
 

 

 

 

Clinical and genetic characterisation of 

hereditary motor neuropathies 

 

 
Boglarka Bansagi 

 

 

 

 
Institute of Genetic Medicine 

 
 

January 2017 

 

 

 

 

A Thesis submitted for the degree of Doctor of Philosophy at 

Newcastle University 
 

 

 

 





 

 





 

 

 

'I dare do all that may become a man; 

who dares do more is none.' 

(Shakespeare) 

 

 

 

„Szívet vagy mundért cserélhet az is, ki házat, hazát holtig nem cserél, 

de hű maradhat idegenben is, kiben népe mostoha sorsa él.” 

(Tollas Tibor) 

 





 

 

 





 

 

Author’s declaration 

 

This Thesis is submitted to Newcastle University for the degree of Doctor of Philosophy at 

Newcastle University. I, Boglarka Bansagi, confirm that the work presented in this Thesis is 

my own. Where information has been derived from other sources, it has been indicated in the 

Thesis. I can confirm that none of the material offered in this Thesis has been previously 

submitted by me for a degree or qualification in this or any other university. 





 

 i 

Abstract 

 

Inherited peripheral neuropathies or Charcot-Marie-Tooth disease (CMT) are common 

neuromuscular conditions, characterised by distal motor atrophy and weakness with variable 

range of sensory impairment and classified according to demyelinating (CMT1) or axonal 

(CMT2) pathology. The number of genes causing CMT has rapidly increased due to improved 

genetic testing technology, even though gene identification has remained challenging in some 

subgroups of CMT. 

Hereditary motor neuropathies (HMN) encompass heterogeneous groups of disorders caused 

by motor axon and neuron pathology. The distal hereditary motor neuropathies (dHMN) are 

rare length-dependent conditions, which show significant clinical and genetic overlap with 

motor neuron diseases. Several (>30) causative genes have been identified for ~20% of 

dHMN patients, which predicts extreme genetic heterogeneity in this group. 

My study was designed to investigate the prevalence, clinical presentation, molecular cause 

and phenotype-genotype correlations of hereditary motor neuropathies in a large cohort of 

patients. I aimed to identify novel disease genes and reassessed mutation detection rate in 

dHMN. Furthermore, I studied common pathomechanisms and targets for therapy approaches 

in hereditary motor neuropathies. 

Detailed neurological and electrophysiological assessments and next generation panel testing 

or whole exome sequencing were performed in 105 patients with clinical symptoms of distal 

hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor CMT2, 

16 patients) or complex neurological disease predominantly affecting the motor nerves 

(dHMN plus, 25 patients). I calculated the dHMN prevalence 2.14 affected individuals per 

100.000 inhabitants (95% CI: 1.62-2.66) in the North of England.  

Causative mutations were identified in overall 47.9% in the motor neuropathy patient cohort. 

In the dHMN group the diagnostic rate was 42.5%, significantly higher than the previously 

reported 20%. The significant increase in the mutation detection rate could be attributed to the 

development of next generation techniques. 

Many of the genes were shared between dHMN and motor CMT2, indicating identical disease 

mechanisms. I examined the phenotypic variability and the correlations with the identified 

genetic background. 

We described the novel phenotype of non-progressive motor neuropathy with fatigable 

weakness due to presynaptic neuromuscular transmission defect caused by synaptotagmin 2 

mutations. I indentified further novel genes involved in intracellular signal transduction and 
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transcriptional regulatory cascades, which might indicate common pathways and highlight 

further targets in the therapy of motor neuropathies. 

We detected a potentially treatable defect of neuromuscular transmission in some genetic 

forms, which raise the possibility that neuromuscular junction defects can cause or 

accompany motor neuropathy. The preliminary results suggested the potential treatability of 

the neuromuscular transmission defect, although long term effects will still need to be 

evaluated. 

In summary, detailed clinical characterisation and segregation analysis improved the detection 

rate in our cohort and highlighted that clinical expertise are still essential in confirming the 

diagnosis of inherited motor neuropathies. Increasing knowledge on disease pathways will not 

only help to identify new genes with shared pathomechanisms but will provide a basis for 

novel therapy approaches. 
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Chapter 1. Introduction 

 

 

1.1 The inherited neuropathies 

The genetic neuropathies are a heterogeneous group of diseases affecting the peripheral 

nerves either exclusively or as part of neurological or multisystem disorders (Reilly and Shy, 

2009). The inherited neuropathy prototype was reported in 1886 with a familial peroneal type 

of progressive muscle atrophy and was named Charcot-Marie-Tooth disease (CMT) in honour 

of the three researchers. Over the years, increasing clinical, diagnostic and genetic data have 

led to the knowledge that the originally described CMT cannot be considered as a single 

disease but as a collection of hereditary peripheral neuropathies. Inherited peripheral 

neuropathies, under the umbrella term of CMT, have been acknowledged among the most 

common genetic neuromuscular conditions with a population prevalence of 1 in 2500 

individuals (Reilly et al., 2011). 

The improving field of neurophysiology and neuropathology contributed to the detailed 

phenotyping of the disease, the term hereditary motor and sensory neuropathy (HMSN) was 

introduced and the basics of the classification were laid by the pioneering work of Dyck 

(Dyck and Lambert, 1968a, 1968b), Thomas and Harding (Harding and Thomas, 1980). 

CMT is separable into autosomal-dominant forms, which are historically divided by the 

median nerve motor conduction velocity findings of below or above 38 m/s into 

demyelinating (CMT1) and axonal (CMT2) neuropathies respectively and of 25-45 m/s into 

the intermediate (DI-CMT) neuropathies. Autosomal-recessive inherited forms are labelled as 

CMT4, while the term for the X-linked forms is CMTX. Alphabetical referencing indicates 

the historical order of the discovered genetic causes within each of the subtypes (CMT1A, 

CMT2A, etc.) (Pareyson et al., 2006; Reilly and Shy, 2009; Reilly et al., 2011). 

The classical CMT phenotype is characterised by progressive length-dependent muscle 

atrophy, weakness, areflexia and sensory loss, and leads to specific foot deformities and 

walking abnormalities. The severity of the symptoms shows highly variable inter- and 

intrafamilial differences. Typically the disease starts over the first two decades of life but 

often is only recognised later. Some patients develop severe early childhood-onset forms, 

congenital hypomyelinating neuropathy (CHN) and Dejerine-Sottas neuropathy (DSN), while 

others remain asymptomatic until later adulthood (Saporta et al., 2011; Braathen, 2012).  
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Spinal motor neurons and dorsal root ganglion sensory neurons extend their axons to form 

neuromuscular junctions (NMJ) and sensory receptors to transfer information to the muscles 

and from the skin (Gentil and Cooper, 2012; Li, 2012). The peripheral nervous system 

consists of a complex network of myelinated and non-myelinated nerves (Juárez and Palau, 

2012). The myelinated nerve contains the axon, which is serially enwrapped by the myelin 

sheath generated by highly specialised Schwann cells and interrupted in the nodes of Ranvier 

to ensure the rapid propagation of action potentials. The myelination process is dependent on 

the axonal integrity and axonal signals, while the myelinating Schwann cells tightly regulate 

the axonal structure and transport. These reciprocal interactions between the two cell types are 

mediated by signal transduction molecules, including MAG, p75, IGF1, integrins and TGF- β. 

Neuregulin 1 and the ErbB receptors tyrosine kinases signalling pathway have been 

implicated in the regulation of cell interactions and Schwann cell migration (Niemann et al., 

2006; Juárez and Palau, 2012).  

The demyelinating neuropathies show neuropathological changes of primarily aberrant 

myelination (onion bulb or tomacula formation), while predominant axonal loss and 

degeneration characterise the axonal neuropathies. Regardless of the primary pathology, the 

manifestation of CMT is largely determined by the length-dependent axonal degeneration. 

The majority of the inherited neuropathies belong to the demyelinating group, while the 

pheno- and genotypically more diverse axonal neuropathies form one third of all CMT cases 

(Saporta et al., 2011; Juárez and Palau, 2012). 

CMT is caused by mutation-induced dysbalance and dysfunction of proteins that are 

necessary for the normal function of the peripheral nerves. The collaboration of these proteins 

creates a complex network and forms pathways, including the regulation and maintenance of 

myelin, protein synthesis and degradation, membrane and vesicle dynamics, cytoskeleton 

formation, axonal transport and stress response, which are all implicated in the 

pathomechanisms of CMT (Figure 1.1). In demyelinating neuropathies the defect primarily 

targets proteins involved in the structure and function of the myelin sheath (PMP22, MPZ, 

Cx32, periaxin), in the transcriptional regulation of the myelination process (EGR2, SOX10) 

and in the intracellular membrane trafficking (SH3TC2, MTMR2/MTMR13, FIG4, LITAF, 

NDRG1) (Berger et al., 2006; Niemann et al., 2006; Roberts, 2012). Primary neuronal defects 

and impairment of the axonal transport lead to axonal degeneration (Niemann et al., 2006).  

The progress in the knowledge of the molecular mechanisms of CMT enabled the introduction 

of rational experimental treatment approaches, although a targeted therapy in humans has not 

yet been identified. 
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Figure 1.1 Pathways and genes implicated in inherited neuropathies 

(taken from Rossor et al., 2013) 
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The importance of ascorbic acid in the myelination process was underlined by the improved 

myelination in the demyelinating mouse model treated with vitamin C (Passage et al., 2004). 

Despite these findings randomised patient trials did not bring a breakthrough in the therapy of 

CMT1A. 

The progesterone antagonist onapristone reduced the toxic overexpression of PMP22 in 

rodent models and curcumin stimulated autophagy was efficient in mouse models, but the 

therapies failed in CMT1A patients (Reilly and Shy, 2009; Bouhy and Timmerman, 2013). 

Recently, the combined application of baclofen, naltrexone and sorbitol has been investigated 

in a randomised placebo control trial (Attarian et al., 2014). The influence of the neuregulin-

1/ErbB system is a promising therapeutic target in CMT1A (Gambarotta et al., 2015; Rossor 

et al., 2016) and in neuropathies with focal hypermyelination (Bolino et al., 2016). 

Furthermore, transcription factors that regulate the PMP22 expression contain TEAD domains 

and participate in Yap/Taz signalling. Verteporfin, a suppressor of YAP-TEAD complex used 

in macular degeneration might provide therapeutic potential (Feng et al., 2016; Lopez-Anido 

et al., 2016). Pharmacological modification of the unfolded protein response and selective 

inhibition of protein phosphatases are examined in CMT1B animal models (Das et al., 2015; 

Rossor et al., 2016). Histone deacetylase inhibitor (HDAC6) by reversing the acetylation 

status of the microtubules and restoring the axonal transport in HSPB1 and GARS mutant 

mice might serve a targeted therapy of axonal neuropathies (d’Ydewalle et al., 2011 and 

persona communication Van Den Bosch 2016). The recently described aberrant neuropilin 1 

(Nrp1) interaction in GARS and other tRNA synthetase-related CMT can also be a future 

therapy target (He et al., 2015). The gene therapy in CMT faces challenges in the 

identification of the mutant protein and in developing targeted gene delivery systems (Reilly 

and Shy, 2009; Bouhy and Timmerman, 2013). Recent gene therapy studies used adeno-

associated virus type 9 (AAV9) delivery in GarsP278KY/+mice and intrathecal lentiviral delivery 

in GJB1 knockout mice (Kagiava et al., 2016 and persona communication Burgess 2016). 

 

1.2 Genetics of the inherited neuropathies  

Early linkage studies in 1982 identified the first genetic locus for CMT1 in the Duffy region 

on chromosome 1 (Bird et al., 1982), which segregated only in some dominant demyelinating 

families, later grouped as CMT1B. A linkage with chromosome 17 was described in 1989 

(Vance et al., 1989) and the locus heterogeneity for CMT1 emerged. The first CMT1 

mutation was localised to the chromosomal region 17p11.2-p12 in 1991 (Timmerman et al., 

1990) and the duplication of the 17p12 was identified as the cause of CMT1A (Lupski et al., 
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1991; Raeymaekers et al., 1991). Soon after, the MPZ gene was described in CMT1B 

(Hayasaka et al., 1993) and the GJB1 gene was associated with CMTX (Bergoffen et al., 

1993). This enabled molecular diagnosis in the majority of the demyelinating genetic 

neuropathies. The most common CMT2 gene, the MFN2 was reported only 10 years later 

(Züchner et al., 2004). It has still remained much more difficult to identify a molecular cause 

in axonal neuropathies. The number of discovered CMT-causing genes has rapidly increased 

with the introduction of better sequencing technology. More than 1500 mutations in more 

than 80 genes have been described so far for CMT and related neuropathies (Timmerman et 

al. 2014). 

It is critical to establish the genetic diagnosis in CMT to provide patients with a prognosis, 

genetic counselling and with options for future targeted therapy. The molecular diagnosis is 

complicated due to the large genetic heterogeneity, the pleiotropic genes causing allelic 

disorders and due to gene mutations that evoke diseases by both recessive and dominant 

inheritance (Baets and Timmerman, 2011). The majority of the CMT cases transmitted 

dominantly or X-linked; while autosomal-recessive inheritance is more frequent in countries 

with consanguineous marriages. Sporadic cases are more commonly detected not only due to 

recessive but also due to de novo dominant mutations, late-onset disease course and reduced 

disease penetrance (Reilly and Shy, 2009; Høyer et al., 2014). 

Initially, algorithms have been introduced to support the targeted testing of the four common 

genes (PMP22, GJB1, MPZ and MFN2), which were considered to account for a large 

proportion of genetic CMT (Murphy et al., 2012). Conventional testing methods, based on the 

clinical and electrophysiology phenotype enabled to identify the molecular cause in 60% of 

the CMT cases, with higher rates in CMT1. 

The next generation technology made it possible to perform parallel sequencing of several 

genes and to introduce next generation sequencing (NGS) panels that can detect the full 

spectrum of known CMT mutations (Arnold et al., 2015). The NGS panel testing has a 

limited capacity in identifying novel genes, but for genes known to be associated with the 

disease or with overlapping phenotypes it ensures high sequencing coverage. The 

interpretation is clear by the detection of less variants of unknown significance (Arnold et al., 

2015; Lapin et al., 2016). 

With the improvement in high-throughput sequencing technologies, the capability of re-

sequencing protein-coding gene regions in whole-exome sequencing (WES) enabled the 

identification of novel disease-associated genes both in research and in clinical settings. 
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Table 1.1 Comparison of the next-generation sequencing based diagnostic methods 

(taken from Lapin et al., 2016) 
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Even though the human exome accounts for only around 1% of the human genome, screening 

of these protein-coding segments allowed for the detection of mutations responsible for 85% 

of Mendelian disorders (Montenegro et al., 2011). The diagnostic strategy with the use of 

WES, which is able to simultaneously screen extensive genetic variations, has changed to 

primarily focus on the discovery of causal genes in highly heterogeneous diseases such as 

CMT. The identification of known mutations with atypical clinical phenotypes and the 

description of novel variants, previously not associated with the disease led to the better 

understanding of genotype-phenotype correlations (Klein et al., 2014; Drew et al., 2015; 

Lapin et al., 2016). The possibility of establishing a molecular diagnosis in isolated patients 

has increased by WES analysis of trios and of unrelated individuals across families 

throughout the world (Timmerman et al., 2014). Despite the large number of identified novel 

genes and rare diseases, a molecular diagnostic yield of only 25% was observed by WES 

analysis in heterogeneous genetic conditions (Yang et al., 2013; Salgado et al., 2016). The 

main challenge has remained to distinguish disease-causing alleles among the tremendous 

generated sequence data by cautiously evaluating the pathogenicity of the variants. The 

limited availability of functional tests, misannotation of variants and non-optimal variant 

filtering may lead to misinterpretation of mutations and can generate an excess in variants of 

unknown clinical significance (Bamshad et al., 2011; MacArthur et al., 2014; Timmerman et 

al., 2014; Arnold et al., 2015; Lapin et al., 2016; Salgado et al., 2016). Further difficulties 

arise from the technical limitations of insufficient capture, poor uniformity of read depth, 

incomplete coverage and the inability of WES to detect small tandem repeats, copy number 

variations and large structural genomic rearrangements (Montenegro et al., 2011; Timmerman 

et al., 2014; Arnold et al., 2015; Salgado et al., 2016). 

Even though whole-genome sequencing (WGS) can mitigate these limitations of the technical 

performance; the robust data produced by the re-sequencing of the entire genome causes 

difficulties in the variant classification and in the storage of excessive data (Lelieveld et al., 

2015) (Table 1.1). Multiple projects developed genome data analysis platforms, such as 

Genomes Management Application (GEM.app), in order to share large datasets and to 

discover rare novel genes by screening potentially causative variants across unrelated families 

(Timmerman et al., 2014; Gonzalez et al., 2015). Currently, the Matchmaker Exchange 

(MME) project aims to facilitate the identification of cases with similar phenotypic and 

genotypic profiles (matchmaking) and to enable searches in multiple databases (matchmaker 

services) (Philippakis et al., 2015). Similarly, the International Rare Diseases Research 

Consortium (IRDiRC), RD-Connect project provides an integrative platform to link genomic 

and clinical data in a central research resource for rare diseases (Thompson et al., 2014).
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Chapter 2. Objectives and Overview 

 

 

Among the group of inherited neuropathies, the Thesis focuses on the hereditary motor 

neuropathies (HMN), where the diverse and overlapping clinical phenotypes arise on a 

heterogeneous genetic background and the molecular diagnosis is still largely uncovered. The 

overall aim of the Thesis is to analyse the prevalence and to study the natural history and 

genetic epidemiology of HMN in a large cohort of patients identified in the North-East of 

England. A further goal was to discover novel disease-causing genes by implicating next 

generation sequencing and to identify disease mechanisms, which may provide a target for 

therapy interventions. 

Chapter 3 describes the methods of clinical and electrophysiological data collection and 

details the series of experimental laboratory techniques that I performed during the study of 

the Thesis.  

In Chapter 4 the investigated patient cohort is defined with the reviewed HMN classification 

and epidemiology data is determined for HMN in the North-East of England. 

Chapter 5 provides results about the success in the mutation detection rate in the involved 

patient cohort and analyses the efficacy of the applied genetic methods in HMN. The wide 

spectrum of the identified genes is discussed based on the framework of common pathways of 

mechanisms. The findings detailed in these chapters have been recently accepted for 

publication in Neurology. (Appendix A)  

In Chapter 6 a series of clinical and experimental studies illustrates the investigation of the 

natural history of the disease and provides insight into the phenotype-genotype correlations 

with known HMN-causing genes. Results related to each of the analysed 5 genes of this 

chapter were all reported in publications in various high impact peer-reviewed journals 

(Cottenie et al., 2014; Bansagi, Antoniadi, et al., 2015; Bansagi, Griffin, et al., 2015; 

Evangelista et al., 2015; Bansagi et al., 2016). (Appendix B, Appendix C, Appendix D, 

Appendix E, Appendix F) 

Chapter 7 describes a novel presynaptic pathology in a subgroup of distal hereditary motor 

neuropathy (dHMN) caused by the novel SYT2 gene, which we have recently published in the 

American Journal of Human Genetics (Herrmann et al., 2014). (Appendix G) Furthermore, 

this chapter discusses novel theoretical pathways, including transcription factor signalling and 

mitochondrial pathways, in the pathology of HMN, which could be variably supported by 

performed functional studies. 
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Finally, in Chapter 8 the nature of the neuromuscular junction (NMJ) defect is discussed in 

SYT2 and GARS gene mutations. A potential treatment strategy was investigated in SYT2 and 

GARS mutant dHMN patients with NMJ defect by the administration of synaptic transmission 

influencing drugs. Results of the therapy and the unique associated electrophysiological 

findings have been recently published in Neurology (Whittaker et al., 2015).(Appendix H) 
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Chapter 3. Methodology 

 

 

3.1 Clinical data collection  

 

3.1.1 Patients 

Clinical and laboratory data reported in the Thesis have been collected from patients, who 

attended the specialised Inherited Peripheral Neuropathy service at the Newcastle-upon-Tyne 

Hospitals NHS Trust. This specialist clinic is one of the main diagnostic centres for inherited 

neuropathies in the UK, providing medical care and genetic counselling for patients living in 

North-East England. Patients were referred by primary care physicians or by 

secondary/tertiary care teams for specialist diagnostic evaluations and for advice regarding the 

management plan. Patient follow-up was continued in the specialist service once the 

confirmatory diagnosis was established. 

The Medical Research Council (MRC) Centre for Translational Research in Neuromuscular 

Diseases called for recruitment of clinical research databases to enhance a national cohort for 

genetic and natural history studies and for experimental trials. In the specialised Inherited 

Peripheral Neuropathy service at the Newcastle University I was employed as a Clinical 

Research Associate to identify and recruit patients to the CMT cohort, supervised by Prof Dr 

Rita Horvath. Patient data from the Newcastle CMT cohort were recorded as part of a natural 

history study in an internal MRC centre database and were also stored in the database of the 

National Institutes of Health (NIH) Rare Diseases Clinical Research Centre (RDCRC). 

Individual Trust NHS R&D approval was obtained in addition to the MRC ethical approval. 

The CMT natural history study documentation (MRC 6601) consisted of a Minimal Dataset 

for Visit Information and for Diagnosis Information and the CMT Neuropathy Score 

(CMTNSv2) (Table 3.1).  

I collected data on patients with the hereditary motor neuropathy (HMN), which is presented 

in the Thesis, from the larger Newcastle CMT cohort. Patient data for the HMN cohort was 

recorded both retrospectively from medical files and prospectively, when the patient was 

reviewed in the specialist clinic. Patient information sheets were provided and written 

informed consent was obtained from all patients. I participated in the deep characterisation of 

the patient cohort by employing clinical, neurophysiology, genetic and laboratory techniques. 
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Parameter 0 1 2 3 4

Sensory symptoms (1) None
Symptoms below or at 

ankle bones

Symptoms up to the distal half of 

the calf

Symptoms up to the proximal 

half of the calf, including knee

Symptoms above knee (above 

the top of the patella)

Motor symptoms legs None
Trips, catches toes, 

slaps feet, shoe inserts

Ankle support or stabilization 

needed most of the time for 

ambulation(2)

Walking aids (cane, walker) 

needed most of the time
Wheelchair most of the time

Motor symptoms arms None
Mild difficulty with 

buttons

Severe difficulty or unable to do 

buttons
Unable to cut most foods

Proximal weakness (affect 

movements involving the 

elbow and above

Pinprick sensitivity (3) Normal
Decreased below or at 

ankle bones

Decreased up to the distal half of 

the calf 

Decreased up to the proxima 

half of the calf, including knee

Decreased above knee (above 

the top of the patella)

Vibration (4) Normal Reduced at great toe Reduced at ankle
Reduced at knee 

(tibial tuberosity)
Absent at knee and ankle

Strengths legs Normal
4+, 4 or 4- on foot dorsi 

or plantar flexion
≤ 3 on foot dorsi or plantar flexion ≤ 3 on  dorsi or plantar flexion Proximal weakness 

Strengths arms Normal
4+, 4 or 4- on intrinsic 

hand muscles (5)
≤ 3 on intrinsic hand muscles (5) < 5 on wrist extensors Weak above elbow

Ulnar CMAP

(Median)
>6mV (>4mV)

4-5.9mV

(2.8-3.9)

2-3.9mV

(1.2-2.7)

0,1-1.9mV

(0.1-1.1)

Absent 

(Absent)
□ Not Done

Radial SNAP ≥15µV 10 - 14,9 µV 5 - 9,9 µV 1 - 4,9 µV <1 µV □ Not Done

Notes: (1) Use the picture to discriminate the level of the symptoms; (2) Uses aid most of the time. The patient was prescribed to wear/use or should be wearing/using the aid in the examiner's opinion; (3) Abnormal if patient says it is 

definitely decreased compared to a normal reference point; (4) Use Rydell Seiffer tuning fork. Definition of Normal: ≥5; (5) Intrinsic hand muscles strength assessment: Test only Abductor Pollicis Brevis (APB) and First Dorsal 

Interosseus (FDI), then choose the stronger to give the score. 

CMTSS Subtotal (calculated by DMCC)

CMTES Subtotal (calculated by DMCC)

CMTNS Total (calculated by DMCC)

Score Weighted Score 
(calculated by DMCC)

 

Table 3.1 CMT Neuropathy Score second version (CMTNSv2) 
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3.1.2 Neurophysiology 

Neurophysiology studies have been performed in all patients, who were examined in the 

specialised neuropathy clinic, apart from the rare clinically uncomplicated cases, when the 

routine genetic testing for PMP22 earlier established the diagnosis of the motor and sensory 

demyelinating neuropathy (CMT1A or HNPP). However, family members of patients with 

confirmed genetic diagnoses were offered targeted genetic testing before neurophysiology 

studies were initiated. Some of the clinically affected family members have still undergone 

neurophysiology testing regardless of the positive genetic diagnosis.  

In the majority of the patients the neurophysiology assessment was carried out in the 

Neurophysiology Department at the Newcastle-upon-Tyne Hospitals NHS Trust by the same 

expert Neurophysiologist Consultants (Dr Fawcett, Dr Whittaker, Dr Lai and Dr Baker). In 

other occasions, the referral medical team already arranged electric studies for the patients 

before they were seen in the specialised clinic or the patients opted for having the test 

performed at local Neurophysiology services.  

 

I collected the electrophysiology data in the HMN patient cohort presented in the Thesis, by 

reviewing previous study reports or initial and follow-up electric tests performed mostly by 

Dr Roger Whittaker. Generally, the neurophysiology investigations consisted of electric 

motor and sensory nerve conduction studies (NCS) and electromyography (EMG), which 

provided measurements for the analysis of the parameters discussed in Chapter 4.3.3. In some 

clinically and genetically selected cases additional studies were initiated, including repetitive 

nerve stimulation (RNS) and single fibre electromyography (SFEMG), in order to investigate 

the neuromuscular transmission. I accompanied some patients to carry out additional 

neurological examinations in the electric study setting and I observed the neurophysiology 

methods of the neuromuscular junction (NMJ) testing, as discussed in Chapter 8.3.4.  

 

The studies were performed by the Neurophysiologists on a Dantec Keypoint G4 (UK) EMG 

machine. Surface electrical stimulation was applied through either CareFusion ring electrodes 

or a handheld Alpine Biomed bipolar stimulating electrode. Responses were recorded using 

Natus Neurology disposable disk electrodes (1cm diameter). Amplitudes were measured 

baseline to peak. SFEMG was performed using Natus Neurology disposable 30G concentric 

needles with a bandpass of 2 to 10 kHz (Whittaker et al., 2015). 
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3.2 Laboratory methods 

I performed the following computational data analysis and I applied the laboratory methods 

described in this subchapter on the HMN cohort of the Thesis, unless it is otherwise stated. 

 

3.2.1 Next generation sequencing 

3.2.1.1  Inherited Peripheral Neuropathy (IPN) panel gene test 

To date, two laboratories (Bristol and Queen Square) offer more comprehensive genetic 

testing for inherited neuropathies in the UK. The multi-gene panel assay applied in the HMN 

cohort presented in the Thesis was performed in collaboration with Dr Antoniadi, Dr 

Greenslade and Dr Forester at the Bristol Genetics Laboratory. Genomic DNA was extracted 

from the peripheral blood of the patients in the Northern Genetics Service at the Newcastle-

upon-Tyne Hospitals NHS Trust and was sent to the Bristol Genetics Laboratory.  

 

When next generation sequencing (NGS) is used to examine specific gene panels and 

the sample numbers are high, it is more cost-effective and time-efficient to target, capture, and 

sequence only the genomic regions of interest with developed targeted enrichment methods 

(Bodi et al., 2013). 

 Genomic DNA was enzymatically fragmented and enrichment of coding exons and 

flanking intronic regions was performed using a custom designed 330kbp SureSelect capture 

(Agilent Technologies), targeting 56 genes associated with inherited peripheral neuropathy 

(http://ukgtn.nhs.uk/find-a-test/search-by-disorder-gene/test-service/charcot-marie-tooth-

hereditary-neuropathy-54-gene-panel-589/) (Table 3.2). 

Libraries were prepared from genomic DNA according to the manufacturer’s protocol 

(Agilent’s SureSelect Target Enrichment System: Product note) and sequenced on an Illumina 

MiSeq (2x150bp). For data analysis and filtering a bespoke open-source pipeline using 

Burrows-Wheeler Aligner (BWA) and Genome Analysis Toolkit (GATK) was used to align 

data to the reference human genome (UCSC hg19). Variant classification was based on 

Association for Clinical Genetic Science (ACGS) Practice Guidelines (2013). Candidate 

pathogenic variants were confirmed by Sanger sequencing using an Applied Biosystems 3730 

analyser (Bansagi, Antoniadi, et al., 2015). 

 

http://ukgtn.nhs.uk/find-a-test/search-by-disorder-gene/test-service/charcot-marie-tooth-hereditary-neuropathy-54-gene-panel-589/
http://ukgtn.nhs.uk/find-a-test/search-by-disorder-gene/test-service/charcot-marie-tooth-hereditary-neuropathy-54-gene-panel-589/
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Table 3.2 Inherited peripheral neuropathy gene panel test 
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3.2.1.2  Whole-exome sequencing 

Exome capture library and whole-exome sequencing 

Selected patient DNA samples were subjected to NGS at AROS Applied Biotechnology 

(Aarhus, Denmark). The enrichment of protein coding exons by DNA hybridisation-capture 

followed by high-throughput sequencing enables the discovery of disease-causing mutations.  

Genomic fragment library was prepared using TruSeqTM DNA Sample Preparation Kit 

(Illumina Inc., San Diego, USA). The enrichment platform, Illumina TruSeqTM 62 Mbp 

(Illumina Inc., San Diego, USA) used the denaturated single-stranded DNA library hybridised 

to biotin-labelled probes, which were complementary to the target exome. Enrichment of the 

targeted region was processed by adding streptavidin beads that bind to the biotinylated 

probes and the enriched DNA fragments were magnetically eluted for a second enrichment 

reaction (Figure 3.1). The amplified captured fragments (including exonic flanking regions) 

were sequenced by using the Illumina HiSeq2000 platform (Illumina Inc., San Diego, USA) 

with paired-end reads of 100 base pair. 

The Illumina platform is the cheapest and the required input DNA amount is small for 

an easy fragment library construction, although the target enrichment efficiency is not the 

highest. It has a high performance for the coverage of medically interesting rare mutations and 

with additional sequencing it efficiently detects single nucleotide variations (SNVs) and short 

insertion/deletions (Bainbridge et al., 2011; Bodi et al., 2013; Shigemizu et al., 2015). 

 

 

Figure 3.1 TruSeqTM enrichment workflow 

(taken from Data sheet: Sequencing, Illumina) 
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Exome-sequencing data analysis 

The sequencing data underwent bioinformatic analysis for sensitivity, specificity, and 

coverage of the desired regions, which was performed by Dr Helen Griffin in the Institute of 

Genetic Medicine at the Newcastle University. The NGS data of the HMN cohort was 

processed by quality control, mapping, variant identification, validation and clinical 

annotation. The related results will be provided in Table 5.7 andTable 5.8 in Chapter 5.5.2. 

In-house bioinformatic analysis included quality filtering of data and duplicate 

sequence read removal with FastUniq (H. Xu et al., 2012). Filtered and normalised reads were 

aligned to the human reference genome (UCSC hg19) with BWA (Li and Durbin, 2009). SNV 

and small insertion/deletion (indels) calling was performed by Freebayes and variant 

annotation with ANNOVAR. The small difference in coverage of coding regions directly 

influences the ability to identify rare variants in the coding regions. Therefore, on-target 

region coverage, the percentage of targeted bases covered by sequence reads and read-depth, 

the number of reads that map to the targeted sequence were determined (Table 5.9).  

I examined the exome data of the HMN patient cohort presented in the Thesis for 

further on-target variant filtering with the assistance of Dr Helen Griffin. Variants were 

annotated as exonic/splicing, excluding synonymous variants and rare variants were identified 

with a minor allele frequency (MAF<0.01) in the context of genotype (heterozygous 

MAF<0.001; homozygous MAF<0.01). Control data were obtained from several databases 

downloaded via ANNOVAR (NHLBI_ESP6500, cg69) and also in 281 in-house exomes. By 

comparison with the Exome Aggregation Consortium (ExAC) database, the rates of rare copy 

number variations (CNVs) (<0.5% frequency) were investigated in the exome sequencing 

data (Ruderfer et al., 2016). Protein prediction and evolutionary sequence conservation 

algorithms downloaded via ANNOVAR were used to define protein altering and/or putative 

‘disease-causing’ mutations. Protein prediction algorythms (SIFT, Polyphen2, Mutation 

Taster, A-GVGD, LRT) were used to analyse the in silico effects on protein functioning. 

Potentially deleterious variants were tested using QIAGEN Ingenuity Variant Analysis. This 

on-line tool brings multiple biological sources together to help with the filtering challenge in 

identifying variants. The same interface can be used to construct testable mechanistic 

hypotheses based on reported biological relationships between genes/variants and the 

phenotypes (Wendelsdorf and Shah, 2015). We followed the guidelines of the American 

College of Medical Genetics and Genomics (Rehm et al., 2013). 
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3.2.2 Sanger sequencing 

3.2.2.1  DNA sequencing 

Selected putative pathogenic variants were confirmed by Sanger sequencing using custom-

designed primers and where family members were available segregation analyses were carried 

out. 

 

Primer designing 

Search in Genome browser  

The specific gene region of interest was searched by the gene names and exact base pair 

positions within the chromosomes using the Ensembl Genome Browser website 

(http://www.ensembl.org). Genome browsers provide a graphical interface to extract and 

summarise information of genomic sequence and annotation data, and promote cross-species 

comparative analysis. The Ensembl browser contains the most extensive set of gene and 

transcription-related data and the most extensive presentation of haplotype data (HapMap 

project) (Furey, 2006; Wang et al., 2013). 

 

Primer selection 

The design of primer oligonucleotide sequences specific for the region of interest was assisted 

by Primer3 (http://primer3.wi.mit.edu). Target DNA sequences were uploaded into the online 

software, which provided primer sequences selected to span the region of interest and 

specified by the product size, melting temperature and their GC content (%). 

Polymerase chain reaction (PCR) amplifying a sequence target requires two primers (forward 

and reverse) anneal to the 3′ ends of the sense and antisense strands. The primers should be 

long enough to bind complementarily to the target sequence, while needing to be specific to 

avoid amplifying unwanted regions in the genome. The shorter primers have higher binding 

efficiency but their specificity is lower. Generally, primers of 18–24 nucleotides in length 

were selected. A GC content of ~50% of the primers was adjusted to prevent that long 

stretches of poly(G,C) would increase the chance of mispriming, while high AT content was 

avoided to prevent unstable pairing (Untergasser et al., 2012; Hung and Weng, 2016). 

 

Primer validating 

The generated primer sequences were checked for all possible binding targets using Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to exclude chances for mispriming 

across the genome.  

http://www.ensembl.org/
http://primer3.wi.mit.edu/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Furthermore, all selected primers were optimised before being applied. A PCR reaction using 

DNA and negative controls was performed at 3 different temperatures, including the melting 

temperature advised by Primer3. During a PCR cycle, the primers and the target form a 

duplex in the annealing step, which requires a lower temperature than the subsequent 

denaturation step, while the duplex is separated. Therefore appropriate and primer adjusted 

melting temperatures are required for each PCR reaction (Hung and Weng, 2016).  

 

Polymerase chain reaction (PCR) reaction 

The PCR is a powerful method that can amplify a DNA/RNA segment from a small amount 

of template target sequence. Synthetic oligonucleotides flanking sequences of interest are 

used in repeated cycles of enzymatic primer extension in opposite and overlapping directions. 

The introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus 

(Taq DNA polymerase) enabled the process to become automatic. Each PCR cycle consists of 

thermal denaturation of double-stranded target molecules, primer annealing to both strands 

and enzymatic synthesis of DNA (Vosberg, 1989; Lorenz, 2012). 

 

DNA amplification 

The availability of adequate quality and quantity of the genomic DNA is essential for genetic 

analysis. Although the quantity of DNA in the sample can be determined in ng/μl by 

nanospectrophotometers, the number of molecules (optimal target between 104 and 107) is 

more important for a successful PCR. 

Whole genome amplification (WGA) has been developed to overcome the limitations of small 

amounts DNA available form human samples. The multiple displacement amplification 

(MDA) method does not require high-temperature denaturation to provide a single-stranded 

template, therefore it reduces DNA degradation and increases the specificity of the 

amplification (Dean et al., 2002; Wang et al., 2011; Lorenz, 2012).  

The REPLI-g ultrafast minikit (Qiagen, Valencia, CA) utilising isothermal MDA with a 

uniquely processive DNA polymerase was used for the uniform amplification of the whole 

genomic DNA. The sample DNA was denatured by adding a denaturation buffer and the 

denaturation was stopped by a neutralisation buffer. A master mix, containing reaction buffer 

and REPLI-g UltraFast DNA Polymerase was added to the denaturated template DNA and an 

isothermal amplification reaction was processed for 1.5 hours at 30°C. 
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PCR reaction mixture 

The standard PCR reagents that were used included a set of primers designed to the target 

sequence to be amplified, DNA polymerase (ImmolaseTM DNA Polymerase, Bioline or 

MyTaqTM DNA Polymerase, Bioline), a buffer for the specific DNA polymerase, DNA 

template and sterile water. The advanced formulation of MyTaq Reaction Buffer system 

already contained the deoxynucleotides (dNTPs) and MgCl2, which otherwise needed to be 

added to other DNA polymerase systems (Table 3.3).  

In each PCR reaction negative control and normal DNA positive control was introduced. 

When multiple PCR experiments were planned, a mixture of reagents common to all reactions 

(Master Mix) was initially prepared. All reagents were kept and the set up of the reaction 

mixture was performed on fresh ice. 

 

 

Table 3.3 Standard MyTaqTM PCR protocol 

(taken from Product note, Bioline) 

 



 

 20 

PCR cycling conditions 

The cycling times and temperatures varied, dependent on the DNA polymerase and the 

template characteristics used in the experiment (Table 3.3). The reaction started with an 

initial activation/denaturation at a high temperature, generally for 1 minute. Longer initial 

denaturation times were required to facilitate complete melting of the DNA. Generally, 25 to 

35 rounds of a three-step temperature cycle was the next step, including a short (15-30 

seconds) high temperature denaturation, followed by the annealing step at a lower temperature 

set ideally between 52 °C to 58 °C and an extension step at 72 °C. The final phase of thermal 

cycling contained an extended elongation period of 10 minutes, which allowed the addition of 

an adenine residue to the 3' ends of all PCR products. Termination of the reaction was 

achieved by cooling the mixture down to 4 °C. 

 

Electrophoresis on Agarose gel 

PCR products can be detected by loading aliquots of each reaction into wells of an Agarose 

gel. Orange G loading dye (dH2O, 15% glycerol, 1% orange dye) was used at a 1:1 ratio to 

stain the PCR product and usually 6μl was mixed with 6μl PCR product. The stained DNA 

product was uploaded into a 2% Agarose gel (2g agarose gel in 1xTAE, Tris base Acetic acid 

and EDTA (Ethylenediaminetetraacetic acid) buffer pH8.0) mixed with 40 μl/100ml of 

ethidium bromide. The stained PCR product migrated into the gel following electrophoresis 

for a minimum of 30 minutes at 75V. Gel images were captured on a GelDoc-It 310 Imaging 

system (UVP). Ethidium bromide intercalated between the bases of the DNA strands and 

allowed the PCR bands to be visualized under UV light.  

 

Analysis of the PCR bands  

Parallel to the PCR products a ready to use molecular weight marker (HyperLadderTM 100 bp, 

Bioline) was loaded to the gel in order to determine the detected band sizes. If there was a 

discrete band detected at the expected molecular weight, the PCR product was further 

processed for sequencing. Occasionally dimmer formation of the primers (small bands <100 

bp near the bottom) were visible on the gel, indicating self anneal or anneal to the other 

primer in the reaction. At other times, non-specific PCR bands were detected indicating that 

the primers were designed to highly repetitive sequences or there was a lack of PCR product. 

The PCR reaction was then repeated adding dimethylsulfoxide (DMSO) or betaine (N,N,N-

trimethylglycine) or both to enhance the PCR amplification of G-C rich targets. Modifications 

were also applied in the cycling conditions and ultimately designing a new primers pair was 

required (Lorenz, 2012).  



 

 21 

Sequencing 

PCR sample clean-up 

Amplified samples were subsequently treated with a mixture of two hydrolytic enzymes, 

exonuclease I (20U/µL, Thermo Fisher) and thermosensitive alkaline phosphatase, FastAP 

(1U/µL, Thermo Fisher) for rapid and efficient removal of unincorporated primers and 

degradation of unwanted deoxynucleotides left from the PCR reaction (Mardis and 

McCombie, 2016). 

The reaction mix of 0.5µl ExoI and 1µl FastAP with 3µl PCR product was loaded to 

each well of the 96-well plate and incubated at 37°C for 15 minutes, while the reaction was 

stopped by heating the mixture at 85°C for 15 minutes. 

Alternatively purified DNA was recovered from the PCR products on the 2% Agarose gel 

utilising spin-column (nucleic acid purification column) technology by a commercially 

available kit (QIAquick Gel Extraction Kit, QIAGEN®) using salt reagents (TAE buffer, Tris 

acetate/EDTA or TBE buffer, Tris borate/EDTA).  

After electrophoresis separated DNA bands were visualised on a UV transilluminator 

and the desired bands were excised from the gel with sharp scalpel, cautiously removing extra 

agarose gel. DNA fragments were extracted from the gel by dissolving the gel-slice in 3 

volumes (300µl to 100mg gel) of chaotropic salt buffer reagent (Buffer QG) at 50°C for 10 

minutes. To increase the yield of the DNA fragment one volume of isopropanol was added to 

the sample. The sample solution was then applied to the QIAquick spin-column to bind the 

DNA fragments after spinning at 13.000rpm for 1 minute. To remove all traces of agarose, an 

additional 0.5ml BufferQG was applied with spinning at 13.000rpm for 1 minute. The spin 

column was washed by using an ethanol containing BufferPE with a two-step spinning at 

13.000rpm. Finally, the DNA was eluted in a small volume (30µL) of BufferEB and was 

centrifuged to collect. The received sample was kept immediately on ice and the DNA content 

was measured by nanospectrophotometer.  

 

Dye-terminator cycle sequencing 

Automated large-template DNA sequencing uses fluorescent dyes for the detection of the 

electrophoretically resolved DNA fragments (Rosenblum et al., 1997). The dyes attach to the 

terminating ddNTP. The implication of DNA polymerases, which do not discriminate 

between dNTP and ddNTP, is that false terminations will not be detected and the spectral 

resolution will be higher with increased brightness (Sanger et al., 1977; Rosenblum et al., 

1997; Heiner et al., 1998). Fluorescent cycle sequencing of the PCR products was performed 

by utilising the dye-terminator cycle sequencing approach (ABI BigDye® v3.1 3130xl 
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Genetic Analyzer, Life Technologies). A 15µl mixture consisted of 1µl BigDye® Terminator 

v3.1 (Applied Biosystems), 2µl BigDye® Terminator v1.1/v3.1 5X Sequencing Buffer, 1µl 

primer (forward or reverse) and 11µl sterile water was added to the ExoFAP reaction already 

in the 96-well plate, reaching the 20µl final volume for cycle sequencing. An initial 

denaturation at 96°C for 1 minute was followed by 25 cycles of 96°C for 10 seconds, 50°C 

for 5 seconds and 60°C for 4 minutes, then the reaction was stopped with cooling down to 

4°C.   

 

Ethanol precipitation 

Excess dye terminators in sequencing reactions obscure data and can interfere with base 

calling. Unincorporated dye terminators should be removed prior to electrophoresis by 

purification methods. Ethanol/EDTA precipitation was carried out in two wash-out steps. 

Initially 2µl 125mM EDTA, 2µl 3M Sodium acetate and 70µl 100% Ethanol were added to 

each well of the plate and was incubated for 15 minutes at room temperature. Subsequently, 

the plate was centrifuged for 30 minutes at 2000g, which was followed by spinning the 

inverted plate up to 100g. In the second step an additional 70µl 70% Ethanol was added to the 

wells and the plate was centrifuged at 1650g for 15 minutes, followed by a repeated inverted 

spin up to 100g. The plate was air dried in dark for 10 minutes and was ready for sequencing 

or could be stored sealed at -20°C.   

 

Capillary sequencing 

Capillary electrophoresis uses a denaturing flowable polymer to separate the fluorescently 

labelled DNA fragments according to their molecular weight. An optical detection device of 

Applied Biosystems genetic analysers detects the fluorescence. A minimum of 10μl sample 

volume was required in the 96-well plate, so that the ends of the capillaries remain submerged 

in liquid to inject each sample multiple times. Hi-DiTM Formamide (Applied Biosystems) was 

used to re-suspend the sample to reach 10μl volume. The sample re-suspended in Hi-DiTM 

was heated for 2 minutes at 97°C and then sequenced with the 3130xl Genetic Analyser. 

 

Data analysis 

Raw data were analysed with Seqscape® v2.6 (ThermoFisher) or more preferably with 

Mutation Surveyor® v4.0.5 (Softgenetics). Reference sequence was created for the region of 

interest by using the RefSeq database, which was accessible in NCBI resources including 

Entrez Gene, Map Viewer and BLAST. The sequenced raw files were uploaded to the 

software and were compared to reference and control negative sequences. 
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3.2.2.2  cDNA sequencing 

RNA isolation 

To purify RNA from small amounts of blood or fibroblast cells a commercial kit 

(RNeasy®mini kit, QIAGEN) was used, which utilises a specialised high-salt buffer system to 

prepare up to 100μg total RNA per sample. 

Blood samples collected in specialised RNA tubes were defrosted and 4 ml blood was 

centrifuged at 3500g for 10 minutes, while the supernatant was discarded by cautious 

pipetting. The pellets were re-suspended in 5ml RNase free water and centrifuged at 3500g 

for 10 minutes and the overflow was discarded. The sample was first lysed and homogenised 

in the presence of a highly denaturing guanidine-thiocyanate–containing buffer (600μl RLT 

Buffer), which immediately inactivated RNases. When RNA was purified from fibroblast cell 

lines, which are rich in RNases, then 10μl β-mercaptoethanol was added to the Buffer RLT 

before use. Subsequently, 70% Ethanol was added to provide appropriate binding conditions 

and a 700μl sample was then applied to an RNeasy Mini spin column. Total RNA was bound 

to the membrane and optionally treated with DNase I. Membrane contaminants were washed 

away in multiple steps using 700μl RW1 Buffer and 500μl ethanol containing RPE Buffer 

with centrifugation at 11.000rpm for 15 seconds. The high-quality RNA was eluted by adding 

30μl RNase-free water and the RNA content was measured by nanospectrophotometer. 

 

Reverse-transcription (RT) PCR 

The total RNA extracted from the cells was converted to a single-stranded cDNA by applying 

the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). For each reaction 

a 10μl reaction mix consisted of 2μl 10X RT Buffer, 0.8μl 25X dNTP Mix (100mM), 2μl 10X 

RT Random Primers, 1μl MultiScribe™Reverse Transcriptase and 4.2μl nuclease-free water 

was prepared and added to the 10μl RNA sample in a 96-well reaction plate. A reverse 

transcription was performed in a thermal cycler at 25°C for 10 minutes, 37°C for 2 hours, 

85°C for 5 minutes and then cooled down to 4°C. The produced cDNA content was measured 

by nanospectrophotometer, considering that it also measured the primers in the sample. 

Subsequently, the converted cDNA was validated in a PCR reaction performed with 

optimised working cDNA primer pairs and by using negative control and genomic DNA as a 

positive control. 

RT-PCR amplification required designing primers, complimentary with the cDNA sequence 

of the genomic region of interest. The PCR and sequencing processes were carried out 

according to the same protocol described earlier in Chapter 3.2.2.1.  
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3.2.3 Functional protein studies 

3.2.3.1  Fibroblast cell line culture 

Punch skin biopsies were taken after ethical approval and informed consent from controls and 

patients using standard techniques. The tissue was stored in culture medium and fibroblasts 

were obtained for further studies and stored at -80°C in the Biobank at the Institute of Genetic 

Medicine, Newcastle University.  

The human primary fibroblasts were grown in plastic flasks (CELLSTAR®, Greiner Bio-One 

International, T25, 25 cm2 Item No: 690175 and T75, 75 cm2, Item No:658175) in 1x 

Dulbecco Modified Eagle Medium (DMEM) (Gibco®), which was additionally supplied with 

50ml 10% FBS (F7524, Sigma), 5ml 1% Pen/Strep (10,000U/mL, Gibco®), 5ml DMEM 

Vitamin Solution 100x (11120-037, GIBCO), 5ml Sodium Pyruvate (S8636, SIGMA), 5ml 

Non-essential Amino Acids 100x (11140-035, GIBCO), 5ml L-Glutamine 200mM 100x 

(25030-024, GIBCO) and 1ml Uridine 25mg/ml (U3003, SIGMA). 

Frozen aliquots of fibroblasts were thawed and diluted in 5 ml culture media in a T25 

flask, mixed gently and cells were checked under light microscope for viability. The fibroblast 

containing flasks were incubated under standard sterile culture conditions in a 5% CO2 

incubator at 37°C. Soon, when the cells attached, the medium containing DMSO was 

removed and replaced with 5 ml of fresh DMEM media. Once a confluent cell monolayer was 

seen under the light microscope, fibroblasts were dissociated with 0.05M Trypsin-EDTA 10x 

(15400-054, GIBCO) and were diluted in 10 ml culture DMEM medium in a new T75 flask. 

During the incubation of the cells intermittently the culture DMEM medium was changed, 

using autoclaved water dissolved PBS (Oxoid Ltd., BR0014G). In order to grow a larger 

amount of cells, once a confluent monolayer was achieved in the T75 flask, fibroblasts were 

dissociated using Trypsin-EDTA and were split into new T75 flasks containing fresh DMEM 

media. 

The fibroblast cells grown for further protein immunoblotting were detached by 

Trypsin-EDTA and were transferred into a 15 ml falcon tube to spin at 1300rpm for 5 

minutes. The supernatant was cautiously removed and the pellet was stored at -20°C until 

further manipulation.  

Alternatively, the grown fibroblast cells were frozen down for future growth by using 

a freezing media (90% Fetal Bovine Serum and 10% DMSO), which was added to the pellets 

and stored in cryovals at -80°C.  

 

 



 

 25 

3.2.3.2  Western blot 

Protein extraction  

Total protein was isolated from cell lysate supernatants by solubilising fibroblast cells 

dependent on pellet size in a 30μl / 80μl RIPA buffer (Radio Immuno Precipitation Assay 

buffer) containing 50mM Tris HCl pH8, 1mM EDTA, 150mM NaCl, 0.5% sodium 

deoxycholate, 0.1% SDS (sodium dodecyl sulphate) and 1% NP-40. After incubation for 10 

minutes at 4°C cells were frozen-thawed twice and the insoluble pellet was removed by 

centrifugation at 4°C 13.000 rpm for 10 minutes. 

 

Determination of protein concentration 

The protein concentration of the supernatant was determined by Bradford Protein Assay 

utilising the Coomassie blue G-250 dying system, which indicates protein binding with colour 

change. This can be measured at 595 nm with the Infinite® F50 (Tecan) plate reader 

spectrometer. Standard serial dilutions were prepared using control bovine serum albumin 

(BSA, 1μg/μl) at concentrations of 0μg/ml; 0.1μg/ml; 1μg/ml; 3μg/ml; 5μg/ml; 10μg/ml; 

15μg/ml by adding 200μl Bradford reagent (BioRad Protein Assay Solution) and sterile water 

up to 1 ml. From the sample protein 1μl was added to 200μl Bradford reagent and 799μl 

deionised water. The concentrations were measured and absorbance readings of the standards 

determined a standard curve, where the actual absorbance value of the sample protein could 

be plotted and the protein concentration in μg/μl could be determined. 

 

Preparation of protein sample 

Antibodies recognise only small epitopes of the protein. In order to enable access to this 

protein region of interest, the complex protein structure needs to be unfolded by denaturation 

using a loading buffer and an anionic denaturing agent. A total of 20μg and 25μg 

sample/control protein was planned to upload for electrophoresis and the necessary protein 

volumes were calculated based on the Bradford assay. A total volume of 10μl mixture was 

prepared by adding 2.5μl NuPAGE® LDS Sample Buffer (4x; Life technologies), 1μl 

NuPAGE® Reducing Agent (10x) to the necessary volumes of the proteins made up with 

deionised water. The samples were then boiled at 70°C for 10 minutes.  

 

Electrophoresis 

The electrophoresis is a standard method to separate proteins according to their molecular 

weight. Both sample and control proteins were loaded at a 20μg and 25μg amount into a 4-

12% SDS polyacrylamide gel (NuPAGE® Bis-Tris Mini Gel, Novex®) along with protein 
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molecular weight ladders, Biotynilated Protein Ladder (#7727, CellSignal) and SeeBlue® 

Plus2 Pre-stained Protein Standard (Novex®). The electrophoresis tank was filled with a 20 

times diluted NuPAGE® MES SDS Running Buffer (20X) (Novex®) as running buffer and 

500µl of NuPAGE® Antioxidant (Novex®) was added to the internal chamber of the tank. 

Samples, accompanied by the markers, were run on the gel for 40-50 minutes dependent on 

the molecular weight under 150V. 

 

Protein transfer 

Proteins were transferred to a PVDF membrane with an iBlot®2 PVDF Mini transfer stack 

(ThermoFisher) according to the manual protocol. For proteins with smaller molecular weight 

the transfer time was reduced to 5 minutes from the generally used 7 minutes. The success of 

the protein transfer was visualised by detecting the protein bands with Ponceau Red staining 

(2% Ponceau S in 30% trichloroacetic acid and 30% sulfosalicylic acid).  

 

Antibodies incubation 

The membrane was thoroughly washed with the blotting buffer, TTBS (20 ml 1M Tris HCl 

pH 7.5, 29.2g NaCl, 1ml Tween®(Sigma) made up to 1L dH2O). To avoid non-specific 

binding of the antibodies, the membrane was blocked with 5% non-fat dry milk (5g non-fat 

milk powder per 100ml of Tris HCl Buffer Saline Tween20 (TBST) buffer) for 1 hour at 

room temperature. Antibody solutions were prepared by appropriate dilution of the relevant 

primary/secondary antibodies in 5% milk in blotting buffer (TTBS). The membrane was 

incubated in the antibody solution containing the primary antibody at 4°C overnight. 

Subsequently, the membrane was washed with 3 or more changes of blotting buffer for 30 

minutes at room temperature. Then the membrane was incubated in the antibody solution 

containing HRP-conjugated secondary antibody for 1 hour at room temperature. 

 

Blot development 

Following a thorough wash with 5 or more changes of blotting buffer for 30 minutes, the 

membrane was developed with a chemiluminescent detection method. The membrane was 

incubated for 5 minutes in the dark with a Clarity™ Western ECL Blotting Substrate peroxide 

solution and luminol/enhancer solution (Bio-rad). The chemiluminescence signal was 

detected and transformed into a digital image by the Amersham Imager 600 (GE Healthcare 

Life Science). To analyse the blot, GAPDH was used as a loading control for normalisation. 

The membrane was incubated with anti-GAPDH antibody at 4°C overnight and the membrane 

was developed and detected as described above. 
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Chapter 4. Identifying the patient cohort and clinical classification of the 

hereditary motor neuropathies 

 

4.1 Hereditary motor neuropathies and the revised nosology  

The hereditary motor neuropathies (HMN) encompass clinically and genetically 

heterogeneous groups of disorders characterised by lower motor neuron weakness due to the 

involvement of spinal motor neurons and motor axons in the peripheral nervous system (Irobi 

et al., 2006; Dierick et al., 2008; Rossor et al., 2012). The last population survey from North-

East England in 1979 estimated the prevalence of hereditary motor neuropathies around 10% 

among spinal muscular atrophy cases (Pearn and Hudgson, 1979). Later in the same region 

the cumulative incidence of CMT was identified as 11.8 per 100.000 inhabitants (Norwood et 

al., 2009; Foley et al., 2012).  

The classical phenotype of the distal hereditary motor neuropathy (dHMN) is a length-

dependent motor weakness and atrophy, initially affecting the intrinsic feet muscles and the 

peroneal compartment of the leg (Jonghe et al., 1998). Foot deformities, such as pes cavus 

and clawing of the toes are frequently seen in conjunction with dHMN. The majority of the 

cases show a slowly progressive disease course gradually involving the more proximal leg 

muscles and/or affecting the intrinsic hand muscles. Congenital non-progressive conditions 

have been described as congenital distal spinal muscular atrophy (CDSMA) (Fiorillo et al., 

2012). Other congenital- or infantile-onset forms with lower limb involvement and static or 

very slow disease progression were grouped in the entity of spinal muscular atrophy with 

lower extremity dominance (SMA-LED) (Harms et al., 2012). Various ages of onset, varying 

clinical course and accompanying neurological features complicate the phenotypes further 

and serve as a basis for disease classification. Primary or predominant upper limb 

manifestation, upper motor neuron and bulbar symptoms, isolated cranial nerve involvement, 

respiratory impairment, skeletal and hip dysplasia may be essential clues to establish a 

phenotype led molecular diagnosis (Bansagi et al., 2017). 

In respect of the concept that CMT and related disorders present a clinical continuum from 

pure sensory along sensorimotor toward pure motor neuropathies, dHMN could be 

acknowledged as the pure motor endpoint of the CMT spectrum. However, there is still a 

debate to what extent the involvement is always exclusively motor, as many forms of dHMN 

clinically show minor sensory changes (Irobi et al., 2006; Rossor et al., 2012). A considerable 

clinical and genetic overlap exists between axonal CMT (CMT2) and dHMN. Different 
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mutations in the same gene can cause both allelic phenotypes (Dierick et al., 2008). It has still 

remained difficult to distinguish clinically between the two entities and the differentiation 

continues to rely on the presence or absence of sensory electric nerve changes, regardless of 

the presence of clinical sensory deficits (Jonghe et al., 1998). In addition, detailed 

neurophysiology studies revealed somatosensory abnormalities in patients complaining about 

sensory symptoms, suggesting proximal sensory pathway changes alongside normal 

peripheral sensory nerve tests (Devic et al., 2012).  

Furthermore, dHMN is also referred to as distal spinal muscular atrophy (dSMA) 

emphasizing the hypothesis that the primarily pathology resides in the lower motor neurons 

and classifying it as a separate disease entity within the group of hereditary motor 

neuropathies (Irobi et al., 2006; Rossor et al., 2012). This presumption might be supported by 

the combined upper and lower motor neuron involvement in some dHMN patients. An 

increasing number of identified dHMN-related genes is also causative for overlapping motor 

neuron diseases, including amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia 

(HSP), spinal muscular atrophy (SMA) and Kennedy’s disease (Irobi et al., 2006; Van Den 

Bosch and Timmerman, 2006; Rossor et al., 2012) (Figure 4.1). 

 

4.2 Aims 

I designed a longitudinal population based study to investigate the epidemiology, clinical and 

electrophysiology features of hereditary motor neuropathies and to review the classification. 

 

4.3 Methods 

4.3.1 Patient recruitment 

Patients suffering from motor and sensory neuropathy symptoms were referred either directly 

or after general neurology investigations to the specialised clinic for inherited peripheral 

neuropathies at the Institute of Genetic Medicine, Newcastle University. Referrals were 

accepted from the catchment area of Newcastle-upon-Tyne Hospitals NHS Trust 

(Northumberland, Durham, Cumbria, parts of Yorkshire and Lancashire) and were analysed 

over a period between 2010 and 2015. Jointly with the clinical service, a specialist research 

laboratory, as part of the Medical Research Council for Neuromuscular Research UK, is run 

for research based investigations of CMT. Therefore this service is well placed to provide 

representative epidemiologic data about CMT and related disorders in the North-East of 

England. 
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Figure 4.1 Classification of dHMN 
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4.3.1.1  Inclusion and classification criteria 

Patients presenting hereditary motor neuropathies were exclusively included in the study. 

They were selected from the individuals we diagnosed with genetic neuropathies among the 

total referrals. All selected patients were further classified based on detailed family and 

clinical history, physical examination, neurology and electrophysiology findings into one of 

the overlapping groups of pure dHMN (dHMN), motor predominant CMT2 (motor CMT2) 

and complex motor neurono- or neuropathies (HMN plus).  

Diagnosis of the dHMN group relied on the predefined set of clinical criteria, suggested by the 

2nd European CMT Consortium, with preserved sensory nerve studies and normal or reduced 

compound motor unit action potentials (CMAP) and/or neurogenic changes on needle EMG 

examination (Jonghe et al., 1998).  

Patients with dHMN phenotype but presenting decreased sensory action potentials (SNAP) 

indicative of an accompanying sensory axonopathy were grouped as motor CMT2.  

We considered HMN plus when the hereditary motor neuropathy was accompanied by other 

neurological complications, e.g. upper motor neuron and/or cranial nerve involvement, 

extrapyramidal disorder or cerebellar symptomatology.  

All participants provided written informed consent to be involved in the clinical and genetic 

studies, which were performed according to standard protocols approved by local research 

ethics committees. 

4.3.1.2  Exclusion criteria  

Acquired neuropathy causes were excluded in all study patients applying a wide range of 

investigations. According to the clinical features, we performed specific laboratory tests for 

antibodies and immunological abnormalities, metabolic studies for acyl-carnitines, very long 

chain fatty acids, serum and urinary amino acids and organic acids, alpha-fetoprotein, 

neuroimaging, nerve and/or muscle biopsies.  

4.3.2 Statistic evaluation 

The distribution of patients among the proposed clinical subgroups was determined in 

percentage (%) of patients diagnosed with hereditary motor neuropathies. 

The epidemiology of distal hereditary motor neuropathy (dHMN) was further analysed by 

determining the frequency as a percentage (%) of patients seen with inherited neuropathy in 

the referral centre between 2010 and 2015. The prevalence of dHMN was determined as the 

number of affected individuals per 100.000 inhabitants in the population of North-East 

England estimated by the 2011 UK census. The amount of uncertainty associated with our 
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sample estimate of the population parameter was described by confidence interval. The 

confidence interval (CI) was calculated based on the sample size (population size by 2011 UK 

census) and based on the number of positive results (number of patients diagnosed with 

dHMN) when the desired level of confidence was adjusted at 0.95. 

4.3.3 Neurophysiology studies 

Electrophysiology studies were analysed in patients, where previous results were available 

and/or new tests were initiated in order to evaluate actual concomitant electric findings. 

Conduction velocities and action potential amplitudes were determined on motor and sensory 

nerve testing while qualitative and quantitative analysis of motor unit potentials (MUP) and 

features of spontaneous activity were assessed on electromyography. Interpretation of the 

measured parameters provided basis for patient classification into the established study 

groups.  

The electrophysiology tests were performed according to standard techniques as described in 

Chapter 3.1.2 and they were reported by the same expert Neurophysiologist Consultants (Dr 

Whittaker, Dr Lai and Dr Baker) at the Neurophysiology Department, Newcastle-upon-Tyne 

Hospitals NHS Trust. Patients unavailable for testing at Newcastle-upon-Tyne Hospitals NHS 

Trust were referred and tested in local Neurophysiology services. Electrophysiology studies 

were not carried out in genetically identified family members, if they were unwilling or 

uncomfortable to undertake study testing. 

 

4.4 Results 

4.4.1 Distribution and presentation of patients among classified clinical subgroups 

All together 461 patients were diagnosed with genetic neuropathy from the total referrals 

between 2010 and 2015 to the specialist inherited neuropathy clinic at the Institute of Genetic 

Medicine, Newcastle University. According to the study criteria, we included 105 patients 

from 73 families presenting either with length-dependent distal, predominantly motor 

symptoms or with distal motor neuropathy as part of a more complex clinical syndrome.  

A total of 64 patients from 40 families were compatible with the defined criteria of the dHMN 

diagnosis. Clinical manifestation of motor neuropathy with accompanied sensory changes on 

electric nerve testing enrolled 16 patients from 10 families in the motor CMT2 group. A 

further 25 patients from 23 families were classified into the HMN plus group showing 

complex neuropathology and overlapping symptoms between the previous entities. 
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Table 4.1 Phenotype statistics, efficacy of genetic methods and mutation detection rate in the classified patient subgroups 

(Bansagi et al., 2017) 
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There was a male predominance in all phenotype groups. Clinical symptoms started at a 

significantly younger age in the dHMN (mean age onset: 16 years) and HMN plus groups 

(mean age onset: 17.6 years) compared to the motor CMT2 (mean age onset: 23.8 years) 

(Table 4.1). The main inheritance pattern was autosomal-dominant in motor CMT2 families 

while autosomal-recessive and X-linked inheritance were more frequent in the group of HMN 

plus. The dHMN group consisted of an almost equal large number of dominant families 

(n=16) and ‘isolated’ patients with negative or unavailable family history (n=20), while 

clearly recessive cases were in minority.  

4.4.2 Epidemiology of hereditary motor neuropathy in the investigated patient cohort 

The frequency distribution of patients belonging to the groups of motor CMT2 (16/105) and 

HMN plus (25/105) was 15.2% and 23.8% of the cohort, respectively. According to our preset 

inclusion criteria 64 out of 105 patients (60.9%) received the diagnosis of distal hereditary 

motor neuropathy (dHMN), which accounted for 13.8% (64/461) of all patients diagnosed 

with inherited neuropathy in the specialist clinic between 2010 and 2015 (Table 4.1). 

Considering that the population of North-East England (Northumberland, Durham, Cumbria, 

parts of Yorkshire and Lancashire) is estimated at 2.99 million people (2011 UK census), 

which is the catchment area of the referral centre, the prevalence of dHMN was calculated as 

2.14 affected individuals per 100.000 inhabitants (95% CI: 1.62-2.66) (Figure 4.2). 

 

 

Figure 4.2 Statistic of the hereditary motor neuropathy cohort 
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4.4.3 Neurophysiology analysis in the clinical subgroups  

Electrophysiology data were available for evaluation in 96 patients. Ninety-two patients were 

examined at the Newcastle-upon-Tyne Hospitals NHS Trust, while 4 patients had the test 

performed at different hospitals and detailed parameter values could not be gathered. 

Genetically diagnosed 9 patients from 7 families did not undergo electric nerve studies.   

Motor and sensory nerve conduction parameters are highlighted in selected 60 patients (36 

dHMN, 12 motor CMT2, 12 HMN plus), where we could identify pathogenic or likely 

causative genetic mutations (Table 4.2; Table 4.3; Table 4.4; Table 4.5; Table 4.6).  

 

4.5 Discussion 

4.5.1 Epidemiology of hereditary motor neuropathies in North-East England 

Although hereditary motor neuropathies are suggested to be rare, we diagnosed HMN in 105 

patients from 73 families of North-East England origin. We determined the minimum 

prevalence of dHMN in the same population, which was calculated as 2.14 affected 

individuals per 100.000 inhabitants (95% CI: 1.62-2.66). There has been no recent data 

reported on the prevalence of dHMN. In comparison to earlier findings that the point 

prevalence of spinal muscular atrophy was 1.87/100.000 in the same region in 2009 

(Norwood et al., 2009) and a previous study estimated the occurrence of dHMN around 10% 

among spinal muscular atrophy cases, the minimum prevalence of dHMN in our cohort was 

significantly higher (Figure 4.2). 

4.5.2 Phenotype classification of hereditary motor neuropathies 

The motor predominant manifestation in dHMN and motor CMT2 patients caused diagnostic 

difficulties solely on clinical findings and required precise neurophysiology assessments for 

the differentiation. However, dHMN is strictly considered as the pure motor end of the CMT 

spectrum, many patients show minor sensory abnormalities (Irobi et al., 2006; Rossor et al., 

2012). Furthermore, the identification of pathogenic mutations in the same genes in dHMN 

and motor CMT2, which will be discussed in Chapter 5, support that dHMN should not be 

classified as a different disease group. We suggested that dHMN should be considered 

clinically as a subcategory of CMT.  

The phenotype and inheritance based classification of dHMN delineated by Harding has 

remained the prevalent framework we followed. However, it has become apparent that it is 

warranted to complete these previous categories with new clinical and molecular knowledge 

(Figure 4.1) (Harding, 1992; Rossor et al., 2012). 
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Table 4.2 Nerve conduction parameters in dHMN with confirmed pathogenic mutations 
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Table 4.2 continued Nerve conduction parameters in dHMN with confirmed pathogenic mutations 
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Table 4.3 Nerve conduction parameters in dHMN with possibly causative mutations 
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Table 4.4 Nerve conduction parameters in motor CMT2 
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Table 4.5 Nerve conduction parameters in dHMN plus with confirmed pathogenic mutations 
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Table 4.6 Nerve conduction parameters in dHMN plus patients with possibly causative mutations 
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The distinct entity of SMA-LED has been introduced to characterise the congenital or early 

childhood-onset non-progressive form of dHMN, caused by autosomal-dominant disorders of 

motor neuron development (Rossor et al., 2015). The clinical phenotype of 17 patients was 

compatible with SMA-LED in the examined cohort. By definition these are non-length-

dependent conditions, predominantly affecting the lower limb distal muscles with prominent 

additional proximal leg muscle involvement. Foot deformities and arthrogryposis-like lower 

limb contractures are frequently seen. At a later disease stage mild upper limb involvement 

may be present but sensory changes are absent. Motor nerve studies are often normal with 

only rare presence of axonal motor neuropathy, but electromyography indicates chronic 

neurogenic denervation. Correction of early-onset deformities is important, since these 

patients do not develop significant deterioration in the later disease course. 

The dHMN in some patients was complicated with other neurological signs overlapping with 

familial amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP), spinal 

muscular atrophy (SMA) or Kennedy’s disease (Irobi et al., 2006; Van Den Bosch and 

Timmerman, 2006; Rossor et al., 2012). Accompanying complex neurological and/or other 

organ impairments observed in some cohort patients with distal predominant motor 

neuropathy urged us to introduce the HMN plus group. Patients with motor neuropathy 

enrolled in this phenotype group well illustrated the significant overlap with other genetic 

motor neuron disorders.
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Chapter 5. Identifying genetic frequency and investigating mutational 

spectrum in hereditary motor neuropathies 

 

 

5.1 Review of hereditary motor neuropathies in the molecular era 

Gene identification in hereditary motor neuropathies used to rely on linkage studies 

performed in rare extended families. Recent development of next generation techniques has 

shifted the focus on small nuclear families and isolated patients and enabled new genes to be 

discovered in these previously genetically undefined groups of patients (Timmerman et al., 

2014). Furthermore, next generation sequencing (NGS) helped to identify numerous novel 

mutations in known disease genes providing further knowledge on genetic heterogeneity. The 

dHMN phenotype can arise with mutations in numerous genes at different chromosomal loci 

(locus heterogeneity) while different mutations in the same gene can lead to variable allelic 

phenotypes (allelic heterogeneity) (Berciano et al., 2012; Timmerman et al., 2014). 

Compared to the previously reported 7 genes and 13 chromosomal loci 10 years ago (Irobi, 

De Jonghe, et al., 2004; Irobi et al., 2006; Dierick et al., 2008), to date we acknowledge 

around 30 genes responsible for autosomal-dominant, recessive and X-linked forms of 

dHMN. Despite the increasing number of novel genes, a large proportion of patients with 

motor neuropathies, estimated around 75-80%, have still remained without genetic diagnosis 

(Rossor et al., 2012; Rossor et al., 2015).  

The so far identified genes encode ubiquitously expressed proteins involved in diverse 

cellular functions, most of which may be responsible for motor neuron vulnerability and/or 

may provide insights into underlying complex mechanisms. Affected pathways linked to 

HMN pathology include DNA/RNA metabolism, protein translation and synthesis, stress 

response and apoptosis, axonal guidance, intracellular trafficking and synaptic activity. 

Detailed analysis of gene- and phenotype specific data of patients’ cohorts and natural history 

studies along with unravelling gene and protein functions will facilitate the better 

understanding of common pathomechanisms. This will also trigger the introduction of new 

therapy approaches (Peeters et al., 2014; Timmerman et al., 2014).  

 

5.2 Aims 

I aimed to determine the mutation frequency in the North-East England cohort of patients 

with hereditary motor neuropathies by performing diagnostic and research based genetic 
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studies. The main goal of the study was to reassess the mutation detection rate in distal 

hereditary motor neuropathy (dHMN) with the use of next generation techniques and compare 

the result to previously studied cohorts. I also aimed to examine the efficacy and limitations 

of next generation sequencing as a tool in gene and mutation discovery in these highly 

heterogeneous diseases. Furthermore, I studied the spectrum of mutated genes and affected 

molecular pathways among the classified overlapping phenotypes.  

 

5.3 Methods  

5.3.1 Patient involvement in the genetic study 

We included the same 105 patients from the North-East of England in the genetic study, who 

were clinically diagnosed with hereditary motor neuropathies in Chapter 4. We applied 

diagnostic and/or research based genetic testing methods in all patients, who were previously 

classified into one of the phenotype subgroups of dHMN, motor CMT2 or HMN plus.   

All participants provided written informed consent to be involved in genetic studies. 

5.3.2 Diagnostic algorithm of applied genetic approaches 

Initially, targeted gene testing was carried out in patients from each phenotype group. 

Routinely, PMP22 gene mutation was excluded in all participants. Testing for candidate 

CMT2 and dHMN-related genes was led by clinical and inheritance features based on 

algorithms suggested by previous groups (Saporta et al., 2011; Murphy et al., 2012; Rossor et 

al., 2012). We proceeded with inherited peripheral neuropathy (IPN) gene panel testing in 

undiagnosed patients, in order to screen for the batch of known motor and sensory 

neuropathy-related genes. Where diagnosis could not be achieved by available diagnostic 

genetic methods, we applied whole-exome sequencing (WES) in the specialist research 

laboratory at Newcastle University (Chapter 3.2.1).  

Family members of participants, who demonstrated similar phenotype and nerve conduction 

findings, assumed to have the same genetic mutation or they were genetically tested. 

5.3.3 Genetic methods applied in the study 

5.3.3.1  Targeted gene testing 

DNA was obtained by standard methods from peripheral white blood cells. Candidate gene 

sequencing after PCR amplification of coding exons and flanking intronic regions was 

performed by automatic DNA sequencing on an Applied Biosystems 3730xl DNA Analyser 

in the Institute of Genetic Medicine at Newcastle University. 
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5.3.3.2  Inherited peripheral neuropathy gene panel testing 

The multi-gene panel assay utilising next generation sequencing (NGS), as described in 

Chapter 3, was performed by Dr Antoniadi, Dr Greenslade and Dr Forester in the Bristol 

Genetics Laboratory, using the UK Genetic Testing Network approved approach (Chapter 

3.2.1.1).  

5.3.3.3  Whole-exome sequencing 

Whole-exome sequencing (WES) was performed in the index patients or occasionally in more 

family members of selected pedigrees. Blood genomic DNA was fragmented, exome enriched 

and sequenced (Illumina TruSeq™ 62 Mb and HiSeq 2000, 100 bp paired-end reads) and 

bioinformatics analysis was carried out as described in (Chapter 3.2.1.2). Putative pathogenic 

variants were confirmed by Sanger sequencing according to the description in (Chapter 

3.2.2). Where family members were available, variants were tested for segregation. 

I aimed to discover novel gene mutations by intersecting patients’ WES data with datasets 

from members of same family or from independent patients, who shared a similar fully 

penetrating phenotype. Furthermore, I filtered the annotated WES data of index patients 

against a set of 132 known or likely causative IPN-related genes, as well as against a batch of 

69 known motor neuron disease-related genes (9 SMA, 41 ALS and 19 HSP) (Table 5.1). 

Novel sequence variants of known disease genes and novel gene mutations were assessed for 

the likelihood of their pathogenicity. Variants were defined as ‘confirmed pathogenic’, if the 

variant was previously shown to be pathogenic or if the novel sequence variant of a known 

motor neuropathy associated gene or a novel gene was predicted to affect protein structure or 

function and segregated with the disease in at least one additional affected family member. 

Highly conserved in silico deleterious novel sequence variants of known or novel genes were 

determined as ‘possibly pathogenic’ in case segregation studies could not be carried out (Pyle 

et al., 2015).  

5.3.4 Statistical analyses of the results 

Many patients came from the same pedigree and therefore the mutation frequency in each 

phenotype group was determined at the pedigree level to avoid risk of bias. The mutation 

detection rate in the cohort of hereditary motor neuropathy was provided in percentage (%) 

and was calculated from the number of genetically diagnosed families out of the total number 

of involved pedigrees. The cumulative mutation detection rate consisted of ‘confirmed’ and 

‘possibly’ subcomponents based on the confirmed or possibly causative nature of the 

identified gene mutations. 
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Table 5.1 Set of genes related to IPN, HSP,SMA and ALS filtered in the WES data of HMN cohort 
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The efficacy of each applied genetic method was characterised by the test detection rate in 

percentage (%), which was calculated from the number of positive test results out of the total 

number of performed tests. 

5.4 Results 

5.4.1 Mutation frequency in the HMN cohort and efficacy of applied genetic tools 

We managed to identify causative mutations in 35 families (60 patients) out of 73 families 

(105 patients), which provided a 47.9% cumulative mutation detection rate in the cohort. 

Molecular diagnosis could not be reached in 45 patients from 38 families (Table 4.1). The 

mutation detection rate and spectrum of affected genes determined in the phenotype 

subgroups will be discussed in the following paragraphs. 

Targeted gene testing led to the molecular diagnosis in 5 out of 105 patients only (4.7%), 

while 12 index patients were diagnosed by the IPN gene panel testing out of the 46 performed 

tests (26%) and a further 18 index patients by WES from a total of 40 analyses (45%) (Table 

4.1). There were no novel shared genes and/or mutations in the exome negative cases.  

5.4.2 The spectrum of gene mutations and mutation detection rate in dHMN    

We diagnosed causative gene mutations in 17 index patients from 40 dHMN families. The 

cumulative mutation detection rate was 42.5%, which proved to be significantly higher 

compared to previous studies (Table 4.1).  

The implication of combined genetic methods was required to achieve molecular results in 

most of the cases. The spectrum of the genes identified among dHMN families was highly 

variable. Interestingly, we did not detect mutations in some otherwise frequent dHMN-related 

genes, such as HSPB1 and BSCL2, in the cohort.  

5.4.2.1  Confirmed pathogenic mutations 

Mutations were considered ‘confirmed pathogenic’ in 13 index patients and the ‘confirmed’ 

mutation detection rate was calculated as 32.5% (Table 4.1). Among them, 7 index patients 

carried known pathogenic dHMN mutations. In 5 families novel sequence variants of known 

dHMN-related genes were detected. These were predicted deleterious by various 

bioinformatics tools and segregated appropriately in the families. Furthermore, a novel 

dHMN-causing gene was identified with distinct pathomechamism in a large autosomal-

dominant pedigree (Table 5.2). 

A young female patient with dominant family history (Family 1) carried the previously 

reported heterozygous missense c.421A>G, p.Lys141Glu pathogenic mutation in the 
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Table 5.2 Summary of the clinical presentation of the patients in the dHMN group with confirmed causative mutations 

(Bansagi et al., 2017) 
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Table 5.2 continued Summary of the clinical presentation of the patients in the dHMN group with confirmed causative mutations 

(Bansagi et al., 2017) 
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HSPB8 gene (Irobi, Van Impe, et al., 2004). She presented with a juvenile-onset, rapidly 

progressive lower limb predominant phenotype. 

Two novel GARS mutations were found in two independent families. The novel heterozygous 

c.647A>G, p.His216Arg missense variant was detected in a two-generation family (Family 2) 

with predominant upper limb involvement (dHMN-V). Another novel heterozygous 

c.1528A>C, p.Lys510Gln missense mutation co-segregated in a three-generation dominant 

family (Family 3) with prominent lower limb weakness, foot deformities and less severe hand 

involvement.  

Six patients from a three-generation dominant pedigree (Family 4) were identified to carry the 

heterozygous missense c.923C>T, p.Pro308Leu mutation in the SYT2 gene (Herrmann et al., 

2014).  

The common c.320C>T, p.Ser107Leu BICD2 mutation was diagnosed in 5 patients from two 

independent families (Families 5-6) presenting with distal congenital non-progressive SMA-

LED (Bansagi, Griffin, et al., 2015).  

One male patient carried the heterozygous c.1834G>A, p.Val612Met missense mutation in 

the DYNC1H1 gene. His phenotype was compatible with SMA-LED (Family 7). This variant 

has been previously reported in 4 SMA-LED families worldwide, even though a common 

founder could not be identified (Scoto et al., 2015).  

The homozygous frameshift c.292_303delinsATGCT, p.Gly98fs mutation in the IGHMBP2 

gene led to the spinal muscular atrophy with respiratory distress (SMARD1) phenotype in 2 

male siblings of consanguineous Pakistani origin (Family 8).  

A brother and sister from another family presented with childhood-onset slowly progressive 

distal spinal muscular atrophy and lack of respiratory involvement (Family 9). They carried 

the heterozygous c.1813C>T, p.Arg605* nonsense IGHMBP2 mutation, which was 

hemizygous in the cDNA suggesting the loss of the second allele (Cottenie et al., 2014).  

The de novo c.805C>T, p.Arg269Cys TRPV4 mutation (Auer-Grumbach et al., 2010) was 

reported in a young boy with clinical and electrophysiological signs of scapuloperoneal SMA 

combined with metatropic dysplasia (Family 10) and the c.184G>A, p.Asp62Asn variant in a 

48-year-old woman (Family 11) with a predominant motor neuropathy affecting the lower 

limbs (Evangelista et al., 2015).  

An adolescent-onset, rapidly progressive dHMN was diagnosed in a young male patient 

(Family 12) with the de novo heterozygous c.1126A>G, p.Met376Val mutation in the MFN2 

gene, which has been previously reported in a Spanish CMT2 family (Casasnovas et al., 

2010). The heterozygous c.2119C>T, p.Arg707Trp MFN2 mutation (Nicholson et al., 2008; 
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Carr et al., 2015) was identified in a late adult-onset, unilaterally distributed dHMN 

phenotype in a 70-year-old man (Family 13). 

 

5.4.2.2  Possibly pathogenic mutations 

‘Possibly pathogenic’ mutations were considered in 4 additional families carrying possibly 

causative variants in known dHMN/CMT-related genes, where segregation studies were not 

available or not sufficient to confirm the diagnosis (Table 5.3).  

A single heterozygous c.2752 C>T, p.Arg918Cys IGHMBP2 variant co-segregated in a large 

Pakistani family with motor neuropathy and no signs of respiratory dysfunction (Family 14). 

A second mutation could not yet been identified in the family.  

Another heterozygous c.767C>G, p.Ala256Gly IGHMBP2 variant was detected in a 3,5-year-

old boy with juvenile-onset phenotype, where the pathogenicity could not yet been confirmed 

due to the lack of a second mutation (Family 15).  

In a dominant dHMN pedigree we found the co-segregating novel heterozygous c.628G>T, 

p.Ala210Ser missense DHTKD1 variant (Family 16).  

In a young female patient (Family 17) a heterozygous, not yet reported c.1949G>A, 

p.Tyr650Cys sequence change was identified in the ARHGEF10 gene, causing the 

substitution of the highly conserved amino acid downstream to the catalytic Dbl homology 

domain, that is required to activate RhoGTPases (Verhoeven et al., 2003).  

5.4.3 The spectrum of gene mutations and mutation detection rate in motor CMT2  

The diagnosis of motor CMT2 was established in 16 patients from 10 families. We recorded 

70% ‘confirmed’ mutation detection rate in this group as a result of a ‘confirmed pathogenic’ 

molecular diagnosis in 7 CMT2 families (Table 4.1). 

IPN gene panel testing determined the genetic cause in 6 families. All identified variants were 

previously described as pathogenic mutations linked to axonal neuropathies. Interestingly, the 

incidence of CMT2A (MFN2 mutations) was lower in the cohort than it was expected from 

previous studies. However, alanyl-aminoacyl-tRNA synthetase gene mutations (AARS) were 

commonly found in this overlapping phenotype group (Table 5.4). 

The recurrent heterozygous c.986G>A, p.Arg329His AARS mutation was identified in 6 

patients from 4 independent families (Families 18-21) (Bansagi, Antoniadi, et al., 2015).  

A dominant pedigree presented with early-onset intermediate motor neuropathy (Family 22) 

linked to the previously reported missense c.1739T>C, p.Met580Thr DNM2 mutation 

(Haberlová et al., 2011). The 59-year-old index patient had hearing impairment, split hand 
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Table 5.3 Summary of the clinical presentation of the patients in the dHMN group with possibly causative mutations 

(Bansagi et al., 2017) 
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deformity and respiratory muscle involvement. Despite the lack of sensory symptoms, the 

deficit was clearly present on sensory nerve testing.  

A female patient with the unusual manifestation of severe upper limb motor weakness 

(Family 23) carried the pathogenic heterozygous c.1403G>A, p.Arg468His MFN2 mutation, 

which has been previously reported in lower limb predominant neuropathy (Casasnovas et al., 

2010). 

The recently reported heterozygous c.754C>T, p.Arg252Trp mutation in the microrchidia 

CW-type zinc finger 2  MORC2 gene was identified by whole-exome sequencing in a de novo 

form in identical twin male patients (Family 24). They presented with an early-onset motor 

predominant neuropathy, progressively affecting the distal and proximal limb muscles and 

leading to a severe disability in adulthood (Albulym et al., 2016; Sevilla et al., 2016).  

5.4.4 The spectrum of gene mutations and mutation detection rate in HMN plus 

Overlapping symptoms of hereditary motor neuropathy, motor neuron degeneration and/or 

other neurology features were observed in the 25 patients from 23 families, who belonged to 

the HMN plus group. The genetic diagnosis was ‘confirmed pathogenic’ in 6 patients, while 

‘possibly pathogenic’ mutations were identified in an additional 5 index patients. The 

cumulative mutation detection rate was 47.7 % in this phenotype group (Table 4.1). 

WES proved to be a highly efficient diagnostic tool by providing molecular diagnosis in 9 out 

of 11 index patients in this group.  

5.4.4.1  Confirmed pathogenic mutations 

Previously described pathogenic mutations were found in 3 out of 6 patients (Table 5.5). 

The compound heterozygous c.916G>A, p.Gly306Arg and c.1016T>C, p.Leu339Pro 

mutations were detected in the SLC52A2 gene (Family 25) (Foley et al., 2014) and the 

homozygous truncating c.96_99dupATCC, p.Pro34Ilefs*25 mutation in the c12orf65 gene 

(Family 26) (Pyle et al., 2014). The heterozygous previously reported c.1529A>G, 

p.Lys510Arg FUS mutation (Waibel et al., 2010, 2013) was identified in a 52-year-old male 

patient with dominant family history (Family 27). Initially, he demonstrated asymmetric 

lower limb motor weakness with electric nerve studies indicative of dHMN. His progression 

was rapid with evolving frontal dementia and loss of ambulation within half a year. 

Gradually evolving combined upper and lower motor neuron involvement, dystonia and 

ataxia characterized the male patient, who carried the heterozygous c.3823C>T, 

p.Arg1275Cys missense DCTN1 mutation (Family 28) (Daud et al., 2015).  

A 29-year-old male patient was examined with upper and lower motor neuron pathology and 

cerebellar dysfunction (Family 29). WES identified the hemizygous missense c.2279A>G, 
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Table 5.4 Summary of the clinical presentation of the patients with confirmed mutations in the motor CMT2 group 

(Bansagi et al., 2017) 
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p.Tyr760Cys novel ATP7A variant, which was carried by the patient and his healthy mother 

and in silico prediction tools suggested deleterious effects (Bansagi et al., 2016). 

The novel compound heterozygous c.1580C>G, p.Ser527* and c.6781C>A, p.Leu2261Ile 

SACS mutations were identified in a 71-year-old man with late teen-onset gait difficulties, 

evolving leg spasticity and lower limb predominant motor neuropathy (Family 30) (Yu-Wai-

Man et al., 2014). 

5.4.4.2  Possibly causative mutations 

‘Possibly pathogenic’ novel sequence changes were identified in 5 index patients (Table 5.6). 

Despite that all mutations affected known disease-causing genes and had deleterious 

predictions, the molecular diagnosis remained possibly causative due to either a lack of 

segregation or insufficient supportive functional studies.  

A 17-year-old man presented with distal motor neuropathy and optic atrophy compatible with 

CMT type 6 (Family 31), who carried the single, previously reported heterozygous 

c.2386C>T, p.Gln796* nonsense mutation in the FIG4 gene (DiVincenzo et al., 2014).  

The pathogenic c.1371C>G, p.Phe457Leu SLC52A3 mutation (Green et al., 2010) was found 

in heterozygous form by WES in a 19-year-old man (Family 32), who presented with 

characteristic symptoms of Brown-Vialetto-Van Laere syndrome (BVVL) and responded to 

riboflavin therapy. However, a second mutation could not yet been identified, even after re-

analysing WES data for copy number variations in the gene. 

The pathogenic heterozygous c.331G>T, p.Asp111Tyr TBX5 mutation, which was previously 

linked to Holt-Oram syndrome (Granados-Riveron et al., 2012) was detected in a 19-year-old 

male patient with a multifocal motor neuropathy (Family 33).  

A sibling pair presented with postnatal growth retardation, limb girdle and facial muscle 

weakness jointly with peripheral motor neuropathy carried the novel homozygous c.944T>G, 

p.Glu315Ala missense mutation in the STAT5B gene (Family 34).  

A de novo c.269T>C, p.Phe90Ser PTEN mutation was identified in a 29-year-old male 

patient with asymmetric motor weakness, cranial nerve involvement, pyramidal signs and 

multifocal motor neuropathy with conduction blocks (Family 35).
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Table 5.5 Summary of the clinical presentation of the patients in the HMN plus group with confirmed pathogenic mutations 

(Bansagi et al., 2017) 
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Table 5.6 Summary of the clinical presentation of the patients in the HMN plus group with possibly causative mutations 

(Bansagi et al., 2017) 
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5.5 Discussion 

5.5.1 Mutation detection rate in the HMN cohort 

While the demyelinating forms of CMT can receive diagnoses in the majority of cases, the 

causative mutations remain often uncovered in axonal predominant motor neuropathies and in 

distal hereditary motor neuropathies. The mutation detection rate has been reported ~20% in 

axonal forms, including dHMN and motor CMT2 (Rossor et al., 2015).  

In this study mutational screen was performed by implicating next generation techniques in 

hereditary motor neuropathies and the mutation detection rate was reviewed in the group of 

dHMN. Detailed neurological and electrophysiology assessments were carried out (Chapter 

4) in order to determine phenotype-genotype correlations and to distinguish between 

overlapping allelic phenotypes (Figure 5.1). 

Potentially pathogenic mutations were identified in 47.9% of the patients with hereditary 

motor neuropathies, including confirmed mutations in 35.6% and possibly causative variants 

in an additional 12.3%. In the dHMN group the genetic diagnosis was achieved in 32.5% of 

the patients and a possibly causative mutation was identified in an additional 10% (Table 

4.1). This result is significantly higher than the 15-20% detection rate reported in previous 

studies (Dierick et al., 2008; Rossor et al., 2015) 

There was a large genotype heterogeneity observed with each HMN phenotype (Figure 5.2). 

Furthermore, different mutations in the same gene led to various disease phenotypes. As an 

illustrative sample, 17 patients were diagnosed with the SMA-LED phenotype. The causative 

mutations were identified in the SYT2, BICD2, DYNC1H1 and ARHGEF10 genes, while the 

genetic cause could not be detected in 4 patients. Mutations in the DYNC1H1 gene have been 

reported to cause not only SMA-LED but more complex clinical phenotypes (Scoto et al., 

2015; Strickland et al., 2015). There was no major common pathway found to explain the 

mechanism of the various gene mutations, which resulted in the SMA-LED phenotype. 

5.5.2 Advantages and limitations of next generation sequencing in the HMN cohort 

Improving genetic testing technology led to a rapid increase in discovering CMT-causing 

gene mutations. More and more patients can be genetically diagnosed not only with common, 

but also with rare CMT forms.  

Targeted candidate gene sequencing proved to have less benefit in the HMN cohort, where the 

clinical presentation may be atypical and varied within the families, the inheritance pattern is 

often uncertain and wide range of genes contribute to the phenotype (Klein et al., 2014).
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Figure 5.1 Clinical heterogeneity of different forms of HMN 

dHMN (top 2 rows), motor CMT2 (third row) and dHMN plus (bottom row) 

A) Patient 2 and 3: GARS B) Patient 19: IGHMBP2 C) Patient 23: TRPV4 D) 

Patient 32: IGHMBP2 E) not yet diagnosed dHMN F) Patient 18: DYNC1H1 

G) Patient 10: SYT2 H) Patient 16: BICD2 I-J) not yet diagnosed SMA-LED 

K) Patient 42: AARS  L) Patient 39: AARS  M) Family 22: DNM2 N) Patient 

51: FUS O) Patient 53: ATP7A P) Patient 57: TBX5 Q) Patient 58: STAT5B 

R) not yet diagnosed dHMN plus. 

(Bansagi et al., 2017) 
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Figure 5.2 Distribution of mutated genes in the phenotype groups and overlapping phenotypes with key clinical features 

(Bansagi et al., 2017) 
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The multi-gene IPN panel testing has been assessed to be a powerful tool, by its 26% (12 

index patients/46 pedigrees) diagnostic efficacy in the cohort. The power of gene panel testing 

was to reveal novel variants in known and rare axonal CMT2/dHMN-related genes. This is an 

unbiased approach overcoming the limitation of deciding testing based on the limited 

information available for very rare genes.  

WES has the capacity to simultaneously screen large number of genetic heterogeneities and to 

discover novel genes and extend phenotype–genotype associations (Klein et al., 2014). The 

diagnostic efficacy of WES was 45% in the cohort by detecting the causative gene mutations 

in 18 index patients out of 40 pedigrees (Figure 5.3). 

The high throughput sequencing approaches generate tremendous DNA sequence data. 

Therefore it is critical to assess the candidate variants further to the likelihood of their 

pathogenicity. Validation by using segregation, normal controls and analyses of conservation 

and bioinformatics tools or where it was available, perform functional studies could help us to 

provide evidence (MacArthur et al., 2014; Timmerman et al., 2014; Drew et al., 2015) (Table 

5.7, Table 5.8). 

On the other hand, the advantage of large data sets, that they can be stored and re-analysed for 

future in silico identification of mutations in newly-discovered genes (Montenegro et al., 

2011). This was the diagnostic process in the identification of MORC2 mutation in a cohort 

family. 

Another limitation of WES is the incomplete coverage of the genes, which lead to significant 

differences between areas of highest and lowest read depth (Montenegro et al., 2011). The 

coverage of the identified cohort genes is shown on (Table 5.9 ). 

Furthermore, WES is unable to detect intronic mutations, gene rearrangements and copy 

number variations (Montenegro et al., 2011; Timmerman et al., 2014; Drew et al., 2015). 

These might serve an explanation for some genetically not clarified cohort patients with 

meticulously analysed WES data and for the single heterozygous mutations identified in some 

pedigrees (e.g. IGHMBP2). Isolated patients with probable de novo autosomal-dominant 

mutations cause further diagnostic challenges. Analysing whole-exome sequences in trios 

and/or detecting variations in the same gene among other affected families throughout the 

world can strongly support the diagnosis (Klein et al., 2014; Timmerman et al., 2014). The 

international collaboration by sharing phenotype and genotype datasets was utmost important, 

as the genetic matchmaking highly supported us in the novel gene discovery (SYT2). 
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Figure 5.3 Diagnostic flow chart and genes identified in our cohort 

(Bansagi et al., 2017) 
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Table 5.7 Population frequencies of rare genetic variants from WES 

(Bansagi et al., 2017) 
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Table 5.8 Functional prediction of rare genetic variants from WES 

Abbreviations: A, disease causing automatic; B, benign; D, deleterious; H, high; L, low; M, medium; N, neutral; P, possibly damaging; T, tolerated; U, unknown 

(Bansagi et al., 2017) 
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Table 5.9 Coverage of rare genetic variants from WES 

(Bansagi et al., 2017) 
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5.5.3 Molecular pathways and gene mutations in hereditary motor neuropathies 

It is of utmost importance to analyse the molecular pathways implicated in hereditary motor 

neuropathies in order to determine common disease mechanisms for potential biomarkers and 

for novel therapy targets. The identification of causative gene mutations in patients with 

hereditary motor neuropathies enabled us to explore numerous potential disease mechanisms. 

Some of the gene defects affect the proximal part of motor neurons (SMA/dHMN), while 

others involve the axons or nerve endings. Some further gene mutations may result in a non-

length-dependent, selective impairment of certain neuron groups (e.g. upper limb, brainstem 

neurons) (Figure 5.4). 

The various neuropathy-causing pathways will be highlighted and discussed through the 

genes identified in the hereditary motor neuropathy cohort (Table 5.10). 

5.5.3.1  Impaired protein translation 

Aminoacyl-tRNA synthetases (ARS) conjugate amino acids with their cognate tRNA 

molecules during protein translation. Mutations in many aminoacyl-tRNA synthetase genes 

(GARS, AARS, HARS, KARS, MARS and YARS) have been associated with CMT, indicating 

the importance of intact protein translation for normal motor neuron functioning (Griffin et 

al., 2014).  

Mutations in aminoacyl-tRNA synthetases were frequently diagnosed (10.47 %) in the 

cohort patients. Four dominant families carried the recurrent c.986G>A, p.Arg329His alanyl-

tRNA synthetase (AARS) mutation with a heterogeneous phenotype spectrum, described in 

detail in Chapter 6.1.3. 

Phenotype-genotype correlations in 2 families identified with the novel glycyl-tRNA 

synthetase (GARS) mutations discussed in Chapter 6.1.4. 

5.5.3.2  Abnormal RNA metabolism 

Abnormal RNA metabolism has been implicated both in motor neuron diseases and in 

hereditary motor neuropathies.  

Mutations in the immunoglobulin µ-binding protein 2 (IGHMBP2) gene cause distal 

spinal motor neuron loss and dysfunction leading to neurogenic muscle atrophy (Grohmann et 

al., 2001; de Planell-Saguer et al., 2009). Single heterozygous IGHMBP2 mutations have 

already been linked to the recessive phenotype and this was studied in the cohort patients 

together with the related phenotype heterogeneity in Chapter 6.2. 

A further gene involved in RNA metabolism, the fused in sarcoma (FUS), was 

defected in a 52-year-old man (Family 27) with an atypical motor neuropathy phenotype.
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Figure 5.4 Targets of pathomechanisms involved in the motor neuropathy genes 

(Bansagi et al., 2017) 
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Table 5.10 Mechanisms of motor neuropathy-related genes identified in the HMN cohort 
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He presented with unilateral lower limb weakness, predominantly affecting the distal leg 

muscles, while electrophysiology studies indicated motor neuropathy. Mutations in the FUS 

gene have been associated with the familial amyotrophic lateral sclerosis fALS6. The encoded 

FUS functions as a heterogeneous nuclear ribonuclear protein (hnRNP) with DNA/RNA-

binding properties via a glycine-rich C-terminal motif. FUS has been implicated in DNA 

transcription and repair, and also in mRNA process and transport. Formation of FUS 

containing protein aggregates is a common cytopathology feature of the disease. It 

predominantly accumulates in the spinal motor neurons but it can also be found in the cortex 

and in the motor nuclei of the brainstem. Several affected pathways have been suggested, 

such as impaired intracellular trafficking, mRNA processing defect, redistribution of SMN 

protein causing axonal defect, altered DNA repair machinery and defective presynaptic 

function. However, the precise disease mechanism still needs to be clarified. (Armstrong and 

Drapeau, 2013; Groen et al., 2013; Qiu et al., 2014; Tibshirani et al., 2015)  

The heterozygous missense c.1529A>G, p.Lys510Arg FUS mutation carried by the patient 

has been earlier reported causing a mild ALS phenotype with a longer survival time (Waibel 

et al., 2010, 2013). On the contrary, the progression observed in the patient was rather rapid, 

developing motor loss and frontal dementia 6 months after the onset of the disease. We 

suggested that the identified FUS mutation presented with overlapping symptoms between 

ALS and dHMN. 

5.5.3.3  Impaired axonal transport 

The unusual size of the motor neurons and their large metabolic activity require appropriate 

communication between the cell and its periphery. Mutations affecting different members of 

the complex trafficking system have been associated with overlapping degenerative 

neurological conditions of upper and/or lower motor neuron pathology. Impairment of the 

kinesin family (KIF1B) directed anterograde and the dynein-dynactin mediated (DYNC1H1, 

BICD2, DCTN1) retrograde trafficking have been both implicated in motor neuron 

degeneration. 

 

Mutations in the cytoplasmic dynein 1 heavy chain 1 (DYNC1H1) gene have been 

described in a range of central and peripheral nervous system disorders, providing a 

continuum from developmental neuron migration defect to impaired axonal trafficking. The 

cytoplasmic DYNC1H1 is a large protein (>530 kDa) and is the most important component of 

the dynein motor complex by binding dynein subunits. DYNC1H1 is implicated in recruiting 

subcellular cargos via its N-terminal tail domain and in generating force to move along the 
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microtubules through its C-terminal microtubule-binding and through ATP hydrolysing units. 

Reported phenotypes include axonal motor and sensory neuropathy type O (CMT2O) 

OMIM# 614228, autosomal-dominant lower extremity predominant spinal muscular atrophy-

1 (SMALED1) OMIM#158600, hereditary spastic paraplegia (HSP ), congenital lower motor 

neuron disease associated with focal areas of cortical malformation (SMA-FACM) and 

autosomal-dominant mental retardation-13 (MRD13) OMIM#614563  with or without 

cortical malformation defect (Weedon et al., 2011; Harms et al., 2012; Tsurusaki et al., 2012; 

Peeters et al., 2015; Scoto et al., 2015; Strickland et al., 2015). 

The heterozygous missense c.1834G>A, p.Val612Met DYNC1H1 mutation was identified in a 

cohort patient (Family 7) with the presentation of SMA-LED. Neurology examination found 

distal motor leg weakness and pes cavus foot deformities accompanied by EMG evidence of 

chronic neurogenic denervation. There was an incomplete disease penetrance in his family 

with variably severe foot deformities. The p.Val612Met amino acid change is located on the 

dimerization domain of the DYNC1H1 N-terminal tail, where all other SMA-LED-related 

mutations seem to cluster. The same p.Val612Met DYNC1H1 mutation has been previously 

reported worldwide on different haplotype backgrounds. The DYNC1H1-related SMA-LED is 

typically accompanied by various degrees of joint contractures, including Achilles tightness, 

hip dislocation or congenital arthrogryposis. Learning difficulties, attention and behaviour 

problems and epilepsy have occasionally been described.  

There were numerous polymorphisms found in the large DYNC1H1 gene in further cohort 

patients. In addition to that, no clear genotype-phenotype correlations exist with DYNC1H1 

mutations. Therefore, cautious analysis of all novel variants is warranted before considering 

them to be pathogenic.  

 

The bicaudal D homolog 2 (BICD2) mutation identified in the cohort families 

(Family 5-6) will be discussed in detail in Chapter 6.4. We supported that the common 

p.Ser107Leu is a mutational ‘hot spot’ and that mutations in the BICD2 gene should be 

considered even in sporadic SMA-LED cases (Bansagi, Griffin, et al., 2015; Rossor, Oates, et 

al., 2015b). 

 

The dynactin-1 (DCTN1) gene encodes the p150 subunit of the transporter protein 

dynactin. DCTN1 mutations contribute to various forms of neurodegenerative conditions, 

including Perry syndrome OMIM#168605, ALS, frontotemporal dementia and different types 

of parkinsonism. A distinct pattern of motor neuron involvement can be seen in distal 

hereditary motor neuronopathy type VIIB (dHMN7B) OMIM#607641, which presents with 
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combined spinal and bulbar muscular atrophy. The distal predominant upper limb amyotrophy 

is accompanied by vocal cord paralysis (Puls et al., 2003, 2005; Araki et al., 2014; Caroppo et 

al., 2014). 

The heterozygous missense c.3823C>T, p.Arg1275Cys DCTN1 mutation was identified in 

the cohort patient (Family 28), who presented with distal motor neuropathy and 

extrapyramidal dystonia (Daud et al., 2015).  

5.5.3.4  Channelopathies  

Channelopathies have been implicated in the pathology of motor neuropathies by disrupting 

metabolic homeostasis and impairing intracellular trafficking.  

Disturbed calcium homeostasis by mutations in the transient receptor potential 

vanilloid 4 channel (TRPV4) gene cause widely diverse phenotypes. Phenotype-genotype 

correlations and cohort patients (Family 10-11) identified with TRPV4 mutations will be 

analysed in Chapter 6.3. 

X-linked length-dependent metabolic axonopathy has been reported with mutations in 

the APTase copper transporting alpha (ATP7A) gene inducing aberrant intracellular 

trafficking (Kennerson et al., 2010). The complex motor neurodegeneration observed in the 

cohort patient (Family 29) related to the novel c.2279A>G, p.Tyr760Cys ATP7A mutation 

(Bansagi et al., 2016) will be detailed in Chapter 6.5.  

 

5.5.3.5  Mitochondrial dysfunction 

Impairment in the oxidative metabolism and in the energy maintenance of neurons has been 

implicated in degenerative motor neuron diseases. The importance of undisturbed 

mitochondrial function in motor neurons has been highlighted by the numerous gene defects 

affecting mitochondrial fusion/fission and mitochondrial metabolism. 

Mitochondrial abnormalities were commonly found in the cohort patients with all forms of 

motor neuropathies. Gene mutations contributed to the symptoms by altering mitochondrial 

fusion/fission (MFN2, DNM2, SLC25A46), axonal transport of mitochondria (HSPB1, 

HSPB8), mitochondrial protein synthesis (C12orf65, SACS), or transport of mitochondrial 

cofactors (SLC52A2/3). 

 

Mitochondrial fusion/fission  

Mitochondria are highly dynamic structures going through repetitive fission and fusion 

processes, called mitochondrial dynamics, which is required for mitochondrial function 

maintenance. Efficient mitochondrial dynamics is essential to provide energy supply for the 
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complex machinery of axonal transport and to maintain the formation of axons by regulating 

apoptotic pathways (Westermann, 2010; Pareyson et al., 2015).  

 

Mitofusin 2 (MFN2) is the commonest gene mutated in CMT2 leading to axonal 

motor and sensory neuropathy (CMT2A) with large inter- and intrafamilial variability. MFN2 

is an outer mitochondrial membrane protein that is responsible for mitochondrial fusion, aided 

by special structural features of a GTPase domain for GTP hydrolysis and two coiled coil 

regions (HR1 and HR2) for tethering opposing mitochondria. MFN2-related phenotypes have 

been differentiated according to the age of onset and disease severity. Additional symptoms of 

optic atrophy, pyramidal signs, vocal cord palsy and central nervous system involvement 

often complicate the clinical presentation (Züchner et al., 2004, 2006, Chung et al., 2006, 

2010; Verhoeven et al., 2006; Klein et al., 2011; Choi et al., 2015). Among the around 100 

MFN2 variants some have been linked to sensory autonomic axonal neuropathy (Martikainen 

et al., 2014) but no association with demyelinating CMT (CMT1) or with dHMN has been 

reported.  

The phenotype heterogeneity related to MFN2 mutations was well illustrated in the cohort 

pedigrees presenting adolescent-onset dHMN (Family 12), late adult-onset dHMN (Family 

13) and asymmetric upper limb motor CMT2 (Family 23). The 2 patients presenting with the 

dHMN phenotype were diagnosed with previously reported MFN2 mutations.  

A young male patient from the cohort (Family 12) carried the heterozygous missense 

c.1126A>G, p.Met376Val MFN2 mutation, which caused an amino acid change in the protein 

region linking the GTPase domain with the first coiled coil domain. The mutation detected de 

novo in the patient caused an adolescent-onset rapidly progressive dHMN phenotype. He 

developed bilateral pes cavus and hammer toes deformities and his gait was impaired by 

unsteady tiptoeing due to severe ankle contractures. Absent distal CMAP responses with 

preserved sensory amplitudes in the lower limbs indicated distal spinal motor neuron 

pathology. The same p.Met376Val MFN2 mutation has been reported in one CMT2 family of 

Spanish origin (Casasnovas et al., 2010). The same methionine 376 residue was exchanged 

for an isoleucine in a German patient (Engelfried et al., 2006) and for a threonine in a Korean 

pedigree (Chung et al., 2006) with a late-onset mild CMT2 phenotype. 

The heterozygous missense c.2119C>T, p.Arg707Trp MFN2 mutation was found  de novo in 

a 70-year-old patient from the cohort (Family 13). The p.Arg707Trp change locates in the 

MFN2 C-terminal coiled coil region (HR2) and presumably disrupts the coiled coil bond 

tethering and fusion of apposed mitochondria. He presented with a late adult-onset slowly 

deteriorating motor weakness affecting both proximal and distal muscle groups in his 
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unilateral extremities. Deep tendon reflexes were absent with no jointed upper motor neuron 

symptoms. He developed Alzheimer disease and became wheelchair bound. The EMG studies 

revealed a chronic neurogenic process in the upper and lower limb muscles on the right body 

side suggesting anterior horn cell pathology. The p.Arg707Trp MFN2 mutation has been 

reported to cause CMT2 with a semidominant inheritance pattern. Homozygous or compound 

heterozygous mutations involving the p.Arg707Trp change resulted in an early-onset severe 

axonal CMT2A phenotype while heterozygous transitions led to a milder form of axonal 

neuropathy with incomplete penetrance (Nicholson et al., 2008; Carr et al., 2015). 

Interestingly, the homozygous p.Arg707Trp MFN2 mutation has been recently linked to the 

clinical entity of multiple symmetric lipomatosis (MSL) and neuropathy, where MSL causing 

MERRF mutations could not be identified (Sawyer et al., 2015).  

 

Dynamin-2 (DNM2) belongs to the large GTPase family, similarly to MFN2, and 

mediates intracellular membrane trafficking, endo- and exocytosis through the membrane 

fission process (Sidiropoulos et al., 2012; Tinelli et al., 2013). Deletion and missense 

mutations in the DNM2 gene have been reported with dominant intermediate CMT type B 

(CMTDIB) and axonal CMT2 (CMT2M) accompanied by mutation specific additional 

features of neutropenia and cataract (Claeys et al., 2009). Different set of DNM2 mutations 

cause autosomal-dominant centronuclear myopathy (Tinelli et al., 2013). The majority of the 

neuropathy-related mutations affect the pleckstrin homolog domain of the DNM2 protein. 

Proposed pathological pathways include abnormal axonal transport, disturbed protein 

trafficking and a chlathrin-mediated endocytosis defect (Claeys et al., 2009; Sidiropoulos et 

al., 2012).   

The heterozygous c.1739T>C, p.Met580Thr missense DNM2 mutation was detected in a 

dominant two-generation family from the cohort (Family 22) with a heterogeneous 

intermediate motor neuropathy phenotype. The affected methionine 580 residue is located in 

the highly conserved hydrophobic dipeptide, which is required for membrane association. The 

replacement of methionine with a polar threonine presumably impairs the membrane fission 

process (Haberlová et al., 2011). All family members presented with first decade-onset lower 

limb distal motor weakness with clawed toes and pes cavus foot deformities. The disease 

progression was slow with the involvement of intrinsic hand muscles at later ages, leading to 

decreased strength of the handgrip and fixed contractures of the fingers. The 59-year-old 

index patient had accompanying hearing impairment, split hand deformity and respiratory 

muscle involvement. Nerve conduction velocities were reduced but not in the range typically 
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seen in demyelinating neuropathy, while motor and sensory amplitude responses were 

significantly diminished. EMG revealed a chronic neurogenic pattern or remained normal.  

The same p.Met580Thr DNM2 mutation was reported with striking intrafamilial variability in 

a large pedigree of Czech origin, including CMT2, intermediate motor CMT and dHMN 

disease phenotypes (Haberlová et al., 2011). A similar motor predominant neuropathy 

characterised the family in the cohort with sensory deficits on electric nerve testing. In 

contrast to the Czech patients, upper limb involvement was more prominent in the cohort 

family. The possibility that patients with motor neuropathy may develop concomitant 

myopathy can be supported with the overlapping symptom observed in the p.Glu368Gln 

DNM2 mutation (Echaniz-Laguna et al., 2007). This may provide an explanation, why the 

index patient of the cohort family developed respiratory muscle weakness.  

 

Axonal transport of mitochondria 

Mutations in the small heat-shock protein 22-kDa protein 8 (HSPB8) have been 

associated with dHMN type II (HMN2A) (Irobi, Van Impe, et al., 2004), CMT2 (CMT2L) 

(Tang et al., 2005) and most recently with combined distal myopathy and motor neuropathy 

(Ghaoui et al., 2016). The disease mechanism of heat-shock proteins is complex and not yet 

fully clarified. Intracellular aggregate formation due to impaired chaperone activity (Irobi, 

Van Impe, et al., 2004; Carra et al., 2005), selective degeneration of motor neurites with 

subsequent axonal transport damage (Ackerley et al., 2006; Irobi et al., 2010; Pareyson et al., 

2015) and defected chaperone-associated selective autophagy (Kwok et al., 2011) have been 

all implicated in the pathology. 

The heterozygous c.421A>G, p.Lys141Glu HSPB8 mutation in the cohort patient (Family 1) 

presented with an early-onset rapidly progressive dHMN. The missense HSPB8 mutations, 

which were reported so far all affect the Lys141 residue, suggesting that this is a mutational 

`hot spot` within the conserved alpha-crystallin domain of the small heat shock protein 22 

kDa (Hsp22) (Irobi, Van Impe, et al., 2004; Nakhro et al., 2013).  

 

Defected mitochondrial protein synthesis 

The autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a 

complex disorder with progressive cerebellar and corticospinal tract degeneration caused by 

mutations in the sacsin (SACS) gene (Blumkin et al., 2015). The diagnosis can be prompted 

by the classical triad of early childhood-onset ataxia, spasticity and peripheral neuropathy, 

which is accompanied by specific neuroimaging features of superior vermis atrophy and 

signal changes in the pons (Gregianin et al., 2013; Synofzik et al., 2013).  



 

 74 

However, atypical and incomplete symptom presentations complicate the phenotype spectrum 

of the sacsinopathies (Takiyama, 2006; Synofzik et al., 2013). Patients predominantly 

presenting with peripheral neuropathy (Pyle et al., 2012), spastic paraplegia (Gregianin et al., 

2013), autonomic disturbances (Synofzik et al., 2013) or retinal changes (Yu-Wai-Man et al., 

2014; Blumkin et al., 2015) cause challenges in the differential diagnosis.  

The novel compound heterozygous c.1580C>G, p.Ser527* nonsense and c.6781C>A, 

p.Leu2261Ile missense SACS mutations were identified by WES  in a male patient from the 

cohort (Family 30). His phenotype was dominated by a motor predominant neuropathy-

causing gait difficulties from his late 10’s and the diagnosis could be achieved later with the 

evolving lower limb spasticity. 

More than 170 mutations have been reported in the SACS gene so far, providing a highly 

heterogeneous genotype background. Homozygous or compound heterozygous SACS 

mutations have loss-of-function consequences. The encoded highly conserved sacsin protein 

seems to have an essential role in the regulation of mitochondrial physiology. Mitochondrial 

dynamics and localisation have been implicated in the disease pathology. Sacsin localises to 

the mitochondria and interacts with dynamin-related protein 1, which is a large GTPase 

required for mitochondrial fission (Girard et al., 2012; Blumkin et al., 2015; Pilliod et al., 

2015). The domains of the sacsin protein contain analogous regions with heat-shock and 

ubiquitin proteins, which suggests common pathways involving chaperon mediated protein 

folding (Takiyama, 2006; Anesi et al., 2011; Gregianin et al., 2013).  

 

Homozygous mutations in the chromosome 12 open reading frame 65 (c12orf65) 

gene impair the mitochondrial protein translation. The encoded c12orf65 has a common 

glycin-glycin-glutamin (GGQ) motif with the mitochondrial class I release factors, which 

have an essential role in the termination of the mitochondrial protein translation. It is 

suggested that c12orf65 recycles the peptidyl-tRNAs, which were prematurely released and 

ensures an intact mitochondrial protein translation (Antonicka et al., 2010; Shimazaki et al., 

2012; Buchert et al., 2013). C12orf65 mutations induce multiple mitochondrial defects. 

Mitochondrial copy number and membrane potential changes, such as impairments in the 

oxidative phosphorylation have been reported (Tucci et al., 2014). There is a well-defined 

genotype correlation with the severity spectrum of the allelic phenotypes. The triad of optic 

nerve atrophy, spastic paraparesis and axonal neuropathy defines all phenotypes (Spiegel et 

al., 2014).  

 The combined oxidative phosphorylation deficiency type 7 (COXPD7) is induced by the 

mutational disruption of the c12orf65 GGQ motif. Severe Leigh-syndrome like symptoms 
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present with a slow but unfavourable progress (Antonicka et al., 2010; Heidary et al., 2014). 

Behr’s syndrome can be considered as the intermediate c12orf65 phenotype, supported by the 

fact that c12orf65 mutations have been the most frequently identified genetic changes in this 

condition. Behr’s syndrome is a complex childhood-onset neurological disorder with 

psychomotor retardation, optic atrophy, ataxia and pyramidal signs. The male patient from the 

cohort (Family 26), who presented with Behr’s syndrome and axonal motor neuropathy 

carried the homozygous truncating c.96_99dupATCC, p.Pro34Ilefs*25 c12orf65 mutation 

(Pyle et al., 2014). 

C12orf65 mutations leading to shorter protein length have been reported with milder allelic 

phenotypes, such as autosomal-recessive spastic paraplegia-55 (SPG55) and autosomal-

recessive CMT type 6 (CMT6) (Shimazaki et al., 2012; Tucci et al., 2014). CMT6 is a group 

of variably inherited conditions with a combined presentation of motor and sensory 

neuropathy and optic atrophy. Axonal neuropathy-related MFN2 mutations occasionally cause 

optic nerve involvement and autosomal-dominant CMT6 phenotype. Mutations in the X-

linked phosphoribosylpyrophosphate synthetase I (PRSP) gene have been also linked to 

CMT6 (Tucci et al., 2014). A most recent report on recessive mutations in the solute carrier 

family 25 member 46 (SLC25A46) described a recessive CMT6 phenotype by disrupting 

mitochondrial dynamics (Abrams et al., 2015).  

A young male patient from the cohort (Family 31) developed distal motor weakness and 

atrophy in his legs with pes cavus and clawed toes deformities and mild sensory loss. His 

visual acuity deteriorated soon after the disease-onset and he was diagnosed with bilateral 

optic nerve atrophy. The muscle biopsy analysis indicated combined respiratory chain defects 

with decreased mitochondrial complex I, III and IV activity, although mitochondrial 

mutations could not be identified. A heterozygous c.2386C>T, p.Gln796* nonsense mutation 

in the FIG4 gene was detected by next generation sequencing, which was earlier reported as a 

pathogenic variant (DiVincenzo et al., 2014). FIG4 mutations cause autosomal-recessive 

motor and sensory neuropathy (CMT4J) with demyelinating features and highly variable 

phenotype (Chow et al., 2007; Nicholson et al., 2008). Compound heterozygous FIG4 

mutations were described but in the cohort patient no second mutation could be found. 

Heterozygous FIG4 mutations have been reported with adult-onset ALS with no evidence of 

optic nerve involvement (Chow et al., 2009).  

 

Transport of mitochondrial cofactors 

Riboflavin (vitamin B2) and its bioactive intracellular forms, flavin adenine dinucleotid 

(FAD) and flavin mononucleotide (FMN), are essential cofactors for mitochondrial oxidation-
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reduction pathways and mitochondrial protein translation. They play key roles in the 

metabolism, signal transduction, apoptosis and DNA repair (Johnson et al., 2012; Ciccolella 

et al., 2013; Timmerman and De Jonghe, 2014). Three transporters are responsible for the 

riboflavin homeostasis in humans by providing carrier mediated riboflavin absorption from 

the intestine and by distributing riboflavin to the central nervous system. Mutations in the 

riboflavin transporter encoding solute carrier family 52 members (SLC52A2 and SLC52A3) 

have been reported to cause Brown-Vialetto-Van Laere syndrome (BVVL) (Bennett, 2012; 

Bosch et al., 2012; Johnson et al., 2012; Ciccolella et al., 2013; Yonezawa and Inui, 2013). 

The classical BVVL consists of progressive bulbar palsy, preceded by sensorineuronal 

hearing loss and generalised muscle weakness, with less commonly recognised sensory 

changes. Mutations in SLC52A3 have been identified and riboflavin introduction proved to 

have beneficial therapeutic effects. However, the majority of the childhood-onset BVVL was 

associated with mutations in SLC52A2 and showed a progressive axonal motor and sensory 

neuropathy phenotype. The initial sensory ataxia is followed by progressive motor weakness 

in the neck and in the distal upper limb muscles. Sensorineuronal hearing loss and progressive 

bulbar palsy leading to respiratory impairment are shared features in both phenotypes, such as 

the therapy response to riboflavin supplementation (Foley et al., 2014; Srour et al., 2014; 

Timmerman and De Jonghe, 2014).  

The 5-year-old girl from the cohort (Family 25) diagnosed with upper limb predominant 

axonal motor and sensory neuropathy and with hearing loss carried the compound 

heterozygous c.916G>A, p.Gly306Arg and c.1016T>C, p.Leu339Pro missense mutations in 

the SLC52A2 gene.  

The single heterozygous missense c.1371C>G, p.Phe457Leu SLC52A3 mutation was 

identified in a 19-year-old man (Family 32) with BVVL phenotype and with a dramatic 

response on riboflavin administration. This same SLC52A3 variant was earlier reported as 

pathogenic (Green et al., 2010). The presence of a second SLC52A3 mutation could not yet be 

identified. Interestingly, the heterozygous c.819C>T, p.Met273Ile missense change in 

SLC52A2 was also found by WES, affecting the weakly conserved Met273 residue with 

ambiguous pathological in silico consequences.  

His disease started with bilateral hand weakness, gait ataxia and hearing impairment. Later, 

his motor weakness became prominent, primarily affecting the axial and upper limb muscles 

and his intrinsic hand muscles were strikingly wasted. Deep tendon reflexes were lost but 

there were no pyramidal tract signs. Progressive bulbar palsy evolved with facial weakness, 

ophthalmoplegia, tongue fasciculations and bilateral vocal cord palsy requiring an intermittent 

ventilation therapy. Laboratory tests indicated a normal serum riboflavin level and an intact 
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acyl-carnitine profile. Neurophysiology suggested a rapidly progressive motor and sensory 

axonal neuropathy with neurogenic muscle changes. Neuroimaging showed extensive signal 

abnormalities bilaterally in the posterior columns of the spinal cord, extending from the 

cervical level down to the conus. 

We speculated that either deep intronic mutations / intragenic rearrangements in SLC52A3 

might have remained undetected or the combination of the heterozygous missense mutations 

in SLC52A3 and SLC52A2 might have led to the disruption in the riboflavin homeostasis.  

5.5.3.6  Neuromuscular transmission defect  

Non-progressive motor neuropathy and fatigable weakness due to a presynaptic 

neuromuscular transmission defect was caused by synaptotagmin 2 (SYT2) mutations in the 

cohort patients (Family 4) (Herrmann et al., 2014).  

The related distal motor neuropathy phenotype and the novel disease mechanism will be 

discussed in Chapter 7.1 and in Chapter 8, respectively.   

5.5.3.7  Disturbed intracellular transcription pathways 

Altered intracellular signal transduction and disturbed transcriptional regulatory cascades 

form common pathways and highlight further targets in the therapy of motor neuropathies. 

A missense mutation affecting the Rho guanine nucleotide exchange factor 10 

(ARHGEF10) gene co-segregated in a large dominant Belgian pedigree with intermediate 

nerve conduction velocities and thinly myelinated axons (Verhoeven et al., 2003). 

ARHGEF10, as part of the larger RhoGEFs family, participates in a signal transduction 

pathway unique for vertebrates. They share a common catalytic Dbl homology domain, which 

is required for the activation of RhoGTPases by catalysing the replacement of GDP with 

GTP. RhoGTPases have been implicated in numerous cellular processes, involving 

cytoskeleton dynamics, neuronal morphogenesis and plasticity. The non-progressive, very 

mild neuropathy phenotype linked to the described ARGHEF10 mutation was suggested to 

cause a constitutively active RhoGTPase mutant, which led to Schwann cell dysfunction and 

migration defect (Verhoeven et al., 2003; Mohl et al., 2006; Chaya et al., 2011). 

The heterozygous missense c.1949G>A, p.Tyr650Cys ARHGEF10 mutation was found in a 

young female patient from the cohort. At birth she had bilateral congenital talipes and hip 

dislocation and her motor development was also delayed by patella femoral instability. 

Intrinsic hand muscle weakness, swallowing difficulty and keloid formation complicated the 

course of her disease. Upper limb conduction studies were intact, while no responses could be 

recorded in the lower extremities. EMG showed evidence of longstanding neurogenic changes 
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suggesting slowly progressive anterior horn cell pathology. SFEMG showed complex 

potentials with a significantly increased jitter. The identified c.1949G>A ARHGEF10 

sequence change caused the substitution of a highly conserved cystein for a tyrosin at the 650 

codon downstream to the catalytic Dbl homology domain. Detrimental effects were predicted 

by in silico tools.  

A 10 base pair deleted c.1955_58+6delCACGGTGAGC ARHGEF10 splice variant has been 

recently described to induce loss of function effects in Leonberger dogs. These large bodied 

dogs presented with juvenile-onset pelvic motor weakness and with degeneration of the 

recurrent laryngeal nerve. Histopathology indicated axonal degeneration with subsequent 

neurogenic muscle changes. Homozygous deletions were strongly correlated with a juvenile-

onset rapidly progressive phenotype, while variable clinical courses were seen with 

heterozygous deletions (Ekenstedt et al., 2014). The human and canine ARHGEF10 

sequences are largely homolog and the mutation of the patient was located close to the 

Leonberger deletion. Earlier studies proved that the C-terminal truncated ARHGEF10 mutant 

was hardly able to activate RhoGTPases (Mohl et al., 2006). Further investigations are 

necessary to decide on the pathogenicity of the identified ARHGEF10 variant. 

 

In an additional 3 cohort families possibly pathogenic variants were found in not neuropathy-

related genes, where affected intracellular signal pathways and previous experimental studies 

suggested that the deficiency of these genes might cause peripheral nerve involvement.  

Mutations in the T-box 5 (TBX5) gene are located within the DNA-binding T-box 

domain, such as the pathogenic c.331G>T, p.Asp111Tyr variant in the cohort patient (Family 

33) and they influence transcriptional regulatory cascades (Heinritz et al., 2005). Segregation 

studies and phenotype characteristics will be discussed in Chapter 7.2.3.  

Signal transducer and activator of transcription 5B (STAT5B) mutations have been 

implicated in insulin-growth factor 1 (IGF1) signal pathways and cause postnatal growth 

retardation (Kofoed et al., 2003). The clinical phenotype related to the homozygous 

c.944T>G, p.Glu315Ala STAT5B mutation identified in the consanguineous family (Family 

34) and the theoretical disease mechanisms will be detailed in Chapter 7.2.2. 

Mutations in the phosphatase and tensin homolog located on chromosome 10 

(PTEN) inhibit the phosphoinositide 3-kinase (PI3-K) signalling pathway, which has been 

implicated in peripheral neuron plasticity, axonal outgrowth and hypermyelination (Christie et 

al., 2010) (Christie et al., 2010). The multifocal motor neuropathy phenotype with the de novo 

c.269T>C, p.Phe90Ser PTEN mutation (Family 35) and experimental functional studies will 

be discussed in Chapter 7.2.1. 
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5.6 Conclusion 

In summary, this study extensively investigated the phenotypic variability and the genetic 

spectrum of motor neuron- neuronopathies. Considering all HMN subgroups, a significant 

47.9% mutation detection rate was achieved by identifying potentially causative gene 

mutations in the large representative patient cohort. More importantly, the genetic cause was 

diagnosed in 32.5% of dHMN and in a further 10% possibly causative gene mutations were 

identified. The mutation detection rate achieved in the study was significantly higher 

compared to the 20% reported in previous cohorts. The significant increase in the diagnostic 

detection rate might be attributable for the development of next generation techniques and 

international genetic databases. The genetic spectrum was widely heterogeneous, although it 

showed some geographical distribution specificities. It is highly likely, that the genetically not 

yet clarified motor neuropathy pedigrees possess mutations in novel genes and unravelling 

these genes will remain in the focus of further investigations. Many of the undiagnosed 

patients have been included in the 100.000 genome project. The increasing data and 

knowledge about the implicated disease pathways will not only help to identify new genes 

with shared pathomechanisms but it will also provide a basis for novel therapy approaches. 

An illustrative example can be the SYT2 mutation, where therapeutic modification of the 

neurotransmission proved to have beneficial effects (Whittaker et al., 2015).  Genotype-

phenotype correlations in large patient cohorts and natural history studies along with 

unravelling the function of responsible genes and proteins facilitate the development of novel 

approaches for therapy (Peeters et al., 2014; Timmerman et al., 2014). 
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Chapter 6. Phenotype-genotype analyis in hereditary motor neuropathies 

 

 

6.1 Aminoacyl-tRNA synthetases (ARS)-related motor neuropathies 

Mutations in six genes encoding aminoacyl-tRNA synthetases (ARS) have been implicated in 

axonal pathology. The majority of the mutations were reported to affect glycyl-tRNA 

synthetase (GARS, OMIM#600287) causing CMT2 type D (CMT2D) or distal spinal 

muscular atrophy type V (dSMA-V), both are autosomal-dominant upper limb predominant 

motor axonal neuropathies. Mutations in alanyl-aminoacyl-tRNA synthetase (AARS, 

OMIM#601065) were described in autosomal-dominant axonal CMT type 2N (CMT2N) and 

distal hereditary motor neuropathy. Mutations in tyrosyl-tRNA synthetase (YARS, 

OMIM#603623) cause dominant intermediate CMT type C (CMTDIC). Histidyl-tRNA 

synthetase (HARS, OMIM#142810) and methionyl-tRNA synthetase (MARS, 

OMIM#156560) mutant variants were identified in autosomal-dominant CMT2 patients. 

Compound heterozygous lysyl-tRNA synthetase (KARS, OMIM#601421) mutations were 

present in one patient with recessive intermediate CMT type B (CMTIRB) manifesting as part 

of a more complex neurological condition (Jordanova et al., 2006; McLaughlin et al., 2010, 

2012; Zhao et al., 2012; Gonzalez et al., 2013; Vester et al., 2013; Griffin et al., 2014; Safka 

Brozkova et al., 2015).  

Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed and highly conserved 

enzymes. They maintain the fidelity of the genetic code during protein translation by binding 

and activating amino acids and conjugate them with their cognate tRNA molecules (Latour et 

al., 2010; Griffin et al., 2014). There have been 37 nuclear genes identified encoding ARSs 

for cytoplasmic or mitochondrial protein synthesis. Mutations in the so far described 

neuropathy-related ARS genes are mostly missense amino acid substitutions leading to 

dominant CMT phenotypes. Several hypotheses have been proposed in the mechanisms of 

ARS-related CMT pathology. In vitro aminoacylation assays were suitable for detecting 

impaired enzyme activity or qualitative defects from non-cognate bindings. Yeast viability 

assays investigated in vivo functional consequences of the ARS mutations and loss of 

function characteristics. These studies suggested that impaired tRNA charging is a component 

of the pathogenesis. However, reduced aminoacylation activity is not general for all mutant 

ARS variants and gain of toxic function was also considered. Protein localisation studies 

revealed altered distribution of some of the ARS proteins in cultured neurons suggesting 
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spatially inappropriate protein synthesis (Motley et al., 2010; McLaughlin et al., 2012; Griffin 

et al., 2014).  

6.1.1 Aims  

My interest was focused on dominant AARS and GARS mutant pedigrees, where abnormal 

protein translation resulted in the manifestation of motor neuropathy. I aimed to characterise 

the natural history of patients diagnosed with these gene mutations. I was looking for gene 

specific and overlapping symptoms and I aimed to analyse phenotype-genotype correlations 

in each genetic subgroups. 

 

6.1.2 Methods 

6.1.2.1  Patient recruitment 

Patients diagnosed with AARS-related neuropathy between 2010 and 2015 were involved from 

England and Ireland. Three pedigrees of North-East England origin (Families 18-20) were 

recruited from the motor neuropathy cohort (Chapter 5.4.3), while 1 family from the South of 

England was followed up by Dr Hilton-Jones and 2 families from Ireland by Dr Murphy.  

Two pedigrees with novel GARS variants (Families 2-3) were selected from the motor 

neuropathy cohort (Chapter 5.4.2.1) for comparison with the so far reported GARS-related 

phenotypes.From all included patients detailed medical and family history was collected and 

clinical assessments were carried out by me or by the above named neurologists. All 

participants provided written informed consent to be involved in the study, which was 

approved by local research ethics committees.  

6.1.2.2  Diagnostic genetic methods 

All included AARS and GARS mutant pedigrees were diagnosed by IPN gene panel assay 

utilising next generation sequencing (NGS) in the Bristol Genetics Laboratory (Chapter 

3.2.1.1). 

6.1.2.3  Neurophysiology 

Nerve conduction studies and needle electromyography were performed in the index patients 

and in additional affected relatives from all families by local neurophysiologists. 

6.1.2.4  Outcome measure 

Validated CMT Neuropathy Score (CMTNSv2) was applied for monitoring disease 

progression in the patients (Murphy et al., 2011) (Table 3.1). 
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6.1.3 AARS-related neuropathy 

 

6.1.3.1  Literature review 

Mutations in the AARS (OMIM#601065) gene, which encodes alanyl-aminoacyl-tRNA 

synthetase, have been associated with autosomal-dominant axonal CMT type 2N 

(OMIM#613287) and distal hereditary motor neuropathy. Only a few dominant families with 

AARS mutations have been reported so far, presenting clinically with heterogeneous 

phenotypes. The recurrent c.986G>A, p.Arg329His mutation was reported in two unrelated 

French pedigrees, where distal motor and sensory degeneration secondary to predominant 

axonal neuropathy manifested at various ages of onset (Latour et al., 2010). The same 

p.Arg329His variant caused sensorineural deafness and early-onset axonal neuropathy with 

intermediate nerve conduction velocities in a large Australian family (McLaughlin et al., 

2012). Another c.2333A>C, p.Glu778Ala mutation with motor and sensory axonal 

neuropathy and rippling muscles and cramps was identified in an Australian patient, while 

only rippling muscles were present in three affected relatives (McLaughlin et al., 2012). Pure 

axonal neuropathy in a Taiwanese pedigree associated with the c.211A>T, p.Asn71Tyr 

variant (Lin et al., 2011). A distal hereditary motor neuropathy (dHMN) phenotype with 

neurogenic electromyography changes was related to the c.2677G>A, p.Asp893Asn mutation 

in a three generation dominant Chinese family (Zhao et al., 2012). Recently, a novel 

heterozygous missense c.304G>C, p.Gly102Arg AARS mutation was described presenting 

with a novel myeloneuropathy phenotype in a large family (Motley et al., 2015). Autosomal-

recessive loss of function AARS mutations (compound heterozygous p.Lys81Thr and 

p.Arg751Gly and homozygous p.Arg751Gly were reported in two unrelated families causing 

severe infantile epileptic encephalopathy with a central myelin defect and peripheral 

neuropathy (Simons et al., 2015) (Table 6.1). 

 

The alanyl-aminoacyl-tRNA synthetase (AARS) protein has a 968 amino acids structure 

organised from the N-terminal into an aminoacylation or catalytic domain (AD), a helical or 

tRNA-binding domain (HD) and an editing domain (ED). Uniquely, a single base pair in the 

acceptor arm of tRNAAla is provided for specific alanine binding. The evolutionary integrated 

editing domain is responsible for eliminating mischarged tRNAAla. AARS domains possess 

highly conserved amino acid sequences throughout species from E.coli to H. sapiens (Latour 

et al., 2010; Zhao et al., 2012). 
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Table 6.1 Summary of the clinical and electrophysiology findings accompanying the reported AARS variants 

(Bansagi, Antoniadi, et al., 2015) 
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6.1.3.2  Clinical and neurology findings in AARS mutant pedigrees  

 

UK Family 1 (Family 19)  

The 50-year-old male proband (III.1) (Figure 6.1, A; B) of a three generation North-

British family developed symmetric distal muscle weakness, decreased grip strength and 

numbness in his upper limbs with a relatively sudden-onset at age 30. His fluctuating upper 

limb symptoms were later complicated by distal motor weakness and painful dysaesthesia in 

his legs, which led to gait deterioration and frequent falls. Aged 33 he developed an episode 

resembling an acute ischaemic cerebral attack, which involved the right side of his body with 

paralysis and paraesthesia and caused speech difficulties. He was unresponsive to therapy 

trials of steroids and IVIG, which was initiated with the suggestion of chronic inflammatory 

demyelinating neuropathy (CIDP) on electric nerve testing. The aetiology of the acute 

neurological symptoms has remained uncertain despite extensive investigations, including 

neuroimaging. After recovering, he continued to present with a lower limb predominant motor 

and sensory neuropathy. Pursuant to neurology follow-ups he demonstrated right sided 

predominant fingers and grip weakness (MRC grade 4-/5). He required bilateral hand splint 

support for manipulation. He had pes cavus deformities and dropped foot. His ankle plantar- 

and dorsiflexion was equally weak (MRC grade 3/5). Pinprick and vibration sensation was 

lost bilaterally below his mid calves and wrists. His poorly balanced steppage gait was aided 

by a unilateral walking stick. No cranial nerve involvement, pyramidal signs and cerebellar 

symptoms were observed. The CMTNSv2 was assessed 19/36.  

The 77-year-old father of the proband (II.4) (Figure 6.1, A; B) presented with a 

childhood-onset, slowly progressive neuropathy, which resulted in gait difficulties only in his 

late adulthood. He underwent several foot surgeries during his childhood. In his late 60’s he 

experienced pain in his lower limbs in a distribution characteristic for lumboischialgia, even 

though spinal images did not show related changes. He developed an exercise-induced 

limping with no underlying peripheral vascular pathology. After the age of 70 he deteriorated, 

rapidly losing his balance. The neurology examination of his lower limbs found distal muscle 

wasting and weakness with pes cavus deformities and severe foot drop. His ankle plantar- and 

dorsiflexion was markedly weak (MRC grade 1/5) and he was unable to move his toes. There 

was a mild atrophy and weakness affecting his intrinsic hand muscles (MRC grade 4+/5). His 

reflexes were globally absent. Pinprick sensation was lost below his wrists and ankles, while 

the level of the vibration loss was more proximal at his elbows and knees. 
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Figure 6.1 AARS mutant pedigrees 

(A) Pedigrees of UK and Irish families. The arrows indicate the index patients 

of each family. 

(B) Image of patient II/4 in UK family 1 showing predominantly lower limb 

symptoms presenting with bilateral pes cavus and severe foot drop. Index 

patient of the same UK1 family (III/1) representing moderate instrinsic hand 

muscles wasting accompanied by lower limb distal wasting and weakness. 

Image of patient (II.1) from UK family 3 showing severe bilateral foot drop and 

distal muscle wasting. 

(Bansagi, Antoniadi, et al., 2015) 
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His gait was supported by bilateral rigid splints and two crutches. The CMTNSv2 score was 

assessed 11/28, just before he passed away due to unrelated health issues. 

Two of his 6 brothers (II.1 and II.6) and his mother (I.1) (Figure 6.1, A) were also diagnosed 

with peripheral neuropathy. Aged 53 his brother (II.6) developed distal motor and sensory 

loss with bilateral foot drop, but he remained ambulant with the aid of orthotic splints (Table 

6.2). 

 

UK Family 2 (Family 20)  

The 20-year-old index patient (III.1) (Figure 6.1, A) of North-East England origin 

presented with a childhood-onset, slowly progressive distal motor neuropathy involving his 

lower extremities. At the age of 12 he developed Achilles tendons tightness with subsequent 

tiptoe walk and clumsiness. He deteriorated with painful distal muscle weakness and atrophy 

in his legs. He underwent orthopaedic surgical interventions and his foot deformities were 

corrected by combined osteotomy and tendon transfer.  

Neurology examination found symmetrical wasting and pronounced weakness in his distal leg 

muscles. He had weak ankle dorsiflexion (MRC grade 3/5) and cavo-equinus foot deformities. 

There were no signs of upper limb involvement, although his deep tendon reflexes were 

globally absent. Mildly impaired pinprick sensation was detected below the level of his 

ankles. He remained physically active and ambulant with a steppage gait requiring insoles. 

CMTNSv2 was 8/36. 

His father (II.2) (Figure 6.1, A) had a similar, but milder disease course suggesting a 

dominant inheritance pattern in the family. He remained fully active and ambulant with no 

need of orthotic aid support. His paternal aunt (II.1) and paternal grandmother (I.1) (Figure 

6.1, A) were also affected by the disease. Although they required walking aids at the later 

stages of their life, they all remained ambulant (Table 6.2). 

 

UK Family 3 (Family 18) 

The 32-year-old patient (III.1) (Figure 6.1, A) from a North-East England family was 

clumsy over his childhood ages. He had a longstanding history of autoimmune ankylosing 

spondylitis. He underwent bilateral hip replacement and required combined anti-inflammatory 

and immunotherapy. Aged 28 he additionally developed asymmetric motor weakness and 

intermittent numbness in his left sided extremities. His decreased grip strength and finger 

weakness caused difficulties in typing and handwriting. He complained of general tiredness 

and fatigability. Inflammatory and autoimmune causes of neuropathy were excluded by 

thorough investigations, including CSF analysis and neuroimaging. 
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His neurology assessment proved distal muscle atrophy and weakness in his extremities more 

on the left body side. His fingers and intrinsic hand muscles were mildly weak (MRC grade 

4/5), while he had more pronounced distal leg weakness (MRC grade 3/5). Wasted feet 

muscles caused pes cavus foot deformities. Deep tendon reflexes were overall absent. 

Disturbed sensation for light touch and pinprick modalities was noted in his left hand. His gait 

was supported by bilateral ankle foot orthesis (AFO). The CMTNSv2 measured 11/36.   

Upon conclusion of the neuropathy diagnosis in patient (III.1), his father (II.1) (Figure 

6.1, A; B) was referred in his late 50’s with rapid deterioration of his walking abilities. He 

reported congenital foot deformities, which were surgically corrected in the first year of his 

life. Despite his tiptoe gait difficulties, he trained to be a football coach and remained fully 

active until he presented to the clinic. His symptoms progressed quickly, over a year and 

resulted in severe distal motor neuropathy affecting exclusively his lower extremities. He 

suffered from severe pain caused by the damaged ankle joints.  

Neurology investigation revealed markedly decreased distal muscle strength and severe 

bilateral foot drop. His ankle plantarflexion was better preserved (MRC grade 3/5) compared 

to the prominently weak dorsiflexion (MRC grade 1/5). His lower limb reflexes were absent 

with no long tract signs. Very mild hyperaesthesia for pinprick was indicated above his feet. 

There was no upper limb involvement and he had preserved upper limb muscle power and 

deep tendon reflexes. He had Dupuytren’s contracture on his right hand. The CMTNSv2 was 

assessed 5/28.   

In terms of the family history, the 82-year-old paternal grandfather (I.1) had bilateral 

foot drop but remained ambulant by wearing splints. The paternal uncle (II.2) had surgery due 

to ankle problems in the past and his two sons needed evaluations for orthopaedic issues. 

(Figure 6.1, A) (Table 6.2) 

 

UK Family 4 

The 55-year-old proband (II.2) of a Southern UK family (Figure 6.1, A) presented 

with asymmetric right lower limb wasting in his 30’s and developed walking difficulties due 

to foot drop. Earlier in his 20’s he was diagnosed with right sided sciatica and lower back pain 

caused by a prolapsed disc. He deteriorated progressively and developed motor weakness and 

wasting from the lower thighs distally in both legs, the right leg remaining more severely 

affected. He experienced numbness from ankles downwards and he could not appreciate 

vibration sensation below his knees. Upper limb involvement accompanied at later stages 

with intrinsic hand muscles wasting and weakness, predominantly affecting finger abduction. 

Superficial sensation was impaired in the distal parts of his fingers.  
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Aged 40 he was assessed having striking clinical features of bilateral dropped foot and hallux. 

Ankle plantar- and dorsiflexion were both markedly weak (MRC grade 1/5). He suffered from 

unbalanced gait and frequent falls. He required AFO support and aid of a unilateral walking 

stick to remain ambulant. He displayed substantial difficulties in his upper limb strength and 

dexterity and he underwent tendon transfer surgery to achieve better thumb and grip function. 

CMTNSv2 was assessed 11/36. 

His father (I.1) (Figure 6.1, A) developed progressive gait difficulties from his 40’s 

onwards and was eventually diagnosed with chronic demyelinating neuropathy at the age of 

60 years. Two of his four brothers (II.3 and II.5) received intermediate CMT diagnosis for a 

similar disease course. They suffered from frequent ankle sprains and they developed 

progressive ankle instability with a late teen-onset. They presented with progressive distal 

amyotrophy, areflexia, bilateral pes cavus and mild sensation loss from their 20’s. They ended 

up with prominent walking difficulties in their middle ages due to the slowly progressive 

condition. The younger of them (II.5) also developed bilateral wasting of the first dorsal 

interossei muscles with no accompanying hand function impairment. Their offspring has not 

yet presented functional difficulties, albeit that the oldest son of patient II.2 had dropped toes 

while the youngest son of patient II.3 had overriding toes (Table 6.2). 

 

Irish Family 1 

The 46-year-old proband (IV.5) (Figure 6.1, A) struggled with recurrent patellar 

dislocations in her school age years and had poor performance in sports. Until her mid-30’s 

she deteriorated further with gait balance difficulties and experienced reduced sensation in her 

feet. In her 40’s she complained of some difficulties in writing and typing.  

Her examination revealed had mild ptosis and a high arched palate. Her muscle strength was 

decreased in the intrinsic hand muscles (MRC grade 4/5), in hip flexion (MRC grade 4/5), in 

ankle dorsiflexion (MRC grade 2/5) and in plantarflexion (MRC grade 4/5). Her deep tendon 

reflexes were globally absent. Her gait was slightly waddling and she had bilateral foot drop. 

Pinprick sensation was reduced at ankles and vibration was impaired at costal margins. 

CMTNSv2 score was 15/36 indicating moderate CMT severity.  

Her daughter (V.1) (Figure 6.1, A) was clumsy and walked on her toes in the first 

decade of her life. Aged 7 she had mild proximal and more distal weakness in her lower 

limbs, absent ankle reflexes and diminished fine touch distally in her feet. The proband’s 

father (III.5) (Figure 6.1, A) suffered from schizophrenia but a stamping gait difficulty had 

been reported for many years previously. He progressed slowly developing muscle wasting 

and weakness in the hands and distal legs. He required PEG tube insertion due to swallowing 
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difficulties aged 70. He lost ambulatory skills when he was 76 years old. Several other family 

members were reported to become wheelchair bound in later life (I.2, II.1, II.2, II.5) (Table 

6.2). 

 

Irish Family 2   

The 37-year-old proband (II.3) (Figure 6.1, A) was clumsy, turned easily on his 

ankles while walking and fell frequently in his childhood. He presented with upper limb fine 

motor difficulties in his teens. His symptoms progressed gradually involving both distal upper 

and lower extremities.  

He had muscle wasting from the mid forearm and from the knees distally. There was a motor 

weakness of intrinsic hand muscles; abductor pollicis brevis (APB) (MRC grade 1/5), first 

dorsal interosseous (FDIO) (MRC grade 4-/5) and abductor digiti minimi (ADM) (MRC 

grade 4/5). He demonstrated hand tremor induced by weakness and difficulties in dexterity. 

Ankle dorsi- and plantarflexion were equally weak (MRC grade 1/5). He had an unsteady gait 

with frequent falls, caused by Achilles tendon contractures and bilateral foot drop. His deep 

tendon reflexes were overall absent. Sensation to pin was reduced to above the wrists and 

proximal shin, vibration was decreased to costal margin bilaterally but proprioception was 

normal. His CMTNSv2 score was 17/28. 

Both his children were affected indicating dominant family history. His 6-year-old son 

(III.1) (Figure 6.1, A) developed toe walk and fell frequently. He wore AFO from the age of 

5. He had a poor pencil grip. He had mild intrinsic hand muscles weakness, APB weaker than 

FDIO. His ankle dorsiflexion was markedly weak with concomitant bilateral foot drop. He 

was areflexic throughout. The proband’s 5-year-old daughter (III.2) (Figure 6.1, A) had 

delayed motor and developmental milestones and attended special needs school. She fell 

frequently due to toe walk and required boots for ankle support. She had mild motor hand and 

APB weakness. Her impaired ankle dorsiflexion led to bilaterally dropped foot. Reflexes were 

absent apart from available triceps and knee jerks. Sensory testing was unreliable in the 

children (Table 6.2). 
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Table 6.2 Genetic and clinical characteristics of patients with AARS-related neuropathy in the UK/Irish cohort 

(Bansagi, Antoniadi, et al., 2015)  

 



 

 91 

6.1.3.3  Neurophysiology findings in pedigrees with AARS-related neuropathy   

 

In the proband (III.1) of UK Family 1 (Family 19) repeated nerve conduction studies 

were carried out due to differential diagnostic difficulties. Initially, multifocal patchy 

demyelinating changes with conduction blocks were recorded, suggestive of CIDP but the 

patient did not improve on immunosuppressive therapy. Follow-up recordings indicated 

intermediate, combined axonal and demyelinating motor neuropathy with patchy dispersion of 

the motor neuronal conduction velocities and severe sensory polyneuropathy.  

Family members (II.4 and II.6) also showed intermediate nerve conduction velocities 

indicating both demyelinating and axonal features. 

 

The proband (III.1) of UK family 2 (Family 20) showed both demyelinating and 

axonal motor and sensory neuropathy with nerve conduction velocities in the intermediate 

range. 

 

The index patient (III.1) of UK family 3 (Family 18) with progressive asymmetric 

distal motor and sensory neuropathy had intermediate nerve conduction parameters.  

 

The proband (II.2) of UK family 4 had motor conduction velocities in the 

demyelinating range compatible with demyelinating CMT.  

In his father (I.1) nerve conduction studies also showed profound demyelination with 

significant axonal loss. Both his affected brothers (II.3 and II.5) had severe, predominantly 

axonal sensorimotor neuropathy with reduced conduction velocities.  

 

Electric testing in the Irish families revealed length-dependent motor and sensory 

neuropathy with intermediate conduction velocities.  

 

Needle EMG recordings did not show changes in spontaneous activity and in motor unit 

potentials in either of the families (Table 6.3). 
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Table 6.3 Summary of neurophysiology results in the AARS mutant UK / Irish families 

(Bansagi, Antoniadi, et al., 2015) 
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6.1.3.4  Diagnostic genetic methods and identified AARS mutations in the pedigrees 

 

Initially, targeted candidate gene tests were performed taking into consideration 

leading clinical features, inheritance patterns and changes on nerve conduction studies. 

Mutations in genes involved in axonal pathology (MFN2, NEFL, GDAP1) and common 

demyelinating neuropathy-related genes (PMP22, MPZ) were excluded in all patients. Upper 

limb symptoms at disease-onset and/or predominant involvement of first dorsal interosseus 

muscles prompted testing for mutations in the GARS gene. BICD2 mutations were excluded in 

patients with early-onset lower extremity predominant motor symptoms and Achilles 

contractures. Prominent sensory symptoms in some patients indicated a need for screening for 

SPTLC1 mutations.  

IPN gene panel assay was initiated next in all included families. The previously 

reported pathogenic heterozygous c.986G>A, p.Arg329His variant in exon 8 of the AARS 

gene was identified in all of the 4 UK families and in the first Irish family. Another, so far not 

yet described c.2063A>G, p.Glu688Gly AARS variant was found to segregate with the 

dominant motor and sensory neuropathy in the second Irish family. This variant has not been 

recorded in dbSNP, 1000 genomes, Exome Variant Server or Exome Aggregation Consortium 

www.exac.broadinstitute.org. Alignment of protein sequences from multiple species 

supported that the affected glutamic acid residue is highly conserved among all species from 

E.coli to H.sapiens. In silico prediction tools indicated the missense change to be likely 

deleterious (SIFT: deleterious; Polyphen2: probably pathogenic; Mutation Taster disease- 

causing) (Figure 6.2). 

 

Furthermore, detailed bioinformatics analysis was carried out on the IPN gene panel 

results, with the help of Dr Thalia Antoniadi at Bristol Genetic Laboratory and Dr Helen 

Griffin at Institute of Genetic Medicine, Newcastle University. We were looking at single 

nucleotide polymorphisms (SNPs) occurring in the AARS and closely located other genes 

(KARS, GAN) on chromosome 16q. We examined the SNP database (dbSNP) / NHLBI 

Exome Sequencing Project (ESP) frequency. We identified common SNPs carried by the 

patients among the different UK and Irish families (Table 6.4). 

http://www.exac.broadinstitute.org/
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Figure 6.2 Identified AARS variants, positions and conservation across species 

(Bansagi, Antoniadi, et al., 2015)  

 

 

 

Table 6.4 Analysing common SNPs in the affected AARS mutant families 
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6.1.3.5  Genotype-phenotype correlations in the cohort of AARS-related neuropathy   

We identified a remarkable cohort of UK and Irish families diagnosed with AARS-related 

neuropathy by using a multi-gene panel approach. I have thoroughly investigated phenotype 

manifestations in the group of neuropathies caused by dominant AARS mutations, in order to 

delineate genotype-phenotype correlations by comparing our families to the previously 

worldwide reported cases.  

Clinically variable neuropathy phenotypes, including motor and sensory axonal CMT2 

(CMT2N), intermediate CMT and dHMN, have been reported with mutations affecting all 3 

AARS domains.  

 

Phenotypes associated with AARS mutations in the aminoacylation domain 

In a Taiwanese pedigree axonal CMT2 was described related to the p.Asn71Tyr 

missense variant located in the AARS aminoacylation domain (Table 6.1). Impaired 

aminoacylation activity was proved by in vitro and in vivo assays, which resulted in reduced 

charging capacity (Lin et al., 2011; McLaughlin et al., 2012). 

A novel heterozygous missense c.304G>C, p.Gly102Arg AARS variant segregated in a 

large dominant American pedigree (Table 6.1). The mutated region of the activation domain 

and the affected residue was highly conserved from a range of divergent species and in silico 

predictions indicated that the mutation was probably damaging. Yeast complementation assay 

proved loss-of-function characteristics. The affected family members presented with mild 

axonal neuropathy and hyperreflexia indicating superimposed myelopathy (Motley et al., 

2015). 

 

Phenotypes related to common p.Arg329His AARS mutation in tRNA-binding domain 

The p.Arg329His AARS variant was considered a recurrent mutation worldwide, 

previously reported in 2 French, 1 Australian pedigrees (Table 6.1). We additionally 

diagnosed 4 families from the UK and 1 Irish family with the same p.Arg329His AARS 

mutation (Table 6.2). Functional studies revealed that the variant is associated with impaired 

enzyme activity. Furthermore, the affected arginine residue is located in the middle 

helical/tRNA-binding domain of the AARS protein, in a highly methylated CpG site, where a 

methylation-mediated process might give rise to a mutational hot spot. Haplotype analysis in 

the 2 French and Australian pedigrees with p.Arg329His AARS mutation demonstrated a 

different founder among the three families (Latour et al., 2010; McLaughlin et al., 2012).  
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A limited haplotype analysis of 4 polymorphic variants in the proximity of the 

causative AARS mutation showed identical haplotype background for our 4 families of UK 

origin, while a close haplotype similarity was suggested (3/4 identical variants) with the Irish 

family. We concluded that the p.Arg329His might be potentially a founder mutation in our 

families (Bansagi, Antoniadi, et al., 2015) (Table 6.4). 

Despite the common genetic background, the disease presentation in our families was 

largely heterogeneous. Lower limb predominant motor and sensory neuropathy with various 

degree of upper limb involvement was observed in UK Family 1. Slowly progressive motor 

weakness and mild or absent sensory changes affected exclusively the lower extremities in 

UK Family 2. Interfamilial phenotype heterogeneity was characteristic in UK Family 3, 

where the proband presented with young adult-onset asymmetric motor and sensory 

symptoms, while his father had late-onset distal motor neuropathy in his legs. Slow 

progression, predominant lower limb motor loss with mild to moderate sensory changes and 

variable upper limb weakness with split hand formation presented in UK Family 4. Lower 

limb motor and sensory symptoms progressed slowly with later accompanying hand weakness 

in Irish Family 1. Motor predominant lower limb weakness with contractures and early spilt 

hand deformities were seen in Irish Family 2 (Table 6.2). 

In general, lower extremity involvement was predominant in all our families, variably 

impairing motor and sensory functions. Some patients showed exclusively or predominantly 

distal motor symptoms consistent with the dHMN phenotype. Pes cavus foot deformities and 

severe foot drop due to ankle dorsiflexion weakness were strikingly common features 

throughout the affected families. Walking abilities were impaired in all cases leading to 

ambulatory loss in some of the patients. Split hand malformation was frequently observed 

among the families, manifesting as an overlapping feature with GARS-related pathology. 

Acute episodes of worsening, mimicking acquired neuropathies caused diagnostic difficulties 

in some cases. Similarly to the French pedigree, asymmetric distribution of symptoms was 

seen in our families, but in contrast to the Australian cohort, sensorineural deafness was not 

present. Variable age of onset, disease progression and severity of symptoms gave rise to 

further phenotype heterogeneity.  

Compared to the previously reported pedigrees, intermediate motor nerve conduction 

velocities were detected at a larger extent in all families, which indicated a greater 

demyelination process in addition to the accompanying axonal dysfunction. Sensory nerve 

responses were frequently severely impaired jointly with the occasional prominent sensory 

loss. We did not detect neuromuscular junction dysfunction in AARS-related neuropathy, 
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illustrating the variable mechanisms of different ARS-related conditions (Bansagi, Antoniadi, 

et al., 2015) (Table 6.3). 

 

Phenotypes observed with AARS mutations in the editing domain 

There were two different phenotypes reported in relation to AARS editing domain 

mutations. In a dominant Australian family with rippling muscle disease the p.Glu778Ala 

AARS variant segregated. However, the missense change did not affect an evolutionarily 

conserved amino acid and diminished editing capacity also could not be proven (McLaughlin 

et al., 2012). The p.Asp893Asn AARS variant was identified in a dominant Chinese pedigree 

with pure motor pathology resulting in a dHMN phenotype. The amino acid change affected a 

highly conserved residue in the C-terminal editing domain and prediction programs indicated 

deleterious pathogenicity (Zhao et al., 2012) (Table 6.1). 

We found the novel p.Glu688Gly AARS variant segregating in the second Irish family. 

Alignment of protein sequences from multiple species supported that the affected glutamate in 

the editing domain is a highly conserved residue among all species from E.coli to H.sapiens 

(Figure 6.2). Further functional studies would be necessary to investigate its impact on the 

editing capacity and to determine the pathogenicity. Early-onset slowly progressive and 

predominant motor impairment of both upper and lower extremities was characteristic for the 

associated phenotype. Split hand deformity and milder sensory changes manifested at later 

ages. Nerve conduction findings were compatible with an intermediate CMT (Table 6.2; 

Table 6.3) (Bansagi, Antoniadi, et al., 2015). 

6.1.3.6  Conclusion 

We investigated a cohort of patients with AARS-related neuropathy among pedigrees of UK 

and Irish origin. In view of previously worldwide reported pedigrees, I evaluated the natural 

history of AARS-related neuropathies and I examined phenotype correlations with the 

underlying genetic background.  

Our patient cohort supported that the p.Arg329His AARS variant is a recurrent mutation, 

which occurs worldwide. The AARS phenotype spectrum is largely heterogeneous, which may 

cause difficulties in achieving diagnosis based only on neurology examination, underlying the 

importance of next generation sequencing. Genetic screening for AARS and other aminoacyl-

tRNA synthetase mutations should be considered in axonal neuropathology. 

 



 

 98 

6.1.4 GARS-related neuropathy 

 

6.1.4.1  Literature review 

The CMT associated ARS mutations have predominantly been reported in the GARS gene. At 

least 13 neuropathy-causing GARS mutations have been identified so far (Griffin et al., 2014). 

Dominant GARS mutations manifest either as axonal motor and sensory neuropathy (CMT2D, 

OMIM# 601472) or as the allelic form, distal hereditary motor neuropathy or distal spinal 

muscular atrophy (dHMNV/HMN5A or DSMAV, OMIM# 600794). Upper limb predominant 

symptoms are characteristic but not exclusive and the clinical manifestation may rely on the 

localisation of the mutation. dHMN-V is typically caused by catalytic domain mutations 

(Nangle et al., 2007; Xie et al., 2007; Griffin et al., 2014), while CMT2D is caused by 

anticodon-binding domain mutations (Del Bo et al., 2006; James et al., 2006; Xie et al., 2007; 

Eskuri et al., 2012). Reduced aminoacylation activity, altered axonal localisation (Antonellis 

et al., 2003; Griffin et al., 2014) and impaired catalytic function (Jordanova et al., 2006) was 

attributed to variable disease mechanisms. Abnormal neuromuscular transmission has been 

described in Drosophila and in mouse models of GARS mutations (Ermanoska et al., 2014; 

Sleigh et al., 2014). 

 

6.1.4.2  Natural history of GARS-related neuropathy in the identified pedigrees 

 

Family 2 

The proband (III/1) (Figure 6.3, A; B) developed asymmetric weakness and atrophy 

in his hand muscles aged 14. His condition progressed slowly with deteriorating grip strength 

and dexterity. Milder lower limb motor symptoms were accompanied with no functional 

impact. 

His neurology examination found prominent motor wasting and weakness (MRC grade 2/5) in 

the bilateral first dorsal interosseous muscles, causing weak pincer grip and split hand 

malformation. The muscle power of the proximal upper limb and shoulder muscles was 

preserved. His ankle dorsi- and plantarflexion were equally weak (MRC grade 4/5) with mild 

bilateral foot drop. He was unable to toe walk. He had no sensory impairment in his upper 

limbs but there was a decreased sensation of pinprick and vibration below his ankles. The 

CMTNSv2 score was 11/36 (Table 6.5). 



 

 99 

 

 

 

Figure 6.3 Identified GARS mutant families 

A) Pedigrees of GARS-related neuropathy.  

B) Images of patients PIII/1 and PII/1 from Family 1 and PII/4 from Family 2 
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His mother (II/1) presented with a similar, early-onset upper limb predominant distal motor 

neuropathy (Figure 6.3, A; B). Her disease course was also slowly progressive, mildly 

involving her distal lower limb muscles at later ages.She complained of pins and needles in 

the distal part of her extremities. Her medical history was complicated by Sjogren’s 

syndrome, autoimmune arthritis and vasculitis. 

Examination found prominent distal motor atrophy and weakness (MRC grade 1/5), primarily 

affecting the first dorsal interosseous muscles. Hand grip was lost and she developed curled 

fingers. The muscle power was preserved in the proximal upper limb muscles. The ankle 

dorsiflexion was weaker (MRC grade 3+/5) compared to the plantarflexion (MRC grade 4/5). 

Sensory deficit for pinprick was noted below elbow and knee levels, while vibration was 

reduced at the ankles. She had a livid skin discolouration on both her legs. The CMTNSv2 

score was 15/36 (Table 6.5). 

The maternal grandmother (I/1) (Figure 6.3, A) was reported to suffer form the same 

condition.  

 

Family 3 

The proband (II/4) (Figure 6.3, A; B) dated her first symptoms back to the early 

childhood years, when she had tiptoe walk abnormalities. The lower limb weakness 

accompanied by ankles contracture progressed slowly. Her foot deformities and hamstring 

stiffness required surgical correction. Later in adult years her upper limbs became gradually 

involved with distal muscle weakness and sensory impairment. She experienced pins and 

needles in her legs and numbness in her hands. Her gait deteriorated and by the age of 40 she 

required a walking stick. She complained of excessive fatigability. She reported deterioration 

in hearing and memory functions.  

The neurology examination found more prominent lower limb symptoms. There was a distal 

motor weakness (MRC grade 3/5) and atrophy with clawing toes and pes cavus deformities. 

There was only a mild muscle weakness in the finger muscles (MRC grade 4/5), while 

proximal strength was preserved in all extremities. Deep tendon reflexes were rather brisk 

apart from that the ankle jerks were absent. She had a poorly balanced gait and she was 

unable to heel or toe walk. The CMTNSv2 score was 11/36 (Table 6.5). 

Her daughter (III/7) (Figure 6.3, A) had a more severe symptom presentation with a 

relative rapid deterioration. She was a clumsy child with tiptoe walk difficulties. She required 

surgical tendon lengthening. Later her feet became flat, turned inward and she struggled with 

recurrent ankle sprains. Her walking ability was impaired by fatigability and pain manifesting 

in the hips, lower back and knees. 
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Table 6.5 Clinical characteristics of GARS neuropathy patients 

 

 

 



 

 102 

Later in the disease course she developed had weakness and she was unable to carry bags, 

accidentally dropping them due to decreased grip strength. Additionally, she experienced pain 

and intermittent pins and needles in both hands. The CMTNSv2 score was 13/28.  

The granddaughter of the proband (IV/3) (Figure 6.3, A) had tiptoe walk 

abnormalities since she started to walk. She developed progressive tendon stiffness. She had 

frequent falls and fatigability. Aged 9 she was unable to take part in physical education 

classes but she was good at arts and crafts having no difficulties with her dexterity. Her 

neurology examination revealed only lower limb symptoms. There was stiffness in her ankles 

and she was unable to place her heels on the ground. She was continuously tiptoeing while 

walking or running and she was unable to perform heel walk. She had genu valgus and inward 

turned flat foot deformities. CMTNSv2 was 2/28 (Table 6.5). 

Several further family members (I/1, II/1, II/6, III/1, III/2, III/3, III/6) (Figure 6.3, A) 

presented with childhood-onset slowly progressive distal motor neuropathy in the lower limbs 

supporting the dominant inheritance in the family. 

 

6.1.4.3  Detailed nerve conduction findings in the GARS pedigrees   

 

Family 2 

In the proband (III/1) upper limb nerve conduction studies showed significantly 

reduced amplitude left median CMAP response. The left ulnar CMAP recorded from the 

abductor digitus minimus was entirely normal. This discrepancy between the median and 

ulnar responses is typical of dHMN-V. In the lower limbs CMAP responses were of 

significantly reduced amplitude or unrecordable. Sensory nerve responses were within 

acceptable limits. Concentric needle EMG revealed inactive neurogenic changes.  

There was no convincing evidence to suggest a significant defect of neuromuscular 

transmission, given the normal repetitive nerve stimulation of distal muscles and normal 

SFEMG findings. 

In his mother (II/1) nerve conduction studies similarly showed reduced amplitude 

median CMAP responses, while ulnar CMAP responses recorded from the abductor digitus 

minimus were normal on both sides. In the lower limbs motor responses were unrecordable. 

Sensory nerve responses were of reduced amplitude in the upper and lower limbs with mild 

slowing in the conduction velocity. It was hard to determine, whether this was secondary to 

her Sjögren’s. Concentric needle EMG revealed moderate inactive neurogenic changes. 

Repetitive nerve stimulation in the right trapezius showed significant decrement following 10 
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seconds of maximum voluntary contraction (-11%), but this was not reproduced in any of the 

other muscles studied and there was no concomitant significant jitter in SFEMG of the right 

trapezius muscle. SFEMG of the extensor digitorum communis showed increased jitter (12%). 

However, these provided no convincing evidence to suggest a significant defect of 

neuromuscular transmission. 

 

Family 3 

The proband (II/4) had reduced amplitude lower limb CMAP responses with normal 

conduction velocity. Sensory responses were normal throughout. Electromyography was 

inactive neurogenic.  

There was an evidence of NMJ instability on SFEMG, which recorded increased jitter in the 

extensor digitorum communis (40% with 5% block) and in the tibialis anterior (19% with no 

block). Interestingly, the degree of the neuromuscular instability appeared greater in the upper 

limb, despite the lower limbs being more affected in terms of the neuropathy.  This raised the 

intriguing possibility that in the early stages there might be a reversible defect of 

neuromuscular transmission, which then becomes fixed as the neuropathy progresses. 

In her granddaughter (IV/3) baseline nerve conduction studies were normal.  

Repetitive nerve stimulation recorded 30% increment in the right tibialis anterior. This 

provided some evidence of neuromuscular junction instability, even though it could not be 

confirmed with SFEMG due to her young age. Nevertheless, the possibility of a presynaptic 

NMJ defect was raised.   

 

6.1.4.4  The identified novel GARS variants in the pedigrees 

The novel heterozygous c.647A>G, p.His216Arg missense GARS variant was detected 

in the two generation Family 2. The prediction tools suggested that the substitution has a 

detrimental effect. The amino acid change involves a highly conserved residue in the insertion 

I domain-like entity, which is likely to be involved in the acceptor stem recognition of the 

tRNA (Xie et al., 2007).  

Another novel heterozygous c.1528A>C, p.Lys510Gln missense GARS mutation co-

segregated with the disease in the dominant three generation Family 3. This variant is located 

in the insertion III domain, upstream to the highly conserved motif 3 within the GARS 

catalytic domain. This sequence change might impact on the tRNA recognition, similarly to 

the closely located p.Asp500Asn GARS variant (Nangle et al., 2007; Xie et al., 2007; Griffin 

et al., 2014).  
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6.1.4.5  Genotype-phenotype correlations in the identified GARS pedigrees 

We identified two novel GARS mutations accompanied by different dHMN phenotypes in the 

studied pedigrees.  

The novel heterozygous c.647A>G, p.His216Arg GARS variant presented with upper 

limb predominant motor neuropathy in Family 2, compatible with the diagnosis of dHMN-V. 

The striking motor weakness in the first dorsal interosseus muscles led to the development of 

the characteristic split hand deformity. Referring to the literature, the equivalent numbering of 

the identified GARS variant would be the c.485A>G, p.His216Arg in a different 685 codon 

length transcript, which is lacking the N-terminal 162 bp mitochondrial targeting sequence. 

The affected residue is located in the insertion I domain-like entity, which is virtually 

separated from the catalytic domain by its secondary protein structure and is likely to be 

involved in the acceptor stem recognition. The previously reported pathogenic c.385C>T, 

p.Leu129Pro GARS variant is located in the helix-strand (motif 1), close to the insertion I of 

the catalytic domain (Xie et al., 2007). This variant also presents with dHMN-V and was 

extensively investigated. Reduced aminoacylation activity observed in vitro and in yeast 

complement assays and altered axonal localisation have been implicated in the 

pathomechanism (Antonellis et al., 2003, 2006; Griffin et al., 2014).  

The other novel heterozygous c.1528A>C, p.Lys510Gln missense GARS variant 

carried in the large dominant Family 3 presented with predominant lower limb motor 

neuropathy accompanied by a less severe hand involvement in later ages. There was a striking 

intrafamilial phenotype variability. The proband (II/4) and her granddaughter (IV/3) had 

motor dominant symptoms with normal sensory responses suggesting dHMN-V, while the 

proband’s daughter (III/7) had an axonal motor and sensory neuropathy, CMT2D. The similar 

coexistence of the two allelic forms of GARS-related neuropathy has been reported in an 

Italian pedigree carrying the nearby p.Asp500Asn GARS mutation (Del Bo et al., 2006). Both 

GARS variants are located in the insertion III domain, upstream to the highly conserved motif 

3 region of the catalytic domain. The insertion III domain might be involved in tRNA 

recognition by tRNA-binding across the dimer interface. This hypothesis was supported in the 

p.Asp500Asn GARS mutant, where functional tests indicated stronger dimer formation 

capacity beside intact aminoacylation activity and axonal localisation (Nangle et al., 2007; 

Xie et al., 2007; Griffin et al., 2014). Interestingly, severe and early childhood-onset lower 

limb predominant phenotypes have been previously linked to mutations within the GARS 

anticodon-binding domain in the C-terminal (James et al., 2006; Xie et al., 2007; Eskuri et 

al., 2012).  
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6.1.4.6  Conclusion 

The novel GARS mutations identified in our studied pedigrees provide an illustrative example 

for the related heterogeneous phenotype variability and highlight the uncertainty in the 

pathomechanism of GARS. The mechanism of selective nerve pathology leading to CMT2D 

or dHMN-V has still not been fully clarified. Functional studies provided evidence that 

neither loss in the aminoacylation activity or impaired axonal protein synthesis, due to 

subcellular GARS mislocalisation per se is required in the disease pathology. Recent 

‘humanized’ yeast assay studies supported that loss-of-function effect on the enzyme activity 

might be the necessary first step in the pathomechanism. The dimerization between the 

mutant and residual wild-type GARS protein exerts dominant negative effect by reducing the 

enzyme activity (Antonellis et al., 2003, 2006; Motley et al., 2011; Stum et al., 2011; Griffin 

et al., 2014; Niehues et al., 2015; Malissovas et al., 2016). Recent Drosophila studies 

suggested that impaired translation, not attributable to loss-of-function aminoacylation defect, 

but rather to toxic gain-of-function might be a common noncanonical function of mutant 

tRNA synthetases (Niehues et al., 2015). Very recently, the role of the mutation induced 

neomorphic conformational changes has been investigated in the mechanism of some GARS 

mutations. The gain-of-function interaction with the neuropilin 1 receptor (Nrp1), via aberrant 

blocking of the binding of vascular endothelial growth factor (VEGF), resulted in peripheral 

neurodegeneration in mice (He et al., 2015). Other ARS mutants were also found to exert 

aberrant Nrp1-binding suggesting a common pathomechanism and providing a target for 

biomarker identification. Furthermore, our research team is investigating whether abnormal 

mitochondrial translation in neurons could also contribute to the pathology of GARS-related 

neuropathies.
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6.2 IGHMBP2-related neuropathy 

 

6.2.1 Literature review 

Abnormal DNA/RNA metabolism has been implicated in the pathology of spinal muscular 

atrophy (SMA) and hereditary motor neuropathies. Homozygous and compound heterozygous 

IGHMBP2 mutations have been found to induce progressive loss and dysfunction in the distal 

groups of spinal motor neurons, leading to the distinctive phenotype of distal spinal muscular 

atrophy (dSMA).  

The classic autosomal-recessive distal spinal muscle atrophy type 1 (DSMA1; 

OMIM#604320), also known as spinal muscular atrophy with respiratory distress (SMARD1) 

and distal hereditary motor neuronopathy type VI (HMN6), is caused by recessive missense 

mutations in the IGHMPB2 helicase domain or homozygous loss of function mutations 

usually in the 5’ promoter region. In contrast to the manifestation of SMA due to SMN1 

mutations, this infantile-onset recessive distal neuronopathy presents with symmetric distal 

muscle weakness and early diaphragmatic palsy with respiratory insufficiency leading to early 

death (Grohmann et al., 2001, 2003). Decreased foetal movements and intrauterine growth 

retardation are commonly seen prenatal features, while congenital limb deformities with 

contractures, distal motor weakness, weak cry with inspiratory stridor and autonomic 

dysfunctions are the hallmarks of the disease at birth. The prognosis of the condition is poor 

due to early respiratory impairment and death generally occurs between 6 months and 1 year 

of age. 

Compound heterozygous missense and stop mutations, resulting in residual IGHMBP2 

protein levels, were observed to cause a juvenile-onset DSMA1 phenotype (Guenther et al., 

2009). Gross motor development is delayed in these children, who develop distal limb motor 

weakness, finger contractures and neuromuscular scoliosis until respiratory distress causes 

their death between 4 and 10 years of age. 

 

IGHMBP2 is a ubiquitously expressed protein possessing specific structural features. Its 

DNA-binding domain functionally resembles the SMN1 protein, while its putative helicase 

motifs show strong homology with the ALS4-causing senataxin RNA helicase, which is 

involved in ribosomal RNA processing (de Planell-Saguer et al., 2009). The intracellular co-

localisation of IGHMBP2 with ribosomes suggested that dysregulation of RNA metabolism 

and dysfunctional localisation of protein synthesis may contribute to motor neuron 

degeneration (Grohmann, 2004; Guenther et al., 2009). The majority of the mutations impair 
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the helicase function either by loss of the ATPase or by loss of  the 5’→ 3’ unwinding 

capacity (Grohmann et al., 2003; Guenther et al., 2009; Jędrzejowska et al., 2014). The 

mutant IGHMBP2 seems to be protected from nonsense mediated mRNA decay, as mRNA 

levels have remained unchanged regardless of the decreased level of protein, which suggests 

posttranslational degradation processes (Cottenie et al., 2014; Porro et al., 2014). The 

mutation evoked residual IGHMBP2 protein level was found to correlate with the clinical 

severity and may provide an explanation for atypical presentations and for broad phenotypic 

heterogeneity (Guenther et al., 2009; Cottenie et al., 2014; Porro et al., 2014; Vanoli et al., 

2015). 

 

6.2.2 Aims and hypothesis 

I planned to investigate genotype-phenotype correlation in families, where we identified 

IGHMBP2 mutations. In collaboration with another research group, we aimed to expand the 

so far reported IGHMBP2-related phenotypes with the description of the distinct clinical 

entity of progressive motor and sensory neuropathy without respiratory distress. I intended to 

investigate the detected single heterozygous IGHMBP2 variants, identified in some studied 

families, in order to decide on their pathogenicity in an otherwise recessive condition.  

 

6.2.3 Methods 

6.2.3.1  Patient inclusion 

Patients were selected from the hereditary motor neuropathy cohort for detailed neurology 

and electrophysiology analysis, where IGHMBP2 mutations were confirmed or identified as 

the possible cause (Chapter 5.4.2). All participants signed an informed consent for natural 

history and genetic studies. 

 

6.2.3.2  Genetic diagnostic methods 

Patient DNA was obtained and IGHMBP2 mutations were detected either by IPN gene panel 

test (Family 14, Family 15) or by analysing WES data (Family 8, Family 9) (Chapter 3.2.1). 

Sanger sequencing was performed to investigate the segregation of the disease within the 

family (Chapter 3.2.2). In families, where single heterozygous variants were found, multiplex 

ligation-dependent probe amplification (MLPA) was carried out at Munich Genetic 

Laboratory, Germany in order to exclude large IGHMBP2 deletions or duplications. 
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In Family 9 I extracted RNA from blood and I synthesised cDNA following the 

manufacturer’s protocol. I used the manufactured cDNA to perform a standard PCR reaction 

and sequencing analysis (Chapter 3.2.2.2).  

Additionally, I sequenced the 5’UTR regions using primers provided by the collaborating 

research team at UCL, London (Prof Dr Henry Houlden and Dr Ellen Cottenie).  

Primers used for IGHMBP2 sequencing are listed in (Figure 6.4). 

 

 

 

 

 

Figure 6.4 Primers designed for IGHMBP2 cDNA sequencing 
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6.2.4 Results 

6.2.4.1  Clinical phenotypes of patients diagnosed with IGHMBP2 mutations  

 

Infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1) 

The classical SMARD1 phenotype led to the death of 2 male siblings of consanguineous 

Pakistani origin (Family 8). Both of them were born preterm with intrauterine growth 

retardation. One of them died soon after birth due to respiratory insufficiency, while the other 

survived until the age of 3 (Figure 6.5, A). Motor atrophy and weakness in his distal limb 

muscles, absent deep tendon reflexes and congenital foot deformities were observed aged 6 

months with subsequent delay in his motor development. He was unable to sit and crawl when 

he was 3 years old and he developed severe neuromuscular scoliosis. His CK level was only 

mildly increased and muscle biopsy showed neurogenic atrophy in agreement with 

electromyography findings of acute neurogenic changes. The severe polyneuropathy affected 

both motor and sensory fibres and secondary demyelination was present in addition to the 

significant axon loss. Both siblings carried the homozygous c.292_303delinsATGCT, 

p.Gly98fs frameshift mutation, which disrupted the helicase motifs of the IGHMBP2 protein. 

 

Juvenile-onset distal spinal muscular atrophy 

A 3.5-year-old boy of British origin (Family 15) (Figure 6.5, B) was found to carry a single 

heterozygous c.767C>G, p.Ala256Gly missense IGHMBP2 variant. He was floppy at birth 

with congenital foot deformities. Motor milestones were delayed and he started walking late, 

around his third birthday. His muscle tone remained low jointly with lower limb motor 

weakness and wasting. His deep tendon reflexes were globally reduced with absent ankle 

jerks. Gower’s manoeuvre was markedly positive indicating proximal leg weakness. A hint of 

bilateral scapular winging was noted but no upper limb and respiratory involvement has 

developed so far. Nerve conduction studies were within normal limits but EMG showed 

increased amplitude motor units suggesting a slowly progressive axonal motor neuropathy. 

His phenotype characteristics prompted us to exclude BICD2 and TRPV4 mutations. The 

single IGHMBP2 variant detected on WES has not yet been reported. The sequence change 

affects a highly conserved residue within the helicase domain of the protein, where the 

majority of pathogenic IGHMBP2 mutations reside. However, no second mutation could yet 

be identified and the pathogenicity of this variant has remained ambiguous. 
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Figure 6.5 Photograph illustration of IGHMPBP2-related phenotypes 

A) SMARD1 (Family 8) 

B) juvenile-onset dSMA (Family 15) 

C) dHMN (Family 9) 
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Charcot-Marie-Tooth disease type 2S / dHMN 

 

A pair of siblings (Family 9) presented with childhood-onset, slowly progressive distal 

spinal muscle atrophy and lack of respiratory involvement related to the heterozygous 

c.1813C>T, p.Arg605*X nonsense IGHMBP2 mutation. The same sequence variant has been 

reported to form compound heterozygous IGHMBP2 mutations causing CMT2S phenotype. 

Both siblings had abnormal foot posture and pes cavus deformities in infancy, clumsiness and 

gait instability in early childhood, but the distal motor symptoms affected more severely the 

male sibling (Figure 6.5, C). He progressed with distal predominant, symmetric muscle 

atrophy and paralysis in his lower extremities, preserving some muscle strength only in his 

hip muscles. He remained ambulant until his early 20’s but he required two crutches and 

intermittent wheelchair support. He started noticing mild wrist weakness and wasting of 

intrinsic hand muscles in his 20’s. In comparison, the female sibling developed a slowly 

progressive, mild to moderate distal motor weakness in her lower limbs. She preserved 

ambulatory skills with ankle foot orthotic support. Later in the disease course she developed 

moderate wasting and weakness in her intrinsic hand muscles. Neither of the siblings had 

cranial nerve involvement or sensory loss. Respiratory insufficiency, recurrent respiratory 

infections or sleep apnoea never became apparent. Electromyography showed mixed active 

and chronic neurogenic changes and electric nerve studies indicated reduced CMAPs but 

preserved motor conduction velocities and sensory responses, compatible with the diagnosis 

of distal hereditary motor neuropathy. 

 

Another heterozygous c.2752 C>T, p.Arg918Cys missense IGHMBP2 variant was 

found in a large Pakistani consanguineous pedigree (Family 14) segregating with dSMA and 

CMT2S allelic forms with no signs of respiratory dysfunction.  

All 4 investigated family members developed predominant lower limb symptoms of variable 

severity. They had distal muscle atrophy with foot deformities and motor weakness causing 

bilateral foot drop and walking difficulties. All of them required orthotic support. The disease-

onset was in the first decade followed by a slowly progressive course. There was no 

associated cranial nerve or diaphragm involvement. Electrophysiology indicated dSMA 

phenotype in two brothers of the index patient, underlined by exclusive motor response loss 

and chronic neurogenic changes. The female index patient and her paternal uncle both had 

distal hand weakness and various degrees of pinprick and vibration sensory loss in their distal 

extremities. Nerve conduction studies revealed severe axonal motor and sensory neuropathy, 

compatible with the CMT2S phenotype.  
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The p.Arg918Cys IGHMBP2 missense change has not yet been reported. It is predicted to 

cause the substitution of the moderately conserved arginine for a cysteine within the zinc 

finger AN1-type domain of the IGHMBP2 protein. The physicochemical difference between 

these two amino acids is large and in silico analysis suggests, that this change is likely to have 

a detrimental effect on the protein function. However, the minor allele frequency would be 

high for a dominant mutation and we have yet been unable to identify a second mutation. The 

strong evidence of intrafamilial segregation makes the pathogenicity of this novel IGHMBP2 

variant very likely.  

6.2.4.2  Experimental genetic studies  

The single heterozygous c.1813C>T, p.Arg605*X nonsense  IGHMBP2 mutation was found 

by WES in Family 9. Sanger sequencing of the genomic DNA confirmed that the mutation 

co-segregated in both siblings and their healthy father (Figure 6.6). Larger IGHMBP2 

deletions/ duplications were excluded by MLPA in the patients and no second mutation could 

be identified with additional Sanger sequencing of the 5’ promoter region. Sequencing of the 

cDNA revealed that the c.1813C>T stop mutation was hemizygous in the affected siblings, 

indicating that only one allele carried the nonsense mutation while the second allele was 

completely lost (Figure 6.7). Presumably, the complete loss of the second allele can be 

explained by allele degradation caused by a not yet identified, but possibly intronic mutation.   

 

6.2.5 Discussion 

Recently a total of 11 pedigrees, including Family 9 has been reported with autosomal-

recessive inherited CMT2 caused by IGHMBP2 mutations (CMT2S; OMIM#616155) 

(Cottenie et al., 2014). The common presentation of all families was a childhood-onset, 

slowly progressive axonal motor and sensory neuropathy with early foot deformities. 

Symmetric distal motor atrophy and weakness was described with proximal limb weakness 

and scoliosis in some cases. Sensory involvement was mild or absent and none of the patients 

developed respiratory impairment. Neurophysiology and nervus suralis histopathology 

showed milder features compared to the findings in SMARD1. 

The identified IGHMBP2 mutations were mainly compound heterozygous, a loss-of-function 

nonsense in the 5’ region in combination with a truncating frameshift or missense mutation.  

Investigating further the single c.1813C>T, p.Arg605*X IGHMBP2 mutation, which led to a 

recessive phenotype in Family 9, we could identify that the stop mutation was hemizygous on 

cDNA sequencing (Figure 6.7). We could not detect the presence of a second mutation by 

additional sequencing of 5’ promoter region of the gene. 
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Figure 6.6 Segregation of the identified heterozygous IGHMBP2 mutation 
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Figure 6.7 Hemizygous IGHMBP2 mutation on cDNA sequencing  
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We suggested that a not yet identified, most likely intronic mutation could have led to the 

complete deletion of the other allele (Cottenie et al., 2014).  

Many different missense, nonsense, splice donor site, frameshift and inframe mutations have 

been reported in the IGHMBP2 gene, but the localisation and type of mutations do not seem 

to correlate with the disease severity and genotype-phenotype relations have remained 

unidentified. However, patients with homozygous mutations tend to develop a more severe 

phenotype, compared to those carrying compound heterozygous mutations. Several single 

heterozygous variants have been linked to recessive IGHMBP2-related phenotypes, indicating 

that the second mutation either could not be identified due to limits of the current gene 

sequencing approach or they remained undetectable due to complex genomic rearrangements 

(Guenther et al., 2004; Cottenie et al., 2014; Porro et al., 2014; Vanoli et al., 2015). It has 

been proposed that different mutations result in variably decreased level of IGHMBP2 protein 

in the motor neurones and this might provide an explanation for the phenotype heterogeneity 

(Grohmann, 2004; Guenther et al., 2009). The residual protein level in fibroblasts with CMT2 

mutations was indeed measured to be significantly higher compared to that in SMARD1 

patients, but lower to that in controls (Cottenie et al., 2014). The additional influence of 

modifier genes as well as epigenetic and environmental factors may further complicate the 

genotype-phenotype relations.  

 

6.2.6 Conclusion  

The IGHMBP2-related large phenotype heterogeneity was well illustrated in our families, 

where the spectrum of classical SMARD1, juvenile-onset distal spinal muscular atrophy with 

or without respiratory weakness and axonal motor neuropathy CMT2S/dHMN was present. 

Mutations in the IGHMBP2 gene cause helicase dysfunction, which might serve as a common 

pathology behind the development of various neuropathies. A truncated or reduced amount of 

IGHMBP2 protein may impair the production of error-free mature mRNA in the neurons with 

subsequent degeneration. The phenotype is suggested to correlate with the mutation specific 

impairment of the residual level of active IGHMBP2 protein. The detection of single 

heterozygous IGHMBP2 variants segregating with a compatible but recessive disease 

phenotype should be meticulously analysed further for their pathogenicity. It is warranted that 

IGHMBP2 mutations should be considered in atypical SMARD1 and hereditary motor and 

sensory neuropathies regardless the absence of associated respiratory symptoms.
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6.3 TRPV4-related neuropathy 

 

6.3.1 Literature review 

TRPV4 (transient receptor potential vanilloid 4 channel; OMIM#605427) is a calcium 

permeable non-selective cation channel, which is expressed in several tissues and wide ranges 

of cell types (Everaerts et al., 2010). TRPV4 has been acknowledged as the key regulator of 

cartilage and bone development (Hurd et al., 2015), while it has a pleiotropic role in the 

nervous system related to its expression in the central nervous glia cells, sensory neurons and 

to a lesser extent in spinal cord motor neurons.  

Many mutations in the TRPV4 gene have been linked to diverse phenotypes and 

variably severe manifestations (Aharoni et al., 2011). Related conditions were classified into 

each of the two major phenotype groups of skeletal dysplasia and peripheral nervous system 

impairment. Gain-of-function mechanisms have been implicated in several hypothetic 

pathogenic pathways, including disturbed Ca2+ homeostasis, impaired Ca2+ channel 

trafficking, altered axonogenesis, dysfunctional gene expression and protein-protein 

interactions (Nilius and Voets, 2013; Echaniz-Laguna et al., 2014). 

 

TRPV4-related peripheral neuropathies are rare, autosomal-dominant inherited 

conditions with incomplete penetrance, which are frequently accompanied by vocal cord 

palsy, respiratory insufficiency and sensorineural hearing loss. Associated phenotypes 

encompass hereditary motor and sensory neuropathy type 2C or Charcot-Marie-Tooth disease 

type 2C (HMSN2C or CMT2C; OMIM#606071), congenital distal spinal muscular atrophy 

with or without arthrogryposis or distal hereditary motor neuropathy type VIII (CSMA or 

dHMN8; OMIM#600175) and scapuloperoneal spinal muscular atrophy (SPSMA; 

OMIM#181405). (Nilius and Voets, 2013; Echaniz-Laguna et al., 2014) 

TRPV4 mutations have been implicated in various skeletal dysplasias, including 

brachyolmia type 3 (BCYM3; OMIM#113500), familial digital arthropathy-brachydactyly 

(FDAB; OMIM# 606835), spondylometaphyseal dysplasia, Kozlowski type (SMDK; 

OMIM#184252), metatropic dysplasia (OMIM#156530), parastremmatic dwarfism 

(OMIM#168400) and spondyloepimetaphyseal dysplasia, Maroteaux type (SEDM; 

OMIM#184095). 
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6.3.2 Aims and hypothesis 

I aimed to investigate the clinical variability in patients diagnosed with TRPV4 mutations, in 

order to expand the spectrum of related phenotypes. We analysed the hypothesis, whether 

abnormal protein misfolding might play a role in the pathology of TRPV4-related neuropathy. 

 

6.3.3 Methods 

6.3.3.1  Patient recruitment 

Families identified with TRPV4 mutations (Family 10-11) were selected from the extended 

hereditary motor neuropathy cohort (Chapter 5.4.2.1).  

Patients and their family members underwent detailed clinical assessments and provided 

written consent for the application of genetic and histopathology diagnostic methods. 

6.3.3.2  Muscle histopathology 

Open muscle biopsy was performed according to standard techniques in both affected 

patients. Biopsy was taken from the left quadriceps in the patient from Family 10 and from 

the left tibialis anterior muscle in the patient from Family 11. The biopsies were processed 

according to standard methods and were analysed at Newcastle-upon-Tyne Hospitals NHS 

Trust by Dr Tuomo and Dr Evangelista. 

6.3.3.3  Neurophysiology 

Nerve conduction studies and concentric needle electromyography was performed in the 

patients according to standard methods. The young patient from Family 10 was examined at 

the Neurophysiology Department, Newcastle-upon-Tyne Hospitals NHS Trust by Dr 

Whittaker, while members of Family 11 had their test performed in Dundee Teaching 

Hospital by Dr Spillane. 

6.3.3.4  Genetic diagnostic methods 

Targeted candidate gene screening was followed by performing either or both of IPN gene 

panel test and WES. After bioinformatics analysis, putative disease-causing variants were 

investigated for segregation in available family members. PCR (IMMOLASE™ DNA 

Polymerase, Bioline UK) and Sanger sequencing (BigDye® Terminator v3.1) was carried out 

in variants, which were predicted to be deleterious by three online prediction tools 

(MutationTaster, SIFT and Polyphen2) (Table 5.8). 
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6.3.4 Results 

6.3.4.1  Clinical phenotypes of patients diagnosed with TRPV4 mutations 

 

Family 10 

The 8-year-old boy (Figure 6.8, a) was born from non-consanguineous parents and had no 

family history of a neuromuscular condition. He was a generally weak and floppy neonate and 

he developed torticollis at the age of 10 weeks. His gross motor development was overall 

delayed and he started to walk only aged 22 months. His unsteady gait, frequent falls and 

inability to jump or run prompted medical review at the age of 30 months. He developed 

intermittent hoarse voice changes and minor swallowing difficulties both with solids and 

liquids. 

Physical examination revealed skeletal dysplasia, short stature with disproportionally short 

lower extremities, genus valgus, brachydactyly, and lumbar lordosis. He had no respiratory or 

cardiac impairment. There was mild scapular winging and muscle atrophy in the distal part of 

his legs. A prominent bilateral motor weakness was present, affecting both proximal and 

distal muscle groups in the lower limbs and proximal muscles in his upper limbs. Gower’s 

manoeuvre was partially positive and he walked with marked waddling gait. His feet were flat 

and bilaterally dropped. Lower limb reflexes were absent but there were no long tract signs. 

There was no evidence of ataxia, cranial nerve involvement and sensory changes. His CK 

level and spinal MRI scan were unremarkable.  

 

Family 11 

The 48-year-old female (Figure 6.9, a) patient had normal early motor milestones followed 

by adult-onset motor dysfunction. She had no positive family history other than that her 

brother was born with bilateral talipes. Recurrent sprains in her right ankle were the earliest 

symptoms, when she was 40 years old. Later she developed progressive lower limb weakness 

leading to gait difficulties. She had no cardiac or respiratory manifestations.  

Her examination showed prominent motor weakness affecting exclusively her lower limbs 

with milder distal muscle wasting. The proximal muscle strength was better preserved (MRC 

grade 4/5) than distal (MRC grade 2/5) in her legs. The patella reflexes were brisk, while the 

ankle jerks were reduced but present. The plantar reflex was flexor. She had bilaterally 

dropped foot and she was walking with a poorly balanced steppage gait aided by two walking 

crutches. She had a remarkable reddish skin discoloration below her knees with extremely 

cold feet and minor pinprick and vibration sensory loss below her ankle levels. 
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Figure 6.8 TRPV4 mutant patient from Family 10 

(a) Photo illustration of patient phenotype  

(b) Muscle biopsy (H&E) showing increased 

variation in fibre size with atrophic fibres. 

(c) Muscle biopsy (ATPase 4.3) showing type 1 fibre 

predominance and type-grouping 

(Evangelista et al., 2015) 

 

 

Figure 6.9 TRPV4 mutant patient from Family 11 

(a) Photo illustration of patient phenotype 

(b) Muscle biopsy showing neurogenic atrophy and accumulations 

of basophilic material 

(Evangelista et al., 2015) 
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Symmetrical atrophy and fat infiltration of her gluteus, hamstrings and calf muscles were seen 

on muscle MRI imaging. Brain and spinal MRI scans were unremarkable such as her serum 

CK level.  

6.3.4.2  Muscle histopathology result in the patients diagnosed with TRPV4 neuropathy  

 

Family 10 

An increased variation in fibre size and fibre type grouping was observed in the muscle 

biopsy of the patient. Atrophic fibres were seen scattered and in small groups. ATPase stain 

indicated type I fibre predominance, with many of the fascicules being entirely type I (Figure 

6.8, b; c). 

 

Family 11 

The patient had an evidence of neurogenic atrophy with increased muscle fibre size variation. 

Hypertrophic fibres alternated with atrophic fibre clusters and there was an increase in the 

number of internal nuclei. Intrasarcoplasmic basophilic material accumulation was seen in 

some fibres (Figure 6.9, b). 

6.3.4.3 Neurophysiology findings in pedigrees with TRPV4-related neuropathy 

 

Family 10 

Motor and sensory nerve conduction findings were within normal parameters, but needle 

electromyography revealed a chronic neurogenic pattern suggestive of dSMA. Repetitive 

nerve stimulation could yet not been carried out due to the young age of the patient. 

 

Family 11 

Initial electric nerve tests showed normal parameters when the patient was 42 years old. 

However, electromyography recorded plentiful fasciculations at rest and marked neurogenic 

changes, supporting the diagnosis of dSMA. Sensory and motor amplitudes and conduction 

velocities remained well preserved on repeated studies over a period of 7 years. 

Electromyography revealed a remarkable progression of neurogenic changes, but this was 

neither florid nor completely widespread and spared to affect the tongue muscles. Repetitive 

stimulation of a proximal upper limb nerve muscle group showed evidence of a 

neuromuscular junction disorder with a significant decrement of 23-24% being seen both 

prior to and immediately following exercise. In the patient’s brother electrophysiology studies 

were unremarkable. 
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6.3.4.4  Diagnostic genetic methods and identified TRPV4 mutations in the pedigrees 

 

Family 10 

Phenotype-led targeted candidate gene screening excluded mutations in the SMN1, MFN2 and 

IGHMBP2 genes and he was also tested negative for facioscapulohumeral muscular 

dystrophy-1 (FSHD1). WES detected the heterozygous missense c.805C>T, p.Arg269Cys 

TRPV4 mutation, which was reported in previous studies (Auer-Grumbach et al., 2010). 

Sanger sequencing confirmed that the mutation presented de novo in the patient as his healthy 

parents did not carry the same variant.  

 

Family 11 

Diagnostic genetic testing in the female patient did not identify mutations in the SMN1, 

HSPB1 and HSPB8 genes. The novel heterozygous c.184G>A, p.Asp62Asn TRPV4 mutation 

was detected by IPN gene panel assay and on simultaneously performed WES. Segregation 

analysis in the family confirmed that the variant was absent in her healthy mother, but was 

present in the brother. The amino acid change affects a moderately conserved aspartic acid 

residue in the N-terminal ankyrin repeats motif of the TRPV4 protein. The variant was not 

reported in dbSNP or in the ESP database and was predicted to have deleterious effects by 

three online prediction tools.  

 

6.3.5 Discussion 

Mutations in the TRPV4 gene cause a broad spectrum of phenotype manifestations with a 

marked variability in disease severity. Therefore the proposed classification in the subclasses 

of skeletal dysplasia and neuropathy needs to be revised. The ‘TRPV4-pathy’ term would 

better describe related conditions presenting a variable combination of skeletal, motor and 

neuronal symptoms (Nilius and Voets, 2013). 

TRPV4 functions primarily as a homotetrameric channel expressed at the plasma membrane. 

A single TRPV4 subunit consists of cytoplasm facing N and C termini and six transmembrane 

alpha-helix domains (S1-S6), with a cation-permeating pore between S5 and S6. The N-

terminus is composed by six ankyrin repeats (ARD), a motif mediating protein–protein/ 

protein–ligand interactions and a proline-rich domain (PRD), proximal to the first ARD 

repeat, which is involved in mechano-sensitivity. The C-terminus consists of several 

calmodulin-binding sites (Nilius and Owsianik, 2010; Nilius and Voets, 2013). Neuropathy-

causing TRPV4 mutations have been identified restricted to the N‑terminal cytosolic tail, 
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affecting arginine residues at the ankyrin repeats (Auer-Grumbach et al., 2010; Deng et al., 

2010; Landouré et al., 2010; Berciano et al., 2011; Nilius and Voets, 2013). The tetramer 

model of the human TRPV4 channel has been recently generated and by mapping the arginine 

residues on the convex surface of ARD, the pathogenesis of neuropathy was suggested to rely 

on impaired binding interactions (Sullivan et al., 2015). 

 

We identified the c.805C>T, p.Arg269Cys TRPV4 mutation in Family 10, which was 

recurrently reported in patients with CMT2C, SPSMA and with congenital dSMA, indicating 

wide phenotype heterogeneity (Auer-Grumbach et al., 2010; Deng et al., 2010; Landouré et 

al., 2010; Zimon et al., 2010; Berciano et al., 2011). The involved Arg269 residue is located 

between the third and fourth ARD, which is thought to interact with regulatory proteins and 

might be involved in protein trafficking and multimerization (Nilius and Owsianik, 2010). 

The detected de novo p.Arg269Cys TRPV4 mutation in the young male patient was associated 

with the clear neurology and electrophysiology phenotype of scapuloperoneal spinal muscular 

atrophy (SPSMA) combined with metatropic dysplasia. Previous reports suggested hints that 

mutations in the TRPV4 gene can cause simultaneous skeletal and neuropathic changes (Auer-

Grumbach et al., 2010; Zimon et al., 2010; Echaniz-Laguna et al., 2014). Three patients were 

reported to show overlapping syndromes of CMTC2 and either spondylometaphyseal 

dysplasia (SMDK) or spondyloepimetaphyseal dysplasia (SEDM) (Cho et al., 2012; 

McEntagart, 2012). The p.Arg269Cys TRPV4-related neuropathy has not yet been described 

with overlapping skeletal dysplasia, even though milder skeletal abnormalities were noted.  

We found a not yet described, heterozygous missense c.184G>A, p.Asp62Asn TRPV4 

mutation in the patient from Family 11, leading to a phenotype compatible with dSMA/ 

dHMN8. The mutation co-segregated in her brother, who was born with bilateral talipes but 

did not develop neuropathy symptoms until he was 29 years of age. The affected Asp62 

residue is located in the N-terminal region of the TRPV4 protein. In silico prediction 

suggested that the amino acid change is probably deleterious by changing the conformation of 

the protein. The previously reported N-terminal located c.58G>A, p.Gly20Arg TRPV4 

mutation caused a dHMN phenotype in a female patient, who showed strikingly similar 

clinical and electrophysiology characteristics, when compared to our patient. The p.Gly20Arg 

TRPV4 mutation resulted in variable expression of the disease in the described family, such as 

it was observed with the p.Asp62Asn TRPV4 mutation in Family 11 (Fawcett et al., 2012). It 

has still remained unclear, how TRPV4 mutations in the N-terminal localise relative to 

neuropathy-causing ARD variants, but it was suggested that they might influence ARD 

mediated ligand interactions (Sullivan et al., 2015). 
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There was a marked NMJ defect detected with significant decrement on repetitive 

nerve stimulation in the patient from Family 11. Recent studies on transgenic Drosophila 

lines expressing TRPV4R269C revealed disrupted axonal mitochondrial transport and aberrant 

synapses in axons that project to distal muscles. The hypothesized mechanism of increased 

calcium-influx due to gain-of-function TRPV4 mutations might cause axonal and synaptic 

degeneration (in persona communication Lloyd T et al, 2016). Further investigations are 

needed to examine whether influencing the NMJ defect has a potential therapeutic benefit in 

TRPV4-related neuropathies. 

 

Only a few reports described abnormal muscle histology in TRPV4-related 

neuropathies, which were demonstrating increased variation in fibre size and fibre type 

grouping, indicative of chronic denervation (Landouré et al., 2010; Echaniz-Laguna et al., 

2014). The same histopathology findings were seen in the patient from Family 10. We 

detected distinguishable histology features in the muscle biopsy of the patient from Family 

11, where intra-cytoplasmic basophilic inclusions were seen in addition to the neurogenic 

changes. In vitro studies in HeLa cells showed that mutant TRPV4 proteins formed 

cytoplasmic aggregates, while wild-type TRPV4 proteins were predominantly detected at the 

plasma membrane (Auer-Grumbach et al., 2010). Preliminary studies investigate whether 

ubiquitin ligases can regulate the TRPV4 channel surface expression and activity (Wegierski 

et al., 2006). Abnormal protein degradation with subsequent retention of misfolded proteins 

has been implicated in the pathogenesis of some inherited neuropathies (HSPB1, HSPB8). 

Misfolded proteins tend to aggregate in the cells triggering different cytotoxic pathways. We 

speculate that TRPV4 mutations might also induce misfolded protein production, which 

causes cytoplasmic aggregates, similarly to that in heat-shock protein-related neuropathies. 

However, we emphasise that we were unable to define the exact nature of the intracellular 

aggregates, which were detected in the muscle biopsy of the patient from Family 11. 

(Evangelista et al., 2015) 
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6.3.6 Conclusion 

Phenotype variability was examined in two pedigrees diagnosed with neuropathy-causing 

TRPV4 mutations. The patient carrying the de novo p.Arg269Cys TRPV4 mutation presented 

with overlapping syndromes of scapuloperoneal spinal muscular atrophy and skeletal 

dysplasia. We supported that TRPV4 mutations need to be considered in case of a combined 

presentation of skeletal dysplasia and axonal neuropathy. Symptoms of skeletal deformities, 

in particular short stature, brachydactyly and disproportion between the lower and the upper 

halves of the body can provide a hint towards the diagnosis. Large phenotype variability and 

incomplete disease penetrance should be taken into account in TRPV4 mutations. This was 

highlighted in Family 11, where intrafamilial disease variability associated with the 

p.Asp62Asn TRPV4 mutation. We suggested that the presence of cytoplasmic basophilic 

inclusions in the muscle biopsy, due to possible misfolded protein aggregates, might also 

indicate TRPV4-related pathology (Evangelista et al., 2015).
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6.4 BICD2-related neuropathy   

 

6.4.1 Literature review of pedigrees with the common BICD2 mutation  

Motor neurons are highly sensitive for intact intracellular trafficking. The cytoplasmic dynein 

motor complex is responsible for the axonal retrograde transport of numerous subcellular 

vesicles in the neuron. The dynein motor is essential in neuron maintenance, neuron migration 

and development by transmitting signals and re-circulating materials from the cell periphery. 

The cargo-binding is coupled to the microtubular motor by its heavy chain component, 

DYNC1H1 using ATP hydrolysis. The dynein functionally interact with accessory proteins, 

such as dynactin and BICD2, which regulate the dynein motor and the cargo-binding (Roberts 

et al., 2013; Fiorillo et al., 2014; Garrett et al., 2014; Peeters et al., 2015). 

The BICD2 adaptor protein acts as a stimulator of dynein and by recognising different cellular 

cargos participates in the cargo-binding and trafficking via the complex molecular dynein-

dynactin motor. BICD2-related phenotypes encompass the spectrum of autosomal-dominant 

lower extremity-predominant spinal muscular atrophy-2 (SMALED2, OMIM#615290), 

combined lower and upper motor neuron pathology and hereditary spastic paraplegia (HSP).  

 

A large worldwide cohort of 9 families carrying BICD2 mutations has been reported 

highlighting associated phenotype-genotype correlations (Rossor, Oates, et al., 2015a). The 

c.320C>T, p.Ser107Leu was the most commonly identified mutation in BICD2. The affected 

residue is in a methylated CpG dinucleotide, which is prone to methylation-mediated 

deamination providing a “hot spot” for recurrent mutations. The p.Ser107Leu BICD2 

mutation identified in two large pedigrees originating from Australia and Austria shared a 

0.1Mb span 8 single nucleotide polymorphism (SNP) haplotype with a CEU European 

background frequency of 2%, indicating a common founder in the two families. Another USA 

family with European ancestors showed the same haplotype background (Oates et al., 2013). 

In a large Bulgarian pedigree of Turkish ethnic origin the p.Ser107Leu mutation arose de 

novo in the proband and a genome wide linkage analysis could delineate the mutation to a 

1.86 Mb region (Peeters et al., 2013). A further three-generation Dutch family carried the 

same p.Ser107Leu mutation within a 10Mb region of linkage (Neveling et al., 2013).  
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6.4.2 Aims and hypothesis 

I aimed to expand the cohort of p.Ser107Leu BICD2 with two additional families of North-

East England origin, where we achieved the genetic diagnosis by next generation sequencing. 

I planned to analyse phenotype correlations in comparison to the previously reported families. 

I wanted to investigate whether the p.Ser107Leu mutation could be a common founder or it 

arose on a different haplotype background in a BICD2 region considered as a mutation ‘hot 

spot’.  

 

6.4.3 Methods 

6.4.3.1  Patient recruitment and investigations 

In our hereditary motor neuropathy cohort of 105 patients two families (Families 5-6) 

(Chapter 5.4.2.1) were diagnosed with the common c.320C>T, p.Ser107Leu BICD2 mutation, 

presenting with distal congenital non-progressive SMA. Detailed clinical and 

neurophysiology investigations were applied to examine the related phenotype characteristics. 

Participants were consented to genetic and natural history studies. 

6.4.3.2  Haplotype analysis and experimental genetic studies 

The molecular cause was revealed in both families by WES and the diagnosis was confirmed 

by Sanger sequencing and segregation analysis (Chapter 3.2.1.2; Chapter 3.2.2).  

The haplotype background in the families was investigated with the assistance of our 

bioinformatist, Dr Helen Griffin. Haploview input from the patient exomes and from a further 

60 exomes was generated for the region surrounding the BICD2 mutation. From the exome 

Haploview-Haplotypes, a maximum region of 0.4Mb (397,470bp) between chr 9:95,476,958-

95,874,428 (hg19) could be identified to be shared by the two families. HapMap (data release 

28) SNP genotype data from the CEU population, in a region in closer proximity to the 

BICD2 mutation was used to generate Haplotypes in Haploview (www.broadinstitute.org). 

The closest HapMap markers either side of the BICD2 mutation were only 800bp apart. 

Combined exome and hapmap data was investigated to show whether our families have a 

different haplotype surrounding the mutation. I performed Sanger sequencing of the following 

7 SNPs (rs10992471, rs10992463, rs2181585, rs4141966, rs10117449 and rs10491804) in 

order to show whether the mutation is on a different haplotype in the two families, and also of 

2 SNPs (rs2296080 and rs10821010) to determine which haplotype background the mutation 

is on (Table 6.6). 

http://www.broadinstitute.org/
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Table 6.6 Designed primers for the sequencing of SNPs in the BICD2 gene 
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6.4.4 Results 

6.4.4.1  Detailed phenotype characteristics of the investigated BICD2 families 

 

Family 6 

A 41-year-old mother and her 3 children were diagnosed carrying the p.Ser107Leu BICD2 

mutation in the two generation family.  

The mother (II/1) (Figure 6.10, A; B) had congenital foot deformities with crowding 

of her toes and she was delayed with walking. She was poor at physical activities and she was 

always weak to raise herself to stand. Her neuromuscular symptoms were present from birth 

and remained largely stable later in her life, indicating a non-progressive disease course. 

Neurology examination found equally decreased strength in both proximal and distal lower 

limb muscles. The muscle strength in her upper limbs was entirely preserved albeit that she 

was noted with mild left scapular winging. Deep tendon reflexes were brisk with mild 

asymmetry but there were no pyramidal signs. She was unable to perform heel walk and her 

Gower’s test indicated proximal limb weakness. There was no indication for sensory 

disturbance. All laboratory parameters were within physiological limits apart from a very 

mildly elevated serum creatine kinase level. Electric nerve studies recorded conduction 

velocities and action potentials within the normal ranges. Electromyography findings of 

severe chronic neurogenic changes in the L3 (m. vastus lateralis) and in the C5 (m. 

infraspinatus) myotome were suggestive of a segmental type of anterior horn cell disorder. 

Muscle MRI indicated marked symmetrical fatty replacement in her lower limb muscles (m. 

gluteus medius, m. vastus lateralis, m. rectus femoris, m. semi-membranosus, m. lateral and 

medial gastrocnemius).  

Her first child (III/1) was born with mild foot deformities and had a late walk aged 20 

months. She was walking on the inner border of her feet. Aged 6 she had more prominent 

physical difficulties compared to her family members and she developed a broad based 

waddling gait. Her 5-year-old twin brothers (III/2 and III/3) also had motor delay and similar 

but milder clinical symptoms (Figure 6.10, A; B). All children had disproportionate atrophy 

and weakness in their lower extremities. Proximal leg weakness was present leading to 

difficulties in rising from the floor, climbing stairs and running. Scapular winging was 

observed in addition to good upper limb power and fine motor manipulation. Deep tendon 

reflexes were brisk with no evidence of long tract signs. They were unable to perform heel 

walk. Physiotherapy input and orthotic support were required in all children. No other family 

members were reported with a similar condition.
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Figure 6.10 Pedigrees and clinical phenotype of BICD2 mutant families 

(A) Pedigrees of Families 5-6, probands are indicated by an arrow  

(B) Photo illustration of the phenotype of Family 6  

(C) Photo illustration of the phenotype of the patient from Family 5 

 

(Bansagi, Griffin, et al., 2015) 
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Family 5  

In another North-East UK family the disease manifested de novo in a 19-year-old man (II/2) 

(Figure 6.10, A; C) with no family history of the condition. He was born with bilateral 

talipes, which required serial castings and physiotherapy. Ultimately aged 1 it was corrected 

by surgical interventions. Gross motor development was subsequently delayed with late 

walking around the age of 3. He had prominent motor difficulties in his early childhood, 

while later the disease presented with a non-progressive neuromuscular deficit. He developed 

waddling gait but remained ambulant requiring wheelchair support only for longer distances. 

His neurology examination found prominent distal lower limb motor atrophy, leading to thin 

calves and muscle loss in the anterior compartments. There was a marked atrophy in his hip 

muscles with proximal leg weakness. He had a full power in the shoulders and upper limbs 

albeit that he presented with bilateral scapular winging. Reflexes were reduced in his lower 

limbs. There was no sensory impairment. He was walking with steppage and waddling gait 

and he was unable to perform heel walk. Nerve conduction studies were within normal 

parameters. Concentric needle electromyography showed markedly increased amplitude 

motor units, which were polyphasic and unstable. Chronic neurogenic process was indicated 

with spinal motor neuron involvement, consistent with distal spinal muscular atrophy 

(dSMA). Muscle biopsy revealed no other changes than neurogenic fibre atrophy. 

6.4.4.2  Haplotype analysis in the families carrying the p.Ser107Leu BICD2 mutation 

We performed haplotype analysis in our families in order to determine whether the c.320C>T, 

p.Ser107Leu BICD2 mutation is a common founder or it is a mutational “hot spot”. The 

genomic positions of the closest microsatellite markers (D9S1815, D9S197) to the BICD2 

mutation in the previously reported Bulgarian family (Peeters et al., 2013) span a 1.86Mb 

region, which was outside the boundaries of the 0.4Mb in our patient exomes. The Dutch 

pedigree (Neveling et al., 2013) also shared a much larger region (10Mb), which was not 

surprising given these were larger families. If patient exomes from our two families had a 

founder mutation in common with either of the published families, then recombination would 

have led to the shared haplotype region being smaller but we were unable to anchor our 

exome haplotype to the larger haplotypes from these families. In the CEU European 

population there were 10 different haplotypes present in a single 0.1Mb block. For the first 5 

SNPs of the haplotypes genotype data was available from whole exome sequence, while we 

genotyped further 7 haplotype tagging SNPs by Sanger sequencing (Figure 6.11). 
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Figure 6.11 Haplotype analysis in the BICD2 mutant families 

Ten European haplotype blocks in a 0.1Mb region surrounding BICD2 from 

Haplotype SNP IDs 01 (rs556) to 89 (rs10117449).  

The BICD2 c.320C>T mutation is located between SNPs 19 and 20. 

Haplotype SNPs 01, 04, 05, 07 and 08 were genotyped from whole exome 

sequence; SNPs 15, 19, 52, 63, 73, 88 and 89 were genotyped from Sanger 

sequence (blue arrows). 

 

Affected members of Family 6 shared haplotype block 3 (yellow box), present 

in the HapMap CEU population at a frequency of 0.098.  

 

The affected proband in Family 5 had haplotype blocks 2 and 4 (red and blue 

boxes) in the region surrounding the mutation; recombination not observed in 

the CEU population occurred between SNPs 63 and 73, so that this proband 

also had part of either blocks 7, 8 or 10 

 

(Bansagi, Griffin, et al., 2015) 
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We could confirm that there were different haplotypes in our two families and the mutation 

was carried on different haplotype background. Additionally, the p.Ser107Leu mutation 

presented de novo in the patient from Family 5 as neither of his parents was tested positive. 

Our findings could further support that the c.320C>T position in the BICD2 may present as a 

mutation ‘hot spot’ (Bansagi, Griffin, et al., 2015). 

 

6.4.5 Discussion 

Patients with dynein motor abnormalities due to BICD2 mutations manifest as a distinct 

clinical entity of SMA-LED. This condition is a birth- or first decade-onset non-length-

dependent motor atrophy and weakness affecting predominantly the lower limbs with 

congenital joint deformities. Deep tendon reflexes are reduced or absent and occasional 

pyramidal tract involvement indicate concomitant upper motor neuron pathology. Adult 

disease-onset and mild upper limb features occur only in a minority of patients. The static 

disease course, presernting initially with delayed motor development and later with variable 

gait problems, is characteristic and loss of ambulation occurs only in individual severe cases. 

Nerve conduction studies remain within normal parameters. Electromyography is indicative 

of chronic but not active denervation changes consistent with the non-progressive phenotype. 

The uniform thigh MRI pattern with relative sparing and hypertrophy of the adductors and 

semi tendinosus muscles provides a useful diagnostic tool (Peeters et al., 2014, 2015; Rossor, 

Oates, et al., 2015a; Scoto et al., 2015; Strickland et al., 2015).  

In BICD2 mutated patients the degree of wasting in the lower limb muscles was found 

to exceed the severity of the muscle weakness. Congenital deformities, Achilles tightness and 

scapular winging were commonly associated. Recent reports broadened the BICD2-related 

phenotype with cerebellar hypoplasia (Fiorillo et al., 2016), arthrogryposis multiplex 

congenital and cortical malformations similarly as in DYNC1H1 mutations (Ravenscroft et 

al., 2016) and chronic myopathy with BICD2 aggregation in different subcellular locations 

(Unger et al., 2016). Mutations have been reported affecting all three coiled-coil domains of 

the BICD2 protein and trafficking impairment serve as a common pathomechanism (Peeters 

et al., 2014; Rossor, Oates, et al., 2015a; Rossor, Oates, et al., 2015b).  

 

We expanded the worldwide cohort of BICD2 by additionally diagnosing dominant 

p.Ser107Leu BICD2 mutation in North-East England in a two generation family and in an 

unrelated patient, where the mutation arose de novo. The phenotype characteristics of SMA-

LED in our families, including congenital foot deformities, early-onset non-progressive lower 
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limb predominant motor symptoms, specific electromyography and muscle MRI findings, 

were in agreement with the previously reported cases. Scapular winging was a consistent  

symptom in our patients, which we suggested to consider a valuable clinical clue toward 

BICD2 testing (Bansagi, Griffin, et al., 2015).  

 

We confirmed that the p.Ser107Leu BICD2 mutation was carried on a different 

haplotype background in our two families by genotyping the haplotype tagging SNPs. By 

detecting an incongruence in the haplotype frequency (0.098%) between our and previously 

reported pedigrees (2%), we could determine that the p.Ser107Leu could not be a common 

founder in the investigated families. We provided further evidence that the p.Ser107Leu in 

BICD2 is a ‘hot spot’, located in a methylated CpG dinucleotide, where recurrent mutations 

may arise due to methylation-mediated deamination. This suggests that the occurrence of de 

novo BICD2 mutations can be relatively high. Therefore, BICD2 mutations should be 

considered in sporadic SMA-LED cases, where distinct clinical clues such as Achilles 

contracture, scapular winging and a specific muscle MRI pattern can be directive for targeted 

genetic testing (Rossor, Oates, et al., 2015b; Bansagi, Griffin, et al., 2015).  

 

6.4.6 Conclusion 

We described two North-East UK families carrying the p.Ser107Leu BICD2 mutation with 

the SMA-LED phenotype. Haplotype analysis of the BICD2 families excluded the presence of 

a common founder and supported the theory that the c.320C>T position in the BICD2 gene is 

a mutation ‘hot spot’. The diagnosis of dominant BICD2 mutations should be considered even 

without a positive family history, and particularly when ankle contracture and scapular 

winging accompany the early-onset distal lower limb motor neuropathy.
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6.5 ATP7A-related neuropathy 

 

6.5.1 Literature review 

Mutations affecting the ATP7A heavy metal transporter have been acknowledged to cause 

Menkes disease and an allelic form, occipital horn syndrome (OHS) due to impaired intestinal 

copper absorption. Despite increasing knowledge on molecular pathways affected in these X-

linked copper metabolism disorders, the precise mechanisms, which lead to the neurological 

defects and clear phenotype-genotype correlations have remained not yet clarified.  

More than 400 diverse ATP7A gene mutations have been linked with heterogeneous 

phenotype manifestations. Loss of function ATP7A mutations with subsequent total protein 

loss result in Menkes disease phenotype, while OHS is evoked by leaky splice site mutations 

preserving a reduced protein amount. Clinically the disease spectrum differs in age of onset 

and neurological severity.  

The classical Menkes disease is characterised by global neurodegeneration, hypotonia, 

kinky hair, seizures and early death. The milder allelic OHS is named after the distinguishing 

feature of symmetric occipital exostosis. Menkes-like hair and connective tissue abnormalities 

with characteristic plasma/CSF biochemical changes can be found, but no major neurology 

impairment is related other than autonomic dysfunction caused by a norepinephrinergic 

defect. An intermediate form referred as mild, moderate or atypical Menkes disease has been 

described in 5-10% of the patients with longer survival, where moderate developmental delay 

and cerebellar ataxia predominate (Kaler et al., 1994; Tchan et al., 2013; Tümer, 2013; Kaler, 

2014; Møller, 2015).  

Recently, a novel phenotype with length-dependent metabolic axonopathy, the X-

linked dHMN (SMAX3) has been linked to two unique mutations, inducing aberrant 

intracellular ATP7A trafficking (Kennerson et al., 2010; Kaler, 2011; Yi and Kaler, 2014). 

Mutated C-terminal di-leucine motif in the ATP7AP1386S caused decreased capacity to interact 

with adaptor protein complexes, which led to preferential plasma membrane accumulation of 

ATP7A and resulted in defected intracellular trafficking (Yi and Kaler, 2015). Abnormal 

interactions with p97/VCP were described related to ATP7AT994I providing a link between the 

pathomechanism of dHMN and ALS (Yi et al., 2012). Furthermore, a recent WES study 

identified the combination of a missense mutation in the ABCB7 gene in close proximity to a 

deleted ATP7A mutation causing a distinctive phenotype of X-linked congenital cerebellar 

ataxia (Protasova et al., 2016).  



 

 135 

Abnormal copper metabolism serves as a common pathway in these neurogenetic conditions. 

The disturbed homeostasis of copper, an essential trace element, impairs numerous critical 

intracellular pathways, including mitochondrial oxidative phosphorylation, oxidative stress 

protection and neurotransmitter production. Altered copper homeostasis has been largely 

investigated in other neurodegenerative diseases such as ALS, Alzheimer and idiopathic 

Parkinson disease. Several pathological pathways have been implicated, including deficient 

cerebral cuproenzyme function, oxidative stress, mitochondrial dysfunction, glutamate 

excitotoxicity, impaired axonal trafficking and synaptogenesis (Merner et al., 2011; Fu et al., 

2014; Ahuja et al., 2015).  

The intracellular copper transport is sensitively regulated by two partly homologous P-

type ATPase copper transporter proteins, ATP7A and ATP7B. ATP7A is a ubiquitously 

expressed protein residing in the trans-Golgi network of the cells. ATP7A guides copper to 

intracellular compartments, while in copper excess it relocates to the plasma membrane to 

pump out copper from the cells. Tissue specificity and trafficking differences of the ATP7B 

protein lead to Wilson’s disease, a phenotypically different copper retention condition (Kaler, 

2011; Telianidis et al., 2013; Tümer, 2013; Fu et al., 2014; Ahuja et al., 2015). ATP7B 

mutations cause dystonia, ataxia, tremor and abnormal copper accumulation in the brain, liver 

and other organs (Coffey et al., 2013). 

 

6.5.2 Aims and hypothesis 

We identified a novel ATP7A mutation in a patient presenting with unusual complex 

neurology symptoms, which showed an overlap between Menkes and Wilson’s disease.  

I aimed to investigate the pathogenicity of this ATP7A variant by applying functional studies. 

I wanted to find a common mechanism in the pathology of the two different ATPase copper 

transporters, which could provide an explanation for the intermediate phenotype manifestation 

in the patient.The aim was to further extend the wide phenotypic spectrum related to the 

heterogeneous ATP7A mutations. 

  

6.5.3 Methods 

6.5.3.1  Patient inclusion  

The 29-year-old male patient was selected from the hereditary motor neuropathy cohort 

(Family 29) (Chapter 5.4.4.1) for further investigations. His combined upper and lower motor 

neuron pathology and cerebellar symptoms segregated with a novel ATP7A mutation.  
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6.5.3.2  Next generation sequencing and segregation analysis  

Whole-exome sequencing was applied on the patient’s genomic DNA and potentially 

deleterious variants were identified using QIAGEN Ingenuity Variant Analysis. Protein 

prediction algorithms were used to analyse the in silico effects of amino-acid substitutions 

(Chapter 3.2.1.2). 

I performed Sanger sequencing to validate putative variants in the patient and I carried out 

segregation studies in the larger family (Chapter 3.2.2). The coding regions were amplified by 

PCR using designed primers for the identified candidate SACS, EXOSC3 and ATP7A genes. 

6.5.3.3  Western blot  

Patient fibroblasts were obtained by punch skin biopsy and stored in culture medium 

according to standard methods. I followed the cell culture protocol to grow fibroblasts from 

the patient and from healthy controls (Chapter 3.2.3.1). I extracted the protein from the 

fibroblast cells for immunoblot studies. I used anti-rabbit immunoglobulin G (IgG) primary 

antibodies against EXOSC3 (Proteintech Group Inc., 15062-1-AP, 1:200) and ATP7A 

(Sigma, SAB2104637, 1:500) for overnight incubation at 4°C followed by secondary anti-

rabbit Ig-HRP antibody incubation (Chapter 3.2.3.2).  

 

6.5.4 Results 

6.5.4.1  Detailed clinical phenotype and investigation findings  

The 29-year-old male (Figure 6.12, A) patient was the second child in a non-consanguineous 

family. The X-linked Kennedy’s disease, which ran in his father’s side family, was discarded 

regarding the impossibility of a male to male transmission. He achieved age-appropriate 

developmental milestones and apart from having problems with his handwriting, he had no 

learning difficulties. Around the age of 9 he developed distal leg muscle atrophy and 

weakness with tiptoe walk abnormalities. He deteriorated slowly evolving progressive four 

limb spasticity, cerebellar symptoms and dystonia. He had a spastic and ataxic gait supported 

by two crutches until he became largely wheelchair bound around the age of 20. He had no 

history of mental problems and his cognition remained intact. 

He had a normal, rather tall stature with no skeletal or joint deformities. There were no signs 

of skin and connective tissue changes and cardiovascular or hepatic abnormalities. His vision 

was normal, although horizontal nystagmus, visual field loss and mild optic atrophy were 

present. There was no evidence of Kaiser-Fleischer ring on slit lamp examination. He had a 

lower limb predominant spasticity accompanied by marked distal muscle weakness.
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Figure 6.12 Clinical presentation and neuroimaging of the ATP7A mutant patient 

A) Photo illustrations of the phenotype in the patient  

B) Neuroimages indicate bilateral abnormal signal intensity in the globus pallidus 

(T2, FLAIR) and mild cerebellar atrophy (T1) 

(Bansagi et al., 2016) 
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The muscle power was decreased in hip flexion (MRC grade 4/5), thigh ab- and adduction 

(MRC grade 3/5) and ankle plantar- and dorsiflexion (MRC grade 2/5). He had bilateral ankle 

contractures but no other foot deformities. The muscle strength in his upper limbs was 

preserved despite the stiffness. Deep tendon reflexes were overall increased (4+) with clonus 

and pyramidal signs, even though the ankle jerks were absent. He had limb ataxia, dysmetria, 

intention tremor and cerebellar dysarthria. His Romberg’s was positive impairing his spastic 

ataxic gait.  

 

A wide range of investigations was performed over the disease course with inconclusive 

results. Routine laboratory examinations, including full blood count, blood smear, kidney, 

liver and thyroid function, serum glucose and electrolytes, iron, folic acid and vitamin 

metabolism were all tested in the normal range. There was no CK elevation and the 

autoimmune screen was negative. Metabolic studies (lactate, ammonia, AFP, amino acids, 

acyl-carnitine, free carnitin, organic acids and very long chain fatty acids) and leukocyte 

enzymes were normal. The serum coerulopasmin level (0.19 g/l) and the level of copper in the 

serum and in the urine were repeatedly normal. The CSF protein was elevated (0.74g/l) with 

no accompanying oligoclonal bands or metabolic changes, albeit that neurotransmitter 

measurements were unavailable.  

Electromyography showed an increased insertional activity with fibrillations and larger 

amplitude motor units. Nerve electric studies revealed reduced motor amplitudes in the 

peroneal and medial nerves beside intact motor conduction velocities, suggesting an axonal 

motor neuropathy. The muscle biopsy confirmed neurogenic changes.  

An initial brain MRI scan at the age of 9 indicated high signal intensity symmetrically in the 

globi pallidi on T2-weighed images. Follow-up scans showed mild cerebellar atrophy and 

improved myelination. MRI spectroscopy detected no intracranial metabolic changes. A 

repeated scan aged 29 showed only mild residual signal changes in the globus pallidus on 

FLAIR sequences (Figure 6.12, B). 

6.5.4.2  Identified genetic variants by next generation sequencing 

Genetic tests performed before WES excluded spinocerebellar ataxia SCA1, 2, 3, 6, 7, 

Friedreich ataxia, Kennedy’s disease and mitochondrial DNA mutations. Rare, potentially 

disease-causing variants were identified by filtering the WES data led by the main phenotype 

characteristics (Table 6.7). The compound heterozygous missense c.696T>A, p.Asn232Lys 

and c.T4076C>A, p.Met1359Thr SACS variants did not segregate appropriately in the family, 

asboth variants were also carried by the healthy mother (Figure 6.13).  
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Table 6.7 Predicted deleterious variants filtered from WES data 

 

 

 

Figure 6.13 Segregation of SACS variants in the patient’s family 
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The heterozygous c.247T>G, p.Cys83Gly EXOSC3 variant was validated by Sanger 

sequencing, although in silico prediction tools suggested equivocal pathogenicity. 

The novel hemizygous c.2279A>G, p.Tyr760Cys missense ATP7A mutation was confirmed 

by Sanger sequencing in the patient and by segregation analysis in the family (Figure 6.14, 

A). The sequence change was heterozygous in the patient’s healthy mother and it was absent 

in the unaffected maternal male relatives. The amino acid change involves the highly 

conserved Tyr760 residue, which is located in the third trans-membrane domain of the 

carboxyl half of the ATP7A protein. The variant was rare (absent from in-house unrelated, 

ethnically matched controls, ExAC: 4 in 87766 heterozygous females, no hemizygous male) 

and was predicted highly deleterious by 5 different protein prediction tools (Table 5.7. Table 

5.8)  

There were no further peripheral neuropathy, motor neuron disease or ataxia-related known 

disease-causing genes detected by WES. Targeted filtering of the WES data could not find 

additional deleterious variants in the ATP7B and ABC7B genes. 

6.5.4.3  Immunoblot analysis in the patient fibroblasts 

I performed Western blot analysis to examine whether there is a difference in the level of the 

ATP7A and EXOSC3 protein in the patient fibroblasts. The immunoblotting detected normal 

amount of EXOSC3C83G protein. The novel p.Tyr760Cys ATP7A mutation led to a severly 

reduced quantity of ATP7A protein in the patient fibroblasts when compared to normal 

control, supporting  the pathogenicity (Figure 6.14, B). 

 

6.5.5 Discussion   

We investigated a male patient with a complex neuropathology, distinct from the previously 

described ATP7A-related phenotypes. We identified the novel hemizygous c.2279A>G, 

p.Tyr760Cys ATP7A mutation, which segregated appropriately with the disease in the family. 

Predicted deleterious consequences of the missense mutation were confirmed by 

immunoblotting, which detected a decreased level of the ATP7A protein in the patient 

fibroblasts (Figure 6.14). 

A small amount of residual normal ATP7A protein has been described to cause 

atypical Menkes phenotypes (Møller, 2015). Furthermore, the neighbouring p.Ser761Pro 

ATP7A change has been linked with moderate Menkes disease (Tümer, 2013). However, the 

association of spastic tetraparesis, ataxia, dystonia and axonal motor neuropathy in our patient 

was remarkably different from the few atypical Menkes cases reported so far. 
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Figure 6.14 The identified novel ATP7A mutation in the patient 

A) Segregation of the p.Tyr760Cys ATP7A variant 

confirmed by Sanger sequencing  

B) Immunoblot analysis detected severely reduced ATP7A 

protein in the patient fibroblasts. 

(Bansagi et al., 2016) 
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White matter lesions and cerebellar atrophy are described neuroimaging findings in 

mild Menkes forms. However, the T2-weighted high signal intensity, indicating abnormal 

copper deposition in the globus pallidus is rather characteristic for the Wilson’s disease. The 

latter is a copper retention disorder caused by autosomal-recessive ATP7B mutations. The 

disease presents with a low coeruloplasmin level and with hepatic and/or neurological defects, 

including variable combinations of dystonia, cerebellar and extrapyramidal symptoms. 

Previous studies reported patients with biochemical or clinical features of Wilson’s disease, 

where ATP7B mutations could not be found (Coffey et al., 2013).  Furthermore, a distinct 

entity was suggested in patients with abnormal copper metabolism, involuntary movements 

and dysarthria, where ATP7B mutations were absent but ATP7A changes were not 

investigated (Tagawa et al., 2001). ATP7A variants as modifiers have been investigated, but 

the so far examined polymorphisms had no impact on the Wilson’s phenotype. A recent 

canine model carrying missense mutations in each ATP7B and ATP7A genes induced 

attenuation in the copper accumulation (Fieten et al., 2016).  

The two copper transporter ATPase proteins share common morphology features 

possessing class-specific heavy-metal-binding domains and type-specific transmembrane 

helices. They show significant sequence homology for residues involved in catalytic 

phosphorylation and copper transfer. Both proteins are involved in the translocation of copper 

through membranes, although they exert directionally different copper induced trafficking. A 

38 amino acid segment in the third transmembrane domain of the ATP7A, encoded by exon 

10, has been attributed to ensure the trans Golgi retention of the protein (Francis et al., 1998). 

This region was mutated in the patient, which suggests that the disease mechanism may 

involve ATP7A dislocation to the endoplasmic reticulum with subsequent protein misfolding. 

Induced conformational changes may have led to aberrant protein-protein interactions and to a 

defected ATP7A trafficking, which caused the atypical phenotype of the patient (Ahuja et al., 

2015).  

 

6.5.6 Conclusion 

We presented the puzzling case of a patient with impaired copper metabolism, where the 

neurological features resembled Wilson’s disease, but the molecular defect was found in the 

Menkes disease-related ATP7A gene. This underlines the large phenotypic variability of 

ATP7A mutations and highlights the overlap between copper metabolism disorders. Genetic 

screening toward ATP7A mutations in patients presenting with atypical Wilson’s disease is 

recommended when ATP7B mutations could not be identified (Bansagi et al., 2016).
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Chapter 7. Investigation of novel genes and pathomechanisms in 

hereditary motor neuropathies 

 

 

7.1 Presynaptic neuromuscular transmission defect caused by SYT2 mutations 

 

7.1.1 Literature review 

The secretory pathway enables neurons to fuse organelles with the plasma membrane and 

release substances into the extracellular fluids. The process of exocytosis occurs in response 

to a signal, which is in many cases the rise of the cytosolic ionised Ca2+. Influx of calcium 

into the presynaptic terminal during action potential leads to neurotransmitter release in a fast 

and synchronous manner. A well coordinated molecular framework is required for sensing 

Ca2+ and fusing transmitter-filled synaptic vesicles in a precise and timely coordinated 

manner (Gundersen and Umbach, 2013). 

 

A standard model described that interactions among a trio of proteins, referred to as 

SNAREs (soluble, N-ethylmaleimide-sensitive factor attachment protein receptors), are the 

final common pathway for triggering membrane fusion during regulated exocytosis. The cycle 

of SNARE complex assembly and disassembly forces opposing membranes into close 

proximity but this seemed to be insufficient to mediate fusion. Additional levels of regulation 

are required to couple the calcium trigger with synaptic vesicle fusion and thereby allow for 

the temporal regulation of exocytosis. Members of the synaptotagmin family have been 

implicated as the major calcium sensors for the calcium-dependent exocytosis. However, the 

mechanism that couples Ca2+-binding by synaptotagmin with vesicle fusion remains 

controversial (Paddock et al., 2008; Gundersen and Umbach, 2013; Südhof, 2013). 

According to the ‘allosteric’ model, the Ca2+-binding to synaptotagmins is the key 

mechanism of calcium-triggered vesicle fusion, which leads to simultaneous activation of the 

SNARE complex and promotes presynaptic membrane-binding (Paddock et al., 2008). As an 

alternative, the “dyad model” proposes that synaptotagmins initiate a rapid, Ca2+-dependent 

exocytotic membrane fusion without direct involvement of the SNAREs, which only serve an 

essential docking function preceding the assembly of the fusion machinery (Paddock et al., 

2008; Kochubey et al., 2011; Gundersen and Umbach, 2013; Südhof, 2013). 
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Synaptotagmins are evolutionarily conserved proteins with an N-terminal 

transmembrane region, a linker sequence and two C-terminal C2 domains. Among 14 

synaptotagmins only three, SYT1, SYT2 and SYT9 have been shown to be critical for 

mediating fast synchronous synaptic vesicle exocytosis.  Synaptotagmin-2 (SYT2) is 

abundantly expressed in caudal brain neurons and in spinal cord motoneurons, while it is 

restricted in populations of forebrain neurons. SYT2 shares the highest homology with SYT1 

and both localise to synaptic vesicles. (Pang et al., 2006; Young and Neher, 2009; Südhof, 

2013)  

Synaptotagmins possess two C2 domains, which are homologous to the calcium-binding 

domain of protein kinase C and contain Ca2+- and phospholipid-binding motifs. Structural 

analyses showed that at the tip of the Ca2+-binding loops of each C2 domain there are highly 

conserved basic residues. The key difference between the two C2 domains is that the C2B 

domain mediates Ca2+-dependent interactions with phosphatidylinositol 4,5-bisphosphate and 

(SNARE) proteins and primes vesicles for immediate fusion after Ca2+ influx (Lin and 

Scheller, 2000; Paddock et al., 2008). 

 

SYT2 is postulated to function as a calcium sensor for fast, evoked neurotransmitter 

release by coupling action potential induced Ca2+ influx with vesicle fusion. Deleting the 

synaptotagmin gene strongly suppresses synaptic transmission in every species. SYT2 

deficient mice are normal at birth but subsequently develop severe motor dysfunction and 

perish after 21 days. SYT2 knockout reduces fast synchronous evoked release at 

neuromuscular junctions (NMJs), although slower asynchronous spontaneous miniature 

release events still persist. Specifically, Ca2+-binding by the C2B domain is required to trigger 

fast synchronous vesicle fusion. Mutating two of the key Ca2+-binding aspartate residues of 

the C2B domain in Drosophila decreased the Ca2+ evoked neurotransmitter release even more 

than it was seen in synaptotagmin null-mutant controls. However, high frequency of miniature 

excitatory junction potentials was recorded leading to an increased rate of spontaneous vesicle 

fusion events. This led to the idea that synaptotagmins act as a fusion clamp and suppress 

spontaneous release in addition to their primary role as a Ca2+ sensor. These effects were not 

rescued by wild type synaptotagmin, indicating dominant negative gain of function 

consequences of the mutation (Mackler et al., 2002; Pang et al., 2006; Kochubey et al., 2011; 

Paddock et al., 2011). 
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7.1.2 Aims and hypothesis 

The novel combined manifestation of congenital non-progressive distal motor neuropathy and 

neuromuscular junction defect was aimed to be better characterised by extensive clinical 

investigations. The hypothesis was examined whether the SYT2 mutation identified by WES 

in a large dominant family might be causative for the peripheral neuropathy with distinct 

mechanism of neurotransmission defect.  

 

7.1.3 Methods 

7.1.3.1  Patient inclusion 

The patients from a large dominant pedigree were investigated in the inherited peripheral 

neuropathy clinic and were selected into the HMN cohort (Family 4) on the base of their 

unique motor neuropathy phenotype (Chapter 5.4.2.1). 

7.1.3.2  Electrophysiology studies 

All affected family members underwent detailed electrophysiology investigations, which were 

carried out by Dr Roger Whittaker at the Newcastle-upon-Tyne Hospitals NHS Trust 

(Chapter 3.1.2). 

7.1.3.3  Experimental genetic methods 

WES was undertaken in two affected family members. Variant calls were filtered against 

several databases and rare variants were defined with a minor allele frequency of less than 

0.01. Putative disease-causing mutations along with their functional annotation were 

identified using ANNOVAR (Chapter 3.2.1.2). Identified pathogenic variants and the 

segregation in the family were tested and validated by Sanger sequencing (Chapter 3.2.2) 

with the assistance of Maria Lane, MSc in our research group.  

 

7.1.4 Results 

7.1.4.1  Clinical phenotype of patients diagnosed with SYT2 mutation 

Six affected members of the large dominant family (Family 4) presented with variably severe 

motor neuropathy symptoms (Figure 7.1) (Table 7.1). 
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Figure 7.1 Family tree of the SYT2 mutant family with the foot deformities 
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Table 7.1 Clinical and electrophysiological features in the SYT2 patients 

(modified from Herrmann et al., 2014) 
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The index patient, a 27-year-old female (III/2), was investigated due to non-

progressive motor difficulties dating back to her early childhood years. She was born with 

congenital hip dysplasia and foot abnormalities with pes cavus deformity.She struggled with 

physical activities at school and she underwent early foot surgeries, including tendon 

reconstruction and ankle arthrodesis. She had bilateral distal wasting in the legs and a 

pronounced weakness affecting the feet extensors and flexors (MRC grade 3/5) with limited 

ankle movement range. Her toes were splayed and clawed. She was walking with slapping 

gait, aided by orthotic support. Her proximal leg muscles and her upper limb muscles had 

preserved strength. Deep tendon reflexes were globally absent.  

Her brother (III/6) had pes cavus deformities and clawed toes but no further motor 

symptoms at the age of 16, even though his deep tendon reflexes were absent. 

Her 7-year-old son (IV/1) had loose hip joint at birth and his motor development was 

delayed with late walking at the age of 20 months. He had poor balance with frequent falls 

and he had attention difficulties at school. His muscle tone was generally low with 

hyperflexible joints. There was only a mild weakness in ankle dorsiflexion (MRC grade 4+/5) 

and he was unable to walk on his heels. Deep tendon reflexes were absent. He had mild 

flattening of his foot arches and he walked with a tumbling unsteady gait supported by 

orthotic shoes. 

 

The 44-year-old mother of the index patient (II/2) presented with a childhood-onset 

stable distal leg weakness with a remarkable asymmetric wasting on the right side. The 

accompanying diagnosis of a localised morphea (linear atrophoderma of Moulin) caused 

lipodystrophy in her right thigh. She had walking difficulties with frequent falls and she 

complained of fatigability. Her foot deformities required several corrective surgical 

interventions and she also underwent reconstructive knee surgery. The neurology examination 

found reduced muscle bulk and power (MRC grade 4/5) in her entire right leg, while there 

was a mild wasting and weakness (MRC grade 4+/5) present in her distal left leg. She had 

bilateral pes cavus deformities and splayed toes. Her gait was waddling with bilateral foot 

drop and she was unable to perform tiptoe and heel walk. Her muscle strength in the upper 

limbs was normal apart from a very mild finger weakness. Deep tendon reflexes were absent 

and plantars were flexor.  

Her father (I/1) was reported to have pes cavus foot deformities and her paternal uncle 

had hip problems requiring wheelchair support. 
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Her 42-year-old brother (II/3) had stable foot deformities since early childhood. His 

toes were pinned in his 20’s and later he required Achilles tendotomy and arthrodesis on both 

sides. He remained physically active, although he was complaining of muscle pain and 

fatigable tiredness. He had distal muscle atrophy in his legs and reduced strength in ankle 

plantar- and dorsiflexion (MRC grade 4/5). He was unable to walk on his tiptoes and heels. 

Deep tendon reflexes were globally absent. There were no upper limb symptoms and sensory 

changes accompanied.  

His daughter (III/7) was born with developmental hip dysplasia. She presented with 

bilateral foot deformities from early age. Aged 13 she had difficulties in sports and she 

complained of painful muscle fatigability. She had pronounced pes cavus deformities with 

splaying and clawing of her toes. She had only mild distal leg weakness in the right ankle 

dorsiflexion (MRC grade 4+/5) and she was unable to perform heel walk. Deep tendon 

reflexes were generally decreased. 

 

7.1.4.2  Detailed electrophysiology findings in the SYT2 family 

Electric nerve studies showed normal or low amplitude CMAPs in the patients’ lower limbs 

with normal motor conduction velocities. Sensory responses were normal in all patients. On 

needle electromyography there was slight reinnervation of the distal leg muscles with a 

reduced number of motor units, resembling the pattern seen in peripheral developmental 

disorders and congenital multiplex arthrogryposis. 

Repetitive nerve stimulation produced decremental responses, while there was a marked and 

sustained post-tetanic potentiation following brief maximum voluntary contraction, which 

was especially long lasting in patient III/2. The findings indicated presynaptic neuromuscular 

junction disorder with a variable degree of post-exercise increment of CMAP amplitude, as it 

will be discussed in detail in Chapter 8.4.1.2 (Table 7.1). 

 

7.1.4.3  Identified SYT2 mutation in the family 

The heterozygous c.923G>A, p.Pro308Leu missense mutation in the SYT2 gene was 

identified by WES in the family. The amino acid change involved a highly conserved residue 

across species in the Ca2+-binding aspartate motif of the SYT2 C2B domain. The mutation 

was predicted to be rare and deleterious and segregated appropriately with the disease in 6 

affected members of the family (Figure 7.2, A). 
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Figure 7.2 Identified SYT2 mutation in the family  

A) Sanger sequencing of the c.923C>T, p.Pro308Leu SYT2 mutation 

in affected family members and control 

B) Position of the described SYT2 mutations and the conservation of 

the affected residues across species 

C) Stereoview of the Pro308 residues (magenta) modeled on the rat 

SYT1 C2B crystal structure. Essential Ca2+-binding residues 

indicated in green and Ca2+ ions in red. 
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7.1.5 Discussion 

We identified 6 patients in a three-generation dominant family (Family 4) carrying the 

heterozygous missense c.923C>T, p.Pro308Leu SYT2 mutation and presenting with 

congenital lower extremity predominant distal motor neuropathy and fatigable muscle 

weakness. Beside the common presentation of foot deformities, areflexia and distal leg 

weakness, some symptoms showed variable penetrance in the family, such as the 

accompanying congenital hip dysplasia. The asymmetric symptom presentation was also 

remarkable. All patients remained ambulant over the non-progressive disease course, although 

some of them required orthotic support. Electrophysiology studies detected a presynaptic 

neuromuscular transmission defect with dramatic post-stimuli facilitation resembling 

Lambert-Eaton myasthenic syndrome.  

SYT2 is a synaptic vesicle protein that mediates calcium dependent neurotransmitter release 

functioning as a calcium sensor. The missense c.923C>T, p.Pro308Leu SYT2 mutation alters a 

highly conserved residue in the calcium-binding motif of the C2B domain with predicted 

deleterious consequences. Simultaneously, an independent USA family with a similar clinical 

presentation was found to carry heterozygous missense SYT2 mutation involving the Asp307 

residue. Both affected residues are highly conserved among species and belong to the Ca2+-

binding aspartate motif in the SYT2 C2B domain (Figure 7.2, B; C).  

Transgenic Drosophila containing wild-type and mutant synaptotagmin genes was generated 

to investigate whether disruption of these residues might lead to altered calcium-binding and 

dominant-negative impairment of exocytosis (Herrmann et al., 2014). Null-mutant 

Drosophila neuromuscular junction lacked synchronous neurotransmitter release and 

displayed enhanced asynchronous release with elevated spontaneous fusion rates, which 

indicated a defected calcium-triggered neurotransmitter exocytosis. Synaptotagmins have 

been suggested to function as fusion clamps to prevent spontaneous exocytosis, in addition to 

their role as calcium sensors for evoked release, which likely explains why spontaneous 

fusion was increased in the Drosophila model. In order to mimic the dominant human 

condition, synaptic transmission was investigated in the presence of endogenous 

synaptotagmin protein, which resulted in a striking dosage-dependent dominant-negative 

disruption in the neuromuscular transmission (Figure 7.3). High-frequency stimulation 

revealed increased facilitation of evoked release in the mutant Drosophila, similarly to the 

observed compound muscle action potential (CMAP) amplitude enhancement after exercise in 

the SYT2 mutated families (Chapter 8.4.1.2). 
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Figure 7.3 Drosophila p.Asp362Ala SYT2 disrupts neurotransmitter release 

A) Action potential evoked synaptic release decreased in mutant 

neuromuscular junctions  

B) Increased asynchronous neurotransmitter release and enhanced 

spontaneous fusion rate  

C) High frequency stimulation revealed increased facilitation of evoked 

release. 

(taken from Herrmann et al., 2014) 
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We postulate that the mutant protein likely multimerizes with the endogenous protein pool 

and disrupts normal SYT2 properties, leading to the synaptic transmission defect. These are 

the first reported SYT2 mutations linked to human disorders, where the consequent synaptic 

dysfunction resulted in the peripheral neuropathology. Analysis of additional families will be 

necessary to define the spectrum of human phenotypes present with SYT2 mutations. 

(Herrmann et al., 2014) 

 

7.1.6 Conclusion 

We described a large dominant family with a novel SMA-LED phenotype characterised by a 

presynaptic neuromuscular junction defect. The identified novel mutations in the SYT2 gene 

have been linked for the first time to a human disease. SYT2 mutations should be considered 

in human peripheral motor nerve terminal defects and related phenotypes might range 

between distal hereditary motor neuropathy and presynaptic NMJ disorders. Furthermore, it 

raised the possibility that mutant presynaptic protein changes might underlie the mechanism 

in a subgroup of inherited peripheral neuropathies.
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7.2 Altered intracellular signal transduction pathways 

 

In peripheral nerve pathology altered intracellular signal transduction cascades have been 

recently more frequently described.  

We identified pathogenic or likely causative variants in rare known disease genes (PTEN 

STAT5B, TBX5), which have not yet been reported in association with peripheral neuropathy. 

The phenotype related to these gene mutations was a unique motor neuropathy accompanied 

by unusual features of demyelination with additional involvement of other organs (cardiac, 

skeletal, endocrinology and immunology defects, hamartoma tumour syndromes). The 

encoded proteins have been implicated in peripheral neural plasticity, axonal outgrowth and 

aberrant myelination.  

The identification of mutations in non-CMT-related disease genes highlight, that motor 

neuropathy can be part of other rare genetic disorders. Thorough clinical examination may 

reveal some clues to identify these gene defects (Figure 5.2). More importantly, these 

overlapping phenotypes highlight basic biological pathways in peripheral nerves. 

 

7.2.1 A novel motor neuropathy phenotype caused by mutation it the PTEN gene 

 

7.2.1.1  Literature review 

Mutated proteins containing phosphoinositide-binding domains have been implicated in 

genetically diverse CMT forms with abnormal myelin histopathology and ‘tomacula’ 

formation (CMT2M, DNM2; CMT4J, FIG4; CMT4H, FGD4/frabin; CMT4B1, MTMR2; 

CMT4B2, MTMR13/SBF2) (Goebbels et al., 2012). Changes in phosphoinositide metabolism 

can have many possible cellular effects interfering with normal myelinisation, although it is 

not yet clear where these phosphoinositide pools are found and in what contexts they are 

functionally relevant to the maintenance of myelin. Abnormal phosphoinositide 3-kinase, 

(PI3-K) signalling might serve as a common final pathway in the pathology of these CMT 

forms.  

 

Phosphatase and tensin homolog located on chromosome 10 (PTEN) is a tumour suppressor, 

mutated in sporadic cancers and in inherited tumour susceptibility conditions, PTEN 

hamartoma tumour syndrome (PHTS). Macrocephaly, autism spectrum disorder (ASD), 

ataxia, tremor and epilepsy have been reported in humans as PTEN associated neurology 



 

 155 

deficits, while functional implications have been investigated in Parkinson’s and Alzheimer’s 

diseases (Kreis et al., 2014; Spinelli et al., 2015).  

PTEN directly antagonises class I phosphoinositide 3-kinases (PI3-Ks) by converting 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate 

(PIP2). The negatively regulated PI3-K signalling exerts a brake on downstream effector 

pathways (Akt, m-TOR complexes) interfering with cellular processes such as cell growth, 

proliferation and survival (Kreis et al., 2014; Leslie and Longy, 2016). Various protein 

mediated functions have been linked to the dynamic subcellular distribution of PTEN in 

neurons. Regulation of neuronal cell size, axonal outgrowth, synaptogenesis and 

neuromuscular assembly are PTEN controlled processes during neuronal development and 

during regeneration after injury. Dendritic localisation and secretion of PTEN-containing 

exosomes contribute to synaptic plasticity. There has been some controversy about the role 

PTEN plays in neuronal survival and apoptosis (Kreis et al., 2014). Furthermore, PTEN 

mediated regulation of myelinisation has been modelled in the central and peripheral nerves 

of the mouse (Goebbels et al., 2012).  

 

7.2.1.2  Aims and hypothesis 

I aimed to perform clinical and laboratory examinations to determine the genetic cause of a 

patient presenting with predominant multifocal motor neuropathy as part of a multisystem 

disorder. I investigated the hypothesis whether the identified PTEN mutation might provide 

an explanation for the unusual neuropathy phenotype. 

 

7.2.1.3  Methods 

7.2.1.3.1 Patient inclusion  

A male patient presenting with an unusual combination of progressive motor neuropathy and 

facial, skeletal and skin deformities was selected for further clinical and genetic investigations 

from the HMN cohort (Family 35) in Chapter 5.4.4.2.  

7.2.1.3.2 Electrophysiology studies 

Electrophysiology investigations were carried out by Dr Roger Whittaker at the Newcastle-

upon-Tyne Hospitals NHS Trust according to standard methods, described in Chapter 3.1.2.  
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7.2.1.3.3 Experimental genetic studies 

WES was undertaken on the patient’s genomic DNA. Identified variants were annotated and 

filtered against rare minor allele frequency in several databases (ExAC, NHLBI_ESP6500, 

cg69, InHouse281). Protein prediction and evolutionary sequence conservation algorithms 

(SIFT, Polyphen2, Mutation Taster, Mutation Assessor, LRT, FATHMM, VEST3, CADD, 

SiPhy29way) were used to analyse in silico effects of amino-acid substitutions (Chapter 

3.2.1.2). 

I performed Sanger sequencing and segregation analysis to validate putative variants. The 

following primers were used for PCR amplification of PTEN chr10:89692785T>C forward 

TGACCTATGCTACCAGTCCG and reverse AATCTAGGGCCTCTTGTGCC) (Chapter 

3.2.2).  

7.2.1.3.4 Western blot 

Fibroblasts were obtained by skin biopsy from the patient and from healthy controls. I grew 

fibroblast cell line cultures and extracted protein from the fibroblast cells for immunoblotting 

according to standard methods described in Chapter 3.2.3. 

I performed Western blots with two different anti-PTEN antibodies (monoclonal anti-PTEN 

antibody produced in mouse clone 2G9, WH0005728M1-SIGMA, 1:500 concentration, band 

runs at about ~ 37 kDa ; rabbit monoclonal anti-PTEN antibody, EPR9941-2 (ab170941), 

1:1000 concentration, band runs at ~54 kDA). 

7.2.1.3.5 Phosphatase enzyme assay 

The enzyme activity assay was carried out by Dr Laura Swan, PhD in the Department of 

Cellular and Molecular Physiology at the Institute of Translational Medicine in Liverpool. 

Phosphoinositide phosphatase activity was measured using a chromogenic assay based on the 

malachite green method (Andrés-Pons et al., 2007).  

GST-PTEN fusion (PTEN fused with glutathione S-transferase tag) proteins were purified 

onto GSA beads (pierce) from BL21 E.coli in a purification buffer (100mM Tris HCl pH 7.4, 

250mM NaCl, 10mM DTT plus turbonuclease and EDTA free protease inhibitor (Roche) in a 

reaction mixture of 25μl). The same buffer was used with 90uM diC8-PIP3 (Echelon) 

substrate at 37 °C for 1 hour. The reaction was stopped by adding 100μl of malachite green 

reagent per well and the absorbance was measured at 640nm. Absorbance values were 

calibrated against phosphate standards. 
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7.2.1.4  Results 

7.2.1.4.1 Patient phenotype 

The 29-year-old male (Figure 7.4) patient was the youngest of three siblings in a non-

consanguineous family with no related medical history. His developmental milestones were 

globally delayed. He started walking aged 20 months, while his speech was acquired slowly 

after the age of 24 months. There were concerns about his constant dribbling and evolving 

squint. Since the age of 3 he presented with left sided facial asymmetry and muscle weakness 

in the contralateral upper and lower limbs. During early school years he developed 

discrepancy in his leg lengths jointly with progressive weakness, which led to frequent falls 

and traumatic injuries. Aged 10 he underwent tendon and limb reconstruction surgery and he 

was provided with orthotic shoe and regular physiotherapy support. Nerve conduction studies 

showed demyelination with conduction blocks suggesting an immune aetiology, but trials of 

steroid and IVIG therapy had no beneficial effects. During his adolescence, his chest and 

shoulders have become widely spread by multiple papulosus livid lesions, resembling 

hypertrophic keloids, which required dermatological excisions and systemic steroid treatment. 

His educational progress was poor and social interaction difficulties manifested, but later in 

life he managed to obtain part time employment. 

Examined aged 29 he had macro- and scaphocephaly with left sided facial 

hemihypertrophy. The asymmetry involved both bony and soft facial tissues, resulting in oral 

cavity deformity and unilateral crowding of his teeth. He was tall with skeletal deformities, 

including scoliosis at upper thoracic level and disproportional shortening of his right leg. 

Multiple cranial nerve involvement was present. He had right-sided complete 

ophthalmoparesis with amblyopia. There was a lower motor neuron weakness on the right 

side of his face and left-sided tongue atrophy. He had pterygomandibular weakness and 

dysarthria with a nasal tone. Trapezius and periscapular muscles were weak and wasted. 

There was flaccid paresis, atrophy and areflexia in his left upper limb. He had proximal flexor 

weakness with preserved grip strength in his right arm. Motor neuron weakness in his lower 

limbs showed an opposite distribution. His right leg was globally atrophic with distal motor 

weakness and pes cavus deformities. His left lower limb had preserved muscle bulk and 

strength. His upper limb reflexes were absent. In his lower limbs deep tendon reflexes were 

brisk with left ankle clonus, even tough ankle jerks were reduced. Sensation to pin prick and 

vibration was intact throughout.  

Routine laboratory and metabolic screening tests were repeatedly normal. Imaging studies, 

including brain and spinal MRI, left upper limb MRI and whole body CT were unremarkable. 
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Figure 7.4 Photo illustration of the clinical symptoms in the PTEN mutant patient  



 

 159 

7.4.1.4.2 Electrophysiology findings 

Nerve conduction studies showed highly abnormal motor responses with grossly abnormal 

motor conduction velocities. The motor amplitudes were markedly dispersed along with 

significant conduction block at multiple sites. Lower limb responses were remarkably 

asymmetrical being of grossly reduced amplitude in the right leg and normal in the left leg. 

Sensory responses were within acceptable limits throughout. Concentric needle 

electromyography showed neurogenic changes in the wasted limbs with no evidence of active 

denervation. The electrophysiology findings suggested a multifocal motor neuropathy with 

patchy conduction blocks. 

7.2.1.4.3 Identified PTEN mutation by WES 

Targeted genetic testing for SMN1 and C20orf54 was negative, such as the IPN gene panel 

assay. Analysing the WES data I found a heterozygous c.269T>C, p.Phe90Ser missense 

mutation in the PTEN gene, which has not yet been linked to neuropathy in humans. Sanger 

sequencing confirmed that the mutation presented de novo in the patient, since both his 

healthy parents were wild type. The sequence change involves a highly conserved residue 

within the catalytic site of the PTEN phosphatase domain and in silico tools predicted 

deleterious effects (Figure 7.5, A) (Table 5.7, Table 5.8). 

7.2.1.4.4 Normal amount of PTEN protein detected by Western blot 

Immunoblot analysis, which I carried out repeatedly by using two different anti-PTEN 

antibodies, confirmed that the amount of the PTEN protein was normal in the patient’s 

fibroblast when compared to the healthy controls (Figure 7.5, B). 

7.2.1.4.5 Phosphatase activity of the mutant protein 

The phosphatase activity of the p.Phe90Ser PTEN mutant protein was investigated. Initially 

the enzyme function assay revealed impaired activity on phosphatidylinositol 3,4,5-

trisphosphate (PIP3) as a substrate (p<0.05) compared to wild type protein. However, this 

result was contradictory to the published data on the activity of p.Phe90Ser mutant protein on 

PIP3. Re-evaluation of the assay revealed that the mutant was more vulnerable to oxidation 

during the earlier test and the more oxidised p.Phe90Ser mutant did not act properly on any 

substrate. Repeated enzyme assay confirmed, that the p.Phe90Ser PTEN mutant protein acts 

just like the wild type on PIP3, but it was not completely functional against 

phosphatidylinositol 3,4-bisphosphate PI(3,4)P2. The partial lack of function against 

PI(3,4)P2 might provide an explanation for the disease mechanism (Figure 7.5 C). 
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Figure 7.5 The identified de novo p.Phe90Ser PTEN mutation in the patient 

A) Segregation analysis proved that the p.F90S PTEN mutation is carried de novo in the patient. The PTEN 

structure with its main domains and demonstration that the affected residue is conserved across species. Stereo 

view of the F90S residue, which locates near to the phosphatase active pocket.  

B) Western blot revealed equal amount stable PTEN protein in the control and patient fibroblasts  

C) The F90S PTEN mutation has impaired phosphatase activity on phosphatidylinositol 3,4-bisphosphate 

(PI(3,4)P2) as a substrate (p<0.05) 
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7.2.1.5  Discussion  

PTEN is the second most frequently mutated tumour suppressor gene, various human cancers 

have been linked to numerous somatic mutations (Zhou and Parada, 2009). Germline PTEN 

mutations cause various human conditions with poorly understood genotype-phenotype 

correlations (Spinelli et al., 2015). Loss of function germline mutations have been 

predominantly described with inherited tumours and severe PHTS, while retained or partially 

lost PTEN activity has been found in neurodevelopmental disorders (Spinelli et al., 2015).  

We identified the novel c.269T>C, p.Phe90Ser PTEN mutation presenting de novo in a 

male patient with multifocal motor neuropathy and patchy demyelination (Figure 7.4; Figure 

7.5, A). He showed symptoms overlapping with PHTS, including macrocephaly, 

hamartomatous skin lesions and autistic spectrum disorder but he did not fully meet the 

proposed criteria of the condition (Pilarski et al., 2013). Extensive radiology evaluations 

could not detect evidence of malignant processes. His neurological deficits were dominated 

by progressive multifocal demyelinating motor neuropathy, a phenotype that has so far not 

been related to PTEN mutations in humans.  

The PTEN sequence is largely invariable in the human population (1000 Genome Project 

found 54 SNVs with MAF<0.001) and the encoded protein possesses a strongly conserved 

amino acid structure among species. The cytosolic PTEN consists of 403 amino acids divided 

into an N-terminal phosphatase domain (7–185), a lipid-binding C2 domain (186–351) 

responsible for catalytic activity and a C-terminal tail (352–403) containing phosphorylation 

sites that regulate protein activity and stability. A 173 amino acids extension at the N-terminal 

contains a secretion signal for exosome mediated PTEN secretion (Leslie and Longy, 2016). 

The p.Phe90Ser missense change identified in our patient is located within the WPD-loop, 

which is equally near to the phospahatase active pocket and to the membrane-binding 

regulatory interface of the PTEN C2 domain (Figure 7.5, A). Most of the mutated WPD 

residues have been considered not to influence or only partially affect the catalytic activity of 

PTEN (Rodriguez-Escudero et al., 2011). The cancer associated (glioma, endometrium) 

somatic p.Phe90Ser PTEN mutation has been found to have normal phosphatase activity but it 

was unable to bind membrane phospholipids and recruit PTEN for PIP3 signalling (Nguyen et 

al., 2015). The germline p.Phe90Ser PTEN mutation in our patient did not interfere with the 

protein production and showed wild type phosphatase activity on PIP3. However, the mutant 

protein had only partial catalytic activity against PI(3,4)P2, which has a signalling function in 

many cases similar to PIP3 (Figure 7.5, B; C).  
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Accumulating evidence has demonstrated that PI(3,4)P2 regulates a variety of cellular 

processes, including neuronal dynamics, clathrin-mediated endocytosis and cell migration (Li 

and Marshall, 2015). It is an important signalling molecule involved in the coordination of 

several specific membrane and cytoskeletal responses (Hawkins and Stephens, 2016). A 

recent report showed interaction between RAB7, and unveiled a novel role of PTEN, as a 

modulator of late endocytic maturation and trafficking (Shinde and Maddika, 2016).  

 

A similar neuropathology to that of our patient has been described in a mouse model. 

Targeted mutation of PTEN in Schwann cells caused a progressive peripheral neuropathy with 

focal hypermyelination, myelin outfoldings and ‘tomacula’ formation. The dysfunctional 

regulation of local PIP3 level in myelin membranes and the autonomous Schwann cells defect 

due to constitutive Akt/mTOR downstream hyperactivation have been implicated in the PTEN 

mutant pathology (Goebbels et al., 2012). Furthermore, a transheterozygous PTEN mutant 

Drosophila developed progressive motor function loss with defects in climbing and flight 

ability (Mensah et al., 2015).  

 

The expression of PTEN requires sensitive regulations at all levels and mutations 

inducing even minor structural changes may impair various functions of the protein. 

Phosphorylation-dependent conformational changes, post-translational modifications and 

protein interactions have been found necessary in membrane-binding and in forming nuclear 

and internal organelle (mitochondria, ER) PTEN pools (Kreis et al., 2014). These might 

explain why functionally selective mutations result in diverse PTEN-associated phenotypes 

(Leslie and Longy, 2016). 

 

7.2.1.6  Conclusion 

We detected the de novo p.Phe90Ser PTEN mutation in a patient presenting with patchy 

motor neuropathy with focal demyelination, hamartoma-like skin lesions and autism spectrum 

disorder. PTEN is a lipid phosphatase, which inhibits PI3-K signalling, a pathway that is 

known to be impaired in several forms of peripheral nerve demyelination (FIG4, FGD4, 

MTMR2, MTMR13/SBF2). PTEN has been implicated in peripheral neural plasticity, axonal 

outgrowth and hypermyelination. Experimental PTEN suppression in mice resulted in 

progressive peripheral neuropathy with ‘tomacula’ formation and myelin outfoldings. We 

suggested that the p.Phe90Ser PTEN variant, identified in our patient should be considered as 

a novel motor neuropathy-related gene mutation.
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7.2.2 Homozygous STAT5B mutations related to a novel neuromuscular phenotype 

7.2.2.1  Literature review 

The signal transducer and activator of transcription STAT5B is an evolutionarily conserved 

protein that regulates a variety of biological responses, such as cell proliferation, growth, 

immune surveillance and tumour suppression (Fang et al., 2006).  

Homozygous STAT5B mutations have been reported only in a few patients worldwide 

presenting with short stature and facial dysmorphism, resembling Laron syndrome, a growth 

hormone (GH) insensitivity condition. The implied pathomechanism affects the growth 

hormone receptor (GHR) signalling cascade (GH-GHR-STAT5B-IGFI). In the absence of 

STAT5B, the ability of GH to induce the expression of insulin-like growth factor-1 (IGF-1) is 

almost completely diminished (Kofoed et al., 2003; Hwa et al., 2005). An immune 

dysregulation (interleukin-2 signalling defect at the T cell level) result in severe recurrent 

infections and complex autoimmune disorders in some patients, although it is not an 

obligatorily associated feature in STAT5B defect (Bernasconi et al., 2006; Vidarsdottir et al., 

2006; Pugliese-Pires et al., 2010; Casanova et al., 2012; Scaglia et al., 2012). 

 

7.2.2.2  Aims and hypothesis 

I aimed to perform genetic studies to identify the molecular cause of the motor neuropathy in 

combination with short stature and other neuromuscular symptoms in a pair of siblings of 

consanguineous origin. I examined the hypothesis, whether the impaired intracellular signal 

transduction due to the identified homozygous STAT5B mutations might be the mechanism in 

the development of peripheral nerve pathology.  

 

7.2.2.3  Methods 

7.2.2.3.1 Patient inclusion 

A pair of siblings was selected for further clinical and genetic evaluations from the HMN 

cohort due to their unusual presentation of motor neuropathy as part of a more complex 

phenotype (Family 34) (Chapter 5.4.4.2). 

7.2.2.3.2 Electrophysiology 

Electric nerve studies and electromyography were carried out according to standard methods 

described in Chapter 3.1.2.  
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7.2.2.3.3 Experimental genetic studies   

WES was undertaken in the affected siblings. I filtered the WES data against several 

databases to define rare homozygous variants with a MAF < 0.01. Putative disease-causing 

mutations along with their functional annotation were identified using ANNOVAR (Chapter 

3.2.1.2). I confirmed the putative pathogenic variants by Sanger sequencing. The following 

primers were used for the PCR amplification of STAT5B chr17:40370786T>G (forward 

AGAGGGGAGTGAGATAACACAGA, reverse CTCCTGTGTACGTCTCTAATTCTGG). 

(Chapter 3.2.2) 

 

7.2.2.4  Results 

7.2.2.4.1 Patient phenotype 

We examined a 14-year-old male and 16-year-old female sibling pair of Roma origin. 

Consanguinity in the family could not be excluded. Their parents and their two further 

siblings were healthy, suggesting an autosomal-recessive inheritance. Both children were 

apparently short statured in addition to that they shared distinctive neuromuscular features. 

They had marked muscle weakness in their lower extremities with reduced deep tendon 

reflexes. Their gait was impaired by frequent falls. Dysmorphic facial features, bilateral 

ptosis, external ophthalmoplegia and scapular winging were found in association with the 

condition (Figure 7.6, A). The male sibling has been also investigated for cardiac arrhythmia. 

The serum CK level was normal and acetylcholine receptor antibodies could not be detected. 

Basal and stimulated growth hormone levels and basal IGF-1 levels were in the normal range. 

7.2.2.4.2 Electrophysiology findings 

Nerve conduction studies showed motor neuropathy with reduced motor amplitudes and 

conduction velocities but preserved sensory responses. Electromyography revealed 

neurogenic changes. Repetitive nerve stimulation did not reveal neuromuscular defect.  

7.2.2.4.3 Identified STAT5B mutations 

There was no mutation identified by testing for common neuropathy-related disease genes. 

The homozygous c.944T>G, p.Glu315Ala missense STAT5B mutations were identified on 

WES, which were predicted to be rare (MAF<0.01, ExAC:0.0027) and deleterious by in silico 

prediction tools (Table 5.7Table 5.8). The mutation segregated appropriately with the disease 

in the family. The mutation was homozygous in the affected siblings, while the healthy 

mother and one of their siblings were heterozygous carriers (Figure 7.6, B). 
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Figure 7.6 The identified p.Glu315Ala STAT5B mutation in the family 

A) Photo illustration of the phenotype in the patients  

B) Sanger sequencing of the c.944T>G, pGlu315Ala STAT5B mutation in the family. Position of the identified 

STAT5B mutation and the conservation of the affected residue across species. Stereoview of the Glu315 residue 

modelled on human STAT5A crystal structure, which shows 95% homology with STAT5B 
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7.2.2.5  Discussion 

In response to various cytokine stimuli STAT5B translocates to the nucleus and acts as a 

transcriptional regulator of targeted genes. Ligand-binding of cytokine receptors activates the 

Janus kinase (JAK) pathway induced phosphorylation, which recruits and dimerizes STAT5B 

through its SH2 domain. The phosphorylation of conserved tyrosine residues in the C-

terminal is essential for STAT5B dimerization and for cytokine dependent nuclear transport. 

In contrast, nuclear transport of the non-phosphorylated monomer STAT5B is linked to its N-

terminal coiled coil domain. The N-terminal coiled coil and DNA-binding domains play a key 

role in cytokine independent nuclear translocation of STAT5B and in the constitutive 

expression of target genes (Nakajima et al., 2001; Zeng et al., 2002; Fang et al., 2006) 

(Figure 7.7). Therefore, an intact protein structure, including the main domains and the 

phosphorylation residues are essential for normal STAT5B functioning. All of the so far 

described mutations (nonsense/frameshift mutations in the N-terminal coiled coil domain and 

a frameshift premature truncating mutation in the DNA-binding domain) led to the complete 

loss of the essential tyrosine residues and the SH2 domain, making the STAT5B biologically 

inactive (Kofoed et al., 2003; Hwa et al., 2005; Bernasconi et al., 2006; Vidarsdottir et al., 

2006). 

We found that the previously not yet described missense c.944T>G, p.Glu315Ala STAT5B 

mutation was homozygous in the siblings and caused combined presentation of postnatal 

growth retardation and neuromuscular impairment. The identified amino acid change affects a 

conserved residue in the N-terminal coiled coil domain of the STAT5B, which is a key region 

in transcriptional regulation (Figure 7.6). Mutations within this region may contribute to 

transcriptional enhancement through protein-protein interactions (Nakajima et al., 2001).  

 

IGF-1 is suggested to be a potent survival factor for neuronal cells by inducing cyclin D1 

expression. IGF-1 stimulated upregulation of cyclin D1 production is likely to be mediated by 

STAT5B (Figure 7.7). Cyclin D1 expression correlates with Schwann cell function in a rat 

model of demyelinating neuropathy.  Mutations in the early growth response gene, EGR2 

have been associated with autosomal-dominant peripheral neuropathy. EGR2 induces nuclear 

expression of cyclin D1 leading to aberrant Schwann cell functions (Nakajima et al., 2001; 

Atanasoski et al., 2002; Kalita et al., 2013).  
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Figure 7.7 Pathomechanisms of STAT5B 

Ligand association with cytokine receptors activates JAK induced 

phosphorylation which recruits and dimerises STAT5B through the SH2 

domain. Phosphorylation of conserved tyrosine residue in the C-terminal is 

essential for STAT5B dimerisation and for cytokine-dependent nuclear 

transport. Cytokine-independent, nonphosphorylated monomeric STAT5B 

shuttle is related to the N-terminal coiled coil domain. 

IGF1 stimulated upregulation of cyclin D1 mediated by STAT5B signalling  

(taken from Zeng et al., 2002; Kalita et al., 2013) 
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Furthermore, the insulin/IGF signalling cascade (IIS) acts through the PI3-kinase (PI3-

K) /AKT kinase pathway, involving the downstream effector mTORC1 (mechanistic Target 

of Rapamycin Complex 1) and plays evolutionarily conserved regulatory roles in 

homeostasis, cell growth regulation, autophagy and longevity. Disruption of the IIS/mTORC1 

pathway has been implicated in neurodegenerative disorders and mutations in the IIS 

antagonist PTEN have been found in a mouse model of neuropathy and in a flightless 

Drosophila model (Chapter 7.2.1.5) (Goebbels et al., 2012; Mensah et al., 2015; Essers et al., 

2016).  

 

7.2.2.6  Conclusion 

We extended the spectrum of the STAT5B-related phenotypes by presenting the combined 

manifestation of recessively inherited growth hormone insensitivity and impaired peripheral 

nerve function in the investigated family. The novel c.944T>G, p.Glu315Ala STAT5B 

mutation affects an evolutionary conserved residue in the N-terminal coiled coil domain of 

STAT5B, which has a key transcriptional function both through protein-protein interactions 

and by ensuring STAT5B monomer shuttling between the nucleus and cytoplasm. Impaired 

STAT5B signalling may lead to an aberrant peripheral myelination process through cyclin D1 

overexpression and may have an impact on the neuronal growth and differentiation through 

IIS/mTORC1 signalling cascade. Further studies will be required to confirm the precise 

mechanism of the STAT5B-related neuromuscular pathology.
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7.2.3 Motor neuropathy in Holt-Oram syndrome caused by TBX5 mutation 

 

7.2.3.1  Literature review 

T-box 5 gene (TBX5) belongs to the evolutionarily conserved T-box family of transcription 

factor genes (McDermott et al., 2005). It encodes a transcription factor and alternative 

splicing regulator, which is an essential element in transcriptional regulatory cascades 

(Heinritz et al., 2005; Granados-Riveron et al., 2012). T-box proteins are essential in cell type 

specification and morphogenesis. They play an important role during the embryonic 

development of cardiomyocytes and morphogenesis of the upper limb.  

TBX5 is located in the 12q24.1 chromosomal region and consists of 9 exons encoding 

a 518 amino acid length protein (Heinritz et al., 2005; Mace et al., 2014; Dreßen et al., 2016). 

Members of the T-box family possess a highly conserved DNA-binding motif, which is 

involved in protein–protein interactions. A transactivation domain at the C-terminal of the 

protein mediates the dynamic shuttling of TBX5 between the nucleus and the cytoplasm. The 

nuclear availability of TBX5 determines its transcriptional activity (Al-Qattan and Abou Al-

Shaar, 2015).  

 

Mutations in many of the T-box genes are associated with human developmental 

disorders. Germline TBX5 mutations cause Holt-Oram syndrome (HOS), while somatic 

mutations have been described in congenital heart defects (Heinritz et al., 2005; Dreßen et al., 

2016). The clinical criteria of HOS are the presentation of radial longitudinal upper limb 

deficiency and/or congenital heart disease, either as a structural heart malformation or as a 

cardiac conduction disease. It is a rare, autosomal-dominant syndrome with full penetrance 

and variable expressivity. The skeletal abnormalities range from subtle to severe defects of 

the upper limb, while chest wall, vertebral and craniofacial anomalies may accompany the 

condition (McDermott et al., 2005; Dias et al., 2007; Goldfarb and Wall, 2014; Al-Qattan and 

Abou Al-Shaar, 2015). 

 

7.2.3.2  Aims and hypothesis 

I aimed to investigate the molecular cause of the progressive motor neuropathy in a patient, 

who presented with unusual neurological and electrophysiological findings. I examined the 

hypothesis whether the identified mutation in the TBX5 gene might provide an explanation for 

the phenotype.   
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7.2.3.3  Methods 

7.2.3.3.1 Patient inclusion 

The index patient of (Family 33) presented with unusual skeletal anomalies in addition to the 

distal motor neuropathy and was selected from the HMN cohort for further research-based 

genetic studies (Chapter 5.4.4.2). 

7.2.3.3.2 Electrophysiology 

Nerve conduction studies completed with repetitive nerve stimulation and electromyography, 

including single fibre testing, was performed by Dr Roger Whittaker at the Newcastle-upon-

Tyne Hospitals NHS Trust (Chapter 3.1.2). 

7.2.3.3.3 Experimental genetic studies  

WES was carried out on the patient’s genomic DNA. I analysed the exome data, led by the 

clinical features of the patient (Chapter 3.2.1.2). I performed Sanger sequencing and 

segregation studies in the family (Chapter 3.2.2).  

The following primers were designed to PCR amplify TBX5 chr12:114837349C>A (forward: 

CTGGAAAACCGGAGCTAATTGT and reverse: TCCCTTAAAATGGATGGAGGCT).  

 

7.2.3.4  Results 

7.2.3.4.1 Patient phenotype  

The 19-year-old patient (Family 33) (Figure 7.8, A) showed an unusual condition of distal 

lower limb weakness with upper motor neuron signs and abnormal shoulder anatomy with 

periscapular muscle weakness. His development was delayed with late walking at 2 years of 

age and he had frequent falls. He had flat feet and knocked knees and he developed sloping, 

forward turning shoulders with upper thoracic kyphosis. His distal motor wasting and 

weakness was slowly progressive in his legs and his toes were clawing. He complained of 

muscle aches and increasing fatigability. Later he noted that his hands became weak with mild 

sensory impairment. He was also diagnosed with attention deficit problems and gynecomastia 

in his teens, while rapid weight gain with stria formation appeared later. 

His physical examination revealed bilateral sloping and forward positioned shoulder girdles 

with limited movement range. He had bilateral suprascapular muscle atrophy with prominent 

scapular winging. The muscle strength was preserved in his arms but there was a mild hand 

and finger weakness (MRC grade 4/5). The weakness in the distal lower limb muscles was 

more prominent (MRC grade 3/5). 
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Figure 7.8 Photo illustration of the phenotype with the identified TBX5 mutation 

A) The proband showing skeletal deformities and motor neuropathy 

B) His mother and sister demonstrate similar shoulder girdle abnormality 
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He had wasted legs with unusual foot shapes and clawed toes.  His lower limb reflexes were 

increased along with pyramidal signs. Sensory modalities were not prominently diminished.  

Some of his family members presented with the same shoulder girdle anomaly and 

with a somewhat similar neuromuscular manifestation. His mother suffered from lower limb 

and back pain, supposedly caused by degenerative vertebral changes, impairing her 

ambulatory skills. She was fatigable with brisk lower limb reflexes but she had no obvious 

signs of a concomitant peripheral neuropathy. His sister was in her teens and she had 

difficulties in physical exercise at school. She complained of constant exhaustion 

experiencing excessive muscle tiredness, although she was also treated for depression (Figure 

7.8, B). 

7.2.3.4.2 Electrophysiology findings   

Nerve conduction studies of the index patient showed a rather unusual pattern. In his upper 

limbs the sensory amplitudes were markedly reduced, whereas the motor amplitudes were 

normal. However, in the lower limbs the pattern was reversed with significantly reduced 

amplitude motor responses and relatively preserved sensory responses. Conduction velocities 

were moderately reduced with corresponding F-wave prolongation to an extent not readily 

explainable purely on the basis of the axonal loss. There was no temporal dispersion or 

conduction block suggesting acquired origin. Concentric needle electromyography revealed 

pronounced but inactive neurogenic changes. Repetitive nerve stimulation produced no 

increment or decrement. In contrast, SFEMG recorded increased jitter in 76% of 21 pairs 

examined, with blocking in 14% of these. There was a clear evidence of a significant defect of 

neuromuscular transition. However, it has remained uncertain if this was secondary to the 

immature neuromuscular junctions formed during re-innervation or it was rather a primary 

defect. 

7.2.3.4.3 Identified TBX5 mutation 

Genetic screening for neuropathy disease genes and for facio-scapulo-humeral muscle 

dystrophy (FSHD) was negative. I found the pathogenic c.331G>T, p.Asp111Tyr TBX5 

mutation in his WES data, which was carried by the patient, as well as his mother and sister in 

a heterozygous form (Figure 7.9).  

The same heterozygous missense change has been previously reported causing upper limb and 

skeletal deformities and developmental heart malformations (Granados-Riveron et al., 2012).  
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Figure 7.9 Sequencing of the identified TBX5 mutation and segregation study 
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7.2.3.5  Discussion 

A 19-year-old male patient with an abnormal shoulder girdle function commonly seen in 

Holt-Oram syndrome, carried the heterozygous c.331G>T, p.Asp111Tyr TBX5 mutation. 

Congenital foot deformities, progressive distal motor neuropathy with pyramidal signs and 

neuromuscular transmission defect with fatigability complicated his phenotype. There was a 

pronounced intrafamilial variability in the clinical manifestation.  

The p.Asp111Tyr missense change affects a universally conserved residue in the T-box 

element of the protein. The consequences of the variant were analysed on the structural model 

of TBX5. A salt bridge became disrupted when the aspartic acid residue was replaced by an 

uncharged tyrosine. Therefore, the mutation was supposed to induce conformational change in 

the TBX5 protein and impact on the binding to its target promoters. Variably severe structural 

cardiac anomalies have been reported in association with the p.Asp111Tyr TBX5 mutation 

(Granados-Riveron et al., 2012). Extensive heart investigations (ECG, echocardiography, 

ABPM and Holter-monitor) were carried out in the family, but no structural or functional 

cardiology change could yet be identified.  

 

Abnormal shoulder girdle function was present in the patient and in affected family members. 

The characteristic pattern of narrow sloping shoulder was described to be caused by the 

hypoplasia of the humeral head, clavicle and the surrounding musculature. The number and 

location of the hypoplastic muscles were reported to be in correlation with the severity of the 

skeletal involvement. Altered fetal muscle development has been implicated in the bony 

malformations of the upper limbs (Spranger et al., 1997; Mace et al., 2014). In respect of that 

the TBX5 gene is highly regulated through alternative splicing, the translated protein products 

contain variable C-terminal domains. All TBX5 isoforms retain their ability to bind DNA, but 

they display distinctive transcriptional properties that are target gene specific. TBX5c is the 

dominant isoform in skeletal muscle progenitors and its down regulation blocks the myotube 

formation (Yamak et al., 2015).  

 

No concomitant peripheral nerve involvement has been reported so far, apart from one case 

report describing carpal tunnel syndrome in combination with Holt-Oram syndrome (Mace et 

al., 2014). The identification of further patients with motor neuropathy and Holt-Oram 

syndrome would support the pathogenicity of TBX5 mutations in neuropathies.  
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The mechanisms by which TBX5 mutations evoke certain phenotypes have remained not yet 

clarified, but neither the type nor the location of the mutation determines the clinical 

presentation (Dias et al., 2007; Goldfarb and Wall, 2014). Most of the reported pathogenic 

mutations involve the DNA-binding T-box domain of the gene and the reduced DNA-binding 

capacity might contribute to the dysregulation of target gene expression. TBX5 

haploinsufficient mutations (nonsense, frameshift, and splice site mutations) induce premature 

stop and truncated proteins, which are unable to bind to DNA. Missense mutations result in 

larger phenotype variability with atypical forms, dependent on their location in the DNA-

binding domain. It has been suggested that missense mutations at the 5' end lead to more 

prominent cardiac defects, whereas those at the 3' end are responsible for milder cardiac but 

more severe skeletal malformations. However, the correlation between the TBX5 genotype 

and the severity of the clinical features has remained controversial (Al-Qattan and Abou Al-

Shaar, 2015; Dreßen et al., 2016). The transcriptional activity of the TBX5 protein is 

controlled by several protein-protein interactions. The alteration of the protein level affects 

the expression of hundreds of genes and modulates other regulators, such as different 

transcription factors, as part of an extremely complex regulatory network. MicroRNAs are 

important in the post-transcriptional regulation of gene expression and they might play a role 

in the TBX5 regulatory circuit (D’Aurizio et al., 2016). 

  

7.2.3.6  Conclusion 

TBX5 encodes a transcription factor that participates in transcriptional regulatory cascades. 

Pathogenic TBX5 mutations impair the DNA-binding of the protein and manifest in the Holt-

Oram syndrome. The presentation of motor neuropathy with fatigability and neuromuscular 

transmission defect, as seen in our patient, might extend the phenotype spectrum of the Holt-

Oram syndrome.
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7.3 A novel mitochondrial metabolic pathway implicated in motor neuropathies 

 

7.3.1 Literature review  

2-ketoadipic aciduria (OMIM#204750) is the biochemical phenotype of defected lysine, 

hydroxylysine and tryptophan catabolism with questionable clinical significance (Hagen et 

al., 2015). A wide range of manifestations, including mental retardation, seizures, hypotonia, 

dysmorphic features, obesity and immunodeficiency have been described, although the 

majority of the cases remained asymptomatic with isolated 2-oxoadipic and 2-aminoadipic 

aciduria (Danhauser et al., 2012).  

Genetic studies consequently found a molecular linkage between 2-ketoadipic aciduria and 

mutations identified in the dehydrogenase 1 and transketolase domain containing protein 1, 

DHTKD1 gene. The encoded mitochondrial protein is a homolog isoform of the E1 subunit of 

the 2-oxoglutarat-dehydrogenase complex, which converts 2-oxoadipate into glutaryl-CoA by 

decarboxylation. The knockdown of DHTKD1 expression in cell lines resulted in defected 

metabolic energy regulation, impaired mitochondrial biogenesis and induced early apoptosis 

(Xu et al., 2013). Despite the clinical uncertainty and the large number of asymptomatic 

DHTKD1 genetic abrogation, it can still be presumed that particular mutations may lead to 

specific disease manifestations (Stiles et al., 2015). Interestingly, the c.1455T>G, p.Tyr485* 

nonsense DHTKD1 mutation has been described in association with motor predominant 

CMT2 in a large multigenerational dominant Chinese family (W. Xu et al., 2012). 

 

Mitochondrial carriers are nuclear encoded proteins with common structural characteristics, 

which enable them to catalyse the transportation of specific substrates between the cytosol 

and the mitochondrial compartment. An increasing number of recessively inherited conditions 

has been linked with defected carriers causing errors in substrate specific metabolic pathways 

(Palmieri, 2013). SLC25A21, a nuclear encoded mitochondrial solute carrier has been 

described to participate in the 2-oxoadipate metabolism in addition to that it also transporting 

glutarate, aminoadipate and to a lesser extent citrate. The SLC25A21 gene encoded 

mitochondrial 2-oxoadipate carrier imports 2-oxoadipate into the mitochondrial matrix in 

exchange for 2-oxoglutarate (Fiermonte et al., 2001) (Figure 7.10). 
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Figure 7.10 Pathway of lysine, hydroxylysine and tryptophan degradation 

(modified from Danhauser et al., 2012) 
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7.3.2 Aims and hypothesis 

I aimed to examine the hypothesis, that the 2-oxoadipic metabolic pathway with subsequent 

mitochondrial dysfunction might be implicated in the pathology of hereditary motor 

neuropathies by identifying related gene mutations in two families. 

 

7.3.3 Methods 

7.3.3.1  Patient inclusion 

Patients from two families were selected for further clinical and genetic investigations from 

the HMN cohort. The Family 1 in this Chapter is equivalent to Family 16 in the HMN cohort 

(Chapter 5.4.2.2). 

7.3.3.2  Electrophysiology 

Electric nerve studies and electromyography were performed by Dr Roger Whittaker at the 

Newcastle-upon-Tyne Hospitals NHS Trust (Chapter 3.1.2). 

7.3.3.3  Experimental genetic studies 

WES was undertaken in both families and the exome data were analysed (Chapter 3.2.1.2). 

I performed Sanger sequencing and segregation studies in Family 1 (Family 16), while Maria 

Lane, MSc from our research group carried out sequencing in Family 2 (Chapter 3.2.2). The 

Western blot in Family 2 was performed by Veronika Boczonadi, PhD Postdoc Fellow from 

our research group (Chapter3.2.3). 

7.3.3.4  Metabolomics studies 

Peripheral blood was drawn and collected in Lithium heparin tubes from the patients and 

healthy controls along with collection of urine samples. All samples were kept immediately 

on ice and I processed the samples further with the assistance of Veronika Boczonadi, PhD.  

The blood samples were spun in a refrigerated centrifuge and serum aliquots were transferred 

into vials on ice. The serum samples were stored on -80°C. The urine samples were also 

centrifuged, aliquot and frozen to -80°C. The following metabolites were targeted for 

quantitation; 21 amino acids, 2-oxoadipic acid, quinolinic acid, pipecolic acid and carboxylic 

acids of the Krebs cycle. Ultrahigh Performance Liquid Chromatography/ Electrospray 

Ionisation-Multiple-Reaction / Monitoring Mass Spectrometry (UPLC/ESI-MRM/MS) was 

performed at the collaborative laboratory at University of Victoria Proteomics Centre, 

Vancouver Island Technology Park in Canada. Quantitation of 2-oxoadipic acid, quinolinic 
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acid and TCA carboxylic acids was carried out by chemical derivatisation-UPLC-MRM/MS 

using 3-nitrophenylhydrazine as the derivatising reagent following the protocol (Han et al., 

2013). Quantitation of amino acids and pipecolic acid was performed by chemical 

derivatisation – UPLC-MRM/MS using dansyl chloride as the derivatising reagent. 

 

7.3.4 Results 

7.3.4.1  Patient phenotype  

 

Family 1 

Three members of Family 1, the mother and her two sons (Figure 7.11, A) presented with 

similar but variably severe distal hereditary motor neuropathy symptoms, suggesting a 

dominant inheritance pattern in the family.  

The mother developed a slowly progressive distal motor weakness in her late 

adulthood causing walking difficulties, frequent falls and fatigability. She had good power in 

the proximal part of her lower limbs, while the muscle strength was moderately decreased in 

her ankle plantar- and dorsiflexion (MRC grade 3/5) and severely in her toe flexion (MRC 

grade 2+/5). Her feet were flat with bilateral clawing of her toes. Deep tendon reflexes were 

globally absent. She was walking with a steppage gait and she tended to go over her ankles. 

Later her fingers became affected and her fine motor co-ordination deteriorated with a hand 

tremor. There was a mild weakness in her finger extension and atrophy in her intrinsic hand 

muscles. She indicated pins and needles in her fingertips.  

Her sons, especially the younger one, had a more prominent disease course with an 

onset in their young adulthood. Both sons developed walking and balance problems due to 

distal leg weakness. Their ankle plantarflexion was weaker (MRC grade 2/5) than the 

dorsiflexion (MRC grade 3/5). They had pronounced distal motor wasting in their legs. Their 

feet were highly arched with clawing of their toes. They were walking with a high steppage 

gait and poor balance control. The younger son had accompanying proximal weakness in the 

thigh muscles and diminished sensation of vibration below his ankles. Both of them 

experienced weakness and resting tremor in their hands. There was a unique pattern in the 

hand muscle weakness, which exclusively affected their bilateral IV and V fingers. Their deep 

tendon reflexes were overall absent and there were no long tract signs.  
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Figure 7.11 The identified DHTKD1 mutation in the family 

A) Photo illustration of the phenotype in the affected mother and her sons 

B) Sequencing and segregation in the family 
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Family 2 

The 18-year-old female (Figure 7.12, A) patient was born from consanguineous parents of 

Pakistani origin. The patient had no perinatal problems and she made a good early 

developmental progress and walked by the age of 15 months.  

Aged 3 she contracted a gastrointestinal illness, when visiting Pakistan, from which 

she recovered with malnutrition but no signs of muscle weakness. Over the subsequent 2 

years she presented daily bruises from frequent falls, while at the age of 5 she had an acute 

deterioration in her muscle strength rendering her intermittently non-ambulant. Incomplete 

burying of her eyelashes and nasal quality of speech indicated mild facial weakness. She had 

a generalised body tremor, tongue fasciculation and decreased ventilation. She developed 

wasting of her small hand muscles and her fingers became clawed on both sides. The 

prominent distal lower limb wasting and weakness caused bilateral foot drop and ankle 

contractures. Lower motor neuron symptoms were combined with upper motor neuron signs, 

including brisk deep tendon reflexes and ankle clonus. Her weight decreased dramatically and 

she required alimentary therapy for her failure to thrive. Gradually she became ambulant 

again before her teenage years but she was walking with dropped foot and a slapping gait. She 

underwent tendon surgeries and required ankle-foot orthotic support. She developed a slowly 

progressive thoracic scoliosis and even though spinal stabilisation surgery was not performed 

she was provided with a spinal brace. She intermittently received iron supplementation for her 

sideroblastic anaemia without much benefit. Her symptoms were very slowly progressive, 

rather stable over the oncoming years. Moderate proximal limb weakness presented in the 

shoulder girdle and hip muscles. The distal motor symptoms remained predominant, severely 

impairing the strength of her fingers and the movements of her feet. 

 

Extensive laboratory, including metabolic tests were performed on her blood and CSF 

samples and neuroimaging was carried out with unremarkable findings. Her muscle biopsy 

suggested primarily neurogenic pattern with type I fibres grouping and an increase in adipose 

tissue. A large proportion of the muscle fibres were cytochrome c oxidase (COX) -deficient. 

The nerve biopsy findings were compatible with an axonal pathology. The axonal profiles 

appeared swollen and ballooned with basophilic changes. Electron microscopy showed many 

fibres with accumulation of membranous and granule debris. Glycogen deposits were present 

in the cytoplasm of the Schwann cells.  
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Figure 7.12 The identified SLC25A21 mutation in the patient 

A) Photo illustration of the phenotype in the patient 

B) Sequencing of the mutation and segregation study in the family 

C) Western blot proved normal level of SLC25A21 protein 
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7.3.4.2  Electrophysiology findings 

Family 1 

The normal nerve conduction studies and the mild chronic neurogenic process recorded in the 

mother indicated a form of distal SMA. In her sons, the motor responses were essentially 

normal and there were no convincing features to suggest demyelination. Concentric needle 

electromyography revealed inactive and longstanding neurogenic changes, more prominently 

in the distal muscles than in the proximal muscles. These findings were suggestive of a slowly 

progressive distal SMA. There was a significant defect of neuromuscular transmission, 

evident on single fibre EMG, but this most probably related to the neurogenic change rather 

than being a primary defect.   

 

Family 2 

Motor responses were of reduced amplitudes in the extremities, while sensory potentials were 

preserved. Concentric needle electromyography revealed markedly increased amplitude stable 

motor units with reduced recruitment. The findings indicated a longstanding and slowly 

progressive motor neuronopathy consistent with distal SMA.  

There were subtle abnormalities in the neuromuscular transmission. Repetitive nerve 

stimulation revealed no consistent increment or decrement but there was a 21% increment in 

the tibialis anterior following 10 seconds maximum voluntary contraction. SFEMG recorded 

very large amplitude potentials in the right extensor digitorum communis although individual 

muscle fibre potentials could be seen jittering, it was not possible to quantitate these.   

 

7.3.4.3  Identified gene mutations 

Family 1 

IPN gene panel assay could not identify the molecular cause in the family. As the WES was 

undertaken in all of the three affected family members, I could compare their exome data and 

I could filter for common disease-causing variants. No putative variants were found to support 

an X-linked inheritance in the family. There were numerous heterozygous calls, including the 

not yet disease-causing DHTKD1 and GPR144 genes, which were overlapping in the WES 

data sets. Sanger sequencing confirmed that the heterozygous missense c.628G>T, 

p.Ala210Ser DHTKD1 mutation segregated with the disease in the family (Figure 7.11, B). In 

silico prediction tools suggested an inconclusive pathogenicity but the affected amino acid 

residue in the thiamine diphosphate-binding domain was highly conserved.  
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Family 2 

Targeted candidate gene testing in the patient excluded SMN1 and VCP mutations. IPN gene 

panel assay did not detect mutations in neuropathy disease genes. Of note, mitochondrial 

DNA depletion was found with mitochondrial enzyme complex I and II deficiency.  

WES identified the homozygous c.695T>C, p.Lys232Arg missense mutation in the 

SLC25A21 gene, which segregated appropriately with the disease in the family. The parents 

were heterozygous for the SLC25A21 variant, while the healthy sister was wild-type (Figure 

7.12, B). The mutation affects a conserved residue in the third solute carrier (solcar) repeat 

protein domain, which is a characteristic structure in mitochondrial anion carrier proteins.  

Immunoblotting confirmed normal level of the SLC25A21 protein in the patient fibroblasts 

compared to healthy controls (Figure 7.12 C).  

 

7.3.4.4  Results of the metabolomics studies 

Amino acid and carboxylic acid assay panel measurements were performed in serum and 

urine samples collected from the patients with DHTKD1 and SLC25A21 mutations and from 

healthy controls. The concentration of 2-oxoadipic acid, quinolinic acid and pipecolic acid 

was significantly increased in the urine samples of all patients when compared to healthy 

controls. Similar acid concentration changes could not be detected in the serum samples 

(Figure 7.13).  

 

7.3.5 Discussion 

We investigated whether the impairment of the 2-oxoadipate metabolism could be the 

common link between the two novel gene mutations, which we identified by WES in the two 

independent families presenting with dHMN.  

The dominantly inherited dHMN/dSMA phenotype co-segregated with the novel 

heterozygous missense c.628G>T, p.Ala210Ser DHTKD1 mutation in one of the families. 

The prominent crane-leg malformation in the patients was similar to that reported in the large 

Chinese pedigree (W. Xu et al., 2012). Additionally an unusual pattern of ‘ulnar’ split hand 

was noted in our family. Even though the affected Ala210 residue was highly conserved in the 

thiamine diphosphate-binding protein domain, the pathogenicity of the variant has remained 

uncertain. Metabolomics studies revealed a tendency for increased urinary concentration of 

the metabolites of lysine, hydroxylysine and tryptophan, suggesting a dysfunctional 2-

oxoadipate catabolism. Segregation studies are planned to be carried out in the wider family 

to further support the pathogenicity of the identified DHTKD1 mutation. 
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Figure 7.13 Increased concentration of the degrading metabolites in the urine 

Family 1: Patients JW, SW and KW 

Family 2: Patient AN 
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The homozygous missense c.695T>C, p.Lys232Arg SLC25A21 mutation was found in the 

female offspring of a consanguineous family with severe dSMA. A mouse SLC25A21 knock-

out model was characterised by a decreased red blood cell volume and haemoglobin, by 

changes in the body fat, abnormal bone mineralisation and decreased levels of aspartate 

aminotransferase and alanine aminotransferase, decreased NK T cells and an increased 

monocyte number https://www.mousephenotype.org/data/genes/MGI:2445059. A recent 

report of SLC25A21 ablation in mice described decreased body weight, a range of dental and 

craniofacial abnormalities, inflammation and hearing impairment, but did not detect 2-

oxoadipate acidaemia. The fact that the SLC25A21 null-mutant mice did not build-up 

cytoplasmic oxoadipate was explained by unknown compensatory mechanisms or by 

differences in the substrate specificity of SLC25A21 (Maguire et al., 2014).  

The patient phenotype was evaluated in comparison with the SLC25A21 ablated mouse 

model. The female patient had a family history for congenital bone malformations and 

although she had a normal skull and teeth, she developed progressive scoliosis and rib cage 

deformities with pectus excavatus. She suffered from frequent bacterial infections and there 

was a fluctuation in the motor symptoms at the initial stages of her disease. She had issues 

with insufficient weight gain and she was unresponsive to iron therapy introduced for her 

microcytaer anaemia.  

The p.Lys232Arg SLC25A21 mutation carried by the patient was rare, affected the highly 

conserved solcar protein domain and had deleterious consequences on several protein 

prediction tools. The SLC25A21 protein level was normal in the patient fibroblasts, and the 

depletion of amino acids from the culture medium did not induce measurable mitochondrial 

respiratory enzyme defects. Metabolomics studies confirmed significant oxoadipic and 

quinolinic aciduria, supporting the impairment of the 2-oxoadipate pathway. 

7.3.6 Conclusion 

We investigated two independent families with the main clinical manifestation of 

dHMN/dSMA. In the families novel mutations were identified by WES in the DHTKD1 and 

SLC25A21 genes. These mitochondrial genes participate in the same metabolic pathway of the 

degradation of lysine, hydroxylysine and tryptophan amino acids. Mutations in the DHTKD1 

gene have already been related to 2-ketoadipic aciduria (OMIM#204750) and one dominant 

family was described with axonal motor and sensory neuropathy. We suggested that an 

altered 2-oxoadipate metabolism might serve as a novel common mechanism in these 

hereditary motor neuropathies. Identification of more patients would further support this 

hypothesis.

https://www.mousephenotype.org/data/genes/MGI:2445059
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Chapter 8. Investigation of neuromuscular junction as a novel therapeutic 

target in hereditary motor neuropathies 

 

 

8.1 Literature review 

8.1.1 Neurotransmission at the neuromuscular junction 

Neurotransmission is the most important means of fast information transfer in neuron-neuron 

and neuron-muscle relations. Neuromuscular junction (NMJ) is a highly specialised synapse 

allowing for controlled signalling between muscle and nerve necessary for skeletal muscle 

function. Signal transmission at the NMJ is mediated by the release of acetylcholine from the 

synaptic vesicles. The neurotransmitter release from presynaptic nerve terminals is triggered 

by Ca2+ influx during an action potential, which induces membrane fusion of small synaptic 

vesicles with the presynaptic plasma membrane. The action potential coupled exocytosis 

requires synaptic vesicles, which are positioned near the Ca2+ channels and possess a calcium 

sensor, that can rapidly respond to even a small increase in the calcium level (Pang et al., 

2006; Young and Neher, 2009; Kochubey et al., 2011; Moloney et al., 2014; Whittaker et al., 

2015). 

The neurotransmitter release occurs in fast synchronous evoked releases, which are time-

locked with the presynaptic action potential and induced by brief transients of high Ca2+ 

concentrations. Following spatial re-distribution of Ca2+, a ‘residual’ calcium signal decays by 

binding to slow buffers, which is ready to build up repetitive action potentials and can drive a 

slow asynchronous release. In addition, neurotransmitter release can also occur spontaneously 

at the NMJ in the absence of stimulation (Katz and Miledi, 1967; Pang et al., 2006; Kochubey 

et al., 2011). 

When two or more action potentials invade a nerve terminal in rapid succession, residual Ca2+ 

in the vicinity of presynaptic calcium channels can build up, which enhances the probability 

of vesicle release for each subsequent action potential (Katz and Miledi, 1968). Evoked 

responses at intact NMJs remain completely synchronised throughout stimulus trains with 

only moderate response facilitation or depression. The lower the initial neurotransmitter 

release probability, the more facilitation can be achieved (Pang et al., 2006). 

The NMJ is an important site of pathology in a number of conditions, such as congenital 

myasthenic syndromes (CMS) and disorders affecting the motor neurons. According to the 

“dying-back” hypothesis, motor axons and nerve terminals show pathological changes prior to 
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the motor neuron degeneration and the onset of clinical symptoms. The neuromuscular 

synapse degenerates and displays structural alterations, before the axons, and precedes neuron 

loss. Mutations, which alter presynaptic proteins and impair components of the synaptic basal 

lamina, endplate development and maintenance, can lead to novel and complex disease 

phenotypes. Since most CMS are treatable, understanding the downstream mechanisms at the 

NMJ level may ultimately provide therapeutic options for these conditions (Moloney et al., 

2014; Sleigh et al., 2014; Whittaker et al., 2015).  

 

8.1.2 Neuromuscular junction defect in motor neuropathy-related gene mutations  

8.1.2.1  Neurotransmission defect in SYT2 mutant neuromuscular junctions 

Synaptotagmin 2 (SYT2) is a member of the large synaptotagmin protein family and the main 

isoform expressed at the NMJ. A coordinated network between presynaptic proteins and Ca2+-

dependent synaptotagmin dimerisation and phospholipid-binding are required for a timely 

organised process of exocytosis. SYT2 acts as a calcium sensor for fast synapses by coupling 

Ca2+-binding with synchronous neurotransmitter release (Südhof, 2013; Whittaker et al., 

2015). 

SYT2 mutant Drosophila and knockout mice display a dominant negative effect on synaptic 

transmission. A decreased amount of action potential-evoked synchronous synaptic release 

was observed in mutant NMJs. The evoked release is triggered by intracellular Ca2+, which 

binds to SYT2 as a calcium sensor for vesicle fusion. SYT2 triggers the high Ca2+ dependent 

release, but inhibits the release at low Ca2+ levels, by suppressing the activity of other calcium 

sensor(s) that operate over a wide range of calcium signals. This ‘release-clamping’ function 

of SYT2 has been postulated to explain the increased amount of spontaneous and 

asynchronous release at mutant NMJs (Lin and Scheller, 2000; Pang et al., 2006; Kochubey et 

al., 2011). 

A decreased neurotransmitter release probability is known to induce an increased facilitation 

in response to either two closely spaced action potentials (paired-pulse facilitation) or action 

potential trains. Implicating 10 and 20Hz stimulation frequencies in the SYT2 mutant NMJs 

exhibited continued facilitation without depression. The increase in the paired-pulse 

facilitation indicates the reduction in the synaptic release probability caused by the mutant 

protein.  

During high-frequency stimulus trains the release became highly desynchronised in mutant 

NMJs, as the accumulating Ca2+ triggers a more spontaneous and asynchronous release. This 
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process became manifest by the large increase in the number of miniature release events and 

the highly variable rise and decay times during the stimulus train (Pang et al., 2006). 

8.1.2.2  Neuromuscular junction dysfunction in GARS mutations 

GARS-mutant models of mice and Drosophila demonstrate early morphological defects in the 

synaptic connectivity at the NMJ in addition to the age and length-dependent axon loss. The 

compromised development of the NMJ precedes the degenerative synapse changes caused by 

the progressive loss of lower motor neuron connectivity. 

The normal maturation of the NMJs includes an activity-dependent process of synapse 

elimination, which ensures the selective innervation of each synapse by a single motor axon. 

In the GARS-mutant mice a significantly higher percentage of polyinnervated NMJs were 

seen, indicating misregulated synapse elimination pathways (Sleigh et al., 2014). 

Furthermore, a morphological transition in the synapse ensures a more complex post-synaptic 

structure for acetylcholine signalling, while a transcriptional switch enables the expression of 

adult AChR subunit. In GARS-mutant mice the complexity of the post-synaptic structures is 

reduced and there is a delay in the AchR subunit switch at the NMJ. These findings support 

that the NMJ maturation in mice is impaired both at structural and transcriptional level and 

provide a substrate for further synaptic degeneration (Sleigh et al., 2014). The length-

dependent innervation loss caused an additional degenerative process in the mice motor nerve 

terminals. An increase in partially innervated or completely denervated NMJs was seen in 

ageing mice (Seburn et al., 2006; Sleigh et al., 2014). In the Drosophila model the GARS 

mutation also interfered with the development of NMJ, while degenerative processes later 

affected the synapse structure (Ermanoska et al., 2014; Grice et al., 2015). 

The morphologically abnormal NMJs caused an unreliable neuromuscular transmission in the 

GARS-mutant mice. High frequency nerve stimulation evoked a decrease in the amplitude of 

complex motor unit potentials leading to the failure in the muscle force (Seburn et al., 2006; 

Spaulding et al., 2016). Motor endplate current recordings indicated presynaptic defects in the 

GARS-mutant mice models, which correlated with disease severity and progressed with age. 

There was a decrease in the potential-evoke release and a reduced amount of neurotransmitter 

release at the mutant NMJs, which failed to initiate muscle action potentials. Although the 

structurally impaired nerve terminals contained fewer synaptic vesicles, the vesicle process 

and trafficking remained intact. The frequency of spontaneous transmitter release was 

decreased with a maintained postsynaptic current indicating unaffected postsynaptic receptor 

density. High frequency repetitive nerve stimulation induces an initial release potentiation 

followed by a moderate depression at normal NMJ. In mutant NMJs the absence of release 
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potentiation suggested impaired vesicle cycling, while the marked decremental response 

indicated a reduced probability of neurotransmitter release. Overall, these defects in the 

synaptic transmission contributed to the muscle weakness and to the impaired neuromuscular 

performance in mice (Spaulding et al., 2016). The observed phenotype of neuromuscular 

dysfunction was broadly correlated with the genotype (Sleigh et al., 2014; Spaulding et al., 

2016). 

 

8.2 Aims and hypothesis 

The aim was to investigate the electrophysiological characteristics and the deficits of 

neurotransmission, which were previously described in the SYT2 and GARS-mutant NMJs, in 

patients presenting with dHMN due to GARS mutations and SMA-LED due to a heterozygous 

mutation in the SYT2 gene. In respect of the overlapping presynaptic pathology with 

congenital myasthenic syndromes, we examined the hypothesis whether the modulation of 

acetylcholine release might have a beneficial therapeutic response. 

 

8.3 Methods 

8.3.1 Patients inclusion  

A large dominant family with SYT2 mutation (Family 4) presented in Chapter 5.4.2.1; 

Chapter 7.1 and two dominant families carrying novel GARS mutations (Family 2 and 3) 

described in Chapter 5.4.2.1; Chapter 6.1.4 were selected for further examinations from the 

HMN cohort. The project received approval by local ethics committees and patients gave 

informed consent for all clinical, electrophysiology, and therapeutic studies. 

8.3.2 Therapeutic modification of the neuromuscular junction function 

8.3.2.1  Treatment with pyridostigmin 

Selected patients from the included families were treated with a trial of pyridostigmine 60 mg, 

three times daily. 

Pyridostigmine potentiates the effect of acetylcholine by inhibiting acetylcholinesterase in the 

synaptic cleft. It is the preferred symptomatic treatment of myasthenia gravis and it has also 

been used in the treatment of Lambert-Eaton myasthenic syndrome, even though with limited 

efficacy (Wirtz et al., 2009). 
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8.3.2.2  Treatment with 3, 4 diamino-pyridin (3,4-DAP)  

Patients were subsequently treated with a trial of 3,4-diaminopyridine (3,4-DAP) 20 mg, three 

times daily. 

3,4-DAP is a voltage-dependent potassium channel blocker, which increases calcium entry 

into the presynaptic terminal. It has been used to improve motor weakness and fatigue in 

patients with neuromuscular disorders and proved to be a beneficial therapy in Lambert-Eaton 

myasthenic syndrome (Wirtz et al., 2009; Flet et al., 2010). 

8.3.3 Neurology and physiotherapy assessments pre- and post-treatment 

Treated patients underwent detailed neurology and physiotherapy examinations with the 

assistance of Robert Muni Lofra, Physiotherapist at the Newcastle-upon-Tyne Hospitals NHS 

Trust. The patients were assessed using the CMT Neuropathy Score (CMTNSv2) (Table 3.1) 

and the Congenital Myasthenic Syndromes Scale (CMSS) before, during, and after 

medication discontinuation (Table 8.1). 

8.3.4 Electrophysiology studies of the neurotransmission pre- and post- treatment  

In addition to the baseline electrophysiology studies, repetitive nerve stimulation (RNS) and 

single fibre electromyography (SFEMG) were carried out in the patients by Dr Roger 

Whittaker at the Newcastle-upon-Tyne Hospitals NHS Trust (Chapter 3.1.2).  

SFEMG measures the variability in the initiation of muscle fibre action potentials (“jitter”) 

and the failures of neuromuscular transmission (“blocking”). This is the most sensitive test of 

neuromuscular instability. Normal muscles show jitter and blocking in no more than 10% of 

the fibres. SFEMG was performed using Natus Neurology disposable 30G concentric needles 

with a bandpass of 2 to 10 kHz.  

RNS was performed on the abductor digiti minimus, abductor pollicis brevis (APB), and 

tibialis anterior (TA) muscles. Ten supramaximal stimuli were applied, with the percentage 

increment or decrement calculated between the first and fourth response. An amplitude 

increase or decrease of greater than 10% was regarded as significantly abnormal, indicating 

neurotransmission defect.  

To assess posttetanic potentiation, single supramaximal stimuli were applied at least 60 

seconds apart to establish the baseline amplitude of the compound muscle action potential 

(CMAP). Participants were then asked to make a 10-second isometric maximum voluntary 

contraction (MVC) against resistance. Single supramaximal CMAP responses were then 

recorded every 30 seconds for 5 to 10 minutes, with longer time intervals up to 60 minutes 

(Whittaker et al., 2015). 
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Table 8.1 Baseline CMSS and CMTNSv2 values and beside 3,4 DAP therapy 
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8.4 Results  

8.4.1 Pre- and post-treatment investigations in the SYT2 mutant patients 

8.4.1.1  Neurology and physiotherapy findings pre- and post-treatment  

The neurology examination of the patients was consistent with the diagnosis of SMA-LED, a 

non-progressive lower extremity predominant distal hereditary motor neuropathy. Deep 

tendon reflexes were absent, but returned following physical exercise, which has been 

described in Lambert-Eaton myasthenic syndrome. Baseline CMSS values were recorded in 

the selected patients along with the CMTNSv2 scores. 

The introduction of pyridostigmine in the proband (III.2) of Family 4 and in her mother (II.2) 

(Chapter 7.1.4.1) (Figure 7.1) did not show beneficial effect on their muscle strength or daily 

activities. The CMSS values showed no difference after 1 month of therapy.  

Subsequently, the patients were commenced on 3,4-DAP. Both patients reported a mild 

improvement regarding their exercise tolerance and daily activities. The CMSS evaluation 

confirmed an improvement in several indices, particularly in eye muscle fatigability (from 26 

and 45 seconds to 1 minute), timed head-lifting (from 45 seconds and 1 minute 30 seconds to 

2 minutes) and in other complex motor functions (Table 8.1).  

Following discontinuation of 3,4-DAP for 14 days, these values returned to the original 

assessment before therapy. 

8.4.1.2  Electrophysiology findings pre- and post-treatment 

Pre-treatment nerve conduction studies indicated a defected neuromuscular transmission. 

Low-frequency (0.5 Hz) RNS produced a decrement of -18% in patient III.2, while a 

decremental response of -20% and -15% were seen in patients III.2 and III.6, respectively. A 

brief maximum voluntary contraction (MVC) induced a significant amplitude increment in all 

of the examined muscles. The mean amplitude increase was +87.2% (range +19.0% to 

+420%) with a larger increment in lower limb versus upper limb muscles (Table 8.2).  

In order to estimate the time course of this incremental response, the study was repeated in 

every 30 seconds after MVC for 10 minutes. The initial increment varied between +270% and 

+19% and in all participants it showed an initial decay over 2 to 3 minutes followed by a 

persistent +10% potentiation for the entire 10 minutes (Figure 8.1). A particularly striking 

response (+187%) was observed in the patient III.2. However, the potentiated response 

decayed over the study period, it still remained increased at +53% even after 60 minutes 

(Figure 8.1). 
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Table 8.2 Pre-treatment electric studies with low-frequency RNS and brief MVC 

(modified from Whittaker et al., 2015) 

 

 

Figure 8.1 Marked and sustained post-tetanic potentiation following brief MVC 

A) Electrodes over the APB muscle and supramaximal electrical 

stimulation was applied to the median nerve. Marked incremental response 

in CMAP amplitude following brief MVC.  

B) Prolonged time course in decay of post-tetanic potentiation in patient 

III/2 lasting at least for 60 minutes.  

C) Posttetanic potentiation lasting at least 10 minutes in all tested muscles 

and patients 

(modified from Whittaker et al., 2015)  
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SFEMG recorded an increased jitter with intermittent blocking and the mean consecutive 

jitter difference (MCD) was 193 ms (upper limit 50 ms) indicating a significant transmission 

failure. 

The therapy effects were monitored by repeated electrophysiology studies. Beside the applied 

pyridostigmine therapy the proportion of fibre pairs showing increased jitter fell to 87%, with 

blocking in 25% and the mean consecutive jitter difference was 139 ms (upper limit 50 ms).  

Following the treatment with 3, 4-DAP the increased jitter fell further to 70%, with 

intermittent blocking in 15% and a mean consecutive difference of 93 ms. Neither medication 

had a significant effect on the baseline CMAP amplitudes or the degree of the response 

facilitation (Figure 8.2). 

8.4.2 Pre- and post-treatment investigations in the GARS mutant patients 

8.4.2.1  Neurology and physiotherapy findings pre- and post-treatment   

Detailed clinical assessments are still ongoing in the investigated GARS-mutant families. The 

patients are currently treated with pyridostigmine therapy. They reported a lack of subjective 

improvement in their muscle weakness or fatigability.  

Referring to a recent trial of synaptic modification by drugs tested in GARS-mutant mice; the 

introduction of physostigmine had a beneficial impact on the muscle performance, while 3,4-

DAP proved not to be efficient despite its ability to increase the neurotransmitter release at the 

mutant synapses (Spaulding et al., 2016). 

8.4.2.2  Electrophysiology findings pre- and post-treatment 

Pre-treatment electrophysiology studies showed ambivalent evidence of NMJ pathology in 

Family 2 carrying the c.647A>G, p.His216Arg missense mutation in the GARS gene. 

Repetitive nerve stimulation showed a decremental response in the right trapezius muscle of 

the patient II/1, while SFEMG of the extensor digitorum communis showed an increased jitter 

(12%). In patient III/1 there was no convincing evidence of a neuromuscular transmission 

defect. 

In Family 3 carrying the c.1528A>C, p.Lys510Gln missense GARS mutation there was an 

evidence of NMJ instability. SFEMG recorded an increased jitter in the extensor digitorum 

communis (40% with 5% block) and in the tibialis anterior (19% with no block) in patient 

II/4, while in her granddaughter IV/3 RNS detected 30% increment in the right tibialis 

anterior (Chapter 6.1.4.3). 

We are planning to perform post-treatment electrophysiology studies in both families once the 

trial of treatment will be completed. 
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Figure 8.2 Effects of treatment with pyridostigmine and 3,4-DAP 

A) There was no consistent change in initial CMAP amplitude 

B) There was no change in percentage incremental response 

following 10-second MVC.  

C) Reduction in the percentage of muscle fiber pairs showing 

jitter and blocking, a greater effect with 3,4-DAP treatment 

D) Reduction in the mean consecutive jitter, a greater reduction 

with 3,4-DAP treatment. 

(Whittaker et al., 2015) 
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8.5 Discussion  

8.5.1 The neurotransmission defect and effects of the therapy in SYT2 mutant patients 

We carried out detailed evaluations in order to characterise the neurological and 

electrophysiological phenotype related to the c.923C>T, p.Pro308Leu SYT2 mutation in a 

dominant multigenerational family. The neurology presentation was compatible with a non-

progressive distal hereditary motor neuropathy with lower extremity dominance, SMA-LED. 

The accompanying fatigable muscle weakness and the reflex facilitation following exercise 

suggested a neuromuscular transmission failure. This prompted us to perform extensive 

electrophysiology assessments and to investigate the effects of neurotransmission modifying 

agents in some affected family members. 

Electrophysiology studies of the patients indicated a presynaptic deficit of transmitter release, 

similarly to what was described in SYT2 mutant animal models. Decreased evoked synaptic 

release in the mutant NMJs manifested as reduced amplitude CMAP response and as a 

decrementing response to low-frequency (0.5-Hz) nerve stimulation. Increased facilitation of 

evoked release produced a marked incremental response either at 50-Hz nerve stimulation or 

following brief maximal volume contraction. The presumable cause of this is that the raised 

intracellular calcium overcomes the reduced affinity of the mutant calcium-binding domain. 

The accumulating calcium during high-frequency stimulus trains triggers an increased 

asynchronous release and an enhanced spontaneous fusion rate. Posttetanic potentiation was 

detected in all patients and the incremental response decayed over a markedly prolonged time 

course. Posttetanic potentiation can also be prolonged in conditions with reduced presynaptic 

transmitter release, such as Lambert-Eaton myasthenic syndrome and infantile botulism, but 

the extent of potentiation lasting up to 60 minutes observed in one of the SYT2 patient was 

unique. The molecular mechanism of the prolonged posttetanic potentiation still needs to be 

elucidated. SYT2 acts not only as a calcium sensor for vesicle release but also plays a role in 

vesicle priming and tethering. The redistribution of presynaptic vesicles or posttranslation 

modification of SYT2 or of another component may influence the fusion machinery and may 

lead to a long-lasting increase in release probability. 

Given the evidence of accompanying significant NMJ dysfunction related to the SYT2 

mutation, we designed a therapy trial with presynaptic modifying medications introduced in 

selected patients of the family. We performed serial clinical and electrophysiological 

assessments in the patients before, during and after therapy. The pyridostigmine trial resulted 

in no valuable changes of CMSS after one month of therapy. Subsequently, the patients were 

introduced on 3,4-diaminopyridine (3,4-DAP), which caused a reduction in fatigable muscle 
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weakness and an improvement in several CMSS indices. None of the medications influenced 

the baseline CMAP amplitudes and the response facilitation on RNS. However, the SFEMG 

recordings indicated a fall in the increased jittering, more with the 3,4-DAP therapy, and 

revealed an improvement in the synaptic transmission. These preliminary results suggest the 

potential treatability of the condition, however long term effects of NMJ treatment will still 

need to be evaluated. 

8.5.2 The neurotransmission defect and effects of therapy in GARS mutant patients  

We detected variable degree of NMJ transmission defect in the patients from the GARS-

mutant families. This is in agreement with the observation that different mutant alleles cause a 

variably severe impairment of the synaptic transmission in mice GARS models (Sleigh et al., 

2014; Spaulding et al., 2016). Animal studies revealed that an early maturation defect affects 

the GARS-mutant NMJs, which is coupled with degeneration processes and results in a 

presynaptic transmission defect. Mutant NMJs contributed to muscle weakness in mice, 

which could be overcome by introducing physostigmine (Spaulding et al., 2016). This 

suggested that the introduction of drugs, which modify presynaptic transmission at the mutant 

NMJs, might be beneficial for treating neuromuscular symptoms of GARS-mutant patients. 

Detailed electrophysiological and neurological follow-up of these patients beside 

pyridostigmine treatment is still ongoing. 

 

8.6 Conclusion 

We described the electro-clinical features of the novel human neuromuscular syndrome 

caused by dominant mutations in the synaptic vesicle calcium sensor SYT2. Electrophysiology 

studies revealed a presynaptic deficit in the neurotransmitter release and a post-tetanic 

potentiation with a uniquely prolonged decay. Pharmacologic interventions resulted in both a 

clinical benefit and an improvement in the neuromuscular transmission. We suggested that 

SYT2 mutations cause a potentially treatable disease, which is of great clinical relevance since 

understanding its mechanism might identify a specific treatment strategy in neuropathies. 

Further detailed electrophysiology studies in more patients, including the GARS-mutant 

families will define, whether an abnormal neuromuscular transmission is characteristic for 

specific dHMN-related mutations and, whether this could be used as a target in therapy of 

some neuropathy subgroups to improve the motor function (Whittaker et al., 2015).
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Chapter 9. Conclusion and future directions 

 

 

9.1 Overview 

The improving genetic testing technology has led to a rapid increase in the discovery of CMT-

causing gene mutations. More and more patients can be genetically diagnosed not only with 

common, but also with rare CMT forms. The complexity of the disease has been unravelled, 

phenotype-genotype correlations have become apparent and diverse disease mechanisms have 

become better understood. The introduction of natural history studies enables to refine the 

relationship between the patient phenotype and genotype in order to reach a clinical diagnosis 

and to determine genetic screening strategies. Establishing a genetic diagnosis supports the 

clinical classification, guides the disease prognosis and provides the patients and their family 

with an accurate risk assessment for genetic counselling. The detection of common and 

converging disease pathways might provide future options for specific treatments. 

 

9.2 Summary of the Thesis results 

9.2.1 Clinical and genetic analysis of the hereditary motor neuropathy cohort 

In this Thesis detailed investigations have been carried out in a large cohort of 105 patients of 

North-East England origin, in order to better understand the clinical and genetic heterogeneity 

of hereditary motor neuropathies and to explore potential disease mechanisms. 

 

The minimum prevalence of dHMN in the examined cohort was 2.14/100.000 

inhabitants (95% CI: 1.62-2.66), which was significantly higher than suggested by previous 

population surveys. Precise electrophysiology investigations have been performed to 

differentiate between dHMN and motor CMT2 that were both commonly characterised by 

motor predominant symptoms. However, the clear distinction between the two clinical 

categories has remained challenging in some cases by all applied clinical, electrophysiological 

and molecular methods. Therefore we suggested that the dHMN should be considered 

clinically as a subcategory of CMT. Furthermore, distal HMN primarily affects the lower 

motor neurons but in patients classified into the subgroup of HMN plus, which was 

introduced in this Thesis, the distal HMN manifestation showed a significant overlap with 

other motor neuron diseases. 
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Extensive genetic screening was performed in the studied HMN cohort to assess the 

genetic spectrum and the mutation detection rate by implicating next generation sequencing 

methods. A significant 47.9% mutation detection rate was achieved considering all clinical 

HMN subgroups. Mutations were confirmed in 35.6% and in an additional 12.3% they were 

possibly causative. The diagnostic success was even more remarkable in the distal HMN 

group, where the genetic cause was confirmed in 32.5% and further 10% possibly causative 

gene mutations were identified. The significant increase in the detection rate, compared to the 

previously given 20% positive findings, could be attributed in part to improved genetic 

technology. The results of this Thesis suggested that next generation sequencing should be 

a routine clinical procedure in this group of disorders. Furthermore, the importance of 

international genetic data sharing was underscored in this Thesis by the discovery of the 

SYT2 novel gene. 

 

9.2.2 Phenotype-genotype correlations in the hereditary motor neuropathy cohort 

Thorough clinical characterisation of phenotypes and pragmatic segregation analyses of 

identified genetic variants helped us to determine phenotype-genotype correlations and to 

distinguish between overlapping allelic phenotypes. 

 

The natural history of aminoacyl-tRNA synthetases (ARS)-related motor 

neuropathies has been investigated in detail through a cohort of AARS and GARS mutant 

families. The phenotype spectrum was widely heterogeneous in both disease groups with a 

large variability in the age of onset, clinical severity and electrophysiological findings. The 

presence of severe foot drop was common among the patients and split hand malformation 

was a frequently seen overlapping feature. Abnormal neuromuscular transmission was 

detected in some of the GARS patients keeping with the evidence of NMJ defect in GARS 

animal models. Targeted electrophysiology testing of the AARS patients could not record a 

concomitant NMJ dysfunction but the demyelination process here was larger beside the 

axonal degeneration and resulted in a common intermediate neuropathy. Genetic screening 

for ARS-related mutations should always be considered in axonal neuropathology. Among 

the few dominant loss of function AARS mutations, the p.Arg329His variant is considered 

a recurrent mutation worldwide, but the haplotype similarity noted in the cohort families 

raised the potential of a founder effect. On the contrary, many mutations have already been 

described in the GARS gene with many implicated pathological pathways. The mutational 

spectrum was extended with 2 novel GARS variants identified in the studied families. 
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Aberrant interactions were found between Nrp1 and mutant proteins in the studied GARS 

and AARS patients, which suggested a common pathology mechanism among ARS-related 

neuropathies and might serve as a biomarker for the molecular diagnosis. 

 

Many recessive and compound heterozygous mutations in the IGHMBP2 gene have 

been described to cause the SMARD1 phenotype or its juvenile-onset form. A novel 

IGHMBP2- related phenotype has been described in a recent patient cohort, which 

included a family investigated in this Thesis. The common presentation was an early-onset, 

slowly progressive axonal motor predominant CMT2 without concomitant respiratory 

involvement and with a better prognosis. The hemizygous c.1813C>T, p.Arg605*X stop 

mutation found on cDNA sequencing in the studied family warrants that single 

heterozygous IGHMBP2 mutations identified by next generation sequencing should be 

meticulously investigated toward pathogenicity. The mutation specific impairment of the 

residual protein level correlates with the clinical severity and provides an explanation for 

the broad phenotype heterogeneity. 

 

The large genotype heterogeneity is well known in dominant TRPV4-related 

conditions. The diverse phenotype manifestation in TRPV4 neuropathies was further 

underscored in the families studied in this Thesis. It was highlighted that TRPV4 mutations 

should be considered even with a highly variable symptom presentation in the same family 

due to reduced penetrance, and with a combined presentation of axonal motor neuropathy and 

skeletal dysplasia. The accumulation of cytoplasmic basophilic inclusions in the muscle 

cells of one of the patients suggested the possibility that the retention of misfolded proteins 

might be implicated in the TRPV4 pathogenesis, similarly to the heat shock protein genes. 

 

Two families, examined in this Thesis with SMA-LED phenotype, have expanded 

the worldwide patient cohort of p.Ser107Leu BICD2 mutation caused motor neuropathies. 

Haplotype investigation in the families further supported that the p.Ser107Leu in the 

BICD2 gene is a mutation ‘hot spot’ and the occurrence of de novo BICD2 mutations 

might be frequent. Therefore, sporadic SMA-LED cases should be screened for BICD2 

mutations, in particular when signs of Achilles contracture, scapular winging and specific 

muscle MRI changes provide a clinical hint. 

 

Numerous diverse mutations in the ATP7A gene present with a broad phenotype spectrum, 

including Menkes disease with severe neurological degeneration, OHS with connective tissue 
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disorders and the X-linked HMN. However, clear phenotype-genotype correlations have not 

yet been clarified. A novel ATP7A-related phenotype was demonstrated in this Thesis, 

where an overlap between different copper metabolism disorders resulted in the complex 

manifestation of severe motor neurono- and neuropathy. 

9.2.3 Novel disease genes and mechanisms in the hereditary motor neuropathy cohort 

The detection of novel disease genes and unravelling novel mechanism pathways, previously 

not implicated in hereditary motor neuropathies, were main goals of this Thesis investigation. 

 

A large dominant family was described in this Thesis with non-progressive SMA-

LED phenotype and presynaptic neuromuscular junction defect. The identified novel SYT2 

gene mutation was linked for the first time to a human disease. Mutations in the SYT2 gene 

represent an important cause of disorders of the human peripheral motor nerve terminal with 

phenotypes ranging between distal hereditary motor neuropathy and presynaptic NMJ 

dysfunction. Mutant presynaptic protein changes might hence be considered in the 

pathomechanism of neuropathy subgroups. 

 

Overlapping motor neuropathy phenotypes presenting with demyelinating features 

were demonstrated in relation to basic biological pathways in the peripheral nerves. 

Transcription factors and signalling pathways are known to be linked to myelination. These 

pathogenic or likely pathogenic mutations in rare, known disease genes have not been 

reported yet in association with peripheral neuropathy. Further studies will be required to 

examine these transcription factors and signal transduction pathways in the mechanisms of 

neuromuscular pathology. 

A de novo PTEN mutation was identified in a patient with progressive multifocal 

motor neuropathy with demyelinating features, a phenotype that has not been related yet to 

PTEN mutations in humans. PTEN is a lipid phosphatase that inhibits PI3-K and the 

subsequent PIP3 dysregulation and the constitutive hyperactivation of the Akt/mTOR 

signalling pathway in the Schwann cells might be implicated in the pathology. Experimental 

PTEN suppression in the mice model led to a similar neuropathology with tomacula formation 

and myelin outfoldings. 

Homozygous mutations affected a key transcriptional regulation region in the 

STAT5B gene and presented with combined postnatal growth retardation and 

demyelinating motor neuropathy in a consanguineous family. Cyclin D1 overexpression 

due to abnormal STAT5B - IGF1 interactions and the disruption of the IGF/mTORC1 
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signalling cascade might serve a hypothetic pathway that led to an aberrant peripheral 

myelination process.  

A Holt Oram syndrome-causing TBX5 mutation presented with fatigable motor 

neuropathy with demyelination and NMJ defect in a studied family. The previously 

described mutation induces conformational change and impairs DNA-binding of the TBX5, 

which participates in transcriptional regulatory cascades. Abnormal protein interactions in a 

complex signalling network might be responsible for the pathomechanism.  

 

A novel mitochondrial pathway affecting the 2-oxoadipate metabolism has been suggested 

to cause dHMN in two independent families. The DHTKD1 mutation segregated with crane-

leg and ‘ulnar’ split hand malformation in a dominant family. The female carrying the 

homozygous SLC25A21 mutation presented with severe dSMA and multisystem symptoms 

resembling the abnormalities seen in SLC25A21 mutant mice. Metabolomics studies 

supported the impairment of the 2-oxoadipate pathway in both families. Identification of 

further patients with the same gene mutations or genes involved in the same pathway would 

help to determine whether the mitochondrial dysfunction caused by abnormal 2-oxoadipate 

metabolism might be implicated in the pathology of hereditary motor neuropathies. 

 

9.2.4 Novel therapy approaches in hereditary motor neuropathies 

Unravelling the function of neuropathy-causing genes and proteins and better understanding 

the implicated disease pathways might provide a basis for the development of novel therapy 

avenues. The objective of this Thesis was to determine common pathomechanisms and targets 

for therapy approaches in hereditary motor neuropathies. 

The Thesis investigations suggested that the abnormal neuromuscular transmission 

provides a treatable target in some genetic forms of motor neuropathies. Electro-clinical 

features of presynaptic deficit and post-tetanic potentiation were described in the novel 

neuromuscular syndrome caused by dominant SYT2 mutations, where therapeutic 

modification of the neurotransmission was proven to have beneficial effects. GARS-mutant 

neuromuscular junction pathology was suggested to be a target to develop therapies. The 

neuromuscular junction dysfunction might be considered as a not yet recognised treatable 

aspect of axonal motor neuropathies with a great clinical relevance. 
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9.3 Concluding remarks 

The detailed phenotype characterisation and genotype analysis using next generation methods 

has led to the increased mutation detection rate in hereditary motor neuropathies and 

highlighted that the clinical expertise is essential in confirming the diagnosis of inherited 

motor neuropathies. The detection of mutations in rare disease genes, not yet implicated in 

neuropathy, suggested that the neuropathy can be part of a more complex genetic disease and 

that related key clinical signs are important to recognise these diseases. (Bansagi et al, 2017). 

Well-defined phenotype-genotype correlations and detection of molecular pathways 

facilitated the identification of molecular targets for the development of novel treatment 

options. No common shared variants were detected in the undiagnosed HMN cases suggesting 

further genetic heterogeneity in the condition. Most of our undiagnosed patients have 

undergone whole genome sequencing, which might help to reveal further genetic factors. 
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Appendix A 

 

 

Genetic heterogeneity of motor neuropathies 

 

Boglarka Bansagi, Helen Griffin, Roger Whittaker, Thalia Antoniadi, Teresinha Evangelista, 

James Miller, Mark Greenslade, Natalie Forester, Jennifer Duff, Anna Bradshaw, Stephanie 

Kleinle, Veronika Boczonadi, Hannah Steele, Venkatateswaran Ramesh, Edit Franko, Angela 

Pyle, Hanns Lochmüller, Patrick F. Chinnery, Rita Horvath 

 

Neurology, 2017; Ahead of print 

 

Abstract  

Objective: We studied the prevalence, the molecular cause and clinical presentation of 

hereditary motor neuropathies in a large cohort of patients from the North of England. 

Methods: Detailed neurological and electrophysiological assessments and next generation 

panel testing or whole exome sequencing were performed in 105 patients with clinical 

symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor 

neuropathy (motor CMT2, 16 patients) or complex neurological disease predominantly 

affecting the motor nerves (HMN plus, 25 patients).  

Results: The prevalence of dHMN is 2.14 affected individuals per 100.000 inhabitants (95% 

confidence interval: 1.62-2.66) in the North of England. Causative mutations were identified 

in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 

32.5%, which is higher than previously reported (20%). We detected a defect of 

neuromuscular transmission in 12 cases and identified potentially causative mutations in 4 

patients with demyelinating multifocal motor neuropathy. 

Conclusions: Many of the genes were shared between dHMN and motor CMT2, indicating 

identical disease mechanisms therefore we suggest changing the classification and include 

dHMN also as a subcategory of CMT. Abnormal neuromuscular transmission in some genetic 

forms provides a treatable target to develop therapies. 

 



 

 206 

Appendix B 

 

Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease 

type 2 

 

Ellen Cottenie, Andrzej Kochanski, Albena Jordanova, Boglarka Bansagi, Magdalena 

Zimon, Alejandro Horga, Zane Jaunmuktane, Paola Saveri, Vedrana Milic Rasic, Jonathan 

Baets, Marina Bartsakoulia, Rafal Ploski, Pawel Teterycz, Milos Nikolic, Ros Quinlivan, 

Matilde Laura, Mary G. Sweeney, Franco Taroni, Michael P. Lunn, Isabella Moroni, Michael 

Gonzalez, Michael G. Hanna, Conceicao Bettencourt, Elodie Chabrol, Andre Franke, Katja 

von Au, Markus Schilhabel, Dagmara Kabzinska, Irena Hausmanowa-Petrusewicz, Sebastian 

Brandner, Siew Choo Lim, Haiwei Song, Byung-Ok Choi, Rita Horvath, Ki-Wha Chung, 

Stephan Zuchner, Davide Pareyson, Matthew Harms, Mary M. Reilly, Henry Houlden 

 

Am. J. Hum. Genet. 2014; 95(5): 590-601. doi: 10.1016/j.ajhg.2014.10.002. 

 

Abstract 

Using a combination of exome sequencing and linkage analysis, we investigated an English 

family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 

2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding 

protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 

families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually 

lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most 

infants die before 1 year of age. The individuals with CMT2 described here, have slowly 

progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, 

but no major respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were 

mainly loss-of-function nonsense in the 5’ region of the gene in combination with a truncating 

frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in 

CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast 

and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in 

CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype 

differences are related to the IGHMBP2 protein levels. 
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Appendix C 

 

Genotype/phenotype correlations in AARS-related neuropathy in a cohort of patients 

from the United Kingdom and Ireland 

 

Boglarka Bansagi, Thalia Antoniadi, Sarah Burton-Jones, Sinead M. Murphy, John McHugh, 

Michael Alexander, Richard Wells, Joanna Davies, David Hilton-Jones, Hanns Lochmüller, 

Patrick Chinnery, Rita Horvath 

 

J. Neurol. 2015; 262(8): 1899-908. doi: 10.1007/s00415-015-7778-4. 

 

Abstract  

Charcot–Marie–Tooth disease (CMT) is the most common inherited neuropathy with 

heterogeneous clinical presentation and genetic background. The axonal form (CMT2) is 

characterised by decreased action potentials indicating primary axonal damage. The 

underlying pathology involves axonal degeneration which is supposed to be related to axonal 

protein dysfunction caused by various gene mutations. The overlapping clinical manifestation 

of CMT2 with distal hereditary motor neuropathy (dHMN) and intermediate CMT causes 

further diagnostic difficulties. Aminoacyl-tRNA synthetases have been implicated in the 

pathomechanism of CMT2. They have an essential role in protein translation by attaching 

amino acids to their cognate tRNAs. To date six families have been reported worldwide with 

dominant missense alanyl-tRNA synthetase (AARS) mutations leading to clinically 

heterogeneous axonal neuropathies. The pathomechanism of some variants could be explained 

by impaired amino acylation activity while other variants implicating an editing defect need to 

be further investigated. Here, we report a cohort of six additional families originating from the 

United Kingdom and Ireland with dominant AARS-related neuropathies. The phenotypic 

manifestation was distal lower limb predominant sensorimotor neuropathy but upper limb 

impairment with split hand deformity occasionally associated. Nerve conduction studies 

revealed significant demyelination accompanying the axonal lesion in motor and sensory 

nerves. Five families have the c.986G>A, p.Arg329His variant, further supporting that this is 

a recurrent loss of function variant. The sixth family, of Irish origin, had a novel missense 

variant, c.2063A>G, p.Glu688Gly. We discuss our findings and the associated phenotypic 

heterogeneity in these families, which expands the clinical spectrum of AARS-related 

neuropathies. 
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Appendix D 

 

The p.Ser107Leu in BICD2 is a mutation ‘hot spot’ causing distal spinal muscular 

atrophy 

 

Boglarka Bansagi, Helen Griffin, Venkateswaran Ramesh, Jennifer Duff, Angela Pyle, 

Patrick F. Chinnery, Rita Horvath 

 

Brain 2015; 138(Pt 11):e391. doi: 10.1093/brain/awv159. 

 

Letter to the Editor 
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Appendix E 

 

Phenotypic variability of TRPV4 related neuropathies 

 

Teresinha Evangelista, Boglarka Bansagi, Angela Pyle, Helen Griffin, Konstantinos 

Douroudis, Tuomo Polvikoski, Thalia Antoniadi, Kate Bushby, Volker Straub, Patrick F. 

Chinnery, Hanns Lochmüller, Rita Horvath 

 

Neuromuscul. Disord. 2015; 25(6): 516-21. doi: 10.1016/j.nmd.2015.03.007. 

 

Abstract 

Mutations in the transient receptor potential vanilloid 4 (TRPV4) gene have been associated 

with autosomal-dominant skeletal dysplasias and peripheral nervous system syndromes 

(PNSS). PNSS include Charcot–Marie–Tooth disease (CMT) type 2C, congenital spinal 

muscular atrophy and arthrogryposis and scapuloperoneal spinal muscular atrophy.We report 

the clinical, electrophysiological and muscle biopsy findings in two unrelated patients with 

two novel heterozygous missense mutations in the TRPV4 gene. Whole exome sequencing 

was carried out on genomic DNA using IlluminaTruseqTM 62Mb exome capture. Patient 1 

harbours a de novo c.805C > T, p.Arg269Cys mutation. Clinically, this patient shows signs of 

both scapuloperoneal spinal muscular atrophy and skeletal dysplasia. Patient 2 harbours a 

novel c.184G > A, p.Asp62Asn mutation. While the clinical phenotype is compatible with 

CMT type 2C with the patient’s muscle harbours basophilic inclusions. Mutations in the 

TRPV4 gene have a broad phenotypic variability and disease severity and may share a similar 

pathogenic mechanism with Heat Shock Protein related neuropathies. 
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Appendix F 

 

Phenotypic convergence of Menkes and Wilson disease 

 

Boglarka Bansagi, David Lewis-Smith, Endre Pal, Jennifer Duff, Helen Griffin, Angela 

Pyle, Juliane S. Müller, Gabor Rudas, Zsuzsanna Aranyi, Hanns Lochmüller, Patrick F. 

Chinnery, Rita Horvath 

 

Neurol. Genet. 2016; 2(6): e119. 

 

Abstract 

Menkes disease is an X-linked multisystem disorder with epilepsy, kinky hair, and 

neurodegeneration caused by mutations in the copper transporter ATP7A. Other ATP7A 

mutations have been linked to juvenile occipital horn syndrome and adult-onset hereditary 

motor neuropathy. About 5%-10% of the patients present with "atypical Menkes disease" 

characterized by longer survival, cerebellar ataxia, and developmental delay. The intracellular 

copper transport is regulated by 2 P type ATPase copper transporters ATP7A and ATP7B. 

These proteins are expressed in the trans-Golgi network that guides copper to intracellular 

compartments, and in copper excess, it relocates copper to the plasma membrane to pump it 

out from the cells. ATP7B mutations cause Wilson disease with dystonia, ataxia, tremor, and 

abnormal copper accumulation in the brain, liver, and other organs. 
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Appendix G 

 

Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton 

myasthenic syndrome and nonprogressive motor neuropathy 

 

David N. Herrmann, Rita Horvath, Janet E. Sowden, Michael Gonzales, Avencia Sanchez-

Mejias, Zhuo Guan, Roger G. Whittaker, Jorge L. Almodovar, Maria Lane, Boglarka 

Bansagi, Angela Pyle, Veronika Boczonadi, Hanns Lochmüller, Helen Griffin, Patrick F. 

Chinnery, Thomas E. Lloyd, J. Troy Littleton, Stephan Zuchner 

 

Am. J. Hum. Genet. 2014; 95(3): 332-9. doi: 10.1016/j.ajhg.2014.08.007. 

 

Abstract 

Synaptotagmin 2 is a synaptic vesicle protein that functions as a calcium sensor for 

neurotransmission but has not been previously associated with human disease. Via whole-

exome sequencing, we identified heterozygous missense mutations in the C2B calcium-

binding domain of the gene encoding Synaptotagmin 2 in two multigenerational families 

presenting with peripheral motor neuron syndromes. An essential calcium-binding aspartate 

residue, Asp307Ala, was disrupted by a c.920A>C change in one family that presented with 

an autosomal-dominant presynaptic neuromuscular junction disorder resembling Lambert-

Eaton myasthenic syndrome. A c.923C>T variant affecting an adjacent residue p.Pro308Leu 

produced a presynaptic neuromuscular junction defect and a dominant hereditary motor 

neuropathy in a second family. Characterization of the mutation homologous to the human 

c.920A>C variant in Drosophila Synaptotagmin revealed a dominant disruption of synaptic 

vesicle exocytosis using this transgenic model. These findings indicate that Synaptotagmin 2 

regulates neurotransmitter release at human peripheral motor nerve terminals. In addition, 

mutations in the Synaptotagmin 2 C2B domain represent an important cause of presynaptic 

congenital myasthenic syndromes and link them with hereditary motor axonopathies. 

 



 

 212 

Appendix H 

 

Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular 

syndrome 

 

Roger G Whittaker, David N Herrmann, Boglarka Bansagi, Bashar Awwad Shiekh Hasan, 

Robert Muni Lofra, Eric L. Logigian, Janet E. Sowden, Jorge L. Almodovar, J. Troy Littleton, 

Stephan Zuchner, Rita Horvath, Hanns Lochmüller 

 

Neurology 2015; 85(22): 1964-71. doi: 10.1212/WNL.0000000000002185. 

 

Abstract 

Objectives: To describe the clinical and electrophysiologic features of synaptotagmin II 

(SYT2) mutations, a novel neuromuscular syndrome characterized by foot deformities and 

fatigable ocular and lower limb weakness, and the response to modulators of acetylcholine 

release. 

Methods: We performed detailed clinical and neurophysiologic assessment in 2 

multigenerational families with dominant SYT2 mutations c.920T>G, p.Asp307Ala and 

c.923G>A, p.Pro308Leu. Serial clinical and electrophysiologic assessments were performed 

in members of one family treated first with pyridostigmine and then with 3,4-

diaminopyridine. 

Results: Electrophysiologic testing revealed features indicative of a presynaptic deficit in 

neurotransmitter release with posttetanic potentiation lasting up to 60 minutes. Treatment with 

3,4-diaminopyridine produced both a clinical benefit and an improvement in neuromuscular 

transmission. 

Conclusion: SYT2 mutations cause a novel and potentially treatable complex presynaptic 

congenital myasthenic syndrome characterized by motor neuropathy causing lower limb 

wasting and foot deformities, with reflex potentiation following exercise and a uniquely 

prolonged period of posttetanic potentiation. 
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