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Abstract

A lot of effort is made by pharmaceutical companies on the research and development of new

pharmaceutical products and processes using the latest in quality by design tools, and process

analytical technologies. Older pharmaceutical processes that were developed without the use

of these tools are, however, somewhat neglected. Significant quantities of process data are

routinely collected and stored but the information contained within this data is not

extracted.

Extensive literature on multivariate statistical process monitoring and control exists for

exploring both batch and continuous process data. However, these methodologies rely on data

from processes that are relatively well understood or controlled. Many industrial processes

show batch to batch variability, which may be tolerated as it is not detrimental to the quality of

the product, and the impact of this variability is not fully understood.

The thesis presents a framework for exploring historical batch process data, to extract insights

on where process control can be improved. The challenges presented with commercial process

data are discussed. Multivariate tools such as multi-way principal component analysis are used

to investigate variability in process data. The framework presented discusses the

pre-processing steps necessary with batch process data, followed by outlier detection, and

finally multivariate modelling of the data to identify where the process could benefit from

improved understanding and control.

This framework is demonstrated through the application to commercial process data from the

active pharmaceutical drug substance manufacturing process of spironolactone at Piramal

Healthcare, Morpeth, UK. In this case study, the process exhibits variability in drying times

which traditional univariate data analysis has not been able to solve. The results demonstrated

some of the challenges the use of the available data from commercial processes. Although the

results from the multivariate data analysis did not show a significant statistical difference

between the batches with long and short drying times, small differences were observed

between these two groups. Further analysis of the crystallization process using infrared

spectroscopic techniques which identified a potential root cause to the extended drying

time.
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Chapter 1. Introduction

1.1 Motivation and objectives

Pharmaceutical manufacturers spend a lot of time and money in the research and development

phase of both drug substances and drug products using the latest in Process Analytical

Technology and applying strategies such as Quality by Design, exploring design spaces and

process robustness. Older pharmaceutical products already out at the manufacturing sites, or

contract manufacturing organisations (CMOs) are, however, somewhat neglected. Older

manufacturing processes exist where a lot of data is collected from the batches being

manufactured which may contain useful information about a process.

The international conference on harmonisation of technical requirements for registration of

pharmaceuticals for human use guideline on pharmaceutical quality systems (ICH Q10 (ICH,

2008)) suggests that pharmaceutical products in the commercial manufacturing stage of the

pharmaceutical product life cycle should include activities to facilitate continual improvement.

This is not only meant in regards to the pharmaceutical product quality but also to the process

performance and controls. Additionally, ICH Q10 also recommends that improvement

opportunities are identified and evaluated and the body of knowledge on the product and

process are continually expanded.

Traditional approaches such as interrogating the process data in a univariate manner are not

always suitable due to complex interactions and the dynamic nature of the processes involved.

Other methods of changing one factor at a time, or even using factorial experimental designs,

are often difficult to implement due to the large number of factors that could be explored. An

alternative approach for increasing the understanding of processes is through the use of

multivariate statistical projection techniques such as Principal Component Analysis (PCA).

The use of multivariate methods can help in identifying some of the factors that should be

further investigated reducing both the cost and the time taken for process improvement work

carried out.
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Furthermore, as recommended in ICH Q10, changes to commercial pharmaceutical

manufacturing process should be controlled through a change control procedure.The use of a

change control procedure is a regulatory requirement for any changes made to a registered

pharmaceutical process where the change is made to a parameter, setting, or other information

detailed in the regulatory filing. The change control procedure should document the change in

detail and the risk assessment performed for the change carried out by suitably knowledgeable

persons in areas including manufacturing, quality, and regulatory affairs. Following the

change, the change control procedure should also detail a review of the change to confirm that

the objectives set out for the change have been met, and there were no deleterious impacts on

product quality as a result of the change. The ability to use the existing data of batches already

manufactured to inform which changes to make, and therefore only raising change controls for

large scale development trials on changes that are likely to significantly improve the process,

will have a significant benefit to commercial pharmaceutical manufacturing

organisations.

Statistical process control is a useful technology to identify unusual events in process data and

can be applied both on-line as a batch evolves, or off-line after a batch has been manufactured

(Grigg, 1998; Škulj et al., 2013; AlGhazzawi and Lennox, 2008; Masding and Lennox, 2010).

Traditional statistical process control methodologies are typically univariate in nature and they

only consider one process measurement at a time, ignoring the interactions between the

process variables which may also contain important information. Multivariate statistical

process control methodologies consider all of the process variables simultaneously, and can

handle collinearity in the data, and are therefore more suited to the analysis of process data

(Kourti, 2005; Kona et al., 2013; Bersimis et al., 2007; Martin et al., 1996b).

One such method is Principal Component Analysis (PCA), which through use of the

covariance structure within a dataset with correlated variables, is able to obtain a smaller

number of uncorrelated (orthogonal) principal components that describe the variability within

the original data (Wold et al., 1987; Jolliffe, 2002). Traditional PCA is not ideally suited to the

analysis of batch process data as the batch element is also a variable in the process and

therefore batch process datasets are typically three-dimensional. The multi-way approach

(Nomikos and MacGregor, 1994) can be applied to handle this additional dimension in the

data through tools such as multi-way PCA (MPCA) .

Batch processes are often dynamic in their behaviours with the resulting data often being

autocorrelated. Traditional PCA cannot deal with these dynamic behaviours, however, by
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combining ideas from other methodologies such as auto-regressive moving-average with

exogenous input (ARMAX) models the dynamic extension of PCA can be applied (DPCA)

(Chen and Liu, 2002).

Monitoring of batch trajectories through the use of multivariate projection techniques has been

achieved and a range of industrial applications demonstrating their applicability and

effectiveness have been extensively reported in the literature (Gabrielsson et al., 2002;

Simoglou et al., 2005; Garcı́a-Muñoz et al., 2003; De Beer et al., 2009; Burggraeve et al.,

2011; Sarraguça et al., 2010; Martin et al., 1996a). A number of these applications and tools,

however, have been developed and demonstrated using simulated process data. Commercial

manufacturing process data presents additional challenges with the availability and quality of

the data that must be processed before multivariate tools can be applied.

Some of the failures that these multivariate tools can identify, can also be easily identified at

the time by existing process control systems, such as equipment failures and processing errors.

These tools are, however, useful for providing an early warning of batch failure where a

corrective action can be applied, of for identifying more complex failures not picked up by

simpler control and monitoring systems.

The primary focus of this thesis is not the identification of batch failures using the traditional

multivariate statistical process control tools, but the use of these tools to identify subtle

differences in historic process data that can inform on how to improve the control and

operation of a process. Additionally, genuine data from commercial processes presents some

challenges, be this through uneven batch data alignment, number of batches, and the quality of

the data available (Wan et al., 2014; Laurı́ and Lennox, 2014; Camacho et al., 2015; Kassidas

et al., 1998; Garcı́a-Muñoz et al., 2011).

These challenges are demonstrated through the application of multivariate statistical tools to

the commercial batch manufacturing process of spironolactone drug substance at Piramal

Healthcare, Morpeth, UK. The spironolactone manufacturing process at Morpeth is important

for the business however it currently exhibits significant variability in process yield and cycle

time. Any improvements to understand or control the variability in yield and/or cycle time will

have significant benefits for the company allowing for better control, planning, and use of their

assets and workforce.
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1.1.1 Objectives

The objectives of this thesis are as follows:

• Present a framework in which to apply multivariate tools and appropriate pre-processing

techniques to industrial batch process data to extract understanding from the existing

process data

• Test the framework on the Spironolactone Active Pharmaceutical Ingredient process data

to extract information on the variable cycle times of the drying process.

1.2 Contributions of the thesis

The thesis presents a framework for exploring historical batch process data, to extract insights

on where process control can be improved. More specifically the key contributions

include:

• A framework for the application of multivariate statistical tools, specifically dynamic

multi-way principal component analysis, to commercial manufacturing process data in

the area of process control. The proposed methodology extends the existing work

through presentation of a framework including the pre-processing of commercial process

data, and more specifically details on how filtering and batch selection play an important

part of the pre-treatment process.

• Details on some of the challenges associated with applying multivariate statistical

process control tools to commercial process data. A good knowledge of the process and

its data is required in order to, amongst other things, effectively align process events, and

differentiate between unusual batch behaviours that are of interest or caused by known

events that are not of as much importance. This enables the variation associated with a

process to be reduced down to variation that describes changes in an attribute of interest.

• Demonstration of the proposed framework and challenges on commercial process data

of the spironolactone drug substance manufacturing process at Piramal Healthcare,

Morpeth, UK, to identify potential causes in variable drying times.

• Evaluation of infrared spectroscopic tools for obtaining understanding of a complex

crystallization system at lab scale. The current challenges with instrument design are

discussed. The benefit of using attenuated total reflectance Fourier transform
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mid-infrared (ATR-FTIR) spectroscopy coupled with principal component analysis to

the monitoring of the complex spironolactone crystallization is also presented.

• Identification of possible root causes of the variability in drying times of spironolactone

drug substance through the proposed framework followed by spectroscopic analysis of

the simplified crystallization process.

1.3 Layout of the thesis

The layout of the remainder of the thesis will be in the following structure.

Chapter 1 provided an introduction to the thesis including the motivations and objectives for

the research into the use of multivariate statistical tools for identification of where process

control can be improved. The main contributions of the thesis were also identified.

Chapter 2 presents the background to the spironolactone process as a case study on which the

framework is presented. The background includes details of the process chemistry including

the impurities and challenges with polymorphism. The manufacturing process is also described

in addition to the control of the process and the data that is collected from the process.

Chapter 3 introduces the pre-processing techniques and considerations used within the

framework including compressed data, missing data, alignment of batch data, centring and

scaling, and filtering. Principal component analysis is introduced in chapter 4 along with some

extensions to PCA including multi-way (MPCA), dynamic (DPCA) and some examples of

industrial case studies of PCA available in the literature.

Chapter 5 describes the application of the framework to the Spironolactone case study

beginning with the objectives and an overview of the modelling approach. Next the model

development on the dryer data is presented, followed by the model development on the reactor

data.

Chapter 6 describes the experimental work carried out using various infrared spectroscopic

techniques on the crystallization of spironolactone. Focused beam reflectance measurement

(FBRM), a tool for monitoring particle size distributions on-line, is discussed as are the

transflectance near-infrared (NIR) and attenuated total reflection Fourier transform

mid-infrared (ATR-FTIR) spectroscopic techniques. The analysis of the ATR-FTIR data using

principal component analysis as a dimensionality reduction method are presented for this case

study.
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Finally, chapter 7 summarises the key findings in the thesis and identifies some areas for future

work.
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Chapter 2. Spironolactone background

Spironolactone is an important synthetic steroid lactone drug substance used primarily for the

treatment of congestive heart failure, cirrhosis of the liver (both with and without hepatic

ascitis), primary aldosteronism, and essential hypertension (Soliman et al., 1997; Marini et al.,

2001; Chen et al., 2006). Spironolactone is a potassium sparing diuretic, promoting the

excretion of water whilst supporting the retention of potassium. Spironolactone (Aldactone

drug product) was granted marketing authorisation by the Food and Drug Administration

(FDA) on 21st January 1960 with G.D. Searle and currently 6 others hold marketing

authorisations (MA) with the FDA (Food and Drug Administration) for commercial

production.

The manufacturing facility in Morpeth, founded by G.D. Searle in 1969, has changed

ownership a number of times, and is currently owned by Piramal Healthcare. Throughout this

period, spironolactone has been one of the main drug substances produced at the site. Although

spironolactone has been off patent for a number of years, it still remains commercially

important as it took over 40 years for another therapeutic compound (eplerenone) to be found

that could compete with spironolactone, however this did not make it to market until 2002.

Additionally, the number of patents issued for applications of spironolactone and similar

molecules has increased over recent years with over 50 patents granted in 2012 (WIPO, 2012).

Spironolactone therefore remains an important product for Piramal and any improvement in

the process will have significant impact on the business.

This section introduces spironolactone and the associated manufacturing process as performed

at Piramal Healthcare, Morpeth, starting with the process chemistry, followed by the

manufacturing process, process control, and the associated process data.
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2.1 Spironolactone process chemistry

2.1.1 Overview of synthesis

There are several manufacturing routes in the literature (Weier, 1978; Cella et al., 1961;

Dryden and Markos, 1977; Somberg and Ranade, 2009) for the synthesis of spironolactone. A

change in synthesis route would require an expensive and re-registration for spironolactone

API and all of the associated drug products in each market in which it is registered. Although

Europe has the EMA (European Medicines Agency) , each country would require a

re-registration, and the requirements and time scales can vary significantly resulting in a very

costly and complicated supply chain for spironolactone. A change in route would therefore

only be considered for significant cost, environmental, legislative, or safety reasons. The

synthesis route used at Morpeth can be split into three distinct parts, each producing a

relatively stable intermediates or products.

Figure 2.1: Overview of the synthesis route from aldona to spironolactone at Piramal Healthcare

The first of these is the conversion of the starting material,

17β -hydroxy-3-oxo-pregn-4-ene-21-carboxylic acid γ-lactone (aldona), to the first

intermediate, 17β -hydroxy-3-oxo-pregn-3,5-diene ethyl enol ether-21-carboxylic acid

γ-lactone (aldona ethyl enol ether or AEEE), using triethyl-orthoformate.

Following the isolation of AEEE, it next undergoes a mono-halogenation to yield 6-bromo

AEEE, followed by a dehydrohalogenation and hydrolysis of the enol ether function to yield

the second isolated intermediate, 17β -hydroxy-3-oxo-pregn-4,6-diene-21-carboxylic acid

γ-lactone (aldadiene).

The final step to yield the spironolactone drug substance is the thiolacetylation of aldadiene

using thiolacetic acid to give 17-hydroxy-7α-acetylthio-3-oxo-17α-pregn-4-ene-21-carboxylic

acid γ-lactone acetate (spironolactone).
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Spironolactone exhibits optical isomerism from the 7-acetylthio function of the molecule. This

is seen during the synthesis of spironolactone from aldadiene where both the products

17-hydroxy-7α-acetylthio-3-oxo-17α-pregn-4-ene-21-carboxylic acid γ-lactone acetate

(7α-spironolactone) and 17-hydroxy-7β -acetylthio-3-oxo-17α-pregn-4-ene-21-carboxylic

acid γ-lactone acetate (7β -spironolactone) are formed (Somberg and Ranade, 2009). The

thiolacetylation of aldadiene is reversible so the reaction system is able to convert the

undesired 7β -spironolactone to the desired and efficacious 7α-spironolactone given

appropriate conditions.

2.1.2 Spironolactone impurities

Both the chemistry involved in the synthesis of spironolactone and the raw materials used leave

room for undesirable side reactions to take place throughout the process. This invariably leads

to impurities in the final product (Chen et al., 2006). Thiolacetic acid for example, degrades in

both the presence of oxygen and water to several different products. Furthermore, due to the

presence of methanol as a reaction solvent, degradation of thiolacetic acid occurs during the

thiolacetylation reaction to form hydrogen sulphide, which is then able to form a number of

impurities with spironolactone. Although a number of measures have been implemented to

remove oxygen from the manufacturing equipment (through the use of nitrogen purges and

nitrogen blankets for example), small quantities of oxygen will enter the process train, be this

through vacuum transfers from bulk drums to reagent header tanks where air may be drawn in,

or raw material sampling for example. The reaction conditions also require moderate heat

input which may again be favourable to the formation of undesirable products.

There are currently seven known impurities of spironolactone that are seen and have

specification limits for the manufacturing process at Morpeth. The first of these is the starting

material, aldona. This impurity may arise from either the aldona not being completely

converted to AEEE , or through degradation of AEEE back to aldona, which is not removed

completely during the filtration and centrifugation steps. The specification limits are not more

than 0.1% and typically only 0.03% is seen in the analytical results for product.

Another impurity that can be found in the drug substance is the intermediate product

aldadiene. This is again due to either the aldadiene not being completely converted to

spironolactone, or through degradation of the spironolactone back to aldadiene, which is not
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removed completely during the filtration step. The specification limits are not more than 0.5%

and typically only 0.1% is seen in the analytical results for product.

The ∆20-spironolactone impurity arises from an impurity found in the aldona start material.

This impurity is not removed during any of the isolations and is carried through the process to

produce the impurity ∆20-spironolactone. In the batches where the quantities are above the

limit of detection (0.02%) the typical quantities found are approximately 0.1%.

As discussed in section 2.1.1, spironolactone is optically isomeric and the thiolacetylation of

aldadiene to yield spironolactone is reversible. The 7β isomer is the kinetically favoured and

thermodynamically more stable isomer produced in parallel with the desired 7α isomer during

the thiolacetylation. The 7α isomer is less soluble and therefore by crystallizing out the

desired 7α isomer during the reaction, the 7β isomer is forced back to aldadiene through Le

Chatellier’s principle and a higher yield of 7α-spironolactone is obtained, however small

quantities of 7β -spironolactone may be found in the finished product.

Another known impurity is 4-bromo spironolactone. This is formed through a side reaction

during the synthesis of the aldadiene intermediate. It is typically a result of over bromination

of the AEEE resulting in a failure to scavenge all of the bromine. The subsequent purification

and isolation steps are unable to remove this impurity so it is carried through to produce

4-bromo spironolactone. Quantities observed in the product are typically around the limit of

detection of 0.02%.

The two final known impurities of spironolactone are known as bis-spironolactone and

per-spironolactone. These are both a result of degradation and side reactions involving

thiolacetic acid. Thiolacetic acid degrades in the presence of oxygen to form the bis-thiolacetic

acid. Thiolacetic acid also degrades in the presence of oxygen and hydrogen sulphide (formed

through a reaction between thiolacetic acid and methanol) to form per-thiolacetic acid. These

degradates compete with thiolacetic acid resulting in the formation of bis- and

per-spironolactone impurities.

2.1.3 Polymorphism of spironolactone

In addition to the impurities associated with the spironolactone process chemistry,

spironolactone also exhibits polymorphic behaviour. Polymorphism is the ability of a material

to have more than one crystalline form. There are two types of polymorphism, monotropic

10



polymorphic materials have one polymorphic form that is more thermodynamically stable than

another. Enaniotropic polymorphic materials however may have multiple thermodynamically

stable polymorphic forms. Polymorphism is a complex phenomenon as McCrone (1965)

details “the number of [polymorphic] forms known for a given compound is proportional to

the time and money spend in research to that compound” (McCrone, 1965; Myerson, 1993).

This is due to several factors that may have an influence on the polymorph forms including

temperature, pressure, a change in the stirring of a reactor, impurity content and growth rate

(Myerson, 1993).

The polymorphic form of both pharmaceutical drug substances and pharmaceutical grade

excipients used in drug product formulations is important as different polymorphic forms have

different physical properties. As the physical properties, such as solubility and compressibility,

of a polymorph change the bioavailability of a drug and the manufacturability or formulation

of a drug product respectively (Buckton, 2013; Myerson, 1993).

There have been several polymorphic forms of spironolactone reported in the literature (Marini

et al., 2001, Agafonov et al. (1989), El-Dalsh et al. (1983), Espeau et al. (2007), Nicolaı̈ et al.

(2007), Agafonov et al. (1991) , and Salole and Al-Sarraj (1985)). The spironolactone

polymorphic forms manufactured at Morpeth are predominantly spironolactone type II with

some traces of type I. Nicolaı̈ et al. (2007) claim the formation of the crystal structure of

spironolactone indicates that it is first the solvated forms of spironolactone that are formed,

which upon desolvation undergoes minimal change in the three dimensional lattice structure to

form the type I polymorph.

The type I polymorph is less thermodynamically stable than the type II polymorph and

therefore, when heat is applied (during the drying process for example), the type I polymorph

is converted to the type II polymorph (Espeau et al., 2007 and Nicolaı̈ et al. (2007)). The work

that these conclusions are based on uses the ethanol solvated form of spironolactone, whereas

the reaction system operated at Morpeth uses methanol and acetone as the solvents at this stage

of the manufacture. Further work using a similar method to that carried out by Espeau et al.

(2007) and Nicolaı̈ et al. (2007) with the solvents in the concentrations used at Morpeth would

be required before a solid understanding of the formation of the crystal form can be

understood.
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Figure 2.2: Spironolactone polymorph form II production through desolvation of the solvated

form VI

Liebenberg et al. (2003) and Agafonov et al. (1991) are both in agreement that the type II

spironolactone polymorph is more thermodynamically stable than the type I polymorph, and

that the solvated form (VI)is created first before desolvation to the de-solvated polymorphic

forms (figure 2.2). Agafonov et al. (1991) show however that the type I polymorph of

spironolactone can be formed from the rapid cooling of spironolactone in acetone (solvent

boiling down to 0 °C in a few hours) and the type II polymorph can be formed from natural

evaporation of the solvent over several weeks. This suggests that the spironolactone in the

acetone will crystallize to form the type I polymorph (figure 2.3).

Agafonov et al. (1991) state that both the type I and type II polymorphic forms are monotropic

as no transformation between the two was seen upon heating. This understanding is challenged

in Liebenberg et al. (2003) where gradual conversion from type I to the more stable type II was

seen in the temperature range of 25 °C to 75 °C and rapid changes above 100 °C suggesting

enantiotropic behaviour of the type I polymorph. This is then added to in Espeau et al. (2007)

where it is claimed that the transition from type I to type II is not an enantiotropic related solid

- solid transition, but a melting - recrystallization process occurring at about 100 °C to

120 °C.

In summary, the crystal properties of spironolactone are complex and, as a result, not fully

understood. There is evidence of type I - type II transition; however it is unclear if this is an

enantiotropic transition, a melt - recrystallization transition, or both. What is clear is that both

the type I spironolactone polymorph and the type II spironolactone polymorph (the more

thermodynamically stable form) will be produced in the reactor at Morpeth. Type I is formed
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from the spironolactone in acetone, whereas type II is formed from the desolvation of

methanol solvated form (VI).

Figure 2.3: Spironolactone polymorphic form conversion routes from methanol and acetone

crystallizations

2.2 Spironolactone manufacturing process

The process of manufacturing spironolactone from the start material aldona can be split into

three parts. The first produces the intermediate aldona ethyl enol ether (AEEE) and is

performed at Piramal Healthcare, Morpeth (figure 2.4). The process starts with washing the

reactor with acid in preparation. Methanol is then charged to the reactor which is distilled.

Subsequently toluene is charged to the reactor and the methanol toluene mixture is distilled.

The reactor is finally rinsed with tetrahydrofuran to ensure that it is clean, dry, and free of

traces of alkaline material from previous batches that could interfere with the chemistry of the

next batch. When the reactor is confirmed as clean and dry through a visual inspection, the

aldona is charged and dissolved in solvent and other reagents. A catalyst is then charged to the

reactor to allow the reaction to take place. When the reaction is complete, the product (AEEE)

crystallises out of solution and some of the solvents are distilled off. The AEEE is then

isolated through crystallization, centrifuged and washed to remove the mother liquors. The

AEEE is then dried under vacuum before being weighed into drums and subject to quality

analysis consisting of material identification, assay, and impurity identification and

quantification.

13



Figure 2.4: Aldona to aldona ethyl enol ether manufacturing process

The second manufacturing step (figure 2.5) is the conversion of AEEE to aldadiene. Again this

process starts with reactor preparation ensuring that the reactor has been cleaned and dried.

Solvents and reagents are then metered into the reactor before the AEEE is weighed and

charged into the reactor to dissolve in the solvents. This is then brominated using hydrogen

bromide. As this is an exothermic reaction, the additions are performed by the operator in

small quantities and the cooling is applied manually. The primary control for the reactor

temperature is through the rate of addition. After an in process test to confirm that the reaction

is complete, a bromine scavenging step is performed to remove excess bromine and prevent the

formation of the di-bromo impurity. Some of the solvents are then removed through distillation

before the intermediate is acidified to hydrolyse the molecule. Water is then charged to the

reactor to cause the intermediate product (aldadiene) to crystallise out of solution. The

aldadiene is then washed in a DCS (Distributed Control System) controlled centrifuge before

being dried under manual control to remove the residual traces of solvents. The aldadiene

remains in situ in the dryer with no quality analysis or yield quantification performed other

than loss on drying to reduce the manual handling of the intermediate. Piramal Healthcare,

Morpeth report this part of the process to be robust with consistent yields and quality based on

monitoring prior to the removal of the testing on the intermediate.
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Figure 2.5: Aldona ethyl enol ether to Aldadiene manufacturing process

The final stage in the spironolactone manufacturing process is the conversion of aldadiene to

spironolactone (figure 2.6). This process starts with the dissolution of the Aldadiene

intermediate within the dryer using methanol and acetone as solvents. The solution is then

transferred using a double diaphragm pump to a 500 gallon stainless steel reactor in which

activated carbon is added as a colour treatment. The batch is then recirculated through a series

of 1µm bag filters before being transferred to a 500 gallon glass lined reactor via a 0.45µm

and 0.2µm cartridge filters. Thiolacetic acid is then charged to form spironolactone which is

then isolated through the addition of more methanol and a reduction in temperature. The

spironolactone slurry is then pumped to a Rosenmund pressure filter and washed with chilled

methanol to remove the mother liquors. The spironolactone cake is then dropped into a conical

screw agitated dryer with a hot water jacket to drive off the residual solvents. The dry product

is then pneumatically conveyed to a jet mill where it is micronized to the desired particle size

before being weighed into drums and sampled for QC release testing.
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Figure 2.6: Aldadiene to spironolactone manufacturing process

As the manufactured AEEE is isolated, sampled for QC analysis, and a known quantity

charged at the start of the Aldadiene process, this part of the process is independent from the

Spironolactone manufacturing process and is therefore out of scope. There is no yield of

aldadiene quantified however therefore it is difficult to separate this process from the

spironolactone process. A simplified process schematic (figure 2.7) shows how the AEEE

process is completely separate from the remainder of the process.

Figure 2.7: Simplified spironolactone manufacturing process schematic

Previous work had been carried out at Piramal Healthcare to attempt to map the losses of the

process from AEEE through to Spironolactone. The losses from a batch throughout various

stages of the process were compared to the theoretical losses to try and identify the greatest
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improvement opportunity. The results from this work showed the yield for the aldadiene

manufacturing process to be above 97%. The drying and micronization steps gave a yield of

93% and the thiolacetylation, isolation, and filtration gave a yield of 73%. It is clear, therefore,

that the largest losses of product compared to the theoretical losses are in the aldadiene to

spironolactone stage. Additionally, the drying process of the aldadiene to spironolactone stage

is currently the bottleneck of the process. The aldadiene to spironolactone process is the

manufacturing process to be considered during testing of the framework presented in this

thesis.

It should also be noted that there may be significant errors in the data obtained for the yields

quoted above arising from sampling and analytical errors. The filter bed will settle differently

between each re-slurry operation and temperature changes in the filter may also lead to

variable losses of product into the mother liquors over time. Without extensive sampling,

which was not feasible due to time, cost and material handling issues, this will not be

observed. Analytical inaccuracies may also be present, as the analytical methods have a limit

of detection and also rely on sample preparation which can lead to less than 100% recovery of

the compound of interest. Nonetheless, the difference in the recovered yields between the three

parts of the process quantified show that the thiolacetylation and isolation process are

significantly different to the remainder of the process; and looking for improvements in this

part of the process is most likely to have the greatest impact on the overall process yield and

cycle time.

2.2.1 Spironolactone process data

Data is generated throughout the batch manufacture in each of the major equipment items. For

reactor R101, this includes the reactor weight, temperature, pressure, header tank (T104)

weight, and temperature controller output. The filter F101 stores pressure data, however this is

of little use as the range of the transmitter is very small therefore the pressure data is out of

range for the duration of use of the pressure filter. The dryer D101 collects temperature data

from both the contents probe and the jacket return, in addition to the pressure and the

temperature controller output. The data recorded from the plant instrumentation is passed to a

data historian through a compression algorithm. The algorithm is a modification of the boxcar

compression method discussed in more detail in section 2.2.1.
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Collection of process data

The frequency of data collection is controlled by the DCS. This scans each of the measurement

instruments every 30 seconds and passes this data to the data historian for compression and

storage. Most of the process variables have relatively slow dynamics, allowing the 30 seconds

measurement frequency to be sufficient to observe the behaviours in the process. There are a

few places where increased measurement frequency would increase the available resolution in

the process data, such as during the nucleation event in the reactor. The temperature rise due to

the latent heat of crystallization and subsequent temperature fall caused by the rate of cooling

exceeding the rate of heating occurs within two to three minutes and therefore only a small

number of data points capture this behaviour. With an increased measurement frequency the

maximum temperature rise by the latent heat of crystallization could be more accurately

measured.

The data recorded from the plant instrumentation is passed to a data historian through a

compression algorithm. The algorithm is a modification of the boxcar compression method

which also incorporates a gradient limit to further increase the compression achieved.

The compression algorithm starts from the last recorded data point and sets boxcar limits up on

this point (i.e. current value plus or minus a small deviation). When the new data is passed to

the algorithm, it calculates a back-slope (gradient) limit. The data passed from the plant is

monitored until both the boxcar and the back-slope limits have been exceeded, or fifteen

minutes has passed between recorded data points. The previous data point is then stored

permanently in the data historian. This process is repeated for every measurement that is

received from the plant.

This data is compressed using a modification to the boxcar compression method which also

incorporates a gradient limit to further increase the compression achieved, as outlined in figure

2.8. The compression algorithm starts from the last recorded data point and sets boxcar limits

on this point (i.e. current value plus or minus a small deviation). When the next data point is

passed to the compression algorithm, it calculates a gradient (backslope) and again calculates

deviation limits based on this backslope. Subsequent data is monitored by the algorithm until a

data point falls outside both the boxcar and the backslope limits, or 15 minutes has passed

since any new data was permanently stored. When these conditions have been met, the data

point passed to the historian immediately before both the limits were exceeded is permanently

stored and new boxcar and backslope limits are set.
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Figure 2.8: Process data compression algorithm

The limits used in the boxcar-backslope compression algorithm are tighter than the instrument

tolerance permissible for instrument calibration. Although this results in some error in the

interpolated data, the quantity of error is within the calibration tolerance on the measurement

variable and therefore of small significance.

Accuracy of process data

There are a number of sources of error in the process data that can impact the accuracy and

precision of the data. The first of these is the accuracy and precision of the measurement

instruments as installed on the process. The instruments installed are calibrated to within 1%

of the measured value (table 2.1) however the calibrations are typically much tighter than this.

This indicates that the accuracy of the instruments could vary significantly (e.g. up to ±1.6 °C

for temperature and ±30 kg for weights). The precision of instruments are typically at least

one order of magnitude better than the accuracy of the instrument as is the case with the

process measurements from this process. Relatively small changes (within the first decimal

place) that are observed on the process variables are representative of the changes in process

conditions local to the measurement device.

Another factor that can influence the accuracy of the process measurements is the physical

location of the measurement device. The measurement indicated from devices such as

temperature probes can only be the value experienced by the measurement device. The use of

thermowells to site temperature probes can cause a lag in the measurement of the true

temperature as heat has to be transferred through the thermowell material. The overall mass
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and surface area of a thermowell may also smooth out some local variations in temperature.

Additionally the point of measurement may not be representative of the conditions throughout

the entire vessel. For example, if a reaction is fast and exothermic, the temperature at the

addition point of a reagent will be greater than the temperature at the probe location.

Finally, the data that is obtained from the plant is compressed before it is stored. The action of

data compression and recovery will add another error to that already present in the data. The

deviation limits for both the boxcar and the back-slope used within the compression algorithm

are shown in table 2.1. The tolerances used for the data historian deviation limits are much

lower than the instrument calibration tolerances. This means that the error introduced through

compression of the data is much less than, and therefore insignificant compared to, the error

already in the measurement.

The error introduced to the data through the compression algorithm is significantly less than

the instrument tolerances on the process plant and therefore the values obtained through

interpolation of the stored data will give sufficient understanding of how the process data

behaviour during the manufacture of the batches.

2.2.2 Data challenges and proposed data processing framework

Challenges with process data

There are several challenges associated with process data. The first of these is the alignment of

the data. Not only does the start time of each batch need to be aligned with the start time of the

other batches, some batches, or steps in the manufacture may take longer. This can lead to

misalignment of process steps between batches in an analysis even if the two batches were

aligned at the start. Techniques for overcoming data alignment challenges are discussed in

more detail in section 3.3.

Another challenge in the analysis of process data is handling missing data. Missing data can

present problems in the analysis of batch data as techniques requiring matrix manipulation

(PCA for example) cannot perform the mathematics if any value in the matrix is missing

(Lennox et al., 2001). As the dynamics of the process data are relatively slow, when small

quantities of missing data are present this can be interpolated with little detriment to the

reliability of the data. If the missing data however occurs in an area of process data with faster

dynamics (e.g. the heat of crystallization) in which the data changes direction relatively

20



Table 2.1: Instrument calibration tolerances and historian deviation limits

Description Calibration Tolerance Scan Rate Historian Tolerance

R101 Contents Temperature -40 – 160 °C ±1% 30 seconds 0.1 °C

R101 Weight 0 – 3000 kg ±1% 30 seconds 0.1 kg

R101 Pressure (Blanket) 0 – 300 mmWG ±1% 30 seconds 1 mmWG

R101 Pressure (Full Range) 0 – 2.5 barA ±1% 30 seconds 0.01 barA

R101 Jacket Temperature Controller 0 – 100% 30 seconds 0.1 %

R102 Contents Temperature -40 – 160 °C ±1% 30 seconds 0.1 °C

R102 Weight 0 – 3000 kg ±1% 30 seconds 0.1 kg

R102 Pressure (Blanket) 0 – 300 mmWG ±1% 30 seconds 1 mmWG

R102 Pressure (Full Range) 0 – 2.5 barA ±1% 30 seconds 0.01 barA

R102 Jacket Temperature Controller 0 – 100 % 30 seconds 0.1 %

T104 Weight 0 – 600 kg ±1% 30 seconds 0.1 kg

D101 Pressure (Full Range) 0 – 2.5 barA ±1% 30 seconds 0.01 barA

D101 Pressure (Vacuum) 0 – 1000 mbar ±1% 30 seconds 1 mbar

D101 Jacket Temperature Controller 0 – 100% 30 seconds 0.1 %

D101 Jacket Temperature 0 – 150 °C ±1% 30 seconds 0.1 °C

D101 Contents Temperature -20 – 130 °C ±1% 30 seconds 0.1 °C

X101 Venturi Line Pressure 0 – 20 barG ±1% 30 seconds 0.1 barG

X101 Ring Line Pressure 0 – 20 barG ±1% 30 seconds 0.1 barG

X101 Feed Rate from Dosing Unit 0 – 200 kg hr−1 ±1% 30 seconds 0.1 kg hr−1

quickly, interpolation can lead to unreliable results. When this is the case the batch has been

removed from the analysis. Similarly, if the data missing spans a large time period,

interpolation of the data may not give results that accurately reflect the process conditions, and

therefore any batches with large expanses of missing data have been removed from the

analysis.

Data processing framework

To address some of these challenges a framework is presented (figure 2.9) in which the process

data is first pre-processed, followed by multivariate outlier detection, before modelling is
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applied to interrogate the process data and extract information that can be used to enhance the

understanding of the process. The components of the framework are discussed in the

subsequent chapters, with chapter 3 detailing the pre-processing methods, and chapter 4

detailing the principal component analysis methods. Subsequently, the framework is tested on

the spironolactone process data in chapter 5.

Identify Problem 
Statement

Obtain 
Process Data

Pre-process

Outlier Removal

Modelling

Identify conclusions on 
problem statement

Figure 2.9: Overview of framework to extract multivariate information from batch process data

(orange - pre-processing, blue - outlier detection, yellow - multivariate modelling, grey support

the framework)

2.3 Summary

This chapter has introduced the spironolactone the spironolactone chemistry detailing the

synthesis route employed at Piramal Healthcare, Morpeth, and potential impurities in the

process. Subsequently, a summary of the polymorphic behaviour of spironolactone was

presented. Although a lot of research has been performed on spironolactone, the solid state

characteristics are still not fully understood in the literature, however, it is clear that
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polymorphism should be considered with the solvent systems used in the spironolactone

isolation process. Following the process chemistry, an overview of the manufacturing process

was presented, including details on the process data available.
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Chapter 3. Multivariate pre-processing methods

Pharmaceutical manufacturers are expected to consistently produce high quality products. In

order to achieve this and ensure profitability, it is important that manufacturers are able to

understand their processes and the effects of process parameters on the quality of products.

There are a number of tools and methodologies that are available to help achieve this

understanding, some of which are discussed in this chapter.

Prior to the application of a multivariate tool to interrogate the data, the data may first need to

be pre-processed. Pre-processing is important to be able to get the most out of the data and

remove artefacts in data that could encourage misleading results to be shown. On the other

hand, care must also be taken when pre-processing data as this data manipulation can change

the structure in the model and significantly alter the results obtained leading to

misinterpretation of the original data.

This chapter provides an overview of the multivariate pre-processing methodologies including

dealing with compressed data, dealing with missing data, data alignment, centring and scaling,

and finally filtering are discussed.

3.1 Compressed data

Industrial processes can easily produce large quantities of data. Regulatory guidance in the

pharmaceutical industry states that original data (including process data trends) that forms part

of the batch record, and backups of the data, should be kept for a minimum of 1 year post

expiry of the product or 5 years post release (whichever is longer) (European Commission,

2012), however, some data may be required to be kept for 30 years (Medicines and Healthcare

Products Regulatory Agency, 2015). This results in the requirement for significant quantities

of data to be securely stored for long periods of time.

There are two main reasons for the compression of process data. The first is to reduce the costs

of long term data storage. Recent advances in storage media, however, have reduced the
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benefit obtained by compression as the cost of data storage has significantly decreased in

recent years. The second reason for compression of process data is to reduce the data

transmission costs through telecommunications links. This is more applicable to the oil and

gas industry where transmission of data via satellite links from off-shore platforms to on-shore

headquarters is required, however, if pharmaceutical companies want to perform remote

monitoring of processes through telecommunication links this may be of concern (Thornhill

et al., 2004; Imtiaz et al., 2007).

3.1.1 Data compression algorithms

Data compression can fall into three classes; piecewise linear functional approximation, data

transform, and vector quantization. Each of these methods is briefly discussed here, however, a

more detailed comparison can be found in Watson et al. (1998).

Piecewise linear methods

Piecewise linear methods, also known as direct methods, use a set of rules on the data to

determine which data points to keep and which can be ignored. Examples of these methods are

the boxcar, backward slope, boxcar-backward slope, and swinging door algorithms (Watson

et al., 1998). These are briefly introduced below before table 3.1 summarises their advantages

and disadvantages with regards to process applicability.

1. Boxcar compression algorithm: The boxcar is a deviation limit applied to the value

stored in the data historian. Boxcar compression works by testing all subsequent data

points with these limits. When a new data point is found to fall outside of these limits,

the data point that came immediately before (the last data point to fall within the limits)

is recorded to the data historian (Watson et al., 1998). Figure 3.1 shows an example of

boxcar compression.
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Figure 3.1: Boxcar compression. (Redrawn from Watson et al. (1998))

2. Backward slope compression algorithm: The backward slope is similar to the boxcar,

however, the the deviation limit is set based on the gradient of the two previous recorded

points in the data historian. All subsequent data points are tested against these limits

until a data point falls outside. The last data point to fall within the limits is then

recorded to the historian, and a new gradient limit is set based on the gradient between

this data point and the value of the data point stored in the historian before it (Watson

et al., 1998). An example of the backward slope compression is shown in figure 3.2.

Figure 3.2: Backward slope compression. (Redrawn from Watson et al. (1998))

3. Boxcar backward slope compression algorithm: These two methods can be combined by

changing the rule to store the next data point to be when both limits have been exceeded
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(Watson et al., 1998). An example of the boxcar backward slope compression is shown

in figure 3.3.

Figure 3.3: Boxcar backward slope compression.(Adapted from Watson et al. (1998))

4. Swinging door compression algorithm: The swinging door compression algorithm

applies a gradient limit to the data to determine which data points need to be recorded.

The gradient, however, is calculated from the last recorded value and the new value

passed to the algorithm. This gradient is compared to the gradients obtained from a

deviation limit around the last recorded value and the current values (Sivalingam and

Hovd, 2011). The swinging door algorithm looks to approximate the original data into

linear segments with each segment length maximised within tolerable error. This is

achieved by placing two imaginary points (pivot points) a fixed distance above and

below the last recorded value. Doors are then drawn between these points and the last

recorded value, as closed doors (i.e. the lines between the pivot points and the new data

intersect each other to the right of the original data point). When more data is available

the doors are swung open to allow for all of the values to lie within the doors, with the

top door swinging upwards, and the bottom door swinging downwards. The gradient of

the doors is computed and for each subsequent value that becomes available the

gradients between the new value and the pivot points are calculated. The doors are,

however, only redrawn if the gradient for the top door increases with the new point, or

the gradient for the lower door decreases with the new point (i.e. to allow all of the

values to lie between the swinging doors). This process is repeated until the gradients of

the swinging doors become divergent (i.e. the gradient of the new value to the last

recorded value is less than the gradient of the upper swinging door, or more than the
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gradient of the lower swinging door, resulting in the lines not intersecting to the right of

the original data point) and the previous value is recorded to the data historian (Bristol,

1990) (frame 5 in figure 3.4).

Figure 3.4: Swinging door compression algorithm

5. Piecewise linear on-line trending (PLOT) compression algorithm: The PLOT

compression algorithm fits linear trends to segments of the process data based on

minimising the error of the fit (RMSE). This method, however, goes further than the

swinging door method as it decides if a value that falls outside of the limits is a genuine

change in the process trend, or an outlier, by considering subsequent values before a

decision to commit a value to the data historian is made. The algorithm uses the

assumption that the sample interval is a constant, and each new value passed to the

algorithm can therefore simply calculate a gradient without the requirement for

additional temporal data to be included in the algorithm.

The PLOT algorithm works by fitting a least squares straight line to all of the data since

the last recorded value. From this data an estimate of the data variance is obtained which

is then used to construct interval limits (1−α) around the prediction of the next value. If

the next value falls within the 1−α interval, the process is repeated including this new

value in the fitting of the least squares straight line, and the estimation of the data

variance. If, however, the value falls outside of the 1−α prediction interval, it is either

indicative of a change in trend and therefore the last point to fall within the prediction

interval is recorded to the data historian, or it is indicative of a potential outlier.

The potential outlier is tested with the next value to be passed to the algorithm. If this
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new value falls within the same prediction interval, and not the extrapolation from the

potential outlier and the value immediately previous to it, then the value was considered

as an outlier and omitted from least squares fitting and variance estimation. If this new

value falls outside of the original prediction interval, but within the extrapolation

interval, then this is considered as a new trend and the last value to fall within the

prediction interval is recorded to the data historian. If the new value falls either within or

outside of both the prediction interval and the extrapolation interval, the test is

inconclusive and is therefore repeated with the next value to be passed to the algorithm

(Mah et al., 1995).

Data transform methods

Data transform methods use a transformation of the data that has an inverse allowing for

perfect reconstruction of the original data. There are many different transform methods

available, including Laplace, Fourier, and wavelet transforms (Watson et al., 1998).

These transforms work by translating the original process data into a smaller number of

uncorrelated transform coefficients (Barsanti and Athanason, 2013). The transform of the data

can be restored to a perfect copy of the original data through the inverse transform (lossless

compression). However, often the high frequency portion of the data is associated with noise,

whereas the information of interest falls within the lower frequency portions of the data. By

setting the high frequency portion of the transformed data to zero, known as thresholding, and

storing the remaining transform coefficients in a data historian the original signal can be

compressed (Watson et al., 1998; Nesic et al., 1996).

Applying the inverse transform to these compressed coefficients will yield a representation of

the process data, with some losses of the original signal (lossy compression). This method

however, lends itself to off-line processing of the data as the trend is required before its

transform can be performed (Thornhill et al., 2004).

Each of the different transform compression methods work in the same way, first applying a

transform, followed by thresholding, and finally applying the reverse transform to reconstruct

the data. The difference between the methods is the function used to obtain a transform of the

original data. When using the Fourier or cosine transforms, only the frequency information is

retained in the transformed data, and the temporal information relating to this is lost. These

transform methods can provide information on which frequencies were present in the input
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signal, however, not where they occurred. The discrete wavelet transform, on the other hand,

provides both the frequency information in the transform, and the time locations where these

frequencies occurred. This is achieved by using multi resolution analysis where high temporal

resolution is obtained for high frequencies at the expense of resolution of these frequencies,

followed by reduced temporal resolution of the lower frequencies allowing for increased

resolution of these frequencies. That is, the temporal location of high frequencies are known

but the distribution of the frequencies is not well defined, whereas the distribution of the low

frequencies is well defined, however, the temporal location of these frequencies in the entire

signal is not known (Watson et al., 1998). This is represented in figure 3.5 showing the

resolution of a discrete Fourier transform compared to that of a discrete wavelet transform.

The resolution is indicated by the red boxes on the frequency time plot. As the Fourier

transform only contains the frequency information, the bars are narrow on the frequency axis

(high frequency resolution) but cover the entire time axis (no temporal resolution). This

contrasts with the wavelet representation where for the high frequency region the bars are tall

and thin representing high temporal resolution, but low resolution of the high frequencies,

whereas the lower frequencies have short wide bars indicating high resolution of the

frequencies, however, lower temporal resolution.

Figure 3.5: Resolution analysis representation of Discrete Fourier Transform (left) and Discrete

Wavelet Transform (right). (Adapted from (Watson et al., 1998))

Vector quantization

Vector quantization is another compression technique that works akin to rounding numbers to

a desired level of accuracy. This rounding process is not limited to number of decimal places

however. Considering the scalar example, the possible values for the data is divided into

segments called cells. The cell size is determined by the density of the data in the training data

set. Where there is a high density of data, the cell sizes are small to minimize the error,

whereas in low data density regions the cell sizes are increased allowing for reduced accuracy
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where data is infrequent. This can be extended to vectors, where it is not the scalar that is

segmented, but blocks of data. This vector quantization is achieved by taking a subset of the

data and matching this with the data stored in the codebook. The index of the codebook that is

matched is then recorded, instead of recording the quantized values and therefore compressing

the data (Watson et al., 1998).

Table 3.1 summarises the advantages and disadvantages of the each of the compression

methods detailed.

Table 3.1: Comparison of data compression methods

Compression Method Advantages Disadvantages

Boxcar Simple

Easy to implement

Good for steady state

processes

Can reconstruct from paper

copy of compressed data

Poor compression of ramps

and steps

Low compression ratio

Poor performance for noisy

data

Backward Slope Simple

Easy to implement

Can reconstruct from paper

copy of compressed data

Improved compression of

ramps and steps

Poor compression for noisy

data

Low compression ratio

Boxcar - Backward Slope Simple

Easy to implement

Suitable for steady state,

steps and ramps

Better than individual boxcar

or backward slope

Low compression ratio

Poor compression for noisy

data

Swinging Door Simple

Improved compression over

boxcar backward slope

Recording limit matched to

noise

Low compression ratio

compared to transform

methods

Poor performance with noisy

data

Continued on next page
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Table 3.1 – Comparison of data compression methods (Continued from previous page)

Compression Method Advantages Disadvantages

Piecewise Linear On-line

Trending

Relatively simple

Can reconstruct from paper

copy of compressed data

Suitable for steps, ramps and

steady states

Improved performance with

noisy data and outliers

Compression adapts to

process variance

Improved performance over

swinging door compression

More complex to implement

than swinging door

compression

Poorer compression

compared to transform

methods

Slower computationally than

swinging door

Transforms High compression achievable

Can achieve low

reconstruction error

Good for sudden changes

(steps, ramps, spikes) and

steady state data

Complex

Off-line compression

Need to select appropriate

wavelet to achieve good

compression and

reconstruction accuracy

PC required to reconstruct

data

Vector Quantization Compress infinite data once

codebook is defined

Suitable for steady state,

ramps and steps

Codebook design is time

consuming

New codebook required for

each variable of each process

(not transferable)

PC (and codebook) required

to reconstruct data

A number of different techniques have been presented for compressing process data. If it is

necessary to compress process data for long term storage or data transmission, the data

transform method is recommended due to the low reconstruction error that can be achieved
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with this method, and its ability to handle sudden changes in the data. Where simpler

compression algorithms are required, the piecewise linear on-line trending method is preferred

over the swinging door and boxcar methods due to its superior performance with noisy data.

The boxcar and swinging door methods are not recommended for new systems, however, may

be found on legacy systems, especially in the pharmaceutical area where such systems are

required to be validated. If, however, compression of the process data can be avoided this is the

preference for reasons to be discussed in the following section.

3.1.2 Challenges posed by compressed data

Reconstruction following data compression does not result in a perfect reconstruction of the

original data. This can result in problems when trying to use the reconstructed data for analysis

of the process. The first of these is a problem when using piecewise linear compression

techniques. In this case, if the length of a feature present in the data is smaller than the length

of the linear segments as a result of having a high compression factor (CF) , or wide tolerances

in the algorithm. This may result in entire features in the data being lost during compression,

or poor reconstruction of features where the full magnitude or time scale of the feature is

lost.

Compression factor, in its simplest form, is a ratio of the number of factors in the data before

compression (N) to the number of values stored in the data historian (m). There are other

definitions of compression factor that take into account the need to store time stamps with each

stored value to enable reconstruction for example (Thornhill et al., 2004).

CF =
N
m

(3.1)

A second problem when using compressed process data is when the data is highly noisy, or

entirely noise. The compression algorithm will sample this noise and can provide a

reconstruction that appears to be showing a trend when the original signal was solely

consisting of noise.

A third feature of compression techniques is the loss in accuracy of the process variable mean.

In order to perform steady state assessments on process data, such as mass balancing in

looking for leaks, or obtaining production rates, the mean of the data is required. Therefore, if
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the mean of the reconstructed data does not accurately reflect the mean of the original data,

some error will be present in the analysis. A method of quantifying the impact on the process

mean is calculating the Percentage Difference of between the Mean (PDM). This is the

differences in the means of the original data and the reconstructed data scaled by the variance

of the original data (equation 3.2). This however required the original data to be available

which is often not the case when dealing with historical process data.

PDM = 100× mean(yyy)−mean(ŷyy)
σy

(3.2)

Similar to the error in the mean of the data from reconstructed data, is the error in the process

variance. Typically the variance in a process is correlated with variance in profit. Furthermore,

statistical tools that use process measurement variance, such as principal component analysis,

may be affected if the variance of the reconstructed data differs from that of the original data.

In this case, two ratios are useful to determine the impact on the variance following

compression and reconstruction. The first of these (equation 3.3) is the ratio between the

standard deviation of the reconstructed data and the standard deviation of the original data

(RVC) .

RVC =
σ2

ŷ

σ2
y

(3.3)

The second of these (equation 3.5) is the ratio between the standard deviations of the

reconstruction error (equation 3.4) and the original data.

ei = yi− ŷi (3.4)

RV E =
σ2

e
σ2

y
(3.5)

When the sum of RVC and RVE does not equal 1, the error in the reconstruction is correlated

with the reconstruction. This means that information may have been lost in the compression

and reconstruction process.
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Finally, it has been shown that compression and reconstruction of process data can cause

non-linearity in the reconstructed process data that was not present in the original data

(Thornhill et al., 2004).

Thornhill et al. (2004) concluded that if the compression factor is sufficiently low (a

compression factor of 3 or less) that the use of reconstructed data can be used with caution as

the performance measures were found to be similar to that of the non-compressed data.

3.1.3 Dealing with compressed data

As part of the pre-processing steps of industrial data for analysis, determining if the data has

been compressed and how compressed the data is. It is also important to understand what kind

of compression algorithm was used for the compression as this will help inform whether the

data may be suitable for use in analysis techniques.

The simplest method is the use of the ratio of the number of compressed data points to the

corresponding number of original data points and calculate the compression factor from this

(Thornhill et al., 2004).

This information is not always available however, therefore an alternative method at estimating

the CF is required. Thornhill et al. (2004) proposed a method using the second differential for

data that was compressed using piecewise linear methods. If the data was compressed using a

piecewise polynomial technique, the fourth derivative would be required.

Compression detection method

Thornhill et al. (2004) present a method for detecting the level of compression of a

reconstructed dataset in the absence of the original data where a piecewise linear compression

method has been used. This method uses the fact that the second derivative of a straight line is

zero. Therefore, with data reconstructed from piecewise linear compression, the second

derivatives with a value of zero indicate linear segments (i.e. interpolated data), and non-zero

second derivatives indicate where these linear segments are joined (i.e. an actual data point

stored in the data historian). Therefore by counting the zero and non-zero second derivatives

from reconstructed data, one can approximate the compression factor using the following

equations (equation 3.6 and equation 3.7). In cases where the piecewise compression did not

use a linear function, but a polynomial selection of the appropriate derivatives can be used to
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the same effect. Thornhill et al. (2004) give the example of the cubic spline function requiring

the fourth derivatives to estimate the compression factor.

∆(∆ŷi) =
(ŷi+1− ŷi)/h− (ŷi− ŷi−1)/h

h
=

ŷi+1−2ŷi + ŷi−1

h2 (3.6)

CFestimated =
N
m

(3.7)

The above is based on knowing the original number of samples in the data before compression

was performed. Ideally this would be the same as the number of data points in the

reconstructed data, however, this may not always be the case. If fewer samples are

reconstructed than in the original data and the number of samples reconstructed is taken as an

indication of the number of samples in the original data, this can lead to underestimation of the

true compression factor of the reconstructed data. Thornhill et al. (2004) describe a method of

identifying when inappropriate reconstruction intervals have been used, by looking at the

pattern of the zero valued second derivatives (in the case of piecewise linear

compression).

Additionally, a method for assessing the arithmetic accuracy of both the compression and the

reconstruction process is detailed in (Thornhill et al., 2004). This is important as arithmetic

errors can lead to inaccuracies in the estimation of the compression factor.

3.2 Missing data

When dealing with industrial data, missing data can occur for a number of reasons.

Communication errors in the information technology infrastructure, power failures,

measurement values exceeding instrument ranges, maintenance activities, instrument

breakdowns, differing sampling or measuring frequencies, etcetera. This missing data can

cause problems when analysing the data as many methods cannot deal with missing

values.
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3.2.1 Types of missing data

There are a number of types of missing data each requiring different considerations on how it

can be dealt with. From the statistics literature, there are three main classifications. Missing

completely at random (MCAR) data is when the missing data does not depend on the values of

any other missing or observed data point, and the missing data and observed data are not

statistically different. This type of missing data can occur when data is sampled at different

rates or irregularly, a sensor fails, etc. In this situation, the mechanism behind the missing data

can safely be ignored (Imtiaz and Shah, 2008; Walczak and Massart, 2001).

In missing at random (MAR) data, the probability that a value will be missing is dependant

only on the observed values and not other missing data (Imtiaz and Shah, 2008; Walczak and

Massart, 2001). An example of such a mechanism could be in a drying process where the

drying end point is determined by the final moisture content determined by a loss on drying

test that is performed off line. To avoid interrupting the drying process and repeatedly

removing samples from the dryer, a temperature on the dryer could be monitored until it

indicates that the material is close to being dry at which point samples can be taken for the

off-line analysis. The values of the missing data during the time the process was not being

sampled, can easily be modelled from the monitored process data to estimate their values. The

mechanism behind the missing data can be ignored if there is enough information in the data to

be able to model the missing values (Walczak and Massart, 2001).

Missing not at random (MNAR) , also known at non-ignorable mechanism (NI) is when the

missing data depends on both the observed data and the missing data. In this case, the

mechanism behind the missing data cannot be ignored and must be included in the analysis of

the data. Examples of such missing data are if a measurement value goes beyond the range of

the sensor, be this an on-line sensor such as temperature or pressure measurement, or below

the limit of detection in an analytical measurement (Walczak and Massart, 2001; Imtiaz and

Shah, 2008) resulting in the measurement not representing the true state of the process. In the

case, however, where a measurement hits a constraint where the measured value is

representative of the state of the process, for example, a valve position being fully open or

closed, this is not missing data and can be ignored.
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3.2.2 Dealing with missing data

Several methods are now discussed in how to deal with missing once it has been identified.

Each method is discussed in turn, and a summary of this is provided in table 3.2.

Deleting data

The simplest method for dealing with data set with missing values is to completely disregard

the record with the missing data. When dealing with industrial batch process data, the number

of batches available is often limited, and reducing the number of batches due to small

quantities of missing data can lead to significantly reducing the number of batches available for

analysis. Often a high proportion of the available batches will have missing data of one form

or another. As other techniques are available for dealing with missing data, deleting batches is

not recommended unless the missing data is to such an extent that the other techniques would

not be able to reconstruct the data with sufficient confidence (Baraldi and Enders, 2010).

Zero order hold

A technique often applied in data processing software is the zero order hold. This is where the

reporting frequency of the data is higher than the measurement frequency and rather than

interpolating data between known values, the value of the last known data is held until the next

value becomes available. This results in a stepped appearance to the data, losing some of

temporal correlation between the data, however, it can be suitable for the reconstruction

missing data resulting from the compression of steady state data using the box-car method

(Singhal and Seborg, 2003; Imtiaz and Shah, 2008).

Interpolation (first order hold)

Interpolation between known data points is often employed in data reconstruction techniques

from compressed data (such as piecewise linear methods). Additionally it can be used where

data is missing for other reasons, however it should be used cautiously as it is easy to lose

information and features from the data if the interpolation is for longer than the frequency of

the features in the data. Furthermore, using interpolation destroys the spatial correlation

between the variables (Singhal and Seborg, 2003; Imtiaz and Shah, 2008).
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Multiple imputation (MI)

Single imputation is a three step process whereby a distribution from which the data can be

modelled is selected (Modelling), next the model parameters are estimated (Estimation), and

finally the missing values are imputed from the estimated model parameters

(Imputation).

Multiple imputation is similar to single imputation, however, rather than a single estimate of

the model parameters being made, multiple (M) estimates of the model parameters are made,

and the missing data is imputed from these estimates resulting in M complete data sets. The

benefit of this method is that MI improves the estimation of variance in the data set over that of

single imputation methods by taking into account the error introduced to the data set through

the model parameter estimation.

Following MI, the scalar value of any datum (Θ) can be calculate as the mean of the

corresponding scalar values from the M complete data sets (equation 3.8).

Θ =
M

∑
i=1

Θi

M
(3.8)

For each of the scalars (Θ) the variance can be split into two parts. The first (W ) is the

contribution to the variance from the imputed scalar(s) and can be defined as shown in

equation 3.9.

Wi =
1

n(1−n)

n

∑
i=1

(xi− x̄)2 (3.9)

The second component of the variance comes from the noise introduced from the random

model parameter selection, and is known as the between imputation variance (B) and is defined

in equation 3.10. The total variance (T ) is however not a simple summation and a correction

factor is applied (equation 3.11). This correction factor allows estimation of the contribution of

the between imputation variance to reduce as the number of imputations increases (Rubin,

1977; Walczak and Massart, 2001; Imtiaz and Shah, 2008).

B =
M

∑
i=1

(Θ̂i− Θ̄)2

M−1
(3.10)
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T = W̄ +

(
1+1

M

)
B (3.11)

Maximum likelihood (ML)

Maximum likelihood is a method for estimating the values of the missing data through an

iterative approach. The method consists of two steps, an E-step (estimation step) where

typically the missing values are estimated, and an M-step (maximization step). However, with

multivariate data it may not be appropriate to directly estimate the missing values due to the

presence of quadratic statistics from the sums of squares and sums of products across the

variables. Rather the conditional multivariate distribution of the missing values should be

computed with appropriate model parameters to obtain the means, mean squares, and mean

products, before the missing data can be estimated (Dempster et al., 1976).

A complete data set (XXX) can be described by the density function shown in equation 3.12

where Θ represents the density functions parameters (i.e. mean and variance for Normal

distribution).

p(XXX |Θ) (3.12)

Similarly the missing data can be described by the density function shown in equation 3.13 ,

where Φ represents the density function parameters.

p(M|XXX ,Φ) (3.13)

These can be combined to give the density of function of both XXX and M (equation 3.14).

p(XXX ,M|Θ,Φ) = p(XXX |Θ)p(M|XXX ,Φ) (3.14)

In the case of MCAR and MAR data, equation 3.13 can be rewritten as equation 3.15 enabling

the initial estimation of the missing data, however, for NI missing data, the missingness

mechanism needs to remain.

p(M|XXXobserved,XXXmissing,Φ) = p(M|XXXobserved,Φ) (3.15)
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The next step is the maximization step. This uses a likelihood function on Θ, i.e. any function

that is proportional to the density distribution of the observed values of XXX , which is maximised

to obtain the maximum likelihood estimate for the model parameters. Typically for the normal

distribution an exponential likelihood function is used as this simplifies the maths when the

expression is integrated (Dempster et al., 1976; Walczak and Massart, 2001; Imtiaz and Shah,

2008).

Expectation maximization (EM)

Expectation maximization is an iterative class of algorithms, closely related with the ML

methods, used to estimate missing values. The method uses four steps as detailed below:

1. Initial guess of missing data. If multiple maxima are present in the log-likelihood

function, the converged solution depends on the initial conditions, and therefore some

thought should be given to how the initial estimates of the missing data are obtained.

Typically this is the mean values for MCAR and MAR data, however for time series or

longitudinal data, interpolation or extrapolation is more often used as this represents a

better initial guess of the missing data.

2. Estimation of the parameters. This is done using the ML estimation of the parameters

with the current estimate of the missing data present in the data set XXX .

3. Re-estimation of the missing elements with the new parameters.

4. Re-estimation of the parameters. The re-estimation processes are repeated until

convergence has been achieved.

Walczak and Massart (2001) states that the convergence of the EM algorithm is linear and

proportional to the amount of missing data. Additionally, slow convergence has been reported

for some data sets. Methods are reported in the literature for speeding up the convergence,

however this is beyond the scope of this thesis (Walczak and Massart, 2001).

Data augmentation (DA)

Data augmentation is a group of iterative optimisation methods that estimate the missing data

and then optimize the missing value, so that there is no change to the statistical properties of

the data set. This is achieved through two steps. The first step is the imputation step whereby
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using the current estimate of the model parameters, the value of the missing data is taken from

the conditional distribution of the missing value. Subsequently, the new estimation of the

parameters is calculated based on the current estimate of the missing value. This process is

repeated until the algorithm converges.

Data augmentation is similar to expectation maximization with the imputation and posterior

steps of data augmentation being similar to the E-step and M-step of expectation maximization

respectively. Data augmentation can be easily applied with relatively simple steps to many

missing data problems and has good convergence (Walczak and Massart, 2001; Imtiaz and

Shah, 2008).

Principal component methods

There are a number of algorithms around that can be applied to multivariate data sets for

principal component methods listed below (Nelson et al., 1996; Imtiaz et al., 2007; Imtiaz and

Shah, 2008; Walczak and Massart, 2001).

1. Single Component Projection

Single component projection is based on the NIPALS methods, however it is

non-iterative and is applied to each dimension separately. As this looks at each

component independently, any error introduced from the estimation of the missing data

in one component is propagated through to subsequent components and can lead to large

errors in the reconstructed data matrix XXX if there is more than 1 high variance dimension,

that is more than the first principal component is of interest (Nelson et al., 1996).

As with most reconstruction techniques, there will be some errors associated with the

method. In this case some of the error occurs through variance being incorrectly

assigned to the current scores from both subsequent and previous components due to

subsequent components explaining large quantities of the variance in the data, and

missing data causing a violation of the orthogonality assumption (Nelson et al., 1996).

2. Projection to the Model Plane

A method to reduce the error from the single component projection method is to

calculate the scores on all the components at the same time. This is known as projection

to the model plane. A known error remaining in the reconstructed data from this method

is due to the attribution of some of the variance to the incorrect scores. This error is
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larger when missing data causes the variables to become almost collinear. By using

ridge regression or principal component regression to calculate the scores, can reduce

this error (Nelson et al., 1996).

3. Conditional Mean Replacement

Conditional mean replacement builds on the EM algorithm discussed earlier by using

EM to estimate the multivariate mean and covariance matrix from the data set with

missing data. As with the traditional EM approach this method relies on the specification

of an appropriate distribution to fit the data, and this is typically the Multivariate Normal

distribution. A problem that may be seen with this method is that in cases where a large

quantity of missing data exists, the co-variance can become ill-conditioned. This can be

overcome by biased regression methods such as ridge regression, principal component

regression, or projection to latent structures can be used to estimate the least squares and

covariance matrix.

Sources of error in the conditional mean replacement method can originate from a lack

of information in the input data, numerical ill-conditioning, noise, or violations of the

least squares assumptions (Nelson et al., 1996).

4. Iterative Imputation

Principal Component Analysis Iterative Algorithm (PCAIA) is similar to the EM

approach, however it uses PCA as the maximization step, using the PCA loadings rather

than the conditional expected values. Similarly, PCAIA uses these parameters in the

loadings to obtain new estimates of the missing data.

There are six steps to the PCAIA method:

(a) Reduce the data set to < 30% missing data. This is achieved by iteratively

removing the rows of the data matrix, XXX , with the most missing data until the

quantity of missing data is < 30%.

(b) Fill the missing data with the unconditional mean values. Alternative initialization

methods could also be used depending on the data set being studied.

(c) The number of components required in the model is selected based on

cross-validation. More details of cross-validation can be found in section 4.1.

(d) Singular Value Decomposition (SVD) is then performed on the data set to calculate

the loadings on the principal components.
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(e) The loadings are then used to predict the noise free values of the missing data to be

put back into XXX .

(f) This process is repeated, from the estimation of the number of components to

retain, until the sum of the squared errors between the observed values and the

predicted values are below a predefined threshold.

The benefit of PCAIA over the previous methods is that it attempts to restore the

correlation structure between the variables to enable construction of a multivariate

model. This method is also applicable to time varying process data, where the value of a

data point depends on the value of the previous point. To enable analysis of this type of

data, the PCAIA method can be applied using dynamic PCA (DPCA) to account for this

time dependency in the data (Imtiaz et al., 2007; Imtiaz and Shah, 2008; Walczak and

Massart, 2001).

Care needs to be taken with PCAIA, however, as the random error is ignored during the

prediction of the missing data and therefore the data matrix, XXX can become distorted and

subsequently the covariance structure may get distorted. Another consequence of this is

that the amount of missing data has a direct link to the order of the model (i.e. the

number of components to retain) if a method other than cross validation is used to

estimate the required order of the model (Imtiaz and Shah, 2008).

5. Principal Component Analysis Data Augmentation

Principal Component Analysis Data Augmentation (PCADA) attempts to overcome

some of the draw backs identified for the PCAIA method by considering the

measurement error during the data imputation. Additionally, whereas PCAIA converges

monotonically to a constant value, due to the random noise inclusion in PCADA the

convergence monitor is not monotonic, but varies around a value when converged and

therefore a bounded convergence limit rather than a constant value should be used to

determine when the algorithm has converged on a solution. Although the predictions are

improved with PCADA over PCAIA, the computational cost is significantly higher,

therefore with a large data set it may be preferable to use PCAIA over PCADA (Imtiaz

and Shah, 2008).

6. Alternating Least Squares

Alternating Least Squares Iterative Algorithm (ALSIA) can be used with multi-way

analysis, as would be required for batch process data. This method decomposes the data
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matrix alternating between each mode to estimate the model parameters, followed by

estimating the missing values of XXX iteratively until convergence is obtained. A summary

of the ALSIA algorithm is detailed below (Walczak and Massart, 2001).

(a) Initialize B and C

(b) Estimate the missing elements of XXX using an appropriate method

(c) Calculate A from equation 3.16

[A] = svd(XXX (I×JK)(C⊗B),L) (3.16)

(d) Calculate B from equation 3.17

[B] = svd(XXX (J×IK)(C⊗A),M) (3.17)

(e) Calculate C from equation 3.18

[C] = svd(XXX (K×IJ)(B⊗A),N) (3.18)

(f) Calculate Z from equation 3.19

Z = A′X(CB) (3.19)

(g) Calculate the predicted values of XXX from equation 3.20

XXXPredicted = AZ(C′⊗B′) (3.20)

(h) Update the missing values with the predicted values

(i) Repeat the process from step (c) until convergence is achieved

ALSIA has been shown to handle missing data quantities of up to 40% well, however, as

with all iterative methods for the restoration of missing data, the variability in the data

can be attenuated depending on the correlation of the variables and the amount of

missing data (Walczak and Massart, 2001).

7. Trimmed Score Method

The trimmed score method is a technique in which the scores for the missing data are

estimated based on the scores calculated from the observed measurements by imputing

45



the unconditional mean values (zero value) of the missing observations (Arteaga and

Ferrer, 2002; Folch-Fortuny et al., 2015). Equation 3.21 shows the estimated scores:

τττ = PPP∗T zzz∗ (3.21)

The method however is prone to large errors when influential variables are present on the

missing data. Arteaga and Ferrer (2002) presents a method of detecting if this is the

case, however, the technique is not recommended as there are more appropriate

techniques to use that do not have these problems such as trimmed score regression.

8. Trimmed Score Regression

An extension of the above trimmed score method is to apply it with regression. In the

case of trimmed score regression, the unknown, or missing, scores are predicted by

regressing the known scores as shown in equation 3.22 Arteaga and Ferrer (2002);

Folch-Fortuny et al. (2015).

TTT 1:A = TTT ∗1:ABBB+UUU (3.22)

Where BBB is the least squares estimation matrix (equation 3.23):

BBB = (XXX∗T XXX∗)−1XXX∗T TTT 1:A (3.23)

The predicted scores for the missing data can be defined by equation 3.24:

τττ1:A = ΘΘΘ1:APPP∗T1:APPP∗1:A(PPP
∗T
1:APPP∗ΘΘΘPPP∗1:A)

−1PPP∗T1:Azzz∗ (3.24)

This method has been shown to produce very good reconstruction of the missing data for

multivariate analysis with some of the lowest prediction errors of the techniques discuss

here (Arteaga and Ferrer, 2002; Folch-Fortuny et al., 2015).

9. Known Data Regression The known data regression technique is very similar to the

trimmed scores regression method, however it regresses the known data to find the

scores of the missing data, rather than regressing the known scores, see equation 3.25

Arteaga and Ferrer (2002); Folch-Fortuny et al. (2015).

TTT 1:A = XXX∗1:ABBB+UUU (3.25)

Where BBB is the least squares estimation matrix (equation 3.26):

BBB = (XXX∗T XXX∗)−1XXX∗T TTT 1:A (3.26)
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The predicted scores for the missing data can be defined by equation 3.27:

τττ1:A = ΘΘΘ1:APPP∗T1:A(PPP
∗
ΘΘΘPPP∗T )−1zzz∗ (3.27)

Although studies found this technique marginally better in terms of prediction error than

the trimmed scores regression technique, it is more computationally expensive than the

trimmed scores regression Arteaga and Ferrer (2002); Folch-Fortuny et al. (2015).

Furthermore, Folch-Fortuny et al. (2015) observed that the known data regression

method is not suited to certain data sets, including batch process data and spectroscopic

data, due to the high number of samples compared to observations that are typically

associated with these data sets. Thus, the trimmed scores regression method is preferred

for such data sets.

3.2.3 Summary of methods for dealing with missing data

A summary of the reconstruction methods for missing data is presented in table 3.2.

Table 3.2: Summary of missing data methods

Method When to use Advantages Disadvantages

Delete Data Not recommended

unless the remaining

data contains

insufficient data to

allow another

technique.

Simple Reduces the number

of batches available

in the analysis

Loose information

Only applicable for

MCAR data

Zero order hold Suitable for data

compressed with a

box-car compression

algorithm

Simple

Suitable for steady

state data

Spatial correlation

between variables

preserved

Results in stepped

data

Poor reconstruction

of non-steady state

data

Temporal correlation

between variables lost

Correlation structure

between variables is

lost

Continued on next page47



Table 3.2 – Summary of missing data methods (Continued from previous page)

Method When to use Advantages Disadvantages

Linear Interpolation Can be used with time

series data however

better methods exist

Useful as

initialization for some

more complex

algorithms

Temporal correlation

between variables

preserved

Spatial correlation

between variables lost

Multiple Imputation If the computational

cost is acceptable the

method is preferable

over single

imputation methods

Computationally

more expensive than

single imputation

methods

Variance is related to

number of

imputations

Improved estimation

of model parameters

Noise introduced to

reduce the loss in

variance for estimated

missing values

Expectation

Maximization

Suitable for data sets

with small quantities

of missing data

Convergence

proportional to

quantity of missing

data

Improved estimates

of missing data over

ML method

Convergence can be

slow

More

computationally

expensive than ML

method

Data Augmentation When the statistical

properties of the data

need to be retained

Retains the statistical

properties of the data

set

Relatively simple to

implement

Good convergence

reported

More

computationally

expensive than

simpler methods

Continued on next page
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Table 3.2 – Summary of missing data methods (Continued from previous page)

Method When to use Advantages Disadvantages

NIPALS Multivariate data sets Relatively easy to

implement

Not suitable for large

amounts of missing

data

Reduces variance for

missing data

Single Component

Projection

Multivariate data sets

when variance is

explained in small

number of principal

components

Relatively easy to

implement

Errors propagated

through subsequent

components leading

to potential large

errors

Projection to the

Model Plane

Multivariate data sets Reduced error over

single component

projection

Large errors possible

when missing data

causes collinearity in

the variables

Conditional Mean

Replacement

Multivariate data sets

with small quantities

of missing data

Convergence

proportional to

quantity of missing

data

Relies on the

underlying

distribution to be

known

Large quantities of

missing data can

cause ill-conditioning

of the covariance

matrix

Iterative Imputation

(PCAIA)

Multivariate data sets

where the correlation

between the variables

is required

Attempts to restore

correlation structure

between variables

Random error ignored

can lead to distorted

covariance structures

Continued on next page

49



Table 3.2 – Summary of missing data methods (Continued from previous page)

Method When to use Advantages Disadvantages

Principal Component

Analysis Data

Augmentation

(PCADA)

Multivariate data sets

with small quantities

of missing data where

covariance structure

is important

Accounts for random

error and therefore

maintains covariance

structure and

variability in restored

data

Convergence

monitoring more

difficult as may not be

monotonic

High computational

cost

Alternating Least

Squares (ALSIA)

Multi-way

multivariate data sets

with missing data up

to 40%

Can handle relatively

large quantities of

missing data

Attenuation of

variability in the

restored data

Trimmed score

method

Not recommended as

trimmed scores

regression has

reduced error

Can introduce large

errors in

reconstructed data

and reduce the

orthogonality of the

model variables

Trimmed score

regression

Multivariate data sets

including batch

process data

Relatively fast and

has very good

reconstruction

Known data

regression

Multivariate data sets Not suitable for data

where the number of

samples compared to

observations is high

(e.g. batch process or

spectroscopic data)

Low prediction errors

Although there are cases where other techniques may be suitable, as discussed in table 3.2, the

preferred missing data reconstruction technique is the trimmed scores regression as this has

been shown to offer the best reconstruction and is comparatively computationally inexpensive

to similar performing methods. Although NIPALS is not a particularly effective method, it is
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commonly implemented in commercially available software (Folch-Fortuny et al., 2015),

however, Folch-Fortuny et al. (2015) have made the Matlab code for the trimmed scores

regression method available.

3.2.4 Extending missing data methodology to other applications

Other areas can also be formulated as missing data problems and the above methods

employed, such as reconstruction of compressed data, and data alignment for data sets with

variable batch lengths.

Data compression is a NI missing data mechanism, and typically has a large percentage of

missing data resulting in difficulty in retaining the correlation structure of the data. Typically

direct methods are used for compression in data historians, and interpolation is incorrectly used

as a default method for reconstructing this data. A more appropriate method to use that may be

able to preserve some of the correlation structure is PCAIA Imtiaz et al. (2007).

3.3 Data alignment

Due to the nature of batch processes, the total duration of a batch may vary from one batch to

the next. This may be for many reasons. Consider a batch that is to be cooled from 60 °C to

40 °C using a water jacket from a tower cooled water supply with a fixed flow rate, for

example. In the summer when the environmental temperature is higher than in the winter, the

temperature of the cooling water may be higher. This may lead to the batch taking longer to

cool down to the target temperature, and the batch will therefore take longer to complete.

Another cause of process delay may be due to operator interactions. Although increasing

amounts of process automation are replacing tasks that process operators perform to improve

safety, quality compliance, and efficiency, there will inevitably be parts of the process,

especially in older manufacturing processes or on older manufacturing plants where the

operators are required to provide input to the batch to allow batch progression. An example of

this is in the spironolactone manufacturing process where during the crystallization, the

control system prompts the operator to visually confirm that crystallization has occurred before

the batch sequence will continue to the next phase. The time taken for the process operator to

respond to this prompt may vary as the operator needs to go to the crystallization vessel to

observe the crystallization before returning to the control room to accept the prompt. Often
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process operators are not running only one process, especially in the case where there is a lot

of process automation, resulting in further delays if the operator is not in the control room

when the control system prompts for the input.

There are four main challenges that need to be overcome relating to batch process data

alignment. The first is how the data is compressed and stored; the second is the frequency of

measurement; the third is the unequal batch length inherent with batch processes; and the

fourth is also related to data alignment but is aligning the batches that have differences in

amplitude of measurement signals (e.g. subtle differences in vacuum pressure, or reflux

temperature).

In order to compare variables of each batch over time, the time axis needs to be aligned. There

are several methods to achieve this alignment (Wan et al., 2014), some of which are discussed

further here. The process data at Piramal Healthcare consists of samples at 30 second intervals

for each of the variables on the spironolactone plant. As the control and data collection system

is relatively old and designed in a time when data storage was expensive, the raw data is

compressed prior to being stored in the data historian. This results in a variable sampling time

being observed when the raw data is recovered from the data historian. For example, figure 3.6

shows the differences in the time stamps recovered from the dryer contents temperature stored

in the data historian between the 8th and 9th January 2012.

Figure 3.6: Sampling rate of compressed dryer temperature data following retrieval from data

historian

The data recorded from the plant instrumentation is passed to a data historian through a

compression algorithm. The algorithm is a boxcar backslope compression method and is

detailed in section 3.1.
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The algorithm starts from the last recorded data point and sets boxcar limits up on this point.

When the new data is passed to the algorithm, it calculates a back-slope (gradient) limit. The

data passed from the plant is monitored until both the boxcar and the back-slope limits have

been exceeded, or fifteen minutes has passed between recorded data points. The data point

prior to the data point that exceeds the limits is then stored permanently in the data historian.

This process is repeated for every measurement that is received from the plant.

3.3.1 Cutting data

One method of data alignment is to simply trim the batches to the same (minimum) batch

length (Marjanovic et al., 2006). This method is useful to obtain batches that are all of the

same length, however care must be taken as if important information was contained in the data

that has been cut this information will be lost. Additionally this method does not account for

variations in the durations of different phases throughout the batch, therefore features of a

batch (e.g. addition of a reagent) may remain misaligned. In certain cases it may be

appropriate to trim data from either the start or during the progression of a batch. Again this

may cause informative data to be lost, however it was also be a useful technique for aligning

batch features.

3.3.2 Indicator variables

Another method for data alignment is the use of linear interpolation. This is where a new batch

progression variable is created as a fixed length for each batch (or phase of a batch). The

process variable samples from each batch are then interpolated to give batch variable

trajectories of constant length for each batch (Garcı́a-Muñoz et al., 2011; Fransson and

Folestad, 2006; ?). The benefit of this method is that it is simple and by performing this on

each phase of a batch the impact of variability in process holds between phases can be reduced

resulting in a data set with better alignment of batch features. Care must be taken with this

method however as it cannot deal with variability that occurs during batch features, and the

interpolation interval needs to be selected appropriately. If an interpolation interval is too long

(i.e. reducing the overall number of samples to be analysed) batch features and events that

occur rapidly may be omitted if the samples fall either side of the event. Similarly if the

interpolation interval is too short (i.e. many more samples than originally present) an

unimportant batch feature or process noise may be given more importance.
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An adaptation of this method is the use of an indicator variable (Garcı́a-Muñoz et al., 2003),

that is a variable that changes monotonically and starts and ends at the same value for each

batch. This indicator variable is then used as the batch progression indicator in exchange for

the time which is included in the model as a process variable. A typical example of this in

chemical engineering would be reaction conversion (from 0% to 100%). A monotonically

changing variable may be difficult to obtain in batch processes due to the nature of operating in

different modes, however this may be applied over a batch phase (e.g. heating the reactor

contents to reflux, or cooling a batch from reflux to a batch recipe defined temperature).

3.3.3 Time warping

There are several techniques used for time warping the data including dynamic time warping

(DTW), correlation optimised warping (COW), parametric time warping (PTW), peak

alignment by genetic algorithm (PAGA), and semi-parametric time warping (STW) (?). These

are at present used for alignment of chromatographic data however some of these techniques

have been applied to process data (Fransson and Folestad, 2006). All of these techniques aim

to align data vectors with a reference data vector.

Dynamic Time Warping (?)was first used for aligning the frequency data if spoken words for

speech recognition. It has since found many different applications, from optical character

recognition to motion tracking in games consoles, gene expression studies, and batch process

monitoring. DTW non-linearly warps two trajectories so that the minimum distance between

similar events is obtained. The algorithm starts by replicating the batch trajectory vectors into

two square matrices (X1 and X2). The absolute difference is then taken to give a matrix of

absolute differences D.

D = |X1−X2
T | (3.28)

The path scores (P) are then calculated with the starting constraint that both trajectories start

from time 0. This calculation of these path scores is biased to penalise for large differences

from the diagonal resulting in minimising the warping distance. It is also constrained to only

move down, right, or diagonally down and right by one unit. This is to prevent the warping

patch from doubling back on itself.
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P(1,1) = D(1,1) (3.29)

P(i,1) = D(i,1)+P(i−1,1) (3.30)

P(1, j) = D(1, j)+P(1, j−1) (3.31)

P(i, j) = D(i, j)+min([D(i−1, j),D(i−1, j−1),D(i, j−1)]) (3.32)

The warping path matrix (W) is then calculated from the path scores matrix (P). This is done

by starting at P(I,J) and finding coordinates of the minimum path back to P(1,1). Again the

algorithm is constrained to only moving left, up, or diagonally left and up by one unit to

prevent the warping path doubling back on itself.

i = I and j = J (3.33)

W(1,[1 2]) = [i j] (3.34)

The new i and j are those which correspond to the location of the minimum of:

P(i, j−1),P(i−1, j−1),andP(i−1, j) (3.35)

W(2,[1 2]) = [inew jnew] (3.36)

This process is repeated until i = 1 and j = 1.

As noted above, there are several constraints included in the algorithm. These include the start

and end points of the algorithm being fixed and the step size is constrained to one unit and

unable to move backwards. The data that is passed to the algorithm must therefore already

have the start and the end times aligned, that is the first and last points in both vectors are

aligned to the same features in the data. The data processing techniques that are applied to the

data before DTW can have an effect on the warping as they change the features that the

algorithm is aligning to.

For example, consider the two batch trajectories shown in figure 3.7. Batch 2 was shorter

therefore the last data point was held until the two trajectories were the same length.

Batch 1 was transposed and then both vectors were replicated until a square matrix for each

batch was obtained. The difference between the two was then calculated and absolute values

taken to remove the negative signs from the data (figure 3.8). It can be seen that where the
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Figure 3.7: Example of simple batch trajectories to be aligned

values of both trajectories are the same, the difference is zero; this is shown in the differences

matrix (dark blue). Conversely, the maximum difference that can be achieved here is 2, where

one batch has a value of +1 and the other batch has a value of -1.

Figure 3.8: Absolute difference matrix for simple example batches 1 and 2

From this the warping path can be calculated (Figure 3.9). It can be seen how the algorithm

has weighted the distance from the diagonal (no warping) to attempt to match the features that

are relatively close together with each other.

The resultant warping vector can be extracted from this matrix and this can be used to re-scale

the time vector of the original data, thus aligning the data (Figure 3.10). Modifications need to
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Figure 3.9: DTW warping path matrix for simple example batches 1 and 2

be made to the algorithm or data if the amplitude of the batch trajectory differs from batch to

batch as this will lead to sub optimal alignment.

Figure 3.10: Original data (top left), warping vector (bottom left), and warped data (right) using

DTW alignment algorithm

3.4 Centring and scaling

Centring of data is performed to remove common offsets within a data set. There are four

benefits of centring data; firstly to reduce the rank of the model; secondly to increase the fit to

the data; thirdly for specific removal of offsets; and fourthly to avoid numerical problems (Bro

and Smilde, 2003). Centring should not be applied without scientific thought to the data

however. There may be occasions where an offset in the data is of interest, for example a

process in which the offset of a variable changes in different operations, the value of the offset

may contain valuable information which the removal of the offset through centring, if
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performed independently for each of the operations may remove this information from the

model. As centring changes the structure of the model, the use of centring should be evaluated

on a case by case basis.

Scaling does not alter the structure of the model and therefore has a less dramatic influence on

the model. Nonetheless it may still be an important tool in pre-processing data as it can adjust

scale differences and alter the weightings of different variables. It can also adjust for

heteroscedastic data by scaling with the inverse of the standard deviation, and allow for

different sizes of subsets of data (block scaling) (Bro and Smilde, 2003). Consider, for

example, a dryer with pressure data measured in millibar (absolute) and temperature measured

in centigrade. When the dryer is operating near ambient pressure, the pressure data with a

value of approximately 1000 mbara will have a much greater influence on the model than the

temperature measuring between 20 °C and 100 °C. Also, the drying regime at ambient

pressure will give the pressure variable more influence than when the dryer is operating at

reduced pressure (approximately 50 mbara). Scaling the data by the standard deviation will

give all the variables at all time points equal importance in the model.

When handling multi-way data, the major non-linearities in the data can be removed by

subtracting the average trajectory from each of the process variables, which is of benefit over

traditional PCA where scaling by one mode causes the covariance structure to retain the

non-linearities Nomikos and MacGregor (1994).

3.5 Filtering

Filtering can be used as a preprocessing tool to remove mean shifts in data through the use of

exponentially weighted moving average (EWMA) filters (Miletic et al., 2004), or for removing

some noise from a signal (i.e. increasing the signal to noise ratio) (Brown and Wentzell,

1999).

3.5.1 Infinite impulse response vs finite impulse response

Rani et al. (2011) compares Infinite Impulse Response (IIR) filters to Finite Impulse Response

(FIR) filters for the removal of baseline noise (i.e. highpass filter) in electrocardiogram signals.

Although both types of filter were able to remove the noise from the signals, the IIR was

preferred over the FIR for the following reasons:
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• IIR filters are less computationally expensive than FIR filters

• IIR filters are easier to implement

• The transition band on IIR filters is narrower than on FIR filters

• Although IIR filters inherently have phase distortion and delay this can be removed by

applying the filter in two directions

• FIR filters of require higher orders and therefore have an increased phase delay

3.5.2 Types of IIR filters

There are many types of IIR filters however three of the most popular are Butterworth,

Chebyshev, and Elliptic. The differences between these are discussed in turn below.

Butterworth

Butterworth filters are also known as maximally flat filters. This is because the characteristic

of these filters is a flatness in the passband and stopband. A trade off from this, however, is that

these filters have a wide transition band and therefore require relatively high orders to narrow

this band (Orfanidis, 1996; Proakis and Manolakis, 2007; Rani et al., 2011). With the flat

passband and stopband, this type of filter will introduce minimum distortion into the filtered

data. Due to the width of the transition however, there is a risk that the filter will distort some

of the signal around the frequencies being removed from the data, and that some of the noise

frequencies will remain in the data. This type of filter may be suitable for multivariate

analysis, however, the filter design should be carefully considered to minimise the risk of

distorting the signal through inappropriate selection of cut off frequencies.

Chebyshev type I

By allowing for some oscillations in the passband, Chebyshev Type I filters have a narrower

transition band than Butterworth filters, however the maximally flat stopband still causes the

transition band to be relatively wide Orfanidis (1996); Proakis and Manolakis (2007); Rani

et al. (2011). Depending on the amplitude of these oscillations, significant distortion of the

original signal and introduce correlated errors into the data. This is undesirable in multivariate

analysis and therefore Chebyshev Type I filters should be avoided.
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Chebyshev type II

The Chebyshev Type II filter allows for oscillations in the stop band, whereas the passband is

maximally flat. This again allows for a narrower transition band than the Butterworth filter

(Orfanidis, 1996; Proakis and Manolakis, 2007; Rani et al., 2011). The flat passband in this

filter is more appropriate for multivariate data analysis, however depending on the amplitude

of the oscillations in the stopband, there is a risk that with this filter some noise and correlated

error will be introduced to the filtered signal. Similar considerations for the cut off frequency

as with the Butterworth filter needs to be made for the Chebyshev Type II filter to prevent

distortions to the signal around the cut off frequencies. This type of filter may be considered

for multivariate analysis if the Butterworth filter transition window width is too difficult to

allow for successful noise attenuation.

Elliptic

Elliptic filters have the smallest transition window by allowing for oscillations in both the

passband and the stopband (Orfanidis, 1996; Proakis and Manolakis, 2007; Rani et al., 2011).

As with both the Chebyshev filters, these oscillations in the passband and stopband may cause

distortion of the filtered signal and the introduction of correlated errors which would be

undesirable for multivariate analysis. Elliptic filters are therefore not recommended for

filtering signals for use in multivariate analysis.

3.5.3 Response type

There are four main response types for filters. The first of these is a lowpass filter which allows

the low frequency components of a signal to pass through the filter whilst attenuating the high

frequency portion of the signal. The second is the highpass filter. This filter allows high

frequency portions of the signal to pass, whilst attenuating the low frequency portion of the

signal. The third type is the band pass filter, which allows all frequency components within a

band to pass through the filter whilst attenuating frequencies above and below the bandpass cut

off frequencies. Finally, the fourth type is the bandstop filter. This filter attenuates the

frequency components within the cut off limits, whilst allowing the frequencies above and

below the cut off frequencies to pass through the filter. Although an ideal filter would have a

clean and immediate cut off at the cut off frequencies, such filters do not exist and filters that
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get close to this characteristic typically exhibit oscillations in the passband and/or stopband

(also known as ringing). Filter design is therefore a trade off between the transition across

from pass to stop, against the stability in the passband and/or stopband (Orfanidis, 1996;

Proakis and Manolakis, 2007).

The type of filter response required is application dependent and requires prior knowledge of

the process data and which frequencies of the data signal constitute noise and which

frequencies should be retained in the signal.

3.5.4 Filter delay

Two types of delay can occur when applying a filter to a signal; constant filter delay where the

delay is independent of the frequency, and frequency dependent delay where the delay changes

as the frequency changes. This can easily be removed by applying the designed filter in both

directions, i.e. forward then backwards across the signal. The result is zero-phase distortion of

the filtered signal with a constant delay of zero. This process does however double the order of

the designed filter as it is applied across the data twice, and the magnitude of the filter transfer

function is squared (Orfanidis, 1996; Proakis and Manolakis, 2007; Rani et al., 2011).

When applying filters to the process data, it is recommended that the filter delay is removed

from the filtered signal by applying the filter in both directions to prevent delay distortions

from the filter being carried forward into the multivariate analysis.

3.5.5 Cautions on using filters in multivariate analysis

Brown and Wentzell (1999) discuss how applying smoothing filters, specifically polynomial

least squares filters (i.e. Savitzky-Golay filters) to multivariate data can impact the subsequent

multivariate analysis. In this paper it is recommended that these filters are not applied as a

pre-processing tool in multivariate analysis as the side effects of applying these filters to

remove noise is distortion of the original signal and the introduction of correlated errors to the

filtered signal. Furthermore, the benefit of applying such filters is typically marginal in terms

of improving the model predictive performance. Brown and Wentzell (1999) do, however,

concede that filtering data might have its place where systems have a large noise

component.

Although the arguments presented in Brown and Wentzell (1999) are focused on the lowpass
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Savitzky-Golay filters specifically, the arguments presented could be brought into other types

of lowpass filters, as no filter is perfect and always has some effect on the signal being

processed which will carry into the multivariate analysis. Therefore if filters are to be applied

to process data, there must be good justification present for the application of the filter.

Table 3.3 summarises the advantages and disadvantages of the each of the data filtering

methods detailed.

Table 3.3: Comparison of data filtering methods

Filtering

Method

Advantages Disadvantages Suitable for

Multivariate

Analysis?

FIR Filters Computationally expensive

Difficult to implement

Wide transition band

High orders required leading

to increased phase delay

No

Butterworth

(IIR)

Maximally flat

Minimum distortion

in filtered data

Wide transition band

Risk of distorting data

around cut-off frequencies

Yes

Chebyshev

Type I (IIR)

Narrower transition

band than

Butterworth

Ripples in passband

May introduce significant

distortion and correlated

errors to the data

No

Chebyshev

Type II (IIR)

Narrower transition

band than

Butterworth

Ripples in stopband

May introduce distortion and

correlated errors to the data

Careful selection of cut-off

frequency required

Yes

Elliptic (IIR) Smallest transition

window

Ripples in both the passband

and stopband

May introduce distortion and

correlated errors to the data

No
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3.6 Summary

This chapter detailed the pre-processing methods that can be applied within the framework

(figure 3.11). The importance of identifying compressed data and determining if the data is

suitable for multivariate modelling was first discussed, if the original raw data is no longer

available. This highlighted the importance of understanding the data, and how it has been

treated prior to obtaining it for analysis, and presented some useful tools to help identify the

compression and reconstruction methods used.

Subsequently, methods for dealing with missing data were presented. No one technique is

appropriate for all data, therefore, it is again important to understand the history of the data,

the level and type of missing data, and what analysis needs to be performed on the data before

a technique for dealing with the missing data can be applied. It may be of use to investigate

more than one method for dealing with the missing data, and compare results of the

reconstruction, and potentially subsequent modelling across the methods selected.

Alignment of process data was next discussed, giving details of a number of tools in varying

complexity that can be used to align the data. Again, these methods need to be selected on a

case by case basis, and more than one method may be required in the same analysis to achieve

alignment of the data.

Different methods for centring and scaling batch process data were subsequently presented and

a discussion on the benefits and risks of such procedures. It should also be noted that case

should be taken, especially with commercial software packages as these often automatically

apply autoscaling to data as part of the PCA operation as a default setting.

Finally, different methods of filtering process data were presented and the risks and benefits of

such a practice were discussed. Again if filtering is to be applied, the type of filter to be

selected should be done on a case by case basis as each filter has different benefits and

consequences, and filtering can easily distort data. If filtering is performed as part of the

pre-processing procedure, it would be prudent to perform the analysis with both the filtered

and unfiltered data and compare results to test that the filter has not distorted the data.

A summary of these techniques, and a recommended order of operations is presented in the

framework shown in figure 3.11. The outlier removal and modelling procedures will be
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elaborated on in chapter 4, before this framework is tested on commercial batch process data in

chapter 5.
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Figure 3.11: Overview of framework to extract multivariate information from batch process

data highlighting (yellow) the pre-processing methods discussed in chapter 3

65



Chapter 4. Principal Component Analysis

The pre-processing techniques that contribute to the framework were discussed in chapter 3.

This chapter will build on these and detail the next steps in the framework, namely outlier

detection and the multivariate modelling. Principal component analysis is key in both of these

steps, and is presented alongside some of the associated statistics. Subsequently, extensions to

principal component analysis suited to batch process data are discussed including multiway

and dynamic principal component analysis. Finally, some relevant applications of principal

component analysis found in the literature are presented.

4.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical projection technique in which

the original data is orthogonally and linearly projected onto a space where the variance in the

data is maximised. A result of this orthogonal projection is that it has the potential to reduce

the number of variables needed to describe a system sufficiently, as the correlation between the

variables is removed (Wold et al., 1987). PCA was first used in the field of biological science

(Pearson, 1901). Since then it has found a very broad field of applications such as agriculture,

biology, chemistry, climatology, demography, ecology, economics, food research, genetics,

geology, meteorology, oceanography, psychology, quality control and more (Jolliffe, 2002).

Since the advent of relatively powerful computers, PCA has become ever more prominent in a

wide research area including chemical engineering. The main draw to PCA is its ability to

reduce the dimensionality of highly dimensional data sets. PCA has other uses than just

dimensionality reduction as identified in Wold et al. (1987) including problem simplification,

data reduction, modelling, outlier detection, variable selection, classification, and

prediction.

PCA takes a multivariate data set (X) and finds a series of new variables, principal

components, that are orthogonal to each other to describe the variation in the original data set.
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Each principal component is a linear combination of the original variables. The first principal

component is associated with the plane of most variation in the original multivariate data set.

The second principal component, being orthogonal to the first principal component, accounts

for the next largest plane of variation in the remaining data set. And so on. The later principal

components, that account for small amounts of variation in the original multivariate data set

can often be attributed to noise, and therefore excluded reducing the dimensionality of the

data.

The application of principal component analysis has been widely reported in the literature in

numerous areas. Among these is the application to process data, from both batch and

continuous processes. There are several papers on the application of PCA to simulated

processes, however the application to process data collected from a real process plant is of

more interest as there are different challenges associated with processing of raw process data.

The following gives a sample of applications of multivariate techniques to process data

published in the literature, and the challenges that they identify.

Pöllänen et al. (2006b) describe the application of PCA based multivariate statistical process

control (MSPC) charts to monitor the onset of crystallization using on-line spectroscopic data.

The model developed was able to predict the polymorphic form prior to nucleation. Masding

and Lennox (2010) go further with this in combining mechanistic process models with process

data and multivariate statistical process monitoring techniques.

Burggraeve et al. (2011) describe a methodology for applying Projection to Latent Structures

(PLS) and PCA techniques to build a monitoring system for the control of a fluidised bed

granulation process, using batch temperature data and PAT tools. Here a PLS model is

constructed on normal batches. A PCA model was then built on the scores from the PLS

model, which is then used to test if new batches are statistically different from those that were

used in the construction of the original models. Burggraeve et al. (2011) highlight the

challenge of finding appropriate instrument positions to both obtain representative process

measurements and prevent instrument fouling. De Beer et al. (2009) also comment on this

challenge of obtaining representative samples throughout a batch, in the application of building

a monitoring system for a lyophilization process using PAT and MSPC techniques.

Further work by Sarraguça et al. (2010) notes that it is also important to monitor all of the

critical process aspects. This is achieved on the lyophilization process through the use of

multiple spectroscopic technologies. A model is subsequently constructed from a set of
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batches in ‘normal operating conditions’ which can then be applied to new batches to detect

deviations from the normal batch trajectories. This is further commented on by Camacho et al.

(2015) for the monitoring of fed-batch fermentation processes where it is difficult to measure

primary quality variables.

Camacho et al. (2008) outline the application of multi-phase analysis, an extension to PCA to

account for dynamic model structures, to the simulated data for the cultivation of yeast

(Saccharomyces cerevisiae) and waste water treatment data collected from a laboratory

sequential batch reactor. The study successfully developed a model that was capable of

predicting the final phosphorus content of a batch from the first 85 sampling times (the

anaerobic processing stage).

Garcı́a-Muñoz et al. (2003) detail a study of an industrial drying process to which both PCA

and PLS techniques were applied. Garcı́a-Muñoz et al. (2003) also highlight the issue with

process data alignment. The data given in the paper is misaligned due to different starting

conditions of batches, and some of the operating conditions are different for each batch. This

results in the data becoming misaligned within processing stages and an overall difference in

batch length. Garcı́a-Muñoz et al. (2003) did not have an appropriate variable (monotonically

changing and starting and ending at the same value for each batch) to use as an indicator

variable for re-interpolation. It was, however, possible to split the batch trajectory into three

phases of which the first two could be aligned using various indicator variables within their

respective phase. The third phase did not have an appropriate indicator variable available

therefore this phase was re-sampled linearly to a constant length. Using this warped dataset,

and incorporating warped time as a new variable, Garcı́a-Muñoz et al. (2003) were able to

show that the initial quality of the charged material had little impact on the final product

quality, whereas the operating conditions, holding times, temperatures and pressures, were

responsible for the quality of the final product.

4.1.1 Mathematical description of PCA

Taking X as the original data matrix the principal components of a system are the eigenvectors

of the covariance matrix of X. Thus, for each principal component (j) the scores (T) can be

described as a linear relationship to X by the loadings (P).

T = X ·P j (4.1)

68



The loadings and scores for each principal component can be collected into two matrices T

and P respectively. The loadings of the principal components are the eigenvectors of the

covariance matrix of X. These describe the linear combination of the original variables

required to map the data onto the principal component hyperspace. The loadings are therefore

useful for interpreting the patterns observed in the scores plots and identifying variables that

have significant contributions to the observations made from the scores plots.

The scores can be calculated from equation 4.2. These describe the relationship between the

observations in the data matrix on the new principal component hyperspace. They are useful

for observing patterns in the data and splitting the data into groups. For example one group of

observations (or batches in multi-way PCA) that exhibit one behaviour, and another group of

batches that exhibit a different behaviour.

t = X ·p (4.2)

There are a number of methods for calculating the principal components including Non-linear

Iterative Partial Least Squares (NIPALS) and Singular Value Decomposition (SVD) Jolliffe

(2002). The difference between the two methods is the NIPALS algorithm is an iterative

process calculating the principal components sequentially, whereas the SVD algorithm

calculates all of the principal components simultaneously.

The simplicity of the NIPALS algorithm and the ability to handle moderate amounts of

randomly distributed missing data lends itself to integration in computer programming. The

NIPALS algorithm is first introduced in section 3.2.2 and more details on the algorithm are

detailed here. The procedure for calculating the principal components is as follows (Wold

et al., 1987).

For each dimension of a scaled matrix X:

1. Set the scores vector (t) to the column in X with the largest variance.

2. Calculate the loading vector pT = tT X / tT t. The elements in p can be interpreted as the

gradient in the linear regressions between t and the corresponding column in X.

3. Repeat the process until convergence between all the elements in two consecutive score

vectors (within a pre-defined tolerance).

4. Calculate the residuals (E) from E = X - tpT .
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5. Use E as X in the calculation of the next dimension. Continue until all of the required

dimensions have been calculated.

4.1.2 Selection of number of principal components

The first principal component is the hyperplane to which the data with the largest variance has

been projected. Subsequent principal components capture diminishing quantities of the

variance within the data set until 100% of the variance has been explained. In most data sets,

especially those originating from industrial scale process engineering applications, not all of

the variance in the data is of interest, as some of that variance (often significant quantities) is

related to noise in the data. It is therefore not appropriate to use the most principal components

available to model the data set as the information of interest will be contained in the first few

principal components. Including more principal components than required to a PCA model

can even be detrimental to the sensitivity of the model. A methodology is required to

determine which principal components should be retained in the model, and which principal

components add little value to the model and can therefore be excluded.

There are a number of methodologies that have been proposed to select the number of

principal components that should be included such as methods that consider the cumulative

percentage of variance explained, minimum eigenvalues for subsequent principal components,

and many cross-validation based methods (Valle et al., 1999).

Jolliffe (2002) suggests the cumulative variance captured by the model should be between 0.7

and 0.9. However, if the level of noise in the data is less than 10% this would result in some

information being excluded from the model. This is unlikely to be a problem with a data set

from an industrial process, however the problem that the noise in the data may contribute to

more that 30% of the variance leading to noise being included in the model reducing its

sensitivity. For example, consider the PCA model described in table 4.1 using this method five

or more principal components would be retained.

Another method is to include only those principal components with eigenvalues greater than 1,

known as the Kaiser-Guttman rule (Jackson, 1993). An eigenvalue of less than 1 indicates that

there is less information in that principal component than in one original variable. Using this

metric may however cause a loss of information if a principal component with an eigenvalue

slightly smaller than 1 is excluded from the model when it contains non-noise

information.
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Table 4.1: Variance captured in PCA model for dryer process dataset

PC Number Eigenvalue of Cov(x) % Variance captured this PC % Variance captured total

1 1660 27.73 27.73

2 969 16.14 43.87

3 937 15.60 59.48

4 482 8.03 67.50

5 458 7.64 75.14

6 366 6.09 81.23

A scree plot is another method to determine the number of principal components required

(Jackson, 1993). It is another method relying on the eigenvalues of the covariance matrix of

the original data. In a scree plot, the eigenvalues are plotted against the number of principal

components in the model as a decreasing curve. The ‘elbow’ in the scree plot, i.e. the point at

which the curve levels off is taken as the number of principal components required. There may

however be more than one ‘elbow’ in the plot leaving some ambiguity as to how many

principal components to retain. Again this method suffers the same potential problem as using

the value of the eigenvalue, as principal components that contain useful information may be

excluded as the describe significantly less variability than the principal components computed

before them. The example scree plot in figure 4.1 indicates that three principal components

should be retained for this model as this is the first point that does not fall on the level part of

the scree plot moving from the right.

Figure 4.1: Scree plot for example PCA model on NIR methanol-acetone-water dataset used to

find the number of principal components to retain

Cross-validation is a method in which samples (rows) in the data matrix (X) are selectively
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removed once and a PCA model is constructed with the remaining samples using 1 principal

component (Giancarlo and Chiara, 2002). The removed sample data is then predicted using the

model and the predicted Sum of Squared Errors (SSE) is calculated. This is repeated for the

remaining samples (rows) in X that have not been removed until every sample has been

removed once. The predicted sum of squared errors is then summed to give the total predicted

SSE for 1 principal component. This is then repeated for increasing numbers of principal

components. The optimal number of principal components is the number of principal

components that give the lowest predicted Sum of Squared Errors. The example shown in

figure 4.2 shows that six principal component should be retained in the model.

Figure 4.2: Cross-validation plot for example PCA model on NIR methanol-acetone-water

dataset used to find the number of principal components to retain

In summary, there is no one method of selecting the number of principal components that is

better than the others. The most appropriate method will change between data sets, and

therefore the most appropriate methods need to be selected on a case by case basis.

4.1.3 Model quality indicators

Hotelling’s T 2 statistic

The Hotelling’s T 2 statistic is a measure of variation within the model. That is when applied to

the scores, it provides a statistic for each sample describing how similar that sample is to the

other samples in the model. Taking ti to be the ith row of the scores matrix Tk with k scores

vectors, and S is the diagonal matrix of the eigenvalues the Hotelling’s T 2 can be described as

follows (Simoglou et al., 2005; Kourti, 2005).
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T 2
i = tiS−1tT

i (4.3)

Q residuals

The Q-statistic is a lack of model fit statistic. It is a measure of how well each sample fits the

model and considers variation not captured by the model. Taking ei to be the ith row of the

residuals matrix E, Pk to be the first k columns of the loadings in P and the identity matrix I,

the Q statistic on the ith sample can be expressed as:

Qi = eieT
i = xi(I−PkPT

k )x
T
i (4.4)

4.1.4 Contribution plots

Following the identification of a sample, or group of samples, of interest using the PCA scores,

Hotelling’s T 2 statistic, or the Q-residual statistic for example, it is desirable to know which

original variables are responsible for those scores and make the sample(s) of interest.

Taking a data matrix X of n × m process variables and samples respectively. The scores for the

kth observation and the ith principal component can be expressed as:

tk,i =
m

∑
j=1

xk, j p j,i (4.5)

Where pi, j is the loading for the jth variable on the ith principal component. This can then be

decomposed into the m contributions for each individual process variable (Conlin et al., 2000;

Flores-Cerrillo and MacGregor, 2004). If more than one observation is of interest, the

contributions can be summed for all of the observations of interest. For example, for the kth

observation to the Kth observation the score for the ith principal component from the jth

variable can be given by:

ck:K,i =
K

∑
k=k

xkt, j p j,i (4.6)
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4.1.5 A visual example of PCA

Consider the case of Near Infra-Red (NIR) spectroscopic data for a three component system of

methanol-acetone-water generated as part of a vibrational spectroscopic methods training

module as part of doctoral training programme. Several spectra were obtained at different

concentrations as shown in table 4.2. The NIR spectra obtained in transflectance mode for

these samples are shown in figure 4.3.There are several things to note on the spectra. The first

is the absorbance saturation around wavenumbers 5500 to 5400 cm−1 (point 1). This is due to

the path length being too long for this system and therefore not allowing enough light of these

wavenumbers to be passed back to the instrument to be detected resulting in a flat topped peak

that is noisy and off the scale of the instrument.

Another feature of the spectra is shown in points 2 and 3. These indicate the spectra that are

flatter either because the spectra were collected before the NIR probe entered the sample, or

there was a bubble of air in the probe window (light path). The result is that the absorbance

across the wavelengths is decreased due to the reduction in the amount of sample that the light

has to pass through.

Table 4.2: Compositions of methanol-acetone-water samples for NIR spectroscopy

Sample % Methanol % Acetone % Water

1 5.0 0.0 95.0

2 0.0 5.0 95.0

3 0.0 0.0 100.0

4 2.5 2.5 95.0

5 2.5 0.0 97.5

6 0.0 2.5 97.5
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Figure 4.3: NIR spectra of methanol-acetone-water samples at various concentrations. Point 1

indicates detector saturation. Points 2 and 3 indicate effect of air on the spectra. Points 4 - 6

indicate where there are relatively large differences between samples in the collected spectra

relating to the different component concentrations. Point 7 indicates a part of the spectra that

changes little with changes in concentration.

As PCA is a dimensionality reduction technique based on the variability in the data it can be

used to reduce the spectra into a small number of components required to determine the

quantity of each of the three components in the samples. It does this by preferentially selecting

variables (wavenumbers in this instance) that show large differences between samples (i.e.

have high variance in the data set) such as those indicated by points 4, 5, and 6. Conversely

PCA does not select variables that do not change between the samples by more than the noise

in the data. An example of this is shown at point 7 where there is no absorbance by any of the

three components and therefore the spectra does not change as the samples change.

If PCA stopped here however, there would still be a high dimensionality in the resulting data as

there are a large number of wavenumbers that absorb light for some of the components but not

all and therefore have high variance in the data set. The dimensionality reduction power comes

from the use of the covariances. For example, consider the spectral data at point 6 where there

is a high variance in the data (i.e. the spectra are able to discriminate between the quantities of

the components in the sample). As the concentration of one of the sample components

increases the absorbance at wavenumber 6900 cm−1 increases. So does however, the

absorbance at wavenumber 6901 cm−1, and 6902 cm−1 and so on. These wavenumbers have a

high covariance in the dataset and indicate the same property of the system. PCA is able to

combine these into one new variable (principal component) that summarises one characteristic
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of the variance of the system. Conversely, as this is a three component system with

components that absorb at different wavenumbers, where the concentration of one component

(say methanol) increases but another (say acetone) is held constant, the wavenumbers at which

methanol absorbs the light will indicate increasing absorbance, whereas the wavenumbers at

which acetone absorbs will remain constant. These wavenumbers will have low covariance and

therefore they will end up in separate components in the PCA model.

Applying PCA to the spectral data set for the three component mixtures will be able to reduce

the data set from 2074 wavenumbers (variables) to just 3 principal components. From these

three principal components, however, it will still be possible to determine the concentration of

each of the components in the samples. Additional principal components will hold little

information about the system (perhaps some temperature information, or other sources of

systematic error) and will mostly comprise of noise.

Figure 4.4 shows the scores on principal components 1 through 4 inclusive for the

methanol-acetone-water samples. In principal component 1, 2, and 3, the scores appear

significantly different for the six samples where air is present and the absorbance is reduced as

a result. These spectra would also be pulled out in the Hotelling’s T2 statistic (not shown). No

such identification can be made from the scores on principal component 4 as this component

contains little information form the system and is composed of mostly noise.
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Figure 4.4: PCA scores on all methanol-acetone-water spectra on principal component 1 (top

left, 78.09% variance captured), principal component 2 (top right, 20.84% variance captured),

principal component 3 (bottom left, 0.98% variance captured), and principal component 4 (bot-

tom right, 0.07% variance captured).

The presence of air in the transflectance NIR samples causes a baseline reduction in the

absorbance. This is because there is a smaller quantity of sample material for the NIR light to

pass through, thus, the samples for which an air bubble was trapped in the NIR probe window

can be classed as outliers and removed. Following removal of the spectra containing air, a PCA

model was built on the remaining data. Figure 4.5 shows the loadings on principal components

1 through 4 inclusive against wave number. Principal components 2 and 3 have captured the

absorbance peaks for methanol and acetone, although confounded by the peaks attributed to

water (see figure 4.6 for the pure methanol and pure acetone NIR spectra). The main variables

in principal component 4 are the wave numbers that were saturated on the instrument and

therefore the information contained in this principal component is mainly noise.

Figure 4.7 shows the scores on both principal component 1 and 3. This enables the data to be
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Figure 4.5: PCA loadings on principal component 1 (62.44% variance captured) (blue), princi-

pal component 2 (17.68% variance captured) (red), principal component 3 (10.62% variance

captured) (magenta), and principal component 4 (5.56% variance captured) (black) plotted

against wave number.

grouped into those samples with low concentrations of acetone (0%), those with high

concentration of acetone(5%), and the others (2.5% acetone). A similar analysis can be

performed for methanol and for water (not shown). PCA has been able to summarise the

spectra for the samples collected and pull out the wavenumbers (variables) with the largest

variance and condense the data set into three principal components that are able to describe the

samples sufficiently to be able to determine the composition of each sample.
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Figure 4.6: NIR absorbance spectra of samples of pure methanol (blue) and acetone (red)

Figure 4.7: Scores on Principal Component 1 vs Scores on Principal Component 3 for methanol-

acetone-water system grouped by acetone concentration. Blue points show all data. Blue circles

indicate samples with high acetone concentration. Red circles indicate samples with low ace-

tone concentration.
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4.2 Multi-way principal component analysis

Multi-way PCA (MPCA) is an extension to PCA allowing for multi-dimensional datasets

(Nomikos and MacGregor, 1994). Traditional PCA takes a two-dimensional data matrix X

comprising of J variables by K samples. With batch process data however a third dimension is

introduced, the batch. The resulting data matrix X for batch process data therefore consists of I

batches, J variables, and K time points (or samples) as shown in figure 4.8.

Figure 4.8: Three dimensional data matrix for batch process data

4.2.1 Unfolding

There are six possible ways to unfold a three-dimensional array to two-dimensions.

Considering the three-dimensional data array X(I× J×K) the data can be unfolded as

follows:

1. X(I× JK)

2. X(KI× J)

3. X(K× IJ)

4. X(I×KJ)

5. X(IK× J)

6. X(JI×K)

Matrices 1 and 4, 2 and 5, and 3 and 6 are equivalent and therefore only three methods will be

discussed further. Depending on the way the three-dimensional data matrix is unfolded,

different variability is analysed in the PCA model.
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Figure 4.9: Unfolding X (IxJK)

Figure 4.9 shows the I × JK unfolding method (time mode, Angulo and Godo (2007)) . The

resulting matrix consists of columns containing the process variables for each time point over

all batches. The application of PCA to the data unfolded this way is used to analyse the

batch-to-batch variation at each time point for each process variable. This lends itself to

identification of batches that are different at a specific time point.

In order to unfold the data array in the time mode, it is important that the batch data is aligned

and of the same length so the same time point is compared in each batch.

Figure 4.10: Unfolding X (IKxJ)

Figure 4.10 shows the IK × J unfolding method (batch mode) (Wold et al., 1987). Each row in

the unfolded array consists of the data for an individual batch at an individual time point for all

variables. The application of PCA to the data unfolded this way is used to analyse the

variability between batches over the entire batch trajectory.

Unlike the I × JK unfolding method, the IK × J unfolding method does not require the batches
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to be of the same length, and is therefore useful for on-line process monitoring. A large

variation in the data however comes from the time dependant variation inherent with batch

processes. This results in this time dependant structure being resolved in the first few principal

components, thus pushing the non-time dependant variability into the later PCs and therefore

requiring a greater number of PCs to be retained.

4.2.2 Outlier Detection

An important use of the batchwise unfolding method is outlier detection (Nomikos, 1996; Dahl

et al., 1999; Petersen et al., 2008; Burggraeve et al., 2011; Ben Yahia et al., 2016). In this

method, each of the scores represents a batch, and therefore any outlying batches will have

either high Hotelling’s T2 statistic or Q-statistic. A high Hotelling’s T2 statistic indicates that

the data for the batch is dissimilar to the other batches included in the model, whereas a high

Q-statistic indicates that the batch does not fit the model based on variation remaining in the

residuals.

The contribution plots for the respective statistic can be used to identify the variable and time

in the batch that caused it to be flagged as an outlier. The batch data should then be

interrogated to identify a cause for the different behaviour and considered for removal of the

dataset. After each batch is removed from the dataset, the model should be reconstructed

without this data and tested for further outliers. Similarly, only one outlier should be removed

at a time, as a batch may be flagged as a false positive outlier due to the influence of the true

outlier on the model.

By using these techniques following the pre-processing steps, previously discussed in chapter

3, the outlier removal procedure in the framework can be expanded as shown in figure

4.11.
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Figure 4.11: Overview of framework to extract multivariate information from batch process

data expanding (purple) the outlier detection methods discussed in chapter 4
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4.3 Dynamic principal component analysis

An extension to multi-way principal component analysis that deals with dynamic process data

is dynamic principal component analysis. Batch processes are inherently dynamic and thus

DPCA may be highly relevant for batch process data. Progressive time points in a large

number of process variables are correlated with their previous values (auto-correlated). For

example, considering a temperature variable during a heating process of a batch. The value of

the temperature at time t will be related to the temperature value at time t−1 as the

temperature dynamics are sufficiently slow to cause the temperature to slowly increase. Even

measurements on process variables with much faster dynamics such as pressure or reaction

conversion will still have some element of autocorrelation within the data given sampling time

that is sufficient to capture these dynamics.

Static PCA fits a linear static model through the data provided to the PCA algorithm. Applying

static PCA to data where dynamic information is present results in a linear static

approximation of the dynamic information. Although the static PCA methods have been shown

to detect and isolate disturbances from a dynamic process (Tennessee Eastman Simulation) due

to the violation of the statistical assumptions required for static PCA, namely the assumption

of time independence, the resultant principal component scores will be auto-correlated, and

possibly cross-correlated. The results of such an approach could be misleading and lead to

false alarms being detected in process monitoring especially for small disturbances (Ku et al.,

1995; ?). The current values of a dynamic process will depend on at least the previous value if

not more than one previous values. This information should therefore be included in the PCA

model as it is constructed to obtain valid results for a dynamic process.

An idea borrowed from ARMAX (auto-regressive moving average exogenous inputs) time

series models is to incorporate the previous observations (lags) in each observation vector into

the data matrix (Chen and Liu, 2002; Flores-Cerrillo and MacGregor, 2004). Merging the

ARMAX model with PCA is known as Dynamic principal component analysis (DPCA) and

allows for the time-dependant relations in measurements to be extracted into the principal

components. Where the time dependant relationships are seen through autocorrelation within a

variable, by augmenting the data matrix with lagged variables this autocorrelation becomes

transposed and observable within the variables in the data matrix.

To apply DPCA, the correct number of lags to be included in the augmented data matrix X

needs to be determined. Typically this is one or two for linear systems, however, for non-linear
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systems more lags may need to be incorporated to obtain a better linear approximation of the

non-linearity. To determine the number of lags required for each variable to augment the data

matrix with the autocorrelation function can be used. Autocorrelation is the correlation of a

data series with its own past values. The sample autocorrelation function can be described

as:

r1 =
∑

m−l
k=1(xi− x̄)(xi+l− x̄)

∑
m
k=1(xi− x̄)2 (4.7)

where l is the appropriate time lag, xi is a random variable and x̄ is the sample mean. The value

of the autocorrelation will be a value between zero and 1, where zero indicates no correlation

(i.e. completely random data) and 1 indicates 100% correlation.

The sample autocorrelation cannot be solely relied upon to give the number of lags as it will

only give the number of lags for a moving average system model. If the system exhibits

auto-regressive behaviour the partial-autocorrelation function will also be required to

accurately identify the number of lags required for the system. The partial autocorrelation is

the correlation between xi and xi+l following the removal of their correlation on the variables

between them (i.e. xi, . . . , xi+l−1).

Ku et al. (1995) present an algorithm for determining the number of lags required for a

dynamic system:

1. Set l = 0

2. Form X = [X(k) X(k−1) . . . X(k−l)]

3. Perform PCA to calculate the PC Scores

4. Set j = n× (l +1) and r(l) = 0

5. If jth component represent linear relation go to 6, else, go to 7.

6. Set j = j−1 and r(l) = r(l)+1. Go to 5

7. Calculate the number of new relations (rnew):

rnew = r(l)−∑
l−1
i=0(l− i+1)rnew(i)

8. If r(new)≤ 0 go to 9, else, go to 10.

9. Set l = l +1 and go to 2.

10. Stop.

85



4.4 Partial Least Squares

Partial Least Squares or Projection on Latent Structures (PLS) regression is a technique

combining features of PCA and multiple linear regression. The aim it to take a multivariate

data set, and by reducing the dimensionality to latent variables which can be linearly regressed

to predict one or more dependant variables. Whereas PCA decomposes in input data matrix X

to obtain principal components that best explain the variance in X, PLS decomposes the input

data matrix X with the response matrix Y to obtain latent variables that best predict Y from X

(Kourti, 2005; Abdi and Williams, 2010).

As the aim of the PLS algorithm is to provide a good description of X and Y and the

correlation between them, the output projection in PLS differ from those obtained with PCA.

There are some examples in the literature on the use of PLS in modelling the quality attributes

of pharmaceutical products however the predictive ability of PLS was found to be low for

non-linear systems (Chen and Liu, 2002). Other examples in the literature show how PLS can

be useful in determining the most important factors influencing a product quality attribute

(Gabrielsson et al., 2002).

4.5 Application of PCA to process data

There are a small number of publications relating to the application of PCA and PLS to

industrial applications, and as Gabrielsson et al. (2002) and Garcı́a-Muñoz et al. (2003)

indicate, even fewer on applications to pharmaceutical processes. In 1995, Lindberg and

Lundstedt (1995) discuss the application of PCA to understanding the impact of particle size

on dissolution of a poorly soluble drug product. Following a comprehensive analysis a

relationship between PSD and dissolution was found in addition to effects from impurities,

process parameters, and surface area (BET) analysis.

Patel and Podczeck (1996) present PCA analysis looking at the impact of microcrystalline

cellulose variability on a capsule filling process, however only the scores are presented in this

analysis. Similarly, Jover et al. (1996) fail to present the loadings from their PCA analysis on a

tablet compression process from extruded pellets. Another application of PCA to a pellet to

tablet process was presented in Pinto et al. (1997), however in this case the scores were not
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presented. In 1998, Rotthäuser et al. (1998) discuss how PCA has been applied to the

formulation development of an effervescent tablet.

Lennox et al. (2001) present an industrial case study on the application of PCA to a fed-batch

fermentation process, in which details on pre-treatment including low pass filtering to noise

reduction, and detection of outliers were performed. Also included is a discussion of missing

data and how this can impact PCA, followed by details of an on-line monitoring scheme using

PCA compared with PLS and artificial neural networks, to the fermentation process.

Marjanovic et al. (2004) present another case study on a fermentation process investigating

fault detection and the differences between the unfolding methods applied to two penicillin

fermentation case studies and some simulated data. Another fermentation case study is

presented by Ben Yahia et al. (2016) for the fed-batch Chinese Hamster Ovary (CHO) cell

fermentation for protein production. Here PCA is used to identify outliers using the

Hotelling’s T2 statistic during the initial stages of the fermentation as a pre-processing

technique for an alternative modelling tool.

Garcı́a-Muñoz et al. (2003) later describe how multi-block PLS (MacGregor et al., 1994) can

be applied to a drying process where the input blocks are wet chemistry data from the wet cake

feeding the dryer, and the dryer process data, and the output block is the data measured from

the end of drying. This application includes a detailed discussion on how alignment can be

achieved in batch process data, and shows that segmented indicator variables were used in this

application. Burggraeve et al. (2011) present a fluid bed granulation case study where cross

validation was applied to identify the number of principal components to retain. The case

study presents the analysis as an online monitoring tool used for outlier and abnormal event

detection using scores and Hotelling’s T2 statistic. The PLS model also presented was able to

predict the quality attributes of the batches. Finally, Sun et al. (2017) present how multi-block

PLS was applied to a paracetamol tablet dissolution problem to pull out the critical process

parameters and material attributes that significantly influence the tablet dissolution in the batch

wet granulation and compression processes. Furthermore, Wong et al. (2008) describe a

method for incorporating spectroscopic data and process data in a multi-block approach to

improve the process monitoring.

In addition to the pharmaceutical applications there are also a handful of other industrial case

studies from batch processes in the literature. Initially most of these were around

polymerization processes, for example, Kosanovich et al. (1994) discuss autoscaling the data

as a pre-processing technique before splitting the data to similar operating phases and applying
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PCA to the reactor data. Kosanovich et al. (1994) also show that the model built on one reactor

can be applied on another reactor operating the same process so long as the input data to the

models are appropriately scaled. Kourti et al. (1995) discuss the application of MPCA and

MPLS to a batch polymerization process using historical process data for outlier detection.

Another technique presented in this case study is to construct the PLS model using only the

‘good’ or ‘normal’ operating data and apply this model to the ‘bad’ or ‘abnormal’ operating

data to identify the cause of the ‘bad’ or ‘abnormal’ batches, using squared prediction error

analysis. Neogi and Schlags (1998) present the application of MPCA and MPLS to an

emulsion batch polymerization process and realigning the data using reaction extent as an

indicator variable. Similarly to Kourti et al. (1995), Neogi and Schlags (1998) also apply fault

identification by constructing the model on ‘normal’ data and then applying this to the

’abnormal’ data, and using MPLS to predict the quality of the product.

Martin et al. (1996a) discuss the case study of a simulated batch polymerization processes

using cross validation to identify the number of principal components to retain, and presents an

alternative statistic to Hotelling’s T2, based on a likelihood confidence region. This metric

does not cover space in the multivariate hyperplane that does not have data in its confidence

region. Dahl et al. (1999) also present on a batch polymerization case study using cross

validation to identify the number of principal components to retain in the MPCA model, which

is used for outlier detection. Dahl et al. (1999) also comment on how segmenting the batch

data into similar operating regions can be useful to prevent erroneous large loadings in the

analysis.

Gallagher et al. (1998) present research on a slightly different batch process, metal etching.

Again this work discusses the importance of centring and scaling the data, however, it also

goes into detail on the usefulness of the Hotelling’s T2 statistic and Q residuals, the impact of

keeping redundant variables in the model, and dealing with shifting process means and

covariance structures.

In Marjanovic et al. (2006) an interesting and very true observation is made regarding the

difficulty to get accurate models with the data available from industrial processes. In this case

study of a batch reactor data from a speciality chemical process the historical process data was

not detailed enough for the analysis, therefore, data from new batches was collected ensuring

all the information required was being captured at an appropriate frequency for the objectives

of the modelling. In this case, MPLS was applied to estimate the end point of the batch, and

discarding the initial data as an unusual alignment technique was chosen.
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A process for manufacturing punctured seamless steel pipe was presented as a case study for

MPCA by Xiao et al. (2016). In this example, the number of principal components selected

was achieved through using a threshold of 0.9 on the cumulative variance captured by the

model. Again the batch process data was broken up into multiple stages, and monitored using

both squared prediction error and Hotelling’s T2 contribution plots.

The challenges associated with batch data in which there are multiple operating phases, as is

often the case with pharmaceutical batch processes, is discussed in Wang et al. (2015) and

Wang et al. (2016). Up-down multi-model dynamic principal component analysis is introduced

in Wang et al. (2015) that first segments the data from each batch into a number of phases.

Each phase segment is then grouped through use of a local group standardization clustering

algorithm, and finally dynamic PCA models are constructed on the variable wise unfolded data

for each group. A very similar approach is discussed in Wang et al. (2016), named local

collection standardization multi-model dynamic principal component analysis. Here more

details on the use of a variable similarity threshold value used in the clustering part of the

method is given. This similarity threshold value determines the number of clusters generated

and therefore impacts the accuracy and complexity of the model, with a low values resulting in

coarse clustering, and poor accuracy, however, a reduced complexity of the model. The

method in both papers is demonstrated on the batch data from a ladle furnace steel making

process (Wang et al., 2015, 2016). This method, is perhaps at present too complex and

unproven for adoption for industry, particularly in the pharmaceutical area. To increase the

applicability of this approach to industry, more studies on the reliability of such an approach as

a head to head with other techniques should be performed on commercial batch process data

from the pharmaceutical industry. Furthermore, additional guidance would need to be

developed on the selection of the clustering threshold parameter and the impact of

pre-processing with these approaches.

Lv et al. (2016) presents another approach for multiple phase batch process systems,

multiple-phase online sorting PCA. In this method, the data is first unfolded variable-wise and

then the phases are determined through k-means clustering. The benefit of this approach is that

it is automated and does not rely on the prior knowledge of the process data. Following phase

clustering, a PCA model is constructed from the variable-wise unfolded clusters (Lv et al.,

2016). Lv et al. (2016) describes how the increasing number of phase models improves the

accuracy of the modelling, and also presents a method for automatically selecting the number

of phase models based on the rate of convergence of the cluster sizes. Little information is
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given, however, on quantifying the trade-off in accuracy that this method gives versus the

computational effort involved.

Another approach which has potential to lend itself to adoption in industry is detailed in

Westad et al. (2015). This method focuses on the automation of the synchronization of batch

process data with reduced input for the modeller. The approach relies on unfolding the batch

process data variable wise and applying PCA to pull out the features of the batch data in the

resultant scores. This method, however, relies on consistent signatures between the batches

which may not always be the case, especially when processes have a lot of manual

intervention. The method is demonstrated through two case studies. The first is the application

to process data from a batch chemical reaction, and the second is spectroscopic data collected

during a fluidized bed drying process. The modelling approach is fairly standard, with a model

first being built on the normal operating condition batches, and then applied to new batches to

identify batches that fall outside the normal operating conditions through statistical metrics

such as Hotelling’s T2 and residuals (Westad et al., 2015).

Souihi et al. (2015) present a method, orthogonal projections to latent structures, as an

improved method over traditional PCA and PLS methods. The method is an extension to PLS

that includes a filtering step to capture the structured variation uncorrelated to the response

matrix. The impact of this when applies to time-varying batch process data is to cause a

rotation in the latent variables to place more of the time variance information into the first

latent variable, thus enhancing the interpretability of the model outputs over that of traditional

PLS. Souihi et al. (2015) state that this method performs the same as traditional PLS in terms

of prediction accuracy, however, the benefit comes from the improvement of the interpretation

of the latent variables. This is demonstrated on a dataset obtained from a hydrogenation

reaction comprising of both process data and spectroscopic measurements (Souihi et al.,

2015).

Borchert et al. (2015) presents a case study on an upstream and downstream bio-process for

the production of a potential vaccine for malaria. The approach taken is to build separate

models for the upstream and downstream processes. The models are constructed on the

auto-scaled data from normal operating condition batches and tested on the new batches as

they are produced using statistics such as Hotelling’s T2 and residuals to determine if the new

batches fit the data or show different behaviours. The study goes further to present how

batch-wise unfolding is useful for offline monitoring of how similar or different batches are
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and if there are any trends or clusters with the batches, whereas variable-wise unfolding is

useful for online monitoring of a batch (Borchert et al., 2015).

Another case study in which the normal operating condition batches are first collected is

presented in Sarraguca et al. (2015). In this case a cocrystallization study is performed and the

spectroscopic data collected from the experiments is processed using PCA, following

unfolding in the variable-wise direction and mean centring. The modelling was able to detect

gross changes in solvent level, and the absence of input materials in the system. Additionally,

interpretation of the loadings showed a potential form change obtained during one of the

abnormal operating condition batches (Sarraguca et al., 2015). Only two principal components

were retained in the model with a total of 97.4% variance captured. This would potentially be

considered high for process data, however, is normal for spectroscopic data.

4.6 Summary

This chapter presented an overview of principal component analysis methods for batch data

processing. Firstly, a description of PCA in general was presented followed by a number of

methods for selecting the number of principal components to retain in a model. Although the

cross validation methods are the most preferred in the literature, due to the ease in which they

can be automated for on-line PCA applications, alternative methods are also presented as a

method for manually sense checking the cross validation results. Furthermore, despite

significant research effort in the area, there remains no consensus on which of the methods

should be used. It would be prudent, therefore, if it is unclear how many principal components

to retain in a model, that the modelling procedure be applied with different numbers of

principal components.

Some model quality statistics including Hotelling’s T2 and Q residuals were also discussed in

chapter 4, alongside the complementary contribution plots for interrogating the model to relate

statistics of interest back to the original data. These tools have a place in multiple areas of the

framework. The first is to identify potential outliers in te data, and subsequently interrogate the

loadings to determine why the batch is an outlier. The importance of performing the outlier

detection as an iterative procedure is discussed, and examples where these methods have been

used in the literature for outlier detection are detailed.

The second area in the framework where these quality statistics are of use is in the modelling
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section. More specifically to identify the difference between groups of batches. Again, recent

examples of such procedures detailed in the literature are discussed.

Finally, multi-way and dynamic extensions to PCA that may be applicable to batch process

data were next presented before relevant applications of principal component methods to

process data found in the literature were summarised. Pulling all of these tools together results

in the framework presented in in figure 4.12.

92



Identify Problem 
Statement

Obtain 
Process Data

Calculate 
Compression Factor 

Compression 
Factor < 3?

Compression 
Factor >> 3?

No

Noisy variable?

Yes

Filter variableYes

Align Process Data

No

Determine 
Alignment 
Method(s)

Unfold Data 
Batchwise

Centre and Scale 
Data (Global)

Build PCA model of 
data

Determine Number 
of PCs to Retain

Construct Influence 
Plot from Model

Very high T2 or 
Residuals?

Compute T2 or 
Residual 

Contributions
Yes

Outlier 
Detected?

Split Data

No

No

Exclude Bach from 
Analysis

Yes

Unfold Data 
Batchwise

Centring and Scaling 
(Local)

Build Model and 
Compute 

Predictions

Determine Number 
of PCs to Retain 

(Critical)

Difference in 
residuals between 

groups>?

Calculate 
contributions on 

Residuals

Yes

Revise Input 
Variables, Batches, 
Time Window, No. 
PCs, Pre-processing

No

No

Identify conclusions on 
problem statement

Filtered Data 
Included?

Assess Impact with 
Unfilered Data

Yes

Exclude Variable

Yes

No

Figure 4.12: Overview of framework to extract multivariate information from batch process

data highlighting (yellow) the PCA methods discussed in chapter 4
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Chapter 5. Multivariate modelling of spironolactone process data

In this chapter the results of the modelling of the dryer and the reactor used in the manufacture

of spironolactone (see chapter 2) are discussed. This chapter starts with a summary of the

objectives of the modelling and an overview of the modelling approach employed. Then

follows a brief overview of the drying process, pre-processing of the dryer data, finally the

results of the modelling and the impact of filtering data has on the results of such models.

Following from the results of the modelling of the dryer data, the same methodology is applied

to the reactor data, highlighting some different challenges with process data, namely alignment

and outlier removal, and the impact of alignment on the results of the modelling.

5.1 Modelling objectives

Following isolation of the spironolactone drug substance through crystallization and filtration,

the spironolactone is dried. This drying process is recipe controlled and described in section

5.3.1. At the end of the recipe driven process the dryer contents temperature must be greater

than 80 °C. If this is not the case, the operator manually returns the dryer to vacuum drying

until the contents temperature achieves the 80 °C end point. Under normal operating

conditions the dryer is the bottle neck in the process with a cycle time of approximately

21 hours, however, this is convenient as it fits in with operator shift patterns allowing 1 batch

per day to be manufactured. Over recent years however, the majority of batches have started to

require additional drying following the end of the recipe process in order to reach the drying

end point. This additional drying can be significant with some batches requiring 10 hours or

more of additional drying. This has a significant impact on the ability to schedule and

manufacture batches. The change in the drying time of the batch gradually became more

prevalent over time and no single change to manufacturing process, equipment, or raw

materials can be attributed to the cause of the change.

The objectives of this modelling are to use the available process data from both the reactor and
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dryer within the proposed framework of this thesis to understand what is causing the variable

drying time.

5.2 Modelling approach

An overview of the modelling approach is shown below. It comprises briefly of obtaining the

process data, and pre-processing it, followed by outlier detection using batchwise MPCA, and

finally interrogation of the differences between an ’ideal’ set of batches, and a group of batches

with a ’non-ideal’ attribute (in this case drying time).

The pre-processing comprises of importing the data, determining how that data has been

compressed and if it is acceptable for multivariate analysis, determining if filters need to be

applied to any of the process variables, aligning the data, centring and scaling the data, and

finally unfolding the data.

Multiple plots are used to aid in the analysis of the data. Influence plots are used to help with

the detection of outliers accompanied by contribution plots on the residuals or Hotelling’s T2.

Again the residuals and associated contribution plots are employed in interrogating the

differences between the groups of data with ’ideal’ and ’non-ideal’ attributes.

95



Identify Problem 
Statement

Obtain 
Process Data

Calculate 
Compression Factor 

Compression 
Factor < 3?

Compression 
Factor >> 3?

No

Noisy variable?

Yes

Filter variableYes

Align Process Data

No

Determine 
Alignment 
Method(s)

Unfold Data 
Batchwise

Centre and Scale 
Data (Global)

Build PCA model of 
data

Determine Number 
of PCs to Retain

Construct Influence 
Plot from Model

Very high T2 or 
Residuals?

Compute T2 or 
Residual 

Contributions
Yes

Outlier 
Detected?

Split Data

No

No

Exclude Bach from 
Analysis

Yes

Unfold Data 
Batchwise

Centring and Scaling 
(Local)

Build Model and 
Compute 

Predictions

Determine Number 
of PCs to Retain 

(Critical)

Difference in 
residuals between 

groups>?

Calculate 
contributions on 

Residuals

Yes

Revise Input 
Variables, Batches, 
Time Window, No. 
PCs, Pre-processing

No

No

Identify conclusions on 
problem statement

Filtered Data 
Included?

Assess Impact with 
Unfilered Data

Yes

Exclude Variable

Yes

No

Figure 5.1: Proposed Framework
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5.3 Multivariate modelling of spironolactone drying data

This section provides a high level summary of the drying process for spironolactone. A more

detailed description of how the drying process is operated is discussed in chapter 2.

5.3.1 Summary of drying process

Spironolactone is dried in a conical screw agitated dryer with heat applied through a jacket on

the dryer. Following isolation of the API in the reactor the batch is filtered in two parts. The

first part, approximately half of the batch, is loaded onto a pressure filter and filtered.

Following this process it is discharged from the filter directly into the dryer below. Whilst the

second half of the batch is being filtered, the drying process is started on the first half of the

batch. This involves reducing the pressure in the dryer with a vacuum pump and applying

25 °C to the jacket. The batch is agitated throughout this phase which lasts for 3 hours. After

the three hours drying has elapsed, the jacket recirculation valves are closed and the dryer

waits for the remainder of the batch to complete the filtering operation with no agitation. After

the second half of the batch has completed the filtration, it is discharged from the filter into the

dryer on top of the first half of the batch. The whole batch is then dried under vacuum for 2.5

hours with a jacket temperature of 25 °C following which the jacket temperature is ramped up

to 90 °C over 2 hours. The batch is dried still under vacuum at 90 °C for 2 hours after which

the pressure is restored to the dryer and the batch is ‘de-odoured’ with a jacket temperature of

90 °C and a small purge of nitrogen passing over the top of the batch to remove any odorous

compounds from the batch. The de-odour takes 11 hours following which the batch is subject

to a final 1 hour vacuum dry with the jacket at 90 °C. Following the final 1 hour vacuum dry,

drying should be complete and the sequence calls for the pressure to be restored and cooling is

applied to the jacket. However, if the batch temperature has not reached 80 °C drying is not

deemed complete and the operator must manually return the dryer to vacuum dry until the

target temperature has been achieved.
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Figure 5.2: Overview of spironolactone drying sequence

5.3.2 Control of dryer

Aspen PROVOX is a DCS (Distributed Control System) used for the control of the dryer

operation. It controls the sequencing of the drying process through a recipe that is loaded for

each batch, it also sends signals to pneumatically actuated control valves around the dryer to

effect control over the dryer jacket services, jacket temperature, pressure. PROVOX also has

interlocks that include those required for charging and discharging of the dryer. Although there

is a lot of automatic control implemented on the dryer through PROVOX and PID

(proportional + integral + derivative) controllers, some manual intervention is also required

during the drying process and PROVOX can prompt for these interventions. More details

regarding the control of the dryer are discussed in section A.1.3.

5.3.3 Compressed data

A set of 79 spironolactone (NMP) batches were collected and the data from the dryer selected.

The data had been compressed when stored in the data historian, and subsequently

reconstructed within the historian through linear interpolation back to the original sampling

rate of 30 seconds (see chapter 2 for more details on the compression of the process

data).
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Because the original (uncompressed) data is not available, the compression factor of the data

needs to be estimated. The method presented by Thornhill et al. (2004) where the second

derivative of the reconstructed process data is obtained and values near zero (i.e. within the

arithmetic accuracy of the data processing) and non-zero values to indicate linear interpolated

and non-interpolated data respectively.

To check that the data has been reconstructed at an appropriate sampling frequency the pattern

of second differentials can be observed. In this data there were not always two consecutive

non-zero second differences where the linear segments were joined. This indicates that the

sampling frequency is appropriate, whereas if the second differences gave a pattern in which

there was always a pair of non-zero second differences where the segments were joined, the

data may have been reconstructed at a lower sampling frequency than the original data was

collected at and therefore the compression factor needs to be modified to account for this

duplication in non-zero second differences.

The compression factor for each variable and each batch was calculated and are shown in the

following plots. The estimated compression factors are summarised in table 5.2. Figure 5.3a

shows the estimated compression factor of the contents temperature for each batch. The

compression factor is around the limit of 3 proposed by Thornhill et al. (2004), however, some

batches exceed this limit with compression factors approaching 5.5. Although this is above the

limit it does not exceed it by a large margin and therefore the data may be suitable for use in

the subsequent multivariate analysis, however the results should be used with caution.

The compression factor for the dryer jacket temperature is shown in figure 5.3b. This indicates

that the dryer jacket temperature data is too compressed to be suitable for use in multivariate

analysis. Although some batches have relatively low compression factors (between 3 and 5),

there are a few sustained periods where the compression factor becomes high (between 10 and

40). The compression factor would be expected to be high for this variable as it is a controlled

variable and should, assuming good control of the variable, be held at a constant value or on a

first order ramp. If controlled variables do not deviate from the set point (i.e. are well

controlled) only a small number of data points will need to be recorded to capture the

behaviour of the variable. Thornhill et al. (2004) also note that there are certain types of data

where higher compression factors may be acceptable where the intended use of the variable is

to record constant values, such as set-points, targets, and limits for example. The jacket

temperature data may therefore be included model if required.
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(a) Dryer contents temperature (b) Dryer jacket temperature

(c) Dryer controller output (d) Dryer full pressure

(e) Dryer vacuum pressure

Figure 5.3: Estimated compression factor for the spironolactone dryer process data for each

batch
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From figure 5.3b there appears to be a time dependent structure in the compression factor of

the data. This can be seen as the batches were plotted in the order they were manufactured, and

a compression factor appears to rise and fall in discrete blocks. Poorly tuned PID controllers

can lead to oscillations in the data, which would make the compression factor low as the data

historian records more data to capture this oscillatory behaviour. The periods where the

compression factor is high, could indicate where the PID controller parameters have been

adjusted to obtain better control. This was confirmed by looking at the data from batches with

high and low compression factors.

The compression factor for the dryer temperature controller output is shown in figure 5.3c.

This indicates that this variable is suitable for multivariate data analysis with a compression

factor of approximately 1.

The compression factor for the dryer full pressure data is shown in figure 5.3d. This indicates

that this variable is not suitable for multivariate data analysis with a compression factor

significantly above 3. Any information contained in this variable should however be also

contained in the vacuum pressure variable and therefore the exclusion of this variable is of no

consequence to the modelling.

The compression factor for the dryer vacuum pressure is shown in figure 5.3e. This indicates

that for approximately half of the batches this variable is not suitable for multivariate data

analysis with a compression factor of approximately 15 to 20, whereas the other half of the

batches the data is suitable with compression factors of approximately 3.

There is a clear binary response on the level of compression for the batches. This is caused by

the pressure back-pulses used to clear the dryer filter socks being inadvertently turned off.

Without these pressure pulses, the pressure in the dryer is more stable and therefore fewer data

points are needed to be recorded to capture this resulting in higher compression factors. The

pressure data may be important in the model, and although the inclusion of the first half of the

data may impact the relationships obtained from the multivariate analysis due to this over

compression, excluding this data may also prove detrimental to the modelling ability. This

requirement for the inclusion of this data in the models will therefore be evaluated during the

model building process.
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Table 5.2: Summary of the compression factors for the dryer data

Dryer variable Compression

factor

Outliers Include variable?

Contents

temperature

3 - 5 None Yes

Jacket

temperature

3 - 5 & 10 - 40 Batches 1 - 15 &

44 - 62 due to

poorly tuned PID

controller

No, compression factor too high for

a large number of batches. Relevant

information should be captured in

contents temperature and controller

output data.

Controller output 1 None Yes

Full pressure 20 - 50 None No, compression factor too high.

relevant information should be cap-

tured in vacuum pressure data

Vacuum pressure 3 & 15 - 20 Yes, most batches

prior to batch 45

did not have pres-

sure purges acti-

vated to clear the

filters

Yes, although the compression fac-

tor is above for half of the batches,

this is a controlled variable and

therefore higher compression fac-

tors can be accepted
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5.3.4 Missing data and filtering

There was no missing data present in the data set obtained, thus only filtering had to be

considered in this case.

Most of the process variables from the spironolactone drying process have some level of high

frequency noise associated with the signal. This noise is low amplitude and, as Brown and

Wentzell (1999) discuss in their paper on the hazards of filtering signals for use in multivariate

analysis, removal of this noise will yield minimal improvement on the predictive power of the

model, however may introduce distortion and correlated error into the filtered data. No

filtering will therefore be performed to remove any measurement system noise from the data

for the dryer contents temperature, jacket temperature, and pressure data.

There are, however, a couple of notable features in the data which may be considered for

filtering. The most obvious of these is found in the temperature controller output signal. Due

to a poorly tuned controller for the jacket temperature, the controller exhibits oscillatory

behaviour (figure 5.4). This oscillations peak at 50% as a maximum limit was placed on the

controller output to prevent temperature overshoots during the start of the heating phases

which could cause the dryer operation to fail.

Figure 5.4: Temperature controller output with oscillations

This oscillatory behaviour in the controller signal is significant and as a result, it is a major

contributor to the variance in the dryer process data and will therefore have significant impact

on the PCA model. Constructing PCA models from the data with the large oscillations will

lead to a model in which the oscillations are a significant contributor to the variance captured.

This is undesirable as these oscillations are mostly noise induced from the poorly tuned
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controller, masking the more interesting attribute of the mean controller position indicating

how much steam is required by the dryer to maintain the temperature set point. Filtering this

signal may prove beneficial to the modelling effort by removing these oscillations and

revealing the local mean controller value. The impact of applying such a filter should,

however, be assessed by running the analysis both with and without the filtering applied. In

order to identify an appropriate filter to apply to the controller output signal, the single sided

magnitude spectrum of the signal can be computed (figure 5.5).

Figure 5.5: Single sided magnitude spectrum of the controller output signal (arrows indicating

0.7 mHz and 1.5 mHz)

From figure 5.5 the slow moving (i.e. low frequency) information from the controller output

signal can be seen on the left side of the plot. There are also two significant peaks towards the

higher frequency end of the spectrum where the magnitude increases. These are found at

approximately 0.7 mHz and 1.5 mHz. These relate to the oscillations in the low temperature

drying phases and the high temperature drying phase respectively, and can be confirmed by

measuring the distance between oscillations in this period and converting it to a frequency. A

band stop filter should therefore be designed around these two frequencies to eliminate the

oscillatory behaviour from the signal and reveal any underlying structure in the signal.

A second order Butterworth bandstop filter was built on the controller output signal. The filter

was applied in both the forward and the backward direction to in order to reduce the distortion

and delay in the filtered signal. Figure 5.6 shows the a comparison between the original signal

and the filtered signal, where the oscillations in the data have been significantly reduced

revealing the structure in the controller output variable that was previously masked by the

oscillations. There are however some artefacts visible in the filtered signal as a result of the
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filtering. The impact of applying the filter to the controller signal is discussed in further in

section 5.3.9.

Figure 5.6: Original and filtered temperature controller output signal

5.3.5 Data alignment

In order to compare variables of each batch over time, the batch progression axis needs to be

aligned (be this time or another variable). Due to differing starting conditions, environmental

conditions and operator interaction throughout a process, the time taken for each operation,

and even phase, may change significantly from batch to batch. An example of this behaviour

on the drying data is shown in figure 5.7. Figure 5.7 is an illustration of how the requirement

for operator prompts and waiting on other unit operations may cause extensions in the time

profile of a batch.
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Figure 5.7: Misalignment in drying profiles of two batches due to process wait. A1 and B1

indicate the start of the second charge operation to the dryer for batch A and B respectively. A2

and B2 indicate the start of the second dry operation for batch A and B respectively. A3 and B3

indicate the end of the deodour operation for batch A and B respectively.

Figure 5.7 shows the drying profile for two batches of spironolactone. Both batches start at the

same time on the time axis and they also both finish the first dry operation in the same amount

of time (A1 and B1). The time taken to get the second part of the batch filtered and transferred

to the dryer differ with batch A is longer (A2) than batch B (B2). The misalignment arising

from this additional waiting time is carried throughout the batch trend and can be seen at the

end of the sequence drying operation (A3 and B3).

There are several methods of overcoming this problem including data cutting, linear

interpolation between two known features in the data, and time warping the data

(Garcı́a-Muñoz et al., 2011; Wan et al., 2014). These methods are discussed in detail in chapter

3.

Data cutting is the simplest method, however, it has severe limitations. Data cutting carries the

risk that information can be lost if the data removed contained useful information. The dryer

data is however an example of where such a technique may be employed to achieve alignment

of the process data. As the drying process is recipe controlled, and each of the phases is

controlled by a fixed time, the data should be relatively easy to align. There are three regions

on the drying process data where the cutting technique has been used.

The drying sequence starts with a pre-check and a series of vacuum - nitrogen purges, followed
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by a charge to the dryer of the first portion of the batch from the filter. The data available

during these three operations will not contain any relevant information relating to the product

or the dryer. The contents temperature probe is not in contact with the product for most of

these operations, the jacket temperature is not being controlled and therefore the contents

temperature and the controller output signals will not contain any relevant information, and

other than to verify that the dryer nitrogen purge has been successful and the performance of

the vacuum pump, the pressure measurements will contain no information regarding the

spironolactone product. The start of drying was therefore taken from the point at which the

temperature controller output starts to increase following the vacuum purges, indicating that

the product has been charged, the agitator is moving and the drying sequence has started.

The second region to be cut from the drying data is the data collected between the end of the

first dry phase and the the start of the second dry phase. Following the first dry phase of fixed

duration, the control system stops the recirculation pump on the jacket water, stops the dryer

agitator, and waits for the operator to confirm that the second portion of the batch has been

charged to the dryer. The data obtained during this phase cannot be trusted to be representative

of the conditions in the dryer. As the agitator is stopped, the contents temperature

thermocouple is only measuring the temperature at 1 location in the dryer assuming that the

probe is in contact with the batch whilst waiting for the second portion to be dropped into the

dryer. The jacket on the dryer is in a no flow condition, therefore the temperature on the jacket

outlet is not representative of the temperature in the jacket. Also, as a result of the no flow

condition in the dryer jacket, the controller behaviour is unpredictable and either fully opens

(within the constraints programmed in the DCS) or fully closes based on the signal received

from the unreliable jacket temperature thermocouple. Similarly, the pressure monitoring

ambient pressure in the system.

By removing the data between the start of the second dry and the end of the first by phases,

this spurious data is excluded from the models, and the drying data becomes aligned. By

removing this data, however, the elapsed time variable should be considered for inclusion in

models as this may hold relevant information relating to different batch lengths that may be

important.

The final section to be cut from the data is towards the end of the batch. One of the objectives

of the modelling of the dryer data was to identify causes for extended drying (i.e. changes in

contents temperature at the end of the deodour phase). Therefore, if information on the causes

of extended drying is present in the drying data it should be present before the end of the
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drying operation. Furthermore, following the deodour and final 1 hour vacuum drying phases,

the sequence automatically applies cooling to the dryer jacket irrespective of the contents

temperature. Therefore the information in what happens to the batch following the deodour

phase is highly dependent on if the operator is around to switch the drying from automatic to

manual. All data following the end of the deodour operation can therefore be cut from the

model allowing for the remaining batch drying trajectory to be aligned and each batch to be of

constant length.

5.3.6 Unfolding

Batchwise unfolding was employed for both the outlier detection and the exploratory

modelling. For the outlier detection, the entire data set was unfolded in one block, whereas, for

the exploratory dataset, a model calibration set was created by batchwise unfolding of the

batches with fast drying times, and a second dataset was created by batchwise unfolding of

those batches with long drying times.

5.3.7 Centring and scaling

Two methods of centring and scaling were applied to the data depending on the use in the

modelling process. The first, used for outlier detection, takes all of the dryer data. For each

variable the mean trajectory was calculated and subtracted from each batch. This removed the

non-stationary information from the data caused by the different operating phases and helps

give equal weight to each time point in the model. Additionally, dividing each batch by the

standard deviation along the trajectory scales the data so that each variable has an equal

weight.

The second method is similar to the first, however a only a subset of the batches was used to

calculate the mean and this mean was subtracted from all of the batches. This again removes

the non-stationary information from the data caused by the different operating phases giving

equal weight to each time point (sample) in the model. However, by centring based on a subset

of the data, the differences between the means of the two groups will be pulled out of the

model. This approach is commonly used in batch monitoring where a new batch is scaled by

the means of the batches that the model was build on (i.e. calibration data set). Again, all the

batches were scaled by dividing by the standard deviation of the subset of batches used to

calculate the mean.
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5.3.8 Outlier detection

Following autoscaling and unfolding the dryer data batchwise, principal component analysis

was applied to the data in order to identify any outliers in the data that should be removed prior

to a more focused analysis of the data.

Figure 5.8: Root mean squared error for cross validation for dryer data

Figure 5.9: Scree plot for dryer data

The number of principal components to retain in this model was selected by leave one out

cross-validation (figure 5.8) with five PCs retained. The scree plot in figure 5.9 shows the

eigenvalues are still decreasing rapidly after four PCs and therefore six PCs should be retained.

As this initial model is being used for outlier detection, it is not critical to capture all of the

variability in the data, just enough to identify any batches that significantly deviate from a

’typical’ batch. Furthermore, the inclusion of more PCs than necessary risks the inclusion of

noise in the model, which may make it more difficult to identify outliers. The model with four

PCs explained a total of 66.33% of the variance, with 26.62% explained in the first principal

component, a further 20.82% variance explained in the second principal component, 11.49%

explained in the third principal component, and 7.40% explained in the fourth principal

component.
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Figure 5.10: Influence plot of auto scaled dryer data unfolded in the batch direction with 95%

confidence limits shown

The influence plot in figure 5.10 identifies two batches that have high residuals (batch 7 and

68). These batches may be potential outliers and the contribution plots on the residuals should

be interrogated to determine if these are true outliers.

The contributions on the residuals for batches 7 (figure 5.11a) and 68 (figure 5.12a) both

identified the controller data to be abnormal for these batches, and there is also some

abnormality in the pressure data during the deodour for batch 68. Batch 7 was found to be

calling for excessive steam during the first dry phase, and subsequently no steam during the

beginning of the second dry phase (figure 5.11b). At the start of the first dry phase, vacuum is

pulled on the dryer. This is done in two stages, first using a liquid ring vacuum pump to get the

initial partial vacuum, followed by a switch over to the high vacuum pump. The high vacuum

pump however failed causing the DCS to shut the dryer down into a failed state with cooling

applied to the dryer. This was immediately recovered by the operator. On further investigation

into the DCS sequences, it was found that the fail phase switched the valves on the dryer jacket

from recirculation to once through to allow for cold water to bring the temperature of the

jacket down quickly. The recovery sequence however does not switch the valves back to

recirculation when the steam controller is returned to use and as a result, the jacket is operated

in a single pass mode. The temperature controller is not set up to operate in this mode, and as a

result large oscillations in the controller output occur as the controller attempts to achieve the

set point on the cold water entering the jacket which is likely to contain temperature

disturbances as it is a common source of water for multiple plants.

Due to these unusual oscillations in the controller, oscillations were also induced in the jacket

temperature which were large enough to cause the jacket temperature to exceed 30 °C which

caused the dryer to fail to a safe mode and apply cooling to the dryer jacket until an operator
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(a) Contribution on the Q residuals (b) Dryer temperature controller output

Figure 5.11: Dryer steam failure identified in (a) Q residuals for batch 7 drying data and con-

firmed in (b) by the dryer temperature controller output data for batch 7 showing batch failure

behaviour in high steam demand in the first 400 time points, followed by long periods no steam

demand up to approximately time point 600

recovers the operation. The lack of steam at the start of the second dry phase was due to the

steam controller fully opening the steam valve, with a no flow condition in the dryer jacket,

during the pause whilst the second portion of the batch was charged to the dryer. This over

heated the heat exchanger and jacket water around this area so that when the second dry phase

was initiated and the flow returned to the jacket, the temperature rose rapidly above the set

point. The controller responded by closing the steam valve, however, because during heating

the jacket is a closed loop, it took a long time to remove this excess heat from the system.

These behaviours are not normal behaviours expected within a batch and therefore the data

should be removed from the analysis.

In the case of batch 68, the dryer moved onto a failed state multiple times throughout the

deodour phase (figure 5.12b). As a result the operators tried several times to continue the

drying including switching back to vacuum drying and then back to the deodour phase. The

information is not available in the data to determine the root cause of these failures.

The influence plot (figure 5.10) also suggested that batches 5 and 18 did not fit the model well

with relatively high residuals for both batches. Investigation using the contributions plots and

original data found that these batches also had failures during manufacture where the

temperature controller output moved to the safe condition of 0%. Batch 5 has a similar root

cause for these failures as batch 7, where an unreliable high vacuum pump failed causing the

dryer to move to a failed safe state. The recovery sequences do not however set the jacket

valves to the correct flow path resulting in the controller being unable to heat the jacket water
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(a) Contribution on the Q residuals (b) Dryer temperature controller output

Figure 5.12: Dryer steam failure identified in (a) Q residuals for batch 68 drying data and

confirmed in (b) by the dryer temperature controller output data for batch 68 showing batch

failure behaviour manifested as periods of no steam demand during the deodour phase (time

point 1500 onwards)

sufficiently. Batch 18 showed similar behaviour to batch 68, however only one failure event

occurred during the deodour phase.

These batches were removed from the dataset as outliers and the process repeated with the

remaining batches until the remaining batches did not have very high residuals or Hotelling’s

T2 values. Although confidence limits are shown on the influence plot, these should be used as

a guide only and not a hard rule as to whether a batch is an outlier or not (Bro and Smilde,

2014).

5.3.9 Principal Component Analysis

Following the removal of the outliers from the original data set of 79 batches, two subsets were

pulled out of the data. The first was the desirable batches (i.e. those with an extended drying

time of less than 3.5 hours), and the second was the undesirable batches (i.e. those with

extended drying times of greater than 7.5 hours). These subsets consisted of 8 batches and 13

batches in the fast and slow drying groups respectively.

All of the batches were centred around the mean of the batches with short extended drying

times, and scaled to unit variance. By removing the means of the fast drying batches from all

of the data, the non-stationary behaviour will be removed from the model as this is not of

interest, however, the information on how the slower drying batches deviate from the

trajectories of the faster drying batches will be retained in the model. The data was then

unfolded batchwise to allow the PCA model to be built.
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(a) Root mean squared error for cross validation (b) Q Residuals

Figure 5.13: (a) Root mean squared error for cross validation to select the number of PCs to

retain (b) Q Residuals for the dryer data from the fast (black dots) and slow (red triangles)

drying batches with the 95% confidence limit indicated

As the residuals in the model will be used in this analysis, it is important to choose the correct

number of principal components to retain in the model. Leave one out cross validation was

used to select 2 principal components to retain (figure 5.13a).

A principal component model was built on the data with fast drying times. This explained

59.01% of the variance in the data with 35.73% accounted for in the first principal component,

and the other 23.29% in the second principal component. The principal component model was

then applied to the slow drying batch data. The residuals plot shown in figure 5.13b shows that

the slow drying batches are different to the faster drying batches and all of the slow drying

batches falling above the 95% confidence interval limit. Examination of the contribution plots

for the residuals would be prudent for these batches to identify which variables are

contributing to the differences between the two groups of data.

The contribution plot on the residuals is shown in figure 5.14. This indicates 3 regions of

interest that contribute significantly to the high residuals of the batches that have long extended

drying times. There are two regions with extremely high contributions. The first at

approximately variable 2900, and the second at around variable 5000. The first occurs in the

pressure data when the dryer is pulling vacuum at the start of the second dry. For each batch

there is a rapid decrease in pressure in the dryer (over 1 - 2 time points) which if not perfectly

aligned will cause high variance between the batches. This is a very short event, in the

contributions and is believed to be an artefact from the alignment process and therefore is not

considered to have a genuine significance in determining the drying time of the batches.

The second region with extremely high contributions around variable 5000 corresponds to the

temperature controller output signal at the beginning of the first drying stage. This is the same
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Figure 5.14: Contribution plot on the Q Residuals for the dryer data from the fast (green) and

slow (red) drying batches

fault that was identified during the outlier detection, where the recovery from a failed vacuum

pump caused a temporary error in the valve configuration on the dryer jacket leading to a delay

in getting the heat into the jacket at the start of the drying process. This fault can have a

genuine influence on the drying time of the batches, and is related to the manufacturing

equipment and sequences. These can be relatively easily remedied through more investment in

more reliable high vacuum process, and/or an update to the fail and recovery sequences.

Finally, a third region between variables 1500 and 2500 show significant contributions to the

residuals for the slow drying batches. These are not as high as the previously discussed two

instances, however they may still be significant and are comparable to the magnitude of the

contributions in some of the controller fault at variable 5000. This corresponds to the contents

temperature variable during the deodour, starting when the pressure is restored to just above

ambient with the nitrogen sweep across the head space of the dryer however the contributions

decent fairly rapidly from time point 2000 towards the end of the batch. This indicates that it is

not a straight forward temperature effect such as hotter batches towards the end of the drying

phase drying faster than batches that are cooler, but there is something more subtle occurring

in the dryer. Further investigation reveals that this peak in the contributions coincides

approximately with the point where an endotherm is observed in the dryer. This endotherm

occurs at different times and temperatures for each batch, and is more pronounced in some

batches than others. Spironolactone is known to have many polymorphic forms, therefore this

endotherm may be related to a solid state transition occurring in the dryer as a result of thermal

and mechanical energy inputs to the process. This drying endotherm has not been observed in

the lab scale process, possibly due to different drying techniques, therefore future work could

114



be to either monitor online, or obtain samples from the dryer throughout the deodour phase to

look for a solid state transformation. This may be achieved through techniques such as Raman

spectroscopy (Chakravarty et al., 2009), or x-ray powder diffraction (Espeau et al., 2007;

Nicolaı̈ et al., 2007; Liebenberg, 2005).

Impact of not filtering the controller output signal

As the inclusion of filtered variables in multivariate analysis may lead to the inclusion of

distorted data, for only small gains in the predictive ability of the analysis, the impact of the

inclusion of the filtered variables was also assessed.

The same analysis was performed using the original (unfiltered) signal. Two principal

components were retained as selected by cross validation and a principal component model

was built on the data with fast drying times. This explained 55.31% of the variance in the data

with 37.84% accounted for in the first principal component, and the other 17.48% in the

second principal component. The principal component model was then applied to the slow

drying batch data. The residuals plot shown in figure 5.15 shows that the slow drying batches

are different to the faster drying batches and all of the slow drying batches falling above the

95% confidence interval limit. Examination of the contribution plots for the residuals would be

prudent for these batches to identify which variables are contributing to the differences

between the two groups of data. Filtering the controller output variable does however slightly

improve the separation between the slow and fast drying batches, however both methods are

still capable of distinguishing between these batches.

The contribution plot on the residuals is shown in figure 5.16. This indicates the same 3

Figure 5.15: Q Residuals for the dryer data from the fast (black dots) and slow (red triangles)

drying batches with the 95% confidence limit indicated

115



Figure 5.16: Contribution plot on the Q Residuals for the dryer data from the fast (black) and

slow (red) drying batches

regions of interest as figure 5.14. The difference between the two is that some of the noise

from the controller has been captured in the contributions for the controller, however the same

structures are still visible beneath the noise. It is therefore recommended that the controller

data does not need to be filtered for this analysis, and the original controller data should be

used as the benefit in separation is marginal. However, it was useful to use the filtered variable

to get confirmation of the structures within the controller data.

5.3.10 Conclusions

The proposed modelling framework has successfully been applied to the dryer process data

and identified some of the challenges with pre-processing such data. The analysis was able to

identify a number of different equipment issues that may have an impact on the economic

operation of the process, and also identified the cause for the endotherm in the dryer should be

further investigated as this is a significant contributor to the variability in drying times between

batches.
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5.4 Multivariate modelling of spironolactone reactor data

Following from the application of the modelling methodology to the dryer data (see section

5.3), in which some variability in the product was noted that caused variation in the endotherm

observed in the dryer, the same modelling approach was applied to the reaction and initial

crystallization data from the reactor to determine if the reactive crystallization is having an

impact on the drying time. This section provides a high level summary of the reaction and

crystallization process for spironolactone. A more detailed description of how the reactor is

operated is discussed in chapter 2.

5.4.1 Summary of reaction and crystallization process

The thiolacetylation and isolation reactor is controlled by PROVOX through the sequence

illustrated in figure 5.17. Each of the steps has the required settings for the batch contained

within the batch recipe. It starts by checking that the reactor is ready and that a valid batch

number has been set. The reactor is then evacuated approximately 100 mbarA and purged with

nitrogen three times (vacuum-purge). The appropriate valves are then opened to allow the

operator to transfer the colour treated aldadiene in methanol and acetone to the reactor via the

0.45µm and 0.2µm filters. After the transfer is complete, the reactor contents are heated to

reflux for 6 minutes with the timer starting when the reactor contents exceed 60 °C. After the

reflux, the steam supply to the reactor jacket is isolated and thiolacetic acid is charged to the

reactor, controlled by weight change in the thiolacetic acid header tank, T104. The reactor is

then returned to reflux at 62 °C for 20 minutes. The reactor jacket is then filled with cold water

to start the batch cooling. As soon as the jacket is showing full of cold water by activation of a

level switch in the jacket, the water is blown out of the jacket using compressed air and the

batch remains slowly cooling until the operator confirms that crystallization has been observed

in the reactor. Heat is then applied to the reactor to return the contents to reflux at a minimum

of 64 °C for 100 minutes to ensure that the reaction goes to completion. After the 100 minute

reflux, the steam is isolated and the condensate in the jacket blown clear with plant air. A

quantity of methanol is charged to the reactor R101 controlled by weight change on the

receiving reactor. There is then an option to add recovery material (spironolactone that has

been recovered from the first wash of the process train with acetone). More methanol is then

added to the reactor again controlled by the weight change in R101. The reactor is then cooled

to 40 °C using cold water in the reactor jacket after which the jacket service is changed to
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chilled glycol to bring the reactor contents down to -10 °C. The batch is held at -10 °C for a

minimum of two hours before it is filtered. The batch is filtered in two parts in the Rosenmund

pressure filter F101, the charge controlled by the weight change in reactor R101. Whilst the

first load is being filtered the remaining spironolactone slurry in R101 remains held at -10 °C.

More details on the control of the reactor are presented in section A.1.1.

Figure 5.17: Overview of reactor R101 control strategy

For this analysis, only the 6 minute reflux, through to part way through the second reflux will

be considered in the model as this is the parts of the reactor sequence where the spironolactone

is made and initially isolated. This data includes the addition of the thiolacetic acid, the

20 minute reflux, primary nucleation, confirmation of crystallization, and final 100 minute

reflux.

5.4.2 Control of reactor

Aspen PROVOX is a DCS (Distributed Control System) used for the control of the dryer

operation. It controls the sequencing of the reactor through a recipe that is loaded for each
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batch, it also sends signals to pneumatically actuated control valves around the actor to effect

control over the reactor jacket services, jacket temperature, pressure. PROVOX also has

interlocks that include those required for charging and discharging of the reactor. Although

there is a lot of automatic control implemented on the reactor through PROVOX and PID

(proportional + integral + derivative) controllers, some manual intervention is also required

during the crystallization process and PROVOX can prompt for these interventions. More

details regarding the control of the dryer are discussed in section A.1.1.

5.4.3 Compressed data

The reactor process data from the same set of 79 spironolactone (NMP) batches analysed in

section 5.3 was analysed to estimate the compression factor and thus determine if the data was

suitable to multivariate analysis. The estimated compression factor for each variable and each

batch are shown in the following plots and summarised in table 5.7. Figure 5.18a shows the

estimated compression factor of the contents temperature for each batch. The compression

factor is generally below the limit of 3 proposed by Thornhill et al. (2004) at a value of

approximately 2, however, there are two batches that exceed this limit with compression

factors approaching 5.5. From looking at the data for these batches, they are clearly outliers

and will therefore be removed from the analysis. The contents temperature data is therefore

suitable for multivariate analysis from a compressed data perspective.

Figure 5.18b shows the estimated compression factor of the reactor weight for each batch. The

compression factor is above the limit of 3 with most values in the region of 5 to 17. Again the

two outlier batches have very high compression factors as the variable is relatively constant for

these two batches. The reactor weight data is potentially too compressed to be used in

multivariate analysis without introducing significant errors. Therefore the reactor weight

variable should be considered for exclusion from the analysis.

Figure 5.18c shows the estimated compression factor of the reactor temperature controller

output for each batch. The compression factor is significantly above the limit of 3 with most

values in the region of 20 to 80. During the sequences, heating and cooling is generally applied

fully (i.e. full reflux requiring fully open steam, or rapid cooling requiring full flow on

coolant), therefore the controller signal is relatively flat for most of the duration of the batch

and only indicates if heating or cooling is being applied. The exception to this is when the

batch is chilling at -10 °C, the reactor attempts to control this temperature to the set point
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(a) Reactor contents temperature (b) Reactor weight

(c) Reactor controller output (d) Reactor full pressure

(e) Reactor blanket pressure

Figure 5.18: Estimated compression factor for the spironolactone reactor process data for each

batch
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therefore there is some movement of the controller signal during this period. As the controller

signal is effectively representing a set point, a high compression factor is acceptable and

therefore this variable can be included in the model if required.

Figure 5.18d shows the estimated compression factor of the reactor full pressure for each

batch. The compression factor is significantly above the limit of 3 with most batches showing

compression factors in the range of 40 to 370. The sequence for the spironolactone reaction

and crystallization is all performed at ambient pressure, however the pressure transmitter for

this variable is ranged to cover vacuum up to 0 to 2.5 bara. The signal does not have the

appropriate span to be sensitive enough to detect the small changes in pressure in the reactor

during the operations and therefore the measurement is relatively flat throughout. There is

however another pressure signal collected during processing which is more appropriately

ranged where the pressure information is located. The full pressure variable should therefore

be considered for exclusion from the analysis.

Figure 5.18e shows the estimated compression factor of the reactor full pressure for each

batch. The compression factor is significantly below the limit of 3 with most batches showing

compression factors of approximately 1. This variable is therefore suitable for multivariate

analysis if required.
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Table 5.7: Summary of the compression factors for the dryer data

Reactor variable Compression

factor

Outliers Include variable?

Contents

temperature

2 20 and 69 have

compression fac-

tors of approxi-

mately 5

Yes, the compression factor is suffi-

ciently low

Weight 5 - 17 20 and 69 have

compression fac-

tors of 35 and 40

respectively

Consider for exclusion

Controller output 20 - 80 20 and 69 have

compression fac-

tors of 180 and 4

respectively

Yes, variable is effectively measur-

ing a set point and therefore can be

included if required

Full pressure 40 - 350 Highly variable No, compression factor too high

and blanket pressure data may cap-

ture relevant information

Blanket pressure 1 None Yes
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5.4.4 Missing data and filtering

Similarly to the dryer data in analysed in section 5.3, there was no missing data present in the

data set obtained, thus only filtering had to be considered in this case.

Most of the process variables from the spironolactone reactor process have some level of high

frequency noise associated with the signal. However, as discussed in section 5.3 the risk of

introducing distortion and correlated error into the data to remove low amplitude noise

outweighs the benefits. Therefore, no filtering will be performed to remove any measurement

system noise from the reactor data.

5.4.5 Data alignment

Similarly to the dryer data analysed in section 5.3, the reactor data required alignment of the

time axis.

The first section of data to be cut is all of the data from the start of the vacuum nitrogen purges

to the start of the 6 minute reflux. This data was removed as the focus of this analysis was on

the reaction and initial crystallization of spironolactone only. The only information in this data

that has been cut were related to the reactor preparation, and the transfer of the aldadiene and

solvents to the reactor. The reactor preparation is not relevant for the analysis and can

therefore be excluded from the model. The only relevant information in the charges to the

reactor are the relative quantities of aldadiene, methanol, and acetone. These charges are

however made in the aldadiene drier and another reactor manually through totalising flow

meters. As the aldadiene intermediate is not quantified, there are a series of transfers,

filtrations, solvent charges, and refluxes prior to the transfer into the spironolactone reactor

(R101) the quantities of aldadiene, methanol, and acetone cannot be directly obtained from the

reactor R101 weight during the charges. This information may be however indirectly obtained

through the temperature achieved during reflux, with differing solvent and solute

concentrations impacting the temperature at which the batch refluxes. The data obtained prior

to the start of the 6 minute reflux may therefore be discarded from the analysis.

The second section of data to be discarded is the data post the 100 minute reflux. This focus of

this analysis was on the reactive crystallization and therefore the cool down and subsequent

hold following the initial crystallization and reaction completion is out of scope and will

therefore be excluded from this analysis.
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The resulting data still had some misalignments of the features, because, although the reactor

is sequence controlled by time for the most part there are still some phases that are controlled

by target, weights, temperatures, and an operator prompt to confirm that crystallization has

occurred. Figures 5.19 through 5.21 show the partially aligned reactor process data for the

reactor contents temperature, reactor weight and blanket pressure.

Figure 5.19: Pseudo aligned data for reactor contents temperature

Figure 5.20: Pseudo aligned data for reactor weight
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Figure 5.21: Pseudo aligned data for reactor blanket pressure

Two approaches to the alignment of the data were taken. The first was to use the above data as

is, and the second to align the start and end of thiolacetic acid addition, the 20 minute reflux,

the exotherm observed due to heat of crystallization, and the 100 minute reflux. Figures 5.22 to

5.23 show the aligned data for the reactor contents temperature, reactor weight, and blanket

pressure. Due to the distortion of the batch time from this alignment, the aligned time variable

was also included in the models.

Figure 5.22: Aligned data for reactor contents temperature
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Figure 5.23: Aligned data for reactor weight

5.4.6 Pre-processing

Batchwise unfolding was employed for both the outlier detection and the exploratory

modelling of the reactor data using the same approach as described in section 5.3.

Centring and scaling was again applied using the same two methods described in section 5.3,

initially using all of the available data for outlier detection, and subsequently centring and

scaling from a subset of the data to identify differences between groups of batches.

5.4.7 Outlier detection

Following autoscaling the dryer data and unfolding the data batchwise principal component

analysis was applied to the data in order to identify any outliers in the data that should be

removed prior to a more focused analysis of the data.

The number of principal components to retain in this model was 5 principal components,

selected by leave one out cross-validation (figure 5.24). The model a total of 79.18% of the

variance is explained with 38.82% explained in the first principal component, a further 19.70%

variance explained in the second principal component, 9.53% explained in the third principal

component, 6.55% explained in the fourth principal component, and 4.58% in the fifth.
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Figure 5.24: Root mean squared error for cross validation for dryer data

The influence plot in figure 5.25 identifies one batch that has high residuals (batch 39) and two

that have high Hotelling’s T2 values. These batches may be potential outliers and the

contribution plots should be interrogated to determine if these are true outliers.

The contributions on the residuals for batch 39 (figure 5.26a) identified the blanket pressure

data to be abnormal for this batch in a number of different regions including the crystallization

and 100 minute reflux (figure 5.26c), and there is also some abnormality in the temperature

data during the same period (figure 5.26c). During the 100 minute deodour phase, a nitrogen

sweep is operational which applies a blanket pressure across the head space of the reactor in

order to remove methanethiol from the head space of the reactor as it is evolved during the

reaction. The vent line from the reactor to the scrubber is open with a conservation valve in the

line between the reactor and the scrubber to maintain some pressure in the reactor. The

pressure is controlled through a pressure control valve on the nitrogen inlet to the reactor

which is in turn controlled by a solenoid valve based on a recipe signal received via the DCS.

Further details on the control of the pressure are available in section A.4 in appendix A.

Due to the correlation of the pressure rises with thermal events in the reactor, it is clear that

there was a nitrogen supply fault to the reactor. The conservation valve maintains the reactor

pressure at approximately 100 mmWG, however when the reactor contents are heated, through

energy inputs through the reactor jacket, or energy releases during crystallization, this

temperature increase increases the vapour pressure in the reactor. The conservation vent

subsequently opens to slowly vent this increased pressure.

The root cause for the lack of nitrogen during this phase cannot be determined from the data
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Figure 5.25: Influence plot of autoscaled reactor data unfolded in the batch direction with 95%

confidence limits shown

(a) Q residuals for batch 39 reactor data (b) Reactor blanket pressure data for batch 39

(c) Reactor contents temperature data for batch 39

Figure 5.26: Identification of batch 39 as an outlier (a) Contribution on the Q residuals for batch

39 reactor data (b) Reactor blanket pressure data for batch 39 showing atypical low pressure be-

haviour with pressure rises at approximately samples 100-110, 125-160, 210-250, and 260-300

(c) Reactor contents temperature data for batch 39 showing the locations of thermal events at

approximately samples 100-110 (nucleation), 125 (return of reactor to reflux), 200-225 (Reflux

temperature slowly increasing), and 260-300 (step change in reflux temperature following short

drop in temperature)
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available, however this is an atypical event, and therefore the batch should be excluded from

the analysis.

In the case of batch 6, two abnormalities were highlighted in the batch. The first was a delayed

nucleation event observed in the reactor. This was not a fault with the reactor, but a property of

the batch, coupled with the random homogeneous nucleation event expected from an unseeded

crystallization (Perry, 1997). For this alone, batch 6 cannot be removed from the analysis as

this may be important in the model. The second fault however was a loss of heating to the

reactor during the 100 minute reflux. This caused the temperature to drop significantly

throughout the duration of this ’reflux’ operation and is clearly an atypical event that. This

batch may therefore be excluded from the analysis.

In the case of batch 13, there was a significant delay post the nucleation event before the

operator answered the prompt to confirm that nucleation had been observed and that the

sequence may proceed to the 100 minute reflux. As this batch was such an extreme delay

(approximately 30 minutes) this batch may be removed form the analysis.

These batches were removed from the dataset as outliers and the process repeated with the

remaining batches until the remaining batches did not have very high residuals or Hotelling’s

T2 values. Although confidence limits are shown on the influence plot, these should be used as

a guide only and not a hard rule as to whether a batch is an outlier or not (Bro and Smilde,

2014).

5.4.8 Principal Component Analysis

Following the removal of the outliers from the original data set of 79 batches, two subsets were

generated. The first was the desirable batches (i.e. those with an extended drying time of less

than 3.5 hours), and the second was the undesirable batches (i.e. those with extended drying

times of greater than 7.5 hours). These subsets consisted of 9 batches and 11 batches in the fast

and slow drying groups respectively.

All of the batches were centred around the mean of the batches with short extended drying

times, and scaled to unit variance. By removing the means of the fast drying batches from all

of the data, the non-stationary behaviour will be removed from the model as this is not of

interest, however, the information on how the slower drying batches deviate from the
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Figure 5.27: Q Residuals for the dryer data from the fast (black dots) and slow (red triangles)

reactor batch data with the 95% confidence limit indicated

trajectories of the faster drying batches will be retained in the model. The data was then

unfolded batchwise to allow the PCA model to be built.

As the residuals in the model will be used in this analysis, it is important to choose the correct

number of principal components to retain in the model. Leave one out cross validation was

used to select 2 principal components to retain.

A principal component model was built on the data with fast drying times. This explained

65.73% of the variance in the data with 46.37% accounted for in the first principal component,

and the other 19.36% in the second principal component. The principal component model was

then applied to the slow drying batch data. The residuals plot shown in figure 5.27 shows that

the slow drying batches are different to the faster drying batches and all of the slow drying

batches exhibiting higher residuals and mostly falling above the 95% confidence interval limit.

Examination of the contribution plots for the residuals would be prudent for these batches to

identify which variables are contributing to the differences between the two groups of

data.

The contribution plot on the residuals is shown in figure 5.28. A number of regions of interest

that contribute significantly to the high residuals of the batches that have long extended drying

times can be seen. The largest, and therefore most significant from the data presented to the

models, is around variable 140. This corresponds to the reactor contents temperature after the

nucleation event. The variability in this region is generally cause by a delay in the operator

confirming the crystallization has occurred and subsequently allowing the sequence to continue

with the heat up and 100 minute reflux phase. Another region that is shown in the temperature
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Figure 5.28: Contribution plot on the Q Residuals for the reactor data from the fast (green) and

slow (red) drying batches

portion of the contributions plot is around sample 80. This corresponds to the start of the cool

down prior to nucleation, and indicates that there is a differnece in the temperature data around

this variable for fast and slow drying batches. Further investigation into the data presented to

the model shows that the slow drying batches all entered the cool down phase prior to the fast

drying batches. This is due to some misalignment of the phases within the data.

The second most influential region is found in the blanket pressure data at approximately

sample 390 (figure 5.27). This again corresponds to the location of the nucleation event, and is

likely due to the pressure rise in the reactor as a secondary effect of the temperature rise caused

by the crystallization. The difference in the pressure and temperature could be either or both of

two effects. One, a difference in temperature (and therefore pressure) rise from the

crystallization event. Or two, a difference in the location of the crystallization event. In order

to investigate these two events, the nucleation event needs to be aligned. The results of the

analysis with the aligned features is discussed in section 5.4.9.

Another large difference between the batches with slow and fast drying is observed at

approximately sample 680. This corresponds with the reactor jacket filling with and then

immediately draining of cold water to initiate the cooling of the reactor to effect nucleation.

The data shows that this event is also not aligned due to the variability in the duration of the

thiolacetic acid charge. This variation may only be flagged as significant due to the

misalignment of the data, and therefore the data should be re-analysed with the features

aligned (section 5.4.9).
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5.4.9 Principal component analysis with improved feature alignment in reactor data

The analysis on the reactor data indicated that the misalignment of the features in the reactor

data were pulling out some variables as different in the model. There are a number of sources

of misalignment in this data, the first of which is the time it takes to complete the addition of

thiolacetic acid. Although this is a DCS controlled operation, where two valves in series are

opened to allow the transfer of thiolacetic acid to the reactor up to a predefined loss of weight

in the acid header tank. The valves are then cycled to add a series of smaller slugs of acid until

the target acid charge has been achieved. All the valves are operated pneumatically, and there

is some level of dynamics in the valves, and components associated with the control system

that causes some variability in how fast the valves open and close. This variability, in addition

to the dynamic accuracy on the header tank load cells used to control the charge may cause the

reactor to require a different number of pulses of acid to achieve the targeted charge, and thus

adding variability in the duration of the charge phase.

In order to identify if these were genuine differences in the correlation structure of the

measured variables, or just due to the misalignment, the reactor data for this set of models was

aligned using the second approach detailed in section 5.4.5.

The same modelling approach with batchwise unfolding and autoscaling for outlier detection,

followed by unfolding and centring and scaling based in the data with fast drying times was

applied. The difference between these models and the reactor models previously discussed was

the inclusion of the augmented time variable as an indicator of batch progression.

A plot of the contributions on the Q residuals is shown in figure 5.29. The most obvious

difference between the residuals plots for the misaligned and aligned data is the reduction in

the relative contributions for variable 140 which is significantly reduced for the aligned data.

This variable is still somewhat significant in the Q residuals indicating that there is remains a

genuine difference in this region. This is caused by the delay from the point of nucleation for

the operator to acknowledge nucleation and allow the reactor to stop cooling and return to

reflux.

Another difference in the temperature region of the data is the disappearance of the peak at

sample 80. This is because the data here is the temperature from the reduction in temperature

through active cooling at the start of the nucleation phase. By aligning this data, it shows that

the data is no longer different between the fast and slow drying batches.
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Figure 5.29: Contribution plot on the Q Residuals for the reactor data from the fast (green) and

slow (red) drying batches for the data with feature alignment applied

The final difference in the temperature region is the relative increase in the residuals for the

slow drying batches around sample 110. This corresponds with the heat rise from the

nucleation event in the reactor. Now that this event is aligned between all of the batches it

confirms that there is a difference in temperature difference in the reactor arising from the

enthalpy release. This may be indicative of the degree of supersaturation of spironolactone at

the nucleation event. This may be due to a poorer yield from the upstream processes which are

unaccounted for resulting in a higher relative solvent charge. It may also be due to a difference

in the ratio of solvents, as spironolactone is more soluble in acetone than methanol. It is not

possible to determine if this is due to an increased yield of aldadiene and therefore

spironolactone as this data is not collected. Neither is the information on the solvent charges

collected, however the most significant contribution to the residuals shown in figure 5.29

remains to be from the blanket pressure data (samples 301 - 600). These are consistently high

throughout the batch with the exception of samples in the region 350 - 390. This is the region

where cooling is applied to the reactor.

The highest contributions in the pressure region come from approximately sample 400 which

corresponds approximately to when heat is being applied to the reactor following nucleation to

return the reactor to reflux. For the remaining samples in the pressure region have a relatively

constant, and high, contribution. These are all the periods where the reactor is at reflux. The

pressure data for these batches shows that there is a slight increase in blanket pressure for the

batches with slow drying batches over those batches that dried quickly. This could indicate that

there was a consistent fault on all of these batches with the pressure control either applying

133



slightly higher nitrogen flow to the reactor, or the vent valve maintaining the pressure slightly

higher. However, a more likely explanation is that the ratio of the two solvents (methanol and

acetone) was different between the two sets of batches.

The boiling point of acetone is lower than that of methanol (56.2 °C and 64.6 °C respectively

(Amer et al., 1956)). changing ratios of these two solvents will therefore influence the vapour

pressure of the system. The observation shown in the contribution to the residuals for the

pressure data that may relate to solvent ratio differences is also supported by a slight increase

in the baseline of the contributions on the residuals across the temperature samples indicating

different boiling points of the systems.

By looking at the contributions on the residuals from the weight data, it is obvious that the high

contribution around sample 680 has significantly decreased. This is due to the alignment of the

addition of water to the jacket to initiate the cool down for nucleation. There is still a small

amount of variability in this area, however this is relatively small, and is shown in both the fast

and the slow drying batches indicating that the information in the model does not fully capture

the variability in the data at this point. The reason for the variability in the data around this

region is likely to be due to variation in the quantity of water filled to the reactor jacket. During

this operation, the DCS fill the jacket with water until a high level switch in the jacket is

activated. This prompts the DCS to isolate the cooling water and then drain the reactor jacket.

There will be inherent variability in when this level switch is activated, and in the response

times for the relevant valves. In addition to this, the weight data of the reactor collected here

will be subject to the dynamic accuracy if the load cells. The PCA model is therefore unable to

capture this variability with the number of retained principal components.

Finally, the contributions from samples 901 through to 1200 relate to the aligned batch

progression index (i.e. time) of the data. There is a region between sample 913 and sample 980

where the addition of thiolacetic acid and subsequent return to reflux for 20 minutes is

performed. This is capturing the information that for the slow drying batches, it took longer to

add the thiolacetic acid and therefore longer for the batch to return to the reflux temperature as

it had cooled further, than for the batches that dried quickly.

5.4.10 Conclusions

The proposed modelling framework (section 5.2)has successfully been applied to the reactor

process data and identified some of the challenges with pre-processing such data. The analysis
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was able to identify a number of batches that were labelled as potential outliers from the

model. Some of these were attributed to process equipment malfunctions or extreme delays

due to operator availability, and were therefore excluded from the analysis. However not all of

the batches flagged as potential outliers were excluded from the analysis as some were

abnormalities within the batch, such as a retarded nucleation event not attributable to an

equipment malfunction and therefore potentially interesting to leave in the data set.

A comparison between two methods of alignment showed how important process feature

alignment is in order to extract understanding from the models.

The analysis on the reactor data also identified several potential causes for differences in the

drying time of spironolactone batches including:

• A difference in blanket pressure of the batches throughout the reflux phases of the batch.

This is believed to be related to the composition of the solvents in the reactor.

• A delay in the time taken for the addition of the thiolacetic acid and subsequent

additional heating time required to reach reflux for the slow drying batches. This may

have an impact on the extent of the reaction prior to cooling for crystallization.

• A difference in the temperature rise in the system between batches due to the enthalpy of

crystallization. This may also be related to both of the above points as a different solvent

ratio may alter the solubility of spironolactone, and therefore the degree of

supersaturation during crystallization. Also, if the reaction is allowed to proceed for

longer prior to crystallization, the degree of supersaturation (at the same temperature

during cooling) may increase. Both of these could cause an increase in the temperature

rise observed as more nucleation would occur at this point.

5.5 Chapter summary

In this chapter, the framework described in earlier was tested on the historical spironolactone

batch process data. Initially analysis of the dryer data was presented, describing how the data

is first pre-processed and outliers are detected, and as a result identifying some parts of the

processing equipment and control system that could be improved to obtain better reliability

and efficiency of the drying process. Subsequently, multivariate modelling was applied to the

data identifying changes in a product characteristic leading to variability in the endotherm
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observed towards the end of the drying process. This variability may have been a result of the

isolation process and therefore the reactor data was subsequently studied.

The data from the reactor was analysed within the same framework, and demonstrated the

importance of alignment of the process data. The results of the modelling indicated that there

was variability in the data that may be attributed to difference in the solvent ratios in the

reactor, and variability in the time of addition of a key reagent. Differences in crystallization

were also observed, which may be attributed to the variability in solvent ratios and reagent

addition.

Overall the framework was successfully tested on the spironolactone process data leading to a

hypothesis that variability in the reactive crystallization was resulting in differences in how the

isolated spironolactone performs in the dryer. This hypothesis is tested in chapter 6.
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Chapter 6. Spironolactone crystallization study

The PCA modelling of the dryer data in section 5.3 showed that the variation in the

endothermic behaviour towards the end of the drying cycle was significant with regards to the

variability in drying time for the product. The subsequent PCA modelling of the reactor data

showed that there may be differences in the solvent ratios during the crystallization process

that has an impact on the drying time of the product.

Spironolactone is known to exhibit polymorphism and can form solvates (Marini et al., 2001;

Agafonov et al., 1989; El-Dalsh et al., 1983; Espeau et al., 2007; Nicolaı̈ et al., 2007;

Agafonov et al., 1991; Salole and Al-Sarraj, 1985) as discussed in chapter 2.1.3. This impact

of solvent ratio on drying time alongside the variability in the endotherm observed in the

deodour phase in the dryer could indicate that there is a variable degree of solvate formed

batch to batch. The endotherm in the dryer may be indicative of a solid state transformation

such as a desolvation or form conversion.

6.1 Objectives

A set of experiments were devised to investigate the impact of solvent ratio on the

spironolactone crystallization. The objectives of this study were to:

• Determine if solvent ratio has an effect on the quantity of spironolactone that can be

crystallized

• Determine if the solvent ratio impacts the particle size of the isolated spironolactone

• Determine if the solvent ratio has an effect on the form of the spironolactone isolated in

the crystallization

• Determine if the solvent ratio and the degree of supersaturation has a significant impact

on the particle size of the isolated spironolactone and the crystal form that is isolated.
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In order to achieve these objectives a simplified isolation procedure was used. Rather than

performing a large number of complex experiments converting aldadiene into spironolactone

and simultaneously isolating the spironolactone, a recrystallization was performed to remove

the uncertainty around the supersaturation which was instead controlled by solvent ratio and

cooling rate.

6.2 Experimental design

6.2.1 Preparation of the RC1 reactor

Several experiments were performed back to back in the RC1 as the experiment only involved

heating and cooling of spironolactone in methanol and acetone. The three factors that were

being changed in the experiment were the cooling rate, the acetone to methanol ratio, and the

concentration of spironolactone. Two of these factors, solvent ratio and spironolactone

concentration, were changed through additions to the RC1. Due to the small probe length of

one of the instruments however the RC1 was required to be operated at full working volume

for every experiment. This meant that the RC1 needed to be completely discharged and set up

again in order to change the solvent ratio or the spironolactone concentration. For each set of

experiments, a concentration of spironolactone and a solvent ratio was selected and the cooling

rate was changed. The spironolactone was completely re-dissolved by heating the RC1 to

reflux and holding at reflux for a period of time between each experiment in the set.

Spironolactone API was obtained from Piramal healthcare from a single location in a single

batch. Portions of this sample were used for each experiment on the RC1 reactor. The RC1

was set by charging a known quantity of spironolactone followed by the measured quantities

of methanol and acetone from the plant at the desired ratio. The RC1 was instrumented with a

glass thermocouple inside the reactor to monitor the contents temperature. There was also a

thermocouple monitoring the temperature of the RC1 jacket heat transfer oil. A Mettler Toledo

Focused Beam Reflectance Measurement (FBRM) probe was inserted into the reactor

positioned slightly above the axial flow impeller in the RC1. Additionally a Near Infrared

(NIR) transflectance probe was mounted into the reactor, however due to the short length of

the probe it was mounted approximately one inch below the surface of the liquid. An

Attenuated Total Reflectance (ATR) Mid Infrared (MIR) probe was also mounted in the reactor

toward the bottom of the vessel. A glass baffle was also installed in the RC1 to aid mixing.

Figure 6.1 shows the placement of the instruments in the RC1 reactor.
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Figure 6.1: RC1 reactor with FBRM, ATR-FTIR, and NIR instruments

6.2.2 Typical RC1 crystallization procedure

After the RC1 was set up, it was programmed to perform a series of heating and cooling

cycles. A typical cycle consists of firstly to ramp the stirrer speed up to 600 rpm to provide the

flow required for the FBRM to measure the chord lengths (approximation of particle size). The

next step is the dissolution of the spironolactone through heating the reactor contents. The

heating must be controlled through the RC1 jacket temperature and not the contents

temperature because the boiling point of the solvent will change as the ratio between methanol

and acetone changes. The jacket temperature is therefore ramped to 70 °C (above the boiling

points of both methanol and acetone) and held for 2 hours to ensure that the spironolactone is

completely dissolved. The RC1 is fitted with a condenser to allow the solvent vapours to reflux

back into the RC1. The final step is the controlled cool for crystallization. This is controlled

using the RC1 contents temperature and is programmed with a final temperature of 25 °C and

the cooling rate required for the experiment. Figure 6.2 shows a summary of the protocol

followed for each experiment with the variable parameters for each experiment tabulated in

table 6.1.
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Figure 6.2: RC1 reactor protocol summary

Table 6.1: Spironolactone crystallization NIR study experimental parameters

experiment Number Cooling Rate Solvent Ratio Spironolactone

° C min−1 Methanol:Acetone g

M1 a 0.700 18:1 85.9

M1 b 0.700 18:1 85.9

M1 c 0.013 18:1 85.9

M1 d 0.700 18:1 85.9

M2 a 0.700 15:1 85.9

M2 b 0.700 15:1 85.9

M2 c 0.350 15:1 85.9

M2 d 0.700 15:1 85.9

M3 a 0.710 12:1 85.9

M3 b 0.120 12:1 85.9

M3 c 0.360 12:1 85.9

M3 d 0.070 12:1 85.9

M3 e 0.530 12:1 85.9
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6.2.3 Deviations from the design

Ideally the experiment would be designed to use the same initial spironolactone concentration

in the solvent system , however, spironolactone is only slightly soluble in methanol, whereas

aldadiene (the precursor to spironolactone) is more soluble. Therefore, the spironolactone will

not fully dissolve in the solvent system. A reduced concentration of spironolactone was

therefore used to ensure complete dissolution at the start of each experiment. This is unlikely

to impact the results of the experiment as the objectives of the study are how the solvent ratios

affect the the crystallization of spironolactone, and during the full reaction-crystallization, not

all of the spironolactone is immediately available as the reaction does not immediately go to

completion. Any conclusions from this study could be verified using the full concentration of

the spironolactone with the full reaction and crystallization performed.

6.3 Instrumentation

6.3.1 Focused Beam Reflectance Measurement (FBRM)

Focused Beam Reflectance Measurement (FBRM) is an instrument to measure particle and

droplet size. The instrument works by focusing a laser on a sapphire window at the end of the

probe which is in contact with the suspension. Pneumatics operate the optics which cause the

focused laser to rotate at a high speed, scanning the suspension in contact with the sapphire

window. When the laser hits a particle it is reflected back into the probe and recorded. The

probe measures the chord length of particles; that is the distance that the laser was

continuously reflected back into the instrument. The chord length does not give particle size as

it is measuring a curved path across the surface of a particle, and depending how a particle is

orientated the laser may not see the maximum diameter of the particle (figures 6.3-6.4).

However, the chord length distribution gives an approximation of the particle distribution and

shape and can be used for comparison between experiments.

FBRM was selected to give information on the particle size distribution throughout the

crystallization experiments.
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Figure 6.3: FBRM measurement principle

Figure 6.4: Diagram of FBRM probe operation

6.3.2 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIR)

Mid Infrared Spectroscopy (MIR or IR) is a vibrational spectroscopy technology based on the

mid infra-red part of the electromagnetic spectrum (wavenumbers 4000 cm−1 to 400 cm−1

(Fujiwara et al., 2002; Fevotte, 2002; Pöllänen et al., 2006a; Sun, 2009)). Vibrational

spectroscopy works on the basis that molecular bonds vibrate and as a result are able to absorb

infrared frequencies corresponding to the frequency at which the bond vibrates. Bonds may

exhibit six different modes of movement including symmetric stretching, antisymmetric

stretching, bending, wagging, twisting, and rocking (figure 6.5). The frequency of vibration

depends on the vibrational mode in addition to the mass of the atoms involved in the bond with

smaller, lighter atoms having a higher frequency than larger, heavier atoms. The mode of

vibration that is available also depends on the atomic structure and the available degrees of

freedom for vibration in that mode.
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Figure 6.5: Vibrational modes (Sun, 2009).

Fourier Transform IR (FTIR) spectroscopy is a technique that uses the interference properties

of light to generate a spectrum over a large range of wavenumbers in a very short amount of

time. An interferometer is a device that creates a phase shift in the infrared light to cause

constructive and destructive interference at different wave numbers. This is achieved by taking

an infrared source and passing the beam of light through a beam splitter after which a portion

of the light is directed towards a fixed position mirror and the other portion is directed towards

a moving mirror. The split beams are then reflected off their respective mirrors and meet at the

beam splitter again where they are combined and travel towards both the detector (through a

sample of interest) and the source (figure 6.6). Because part of the beam that is combined is

reflected off a moving mirror the path length the light has to travel can be changed and cause

constructive or destructive interference according to the path difference and the wavelength of

the light. When the path difference of the light is equal to (an integer multiple of) its

wavelength the result is complete constructive interference and therefore the observed intensity

is increased. When the path difference of the light is (an integer multiple of) half its

wavelength complete destructive interference is observed (zero intensity). Any other path

differences result in either partial constructive or partial destructive interference of the light

(figure 6.7). By moving the mirror at a constant speed and measuring the intensity of light at

the different wavelengths (wave numbers) whilst the mirror is moving, a very quick scan of the

entire spectrum can be obtained. The resulting plot of path length (mirror displacement)

against intensity is known as an interefereogram. The interefereogram can then be easily
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transformed to a spectrum through a Fourier transform which takes the time (space) domain

intensity and transforms it into the frequency domain intensity.

Figure 6.6: Principles of interferometry

Figure 6.7: Example of how multiple wavenumbers produce information in the combined in-

terefereogram (De Griffiths and Haseth, 2007).

Attenuated Total Reflectance (ATR) is a technology whereby MIR waves are subject to total

internal reflection in a diamond crystal at the end of the probe. A phenomenon known as an

evanescent wave is then produced that is able to penetrate into the sample. The evanescent

wave is an electrical field that decays exponentially as the distance from the total internal

reflection increases. The penetration depth of the evanescent wave is function of both the
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material it is passing through and also the wavelength of the light that created it. The spectra is

scaled to remove the effects of the relationship between wavelength and penetration depth so

that only the interaction between the evanescent wave and the sample into which it penetrates

remains.

ATR-FTIR was selected to monitor the concentrations of the solvents and spironolactone in

solution throughout the experiments.

6.3.3 Transflectance Near Infrared Spectroscopy (NIR)

Near Infrared Spectroscopy (NIR) is a vibrational spectroscopy technology based on the near

infrared part of the electromagnetic spectrum (wavenumbers 12000 cm−1 to 4000 cm−1 (Sun,

2009)).

There are three modes in which NIR spectroscopy can work, reflectance, transmission and

transflectance. Reflectance spectroscopy works by detecting the NIR wave reflected off the

sample however can only give information on the surface of a material. Transmission

spectroscopy works by detecting the NIR wave transmitted through the sample and therefore

allows for samples that are less uniform as the light passes through the full depth of the

sample. Transflectance is a combination and works by detecting the NIR wave reflected off the

sample and transmitted through the sample. In this work the transflectance mode was used due

to the suspended solids in the sample during crystallization.

An NIR instrument was included to supplement the ATR-FTIR instrument in giving

concentration information throughout the experiments. In addition to this, the NIR spectra may

hold some information on the particle size which would be complementary to the FBRM data,

and NIR may also be able to give some information on any polymorphic changes in the

systems throughout the crystallization or between experiments.

6.4 Pre-processing of spectroscopic data

NIR spectra can be significantly influenced by light scatter during collection causing

non-linearities in the spectra. This may be a result of temperature, or suspended particles in the

system. Methods to remove such non-linearities are crucial in the pre-processing of the

spectroscopic data before chemometric modelling is performed (Rinnan et al., 2009). There

are a number of techniques widely known in the literature that can be employed to reduce or
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eliminate the effects of scatter on spectral data, the most popular of which will be briefly

discussed below.

6.4.1 Baseline correction

Baseline correction is a method of de-trending in which random offsets from spectra can be

removed. The baseline can be removed from the spectra by fitting a low order polynomial

through the spectra and subtracting the resulting function’s curve from the spectra. The low

order polynomial can be fitted through reference points on the spectra where little spectral

information is present, or alternatively applied to the entire spectra if it is not possible to

identify a low information region (Siesler et al., 2002).

6.4.2 Multiplicative scatter correction

Multiplicative Scatter Correction (MSC) is used to remove multiplicative and additive scatter

effects from spectra. It works by using a reference spectra, which may also be the average

spectra of a calibration set, which is used to calculate the scalar intercept and slope terms for

each spectra to be corrected. This is achieved by fitting a least squares model between the

reference spectra and the unseen spectra. The result of MSC is to remove background offsets

and slopes from spectra, whilst maintaining the spectral features. One of the main challenges

in MSC is to identify a suitable reference spectrum. This may be a spectrum collected under

controlled conditions during a calibration procedure, or a composite mean spectrum from a

calibration data set (Rinnan et al., 2009). There are a number of variations to MSC which are

beyond the scope of this review. For more information the reader is directed to Rinnan et al.

(2009).

6.4.3 Standard normal variate

Standard Normal variate (SNV) is a scaling technique that is equivalent to autoscaling the rows

of the spectral data matrix. The corrected spectrum is the original spectrum with the mean

subtracted and divided by the standard deviation. The result is similar to the MSC technique,

removing the background offsets and slopes from the spectra whilst maintaining the spectral

features. SNV employs means and standard deviations rather than least squares fitting, and can
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therefore be more sensitive to noise in the spectra, however it is a simpler technique to employ

as it does not require a reference spectrum (Rinnan et al., 2009).

6.4.4 Spectral derivatives

Taking derivatives of spectra can be employed to two main effects. Firstly, taking the first

derivative of a spectrum will remove the baseline of the spectra, whilst employing second

derivatives also removes linear trends. Secondly, applying derivatives to spectral data can help

resolve overlapping peaks, at the expense of making the spectra more difficult to interpret. One

of the most popular methods is Savitzky-Golay derivation. This methods applies a

symmetrical window over the point to find the derivative and fits a polynomial to this window.

From this the derivatives are calculated analytically. The result of this window means that the

method also has smoothing properties on the spectra and can therefore reduce noise,with the

larger the window, the greater the smoothing effect (Rinnan et al., 2009).

6.5 Application of process analytical technology to crystallizing systems

The application of techniques such as FBRM, NIR, and ATR-FTIR to the study of

crystallization systems is well documented in the literature (Fevotte, 2002; Fujiwara et al.,

2002; Yu et al., 2004; Pöllänen et al., 2006a; Kadam et al., 2010; Sarraguca et al., 2015).

Kadam et al. (2010) presents a comparative study of NIR and ATR-FTIR for the study of

cooling crystallization. This results indicated that the ATR-FTIR performed better as the

instrument was not as susceptible to fouling. Additionally, the statistical models were found to

be more accurate for the ATR-FTIR instrument when extensive model calibration was

performed, compared to the NIR instrument.

Yu et al. (2004) presents a good summary of process analytical techniques and their uses in

crystallization studies. Two methods are presented as suitable for monitoring supersaturation,

NIR and ATR-FTIR. Additionally, Yu et al. (2004) discusses how ATR-FTIR has been used to

monitor polymorphic form, however this is as an offline technique on the solid phases, as the

primary role in a slurry is to monitor the solution phase. Several techniques are discussed in

relation to monitoring particle size including FBRM, and to some extend NIR. It is also noted

that for monitoring particle shape, techniques that involve particle imaging are required such

as Lasentec’s PVM instrument. The application of PAT to monitor polymorphic form is
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discussed and includes techniques such as NIR, Raman spectroscopy, x-ray powder diffraction

and solid state NMR. Finally, some chemometric methods for analysing the data from PAT are

presented before some case studies are presented looking at design of process control using

FBRM and ATR-FTIR, monitoring of crystal shape with PVM, and monitoring of

polymorphic form using Raman, NIR, and x-ray diffraction.

Fevotte (2002) discusses the application of ATR-FTIR for monitoring crystallization progress

and highlights the ability of this technique to distinguish between polymorphic forms and

solvates. Fujiwara et al. (2002) present how ATR-FTIR can be used to monitor the progress of

crystallization processes and measure the metastable zone width under different crystallization

conditions. This work was presented on a paracetamol crystallization system. Pöllänen et al.

(2006a) present a study on the crystallization of sulphathiazole utilizing ATR-FTIR to monitor

the concentration of the solute during the crystallization.

Another application of ATR-FTIR and NIR on a crystallization process is presented in

Sarraguca et al. (2015) for the monitoring of a cocrystallization process where the ATR-FTIR

was applied as an online instrument, whereas the NIR was employed offline on the isolated

crystals, alongside other complementary techniques including x-ray powder diffraction and

differential scanning calorimetry.

Since the crystallization study presented in this thesis was performed, Jiang et al. (2015) has

published work using ATR-FTIR in addition to Raman spectroscopy to monitor the solid state

transitions of spironolactone, however this was of the form I to form II transition via the

1-propanol and 2-propanol solvates. These tools were applied online in addition to standard

offline analysis such as microscopy and powder x-ray diffraction.

6.6 Results

6.6.1 Temperature

The first group of experiments (M1 a to M1 d) were performed with a methanol to acetone

ratio of 18:1, which is the typical solvent ratio used on the plant. Four crystallizations were

performed with the first, second and fourth experiment at a cooling rate of 0.7 °C min−1 and

the third experiment at a cooling rate of 0.013 °C min−1.

By looking at the temperature data collected during the crystallization experiments the

nucleation temperature can easily be identified. Figure 6.8 shows the rate of change of reactor
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contents temperature plotted against the reactor contents temperature for the M1 series of

experiments. The first two crystallizations with cooling rates of 0.7 °C min−1 show an

exotherm due to the crystallization at approximately 52.6 °C, whereas in the fourth

crystallization, with the same cooling rate, the crystallization occurred later at approximately

51.9 °C. This may be due to the random nature of homogeneous crystallization resulting in

some variability in the crystallization. Unlike heterogeneous nucleation where seed crystals

are added to the system to initiate nucleation, homogeneous nucleation can be influenced by a

number of factors. Similar behaviour has been widely reported in crystallization studies in the

literature (Kulkarni et al., 2013), where the induction time for crystallization showed

variability for the same sample with the same degree of supersaturation. This was attributed to

the stochastic nature of nucleation. In the spironolactone experiments where the concentrations

remained unchanged, good control over temperature and agitation rate was achieves, and

between experiments the system was refluxed for 2 hours to ensure complete dissolution had

occurred, the most likely cause of the variability seen is also due to the stochastic nature of

homogeneous nucleation.

Figure 6.8 also shows the temperature of the crystallization event for the M1 c experiment

with the slower cooling rate occurred at a higher temperature (approximately 54.8 °C). This is

due to the slower cooling rate allowing the kinetics of crystallization to cause the nucleation

event at a smaller degree of supersaturation, compared to the systems that were cooled more

rapidly. The temperature change at this event is also smaller than the equivalent event for the

same system when cooled faster. This is likely due to two causes. The first is that the degree of

supersaturation is less at the higher nucleation temperature and therefore less nucleation will

occur at this location and consequently a smaller quantity of energy will be released. Secondly,

due to the slower cooling rate, the control system on the reactor is able to apply relatively more

cooling compared to the systems that are cooling faster arresting the observed exotherm in the

reactor contents temperature.
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Figure 6.8: Rate of change of temperature vs. reactor contents temperature during crystalliza-

tion experiments for system M1. Inset, blown up portion of the M1 c experiment to show the

location of crystallization.

The second group of experiments (M2 a to M2 d) were performed with a methanol to

acetone ratio of 15:1 to assess how the increase in acetone concentration can affect the

crystallization of spironolactone. Four crystallizations were performed with the first, second

and fourth experiment at a cooling rate of 0.7 °C min−1 and the third experiment at a cooling

rate of 0.35 °C min−1.

Similar to the M1 group of experiments, for the same cooling rate in the M2 group of

crystallizations the nucleation occurs at approximately the same temperature with a small

amount of variability (between 51.3 °C and 51.7 °C). The slower cooling rate for experiment

M2 c again shows nucleation at a higher temperature and with a smaller impact on the

cooling rate.
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Figure 6.9: Rate of change of temperature vs. reactor contents temperature during crystalliza-

tion experiments for system M2.

The third group of experiments (M3 a to M3 e) were performed with a methanol to acetone

ratio of 12:1 to further assess how the increase in acetone concentration can affect the

crystallization of spironolactone. Five crystallizations were performed, each with a different

cooling rate including 0.71 °C min−1, 0.12 °C min−1, 0.36 °C min−1, 0.07 °C min−1, and

0.53 °C min−1, for experiments M3 a to M3 e respectively. The order of the experiments

was designed to minimise any effects of time that may be present in the system by varying the

cooling rates in a pseudo-random order.

The temperatures at which the exotherm from the heat of crystallization was observed at are

50.8 °C, 53.5 °C, 51.9 °C, 53.6 °C, and 51.3 °C for experiments M3 a to M3 e respectively.

The temperature at the onset of crystallization correlates strongly with the rate at which the

solution was cooled with a correlation coefficient (R2) of 0.9708, with the solutions that were

cooled slowly crystallizing at a higher temperature than the solutions that were cooled quickly

(figure 6.10).
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Figure 6.10: Rate of change of temperature vs. reactor contents temperature during crystalliza-

tion experiments for system M3.

Martini et al. (2001) show results for the crystallization of lipid blends cooled at two different

rates to a crystallization temperature where the temperature was held until crystallization was

observed. They observed that the systems that were cooled slower had a shorter induction time

to crystallization and concluded that this was because the system that was cooled slowly had

more time to arrange the molecules in an structured order to enable the creation of stable

nuclei. The systems that were cooled rapidly did not have as much time for the molecules to

rearrange and therefore this rearrangement was conducted at the crystallization temperature

and resulted in longer induction times. This same behaviour is occurring in the spironolactone

system, however as no constant temperature is maintained for crystallization a lag time is not

able to be calculated, and the result is that nucleation occurs at higher temperatures for

experiments with slower cooling rates and therefore at a lower degree of supersaturation.

There was also a strong correlation between the concentration of acetone and the temperature

of the onset of crystallization with the more acetone added, the cooler the solution when

crystallization occurs. This is because spironolactone is a lot more soluble in acetone than in

methanol, therefore as the amount of acetone increases, colder the solution must be to obtain

the same degree of super saturation (figure 6.11 and figure 6.12).
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Figure 6.11: Rate of change of temperature vs. reactor contents temperature during crystalliza-

tion experiments for system systems with varying quantities of acetone for the same cooling

rate.

Figure 6.12: Temperature at the nucleation exotherm
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6.6.2 Focused Beam Reflectance Measurement (FBRM)

Impact of cooling rate on final chord length distribution

The chord length distribution (CLD) at the end of the crystallization experiment (Figure 6.13)

showed some differences between the experiments. Experiments M1 a and M1 b had very

similar CLDs which is expected as both of these systems were crystallized under very similar

conditions. Experiment M1 d shows a higher count of chord lengths between 1µm and 40µm

and slightly fewer chord lengths measuring above 40µm.

Although M1 d was expected to give similar results to M1 a and M1 b, as noted earlier the

nucleation event appeared to occur later at a slightly lower temperature. As the systems were

otherwise the same this would indicate that there was a higher degree of supersaturation

resulting in more homogeneous nucleation and therefore a suspension of smaller crystals.

Experiment M1 c, on the other hand, shows a reduced count of chord lengths between 1µm

and 50µm and higher count of chord lengths above 50µm. This system was cooled slower and

as a consequence the nucleation event occurred at a higher temperature. The degree of

supersaturation will therefore have been lower reducing the rate of nucleation events and

thereby allowing crystal growth to be more dominant than in the other systems. This results in

a suspension of crystals with a slightly larger size.

Figure 6.13: FBRM chord length distribution at end of experiments for group M1

Similar results can be seen for the second group of experiments (Figure 6.14). Experiment
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M2 a, M2 b and M2 d all were carried out with the same cooling rate and saw nucleation

occur at similar temperatures. The CLDs at the end of crystallization are also very similar as

expected, showing that with consistent crystallization conditions, similar CLDs can be

obtained. Experiment M2 c was cooled at a slower rate and again as a result saw the

nucleation event occur at a higher temperature than with the solutions that were cooled faster.

This affect of this was to yield a CLD with a reduced count of chord lengths between 1µm and

50µm and slightly increased count of chord lengths above 50µm.

Figure 6.14: FBRM chord length distribution at end of experiments for group M2

The third group of experiments shows similar results to the first two groups of experiments

(Figure 6.15), however another behaviour can be seen in the third group that was not noticed in

the other groups due to the increased range of cooling rates used in the third group.

Experiments M3 a and M3 e have very similar CLDs with M3 a having slightly more

counts at chord length of 9µm to 20µm than M3 e.

Experiment M3 c shows that as the cooling rate decreased the count also decreased, however

the distribution remained roughly the same shape and no increased count was noted at the

larger chord lengths. Reducing the cooling rate further again reduced the chord count, however

the shape of the distribution appears to change; M3 a, M3 c, and M3 e have the peak count

between 20µm and 40µm with a high tail between 9µm and 20µm, M3 b and M3 d

however have the peak count between 10µm and 20µm with a relatively high tail between

20µm and 60µm where the count for all of the experiments decreases relatively quickly. There
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was also an increase in the count of chord lengths greater than 60µm for M3 b and M3 d

compared to the other M3 experiments.

Figure 6.15: FBRM chord length distribution at end of experiments for group M3

Impact of acetone ratio on final chord length distribution

Figure 6.16 shows the affect of the acetone concentration on the final CLD of spironolactone.

As the concentration of acetone increases, the count of chord lengths greater than 6µm

decreases. Experiments M1 a and M1 b have a peak chord length of approximately 30µm

and higher counts for the larger chord lengths than experiments M2 a, M2 b and M3 a.

Experiments M2 a, M2 b and M3 a have similar CLDs which show fewer counts on the

larger chord lengths than M1 a and M1 b. As spironolactone is soluble in acetone, when the

concentration of acetone is higher, the degree of supersaturation of spironolactone at the same

temperature will be lower than in the system with less acetone. This will retard the rate of

nucleation and growth resulting in a higher proportion of smaller crystals. The total quantity of

spironolactone that can come out of solution may also be reduced as a result of the increased

quantity of acetone.
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Figure 6.16: Effect of acetone concentration on Spironolactone chord length distribution

Identification of the nucleation event with FBRM

The nucleation event was not seen on the FBRM probe at the same time the crystallization

exotherm was picked up on the RC1 data. For example the exotherm for experiment M1 a

(Figure 6.17) was seen to start at 14:49:26 whereas the FBRM chord length count did not

increase significantly until almost 3 minutes later at 14:52:51.

Figure 6.17: FBRM identification of nucleation in experiment M1 a

Experiment M2 a (Figure 6.18) also shows very similar behaviour with the exotherm from the

head of crystallization being seen at 13:00:11, a little over 3 minutes before the FBRM chord

length count began to increase at 13:03:21. And experiment M3 a (Figure 6.19) shows similar
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results with the time delay being 3 minutes and 15 seconds between the exotherm and visible

particles on the FBRM. This indicates the smallest chord lengths that are detected by the

FBRM are around 1µm.

Figure 6.18: FBRM identification of nucleation in experiment M2 a

Figure 6.19: FBRM identification of nucleation in experiment M3 a

6.6.3 Transflectance Near Infrared Spectroscopy (NIR)

Near Infrared (NIR) spectra were collected in transflectance mode throughout each experiment

from M1 a to M3 e inclusive. In addition to the crystallization experiments, NIR spectra

were obtained for pure samples of methanol and acetone (figure 6.20). No pure spectra were
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obtained for spironolactone as the spectra of the pure form would have saturated the instrument

due to the crystalline nature of pure spironolactone. Both the spectra have absorptions at

similar wavenumbers, however there are sufficient differences in each spectra, such as the

shapes and locations of the peaks to be able to identify both species in a mixture.

Figure 6.20: NIR spectra of pure methanol and pure acetone

The blue series on Figure 6.20 shows the spectra for methanol. A relatively weak peak can be

seen at 8800 cm−1 to 8000 cm−1 which relates to an aliphatic CH3 group. Decreasing in

wavenumber, another weak peak can be seen at 7500 cm−1 to 7200 cm−1 which is also from

the CH3 group. Adjacent to this is a relatively strong broad peak from 7200 cm−1 to

6100 cm−1 which is the R-OH stretch. The peak at 6000 cm−1 to 5500 cm−1 is another

relatively strong peak relating to the aliphatic R-CH3 group. One of the strongest peaks on the

methanol spectra is 5100 cm−1 to 4550 cm−1 which is a combination band of the R-OH and

CH3 groups. The most intense peaks are from 4500 cm−1 to 4000 cm−1 which relate to other

combination bands.

The red series on Figure 6.20 shows the spectra of acetone. A group of relatively weak peaks

can be seen around 8700 cm−1 to 8300 cm−1. The first of these at 8586 cm−1 is the aliphatic

C=O group and also present in this group is the second overtone of the aliphatic CH3 group.

Again the CH3 peaks are also visible at 7400 cm−1 to 7100 cm−1. There are three medium

intensity peaks between 6000 cm−1 and 5700 cm−1. The first at 5963 cm−1 is the C=OCH3

group, and the second at 5901 is thought to be a CH or possibly the R-CH3. The third of these

at 5770 cm−1 may also be the R-CH3 group. The final relatively strong peak that could be
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identified was at 4720 cm−1 and is a combination band for the CH - C=O groups. Again the

strongest bands are found in the first combination CH region at 4500 cm−1 to 4000 cm−1

(Workman and Weyer (2008); Socrates (2004)).

The NIR transflectance spectra was initially plotted in Figure 6.21 to identify any information

that can be seen from the raw spectra. One hundred spectra were taken from around the region

where nucleation was seen in the temperature data and plotted by colour over time. The first

spectra, where the whole system is in solution, have a baseline of around 0 absorbance units in

the larger wavenumbers (12000 cm−1 to 8000 cm−1). The baseline increases over time as the

system is cooled and the spironolactone crystallizes. This is due to the increased scatter caused

by the crystals in suspension which affects the entire spectrum in addition to the effects of

temperature on the NIR spectra.

Figure 6.21: Raw NIR spectra collected during experiment M3 a

The raw NIR spectra is capable of detecting nucleation prior to the temperature increase was

seen in the RC1 due to the energy release of crystallization; in this instance the NIR spectra in

Figure 6.22 show a significant baseline shift at 10:51:23 whereas the temperature change was

not seen until the next sample at 10:52:32. This may be due to the time delay in the system

resulting from the distance of the nucleation events from the temperature probe, the heat

transfer characteristics of the solution, and the dynamics of the temperature probe itself.
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Figure 6.22: Raw NIR spectra of experiment M3 a around nucleation

All of the experiments exhibit the same behaviour. Another example of which is shown in

experiment M1 a (Figure 6.23). This shows that the NIR spectra exhibits a shift starting at the

sample 14:49:01, whereas the temperature increase is seen on the next sample at 14:49:18

(Figure 6.24).

Figure 6.23: Raw NIR spectra of experiment M1 a around nucleation
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Figure 6.24: Differential temperature of experiment M1 a around nucleation

As the probe is a transflectance probe, there is a window (a gap in the probe in which the

sample enters) between the optics of the probe and a mirror. NIR light enters the probe through

one of the fibres, passes through the gap in the probe where the sample is, hits the mirror,

passes back through the sample and into the probe where the NIR light is then carried through

another fibre back to the spectrometer. It is in this window that solid material may collect.

Figure 6.25 shows the construction of a transflectance NIR probe. Due to the relatively short

length of the NIR probe, the tip of the probe with the window was only just submerged in the

top of the reactor contents. The reactor contents were agitated from the bottom with a upward

thrust propeller type stirrer as required for the FBRM probe, resulting in the NIR probe tip

being submerged in relatively low velocity fluid compared with the thermometer, MIR probe

and FBRM probe. Although care was taken to ensure that the window of the probe was rotated

and slightly angled towards the direction of flow, the low velocity fluid found towards the top

of the reactor may not have had enough energy to clear the solid material as it accumulated in

the probe tip. This may have resulted in variable quantities of solid spironolactone

accumulating in the sample window throughout the duration of the experiment. The window

was completely cleared after every experiment by dissolution of the drug substance during the

reflux prior to the start of each experiment.
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Figure 6.25: Transflectance NIR probe

As a result of this, the NIR spectra post nucleation showed a lot of scatter effects from the

crystals that were collected in the probe window. There are several pre-processing techniques

that can be applied to try and remove this scatter including taking derivatives, standard normal

variate (SNV), multiplicative scatter correction (MSC), baseline correction, and combinations

thereof. Unfortunately, these techniques were not able to remove the scatter in the spectra

when comparing systems that were operated under identical conditions.

A principal component model was constructed on the NIR spectra obtained from the M1 group

of experiments with as much of the scatter due to solids in the probe window removed as

possible using a combination of SNV and second order derivatives. Three principal

components were retained in the model, explaining 98.43% of the variation in the data, the

second principal component captured a further 1.36% of the variance, and the third principal

component captured a further 0.17%. The scores on principal components 1 to 3 are plotted in

figures 6.26 to 6.28 respectively. Each of the experiments plotted was carried out under

identical conditions. The scores up to sample 650 show a lot of noise. This is because these

samples were collected when the systems were under reflux, therefore bubbles from the

boiling solvents passing through the probe window cause significant variations in the

absorbance of the NIR.

Following the reflux, cooling was applied to the systems, and the noise in the scores is

significantly reduced and trends appear in the scores plots. Experiment M1 d appears to have

a slight delay in the application of cooling compared to the other two runs. Other than this the

experiments were replicates of the same condition and would therefore be expected to show

the same trends and magnitudes in the scores plots. This is not the case in any of the three

principal components , indicating that the principal component is still modelling undesired

information, likely from the solids stuck in the window of the probe, in each of the three
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Figure 6.26: Scores plot on principal component 1 for NIR data from experiments M1

Figure 6.27: Scores plot on principal component 2 for NIR data from experiments M1

principal components, and therefore there is low confidence from further analysis of this data

past the nucleation event.
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Figure 6.28: Scores plot on principal component 3 for NIR data from experiments M1

The loadings in the first principal component correspond to variation in the spectra due to

methanol. This can be seen by comparing the main peaks in the loadings plot on principal

component 1 (figure 6.29) against the spectrum for methanol (figure 6.30).

Figure 6.29: Loadings plot on principal component 1 for NIR spectral data

Similarly, the second principal component captures the information relating to the acetone in

the system, however there is also some information from methanol retained in this principal

component as shown by the loadings plots and NIR spectrum from acetone in figures 6.31 and

6.32 respectively.

Finally, principal component 3 captures again more information relating to methanol and

acetone, however the largest loading corresponds to sample 316, which is in neither the

methanol nor the acetone spectra, and therefore must relate to spironolactone (figure

6.33).
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Figure 6.30: NIR spectra (second derivative and SNV) of methanol

Figure 6.31: Loadings plot on principal component 2 for NIR spectral data

If this work was to be repeated, an alternative design of NIR probe would be recommended.

Either a probe that is capable of reaching more turbulent zones in the reactor, another design of

window on a transflectance probe that is less prone to collecting solid material, or another

mode of NIR spectroscopy that removes the requirement for a window where solid material

can gather such as a diffuse reflectance probe.
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Figure 6.32: NIR spectra (second derivative and SNV) of acetone

Figure 6.33: Loadings plot on principal component 3 for NIR spectral data

6.6.4 Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

Attenuated Total Reflection Fourier Transform Mid Infrared (ATR-FTIR) spectroscopy was

performed for three crystallization experiments. These included experiments M2 b, M2 c,

M2 d, and M3 a. The MIR instrument was not available for the other experiments as liquid

nitrogen, required for cooling the IR sensor, was not available. In addition to the crystallization

experiments, MIR spectra were obtained for pure samples of methanol, acetone, and

spironolactone (solid) at room temperature (figure 6.34, figure 6.35, and figure 6.36

respectively).

The peaks in the mid-infrared region are much more defined and narrower for specific bonds

when compared to near-infrared absorption spectra. The strongest peak on the ATR-FTIR
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spectra of pure methanol (figure 6.34) seen at 1022 cm−1 relates to the C - O stretch. A weaker

double peak is also seen at 1420 cm−1 and 1454 cm−1 which are thought to be the C - H3 bend

and the C - O - H bend respectively. The two peaks at 2831 cm−1 and 2951 cm−1 are the C - H

stretch and the broad peak at 3267 cm−1 is the O - H stretch (Coates, 2006).

Figure 6.34: Raw ATR-FTIR spectra of methanol

There is one strong peak and two medium intensity peaks on the ATR-FTIR spectra of acetone

(figure 6.35). The strongest peak at 1709 cm−1 is the C = O stretch. One of the medium

intensity peaks (1358 cm−1) is a doublet with a weak peak at 1423 cm−1 and corresponds to

the O = C - CH3 group in acetone. The other medium peak at 1219 cm−1 is from the

C - C ( = O ) - C bend (Coates, 2006).

Figure 6.35: Raw ATR-FTIR spectra of acetone

The ATR-FTIR spectra of spironolactone (figure 6.36) shows two strong peaks relatively close

together at 1678 cm−1 and 1771 cm−1 which correspond to the lactone and thiol groups

168



respectively. There is a weak peak next to the thiol peak (1616 cm−1) which is related to a

di-ketone, enol structure in the molecule. The weak peaks towards the higher wavenumbers

between 2947 cm−1 and 2881 cm−1 relate to the CH2 and CH3 stretches (Coates, 2006).

Figure 6.36: Raw ATR-FTIR spectra of spironolactone

Wavenumbers in the range 1763 cm−1 to 991 cm−1 were selected for the following analysis as

these contained the relevant peaks for the three components. There was however an overlap

between acetone and spironolactone at wavenumbers 1705 cm−1 to 1678 cm−1, therefore, to

increase the ability to interpret the model and pull out the differences between acetone and

spironolactone, these overlapping wavenumbers were excluded. This did not exclude the entire

peak, and the non-overlapping regions were retained.

A principal component analysis was constructed from the three pure component ATR-FTIR

spectra after baseline correction. Three principal components were retained in the model,

capturing 60.77% of the variation in the first component, a further 27.93% in the second

principal component, and the remaining 11.3% in third component. Although typically models

capturing 100% of the variation are not desired, in this case three components are required to

pull out the information on the three components of the system.

As shown from both the scores and loading plots (figure 6.37 and figure 6.38), the first

principal component captures the spectral information on mostly the methanol, however a

small quantity of information relating to the acetone is also contained in principal component

1. Similarly, principal component 2 contains the spectral information mostly relating to the

acetone, however some information relating to the methanol is also captured here. Finally,

principal component three captures the spectral information relating to the spironolactone in

the system.
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Figure 6.37: Sample scores plot on PCA model of ATR-FTIR pure component spectra of

methanol, acetone, and spironolactone for principal components 1, 2, and 3 (blue, green, and

red respectively)

Figure 6.38: Variable loadings plot on PCA model of ATR-FTIR pure component spectra of

methanol, acetone, and spironolactone for principal components 1, 2, and 3 (blue, green, and

red respectively)

170



The ATR-FTIR spectra at 0.1 °C intervals between 63 °C and 25.1 °C were obtained and the

same baseline procedure was applied. These spectra were then passed to the PCA model

developed on the three pure component spectra. The scores plots on each principal component

are show in figures 6.39 to 6.43.

The scores on principal component 1 show a linear increasing trend as the temperature is

reduced. This indicates that there may be some temperature information contained within the

first principal component. Figure 6.39 shows the scores plot for experiment M2 b along with

the linear regression line constructed from the first 30 data points. This shows that there is an

obvious change in gradient at approximately 53 °C following which the gradient on the scores

increases. This is due to the changing methanol concentration visible to the ATR-FTIR probe

during the crystallization of the spironolactone. This trend can be observed for each of the

experiments. Finally, there is a slight offset shown in figure 6.40 with the scores on principal

component 1 for experiment M3 a being slightly lower than for the experiments M2 b through

M2 d. This is because principal component 1 also contains a small amount of information

relating to the acetone concentration in the system, and experiment M3 a has an increased

concentration of acetone.

Figure 6.39: Temperature scores plot for PCA model on ATR-FTIR crystallization spectra on

principal component 1
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Figure 6.40: Temperature scores plot for PCA model on ATR-FTIR crystallization spectra from

experiment M2 b with linear regression through first 30 samples on principal component 1

The scores on principal component 2 (figure 6.41) show a clear difference between experiment

M2 b through M2 d, compared to experiment M3 a. This is due to the increased acetone

concentration in experiment M3 a being described by principal component 2. There is also a

non-linearity observed in the M2 group of experiments which is not as obvious in the M3

experiment. This may indicate that the acetone concentration is changing throughout the

duration of the experiment, and does so differently between the high and low acetone

concentration systems. Again there is an increasing trend as the temperature is reduced. This

indicates that there may be some temperature information contained within the second

principal component also.

Figure 6.41: Temperature scores plot for PCA model on ATR-FTIR crystallization spectra on

principal component 2
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Similarly, plotting the scores on principal component 1 against the scores on principal

component 2 shows that there is some relationship between the two (figure 6.42). Again the

M3 experiment has higher scores in PC2 due to the increased concentration of acetone as

expected. The trends between the two groups of scores however are not parallel between the

M2 and M3 system. This again indicates that the concentration of solvents is changing at a

different rate between the two systems. As methanol concentration is increasing due to

removal of spironolactone from the solvent system (i.e. scores on principal component 1 are

increasing) , the concentration of acetone is also increasing as would be expected (i.e. scores

on principal component 2 are also increasing). However, the non-linearity in the relationship

between principal component 1 and principal component 2, and the divergence between the

trends for the M2 system and M3 system indicate that the rate or increase of one of the

solvents is faster than the rate of increase of the other solvent. Therefore, one of the solvents

must also be coming out of solution during the crystallization.

Figure 6.42: Scores plot for PCA model on ATR-FTIR crystallization spectra on principal com-

ponent 1 against principal component 2

The scores plot or principal component 3 (figure 6.43) again shows some temperature

sensitivity at the start with increasing scores between 63 °C to approximately 53 °C. At 53 °C

there is a rapid decline in the scores on principal component 3 indicating crystallization of

spironolactone which occurs at approximately the same temperature for all of the experiments

in group M2, and a slightly lower temperature for experiment M3 a. This is expected as the

spironolactone is soluble in acetone, therefore an increase in the amount of acetone in the

system, increases the relative acetone to spironolactone concentration resulting in a reduction

of supersaturation for the same temperatures and therefore a delay to the crystallization. This
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increase in concentration of acetone can also be seen as a decrease in the scores of principal

component 3 throughout the experiment. This is because additional acetone was added to the

system without adjusting for solvent volumes resulting in a reduction of spironolactone

concentration in the system. Another observation from the scores on principal component 3 is

the scores reduce by approximately the same amount for each experiment indicating that the

concentration of spironolactone has decreased by the same amount each time. Finally, the

decreasing concentration of spironolactone plateaus at approximately 40 °C indicating that the

crystallization is complete by this point and no further spironolactone is coming out of

solution.

Figure 6.43: Temperature scores plot for PCA model on ATR-FTIR crystallization spectra on

principal component 3

The spectra in the model were of pure components only and did not have any temperature data

as each of the spectra were captured at room temperature. As a result, no all of the information

from the spectra collected during the experiments will be captured in the principal

components. Looking at the Q residuals plot (figure 6.44), the Q residuals appear to increase

as the temperature in the system falls. This is contrary to the expectation that as the

temperature of the system reduces towards the temperature of the pure spectra the model

should become more accurate. This indicates that there is an effect due to the interactions

between the three components in the system that changes the absorbance behaviour.

The contributions plot on the Q residuals (figure 6.45) shows a number of regions that have

high contributions on the residuals. This plot is coloured by time, with the contributions from

the first spectra shown in blue (the warmest samples), red contributions are from those spectra

towards the end (cooling samples), and finally the black spectra are those obtained at the end
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Figure 6.44: Temperature Q residuals plot for PCA model on ATR-FTIR crystallization spectra

of the experiment (coldest spectra). Overall there is a typically increasing trend in the

contributions at a number of locations across the wavenumbers included in the model. There

are however two regions were the contributions decreases (samples 2 - 14, and samples 70 -

80).

Figure 6.45: Sample Q residual contribution plot for PCA model on ATR-FTIR crystallization

spectra for experiment M2 b

From analysing the spectra over time at these regions (not shown) it can be seen that the first

peak relates to spironolactone and decreases over the duration of the experiment indicating that

this material is being removed from the system. This is expected as the spironolactone

crystallizes, the ATR-FTIR probe is no longer able to detect the spironolactone as the

penetration depth of the probe is very small therefore a crystal face would have to be very

close to the probes diamond to be detected. The model was constructed with samples of liquid
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solvent, and crystalline spironolactone. The spironolactone ATR-FTIR spectrum may look

slightly different when dissolved due to interactions with the solvents interfering with the

vibrational characteristics of the molecule.

The second region that showed decreasing residual contributions (samples 70 - 80) is an area

of the spectra where all three components are found to absorb the MIR light. Throughout the

experiment, the absorbance at these wavenumbers increases. This could indicate that as the

temperature is approaching that of the calibration data set (pure spectra at room temperature)

the modelling is predicting more accurately in this region.

The most prominent peaks on the contribution plot are a double peak near the methanol peak.

The main methanol peak is captured in the model and therefore has low Q residuals, however

throughout the crystallization, the methanol peak becomes wider (figure 6.46). This

broadening may be indicative of an increase in hydrogen bonding (Coates, 2006). This

increase in hydrogen bonding may be indicative of the formation of a methanol solvate.

Figure 6.46: Baselined ATR-FTIR spectra M2 b of methanol peak wave numbers showing peak

broadening throughout crystallization (blue = start, red = middle, black = end of experiment)

The smaller peak near the methanol peak at approximately sample 170 corresponds to a small

increase in the absorbance throughout the experiment. This may be due to an interaction

between spironolactone and methanol, however the absorbances in this region are weak for the

pure spectra, therefore it is difficult to interpret this any further.

Another peak at approximately sample 90, corresponds to an increasing absorbance throughout

the experiment at a region where the weak absorbances of the three components overlap.
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Similarly the remainder of the peaks identified in the contribution on the Q residuals relate to

overlapping weaker peaks from combinations of the solvents and drug substance.

6.7 Conclusions

From the temperature data collected during the crystallization experiments, the point of

nucleation could be determined through the temperature rise caused by the heat of

crystallization exotherm. There was some small variability in the temperature and time taken

to achieve nucleation for repeats of the same system and same cooling rate due to the random

nature of homogeneous nucleation.

Another observation from the temperature data was that there is a linear relationship between

cooling rate and the temperature (or time) of nucleation. This was true for all of the systems

with varying solvent concentrations, however, as the acetone concentration increased, the

temperature that nucleation occurred reduced (the intercept of the linear trend decreased), and

the gradient of the linear trend decreased.

The final observation from the temperature data was that as the cooling rate increased, the

temperature rise due to the heat of crystallization exotherm also increased. This was due to the

faster cooling causing a lower temperature of crystallization leading to an increase in

supersaturation as crystallization is not only temperature dependent, but also time dependent.

This increase in supersaturation caused a greater degree of crystallization to occur at

nucleation releasing more energy to the system.

The FBRM data analysis showed that for systems with the same cooling rate, similar chord

length distributions are obtained at the end of crystallization. Any differences in the CLD can

therefore be attributed to process changes and not just random variation.

As the cooling rate increased (i.e. supersaturation increased) there was a small increase on the

small chord lengths, and a corresponding decrease on the larger chord lengths indicating that

the generation of more fines or less growth had occurred in these systems.

Conversely, as the concentration of acetone was decreased, the large particle count increased,

and the overall counts increased indicating that more spironolactone was coming out of

solution and crystal growth was a larger influence.

The FBRM data was able to detect nucleation, however this was approximately 3 minutes after
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the nucleation was observed on the temperature data. The data was collected from the same

computer and therefore the time stamps on the data were aligned.

The NIR data was able to detect the onset of crystallization through a baseline shift observed

in the spectra. This was detected prior to the temperature increase observed in the date by

approximately 1 minute (1 temperature sample). This may be due to a lag in the temperature

measurement system and sampling frequency of the temperature data.

A principal component model constructed from the NIR spectra was able to pull out

differences relating to the three components in the system (methanol, acetone, and

spironolactone). The NIR probe window was fouled post nucleation with solid spironolactone,

and therefore the data post nucleation was unreliable as pre-processing was unable to

completely remove this information.

The loadings on the ATR-FTIR principal components show principal component 1 is mostly

spectral information from the methanol, with some information on the acetone spectrum.

Principal component 2 is mostly acetone spectral information with some information relating

to the methanol spectrum. Principal component 3 is mostly spectral information relating to the

spironolactone.

From observations in the ATR-FTIR scores the onset of crystallization can be observed,

however there is a lot of noise in the scores for detecting this and also a temperature effect is

observed in each of the three retained principal components. There is also evidence of loss of a

solvent from the system from the scores plots on principal component 2, and the plot of the

scores on principal component 1 against principal component 2.

There is some information not captured by the ATR-FTIR model which is shown in the

prediction residuals for each of the experiments. Observation on the contributions to these

residuals show there there is a broadening of the methanol peak in the spectra throughout

crystallization indicating there there may be some increase in hydrogen bonding relating to the

methanol, and perhaps due to the formation of a spironolactone methanol solvate.

The PAT tools evaluated in this study proved to be complementary overall providing all of the

information required to met the objectives outlined at the start of this chapter. The NIR

instrument, however, had severe limitations with the transflectance probe design resulting in

poor quality data being collected throughout the experiments. PCA is a powerful tool for

modelling spectroscopic data, however it is very sensitive to the pre-processing that is applied

to the data.

178



Chapter 7. Conclusions and future work

7.1 Summary of thesis

The thesis presented a framework for exploring historical batch process data, to extract insights

on where process control can be improved in established batch processes. The challenges

presented with commercial process data were discussed. Multivariate tools such as dynamic

multi-way principal component analysis were used to investigate variability in process data.

The method detects batches with unusual events, such as equipment failures which, although

important and of interest, were not the main focus. Following the identification and subsequent

removal of these batches the true uncontrolled variation within the process was analysed to

identify where the process could benefit from improved understanding and control.

This framework was demonstrated through application to commercial process data from the

active pharmaceutical drug substance manufacturing process of spironolactone at Piramal

Healthcare, Morpeth, UK. In this case study, the process exhibited variability in drying times

which traditional univariate data analysis was not been able to attribute a root cause to. The

results demonstrated some of the challenges associated with the use of the available data from

commercial processes. Although the results from the multivariate data analysis did not show a

significant statistical difference between the batches with long and short drying times, small

differences were observed between these two groups. Further analysis of the crystallization

process was carried out using infrared spectroscopic techniques which identified a potential

root cause to the extended drying time.

Chapter 2 introduced the spironolactone drug substance manufacturing process as a case study

on which the framework was tested. The background included details of the process chemistry

including the impurities and challenges with polymorphism. The manufacturing process was

also described in addition to the control of the process and the data that was collected from the

process.

In chapters 3 and 4 an overview of some multivariate statistical tools was provided.
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Pre-processing techniques including centring and scaling were discussed in terms of the

challenges presented by industrial process data, namely that of the spironolactone

manufacturing process. These challenges, such as alignment, data quality, quantity of data

available, and noise, need to be handled on a problem by problem basis. More details on the

challenges associated with the spironolactone process data were detailed in chapter 5. Principal

component analysis and various extensions to handle such batch data were discussed.

Chapter 5 presented the multivariate model development on the spironolactone case study.

First the model development on the dryer data was discussed and pre-processing including

compression checks, missing data, filtering, alignment, centring and scaling, unfolding, and

outlier detection and removal were performed. Following this Principal component analysis

was performed by constructing the PCA model on the ’good’ batches and applying this to the

’bad’ batches to identify any differences between the two. This process highlighted a number

of challenges with processing industrial process data and identified a number of equipment

issues that should be resolved in the future. Additionally, this procedure identified the

endotherm as important for the total cycle time. Subsequent to this, the reactor process data

was investigated and the same procedure was applied. A comparison between two different

alignment techniques showed how important process feature alignment is in order to extract

understanding from the models. A number of potential causes or symptoms of the variability

in drying time were identified in the reactor process data as a result of the modelling, some

relating to variability in charges, some relating to operator variability, and others a

combination of the two. This identified that the crystallization needed to be looked at in more

detail, however the appropriate level of instrumentation was not available on the commercial

reactor system, therefore, a lab scale investigation was initiated (chapter 6).

In chapter 6 a laboratory scale study of the crystallization of spironolactone was detailed. The

study built on the observation on the dryer data analysis, which indicated that a cause of the

variability in process drying time may have been a result of changes in crystal or polymorphic

form (endothermic behaviour towards end of drying). The study investigated the impact of

changing cooling rate and solvent ratio on the particle size of spironolactone using focused

beam reflectance measurement. The FBRM was able to detect crystallization, although a delay

was present compared to the heat of crystallization observed in the reactor temperature

measurement. Other observations made with the FBRM instrument were consistent with

crystallization theory in that the systems with faster cooling rates and therefore higher degrees

of supersaturation presented smaller crystals than compared with the same systems cooled at a
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slower rate. Transflectance NIR spectroscopy and ATR-FTIR spectroscopy were used to obtain

information on the spironolactone and the solvents. The NIR spectroscopy data was found to

be of limited use as the probe was too short to allow positioning in the reactor to keep the

measurement window clear during the crystallization, thus hindering analysis of any

information the instrument would have been able to collect. The ATR-FTIR instrument data

was more successful and was able to detect crystallization before the crystallization was

observed by the FBRM instrument. Additionally, the ATR-FTIR instrument indicated that

there may be formation of a methanol solvate during the crystallization. The cause of the

variability in the spironolactone drying time may therefore be a variation in the quantities of

the solvents charged to the batch in the reactor, or the quantity of methanol solvate formed

during crystallization which is converted back to the desired form through the endotherm in

the drying cycle.

In summary, a framework (figure 7.1) was presented in which industrial batch process data is

pre-processed as necessary (such as alignment, filtering, centring and scaling), unusual batches

are identified and removed using multivariate statistical process monitoring tools, and a final

multivariate model is built to identify regions of variability that relate to variations in product

quality or process attributes. This framework was demonstrated on industrial data obtained

from the spironolactone drug substance manufacturing process. An observation was made as a

result of the PCA modelling of the process data enabling further investigation to focus on the

crystallization. From this work, poor control of the solvents into the reactor was found to be a

possible root cause for the variability in drying times. Furthermore, this case study

demonstrated the importance on having appropriate instrumentation available to enable the

identification of control improvements.
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Figure 7.1: Overview of framework to extract multivariate information from batch process data

(orange - pre-processing, blue - outlier detection, yellow - multivariate modelling, grey support

the framework)
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7.2 Future work

This thesis presented a framework for exploring historical batch process data, to extract

insights on where process control can be improved. This was demonstrated by the application

of multi-way principal component analysis (MPCA) and the dynamic extension of this (DPCA)

to process data obtained from a commercial scale batch pharmaceutical manufacturing plant.

Some of the challenges associated with such data have been demonstrated and the multivariate

tool has been shown to identify atypical batches and problems with the control system of the

manufacturing plant. Additionally, the multivariate data analysis has also identified an area to

focus further studies on the spironolactone manufacturing process to address the challenges

currently faced with uncontrolled variability in drying process cycle time.

In order to understand the crystallization and polymorphic behaviour of spironolactone further

the following future work is recommended:

1. The work performed by Nicolaı̈ et al. (2007) on spironolactone polymorphic forms

should be continued and expanded to include the solvent systems used for the

manufacture of spironolactone at Piramal Healthcare, namely acetone and methanol.

2. Furthermore, building on from the results discussed in chapter 6 samples of

spironolactone should be isolated from the dryer both before and after the drying process

and characterized by X-ray powder diffraction as a minimum to investigate the crystal

forms found at the start and end of the drying process and validate the hypothesis from

the NIR study. This could be further expanded to samples from multiple batches to

investigate the batch to batch variability in crystal form produced.

For the crystallization monitoring using IR spectroscopic techniques discussed in chapter 6 the

following future work is recommended:

1. One limitation of the study was the time available for the experimental work. As a result

only a small number of experiments were able to be carried out. Further to this the

ATR-FTIR instrument was only available for a small number of these runs due to the

availability of liquid nitrogen in the instrument. Further repeats of the experiment would

be preferred to obtain more statistical confidence in some the results obtained.

2. Another limitation of the study was the design of the NIR probe which was only able to

reach the upper fill volumes of the reactor. The use of a more suitable NIR probe that is

capable of integrating into a reactor at a depth allowing for the sample window to be
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relatively free of solid fouling. This would be beneficial to retrieve any information that

the NIR instrument is capable of obtaining, for example crystal shape / size

characteristics. This would also need calibration work and/or verification through the

use of a tool such as on-line video microscopy for example.

3. The initial set of experiments was set up using a factorial design approach that would

allow for the examination of multiple factors with a limited number of experimental

runs. This design could not be carried out, however, due to unforeseen circumstances

including the inability to operate the reactor at any fill level other than full (due to the

NIR probe penetration length). The number of runs and factors under investigation were

therefore severely reduced in order to obtain some useful information whilst the

instruments were all available. The randomised run order was also affected due to this

redesign of the study, though the runs were performed in an order with limited repeats to

try and account for any effects of run order. If the study were to be repeated, the use of a

factorial design could be a useful way to investigate the solvent ratio, and cooling rate

factors again in addition to the spironolactone concentration factor that could not be

included in the study.

For the multivariate study of the spironolactone process data discussed in chapter 5 the

following future work is recommended:

1. Due to the continuous changes made to the spironolactone process, especially the recent

change from the OD to the NMP process, only a relatively small number of batches were

available to include in the PCA models of the drying process. Further models could be

constructed on a larger dataset when more batch data becomes available making the

model more robust or more discriminatory. The selection of the batches to include in the

training set for the dryer models was made to ensure that the training data set included

batches across a relatively representative range of batches. An increased availability of

batches may enable a more random batch selection process and improve the model.

2. The availability of more batches would allow for the PCA models to be constructed to

investigate the variability in process yield. The number of batches available at present is

insufficient as the dataset would need to be grouped into four subsets based on whether

the batch was manufactured following a clean of the process train, and if recovery

solutions were added to the batch. It may also be possible to use a multi-block approach
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to combine four models, one on each of the sub groups, to investigate the variability of

yields if the number of batches in one or more of the sub groups remains low.

3. The benefit of alternative approaches in terms of the ease of modelling and interpreting

the models would be interesting to study for this process. Other multivariate techniques

such as supervised distance preserving projections (SDPP) may be able to identify

features of interest that have not been found in the variance identified by PCA (Zhu

et al., 2013; Corona et al., 2014). Another approach that may improve the discriminatory

power between the batches would be to pass the principal component scores into a

classifier such as support vector machines SVM (Mahadevan and Shah, 2009), or partial

least squares (PLS).

For the specific case study of the spironolactone process at Piramal Healthcare, Morpeth, UK,

discussed in chapter 5, poor control of the solvent charges to the reactor were identified as a

potential root cause to the drying time variability in addition to a potential methanol solvate

created during crystallization. As a result, the following future work is recommended:

1. Implement improved standardization of the manufacture of batches, especially around

the solvent charges at the start of the batch and throughout manufacture if recovery

solutions (spironolactone in acetone) are to be added to the batch following cleaning.

Improved standardization of the cooling during crystallization will also be beneficial in

developing a better understanding on how variability in the process impacts the drying

time and yields.

2. The lab scale investigation was a simplified study on only the crystallization.

Commercial production occurs with the reaction and crystallization occurring

simultaneously in order to drive the reaction to the desired isomeric form. A study on

this simultaneous reaction and crystallization with an ATR-FTIR spectroscopic probe

would identify if cooling rate was indeed an important factor.

3. Application of PAT tools to the reactor and dryer would provide valuable information on

the process performance. Data from these instruments collected over several batches

could then be combined with the currently available information to improve the power of

the multivariate models in the proposed framework for identifying where the control of

the process could be improved.
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7.3 Business Impact

The application of the framework presented in the thesis can help businesses, operating batch

processes, identify areas of their processes that could benefit from improved control. This

information may be extracted from the data already present in the data historian, or additional

monitoring may need to be set up, such as applying PAT in order to obtain measurements of

the appropriate variability within the process data. This can increase the speed at which a

business can identify problems in how a process is operated or controlled leading to variability

in process or quality attributes, and reduce the number of experiments in the lab or plant trials

required to diagnose problems. Furthermore, this framework can be easily adapted to be used

with continuous processes by selecting discrete periods of time as pseudo batches.

Successful implementation of such a framework, as tested on the spironolactone process at

Piramal Healthcare, within the wide pharmaceutical industry can help to reduce ongoing

development time and costs, and identify areas where improved process control can be

implemented. This can lead to improving the quality and yields of batch processes and

reducing batch failures requiring costly rework or disposal, thus driving an improvement in the

economy of such manufacturing processes and overall plant utilization. Furthermore, the

utilization of the existing process data allows for confidence to be built to justify the complex

regulatory hurdles that may be present to perform verification experiments on the commercial

assets.
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Appendix A. Detailed Description of Spironolactone Process and Control

A.1 Spironolactone process control

The aldadiene to spironolactone process is manufactured using a PROVOX DCS controlled

plant. PROVOX was installed at Piramal Healthcare, Morpeth in 1995 as is supplied by

Emerson Process Management Ltd. The DCS is linked up to AspenTech Process Information

Management System (PIMS) for the purpose of batch data collection, and the production of

electronic bath reports. The system has redundancy built in with a duplicate ‘off-line’ system

to use as a ‘hot-spare’ backup. This section will cover more details of the process and how it is

controlled at each stage discussing each processing unit in turn.

Figure A.1: PROVOX network schematic at Piramal Healthcare (Bell, 2008)

A.1.1 Reactor R101: thiolacetylation and isolation

The thiolacetylation and isolation reactor is controlled by PROVOX through the sequence

illustrated in figure A.2. Each of the steps has the required settings for the batch contained

within the batch recipe. It starts by checking that the reactor is ready and that a valid batch

number has been set. The reactor is then evacuated approximately 100 mbarA and purged with

nitrogen three times (vacuum-purge). The appropriate valves are then opened to allow the

operator to transfer the colour treated aldadiene in methanol and acetone to the reactor via the
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0.45µm and 0.2µm filters. After the transfer is complete, the reactor contents are heated to

reflux for 6 minutes with the timer starting when the reactor contents exceed 60 °C. After the

reflux, the steam supply to the reactor jacket is isolated and thiolacetic acid is charged to the

reactor, controlled by weight change in the thiolacetic acid header tank, T104. The reactor is

then returned to reflux at 62 °C for 20 minutes. The reactor jacket is then filled with cold water

to start the batch cooling. As soon as the jacket is showing full of cold water by activation of a

level switch in the jacket, the water is blown out of the jacket using compressed air and the

batch remains slowly cooling until the operator confirms that crystallization has been observed

in the reactor. Heat is then applied to the reactor to return the contents to reflux at a minimum

of 64 °C for 100 minutes to ensure that the reaction goes to completion. After the 100 minute

reflux, the steam is isolated and the condensate in the jacket blown clear with plant air. A

quantity of methanol is charged to the reactor R101 controlled by weight change on the

receiving reactor. There is then an option to add recovery material (spironolactone that has

been recovered from the first wash of the process train with acetone). More methanol is then

added to the reactor again controlled by the weight change in R101. The reactor is then cooled

to 40 °C using cold water in the reactor jacket after which the jacket service is changed to

chilled glycol to bring the reactor contents down to -10 °C. The batch is held at -10 °C for a

minimum of two hours before it is filtered. The batch is filtered in two parts in the Rosenmund

pressure filter F101, the charge controlled by the weight change in reactor R101. Whilst the

first load is being filtered the remaining spironolactone slurry in R101 remains held at

-10 °C.
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Figure A.2: Overview of reactor R101 control strategy
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Reactor R101 temperature control

Figure A.3: Reactor R101 temperature control

The reactor contents temperature set-point and jacket service is specified in the PROVOX

batch recipe, which dictates the solenoid control valves that are manipulated in order to deliver

the appropriate heat transfer medium to the reactor jacket. The reactor jacket is blown clear

between the use of both glycol and water to ensure that no water enters the glycol system

which could freeze up the chillers, and conversely that no glycol enters the water system. It is

not always necessary to blow the condensates clear as following steam to the jacket, the

subsequent service called should only be either steam , or water.

The control valves (TCV-0507 and TCV-0508) are operated by the same controller (2TC1000)

and have an opposing action. That is, when TCV-0507 is at 80%, TCV-0508 is at 20% and vice

versa. This configuration allows for the same controller to be used for both heating and cooling

operations and is possible due to the presence of automated isolation valves XV-1054 and

XV-1057. The temperature is controlled through a closed loop feedback control by a
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Proportional + Integral + Derivative (PID) controller embedded within the PROVOX

software.

Reactor R101 pressure control

Figure A.4: Reactor R101 pressure control

Pressure in the reactor is controlled through the PROVOX DCS, determining which mode of

operation is required and selecting the appropriate sequences and control as required. When

vacuum is required, PROVOX ensures that all of the relevant valves are in the closed position

through feedback on the limit switches on the valves. When the vacuum pump is available,

PROVOX opens valve XV-1068 which remains open until the value for vacuum pressure,

stored in the PROVOX sequence, has been seen in 2PT1003. Vacuum is then broken through

modulation of control valve PCV101/02, again until 2PT1003 has a signal above that set in the

PROVOX sequence. The vent valve XV-1067 is then opened allowing a nitrogen blanket to be

maintained in the reactor without over pressuring.

When the solenoid valve SOV-1002 is energised, the control valve (PCV101/02) input is
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vented resulting in the valve closing. The controller is a field mounted Proportional + Integral

(PI) pneumatic controller and is operated in reverse acting mode. As pressure on the controller

input increases, the controller output pressure decreases, closing the valve. This modulates the

pressure in the reactor to ensure that there is a nitrogen blanket present when required.

During other operations in reactor R101, a ‘nitrogen sweep’ is required. This is where a larger

flow of nitrogen is continuously blown into the head space of the reactor and vented to the

scrubber system. This is achieved through PROVOX opening the bypass valve XV-1095 whilst

the vent is open. The reactor pressure is controlled through a conservation vent (PSV101/04)

on the vent line set to 1 barA.

PROVOX also controls the handling of the distillate and can either allow the reactor to operate

in reflux with all of the distillate returning to the reactor, when XV-1073 is open (and XV-1074

is closed), or XV-1074 can be opened and XV-1073 closed to remove all the distillate to the

tank receiver system.

Overpressure on reactor R101 is prevented through a bursting disc which vents the reactor

contents to the roof of the chemical plant. The reactor R101 does not require under pressure

protection as the vessel is rated to operate under vacuum.

Reactor R101 weight control

The aldadiene start material starts in the dryer where the intermediate product was dried.

Solvent is charged to the dryer to dissolve the aldadiene through flow meter FM SOL/11 and

the flow control valve FCV SOL/11. This is connected to the dryer through a flexible pipe (not

shown in figure A.5). The flexible pipe work arrangement is changed to connect reactor R506

to the solvent meters and more solvent is charged to the batch through the same flow metering

system (SOL/11). The batch is then filtered through the bag filters C2 FLT0101/02 and

transferred to reactor R101. Reactor R506 is then washed twice with more solvent, again

metered into the reactor, which is also routed through the filters to ensure that the entire batch

has been transferred.

To start the reaction to produce spironolactone, thiolacetic acid (TAA) is charged from the

header tank (T104) into the reactor R101. The quantity of TAA is controlled by weight change

on T104. The weight is measured by WE1005 which is sent to PROVOX. When the weight

change comes to within 25 kg of the desired mass of TAA, valve XV1079A is closed. As
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XV1079A has restricted closing, the flow is only reduced and not completely stopped. When

the weight change comes to within 5 kg XV1079B is also closed. PROVOX then pulses the

flow of TAA into R101 by opening and closing valve XV1079B a predefined number of times.

If the target weight is not achieved during these pulses the operator is asked if the pulses

should be repeated in order to achieve the correct charge of TAA.

After the reaction, methanol is charged to the reactor R101 to aid with the crystallisation. This

is controlled by the weight of R101 being monitored by PROVOX via WE1004 and WY1004.

PROVOX opens valve XV1093 and waits until the change in weight exceeds the set point.

Originally this was done twice for two subsequent additions of methanol with a gap between

them to allow for recovery solutions to be charged if required. From the 31st March 2011, only

the second addition of the solvent was carried out using this method. The first methanol charge

is performed manually via R506 and measured through the solvent meter FM SOL/11 the

same way that the batch is charged. This was done in an attempt to reduce seasonal variation in

methanol temperature affecting crystallization, as the methanol can be heated to 25 °C in

reactor R506 before it is charged to R101.
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Figure A.5: Reactor R101 weight control
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Reactor R101 agitator and level control

Figure A.6: Reactor R101 level control

The variable speed agitator is controlled locally on plant where the operator adjusts the power

input until the desired speed is shown on SIC 101. PROVOX has overall control of the agitator

however and turns power to the agitator on or off based on the weight of the vessel. If reactor

R101 is more than 150 kg, solenoid SC 101/2 energises allowing the agitator to run and if the

weight drops below 150 kg PROVOX stops the agitator by de-energising solenoid

SC 101/2.

There is also a high level switch on reactor R101 (LSH 101/01) to prevent overfilling the

reactor. This is linked to PROVOX which is monitored as part of the interlock logic to which

will shut all inlet valves when the level switch is active.

A.1.2 Filter F101: isolation of spironolactone

The filter F101 is controlled by PROVOX through the sequence illustrated in figure A.7. The

filter is first purged 3 times with nitrogen and vented to atmospheric pressure. The reactor
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R101 contents are then transferred to the filter with a recycle back to the reactor. When the

recycle stream is observed as clear by the operator, the return line to the reactor is closed and

half of the batch is charged to the filter. This recycle is to ensure that a cake is built up on the

filter plate to prevent losses of product through the filter plate. The filter is then pressurised

and the filtrates are collected. When the liquid is no longer visible on the surface of the cake,

cold methanol at -10 °C is charged to the filter in a displacement wash. The filter is again

pressurised and the filtration liquors removed. When the liquid is not visible on the surface of

the cake, more methanol at -10 °C is added and the cake re-slurried before the filter is

pressurised and the filtration liquors again removed. Again when the liquors are not visible on

the surface of the cake, methanol at -10 °C is added to the filter in a final displacement wash.

This is again pressurised and the filtrates are removed. The filter cake is blown with

pressurised nitrogen for at least 1 hour until no liquors can be seen by the operator flowing to

the filtrate tanks. The filter cake is then discharged to the dryer before the process is repeated

with the other half of the batch.

Figure A.7: Overview of filter F101 control strategy

Filter F101 pressure control

The filter is purged three times with nitrogen at the start of each batch. Before this is done,

PROVOX opens the pressure equalisation valve XV1194 to equalise the pressure either side of

the filter plate. There are two pressure switches on F101; PS F101P is set at 0.1 barG rising

and therefore allows the operator to see if there is any pressure in the filter and prevent the

discharge slide valve XV1061 from opening if this is the case. PS1110B is set at 1.2 barG

A - 196



rising and is used as an indicator of successful pressurisation of the filter for purges and

filtration. The purges are achieved through opening the vent (XV1193) until the pressure

switch PS F101P is not active, meaning that the pressure is below 0.1 barG. The vent

(XV1193) is then closed and PROVOX puts nitrogen into F101 by fully opening PCV 1130.

PCV 1130 is fully opened by operating solenoid valve PY 1130 so that the signal to the control

valve is to fully open. When the high pressure switch PS 1110B is active, meaning the pressure

is in excess of 1.2 barG, the solenoid valve PY 1130 is changed back so PCV 1130 is closed at

high pressures. The vent valve (XV 1193) is again opened to allow the pressure to fall until it

falls below 1.2 barG and pressure switch PF F101P is not active. This process is repeated three

times before PROVOX moves to the fill operation where the pressure equalisation valve

XV1194 is closed.

The filter operation pressurises F101 to assist the filtration liquors move through the cake. To

achieve this PROVOX closes the vent XV1194, and ensures the pressure equalisation valve

XV1194 is closed, before setting PCV 1130 to fully open by manipulation of solenoid valve

PY 1130. At this point the operator selects manual control from PROVOX. When the operator

is satisfied that the filtration is ready to receive the next wash, they isolate the nitrogen to the

filter to allow the pressure to drop below 1 barG before giving back control to PROVOX to

allow the filter to vent. This is to ensure that the cake has de-watered and that the pressure in

the filter is not too high, that venting it through the scrubber will cause the scrubber to

overflow. PROVOX then vents the filter by opening the pressure equalisation valve XV1194

and then the vent valve XV1193 and putting the nitrogen back to modulating around

atmospheric pressure. When pressure switch PS F101P is not active PROVOX closes XV1193

and XV1194 ready for the next wash or discharge. During washes ambient pressure is

maintained through pressure transmitter PT1130 and controller PC1130. The controller is

reverse acting; so on rising pressures the output reduces closing PCV1130. This can be

overridden by PY1130 which upon receipt of a digital signal from PROVOX applies

compressed air to at 1.4 barG to PY1130 to fully open PCV1130.

The pressure measurement that is available on the Process Information Management System

(PIMS) comes from PT F101/1, a 0 – 300 mmWG pressure transmitter. When the filter is

pressurised during the filtration, the pressure typically rises in excess of 2 barG (1500 mmWG)

resulting in the pressure in PIMS being off scale for most of the filtration. An additional

pressure transmitter (PT F101/2) was installed to the filter F101 with a range of 0 to 2 barG.

This was connected to an electronic chart recorder PIR F101/2 in July 2012 to allow analysis
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of the pressure changes in the filter. This measurement is not used for process control and, as

the chart recorder is located inside an instrumentation panel, the measurement is not routinely

available to the operators therefore they must use a field mounted pressure gauge, reading in

barG, to monitor the pressure.
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Figure A.8: Filter F101 pressure control
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Filter F101 flow control

Spironolactone is filtered in two parts. To charge the each load the filter opens the reactor

R101 discharge valve XV1051 and sets the path to the filter by opening valves XV1010 and

XV1065 when both units are ready. PROVOX also closes the reactor recycle valve XV1064

and starts the air supply to the double diaphragm pump (between XV1051 and XV1010, not

shown in figure A.9). The contents are recycled between the filter and reactor by opening

XV1177 and XV1024, to allow a cake to build up on the filter plate. When the operator has

confirmed that the filtrates are clear from LG F101/1, PROVOX stops the recycle to R101 by

closing valves XV1177 and XV1024. It then opens the valve XV1175 to allow the filtrates to

be removed to the filtrate tank. PROVOX continues to transfer material from R101 to F101

until the pre-calculated weight change of R101 (from WE1004) has been achieved. PROVOX

will also stop the transfer from R101 to F101 is the high level switch in F101 (LS 1111) is

active, or the transfer has taken too long.

The chilled methanol at -10 °C for all of the displacement washes and re-slurry washes comes

from reactor R102. To carry out this solvent charge, PROVOX opens the R102 discharge valve

(XV1052) and sets the path to F101 by opening valves XV1077 and XV1024. The weight of

R102 (WE1002) is then monitored until the change in weight has exceeded the set point. The

valves XV1052, XV1077 and XV1024 are then closed and PROVOX progresses the batch to

the filter phase in the operation.

To discharge the filter load to the dryer, the operator must first ensure that there is no liquid

present on the slide valve by opening a manual valve and draining any liquid that may be

present. When both the filter F101 and dryer D101 are ready, PROVOX opens the slide valve

XV1061. The discharge arm is set to rotate and slowly lowered until the bottom limit switch

on the discharge arm is active.
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Figure A.9: Filter F101 flow control
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A.1.3 Dryer D101: drying of spironolactone

The dryer is a conical, screw agitated, batch drier with contact heating from a water heated

jacket. The reactor is controlled by a PROVOX sequence as shown in figure A.10. It starts by

checking that the dryer is ready and that a valid batch number has been set. The dryer is then

evacuated and purged with nitrogen three times. The dryer then communicates with the filter

and when both units are ready the first filter load (half a batch) is dropped from the filter into

the dryer below. This part batch is then dried under vacuum with a jacket temperature set to

25 °C for 3 hours. When the dry phase is complete, the dryer returns to atmospheric pressure

and the jacket water circulation is turned off and the dryer waits for the filter to be ready to

transfer the second load to the dryer. When the second filter load has been transferred to the

dryer, it goes back into the dry phase under vacuum with a jacket temperature of 25 °C for 2

hours. The dryer then ramps the jacket temperature up to 90 °C over a period of 2 hours and

holds this temperature for a further 2 hours. The dryer then enters the deodour phase, in which

the pressure returns to atmospheric pressure and a nitrogen sweep of the dryer head space is

carried out for 11 hours whilst the jacket temperature remains at 90 °C. The dryer then returns

to vacuum for 1 hour with the jacket at 90 °C before the batch is cooled and transferred to the

microniser.

Figure A.10: Overview of control strategy for dryer D101
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Dryer D101 temperature control

Figure A.11: Dryer D101 temperature control

The contents temperature in the dryer is only monitored and is not used for automatic control

within the control sequence. The temperature is measured by a thermocouple (TE1101) in a

thermo-pocket inserted near the bottom of the dryer. The contents temperature measurement is

transmitted to PROVOX to allow the operators to view the measurement. It is this temperature

measurement that the operators use to determine the end point for drying.

The dryer jacket temperature is controlled in two different ways, depending upon the phase’s

requirements in the sequence control. When the batch is in a phase requiring heat, hot water is

circulated through the jacket at the set point temperature as required by the recipe. PROVOX

closes the water outlet valve XV1170, opens the recirculation valve XV1169 and starts the

pump C2 PMP D101/01. The temperature is controlled by a closed loop PID (Proportional +

Integral + Derivative) controller embedded within the DCS. The temperature is measured
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through a thermocouple mounted in the jacket water outlet line (TE1100). This is fed back to

PROVOX which sends an output value to the steam control valve (TCV D101/01) on heat

exchanger C2 HTX D101 where the circulating water is heated.

When the batch is in a location in the sequence that requires cooling, the valve configuration is

changed so that XV1170 is open and XV1169 is closed. The pump remains on and cooled

water is passed through the heat exchanger and dryer jacket, in a once through manner to cool

the whole system.

The system is kept primed with water through the header tank C2 TK D101 which uses a

mechanical device to close the valve LCV D101/01 when the tank is near full.

Dryer D101 pressure control

The dryer has three modes of pressure operation, high vacuum, low vacuum and atmospheric

pressure. Low vacuum (typically 0.18 barA) is achieved through a liquid ring vacuum pump

X103, which is shared with the other process units in the ‘chemical 2’ facility. High vacuum

(typically 0.08 barA) is obtained through a high vacuum pump X106, to which dryer D101 has

the exclusive use.

Spironolactone is initially dried under high vacuum conditions. PROVOX first brings the dryer

down to 0.3 barA using the liquid ring pump. This is done by closing all the valves on the

pressure system and starting the liquid ring vacuum pump (X103), if it is not in use by another

unit. When X103 is available and running, valve XV1174 is opened until the pressure on

PT1102 drops below 0.3 barA. The valve XV1174 is then closed and the high vacuum pump,

X106, is selected. When X106 is running, the valve XV1180 is opened to reduce the pressure

in D101 further. Vacuum is maintained by leaving X106 pulling vacuum on the dryer with

XV1180 open. To return the dryer to atmospheric pressure PROVOX closes both XV1180 and

XV1174 and stops the relevant vacuum pump. The vacuum breaker valve XV1171 is opened

to bring the dryer back to 0.9 barA before the vent valve XV1173 can also be opened.

After drying, the dryer carries out a deodour phase where a nitrogen sweep over the top of the

batch removes any mercaptans from the batch. This is achieved by closing all the pressure

valves and opening both the sweep valve XV1182 and the vent valve XV1173. The pressure is

controlled below 1.3 barA. This is achieved by modulating valve XV1182. If the pressure from
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transmitter PT1102 is equal to or greater than 1.15 barA the sweep valve XV1182 is closed

until the pressure drops below 1.1 barA.

To ensure that there is a flow of nitrogen through the dryer head space, PROVOX monitors the

flow switch FIS1197. If FIS1197 indicates low flow and the sweep valve XV1182 is open

PROVOX fails the operation and alerts the operator that there is no nitrogen sweep flow to the

dryer.

To ensure that the filter on the dryer vapour outlet is clean, there is a back pulse system to

inject pulses of nitrogen through the filter into the dryer. This knocks any accumulated product

from the filter back into the batch. The system works by filling a reservoir with pressurised

nitrogen. This nitrogen is released to the filter by opening valve KV1135 which is controlled

by a timer.
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Figure A.12: Dryer D101 pressure control
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Nicolaı̈, B., Espeau, P., Céolin, R., Perrin, M.-A., Zaske, L., Giovannini, J., and Leveiller, F.

(2007). Polymorph formation from solvate desolvation. Journal of Thermal Analysis and

Calorimetry, 90(2):337–339.

Nomikos, P. (1996). Detection and Diagnosis of Abnormal Batch Operations Based on

Multi-way Principal Component Analysis. ISA Transactions1, 35:259 – 266.

Nomikos, P. and MacGregor, J. F. (1994). Monitoring batch processes using multiway

principal component analysis. AIChE Journal, 40(8):1361–1375.

Orfanidis, S. (1996). Introduction to Signal Processing. Prentice Hall.

214



Patel, R. and Podczeck, F. (1996). Investigation of the effect of type and source of

microcrystalline cellulose on capsule filling. International Journal of Pharmaceutics,

128(1):123–127.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.

Philosophical Magazine, 2(6):559–572.

Perry, R. H. (1997). Perry’s Chemical Engineers’ Handbook. McGraw-Hill, London, sixth

edition.

Petersen, N., Stocks, S., and Gernaey, K. V. (2008). Multivariate models for prediction of

rheological characteristics of filamentous fermentation broth from the size distribution.

Biotechnology and bioengineering, 100(1):61–71.

Pinto, J. F., Podczeck, F., and Newton, J. M. (1997). Investigations of tablets, prepared from

pellets produced by extrusion and spheronisation .1. The application of canonical analysis to

correlate the properties of the tablets to the factors studied in combination with principal

component analysis to selec. International Journal of Pharmaceutics, 147(1):79 – 93.
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