of the cathode, the 

anode catalyst layer was able to handle more acid before considerable mass transport limitations 

became visible. Also a low PBI content in the anode catalyst layer (5% wt) did not show mass 

transport limitation up to the studied current density of 2 A cm'2. However, a larger PBI content 

did lead to severe mass transport limitations and an observed limiting current (due to anode) at 

low current densities. 
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Figure 7-21. The effect of anode film thickness and electrolyte type/content on cell performance utilising 50% 

Pt/C at the cathode and 20% Pt/C on the anode at temperature of t 50 ·C using oxygen - alpha value of 0.75 & 

Y = 1.375 was used for the cathode. 

7.10 Reformate operation 

One of the major advantages of high temperature operation is the high CO tolerance and 

therefore the systems ability to operate with reformate gas feed without considerable los es in 

performance. Reforrnate gas composition varies depending on the hydrocarbon used in the 

reformation process. A typical diesel reform ate composition, obtained from [59] , contains 3% 

C~, 19% C02& 2.2% CO. Experiments earlier (Chapter four) have shown the high system 

tolerance to CO and C02 impurities in the hydrogen stream. 

The model was expanded to account for the poisoning effect of CO and pos ibly methane on the 

catalyst surface. Model results were compared to experimental data on CO and CO2 and was 

later used to estimate the cell performance with a diesel reform ate feed. 
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CO poisoning effects on Pt in phosphoric acids system has been studied by several groups [41, 

42, 60, 61]. There are two main effects of CO on anode performance; the first is a dilution effect 

already accounted for in the Butler-Volmer equation and the other is a kinetic effect arising from 

a reduction in active surface area because of CO adsorption on the Pt surface. 

The rate detennining step for hydrogen oxidation is the dissociation reaction (known as Volmer) 

giving rise to the second order dependency of hydrogen oxidation rate on surface coverage and 

Vogel et at [41] suggested the following equation: 

·eo . (1 B )2 '0 = '0 - co [69] 

i~o is the exchange current density for hydrogen oxidation after CO poisoning, io is the exchange 

current density for hydrogen oxidation without CO presence, and Beo is the surface coverage by 

CO given by: 

Volume Hydrogenadsorbed a/terCO 
Bca = 1 

Volume Hydrogenadsorbed be/ore CO 
[71] 

Beo is reported to vary linearly with In(COIH2) [41, 42, 60], although various values for the 

constants of their relation dependency have been reported. Kohlmayr and Stonehart [61] 

suggested that CO coverage is independent of temperature, in the range from 100 to 150°C in 

phosphoric acid media. Considering the heat of CO adsorption, it is expected that CO coverage 

should exhibit an exponential dependency on temperature. Dhar et al [60] suggested the 

following equation for the variation of CO coverage variation with temperature in H3P04: 

Beo = 19.9 exp[-7.69 x 10-3r]- 0.085 In \~~l [72] 

In this work equation 72 was used to express CO coverage on a platinum surface and its 

variation with CO content, temperature and hydrogen content. 
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Figure 7-22 shows the variation in CO coverage on platinum surface at various temperatures and 

CO content in phosphoric acid taken from references [41, 42, 60, 61]. The data quoted from 

reference [60] are the values used in equation 72 and adopted in this work. 
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Figure 7-22. CO coverage on platinum surface from Ref 141,42,60,611 in phosphoric acid. 

o 

In the case of carbon dioxide only its dilution effect was considered in the model; ignoring any 

effect of reduction of carbon dioxide to carbon monoxide by hydrogen at the studied temperature 

[62). 

Under the circumstances of insufficient data on the effect of methane on the platinum surface in 

phosphoric acid, two cases were considered: 

Case A: Sustersic et al [63] showed that methane adsorption on platinum surface started from a 

potential 0.2 V vs. NHE and reached a maximum adsorption peak at 0.25 V (vs . NHE). In HT­

PEMFC the anode potential does not exceed 50 mV (even at high current den ities of 1.5 A cm·2) 

which is far below the minimum potential suggested for methane adsorption. Niedrach [64] , 

found that methane had low adsorption on platinum (0.28 at STP) compared to that of other 

saturated hydrocarbons (moderate) except ethane, while unsaturated hydrocarbons exhibited very 

high adsorption; 0.79 (at STP) for propylene and 0.91 (at STP) for cyclopropane. This suggests 
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that consideration should be taken for non-saturated hydrocarbons in the refonnate gas, and their 

concentration should be detennined. (Case A) 

Case B: Taylor and Brummer [65] , studied methane adsorption in 12 M H3P04 at J 30 °C. 

Similarly, they found a maximum adsorption peak at 0.25 V vs. NHE, however, on the contrary, 

they observed methane adsorption at low potentia!s of O. J V and lower (vs. HE) ome 50% of 

that at 0.25 V. This suggests that methane adsorption might occur even at the low operating 

anode potentials. 

Hsieh and Chen [66] , studied methane oxidation on Pt in 1 M H2S04• The rest potential was 100 

m V vs. NHE, the exchange current density was 10-7 A cm-2 at 80 °C and 1 atm methane, and the 

activation energy was 125 kJ mok!. The activation energy was 3.5 larger than that of hydrogen 

oxidation and the exchange current density was six orders of magnitude lower than that of 

hydrogen oxidation. The rate of methane oxidation compared to hydrogen is negligible, so it can 

be treated as an inert species with only dilution/concentration effect (case A), or considering the 

worse case scenario as adsorption similar to that for CO (case B). 
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Figure 7-23. Experimental CO & COz effects on anode performance at 150 ·C with platinum (20% Pt/C) 

loading of 0.2 mgp,.cm-z, compared to the model results. 
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7.10.1 Model Simulations for diesel reformate 

A comparison between the model and experimental CO and C~2 effects on the anode 

performance at 150°C is shown in figure 7-23. The voltage drop at a current density of 1.5 A 

cm·2 was for both experimental and modelled data 8, 12 & 22 m V when switching from pure 

hydrogen to 20%, 33%vol C02 and 2.5%vol CO, respectively. This results in losses of power 

density of 12, 18 & 33 mW cm·2, respectively. Very good agreement was observed (Fig. 7-23) 

between the experimental and the model data over the entire studied compositions. A small 

deviation was observed at high current densities where the experimental data approached a 

plateau (curve) whilst the model data continued in the expected, close to linear variation. This 

behaviour was also observed with pure hydrogen. Due to fast hydrogen oxidation kinetics and 

high hydrogen concentrations used, IR losses were the main contribution for anode losses at high 

current densities. Whilst no water flux through the membrane was considered in this model, the 

flux of gaseous water product from the cathode to the anode will occur at high current densities, 

driven by the large gradient in water content which in turn will cause the observed enhanced 

proton conductivity of the anode (anode feed -in this experimental case- had a very low humidity 

RH = 0.36% at 150 ·C with humidifier temperature of -16 .C). Water permeability of 1 xl 0.14 to 

3x 1 0-14 cm\STP) m m-2 s-I Pa-I for phosphoric acid doped PBI membranes were reported [38] at 

elevated temperatures of 125-150 ·C. 

Figure 7-24 shows the simulated anode performance at 150°C with various reformate 

compositions considering case A (concentration effect only for methane). 

The following observations can be drawn: 

• Methane has a worse dilution effect than C02, at the same concentration of 22%. An 

increase in anode potential in comparison to pure hydrogen of 11 mV was observed at 

1.5 A cm-2 when using methane (a power density loss of 16.5 m W cm -2) compared to that 

of8 mV when using C02 (loss of 12 mW cm-2
). 

• The addition of the separate dilution effect of inert species (C02, H20, etc .. ) with the 

poisoning and dilution effects of poisonous species (CO), does not add up to the 

simultaneous effects of a mixture of both species. This is explained by equations 70 & 
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72 [42, 60], where CO coverage is proportional to In([CO]/[H2D, which means that any 

fall in hydrogen concentration, due to dilution by inert species, will lead to higher CO 

coverage at the same CO concentration and therefore enhance the poisoning effect. 

• A 30 m V potential difference between pure hydrogen and the diesel reformate 

composition taken from [59] at a current density of 1.5 A cm-2 was obtained considering 

only the dilution effect for methane (case A); reflecting a fall in power density of 45 mW 

-2 cm . 

• The potential difference between pure hydrogen and diesel reformate increases to 50 m V 

at the same current density, when adding 20% water to the gas stream (no information 

was available for water concentration in the reformate mixture). However, 20% water 

content should be reasonable for steam reforming case, which means a loss of 75 mW 

cm-2 in power density at 1.5 A cm-2. Water dilution is significant as the hydrogen 

concentration falls from 75% to 55% leading to intensified CO poisoning effects, whilst 

initially increasing water concentration in the stream is thought to be beneficial in terms 

of proton conductivity enhancement. The maximum allowed water content in the gas 

steam should also be considered to avoid acid losses (wash-out) and corresponding losses 

of system overall conductivity. This was observed experimentally when operating HT­

DMFC with a high water content gas feed (Chapter 5). 
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Figure 7-24. Modelled reformate composition effect on anode performance at t 50 'c. 
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Figure 7-25 shows the modelling results for anode performance at 150 QC under vanous 

refonnate compositions, considering case A & B simultaneously. The voltage loss compared to 

pure hydrogen increased from 30 to 35 mV when switching from case A to case B (methane 

treated similar to CO as poisoning species) with 5 % methane in the gas feed at 1.5 A cm
o2

• The 

addition of 20 % water to the stream led to a voltage loss (compared to pure hydrogen) of 50 m V 

and 55 mV for case A and B, respectively. This means a power density loss of 75 to 82.5 mW 

cmo2• Considering a system power density peak of 250-300 mW cm
o2 

when operating with air 

(atrn), this would mean a loss of ca.30% of the generated power density. 
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Figure 7-25. Effect of methane on anode potential modelled as inert species case A, and as poisoning species 

(CO) case B, with various reformate compositions at 150 ·C. 
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7.11 Conclusions 

A model of a high temperature fuel cell using PBI membranes has been developed usmg 

thermodynamics, transport and kinetic equations. The model considers mass transport through a 

thin film electrolyte as well as through the porous media. The incorporation of the thin film layer 

is crucial for model accuracy, particularly at high current densities and low oxygen 

concentrations (air). 

Oxygen permeability through the thin electrolyte film varies for a given temperature depending 

on the equilibrium vapour pressure of the product water above the thin film and, 

correspondingly, the operating current density, due to variations in oxygen permeability with 

phosphoric acid concentration (electrolyte film). 

The model showed very good agreement with experimental data under various operating 

conditions and oxygen concentrations. The model emphasises the importance and sensitivity of 

the electrolyte content on electrode performance; particularly on the cathode which was observed 

experimentally (Chapter 4). 

Similarly, it was shown that the optimum content of electrolyte in the cathode is much lower 

than that in the anode and deviation from an optimum content has a severe impact on cathode 

performance, while electrolyte content at the anode has a less significant impact. This is caused 

by the higher hydrogen concentration in the anode feed compared to the air operating cathode, 

combined with a faster diffusion of hydrogen, compared to oxygen, in the thin film. These 

conclusions were also supported experimentally during electrode optimisation (Chapter 4). 

The model is a good tool for optimisation of the electrode performance and the understanding of 

reasons behind performance limitations. For example, the model showed that acid doped PBI is 

not suitable as ion om er for the cathode catalyst layer, and that pristine phosphoric acid is 

preferred. Similarly, the anode can tolerate small quantities (loading) of PBI, however, excess 

PBI wi1l1ead to severe mass transport limitations. 
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The model was also used to predict cell performance under reformate operation. Good agreement 

was observed between the available experimental data on CO and C02 effects on the anode and 

model predications. A small content of poisoning species can be tolerated by the system due to 

the higher temperature operation. However, the dilution effect of inert species (C02, lhO, etc.) 

when added to the gas stream will greatly intensify poisoning due to lower hydrogen 

concentration, and thus higher CO coverage at the same CO concentration. 

The maximum allowed water content in the gas steam should be considered to avoid the dilution 

effect on hydrogen and corresponding poisoning effects. Possible acid losses (wash-out) and 

corresponding losses of the overall system conductivity might also occur. Reformate gas should 

ideally be cooled to temperatures below 100 ·C (60-80 0c) to condense excess water and 

maintain only a small fraction of water beneficial for system conductivity. 
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8 Summary, Conclusions and Future Work 

8.1 Summary and conclusion 

Proton exchange membrane fuel cells (PEMFC) are currently based on Nafion® or similar 

membranes and operate at low temperatures of less than 80 'C. The main challenges for 

technology development are: (i) high materials cost (noble metal catalysts, polymer membrane, 

etc) (ii) complex system construction and operation with respect to water and thermal 

management; (iii) fuel supply, i.e. on-board storage and re-fuelling of hydrogen or reformer­

purification units for hydrocarbons/a1cohols (iv) low value of heat energy, low overall efficiency 

(-30 %) and limited co-generation of heat and power for stationary applications. 

Sulfonated poly ether ether ketone (SPEEK) showed even a higher dependency on humidity in 

its conductivity than Nafion; the conductivity values were dependant on the sulfonation degree. 

For sulfonation degrees of 70 % and above, SPEEK become partially soluble in water and fully 

soluble in MEOH. At a sulfonation degree of 60 % the conductivity was one order of magnitude 

lower than that of PBI, even at high humidity (RH -100%). Overall this makes SPEEK an 

unsuitable candidate for high temperature operation. 

Phosphoric acid doped PBI offers good proton conductivity extending over a wide range of 

operating temperature up to 200 'C. This conductivity depends on relative humidity, temperature 

and acid doping level. For a doping level of 5.6 M H3P04 per repeat PBI unit and low relative 

humidity (1-10%), the measured PBI conductivity varied between 0.02 to 0.06 S cm-I at 

temperatures between 120 to 175°C. Increased operating temperature above 175 °C and low 

relative humidity did not add significantly to the conductivity due to dimerisation of the 

phosphoriC acid. PBI's conductivity improves with increasing humidity; however, this 

dependence is much smaller than that of Nafion, and becomes more significant at high 

temperatures. These characteristics make PBI the best choice membrane for anhydrous operation 

above 100 'C. 

For oxygen reduction at platinum supported carbon in phosphoric acid doped PBI, the catalyst 

layer structure and composition play an important role in electrode performance. The acid doping 
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level in the catalyst layer affects the oxygen permeability; with a doping level of 6 PRU 

exhibiting the best oxygen permeability, of those studied. However an optimum doping level 

might lie in the range between 3 and 6 PRU which was not investigated. The optimum doping 

level depended on temperature and oxygen partial pressure, as both affect the permeability. 

The kinetics of oxygen reduction in PBI doped phosphoric acid are similar to those of 

phosphoric acid at high doping levels. Doping level affected the activation energy of the 

reaction, transfer coefficient and exchange current density. Increased doping level increased the 

exchange current density although decreased a values. The transfer coefficient (a) for the ORR; 

depended on temperature. The dependency is explained by adsorption of impurities and 

thermodynamic effects. The influence of doping level on electrode kinetics depended on 

temperature and oxygen partial pressure and a compromise between exchange current density 

and transfer coefficient was realised. A high doping level was favourable at low temperatures, 

high oxygen concentrations or low operating overvoltages whilst low doping was favourable at 

high temperatures, low oxygen concentrations or high operating overvoltages. 

Pristine PBI exhibits low hydrogen & oxygen permeability and therefore is a good candidate for 

the membrane material. This however makes PBI a less attractive candidate for ionomer material 

in the catalyst layer. PBI relies on phosphoric acid to provide its conductivity and oxygen 

permeability; in a similar manner to Nafion reliance on water; to provide its conductivity and 

oxygen permeability. Alternative structures based on PTFE and H3P04 show advantages over 

PBI based electrodes due to higher oxygen permeability. 

There was an optimum thickness for the catalyst layer that provided a balance between acid 

content in the catalyst layer (added or mobile from the membrane) and oxygen permeability from 

the flow channel. This optimum thickness was achieved using 40% to 50% PtlC catalyst and it 

depended on the operating temperature and oxygen partial pressure. Lower oxygen 

concentrations required a thinner catalyst layer or higher PtC ratio. Electrodes fabricated from 

60% pt/C (thin catalyst layer) showed limited performance due to flooding from mobile J-hP04 

acid from the membrane. 
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Pt binary alloys and particularly Pt-CofC showed advantages over non-alloyed platinum as 

cathode catalysts, allowing lower platinum loading at the cathode of 0.2 mgPI cm-2
• However, 

such enhancement was subject to the operating temperature or more precisely the water activity. 

With high water content, Pt alloys suppress the initiation and extent of surface oxide formation 

on platinum surface and therefore offer enhanced oxygen adsorption. The fall in water activity at 

elevated temperatures (above 150 .C) resulted in an increase in ORR activity for Pt/C, due to a 

lowering of surface oxide formation; a corresponding effect with Pt alloys does not occur. 

A vapour feed HT - DMFC was demonstrated with reasonable performance and high open circuit 

potential arising from low cross-over (permeability) of methanol through the membrane and high 

CO tolerance at the cathode at elevated temperatures. The cell suffered from high anode 

polarisation which resulted in significantly lower performance than that achievable with low 

temperature cells using Nafion as the membrane. In addition, acid wash out and therefore 

conductivity loss was a major limitation for HT-DMFC based on phosphoric acid doped PBI. 

Another major factor is the very poor methanol oxidation kinetics in a phosphoric acid 

environment. An improvement in performance may be possible by using a higher methanol 

concentration to enhance methanol oxidation, which may offset the detrimental effect of 

increased methanol crossover. In terms of methanol cross-over, PBI was an excellent barrier for 

methanol with permeability one order of magnitude lower than SPEEK and two orders of 

magnitude lower than Nafion. 

Chronoamperometry measurements were performed in an attempt to obtain mass transport 

information for the studied electrodes. The current transient varied exponentially with time, with 

a time constant depending on L2/D for finite length (L) diffusion. The transient time constant did 

not vary with oxygen partial pressure, and decreased with increased temperature as expected. 

However, there was a larger decrease in the time constant from temperatures of 120 to 150 ·C in 

comparison to that from 150 to 175 ·C. This was caused by phosphoric acid dehydration and 

consequently increased viscosity slowing down the solubility equilibrium and oxygen diffusion. 
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Whilst a temperature increase will lead to a decrease in oxygen solubility, it will also lead to an 

increase in diffusion. However the rate of increase in diffusion will fall as temperature increases 

due to dehydration and increase in viscosity. The solubility and diffusion at a given temperature 

also depends on water activity or in other words phosphoric acid concentration. Therefore, the 

product (D.C) can either increase, decrease or exhibit a maximum value with an increase in 

temperature. 

The decrease in solubility with temperature counteracts the effect on the increase in kinetics with 

temperature; where both processes vary exponentially with temperature (heat of solution and 

activation energy). This was reflected by no observed increase in kinetics for PBI-free electrodes 

above 150 ·C, and a slow enhancement in PBI based electrodes. In other words, at 150 ·C fast 

oxygen diffusion in phosphoric acid (liquid) in comparison to PBVlhP04 (gel) gave rise to 

enhanced performance (solubility values are similar), whilst at 175 ·C this enhancement was 

suppressed by a lower solubility and slower increase in diffusion due to increased viscosity of 

phosphoric acid caused by dehydration; effecting mainly PBI free electrodes. 

Frequency response analysis was used to compare electrode performance in terms of kinetics, 

ohmic and mass transport losses. Simple equivalent circuit were used to fit the observed spectra. 

For polarisable electrodes under small to medium steady-state current operation, the model was 

capable of identifying electrodes with the best kinetic or mass transport behaviour and 

classifying behaviour in terms of relative performance. However, care must be taken in 

interoperating the spectra results at open circuit potentials or high steady-state currents. OCP is 

affected by cross-over rate and thermodynamic oxygen concentration effects (Nemst equation) 

and therefore will lead to smaller apparent charge transfer resistance. At high current densities 

the effect of the equivalent resistance, used to polarise the electrode to the desired steady-state 

current, dominates the observed impedance spectra and mask any useful information about 

electrode performance. 

A model of a high temperature fuel cell using PBI membranes has been developed using 

thermodynamics, transport and kinetic equations. The model considers mass transport through a 

thin film electrolyte as well as through the porous media. The incorporation of the thin film layer 
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is crucial for model accuracy; particularly at high current densities and low oxygen 

concentrations (air). Oxygen permeability through the thin electrolyte film varies for a given 

temperature depending on the equilibrium vapour pressure of the product water above the thin 

film and, correspondingly, the operating current density, due to variations in oxygen 

permeability with phosphoric acid concentration (electrolyte film). 

The model showed very good agreement with experimental data under vanous operating 

conditions and oxygen concentrations. The model emphasises the importance and sensitivity of 

the electrolyte content on electrode performance; particularly on the cathode; which was also 

observed experimentally. The model is a useful tool for optimisation of the electrode 

performance and helps in understanding the reasons behind performance limitations. For 

example, the model showed that acid doped PBI is not suitable as ionomer for the cathode 

catalyst layer, and that pristine phosphoric acid is preferred. 

The model was also used to predict cell performance under reformate operation. Good agreement 

was observed between the available experimental data on CO and C02 effects on the anode and 

model predications. A small amount of poisoning species can be tolerated by the system due to 

the higher temperature operation. However, the dilution effect of inert species (C02, lI20, etc.) 

when added to the gas stream will greatly intensify poisoning due to lower hydrogen 

concentration, and thus higher CO coverage at the same CO concentration. 

The maximum allowed water content in the gas steam should be considered to avoid the dilution 

effect on hydrogen and corresponding poisoning effects. Possible acid losses (wash-out) and 

corresponding losses of the overall system conductivity might also occur. Reformate gas should 

ideally be cooled to temperatures below 100 ·C (60-80 ·C) to condense excess water and 

maintain only a small fraction of water that is beneficial for system conductivity. 
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8.2 Future work 

The limited oxygen permeability and slow oxygen reduction kinetics in phosphoric acid 

(phosphates and impurities within adsorbs on platinum) is a major limitation for the performance 

of PBI based PEMFC electrodes. PBI is still an attractive material due to its relatively low cost 

($70-100/1b), excellent oxidative and thermal stability, good mechanical flexibility at elevated 

temperature and basic properties (pKa = 5.5). PBI basic properties allow it to be easily doped 

with strong acids to form single phase polymer electrolyte [1, 2]. Future work should consider 

alternative acid dopants (at least for electrodes ionomer) for PBI that provide better 

permeabilities and smaller adsorption on platinum. Fluorinated acids are one of the best 

candidates for these dopants, several suggestion are given below: 

• Trifluoromethane sulfonic acid (TFMSA): measurements showed that TFMSA 

conductivity and proton activity is 100 times higher than that of phosphoric acid at the 

same temperature and concentration [3]. Its adsorption on platinum surface is much lower 

than phosphoric acid [4], and both oxygen solubility and diffusion is an order of 

magnitude higher than that in phosphoric acid under the same conditions [5]. 

The only limitation of TFMSA is its low vapour pressure (boiling point of 162°C). 

However, at low doping levels (two moles acid per mole PBI) no free acid will be present 

and such limitation will not be seen. The low doping level impact on conductivity will 

also be minimal due to the high conductivity ofTFMSA. 

• Perfluronated -organo sulfonic/phosphonic acids: Saffarian et al [6] observed an order of 

magnitude faster oxygen reduction rate in Bis(trifluoromethylsulfonyl)-Methane 

«CF3S02)2CH2) than that in phosphoric acid at similar conditions. However, 

(CF3S02)2CH2 has a limited solubility of 1.15 M in water which restricts its use to low 

temperatures. Such a limitation could be overcome by forming acid-base complex 

(doping) with PBI. Burton et al [7, 8] also showed encouraging results for oxygen 

reduction in tetrafluoroethylene-l,2-bisphosphonic acid at 200°C in comparison to 

phosphoric acid where he obtained a mass activity of 61 rnA mgpl
o

\ at 0.7 V for the 

perfluronated-organo-phosphonic acid in comparison to 55 mA mgpl
o

\ for phosphoric 

acid. 
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The alternative dopants can also show enhancement for PBI based HT-DMFCs, in terms of 

improved methanol oxidation and lower acid wash-out rates (lower solubility in water). 

The rate of improvements can be estimated using the built model by setting the appropriate 

parameters for the new electrolytes conductivity, volume fraction, oxygen solubility, exchange 

current density, etc .The model can be further developed by considering a one or two 

dimensional catalyst layer (instead of OD macro-homogeneous model) in order to provide clearer 

current and oxygen concentration profiles in the catalyst layer. Further improvements include 

incorporation of water and hydrogen cross-over and non-isothermal operation. 
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Figure 9-1. Tafel plot for raw and corrected data of 40% Ptl C 3 PRU electrode at 140 ·C (E vs. SHE). 
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Figure 9-3. Compares cell performance under various oxygen concentrations at 120 ·C of MEAs using 20% 

Pt-NilC (- 17% Pt) & 20% Pt/C cathode electrodes utilising 0.2 mgpI cm-2 with 40% wt PTFE. 
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Appendix A: Parameters fOr the Modeling Equations 

The pre-exponential factors A&B in equation (47) and (48) are calculated using: 

B= lI( 0.0004444022(100-W)5 - 0.01678248(100-W)4 + 0.2476135(100-W)3 - 1.714433(100-

W)2 + 5.815734(100-W) -7.662641) 

A= 0.00000249927283 exp(1. 76593087W) 

A summary of a and b constants for equations 53&54 is tabled below: 

ao 639.232305358 7.59437538894 

al 4. 76099157122 x 10.5 b l 2. 79345043928 x 1 0.7 

a2 1.13460344152x 10.2 

a3 0.968715904249 h3 5.7142688687X 10.3 

~ 33.2532981315 b4 0.209801719227 

To obtain X from log (PmmHg) and liT Qe l the following function was built (valid from 120 to 

180 QC) 

Where: 

gl = 107489083.7(1ITi - 3301976.439(1/Ti + 30786.6253/T - 99.97517454. 

g2= -571 882856.4(11T)3 + 17025276.36(lIT)2 - 159050.3432/T + 478.3506443. 

g)= 2563470201 (llTi - 57770551. 75(11T)2 + 427861.8321/T - 931.0823368. 

9.6082194551 

0.0001968662247125 

-0.01322071446206 

0.2257720843463 

26300 

0.62 

-39.7 

527 
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