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Abstract 

 

At present, 805 mitochondrial DNA (mtDNA) deletions have been described. Short direct 

repeat regions of DNA flank many of these deletions, suggesting that specific regions of 

the mtDNA molecule have a susceptibility to deletion formation. Despite this, the exact 

underlying cellular mechanisms facilitating mtDNA deletions are unclear.  

PR domain 9 (PRDM9) is a meiotic-specific protein responsible for determining the site 

of recombination in the nuclear genome. Through its zinc finger repeat region, PRDM9 

binds a specific DNA consensus sequence, and acts as a methyl transferase, opening 

chromatin for DNA crossover events to occur. This is of interest as mitochondrial DNA 

also contains PRDM9 binding motif sites. 

This thesis outlines the experimental steps taken to determine if PRDM9 has any 

involvement in mtDNA maintenance and viability.  

Firstly, an in silico approach was used to screen mtDNA sequences from 31,551 

individuals for the presence of the PRDM9 binding motif, identifying multiple putative 

binding sites in and around known deletion forming flanking regions. In addition, 

population and phylogenetic stratification showed differential mtDNA binding motif 

patterns, potentially explaining the variable deletion frequencies between mtDNA 

haplogroups and populations. 

Secondly, to test the potential interaction between PRDM9 and mtDNA, complete 

genotyping of the PRDM9 zinc finger repeat region in a cohort of 48 mitochondrial single 

deletion patients and 50 healthy controls was performed. However, there was no 

association between PRDM9 haplotype and the formation of mtDNA deletions. 

Heterozygous individuals were significantly increased in the patient cohort compared to 

controls although no particular allele was associated with mtDNA deletion. 

Finally, PRDM9 protein levels were interrogated in cell lines and tissue samples. 

However, due to timing of expression it was not possible to reliably detect nascent 

protein using commercially available antibodies. To overcome this, stable cell lines 

overexpressing Flag-tagged PRDM9 were created. Low levels of PRDM9 expression were 

detected by immunoblotting indicating overexpression had worked but also indicating 

that PRDM9 turnover in cells is likely rapid.  
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Given the data presented, and despite the presence of multiple putative PRDM9 binding 

sites in almost all mitochondrial genomes studied, we conclude that it is unlikely that 

PRDM9 has a significant effect on the maintenance of mtDNA. However, to the best of my 

knowledge this is the first stable PRDM9 overexpression model created and it has 

provided a unique insight into some of the functions of this protein. 
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1.1 Mitochondrial biology 

1.1.1 Evolutionary origins of the mitochondria 

Mitochondria are double membrane bound subcellular organelles present in all 

eukaryotic cells. They act as a host for many critical cellular processes such as the 

tricarboxylase acid cycle (TCA), fatty-acid β-oxidation, branched chain amino acid 

degradation, oxidative phosphorylation (OXPHOS), glycolysis, iron-sulphur cluster 

formation and apoptosis. The evolutionary origins of the eukaryotic cell are thought to 

be the result of an internalisation event around 1.7 billion years ago, when an 

α-proteobacteria entered an archaeon, thus establishing a symbiotic relationship 

(Parfrey et al., 2011; Williams et al., 2013; Raymann et al., 2015; Spang et al., 2015). 

Whilst the presence of an endosymbiont could be detrimental to the host cell, this 

particular event introduced an attractive trade off; production of cellular energy in the 

form of adenosine triphosphate (ATP).  

Three main advantages are thought to have been vital for the success of the eukaryotic 

ancestor. Firstly, the switch from asexual (clonal) to sexual reproduction allowed 

greater genetic diversity and limited the accumulation of deleterious mutations from 

generation to generation (Muller, 1964; Felsenstein, 1974). This key difference allowed 

eukaryotes to switch from unidirectional lateral gene transfer (LGT) to genome 

recombination and segregation via meiosis and mitosis (Ku et al., 2015; Speijer et al., 

2015). Secondly, eukaryotic cells became compartmentalised by the establishment of a 

nuclear membrane which allowed gene regulation to be segregated from a dedicated 

translation compartment, the cytosol (French et al., 2007). Importantly, this physical 

separation allows production of pre-mRNA species before maturation and transfer to 

the cytosol where protein synthesis can occur. Finally, by allowing the cell to produce 

large amounts of ATP, the eukaryotic cell was able to provide an environment where 

high rates of protein translation could occur, providing the cell with a diverse selection 

of protein species (das Neves et al., 2010). In addition, both the archaeal host and the 

α-proteobacteria brought to the table two independent genomes. Studies have shown 

that in the 1.7 billion years since this endosymbiotic event, large portions of the 

mitochondrial DNA molecule have been transferred into the host nuclear genome and 

that this process is ongoing (Huang et al., 2005; Ju et al., 2015).  
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1.1.2 Mitochondrial OXPHOS 

The success of the eukaryotic cell is also due to the ability to perform aerobic respiration 

using molecular oxygen. Located on the inner mitochondrial membrane are the five 

protein complexes required to perform OXPHOS, utilising oxygen to generate cellular 

energy in the form of ATP. These protein complexes are comprised of both nuclear and 

mitochondrially encoded core subunits as well as a host of assembly factors. The 

electron transport chain (ETC) comprises Complexes I-IV and is responsible for 

pumping protons across the inner membrane by the transport of electrons (for review 

see Papa et al. (2012)). 

Electrons are donated to Complex I by nicotinamide adenine dinucleotide (NADH) and 

Complex II by flavin adenine dinucleotide (FADH2) (Ziegler et al., 1959; Sumegi and 

Srere, 1984). Next, electrons from both complexes I and II are transferred to Complex III 

via reduction of the lipid molecule ubiquinone (UQ) (Crane et al., 1959), which in turn 

donates electrons to Complex III (de Vries et al., 1981). Electrons flow from Complex III 

to Complex IV via reduction of the hemeprotein cytochrome c (CytC) (Lester et al., 

1959). The energy released as electrons are transferred along the ETC is used to 

establish a proton gradient between the inner membrane space and the mitochondrial 

matrix through Complexes I, III and IV (Baum and Rieske, 1966). To complete OXPHOS, 

Complex V utilises this transmembrane proton motive force to drive ATP production 

(Zoratti et al., 1982). Phosphate (Pi) and adenosine diphosphate (ADP) available in the 

mitochondrial matrix are converted to ATP by the rotary mechanism of Complex V 

(Cooper and Lehninger, 1957; Stock et al., 1999). Figure 1.1 shows the classical view of 

the five respiratory chain complexes, however recent data has demonstrated that the 

localisation and interaction of these protein complexes are highly plastic (Lapuente-

Brun et al., 2013). High molecular weight complexes termed ‘supercomplexes’ are 

formed by different combinations of Complex I, III and IV, creating a more dynamic ETC 

than previously described (for review see Chaban et al. (2014)).  
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Figure 1.1 Schematic of the five protein complexes required for OXPHOS, located on the inner mitochondrial membrane. Complexes I-IV comprise the electron transport 
chain (ETC) required for respiration through production of oxygen. The ETC also relies on prosthetic groups; flavin mononucleotide (FMN), ubiquinone (UQ) and 
cytochrome c (CytC). Complex V (ATP Synthase) is required for oxidative phosphorylation as it utilises available protons generated by the ETC to catalyse the conversion 
of ADP+Pi to ATP. 
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1.2 Mitochondrial DNA 

1.2.1 Structure of mtDNA 

In humans, mitochondrial DNA (mtDNA) is a ~16.5 Kb plasmid molecule contained 

within the organelle, physically separated from the nuclear genome (Corneo et al., 

1966). mtDNA encodes 13 protein subunits of the OXPHOS complexes as well as 22 

tRNA’s and 2 rRNA’s required for mtDNA synthesis and mitochondrial protein synthesis 

respectively (Andrews et al., 1999). Human mtDNA is double stranded with the majority 

of the coding regions located on the heavy strand and only one protein encoding gene on 

the light strand, MT-ND6 (Figure 1.2). 

 

 

Figure 1.2 Map of the human mitochondrial DNA. Both strands are shown; the heavy strand is the outer 
circle and the light strand is the inner. All 13 protein coding genes, 22 tRNAs, 2 rRNAs and replication start 
sites are shown. The ‘major arc’ of the molecule comprises m.5721 (OL) to m.15887 (MT-TT). Adapted 
from (Stewart and Chinnery, 2015). 
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Within the inner mitochondrial matrix, mtDNA molecules are encased in proteinaceous 

structures called nucleoids, allowing some protection from reactive oxygen species 

generated by the ETC (Bogenhagen, 2012; Logan et al., 2014; Kukat et al., 2015; Rajala et 

al., 2015). Despite this protective barrier, mtDNA has a significantly higher mutation 

rate than the nuclear genome (Hunter et al., 2012). 

Replication of mtDNA is independent of that of the nuclear genome and the cell cycle, 

therefore mtDNA content can be increased at any time in response to extra- or 

intracellular demand. Several proteins required for mtDNA replication and maintenance 

have been uncovered, all encoded by nuclear genes. The exact mechanism of mtDNA 

replication is still debated with two main theories supported by experimental data; the 

strand displacement model and the strand coupled model. During strand displacement, 

replication occurs unidirectionally from the origin of heavy strand replication site (OH) 

and occurs continuously until the light strand replication site is exposed (OL) 

(Bogenhagen et al., 1979; Kang et al., 1997; Brown et al., 2005) mitochondrial RNA 

polymerase (POLRMT) then synthesises RNA primers which are utilised by 

mitochondrial DNA polymerase gamma (POLG) to begin light strand synthesis (Fuste et 

al., 2010). In the strand coupled model, unidirectional replication occurs at OH but in this 

model RNA/DNA hybrid molecules are created (Pohjoismaki et al., 2010). The lagging 

strand is comprised of RNA primers which are then replaced by DNA as replication 

proceeds, eventually creating the new mtDNA molecule (Reyes et al., 2013). 

The plasmid nature of the mtDNA molecule means that it is transcribed firstly as a 

polycistronic transcript which is then cleaved to allow translation of the mtDNA 

encoded proteins (Ojala et al., 1981). Although replication and translation of mtDNA are 

two independent processes, many of the proteins involved are required for both, 

suggesting that they are intrinsically linked. In addition, the OH site within the D-loop 

region of mtDNA is used for both replication and translation initiation (Chang et al., 

1985) and recently POLRMT has been shown to be required for both processes (Kuhl et 

al., 2016). This is not surprising, as mtDNA replication would primarily occur to increase 

transcript levels and therefore protein expression, requiring these two processes to 

occur within a close time frame.   
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1.2.2 Inheritance of mtDNA 

The inheritance of mtDNA is uniparental, only transmitted from the maternal gamete, as 

paternal mitochondria are removed from the zygote shortly after fertilisation (Al Rawi 

et al., 2011; Sato and Sato, 2011). Interestingly, evidence of paternal mtDNA 

transmission has been described in a patient with mitochondrial myopathy (Schwartz 

and Vissing, 2002) as well as after strain crossings of mice, opening the possibility of 

paternal ‘leakage’ in rare cases (Luo et al., 2013). It was suggested that levels of paternal 

mtDNA are present within the population but are low-level and have not been detected 

due to inadequate sensitivity of sequencing analysis (Nunes et al., 2013). However, the 

recent use of next-generation sequencing technologies on parent-offspring trios has 

shown no evidence of paternal transmission (Pyle et al., 2015). New research suggests 

that mitochondrial endonuclease G mediates paternal mtDNA degradation (Zhou et al., 

2016) most likely through activation of autophagic degradation pathways (Song et al., 

2016b). It is therefore widely accepted that the mtDNA population within a cell is solely 

maternally inherited.  

Each mitochondrion contains several mtDNA molecules and in turn, each cell contains 

many mitochondria. Therefore, depending on the energy demand of the cell and tissue, 

there can be up to ~100,000 copies of mtDNA per cell (Yu-Wai-Man and Chinnery, 2012; 

Smeets, 2013). This polyploidy genome, coupled with a high mutation rate, can lead to 

the phenomenon of heteroplasmy; where a single mitochondria, cell, tissue or organ can 

have several distinct ‘populations’ of mtDNA molecules. In contrast, homoplasmy occurs 

when all of the mtDNA molecules are identical. This high mutation rate leads to the 

occurrence of both pathogenic mutations and neutral variants. Importantly, the 

heteroplasmy level of pathogenic mutations can be quantified and correlated with 

mitochondrial function and disease severity (Payne et al., 2013). 

 

1.2.3 Mitochondrial population haplogroups 

Due to the polymorphic nature of mtDNA, human populations contain several distinct 

and heritable mtDNA sequences known as mtDNA haplogroups (Wallace et al., 1985). 

The high mutation rate of mtDNA has resulted in rapid divergence of mtDNA sequences 

amongst human populations. These population specific single nucleotide 

polymorphisms (SNPs) are non-pathogenic and therefore persist within the population 
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allowing ancestry to be traced back through the maternal lineage. Haplogroup status has 

also been used to determine where populations originated and to trace the migration 

patterns of early humans across continents (Cann et al., 1987; Torroni et al., 1992; 

Torroni et al., 1993). A phylogenetic tree of mtDNA variants can be found on the 

PhyloTree website (PhyloTree); combining extensive sequencing analysis of mtDNA 

from several populations, from the most ancestral African haplogroup L0 to the most 

recent variants, as this divergence is still occurring. African populations harbour the 

most ancient of mtDNA sequences, consistent with evidence that the last common 

ancestor of Homo Sapiens originated in this region (Cann et al., 1987; Chen et al., 1995). 

Asian haplogroups have been well defined due to the migration of founder populations 

into northern America and Australasia (Brown et al., 1998; Starikovskaya et al., 1998; 

Derenko et al., 2000; Kong et al., 2003). European haplogroups are diverse due to 

several different migration patterns of founder groups into this region, as shown in 

Figure 1.3 (Torroni et al., 1996; Richards et al., 2000; Torroni et al., 2000).   

 

 

Figure 1.3 mtDNA population haplogroups shown on a map of the continents of the earth. This map 
indicates that Homo sapiens migration patterns correlate with the divergence of mtDNA sequence from the 
most ancestral African haplogroups L1, L2 and L3. Adapted from (Shriver and Kittles, 2004). 

 

The influence of mtDNA sequence variants in human disease is complex, with several 

studies showing that mtDNA haplogroup status can perpetuate or protect against 

certain disease states. Mitochondrial haplogroups have been associated with complex 
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disorders such as obesity (Ebner et al., 2015), pulmonary arterial hypertension (Farha et 

al., 2016) and multiple sclerosis (Tranah et al., 2015) amongst others. A recent large 

scale analysis of mtDNA sequences from patients with complex diseases confirmed 

previous observations that there were correlations between haplogroup status and 

increased or decreased risk of developing diseases including schizophrenia, multiple 

sclerosis and Parkinson’s (Hudson et al., 2014) although the mechanisms underlying 

mtDNA involvement in vivo remain unknown. Diseases caused by mtDNA mutations are 

also influenced by the mitochondrial haplogroup. For example, Lebers hereditary optic 

neuropathy (LHON) is caused by three known pathogenic mtDNA mutations (Johns et 

al., 1992; Mackey and Howell, 1992; P et al., 2003) however, the disease penetrance in 

carriers of these mutations varies widely. Haplogroups J and UK were found to be 

associated with increased risk of developing LHON (Brown et al., 1997; Howell et al., 

2003; Carelli et al., 2006; Hudson et al., 2007; Gomez-Duran et al., 2012). This is 

assumed to be influenced by two main factors; the metabolic profile of the mtDNA 

haplogroup itself and nuclear mitochondrial complementation and crosstalk (Gomez-

Duran et al., 2012; Giordano et al., 2014). Recently, data has shown the emerging 

importance of compatibility between the nuclear and mitochondrial genomes for the 

success of reproduction in mouse and pig embryos (Park et al., 2015; Ma et al., 2016). 

Similarly, comparisons of transmitochondrial cybrid cell lines with identical nuclear 

backgrounds have highlighted the important differences in OXPHOS between 

haplogroups (Gomez-Duran et al., 2010; Kenney et al., 2014). 

 

1.3 Mitochondria and disease 

Mitochondria, and mtDNA, are of particular research interest for their involvement in 

human disease. Mitochondrial dysfunction and dysregulation underlies several human 

disorders affecting tissues with high energy demand such as brain, liver, heart and 

skeletal muscle. These conditions often present as complex multisystem phenotypes 

however, mitochondrial disorders are a heterogeneous category with some patients 

severely affected whilst others have very mild clinical presentations (for review see 

Lightowlers et al. (2015); Magner et al. (2015)). Given the intricate relationship of the 

nuclear and mitochondrial genomes within the cell, it is not surprising that 

mitochondrial pathologies can be the result of mutations in either the mtDNA or nuclear 

encoded mitochondrial genes. In recent years, mitochondrial dysfunction has 
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increasingly been implicated in several categories of human disease including 

immunological, metabolic and neurodegenerative (for review see Koopman et al. 

(2013)). Whether mitochondrial dysfunction and dysregulation are contributing to or 

result as a consequence of these disease states is still to be elucidated.  

 

1.3.1 mtDNA mutations 

Mutations in the mtDNA molecule itself can occur through two main events; point 

mutations or large-scale rearrangements such as deletions or insertions. Interestingly, 

very little is known about insertions within the mtDNA, most likely due to lack of clinical 

presentation (Poulton et al., 1993; Krishnan and Birch-Machin, 2006). Point mutations 

in the mtDNA can present as several clinical phenotypes depending on the position and 

type of mutation. For example, there are three well characterised point mutations which 

cause LHON in 95% of cases at positions m.11778G>A, m.3460G>A and m.14484T>C (P 

et al., 2003). Other examples include multiple mutations causing microencephalopathy 

lactic acidosis and stroke like episodes (MELAS), at positions m.3243A>G and 

m.3271T>C, and myoclonic epilepsy with ragged red fibres (MERRF) at position 

m.8344A>G (Pavlakis et al., 1984; Goto et al., 1990; Shoffner et al., 1990). Several other 

mtDNA mutations are also associated with these clinical phenotypes, in genes encoding 

members of the OXPHOS subunits, rRNAs or tRNAs, giving rise to a spectrum of different 

phenotypes. Interestingly, due to the phenomenon of heteroplasmy, mtDNA mutation 

level must be sufficiently high to result in a biochemical defect (Schon et al., 2012).  

The transmission of mtDNA mutations is still not clearly understood. Remarkably, de 

novo point mutations are a frequent cause of mitochondrial disorders (~25%) but 

appear to have a low recurrence risk (Sallevelt et al., 2016). One hypothesis as to how 

deleterious mtDNA mutations are removed from the germline is that mtDNA molecules 

undergo a phenomenon termed ‘clonal expansion’ after a genetic bottleneck effect 

during development of female primordial germ cells (PGCs) (Cao et al., 2007; Cree et al., 

2008). This is hypothesised to occur after depletion of mtDNA during the early 

specification of PGCs resulting in a reduced population of molecules which then proceed 

to expand and repopulate the cell. Murine PGCs sampled during early development were 

found to have variable levels of mtDNA heteroplasmy whereas PGCs sampled later in 

development showed less variation in heteroplasmy levels, suggesting a highly 
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regulated selection mechanism during embryogenesis (Freyer et al., 2012). In 

concordance with this, mtDNA copy number measurements in zebrafish oocytes 

revealed high variation in oocytes isolated from the same female (Otten et al., 2016). 

Interestingly, comparisons between PGCs and somatic cells in developing zebrafish 

embryos showed that mtDNA copy number decreased in both cell types but that there 

were differences in the timing of mtDNA depletion. Nevertheless, mtDNA mutations do 

persist within the human population as evidenced by paediatric cases of mitochondrial 

disease (Ardissone et al., 2014). Moreover, different mtDNA mutations have different 

rates of bottleneck segregation, as shown by in silico prediction models (Wilson et al., 

2016). Together, this suggests that both the timing of the mtDNA bottleneck during 

development as well as the type of mutation drives the differences observed in mature 

oocytes. This goes some way towards explaining the differences in mutation load and 

disease severity observed between offspring from the same mother. 

 

1.3.2 mtDNA deletions 

Deletions within the mtDNA can be of any size and occur at any position on the 

molecule, although these events mainly occur within the major arc. Patients can present 

with multiple mtDNA deletions in the cell or tissue, often due to mutations in genes 

essential for mtDNA replication and maintenance (Campbell et al., 2014). Many patients 

harbour a single 4977bp deletion, known as the ‘common’ deletion, thought to occur 

from clonal expansion of one mutant molecule (Brierley et al., 1998). This deletion is the 

underlying mtDNA rearrangement in sporadic mitochondrial disorders such as 

Kearns-Sayre syndrome (KSS), Pearson’s syndrome and chronic progressive external 

ophthalmoplegia (CPEO), with heteroplasmy levels and deletion location differing 

between the conditions (Lopez-Gallardo et al., 2009). The ‘common’ deletion 

heteroplasmy level is also known to increase with age and is used as a biomarker of 

mitochondrial dysfunction in several age-related conditions (for review see Krishnan et 

al. (2008)). More recently, interrogation of a large patient cohort has shown that 

heteroplasmy as well as deletion size and location within the mtDNA can be used as 

predictors of disease progression and severity (Grady et al., 2014).  

The ‘common’ deletion occurs between positions m.8455 and m.13446 on the mtDNA 

molecule, and is flanked by 13bp direct repeat sequences (Mita et al., 1990; Samuels et 
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al., 2004). It is hypothesised that during mtDNA maintenance, these regions, which are 

complimentary to one another, align and allow the 4977bp region in-between to be 

excised resulting in two smaller mtDNA molecules (Figure 1.4) (Krishnan et al., 2008). 

Although this hypothesis is probable, there is a lack of experimental evidence and 

isolating mtDNA to study such mechanisms has proved extremely difficult (Yamashita et 

al., 2008; Sadikovic et al., 2010; Tang et al., 2013).  

 

 

Figure 1.4 Schematic of mtDNA deletion formation. Direct repeats are depicted by orange boxes on the 
circular mtDNA molecule. Aberrant replication leads to formation of two smaller molecules shown on the 
right hand side. 

 

Deletion formation is thought to be caused by a decline in the efficiency of mtDNA 

replication (Copeland and Longley, 2014). The underlying biochemical mechanisms 

thought to be responsible for this decline fall into three main categories; the error rate 

and activity of POLG, nucleotide metabolism and mitochondrial network dynamics. 

During mtDNA replication, spontaneous errors made by POLG can lead to both point 

mutations and deletions (Longley et al., 1998; Zheng et al., 2006). Additionally, POLG 

possesses exonuclease activity which has been shown to be disrupted when mutated, 

thus leading to an increased risk of mtDNA deletion formation (Zhang et al., 2000). 

Discrimination between ribonucleic and deoxyribonucleic acids also relies upon the 

proofreading ability of POLG. In the strand coupled model of mtDNA replication, 

RNA/DNA hybrid molecules are utilised by POLG to create the daughter DNA molecule 

and therefore is reliant upon the ability for the replication machinery to distinguish 

between the two nucleic acid species (Yang et al., 2002). Loss of this essential function 

may lead to mutation or deletion of the molecule. Lastly, mitochondrial dynamics plays 
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an important role in ensuring that deleterious mtDNA is removed from the organelle 

and cell, presumed to be through mitophagy (Nunnari and Suomalainen, 2012). This 

cellular process requires several key proteins and the aberrant activity of many of these 

has been associated with impaired mitophagy and therefore an accumulation of mutated 

mtDNA species (Chen et al., 2010). Several other pathways have been implicated in the 

formation of deletions including inefficient DNA repair mechanisms and mutations in 

exonucleases, helicases and nucleases within the mitochondria (Copeland and Longley, 

2014). 

Deletions also occur in childhood suggesting that these molecules can persist through 

the germline genetic bottleneck described in Section 1.2.2 (Poulton et al., 1991). 

Although this mechanism has not yet been proven, clinical data shows that the risk 

associated with transmitting mtDNA deletions from an affected mother to child is 1 in 24 

births, suggesting that deletions can be transmitted but that deletion levels in oocytes 

are most likely variable (Chinnery et al., 2004).  

The mechanisms as to how clonal expansion of mtDNA deletions occur within tissues 

are still debated. One hypothesis is that smaller molecules have a replicative advantage 

due to their reduced size (Wallace, 1992). This theory is controversial and new evidence 

suggests that in human muscle fibres there is no clear bias for large or small scale 

deletion molecules with regards to clonal expansion rates (Campbell et al., 2014). 

Recently, the involvement of the mitochondrial uncoupled protein response (UPRmt) in 

deletion propagation has been demonstrated in C.elegans harbouring a large scale 

mtDNA deletion (Gitschlag et al., 2016; Lin et al., 2016). Persistence and stabilisation of 

this mtDNA deletion under cellular stress conditions suggests that the normal 

mitochondrial degradation response, mitophagy, is dampened to allow propagation of 

the deleterious genome (Gitschlag et al., 2016) possibly through the signalling pathway 

mediated by the activating transcription factor associated with stress (ATFS-1) (Lin et 

al., 2016). Although germline transmission has not been fully explored in this model, it is 

an interesting observation that hijacking of cellular homeostatic responses can allow for 

expansion of such molecules.  
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1.3.3 Nuclear-mitochondrial genes 

Over the last ~1.5 billion years there has been transfer of mtDNA into the nuclear 

genome of the cell most likely driven by the need to limit mutation accumulation caused 

in part by free radicals from the ETC. It is estimated that ~98% of the mitochondrial 

genome has now been transferred, as evidenced by the vast number of proteins which 

are nuclear encoded and imported into the mitochondria within mammalian cells 

(Wessels et al., 2013). Nuclear DNA sequences with homology to the mtDNA molecule, 

known as NuMts, present a problem in extraction of mtDNA sequences from whole 

genome sequencing datasets as it is unclear whether such sequences map to the mtDNA 

or to the NuMt region (Gould et al., 2015; Malik et al., 2016). However, it is clear that 

NuMt sequences are a common phenomenon as they are present in almost every 

genome sequenced from animal and plant species (Soto-Calderon et al., 2012; Dayama et 

al., 2014). Increased genomic incorporation of mtDNA has been described in several 

cancer types as well as during the normal ageing process suggesting that DNA transfer 

events are either a trigger for or a consequence of cellular dysregulation (Ju et al., 2014; 

Ju et al., 2015).  

It is widely acknowledged that mtDNA is utilised by the cell to repair double strand 

breaks (DSBs) within the nuclear genome (Ricchetti et al., 1999). The precise molecular 

mechanism of such events has been debated with some studies suggesting that 

non-homologous end joining during cell division is the mechanism by which mtDNA 

fragments are incorporated into transcriptionally silent regions of the genome (Hazkani-

Covo and Covo, 2008) whilst others suggest NuMt incorporation is preferentially in 

regions with open chromatin conformation, as shown in germline cells (Tsuji et al., 

2012). A recent study has demonstrated further evidence that NuMt integration is 

non-random and occurs mostly within repetitive DNA elements, such as centromeric 

regions (Doynova et al., 2016). Regardless of the method of transfer, it is clear that 

mtDNA integration into the nuclear genome is prevalent and ongoing.  

 

1.4 Mitochondria and methylation 

1.4.1 mtDNA methylation 

Modifications to the transcriptional control of DNA not by changes in the DNA sequence 

itself, termed epigenomics, has been well characterised as an additional layer of 
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regulation within the nuclear genome (Berger et al., 2009). Primarily, epigenetic control 

is mediated by methylation and acetylation of histone protein complexes but can also 

occur through the presence of CpG islands. These C-G rich regions are common near the 

promoter region of genes and can be activated or silenced depending on methylation 

status and recruitment of protein complexes. Although the epigenetic landscape is 

widely accepted as a regulatory mechanism within the nucleus, the importance of DNA 

methylation and acetylation within the mtDNA remains controversial. Of course, mtDNA 

is not organised in the same way as nDNA around histones, the primary mechanism of 

global epigenetic regulation within the nucleus, or wrapped up into higher order 

chromatin. However, mtDNA is packaged by proteinaceous nucleoids which could offer a 

similar regulatory mechanism as the nuclear histone proteins (Bogenhagen, 2012). In 

addition to histone modification, direct methylation of DNA plays a key role in epigenetic 

regulation and could be influencing expression patterns of mtDNA.  

Methylation of mtDNA was characterised as far back as the 1970’s and 80’s (Nass, 1973; 

Pollack et al., 1984) but was not extensively investigated due to contradictory reports 

that there was no methylation of mtDNA (Dawid, 1974). Technical limitations also 

contribute to a lack of mtDNA methylation data as the mtDNA copy number varies 

depending on the cell type used and can be contaminated with NuMt sequences as 

described in Section 1.2.6. Levels of methylated cytosines (5mC) within the mtDNA have 

been investigated as these marks have been proposed to modify transcription of the 

molecule from the D-loop regulatory region (Bellizzi et al., 2013). The presence of CpG 

tracts within the mtDNA have been mapped and show a similar rate of suppression to 

nDNA (Cardon et al., 1994; Ghosh et al., 2014). A comprehensive study using bisulphite 

pyrosequencing has shown that mtDNA CpG sites occur at ~2% of the mtDNA and can 

be mapped to regulatory regions in the D-loop, mitochondrially encoded 12S RNA 

(RNR1) and mitochondrial encoded 16S RNA (RNR2) as well as within genes encoding 

several OXPHOS proteins (Liu et al., 2016). Recently, the DNA cytosine-5 

methyltransferase1 (DNMT1) protein was shown to have mitochondrial localisation 

(Shock et al., 2011) and has been proposed as the major regulator of mtDNA 

methylation. The presence of DNMT1 as well as characterisation of methylated cytosines 

by bisuphite sequencing suggests that mtDNA methylation may play an important 

regulatory role within the organelle. 
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1.4.2 Mitochondrial regulation of nuclear DNA methylation 

Recently, studies have shown that metabolic pathways contained within the 

mitochondria directly influence nDNA methylation status. This coupling of metabolism 

to genome methylation allows for transcriptional regulation based on nutrient 

availability and sensing. One recent study showed that brain samples from patients with 

multiple sclerosis had lower altered histone H3 methylation marks compared to 

controls. This altered methylation pattern was linked to mitochondrial dysfunction via 

the methionine metabolism pathway (Singhal et al., 2015).  

Methylation of DNA is reliant upon cellular availability of the methyl group donor 

S-adenosylmethionine (SAM), synthesised from methionine (Figure 1.5). 

Methyltransferase enzymes utilise available SAM to carry out methylation of DNA, RNA 

and protein. Delivery of SAM to the mitochondrial matrix has also now been shown to 

occur through the carrier protein SLC25A26 (Kishita et al., 2015). SAM availability is 

directly affected by 1-carbon folate metabolism, which was recently demonstrated to 

increase hypermethylation of 5mC in the mtDNA of oocytes isolated from patients with 

polycystic ovaries (Jia et al., 2016). Defective mtDNA replication has also been shown to 

alter the 1-carbon folate dependent pathways of the cell including dNTP synthesis, SAM 

production and methylation (Nikkanen et al., 2016). 
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Figure 1.5 Metabolic pathways involved in DNA methylation. S-adenosylmethionine (SAM) is synthesised in the cytosol from adenosine and can be transported to the 
nucleus or mitochondria where it is used as a methyl group donor. Transulphuration and 1-carbon folate pathways are directly linked to SAM synthesis. Mitochondria 
metabolise choline within the inner matrix to produce betaine, which is utilised to convert homocysteine (Hcy) to methionine (MET).  
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In addition, mitochondrial content has been linked to nDNA methylation patterns in 

single cells further suggesting that cellular ATP production can drive alterations in 

transcription levels (Guantes et al., 2015). Uncovering such regulation demonstrates the 

importance of tightly regulating the balance between substrate availability and 

transcriptional control within the cell. Additional proteins involved in these mechanisms 

remain to be elucidated, such as transcription factors and methyltransferases that 

mediate mitochondrial-nuclear methylation status.  

 

1.5 PR-domain containing 9 

1.5.1 The PRDM family and gametogenesis 

For vertebrates to reproduce, primordial germ cells (PGCs) must undergo both 

specification and meiosis to produce haploid gametes. This process is controlled by 

several transcriptional activators and repressors which alter the global gene expression 

profile via epigenetic reprogramming. In mammals, PGCs are derived from the 

mesoderm lineage and are specified by repression of the somatic program and 

re-activation of pluripotency potential (Fuhrmann et al., 2001). One group of proteins 

required during germ cell development is the PR-domain containing (PRDM) family. In 

primates, there are 17 PRDM family members, all containing the characteristic 

N-terminal PR domain, which is highly similar to the SET domain (Huang et al., 1998). 

This domain is associated with methyltransferase activity, although only four PRDMs 

have so far been shown to possess intrinsic methyltransferase activity (Kim et al., 2003; 

Hayashi et al., 2005; Ancelin et al., 2006; Eom et al., 2009; Blazer et al., 2016). All PRDM 

family members (excluding PRDM11) have a variable number of zinc finger repeats, 

known to be responsible for protein-DNA binding. PRDM11, -4, -6, -7, -9, -10 and -15 

also have zinc knuckle domains, most likely to allow protein-protein interactions. These 

proteins have diverse cellular functions from the differentiation of cardiac smooth 

muscle cells to tumour suppressor functions (for review see Fog et al. (2012)).  

Pluripotent cells differentiate to PGCs by the activation of pathways controlled by 

expression of PRDM1 (BLIMP1) and PRDM14. In PRDM1 knockout mice, PGCs do not 

repress mesodermal homeobox genes and fail to migrate to the genital ridge, remaining 

clustered as PGC-like cells (Ohinata et al., 2005; Vincent et al., 2005). Recently, PRDM1 

protein expression has been harnessed to experimentally derive germ cells from human 
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embryonic stem cells (hESCs) (Lin et al., 2014; Sasaki et al., 2015). The PGCs of PRDM14 

knockout mice do not reactivate pluripotency and also fail to repress histone 3 lysine 9 

di-methylation (H3K9me2) (Yamaji et al., 2008). The functions of both of these proteins 

are critical, independent of each other, for the correct specification of PGCs. Remarkably, 

overexpression of PRDM1 and -14 in the presence of transcription factor AP-2 gamma 

(AP2γ) allowed pre-cursor germ cells to specify as PGCs in the absence of cytokines 

(Magnusdottir et al., 2013) suggesting that activation of these proteins is enough to 

prompt differentiation, overriding the cell cycle. More recently, the core pluripotency 

marker Nanog homeobox (NANOG) has been shown to induce differentiation of ESCs in 

culture to epiblast-like cells with PGC-like fate through binding and activation of PRDM1 

and PRDM14 (Murakami et al., 2016).  

The timing of expression of PRDM1 and -14 are known to occur in early PGCs to prompt 

specification of these cells (Ohinata et al., 2005). After specification, PGCs must undergo 

meiotic recombination regulated by the PRDM9 (MEISETZ) gene. PRDM9 was first 

described as a gene required for hybrid sterility in mouse (Forejt et al., 1991). Scientific 

interest in this protein increased as the PRDM9 protein was found to have 

methyltransferase activity, driving global epigenetic changes in the cell and prompting 

progression of meiotic prophase I (Hayashi et al., 2005). It is important to note that the 

development of gonadal tissue and PGCs differs between males and females. Female 

PGCs arrest during prophase I and remain in this state until female puberty is reached. 

Male PGCs arrest after mitosis and meiosis is only resumed in spermatocytes following 

puberty. Whilst specification of PGCs and migration of these cells to the genital ridge is 

the same for both sexes, PRDM9 expression is assumed to differ between the sexes 

based on timing of meiosis (Figure 1.6). 
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Figure 1.6 Specification of primordial germ cells (PGCs) during human development from pluripotent 
stem cell to germ cell. Male germ cells are shown in blue and female in pink. A developmental timeline is 
given along the bottom of the figure in days post conception (dpc).  

 

1.5.2 PRDM9 and meiosis 

Meiotic recombination occurs via chromatin remodelling, subsequent DSB formation 

and resolution by homologous recombination of sister chromatids (McClintock, 1939). 

Human recombination takes place in regions close to genes but not within transcribed 

regions, termed ‘hotspots’, which have been characterised as more likely to contain 

specific genomic factors such as the retroviral-like retrotransposons THE1A and THE1B, 

as well as CT-rich and GA-rich repeats when compared to recombination ‘coldspots’. 

Hotspots are present across the genome at a density of around one hotspot per 50 kb 

(Myers et al., 2005).  

Crossover events during meiosis are critical for sexually reproducing organisms to 

exchange genetic information; in fact, without recombination during meiosis the 

resulting offspring are in most cases sterile (Dobzhansky, 1936). PRDM9 knockout mice 

are only able to reproduce as heterozygotes because homozygous null mutants of both 

sexes are completely sterile (Mihola et al., 2009), attributed to a loss of histone 3 lysine 4 

trimethylation (H3K4me3) that leads to meiotic arrest of gametocytes (Hayashi et al., 

2005). Interestingly, inter-species hybrid mice show male sterility, and semi-sterility, 

that can be rescued by adding copies of PRDM9 to the appropriate genetic background 
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(Flachs et al., 2012). Genetic variation in PRDM9 between mouse strains crossed was 

undetectable by sequencing analysis and is therefore not solely responsible for hybrid 

sterility (Flachs et al., 2014). This dosage dependent effect on fertility suggests that 

PRDM9 not only plays an important role in gametogenesis but must also be interacting 

with other hybrid sterility genes. Hybrid sterility gene interactions are still not fully 

understood, however, a recent study using mouse interspecies crossings has identified 

one such modifier locus, hybrid sterility X chromosome 2 (Hstx2/Meir1) (Balcova et al., 

2016) and it is likely there are several genomic loci harbouring important modifiers 

which have subtle effects not yet identifiable by mapping and linkage analysis.  

 

1.5.3 PRDM9 protein function 

The PRDM9 protein is responsible for determining where a large proportion of 

chromosome crossover events occur within the mouse (Baudat et al., 2010), human 

(Sarbajna et al., 2012) and chimpanzee (Auton et al., 2012) genomes. PRDM9 functions 

as a methyltransferase by binding to DNA through its tandem-repeat zinc finger (ZnF) 

domain (Brick et al., 2012). The protein consists of several domains; an N-terminal 

Kruppel-associated box (KRAB), an SSX repression domain (SSXRD), a zinc-knuckle and 

zinc-finger surround the PR/SET domain with a zinc-finger DNA binding array in the 

C-terminus (Figure 1.7).  

 

 

Figure 1.7 PRDM9 protein structure. Important regulatory and binding regions are shown; KRAB, SSXRD, 
PR/SET, zinc finger and knuckle and the C2H2 ZnF array domains.  

 

Proteins containing KRAB and C2H2 zinc finger domains make up a subset of 

transcription factors with the ability to repress genomic targets through binding of 

specific DNA motifs. PRDM9 recognises the so called ‘Myers motif’ (CCNCCNTNNCCNC), a 
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13bp degenerate motif estimated to be present at ~40% of human recombination 

hotspots (Myers et al., 2008). Initial bioinformatic prediction analysis identified PRDM9 

as a candidate binding protein for the motif (Myers et al., 2010). Therefore, PRDM9 

functions as a trans-acting factor; in other words it influences the stability of DNA 

molecules other than the one that encodes it. Purification of a partial ZnF region of 

human PRDM9 showed that the ZnF binds within the major groove of the DNA helix and 

forms hydrogen bonds (Patel et al., 2016). In addition, analysis of mouse PRDM9 showed 

that ZnF binding affinity for DNA sequence is dependent on the position of the ZnF 

within the array; ZnF’s at the beginning and end of the array have variable binding 

intensities whereas internal ZnF’s have selective binding affinity, depicted in Figure 1.8 

(Billings et al., 2013). This characteristic allows PRDM9 to bind a number of DNA motifs 

which differ subtly. 

 

 

Figure 1.8 Schematic of PRDM9 KRAB (orange box) mediated ZnF binding to DNA motifs. Each coloured 
curve represents an individual ZnF in the PRDM9 array. Grey circles represent zinc ions held in pockets to 
create the ‘finger’ structure. Each finger contacts a codon of DNA bases. 

 

X-ray crystallography has revealed the native protein conformation of both human and 

mouse PRDM9 (Wu et al., 2013). PRDM9 binds the H3K4me2 peptide substrate in a cleft 

similar to other SET proteins and in the absence of a substrate, PRDM9 exists in an 

autoinhibited state, whereby the binding sites are closed off by the conformation of the 

protein. Binding of substrate peptides along with a cofactor induces a conformational 

change in the proteins pre- and post-SET domains. This is carried out by a hinge 

mechanism allowing for complete rearrangement of the binding sites. Electron density 

revealed that PRDM9 binds H3K4me2 through interactions with the backbone of the 

β-sheet and α-helix in the cleft as well as side chain interactions, possibly explaining 

substrate specificity. This suggests that PRDM9 inhibition is tightly controlled by other 

factors or post-translational modifications (Wu et al., 2013). During meiosis, PRDM9 

protein functions by firstly binding the 13bp DNA motif through its ZnF array, followed 
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by methylation of lysine residues on histone H3 protein tails and finally allowing double 

strand break complexes to bind and prompt chromosome crossover events (Figure 1.9) 

(Grey et al., 2011; Brick et al., 2012). New analysis of meiotic hotspot data suggests that 

this binding occurs in ‘valleys’ between the histone methylation signals created by 

PRDM9, although precise binding sites are difficult to ascertain due to variation between 

generations in any given pedigree (Lange et al., 2016).  

 

 

Figure 1.9 Schematic of the role of PRDM9 during meiosis. PRDM9 protein binds DNA motifs through the 
zinc finger array. It also methylates histone H3 residues to allow for chromatin remodelling. Double strand 
break machinery can then recognise and bind to the DNA sites directed by PRDM9 and allow for meiotic 
recombination to occur. 

 

The extent of PRDM9 methyltransferase activity has now been extended to histone H3 

lysine residues other than H3K4. Crystal structure analysis suggested that PRDM9 might 

also methylate H3K36 and H3K9 (Wu et al., 2013). Analysis of enzyme kinetics has 

revealed that human PRDM9 is active in the presence of un-, mono- and di-methylated 

H3K4 and H3K36 peptide substrates, and is in fact, one of the most active histone 

methyltransferases (Eram et al., 2014). In contrast, PRDM9 does not react with 

trimethylated K4 or K36 confirming that it specifically methylates these residues on H3 

peptides.  This opens up a new category of PRDM9 methylation targets previously 
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unknown, as levels of both H3K4 and H3K36 trimethylation were increased upon 

overexpression of partial PRDM9 in HEK293 cells (Eram et al., 2014). This was also later 

confirmed in vivo using mouse spermatocytes (Powers et al., 2016). The ability for 

PRDM9 to bind to several genomic targets through ZnF variability and target H3K4, 

H3K9 and H3K36 residues for trimethylation suggests that PRDM9 may be regulating a 

much higher number of recombination hotspots than previously thought. The full extent 

of the role of PRDM9 in meiosis is therefore still largely unknown, however, mutations 

within the SET domains or ZnF domains affecting protein function could lead to 

activation or inactivation of PRDM9 at a very critical point in germ cell development. 

 

1.5.4 PRDM9 gene function 

The human PRDM9 gene (NC_000005.10) is located on chromosome 5 and encodes 

three differentially spliced transcripts; 001, 003 and 004. Only one of the transcripts is 

known to encode a protein product, transcript 001, which forms the 894aa full length 

PRDM9 protein (Figure 1.10). It is not yet known if the other two transcripts play a 

functional role within the cell. 

 

 

Figure 1.10 Schematic of the three transcripts produced by the PRDM9 gene. Transcript 001 is the only 
known protein coding transcript, containing all of the functional elements present in the 894aa full length 
PRDM9 protein.  

 

The region responsible for DNA binding activity, the zinc finger array, is encoded by a 

minisatellite located in the final exon of the PRDM9 gene (Hayashi et al., 2005). In 

humans, PRDM9 alleles have between 8 and 18 ZnF repeats within the array (Berg et al., 

2010). Each repeat is 83bp in length and due to the highly polymorphic nature of this 
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region, repeats can differ at the nucleotide level creating 29 distinct PRDM9 alleles 

within the population (Figure 1.11). Each allele is comprised of distinct repeat 

combinations (e.g. ABCDD…) based on the number of repeats within the ZnF array 

region. Allele ‘A’ (ABCDDECFGHFIJ) is the most common allele, present at a high 

frequency in European (86%) and African (50%) populations (Berg et al., 2010). 

 

 

Figure 1.11 PRDM9 alleles found identified in European and African populations. Allele structure is shown 
along with repeat length and frequency within the population. Binding motif for each allele is also shown 
(Berg et al., 2010). 

 

The effect of different PRDM9 alleles on global human recombination hotspot patterns is 

complex. Variation in PRDM9 is rapid and contributes to the differences seen in global 

genome recombination patterns over the course of human evolution (Lesecque et al., 
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2014) as well as between human and chimpanzee (Myers et al., 2008; Groeneveld et al., 

2012). Analysis of sperm DNA has shown that men carrying the common 13 repeat 

length allele ‘A’ have more crossovers at hotspots containing the Myers motif; whereas 

men with non-’A’ variant PRDM9 alleles have changes in hotspot usage (Berg et al., 

2010). This suggests two things; firstly, that allele A has higher binding affinity for the 

motif and secondly, some PRDM9 alleles are able to recognise and bind to variant 

hotspot motifs. For example, the PRDM9 allele ‘C’ has 14 ZnF repeats and recognises a 

longer motif, resulting in a shift in recombination pattern for individuals carrying this 

allele (Berg et al., 2011; Hinch et al., 2011). In mice, inter-species crosses have 

demonstrated that different PRDM9 alleles influence the erosion of recombination 

hotspots over evolutionary time due to the different binding properties of each allele 

(Baker et al., 2015; Smagulova et al., 2016). Interestingly, the PRDM9 allele was 

successfully ‘humanised’ in C57BL/6 mice, revealing that altering one allele affects 

crossovers controlled by the other allele (Davies et al., 2016). Such modifications were 

also linked to the fertility of the mice suggesting that PRDM9 allele interactions 

themselves are directly influencing hybrid sterility, further supporting the role of this 

protein in mammalian speciation events. This study also demonstrated that PRDM9 

protein species encoded by different PRDM9 alleles differed in their binding affinity for 

the Myers motif supporting the idea that there might be dominance over hotspot 

location based on the PRDM9 alleles present in the genome, previously suggested to also 

be the case in the human genome (Thomas et al., 2009; Jeffreys et al., 2013). The 

proposed mechanism for this hotspot erosion is shown in Figure 1.12. 
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Figure 1.12 Schematic of the proposed mechanism by which PRDM9 influences hotspot erosion in mouse 
and human genomes. As two populations become isolated, a new PRDM9 allele is created in one (PRDM9C) 
whilst the other still maintains the ancestral allele (PRDM9A). The two alleles have different binding 
motifs within the genome. Over time, the allele begins to erode the hotspot on the ‘self’ chromosomes, 
leaving other binding sites in-tact. Thus, when the two populations interbreed (F1) the PRDM9 alleles will 
still bind to their corresponding motif that has not been eroded. Asymmetric hotspots result in hybrid 
sterility, therefore driving the creation of new PRDM9 alleles and new motifs within the population to 
regain symmetry of recombination (Zelazowski and Cole, 2016). 

 

Moreover, sperm genotyping indicates that many recombined and lengthened PRDM9 

alleles exist within sperm cells that are not represented in somatic cells within the 

human population (Jeffreys et al., 2013). Lack of these alleles within the population 

suggests a unique mechanism whereby PRDM9 influences its own stability at the meiotic 

level leading to a phenomenon where diversity is driven by the most stable alleles. 

Perhaps this is a mechanism to limit the shifting of recombination patterns and combat 

deleterious effects (Boulton et al., 1997). The evolutionary pressures upon PRDM9 

remain to be fully understood and could be due to several reasons; a high mutation rate 

due to minisatellite instability, purifying or positive selection controlling DNA binding 

specificity, the erosion of binding sites as described in Figure 1.12, or epistatic 

interactions which cause incompatibility after population divergence (Buard et al., 

2014).  

Additionally, there is an argument that other proteins act in a functionally redundant 

manner with respect to PRDM9 driven recombination. The entire canid lineage lacks 

active PRDM9 (Munoz-Fuentes et al., 2011; Axelsson et al., 2012; Campbell et al., 2016), 
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whilst in equids no association between PRDM9 genetic variation and hybrid sterility 

was found (Steiner and Ryder, 2013). Recently, there has been a reported case in 

humans of an individual who lacks PRDM9 expression due to a homozygous mutation 

rendering both alleles non-functional (Narasimhan et al., 2016). This individual has no 

clinical phenotype and has two daughters, suggesting that in this case PRDM9 activity 

was not required for successful meiosis. Tissue biopsies or cultured cells from this 

individual would help aid functional investigations. These observations suggest that 

although PRDM9 might be the master regulator of meiotic recombination in some 

species, it is not required in others. In addition, other as yet unidentified proteins must 

be facilitating crossover events in the absence of PRDM9. Nevertheless, PRDM9 clearly 

plays an important functional role during human meiosis. 

 

1.6 PRDM9 and disease 

1.6.1 PRDM9 and genomic rearrangement disorders 

In recent years, the role of PRDM9 in human disease has become an area of great 

interest. Firstly, mutations in the PRDM9 gene have been associated with infertility 

characterised by nonobstructive azoospermia, which is perhaps not surprising as 

PRDM9 knockout mice are sterile (Miyamoto et al., 2008; Irie et al., 2009; He et al., 

2013). A mutagenesis screen in mice also showed that PRDM9 gene mutations caused a 

severe depletion of germ cells, suggesting that human mutations might have a similar 

effect (Weiss et al., 2012). However, due to the polymorphic nature of the PRDM9 gene it 

is challenging to prove the true pathogenic nature of these SNPs. It is more likely that 

PRDM9 influences fertility by the hybrid paradox outlined in Section 1.5.4 due to 

incompatibility of different PRDM9 alleles during recombination (Flachs et al., 2014). 

Further studies into the effects of PRDM9 on human fertility are required, especially in 

female oocytes. However, such samples are difficult to obtain and would therefore most 

appropriately be tested in an animal model such as mouse or zebrafish. 

Genomic rearrangement disorders are characterised as diseases resulting from 

deletions, insertions and copy number changes within the genome. Sequencing of the 

ZnF region of the PRDM9 gene in patients with genomic rearrangement disorders and 

their parents showed an association of ZnF variants with Williams-Beuren disease, 

caused by microdeletions in a region of chromosome 7 (Borel et al., 2012). PRDM9 has 
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also been implicated in complex duplication-triplication rearrangements of the 

Duchenne muscular dystrophy (DMD) gene (Ishmukhametova et al., 2013). This event 

was studied in a male patient with DMD, where it was shown that inverted repeats allow 

rearrangement of regions spanning several exons of the DMD gene; leading to large scale 

exon shuffling and resulting in a disease phenotype. The regions flanking the 

rearrangement break point were visualised and the PRDM9 binding motif was found 

~300 bp upstream. This was not in a region known to be a meiotic recombination 

hotspot, however, Ishmukhametova et al hypothesised that LD-based hotspots are only 

representative of hotspot activity in female meiosis, leading them to believe that this 

might be a male meiosis specific event. PRDM9 recruitment of initiator of meiotic double 

strand breaks (SPO11) could initiate the strand break needed to facilitate incorrect 

strand invasion and therefore a duplication-triplication event in DMD. However, the 

authors did not sequence PRDM9 in the patient or parents to determine if rare PRDM9 

alleles were present in the family and further analysis needs to be carried out to confirm 

that this putative binding site is actually bound by PRDM9 and if this is indeed the 

causative molecular mechanism. 

Disorders influenced by epigenomic changes such as schizophrenia have also been 

associated with PRDM9 function (Wockner et al., 2015). Whilst this is an intriguing 

hypothesis, the effects of PRDM9 on epigenetic methylation patterns is not clear. As 

discussed, in order for PRDM9 to bind to DNA motifs it methylates histone H3 lysine 

residues, inducing chromatin unwinding and DNA exposure. Whilst this process is 

important for meiotic recombination during development of germ cells, there is not yet 

any evidence to support a functional link between PRDM9 methyltransferase activity 

and global epigenetic regulation. 

 

1.6.2 PRDM9 as a cancer testes antigen 

The SSX region in the PRDM9 N-terminus along with the KRAB domain indicates that 

PRDM9 has homology to the SSX class of proteins, which are suggested to have testis 

specific functions, although this remains to be explored along with the full functional 

role of PRDM9. In recent years, the role of a class of biomarkers known as cancer testes 

(CT) antigens has emerged and is of particular interest in the field of cancer 

immunotherapy. These CT antigens are defined as proteins expressed specifically in the 
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testes of adult males but not in other somatic tissues. Interestingly, these proteins have 

been found to be expressed in tumours from various tissues and are therefore 

biomarkers of tumourigenesis with the potential to be targeted through antibody based 

immunotherapy strategies (for review see Suzuki et al. (2013)). PRDM9 has been 

identified as a CT antigen as its expression was detected in several cancer cell lines and 

tissues by RT-PCR (Feichtinger et al., 2012). Under normal circumstances, PRDM9 is 

only expressed in testes and at very low levels in ovaries. This suggests that PRDM9 

might be upregulated in cells to induce chromatin remodelling and genomic 

rearrangements, promoting a cancer phenotype. 

Cancer genomics has largely focussed on identifying genomic mutations through linkage 

association analysis. Paediatric cancers are an interesting group as mutations causing 

these disorders would be assumed to be lost from the population quickly. However, 

emerging evidence suggests that parental alleles could be risk factors for childhood 

cancers even if the affected individual themselves does not inherit the mutated allele. 

For example, in around 25-30% of B-cell lymphoblastic leukaemias there is a 

non-random gain of chromosomes leading to hyperploid cells (for review see Paulsson 

et al. (2009)). Rare PRDM9 alleles were found to be enriched in a group of parents with 

children diagnosed with B-cell precursor acute lymphoblastic leukaemia (B-ALL) 

compared to ethnically matched controls (Hussin et al., 2013). Mothers of B-ALL 

children were significantly more likely to carry the rare PRDM9 allele than fathers. 

Transmission disequilibrium may be a factor in B-ALL cases, with only half of all affected 

children carrying the rare PRDM9 allele. More recently, PRDM9 alleles were investigated 

in a parental cohort of patients with high hyperploidy acute lymphoblastic leukaemia 

(HeH ALL) (Woodward et al., 2014). Again, rare PRDM9 alleles were overrepresented in 

both the parental and patient cohort when compared to controls, suggesting that 

PRDM9 activity may cause genomic rearrangements at the chromosomal level in these 

patients. However, it is unclear when and in which cell types this happens. Perhaps rare 

PRDM9 alleles are modifying the activity of PRDM9 protein in the somatic cells to cause 

rearrangements. The transmission of the ‘risk’ allele to only ~60% of offspring suggests 

that the effect of PRDM9 is actually happening at the gamete stage, when the cells are 

somehow predisposed to developing ALL.  
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1.6.3 PRDM9 and mtDNA deletions: the missing link? 

PRDM9 recognises and binds a 13 bp motif enriched in human hotspots. Surprisingly, in 

the bioinformatics screen used to identify this PRDM9 recognition motif, it was 

identified within the human mtDNA sequence (Myers et al., 2008). The motif was 

suggested by the authors to flank the large scale pathogenic 4977bp ‘common deletion’. 

Although the authors do not suggest any possible functional role of this motif site, there 

remains the possibility that PRDM9 is localising to mitochondria and binding mtDNA. As 

PRDM9 is expressed solely during meiosis, it could be involved in regulating deletion 

heteroplasmy levels in oocytes and potentially predispose individuals to mtDNA 

deletion disorders.  

Deletions in mtDNA are often flanked by direct repeat regions (Larsson and Holme, 

1992; Samuels et al., 2004) leading to the hypothesis that these repeats align during 

replication and allow deletions to occur within the molecule. The use of inverted repeats 

during recombination repair is not new and has been described within the nuclear 

genome, in disorders with duplication-triplication gene events (Shimojima et al., 2012; 

Beri et al., 2013; Dittwald et al., 2013). Recent evidence that PRDM9 alleles are 

associated with rearrangement disorders raises the possibility that such mechanisms 

could also be creating mtDNA rearrangements. Mutations in genes known to be involved 

in mtDNA maintenance and replication cause mtDNA deletion via aberrant repair 

however, these known mutations only partially explain the prevalence of mtDNA 

deletions within the population. It is therefore important to try and elucidate factors 

which predispose the repeat regions of the mtDNA to undergo such deletions, as the 

mechanism cannot solely hinge on defects in the already characterised mitochondrial 

replication machinery. 

Any possible involvement of PRDM9 in mtDNA maintenance must be proven by directly 

assessing the mitochondrial localisation of this protein and it’s ability to bind mtDNA. 
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Chapter 2 Aims and Objectives 

 

2.1 Hypothesis 

Due to a previous report that PRDM9 binding motifs are present within the human 

mtDNA sequence, this thesis aims to identify whether this is the case at a population 

level and whether such motifs could be of functional significance within the 

mitochondria. More specifically the following aims will be tested; 

1. PRDM9 motifs will be present in the majority of mtDNA sequences, at known 

sites of mtDNA deletions. 

2. The PRDM9 protein will localise to the mitochondria, as this must be where any 

binding events occur. 

 

2.2 Aims and Objectives  

Two main approaches will be used to study this hypothesis. Firstly, in Chapters 4 and 5 

the genetic aspects of PRDM9 will be explored in relation to mtDNA. More specifically, 

the aims of these chapters will be;  

1. To determine whether PRDM9 binding sites exist within the mtDNA sequence of 

a large cohort of individuals from several populations. 

2. Sequence the ZnF region of the PRDM9 alleles in a cohort of single deletion 

patients compared to controls.   

 

Secondly, in Chapters 6, 7 and 8 the localisation and function of PRDM9 protein will be 

explored. The aims of these three chapters are; 

1. To identify an appropriate model to experimentally determine the function of the 

PRDM9 protein. 

2. Modify the expression of PRDM9 in a cell culture system to understand how this 

protein is potentially interacting with mitochondria. 

3. Create a cell culture model, using overexpression, to determine whether PRDM9 

expression affects mitochondrial protein levels or mtDNA copy number.
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Chapter 3 Materials and Methods 

 

3.1 Sample cohort 

Total DNA was extract from 48 patients, known to harbour a single mtDNA deletion, 

using a DNAeasy extraction Kit (Qiagen, Manchester, UK), according to manufacturers 

recommended protocol. DNA aliquots were kindly provided by Professor R.W. Taylor 

(Newcastle Mitochondrial NSCT Diagnostic Service). Further patient details are provided 

in Chapter 5 Table 5.1. In addition, control cohort (WTCCC 1958 Birth Cohort) total DNA 

was extracted from whole blood (using same method as above). 

 

3.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) for amplification of the gene of interest was carried out 

using TaKaRa LA Taq, TaKaRa GXL Taq (TaKaRa Bio Europe/Clontech, France) or MyTaq 

(Bioline, London, UK) polymerases. Primer pairs (Integrated DNA Technologies, IA, USA) 

were designed using PrimerBLAST or from previous publications. Optimisation of 

annealing temperatures (by temperature gradient PCR) and DNA concentrations (by 

concentration titration) was carried out to determine optimal conditions for product 

amplification.  

 

3.3 Sanger sequencing 

Cycle sequencing reactions was carried out using the following reaction mix; 2 μL 

Big-Dye Terminator v3.1, 1.5 μL Big-Dye reaction buffer (both Applied Biosystems, 

Thermo Fisher Scientific, Loughborough, UK), 3.2 pmol product specific primer, 10 % 

betaine and 25 ng of PCR product. Reactions were made to volume (20 μL) using 

nanopure water. Thermocycling conditions were; 96 °C for 1 min, followed by 25 cycles 

of 96 °C for 10 sec, 50 °C for 5 sec, 60 °C for 4 min.  

To remove excess dye labelled nucleotides, PCR products were cleaned by ethanol 

precipitation. Briefly, 3 M sodium acetate125 mM EDTA and 70 μL 100% ethanol were 

added to each reaction in a 96-well plate. The plate was spun at 2000 x rcf for 30 

minutes and then inverted on tissue paper. The plate was centrifuged to 100 x rcf, 70 μL 
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of 70% ethanol was added and the plate spun at 1650 x rcf for 15 min. The supernatant 

was removed by inversion and the plate allowed to air dry in the dark. The pellets were 

resuspended in Hi-Di formamide (Applied Biosystems, Thermo Fisher Scientific, 

Loughborough, UK).  

The Big-Dye suspension was then transferred to an Applied Biosystems 3130xl genetic 

analyser for analysis. Analysis of electropherogram data was performed using SeqScape 

software V2.6 (Thermo Fisher Scientific, Loughborough, UK) via alignment with the gene 

of interest reference sequence. 

 

3.4 Cell Culture 

3.4.1 Maintenance of HEK293 cell line 

Human Embryonic Kidney cells (HEK293), kindly provided by Professor R.N. 

Lightowlers (Institute of Cell and Molecular Biosciences Newcastle University) were 

cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% foetal 

bovine serum (FBS) and non-essential amino acids (all GIBCO, Thermo Fisher Scientific, 

Loughborough, UK). Cells were grown under normal culture conditions (37 °C in 

5% CO2) in T75 flasks. Media was changed every 48-72 hours.  

HEK293 cells were harvested every 3-5 days and split in a 1 to 3 basis. Briefly, media 

was aspirated; cells were washed using 1X phosphate buffered solution (PBS, Oxiod, 

Thermo Fisher Scientific, Loughborough, UK) and trypsinised by incubation with 

PBS-EDTA (0.05%) at room temperature for 5 minutes. Fresh media was added and the 

sides of the flasks were sluiced to ensure all cells were suspended in the media. Cells 

were centrifuged at 1300 x rcf for 5 minutes and the pellet resuspended in fresh media. 

To split 1:3, the resuspended pellet in media was split evenly between three flasks. The 

cells were then incubated and inspected daily. 

3.4.2 Freezing/thawing cells 

Once obtained (as described in Section 3.4.1) cell pellets were resuspended in freezing 

media (DMEM supplemented with 20% FBS (GIBCO) and 10% DMSO) at 3-5x106 cells 

per cryovial and frozen using the freezing container Nalgene® Mr. Frosty (Sigma Aldrich, 

Dorset, UK) at -80 °C. In this system, the cooling rate is 1 °C/min promoting a successful 
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cryopreservation.  After 24 hours the cells were transferred to liquid nitrogen for long-

term storage.  

To defrost cells from liquid nitrogen, cells were quickly resuspended in appropriate 

media, transferred into a falcon tube and centrifuged at 1300 x rcf for 5 minutes. The 

supernatant was discarded and the pellet resuspended in 5 mL of culture media and 

seeded.  

3.4.3 Limited dilutions of cultured cells 

To obtain single cell colonies, cells were harvested as described (Section 3.4.2), counted 

using a haemocytometer and resuspended in DMEM to a concentration of 

2x104 cells/mL. In a 96 well plate, 4000 cells were added to well A1 and were 

sequentially diluted across the plate, giving rise to 1 cell per well in the most diluted 

regions of the plate (as shown in Figure 3.1). After 14 days of culture the cells were 

scored by the presence of a single colony by microscopy. On day 18 of culture the 

colonies were trypsinised and moved to a 24 well tissue culture dish for expansion of 

the colony.  
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Figure 3.1 Dilution series of cells set up in a 96 well plate format. The top plate shows the direction of 
pipetting from the initial 4000 cell well (block grey). The bottom plate shows the corresponding cell 
number in each well. Block grey depicts wells where the cell number is >0.4 cell/well. 

 

3.5 DNA and RNA extraction from cultured cells 

Total DNA was extracted from cell culture pellets using a DNeasy Extraction Kit (Qiagen, 

Manchester, UK), according to manufacturers recommended protocol. Total RNA was 

extracted from cell culture pellets using the RNeasy extraction kit (Qiagen, Manchester, 

UK) according to the manufacturers recommended protocol.  Cells were pelleted by 

centrifuging at 1300 rcf for 5 minutes and washed 3 times with PBS before DNA or RNA 

was extracted. DNA concentration was measured using the Nanodrop2000 UV-vis 

Spectrophotometer (Thermo Fisher Scientific, Loughborough, UK). 
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3.6 Protein Extraction  

Different protein extractions were carried out during this project (see Sections 3.7.1 – 

3.7.5). 

3.6.1 Whole cell protein lysis 

Cells were harvested as previously described (Section 3.4.1) and washed twice with cold 

PBS. On ice, the pellet was resuspended in an appropriate volume of Laemmli buffer 

(50 mM Tris pH7.5 (Sigma), 130 mM NaCl (BDH AnalaR), 2 mM MgCl2 (BDH AnalaR), 

0.1% Triton X-100 (Sigma), 1 tablet protease inhibitor (Roche, West Sussex, UK), dH2O) 

or PathScan ELISA sandwich lysis buffer (Cell Sinaling, Boston, MA, USA) with protease 

inhibitor and vortexed for 30 seconds every 5 minutes for 15 minutes. The lysate was 

sonicated for 7 seconds on ice using a microtip, centrifuged at 2500 x rcf for 5 minutes at 

4 °C. Supernatant was kept and the pellet discarded (Laemmli, 1970). 

3.6.2 Tissue lysis 

Tissue was cut and weighed on dry ice. The tissue sample was ground using a pestle and 

mortar on dry ice. To the ground tissue, 1 mL of lysis buffer with protease inhibitor per 

100 mg of tissue was added and the mix transferred to a 2 mL Dounce homogeniser 

(Wheaton) on ice. Cells were disrupted with 10-20 strokes on the homogeniser drill at 

4 °C. A small volume of lysate (~5 μL) was checked under a light microscope to ensure 

the cell membranes were disrupted. The lysate was sonicated for 7 seconds on ice using 

a microtip, centrifuged at 2500 x rcf for 5 minutes at 4 °C. Supernatant was kept and the 

pellet discarded (Laemmli, 1970). 

3.6.3 Intact mitochondrial isolation 

The cell pellet or tissue sample was suspended in 1 mL of Medium B; 250 mM Sucrose, 

2 mM HEPES, 0.1 mM EGTA (Kirby et al., 2007) and transferred into a 2 mL Dounce 

homogeniser (Wheaton) where the cells were disrupted with 20-60 strokes on the 

homogeniser drill at 4 °C. The sample was then transferred into a 1.5 mL 

micro-centrifuge tube and centrifuged for 10 minutes at 400 x rcf at 4 °C. The 

supernatant was removed and kept as the cytosolic fraction containing mitochondria. 

The pellet was resuspended in 800 μL Medium B and homogenised again to increase the 

amount of mitochondria harvested. The sample was centrifuged as before. The two 

supernatants were then combined and centrifuged for 10 minutes at 10,000 x rcf at 4 °C. 

The supernatant was removed and stored and comprises the cytosolic fraction. The final 
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pellet comprises the mitochondrial fraction (Fernandez-Vizarra et al., 2010). All samples 

were stored at -80 °C.  

To isolate mitochondria from the mitochondrial associated membrane (MAM) a percoll 

gradient method was used (Wieckowski et al., 2009). The cell pellet was suspended in 

30 mL PBS and centrifuged for 5 minutes at 600 x rcf at 4 °C. Pellet was resuspended in 

5 mL PBS and centrifuged as before. Pellet was then suspended in 20 mL buffer IBcells1 

(225-mM mannitol, 75-mM sucrose, 0.1-mM EGTA and 30-mM Tris–HCl pH 7.4) and 

transferred to a 30 mL Dounce homogeniser using a 1 mL Pasteur pipette where cells 

were disrupted with 100 strokes using a drill at 4 °C. Cells were transferred back into a 

plastic tube and centrifuged as before. The pellet was stored as the nuclear fraction and 

the supernatant was centrifuged for 10 minutes at 7000 x rcf at 4 °C. The supernatant 

was stored as the cytosolic fraction and the pellet resuspended in 20 mL buffer IBcells2 

(225 mM mannitol, 75 mM sucrose and 30 mM Tris–HCl pH 7.4) before centrifugation as 

before. The supernatant was discarded and the mitochondrial pellet resuspended in 

20 mL IBcells2 before centrifugation for 10 minutes at 10,000 x rcf at 4 °C. The 

supernatant was discarded and the mitochondria suspended in 2 mL mitochondrial 

resuspension buffer (MRB; 250 mM mannitol, 5 mM HEPES (pH 7.4) and 0.5 mM EGTA). 

A small amount of this was stored as the ‘crude’ mitochondrial fraction. Next, 8 mL of 

percoll medium (225 mM mannitol, 25 mM HEPES (pH 7.4), 1 mM EGTA and 30% 

Percoll (vol/vol)) was placed in a 15 mL thin wall polyethylene ultracentrifuge tube. The 

mitochondrial suspension was layered on top of the percoll medium followed by 3.5 mL 

MRB gently layered on the top.  This suspension was centrifuged for 30 minutes at 

95,000 x rcf at 4 °C in a Sorvall ultracentrifuge (Thermo Fisher Scientific, Loughborough, 

UK). The mitochondria appear as a small pellet at the bottom of the tube whilst the MAM 

is a white band suspended in the layer above the pellet, this is collected by gentle 

pipetting using a 1 mL Pasteur pipette and diluted with 10 X the volume of MRB. The 

mitochondrial pellet is diluted in 10X the volume of MRB. Both suspensions were 

centrifuged for 10 minutes at 6,300 x rcf at 4 °C, the mitochondrial pellet suspended in 

20 mL MRB and centrifuged again. This pellet was finally resuspended in 200 µL MRB 

and stored as the ‘pure’ mitochondrial fraction. MAM fraction was centrifuged for 1 hour 

at 100,000 x rcf at 4 °C and then suspended in a final volume of 200 µL MRB.  
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3.6.4 Mitochondrial enrichment 

Native protein preparations are used to isolate multiprotein complexes from cells using 

a gentler cell lysis procedure than traditional SDS containing lysis buffers. After 

treatment with non-ionic detergents and centrifugation a final pellet is created which is 

enriched for mitochondria and can therefore provide a crude mitochondrial enrichment 

from a small number of cells. 

5 x 106 HEK293 cells were harvested and the pellet washed three times with PBS. The 

pellet was resuspended in 100 μL PBS + protease inhibitor (Roche Diagnostics Limited, 

West Sussex, UK), 10 μL was diluted in 90 μL dH2O and sonicated for 4 seconds. Protein 

concentration was determined as described in Section 3.7.5 by maxi Bradford. Digitonin 

is a mild non-ionic detergent which solubilises receptors and permeabilises the cell and 

nuclear membranes and was added to the non-sonicated cell suspension in a 1:6 ratio 

based on the formula below: 

 

𝑌 = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑥 1.6 (𝑟𝑎𝑡𝑖𝑜) 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑑𝑖𝑔𝑖𝑡𝑜𝑛𝑖𝑛 =
Y x Volume of PBS

Concentration of digitonin
 

 

Stock concentration of 6 mg/mL digitonin diluted in PBS was used. The digitonin treated 

lysate was made up to a final volume of 200μL with PBS and centrifuged at 10,000 x rcf 

for 10 minutes at 4 °C. The mitochondrial enriched pellet was resuspended in 30μL of 

MB2 buffer (500μL 3XGB (0.5 M aminocaproic acid, 50 mM Tris-HCL pH7), 1M 

aminocaproic acid, 20mM EDTA), 1% laurel malthoside added and incubated on ice for 

15 minutes. The sample was centrifuged at 20,000 x rcf for 20 minutes at 4 °C and the 

supernatant was placed in a new 1.5 mL tube. Protein concentration was determined 

using the supernatant to perform a Bradford assay (Section 3.7.5).  

3.6.5 Determining protein concentration 

The Bradford Assay was used to determine the protein concentration (Bradford, 1976). 

Two methods were used depending on the absorbance being measured. 

Maxi Bradford was performed as follows, a calibration curve was created using bovine 

serum albumin (BSA) at known concentrations of 0.05 μg, 0.1 μg, 0.2 μg, 0.3 μg, 0.4 μg 
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and 0.5 μg/μL solution. An example of this curve is shown in Figure 3.2. A blank was also 

set up to correct for any background absorbance in the buffer itself. Samples were run at 

different dilutions depending on the type of lysate e.g. cellular or tissue. In a 96 well 

plate, 10 μL of each calibration standard plus samples were measured in triplicate. To 

this, 200 μL of 1:5 dilution of Bradford solution (BioRad Laboratories, Hemel Hempsted, 

UK) was added. Detection was carried out on a plate reader. Analysis was carried out 

using Microsoft Office Excel package to determine standard curve and final protein 

concentration. 

 

 

Figure 3.2 Example of calibration curve used to determine protein concentration of lysate samples in this 
study. 

 

Mini Bradford was performed for protein lysis where a commercial lysis buffer was 

used. This allows for accurate protein detection in the presence of glycerol and NP-40. 

BSA protein standards were set up as shown in Table 3.1. Standards were set up in 

semi-micro polystyrene cuvettes (VWR International, Leicestershire, UK). To this, 

200 µL of Bradford solution was added and values were measured on the Eppendorf 

BioPhotometer. Final protein concentrations were analysed as outlined previously. 

 

y = 0.8308x + 0.3102
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Concentration of 

BSA (mg/mL) 

Volume (µL) 

BSA (1mg/mL) 

Volume (µL) dH2O 

0.01 1 799 

0.03 3 797 

0.05 5 795 

0.1 10 790 

0.15 15 785 

0.2 20 780 

Blank 0 800 

Table 3.1 Dilutions for setting up a standard curve for a mini-Bradford used in this study.  

 

3.7 Protein Investigations  

Western blot method was used to quantify proteins. Briefly, a 10 μL sample volume was 

made by adding 1 μL 10X Sample Reducing Agent, 2.5 μL 4X LDS Sample Buffer (both 

Novex®, Thermo Fisher Scientific, Loughborough, UK) and the appropriate volume of 

sample lysate based on the protein concentration determined as described in Section 

3.7.5. Samples were heated at 70 °C for 10 minutes.  

3.7.1 Polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein electrophoresis was performed using SDS-PAGE denaturing acrylamide gels 

(4-20% NuPAGE® Bis-Tris Precast Gels or 4-20% MiniPROTEAN TGX Precast Gels, 

BioRad Laboratories, Hemel Hempsted, UK). The electrophoresis was carried out in MES 

buffer with 500 μL antioxidant added (both NuPAGE®, ThermoFisher Scientific, 

Loughborough, UK) at 120 V for 30 minutes and 160 V thereafter using the X-Cell system 

(Novex®, Thermo Fisher Scientific, Loughborough, UK). Two molecular markers were 

run in parallel with the samples, one coloured marker (See Blue Plus 2, Thermo Fisher 

Scientific, Loughborough, UK) to ensure the correct molecular weight was present in gel 

and one biotinylated marker (Biotinylated Protein Marker, Cell Signaling, Boston, MA, 

USA) to determine molecular weight during western blot detection. 

3.7.2 Western Blotting 

Transfer of protein to a membrane was carried out in the iBlot™ 2 Semi Dry Transfer 

System (Thermo Fisher Scientific, Loughborough, UK). Briefly, the gel was removed from 

its case and soaked in 10% ethanol for 10 minutes. Pre-prepared stacks were soaked in 

dH2O. The components were assembled as follows; stack-membrane-gel-stack, a 
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protocol for mixed molecular weight was used for 7 minutes at 1.3 A constant. Once 

transferred, the membrane was removed and blocked in 5% buffer (2.5 g non-fat milk in 

50 mL 1X TTBS) for 1 hour. After this, the primary antibody at an appropriate 

concentration (Table 3.2) was incubated overnight at 4 °C. Three washes with TTBS 

buffer (20 mM Tris-HCL pH7.5 (Sigma Aldrich, Dorset, UK), 0.5 M NaCl (BDH AnalR, 

VWR, Leicestershire, UK), 0.1% Tween 20 (Sigma Aldrich, Dorset, UK) for 10 minutes 

each were followed by incubation with a secondary antibody and anti-biotin antibody 

(Cell Signaling, Boston, MA, USA) diluted in blocking buffer for 1 hour at room 

temperature. Membrane was then washed 4 times for 5 minutes each in TTBS before 

developing with 1 mL (1:40 dilution) Pierce ECL Blotting Substrate (Fisher Scientific, 

Loughborough, UK Scientific) for 5 minutes in the dark. Membrane was exposed and 

imaged using the Amersham Imager 600 (GE Healthcare, Amersham, London, UK). 
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Antibody Manufacturer Catalog # Dilution  

Anti-PRDM9 Abcam, Cambridge, UK ab85654 1:500 

Anti-PRDM9 Novex, Thermo Fisher Scientific 730062 1:500 

Anti-PRDM9  Human Protein Atlas HPA063372 1:100 

Anti-PRDM9  Human Protein Atlas HPA059555 1:100 

Anti-GAPDH Santa Cruz, Dallas, Texas, USA sc-25778 1:1000 

Anti-MTCO1 Abcam, Cambridge, UK ab14705 1:1000 

Anti-β actin Sigma Aldrich, Dorset, UK A1978  1:2000 

Anti-HSPA5 (Bip1) Abnova, Cambridge, UK PAB2462 1:1000 

Anti-SDHA Abcam, Cambridge, UK ab14715 1:5000 

Anti-MTCO2 Abcam, Cambridge, UK ab3298 1:1000 

Anti-TFAM Source Bioscience, Manchester, UK LS-C143233 1:1000 

Anti-α tubulin Abcam, Cambridge, UK ab59680 1:1000 

Anti-VDAC1 Abcam, Cambridge, UK ab14734 1:250 

Anti-HSP60 GeneTex, California, USA GTX110089 1:5000 

Anti-histone H3 Abcam, Cambridge, UK ab1791 1:1000 

Anti-H3K4me1 Cell Signaling, Boston, MA, USA #5326 1:1000 

Anti-H3K4me2 Cell Signaling, Boston, MA, USA #9725 1:1000 

Anti-H3K4me3 Cell Signaling, Boston, MA, USA #9751 1:1000 

Anti-OXPHOS cocktail MitoSciences, Oregon, USA MS604 1:250 

Anti-biotin Cell Signaling, Boston, MA, USA #7727 1:1000 

Rabbit anti-mouse DAKO, Cambridge, UK P0260 1:1000 

Swine anti-rabbit DAKO, Cambridge, UK P0399 1:1000 

Biotinylated protein ladder Cell Signaling, Boston, MA, USA #7727 1:2000 

See Blue Plus2 ladder Fisher Scientific, Loughborough, UK LC5925 5 µL 

PRDM9 synthetic protein Abcam, Cambridge, UK ab87806 1 µg/mL 

Table 3.2 List of antibodies and protein ladders used in this study. Manufacturer is provided 
along with the working dilutions used in all experiments. 

 

3.7.4 Immunoprecipitation 

Immunoprecipitation (IP) was performed using an IP kit (Pierce Classic Magnetic 

#88804) following the manufacturers guidelines. Cell pellets were washed with PBS and 

collected on ice. For each pellet, 500 µL lysis buffer (Pierce) with 2% proteinase 

inhibitor cocktail (Roche Diagnostics Limited, West Sussex, UK) was added and after an 
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incubation of 5 minutes, the samples were centrifuged at 13,000 x rcf for 10 minutes at 

4 °C. Lysate was analysed for protein concentration via mini Bradford outlined above. 

Antibody (Table 3.3) was added to the lysate and incubated overnight at 4 °C with 

constant rotation to form protein-antibody complexes. The protein-lysate complexes 

were incubated with A/G magnetic agarose beads for 2 hours at room temperature with 

constant rotation. Beads were then collected on a magnetic stand and washed several 

times in lysis buffer and dH2O to remove any unbound protein. Final elution of bound 

protein was performed with 25 µL of elution buffer with 10% neutralisation buffer. 

Protein concentration was determined for each wash step plus final elution lysate via 

mini Bradford. SDS-PAGE was performed using the X-Cell electrophoresis unit (Novex) 

with 4-20% precast gels (Novex). After electrophoresis, gels were removed and 

incubated for 1 hour in InstantBlue solution (Expedeon). Gels were washed in warm 

dH2O until background staining was eliminated and only protein bands were stained.   

  

Antibody Manufacturer Quantity used 

Anti-PRDM9 Abcam, Cambridge, UK 10 mg 

Anti-PRDM9 Novex 10 mg 

Anti-PRDM9  

HPA059555 

Human Protein Atlas 1.7 mg 

Anti-PRDM9 

HPA063372 

Human Protein Atlas 3.5 mg 

Table 3.3 Antibodies used for PRDM9 immunodetection. 

 

3.7.5 Mass spectrometry analysis 

Mass spectrometry analysis was performed at the Newcastle University Protein and 

Proteome Analysis Unit. Briefly, bands were cut out and reduction of the proteins 

performed in gel. Alkylation with iodoacetamide was carried out before in gel digestion 

with modified trypsin. Resulting peptides were extracted from the gel and purified on 

custom reversed phase columns. Analysis was performed by LCMSMS on a nano-HPLC 

system (column: 25 cm x 75 µm ID, flow rate 300 nL/min). Data was processed using the 

open source search engine X!Tandem and the Global Proteome Machine interface 

(http://www.thegpm.org/).  
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3.7.6 siRNA experiments 

HEK293 cells were transfected with pre-designed PRDM9 siRNA (Silencer Select, 

Thermo Fisher Scientific, Loughborough, UK) following manufacturer’s specifications 

with small modifications to the protocol. Briefly, cells were seeded at 10 x 104 cells/flask 

and incubated overnight in appropriate media. siRNA was diluted to 20 nM 

concentration in Opti-MEM media (GIBCO, Thermo Fisher Scientific, Loughborough, UK). 

Lipofectamine (RNAiMAX, Thermo Fisher Scientific, Loughborough, UK) was diluted to 

0.5% in Opti-MEM. Reactions were set up as shown in Table 3.4. 

  

siRNA target 10µM siRNA Opti-MEM Lipofectamine Opti-MEM 

PRDM9 (20nM)  100 µL 400 µL 2.5 µL 497.5 µL 

Blank control - - - 1000 µl 

Lipofectamine control - 500 μL 2.5 µL 497.5 µL 

Non-targeting control (20nM) 100 µL 400 µL 2.5 µL 497.5 µL 

Table 3.4 siRNA and lipofectamine dilutions. Controls were also used including a blank (Opti-MEM only), 
lipofectamine control (no siRNA) and a non-targeting siRNA control (Negative control #2, Thermo Fisher 
Scientific, Loughborough, UK). 

 

The lipofectamine and siRNA dilutions were then combined and incubated at room 

temperature for 20 minutes. The dilutions were then added to the appropriate flasks 

and cells were left to transfect for 2-3 days depending on confluency.  Forward 

transfection was performed every 2-3 days for the duration of the experiment. 
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3.8 Immunostaining and Imaging 

3.8.1 CryoSectioning  

Human tissue samples were collected by the relevant tissue bank, snap frozen in liquid 

nitrogen and stored at -80 °C. CryoSectioning was performed by mounting the tissue 

block in optimum cutting temperature formulation (OCT) and allowing the sample to 

adjust to -20 °C in the cryostat chamber. Sections were cut 10 μm thick, collected on 

Superfrost glass slides and allowed to dry for 30 minutes at room temperature to avoid 

freezing artefacts.   

3.8.2 H&E staining of human tissue Sections 

Slides were washed for 2 minutes in dH2O and were placed in Haemalum solution for 

1 minute. Slides were washed again for 2 minutes in dH2O and placed in Eosin solution 

for 1 minute. Slides were washed for 2 minutes in dH2O before being dehydrated in 

graded alcohol: 70% EtOH 30 seconds, 95% EtOH for 30 seconds, 100% EtOH for 

2 minutes. Sections were covered in DPX solution and a glass coverslip was placed on 

top.  

3.8.3 Immunostaining human tissue sections 

Tissue sections on slides were fixed using 4% paraformaldehyde (PFA, Sigma Aldrich, 

Dorset, UK Aldrich) for 10 minutes. Slides were washed 3 times with PBS to completely 

remove the PFA. Sections were permeabilised by adding 0.5% Triton X-100/PBS for 

10 minutes. After washing 3 times with PBS the Sections were blocked in buffer (5% 

FBS/0.1% Tween20/PBS) for 1 hour at room temperature. Primary antibodies were 

diluted in 2% FBS/PBS and were added to the Sections and left to incubate at 4 °C 

overnight.  

Sections were washed twice for 5 minutes with cold PBS before the addition of the 

secondary fluorochrome-conjugated antibody diluted in 2% FBS/0.1% Tween20/PBS. 

Slides were incubated for 1 hour at room temperature in the dark. Slides were washed 

3 x 5 minutes in PBS. Each Section was covered with VECTASHIELD Anti-fade Mounting 

Medium with DAPI (Vectorlabs). 

3.8.4 Immunostaining cultured cells  

Cells were grown on glass coverslips pre-coated with poly-L-lysine (Sigma Aldrich, 

Dorset, UK). Briefly, coverslips were washed in 70% EtOH before being placed into the 

well of a 6 well tissue culture plate and subjected to UV light for 20 minutes. 1 mL 
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poly-L-lysine was added to each well to completely cover the surface area. The plate was 

incubated at room temperature for 30 minutes. The poly-L-lysine solution was removed 

and the wells were washed twice with sterile PBS. Plates were covered with parafilm 

and stored at 4 °C until required or were used immediately by washing once with DMEM 

before cells were plated. 

When the cells were ready to image, growth media was removed and cells were fixed in 

4% PFA at room temperature for 10 minutes. Cells were then washed twice with PBS for 

2 minutes each time. Blocking buffer (PBS/5% normal goat serum/0.3% Triton X-100) 

was added to the cells for 1 hour at room temperature before the addition of primary 

antibody in dilution buffer (PBS/1% BSA/0.3% Triton X-100) overnight at 4 °C. Cells 

were washed three times with PBS before addition of the secondary fluorochrome-

conjugated antibody for 1 hour in the dark. Cells were washed three times with PBS 

before the addition of VECTASHIELD Anti-fade Mounting Medium with DAPI 

(Vectorlabs). All antibodies used are detailed in Table 3.5. 

  

Antibody Manufacturer Catalog # Dilution  

Anti-PRDM9 Abcam, Cambridge, UK  ab85654 1:500 

Anti-FLAG M2 Sigma Aldrich F1804 1:500 

Anti-OPA1 Abcam, Cambridge, UK  ab42364 1:250 

Anti-TFAM Source Bioscience, Manchester, UK LS-C143233 1:250 

Anti-HSP60 Abcam, Cambridge, UK  ab46798 1:400 

Anti-TOMM20 Santa Cruz, Dallas, Texas, USA sc-17764 1:1000 

Goat anti-mouse  

Alexa Fluor® 488 

Fisher Scientific, Loughborough, UK A-11001 1:1000 

Goat anti-rabbit 

Alexa Fluor® 488 

Fisher Scientific, Loughborough, UK A-11034 1:1000 

Goat anti-mouse 

Alexa Fluor® 594 

Fisher Scientific, Loughborough, UK A-11032 1:1000 

Table 3.5 List of antibodies used for immunostaining in this study. 
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3.8.5 Microscopy 

Cells were imaged using the Nikon Confocal Microscope and or the AxioImager (Zeiss).  

 

3.9 Cloning 

Cloning was performed using the pGEM-T easy vector system (Promega, Southampton 

UK). Incubations carried out at 37 °C were performed in a temperature controlled 

microbiology incubator (Thermo Fisher Scientific, Loughborough, UK). 

3.9.1 Product preparation 

cDNA sequences of interest were provided already integrated into a vector DNA 

backbone. In order to subclone insert sequences into another vector system, restriction 

enzymes (Table 3.6) were utilised to digest the insert from the pcDNA3.1(+) vector 

sequence. Reaction mixture was as follows: 50 ng plasmid DNA, 10 U each restriction 

enzyme, 2 μL CutSmart buffer (New England Biolabs inc.), 3 μL10X BSA made up to a 

final volume of 50 μL with dH2O. Reactions were incubated at 37 °C for 1 hour. The total 

volume of digested sample was run on a size selection gel as previously described. The 

product of interest was gel extracted using the QIAquick gel extraction kit following 

manufacturers instructions (Qiagen, Manchester, UK, Manchester UK). 

  

Restriction enzyme Manufacturer 5’-3’ Cut site 

ApaI New England Biolabs Inc. GGGCCC 

BamHI New England Biolabs Inc. GGATCC 

EcoRV New England Biolabs Inc. GATATC 

HindIII New England Biolabs Inc. AAGCTT 

PmeI New England Biolabs Inc. GTTTAAAC 

XhoI New England Biolabs Inc. CTCGAG 

Table 3.6 List of restriction enzymes used in this study. 

 

3.9.2 Ligation 

Next, a ligation reaction was set up using the ligase provided in the pGEM-T easy kit 

(Promega, Southampton UK). Reaction mixture was as follows: 2X Rapid ligation buffer, 
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50 ng pcDNA5 vector, 3U T4 DNA ligase, dH2O and the volume of insert DNA from the 

restriction enzyme digest as calculated by the following equation: 

 

𝑖𝑛𝑠𝑒𝑟𝑡: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝑛𝑔 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 (𝐾𝑏)

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 (𝐾𝑏)
 

 

To maximise the number of positive transformants from the reaction, ligation was 

performed at 16 °C for 12 hours. 

3.9.3 Transformation 

Ligation transformation was performed using JM109 high efficiency competent cells 

(Promega, Southampton UK), 2X Yeast Tryptone broth (2YT) and 2YT agar plates were 

used as growth medium. 2YT agar was autoclaved and allowed to cool to approximately 

55 °C before being supplemented with 100 mg/mL ampicillin, 75 μg/mL X-Gal and 

0.5 mM IPTG. Agar was poured into 90 mm plates under aseptic conditions and left to 

cool and solidify at room temperature. Plates were either dried at 37 °C or stored at 4 °C 

for up to 1 month. 5 μL of ligation product was added to pre-aliquoted (25 μL) 

competent cells on ice, gently agitating the tube to ensure the ligation product and cells 

were mixed. Competent cells used in this study are detailed in Table 3.7. The mixture 

was incubated on ice for 20 minutes before being subjected to heat shock for 45 seconds 

at 42 °C using a dry heat bath with 200 μL water added to the well. The tube was then 

returned to ice for 2 minutes before 470 μL autoclaved 2YT broth was added to the 

transformants and incubated at 37 °C for 1 hour at 150 rpm. To plate the cells, 200 μL of 

the cell suspension was spread onto an agar plate under aseptic conditions using a glass 

spreader dipped in ethanol and flamed. Plates were incubated for 16 hours at 37 °C. 

White colonies were picked for colony PCR and sequencing. Growth of white colonies 

indicates a successful ligation and transformation. Blue colonies indicate a successful 

transformation but inefficient ligation due to the activation of β-galactosidase. To 

perform the PCR 10 μL dH2O was added to each tube in a sterile 8 strip PCR tube. 

Autoclaved pipette tips were used to pick single colonies from the growth plate and 

were dipped in the PCR tube before being streaked onto a new growth plate and placed 

in 5 mL fresh 2YT broth, supplemented with 100 mg/mL ampicillin. The plate was 
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incubated at 37 °C to expand the colonies and the 5 mL inoculated 2YT broth was 

incubated at 37 °C at 150 rpm for 16 hours. Due to the size of the insert DNA sequences 

used in this study, long range PCR was performed as follows; to the 10 μL dH2O colony 

pick, 10% betaine, 10 %10X LA PCR Buffer II (Mg2+), 200 μM dNTP, 0.2 μM forward 

primer, 0.2 μM reverse primer and 1.25 U TaKaRa LA Taq was added to a final reaction 

volume of 25 μL. Thermocycling conditions were performed in 30 cycles of; 94 °C for 

1 minute, denaturing at 98 °C for 10 seconds, primer annealing at 62 °C for 15 minutes 

followed by final extension at 72 °C for 10 minutes. Sequencing was performed as 

previously described. Once the desired product was confirmed by running PCR products 

on size separation gels and sequencing, 1 mL of the 5 mL inoculated broth was used to 

inoculate 100 mL 2YT broth. This broth was incubated at 37 °C for 16 hours at 150 rpm. 

The remaining 4 mL of original inoculated broth was used to create glycerol stocks of 

the colony, 150 μL glycerol was added to 850 μL broth in a 2 mL cryovial and stored 

at -80 °C. 

  

Competent Cell Type Manufacturer Application 

JM109 Promega Plasmids <10Kb 

One Shot® Stbl3™ Invitrogen Large unstable plasmids 

One Shot® MAX Efficiency® DH5α™ Invitrogen Large plasmids 

Table 3.7 Details of all competent cell types used throughout the study. 

 

3.9.4 Plasmid purification  

Growth medium inoculated with colonies carrying the correct plasmid and insert was 

centrifuged for 15 minutes at 6000 x rcf at 4 °C. Pellets were then processed using the 

Qiagen, Plasmid Maxi Kit (Qiagen, Manchester, UK) according to the manufacturers 

instructions. The final pellet was air dried for 10 minutes to allow any remaining ethanol 

to evaporate and the DNA was resuspended in 500 μL dH2O.  DNA concentration was 

measured using the Nanodrop2000 UV-vis Spectrophotometer (Thermo Fisher 

Scientific, Loughborough, UK). 
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3.10 Transfection of cultured cells 

3.10.1 Transient overexpression system 

Transfection of HEK293 cells was carried out in 6 well tissue culture plates. Briefly, 

HEK293 cells were harvested as previously described (Section 3.4.1), cell pellets were 

resuspended in 10 mL DMEM and counted using a haemocytometer. Cells were seeded 

at 30, 000 cells/well in 4 mL fresh DMEM and were left to adhere for 24 hours. The 

transfection mixture was prepared by adding 97 μL Optimem (Invitrogen, Thermo 

Fisher Scientific, Loughborough, UK) serum free media and 3 μL Genejuice (Novagen) to 

a 1.5 mL tube, mixed by vortexing and left to incubate at room temperature for 5 

minutes. To this 1 μg plasmid DNA (cloned and purified as previously described in 

Section 3.10) was added and the mixture was incubated at room temperature for 20 

minutes. The transfection mixture was added dropwise to the cell culture well 

containing the cells seeded previously. The cells were incubated at 37 °C for 3 days 

before harvesting and being processed for further analysis. For imaging protocols, 22 

mm glass cover slips were placed in the wells of the tissue culture plates and were 

coated with 1 mL poly-L-lysine for 30 minutes at room temperature, washed twice with 

PBS, washed once with DMEM and then seeded with cells as described above. After 

transfection for 3 days, the cover slips were removed from the plates and processed for 

immunostaining as described in Section 3.8.4.  

3.10.2 Stable overexpression cell line  

The Flp-In T-Rex system (Invitrogen, Thermo Fisher Scientific, Loughborough, UK) was 

used to selectively induce overexpression of genes of interest in HEK293 cells previously 

modified to contain a stable FRT site and the tetracycline repressor in the genome (a 

kind gift from Professor Robert Lightowlers, Institute of Cell and Molecular Biology 

Newcastle University). Cells were transfected with a reaction mixture comprising; 91 μL 

OptiMem (GIBCO, Thermo Fisher Scientific, Loughborough, UK), 9 μL Genejuice 

(Novagen, EMD Biosciences, USA), a range of 2 μg, 4 μg and 6 μg pcDNA5/FRT/TO 

plasmid and 1.8 μg pOG44 plasmid expressing Flp recombinase. Expression of Flp 

recombinase enzyme is required to catalyse the transfer of the insert DNA sequence 

from the pcDNA5 plasmid into the genome of the cell through homologous 

recombination. This occurs at specific recognition sites present in the pcDNA5 construct 

sequence and the genome. Stable integration of the gene of interest confers hygromycin 

resistance to the cell.  



 

76 

 

After 24 hours the cells were split to 50% confluency and stably integrated colonies 

were selected for by adding 50 mg/mL hygromycin to growth medium. To ensure the 

stability of the tetracycline promoter in the HEK293 genome, 100 mg/mL blasticidin 

was added to appropriate growth medium and added to the cells every third media feed. 

After several weeks of colony selection, pure cultures of transfected cells were obtained. 

Tetracycline (1 µg/mL) was added to the growth media to induce gene expression 

before cells were harvested for further investigation. 

 

3.11 Quantitative polymerase chain reaction 

3.11.1 Reverse transcription of RNA to cDNA 

Total RNA was extracted from HEK293 cells as described in Section 3.6. RNA was 

converted to cDNA using the High Capacity Reverse Transcription Kit (Thermo Fisher 

Scientific, Loughborough, UK). RNA was diluted to a final concentration of 2 μg in a 10 

μL volume using nuclease free water before the reaction mixture was added. The 

reaction mixture was as follows: 2 μL 10X RT buffer, 4 mM dNTPs, 2 μL 10X random 

primers, 1 μL MultiScribe reverse transcriptase made to a final volume of 10 μL with 

nuclease free water. The 20 μL reactions were incubated at 25 °C for 10 minutes, 37 °C 

for 120 minutes and finally 85 °C 5 minutes. Samples were stored at -20 °C until 

required. 

3.11.2 PRDM9 gene expression 

Quantification of the relative transcription of specific genes was carried out by real time 

quantitative PCR (RT-qPCR) using either a double stranded DNA intercalating dye 

(SYBR) or the TaqMan® gene Expression Assay (Applied Biosystems, Thermo Fisher 

Scientific, Loughborough, UK). The SYBR® reactions were comprised as follows; 1X iQ™ 

SYBR® green, 0.5 µM forward and reverse primer, 1-5 µg sample cDNA, made up to 25 

µL with dH2O. All reactions were carried out on the MyIQ™ thermocycler (BioRad 

Laboratories, Hemel Hempsted, UK) with the following program: initial denaturation at 

95 °C for 3 minutes followed by 40 cycles of; 95 °C for 10 seconds and 62.5 °C for 1 

minute with a final 95 °C for 1 minute and a melt curve. A melt curve was performed by 

measuring loss of fluorescence after each 10 second incubation step, rising from 62 – 

95 °C, in 0.5 °C increments. 
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For the TaqMan® gene Expression Assay, target specific probes are designed, nested in 

between target specific primers, and covalently attached to a fluorescent reporter dye 

on the 5’ end and a non-fluorescent quencher dye on the 3’ end. When the reporter and 

quencher are in close proximity the excitation energy of the fluorescent reporter is 

transferred to the quencher through FRET chemistry (fluorescent resonance energy 

transfer). During the PCR reaction when the amplicon extends, the fluorescent reporter 

dye is cleaved from the probe by Taq polymerase exonuclease activity and the emission 

spectra of the reporter can be measured. 

RT-qPCR was carried out on a 7500 Fast Real Time PCR System. Reaction mix was as 

follows, 1X TaqMan® Gene Expression Master Mix, 250 nM TaqMan® probe, 4 μg cDNA 

made up to a final volume of 20 μL nuclease free water. The reaction was as follows, 

initial incubation at 50 °C for 2 minutes, denaturing at 95 °C for 20 seconds and 40 

cycles of primer annealing at 60 °C for 30 seconds and 95 °C for 3 seconds when 

fluorescence was detected. Serial 1:10 dilutions of cDNA in nuclease free water were 

used to ensure linearity and efficiency of the reaction and for standard curve 

quantification.  Each sample was measured in triplicate and contamination of reagents 

excluded by the use of cDNA negative controls. Targets and their probes are listed in 

Table 3.8.  

  

Target Probe Location Length (bp) Supplier 

PRDM9 Hs01633270_s1 3569 179 Applied Biosystems 

PRDM9 Hs00360639_m1 360 143 Applied Biosystems 

β-actin Hs01060665 208 63 Applied Biosystems 

Table 3.8 Probes used in this study. 

 

3.11.3 Mitochondrial DNA copy number 

Quantification of mtDNA copy number and mtDNA deletion level was carried out using 

an RT-qPCR assay.  This method allows detection of multiple target specific fluorescent 

probes in the same reaction using Taqman® qPCR amplification as described in Section 

3.11.2. Each probe was designed so that the emission spectra of the fluorophore did not 

overlap with the other probes therefore allowing accurate detection of each amplicon. 

Quencher dyes were also designed to have an absorbance spectrum which overlapped 



 

78 

 

the emission spectra of the fluorophore, limiting background signal from the probe 

itself. Serial 1:10 dilutions of DNA from non-transfected HEK293 cells were used to 

ensure linearity of the reaction and for standard curve quantification. The reaction 

mixture was as follows: 0.6 μL of each primer, 0.4 μL of each probe, 10 μL iTaq SuperMix 

reaction buffer (BioRad Laboratories, Hemel Hempsted, UK) and 1 μL of sample DNA 

made up to 20 μL with nuclease free water. Probes used in this study are outlined in 

Table 3.9. 
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Target Forward Primer 5’-3’ Reverse Primer 5’-3’ Dye Quencher Probe 5’-3’ 

RNase P AGATTTGGACCTGCGAGCG GAGCGGCTGTCTCCACAAGT HEX BHQ-2 TTCTGACCTGAAGGCTCTGCGCG 

B2M CACTGAAAAAGATGAGTATGCC AACATTCCCTGACAATCCC FAM BHQ_1 CCGTGTGAACCATGTGACTTTGTC 

MT-CYB ATGACCCCAATACGCAAAA CGAAGTTTCATCATGCGGAG CY5 BHQ-2 CATTCATCGACCTCCCCACCC 

MT-CO3 ATGACCCACCAATCACATGC ATCACATGGCTAGGCCGGAG FAM BHQ-1 ACCCAGCCCATGACCCCTAAC 

MT-ND1 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG HEX BHQ_1 ACCCGCCACATCTACCATCACCCTC 

MT-ND4 ACCTTGGCTATCATCACCCGAT AGTGCGATGAGTAGGGGAAGG Cy5 BHQ_2 CAACCAGCCAGAACGCCTGAACGCA 

Table 3.9 Primer and probe details used for mtDNA copy number quantification. 
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Chapter 4 Analysis of PRDM9 binding motifs in mtDNA sequences. 

 

4.1 Overview 

The role of PRDM9 in creating recombination hotspots within the human genome is 

predicted to occur when the protein binds to the DNA recognition motif through its zinc 

finger domain (Myers et al., 2008; Baudat et al., 2010; Billings et al., 2013). Due to the 

polymorphic nature of the PRDM9 zinc finger repeat region, each PRDM9 allele in the 

population is predicted to have a subtly different genomic binding motif. A previous 

study showed that the predicted PRDM9 binding motif is also present in mtDNA at the 

site flanking the 4977bp ‘common’ deletion (Myers et al., 2008). To determine whether 

this predicted recognition motif is present in human mtDNA we used an in silico 

screening approach.  A large cohort (n=31,516) of mtDNA sequences downloaded from 

the Genbank sequence depository were computationally screened for the presence of 

each of the eleven predicted PRDM9 binding motifs. This is of interest as protein-DNA 

binding motifs within the mtDNA could explain why certain regions of the molecule are 

prone to deletion formation (Figure 4.1). 

 

 

Figure 4.1 Location of mtDNA deletions in respect to the region of the molecule based on the reported 
cases. Adapted from the Mitobreak mitochondrial deletion database (Damas et al., 2014). 
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In addition, the matrilineal nature of mtDNA can be utilised to define sequences based 

on their phylogenetic ancestry allowing population differences to be explored (Emery et 

al., 2015). Associations between haplogroup status and disease risk have been described 

previously, however no study has interrogated the potential difference in mtDNA 

deletion susceptibility between population haplogroups. Deletion frequency and 

haplogroup-associated disease prevalence have been extensively reported in European 

populations (Taylor and Turnbull, 2005; Bua et al., 2006; Campbell et al., 2014; 

Komulainen et al., 2015; Mancuso et al., 2015) however there is a lack of data for 

populations from other geographical regions. The mtDNA sequences screened for the 

presence of PRDM9 binding sites were also segregated by haplogroup to assess whether 

there is any correlation between PRDM9 motif presence and haplogroup status.   

 

4.2 Hypothesis 

Background mtDNA sequence variation will alter the frequency of the PRDM9 

recognition motif potentially giving an insight into the differential frequency of mtDNA 

deletions between human populations.  

 

4.3 Aims 

This study aims to determine whether the PRDM9 recognition motif is present in human 

mtDNA sequences and identify whether different mtDNA haplogroups have unique 

PRDM9 motifs. 
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4.4 Results 

4.3.1 Pilot screen of PRDM9 binding motifs in 9, 769 sequences 

European mtDNA sequence files were downloaded from the NCBI Nucleotide Database 

(http://www.ncbi.nlm.nih.gov/nuccore/) in FASTA format. In order to quickly screen 

for the presence of the PRDM9 recognition motif, Perl was used to search sequence files 

for the most common motif (motif A) ‘CCNCCNTNNCCNC’. The script used is shown in 

Figure 4.2. 
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Figure 4.2 Custom Perl script to screen sequence files for the PRDM9 recognition motif ‘A’ Output file will 
contain; the filename for each sequence file containing a matching sequence, the sequence matched and 
the start position in the sequence file (when the first base of the sequence file is counted as 1). 
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Using a simple find loop, regions of the sequences matching the motif were counted and 

given as total matches per sequence along with the base position where the match 

occurred (Table 4.1). In contrast to the site described by Myers et al, motif A was found 

at position m.5327 in 99.9% of sequences screened (Table 4.1). Several sequences 

contained the motif in more than one position. Interestingly, nine (0.00092%) of the 

sequences did not contain this recognition site due to the polymorphism m.5333T>C in 

the gene coding for the OXPHOS subunit mitochondrial NADH dehydrogenase 2 

(MT-ND2). This SNP is not a population haplogroup marker and is a synonymous 

mutation not previously reported in the NCBI dbSNP database 

(http://www.ncbi.nlm.nih.gov/variation/view/), suggesting that the population 

frequency is very low.  

Sixteen (0.0016%) of the sequences screened had a motif starting at position m.14481 

caused by the transition m.14484T>C, one of three pathogenic mutations found in 

Leber’s hereditary optic neuropathy (LHON) (Johns et al, 1992; Mackey and 

Howell, 1992; Man et al, 2003). This mutation causes a non-synonymous change in the 

gene encoding mitochondrial NADH dehydrogenase 6 (MT-ND6, rs199476104).  

Position m.304 contains a variable poly-C tract with a tyrosine nucleotide in the middle 

that differs in length from 12-18 bp within the population (Marchington et al., 1997). An 

insertion of an extra cytosine nucleotide leads to the creation of a PRDM9 recognition 

motif in twelve (0.0012%) of the sequences screened (Table 4.1). In twenty-eight 

(0.0029%) of the sequences screened there was an insertion of a tyrosine nucleotide at 

position m.311 leading to the creation of a PRDM9 motif shifted by one base pair to 

begin at m.304. 
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Table 4.1 PRDM9 motif search in 9769 mtDNA sequences. The frequency of each motif match is shown in column 1, this corresponds to the number of mtDNA 
sequences that have the motif. The matched sequence start and end positions are shown in columns 2 & 3 and correspond to the mtDNA position 5’-3’. The DNA 
sequence matched is shown in column 4. The revised Cambridge Reference Sequence (rCRS) is used as the ‘wild type’ reference sequence. SNP changes from rCRS 
causing a motif site to be created are shown in column 6.   

Frequency Motif Start Motif End Motif Match Array ID SNP

CCNCCNTNNCCNC

9760 5327 5340 CCTCCTTAACCTC rCRS rCRS

9 5327 5340 CCTCCTCAACCTC 5333 m.5332T>C

1 303 316 CCCCC-TCCCCCC cTRAC -

8 303 316 CCCCCCTCCCCCC cTRAC 316insC

3 304 317 CCCCCCT-CCCCC cTRAC -

28 304 317 CCCCCCTTCCCCC cTRAC 311insT

3 8131 8144 CCACCTTCACCGC 8134 m.8133T>C

3 8273 8286 CCCCCCTACCCCC 8277 m.8276T>C

6 14054 14067 CCTCCATCACCAC 14063 m.14062T>C

1 14058 14071 CCACCATCACCTC 14060 m.14059T>C

16 14481 14494 CCACCATTCCCCC 14485 m.14484T>C

1 14481 14494 CCACCATCCCCCC 14485 14488 m.14484T>C//m.14487T>C

GGNGGNAGGGG

9655 9529 9540 CCCCTACCCCC rCRS rCRS

11 9529 9540 CCCCTGCCCCC 9531 m.9530A>G

28 308 319 CCCCTTCCCCC cTRAC 311insT

9 308 319 CCCCTCCCCCC cTRAC 316insC

3 308 319 CCCCT-CCCCC cTRAC -

7 459 470 CCCCTCCCACC 467 m.466T>C

1 5441 5452 CCCCTTCCTCC 5441 m.5440A>C

2 6224 6235 CCCCTCCCTCC 6221 6227 m.6220T>C m.6226T>C
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The sequence files were screened for an alternative A motif (GGnGGnAGGGG) suggested 

in the literature to be a PRDM9 binding motif (Berg et al, 2011). When the mtDNA was 

screened for the antisense strand sequence of this motif there was a positive hit in 

almost every sequence (98.8%) at position m.9529 (Table 4.1). A SNP at m.9531 (A>G) 

changes the binding motif in eleven of the sequences screened (0.0011%). This SNP 

gives place to a non-synonymous change m.9531A>G/p.MT-CO3:T109A (rs386829082).  

Having determined that the PRDM9 ‘A’ motif binding site was present in human mtDNA, 

the search was scaled up to include a larger number of sequences. 
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4.3.2 Expanded search for PRDM9 binding motifs n=31, 516 sequences 

Sequence files were downloaded as above and were converted from FASTA to BAM 

format. BAM files were aligned using the Integrated Genome Viewer (IGV) and 

Haplogrep was used to determine mtDNA haplogroup. Haplogrep searches a defined set 

of mitochondrial haplogroup specific SNPs continuously updated and documented in 

PhyloTree (van Oven and Kayser, 2009; Kloss-Brandstatter et al., 2011). The files were 

then screened using a custom Perl script written by Dr H. Griffin (Institute of Genetic 

Medicine, Newcastle University) for all eleven possible PRDM9 motif matches listed in 

Table 4.2 (Berg et al., 2012). Each sequence was searched for every motif several times 

to ensure that all possible matches were counted as hits at specific nucleotide positions. 

  

PRDM9 Allele Match Motif Sequence Motif Search No. 

A/B CCNCCNTNNCCNC 1 

A/B 2 CCNCCNTNNCCNCC 2 

C CCNCNNTNNNCNTNNC 3 

D CCNCNNNCNTNNCCNC 4 

E CNNNNCNNNTNNCCNCC 5 

L1 CNNNCCNTNNCCNC 6 

L4/L8/L14/L16/L17/L18 CCNCNNTNNNCNTNNC 7 

L5 CNNCNNNNNNNNNCCNC 8 

L6 CCNCNNTNNNCNTNNC 9 

L7/L11/L12 CCNCCNTNNC 10 

L19 NCNNTNNNCNTNNCCNC 11 

Table 4.2 Sequences of the eleven PRDM9 recognition motifs used to search the mtDNA sequence files. 
The corresponding PRDM9 alleles are shown in the left hand column, the protein products of which are 
predicted to bind the motif sequence shown in the middle column. Each motif was assigned a motif search 
number shown in the right hand column. Adapted from Berg et al., 2012. 

 

Sequences were categorised into three main groups based on macro-haplogroup status: 

European, African and Asian. Out of the total 31, 516 sequences screened; 16, 490 were 

European (52.32%), 4020 were African (12.75%) and 11, 006 were Asian (34.92%) 

(Figure 4.3). The nature of maternal inheritance has allowed these sequences to be 
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further sub-grouped based on a well-established set of mtDNA population SNPs 

(Torroni et al., 1994; Brown et al., 1998; Finnila et al., 2001).  

European haplogroups comprised over half of the sequences in this data set (Figure 4.3 

A). Within the European group itself, sub-haplogroups appeared to be present in 

frequencies representative of the European population observed in other studies for 

example haplogroup H was present in 39.9% of our samples, mirroring the observed 

population frequency of 40% (Figure 4.3 B). Asian sub-haplogroups also showed 

population distribution as the most frequent haplogroup represented was M at 24.5% of 

the Asian population (Figure 4.3 C). All African haplogroups were denoted as L due to 

the most ancestral mtDNA’s being extremely similar in sequence and belonging almost 

exclusively to haplogroups L0, L1, L2 or L3 (Emery et al., 2015). 
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Figure 4.3 Distribution of mitochondrial haplogroup frequencies in the 31,516 sequences analysed. A) Haplogroup frequency as a percentage of the total number of 
sequences used in the analysis. B) European haplogroup frequency as a proportion of the total number of European sequences used in the analysis. C) Asian 
haplogroup frequency as a proportion of the total number of Asian sequences used in the analysis.  
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Firstly, the frequency of binding sites was assessed in each population group. All eleven 

binding motifs were analysed, however the most informative are the motifs bound by 

the most common PRDM9 alleles A, B and C. Slight differences were seen in motif A 

binding sites between the three population groups (Figure 4.4 A). Most mtDNA 

sequences contained two motif A binding sites. Asian sequences appeared to have a 

higher frequency of genomes containing one motif site. European sequences had a 

higher frequency of mtDNAs with three binding sites. Although it was rare to have 

mtDNA sequences with no motif A recognition sites, there was a higher number of 

African sequences lacking any binding motif (Figure 4.4 A).  

 

 

Figure 4.4 PRDM9 ‘Motif A’ binding sites. A)  Number of times motif A was found in mtDNA sequences 
from African, Asian and European mtDNA sequence groups. Proportion of population refers to the 
percentage of mtDNA sequences from each of the three population groups as a fraction of 1. B) Number of 
times Motif A was found in mtDNA sequences from each European haplogroup present in the mtDNA 
sequencing files. Proportion of population refers to the percentage of mtDNA sequences from the 
European population group as a fraction of 1. 

 

European sequences were then subdivided by haplogroup (Figure 4.4 B). This analysis 

showed that most of the mtDNAs containing three motif A sites were haplogroup J. 

There were subtle differences between sub-haplogroups containing one or two motif A 

sites however the general trend followed that of the population with more European 

sequences containing two motif A sites (Figure 4.4 A & B). 
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The second most common PRDM9 allele in Europeans is B. The motif for allele B was 

analysed by broad population grouping (Figure 4.5 A). Most sequences analysed did not 

contain any motif B sites. A small proportion of sequences in each population had one 

motif B site.  

 

 

Figure 4.5 PRDM9 ‘Motif B’ binding sites. A)  Number of times Motif B was found in mtDNA sequences 
from African, Asian and European mtDNA sequence groups. Proportion of population refers to the 
percentage of mtDNA sequences from each of the three population groups as a fraction of 1. B) Number of 
times Motif B was found in mtDNA sequences from each European haplogroup present in the mtDNA 
sequencing files. Proportion of population refers to the percentage of mtDNA sequences from the 
European population group as a fraction of 1. 

 

When the European sequences were analysed by sub-haplogroup, haplogroup J was 

over represented in the sequences containing one motif B site (Figure 4.5 B). 

Interestingly, haplogroup J was the only mtDNA sequence to have two motif B sites. 
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The second most prevalent PRDM9 allele in African populations is the C allele. Several 

motif C sites were found within mtDNA in all populations analysed with the majority of 

sequences containing ten sites (Figure 4.6 A). The proportion of African alleles 

containing eleven motif C sites was higher than that of the European and Asian groups. 

Conversely, a larger proportion of European and Asian sequences tended to have less 

motif C sites. A slightly higher proportion of Asian sequences contained nine motif C 

sites compared to European and African groups. European sequences were further 

sub-haplogrouped and analysed (Figure 4.6 B). Interestingly, the proportion of 

sequences containing nine motif C sites were haplogroups I, R, W & X (denoted as ‘other’ 

in Figure 4.6 B).  

 

 

Figure 4.6 PRDM9 ‘Motif C’ binding sites. A) Number of times Motif C was found in mtDNA sequences from 
African, Asian and European mtDNA sequence groups. Proportion of population refers to the percentage 
of mtDNA sequences from each of the three population groups as a fraction of 1. B) Number of times Motif 
C was found in mtDNA sequences from each European haplogroup present in the mtDNA sequencing files. 
Proportion of population refers to the percentage of mtDNA sequences from the European population 
group as a fraction of 1. 
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Next, the positions of the binding motifs along the mtDNA molecule were investigated 

(Figure 4.7). The analysis was performed by Dr H. Griffin (Institute of Genetic Medicine, 

Newcastle University). There appear to be clusters of PRDM9 recognition motif sites on 

the mtDNA molecule as depicted by peaks of dots extending to the outer edge of the 

circle. The outer circle shows the frequency of the three most common allele binding 

motifs A, B and C in red, blue and green respectively. Of note are positions m.5327 and 

m.14484 which appear to be sites of multiple PRDM9 motifs, not just motif A as 

previously described in the pilot screen in Section 4.3.1. There is also a motif cluster at 

position m.12400 which appears to be a site containing multiple PRDM9 motifs. This is 

expected as the eleven motifs searched for are very similar in sequence (Table 4.2) due 

to the degeneracy required for compatibility of a variety of PRDM9 allele combinations 

within individuals. 
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Figure 4.7 Circos plot of all eleven PRDM9 binding motifs searched in this study. Outer circle represents 
the mtDNA sequence in clockwise orientation with base positions denoted. From outer circle to the centre 
the order of the motif searches plotted is; 1, 2 & 3 (red, blue, green respectively); 4; 5; 6; 7; 8; 9; 10; 11.   

 

Two of the motifs searched showed sequence matches over almost the entire mtDNA 

molecule (Figure 4.7). Motif 8, shown in orange on the circos plot, displays coverage of 

the whole mtDNA sequence. Additionally, motif 10 which is shown in dark green 

towards the centre of Figure 4.7 also shows sequence matches across a large proportion 

of the mtDNA molecule. It is likely that this representation is due to the degeneracy of 

these two motifs. Highly degenerate sequence motifs will by nature match more regions 

than those with a more specific sequence.  
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4.3.3 Alignment of known mtDNA deletion breakpoints with PRDM9 motifs 

All 807 reported mtDNA deletions are recorded within the MitoBreak database (Damas 

et al., 2014). Breakpoint data for each deletion is available and the frequencies of each, 

displayed as number of cases, are shown in Figure 4.8. Both 5’ and 3’ breakpoints are 

observed as occurring more frequently within the major arc of the molecule, between 

positions m.5721 and m.15887. Breakpoints have also been observed within the minor 

arc but are less frequent (Figure 4.8). 

 

 

Figure 4.8 mtDNA deletion breakpoint frequencies. The x-axis represents the position along the mtDNA, 
with values shown every 100 nucleotides. The y-axis represents the number of reported cases in which 
each deletion breakpoint has been observed. Blue bins represent 5’ breakpoint positions, red bins 
represent 3’ breakpoint positions. This image was adapted from www.mitobreak.portugene.com (Damas 
et al., 2014). 

 

Available breakpoint data were downloaded for all 807 published deletions and 

subsequently aligned with the PRDM9 motif data presented in Section 4.3.2, to ascertain 

whether any breakpoints occur at or within the proposed PRDM9 motif sites. Briefly, a 

simple count command was used to determine whether any of the deletion breakpoint 

positions were also PRDM9 motif positions. Results were transformed back to the 

mtDNA base positions and plotted as a histogram. This analysis was performed for all 9 

genetically distinct motif positions identified (Table 4.2). The frequencies of breakpoints 

which coincided with PRDM9 motif sites are shown in Figure 4.9.
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Figure 4.9 Frequency histogram of mtDNA deletion breakpoints aligned with PRDM9 motif sites identified within the mtDNA. All 9 genetically distinct PRDM9 
motifs are displayed in different colours (listed at the top of the graph). The x-axis represents the mtDNA position and the y-axis represents the number of 
breakpoints that were found to align with a particular motif site.
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Motifs 8 and 10 were not included in this analysis because they were genetically 

identical to partial segments of the 9 other PRDM9 motifs. Several mtDNA breakpoints 

were found either within or immediately adjacent to a PRDM9 motif site. Interestingly, 

some PRDM9 motif sites were found to coincide with more than one breakpoint 

position. For example, there were 24 breakpoints at position m.7400, which is inside a 

PRDM9 motif 4 site (largest peak, Figure 4.9). Frequencies of breakpoint and PRDM9 

motif alignment varied across the molecule however, generally, higher frequencies were 

observed in the major arc of the molecule than in the minor arc. In addition, breakpoints 

aligning with PRDM9 motif sites were observed more often within the major arc of the 

molecule, as would be expected given that most breakpoints occur within this region.  

Next, the data was analysed visually for each individual PRDM9 motif using the UCSC 

Genome Browser (www.genome.ucsc.edu). Briefly, the 5’ and 3’ breakpoints of each 

mtDNA deletion were saved in BED file format. This file format was also created for the 

start and end positions of all identified PRDM9 motifs within the mtDNA (described in 

Section 4.3.2). The reference chromosome used was the mitochondrial genome (ChrM). 

The data files were uploaded into the Genome Browser as a custom track and aligned 

with the Human Genome Assembly GRCh38/hg38. This analysis was performed for all 9 

genetically distinct PRDM9 motifs. Each PRDM9 motif data file was uploaded to the 

browser alongside the mtDNA breakpoint data file for direct comparison. A visual 

representation of the data for PRDM9 motif 1 (CCnCCnTnnCCnC) is shown in Figure 4.10. 

The images in this figure show the entire mtDNA molecule along the top with PRDM9 

motif 1 sites shown underneath as vertical dots (more clearly shown in Figure 4.10 C). 

The number of PRDM9 motif A ‘dots’ signifies the frequency of that particular motif site 

in the sequences used to identify the presence of the motifs, as described in Section 4.3.2 

and represented in Figure 4.7. Underneath this are the mtDNA deletions, shown as black 

horizontal lines spanning from their reported 5’ to their 3’ breakpoint (Figure 4.10). 
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Figure 4.10 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 1 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 1 sites. 

 

Images B and C are simply cropped versions of image A to more clearly display the 

alignment and to view the PRDM9 motif 1 sites. The blue arrows in Figure 4.10 C show 

regions of the molecule where PRDM9 motif 1 sites align with mtDNA breakpoints. This 

proof of concept experiment shows that there is a potential relationship between the 

regions within the mtDNA where PRDM9 motifs have been identified and know mtDNA 

breakpoint positions. Similar patterns were observed for the other PRDM9 motif 

sequences searched (Appendix A). 
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4.5 Discussion 

An in silico approach was used to investigate whether the PRDM9 binding motif was 

present in mtDNA sequences from a large dataset. The 13bp degenerate PRDM9 binding 

motif A (CCNCCNTNNCCNC) was identified in almost all mitochondrial genomes 

searched. In contrast to a previous publication, motif A was not found to exclusively 

flank the mitochondrial 4977bp ‘common’ deletion but was present at several positions 

across the molecule flanking other reported deletion sites (Myers et al., 2008). There 

were subtle population differences in the motif positions found although the functional 

significance of these differences remains to be experimentally determined.  

A motif site at m.304 is questionable due to the known variability of the poly-C tract 

present at this position. This poly-C tract is normally 12-18 bp in length with a T 

nucleotide in the middle at position m.310, known as the D310 variant position. Length 

variants at D310 have been associated with disease, particularly in a number of cancers 

(Coto et al., 2011; Alhomidi et al., 2013). Heteroplasmy of D310 length variation has also 

been described in oocytes from the same mother suggesting that this region is prone to 

variation probably due to the repetitive nature of the sequence (Marchington et al., 

1997).  

Interestingly, the motif position at m.5327 was present in 99.9% of sequences searched 

and flanks a deletion described in the literature (Samuels et al., 2004). Deletions in 

mtDNA have been reported at positions m.5328, m.5329, m.5330 and m.5331, only a 

few base pairs downstream of the PRDM9 binding site found in this study. These 

deletions have all been reported in healthy tissues and remove part of the minor and 

major arcs with 3’ break sites around position m.16076 (Kajander et al., 2000; Samuels 

et al., 2004). Although these deletions have only been reported for a small number of 

samples there may be many healthy individuals in the population harbouring these 

deletions as they do not seem to be associated with any particular disease.  

It is unclear as to the role of PRDM9 binding sites in the mtDNA. To ascertain whether 

there is any correlation between mtDNA deletion breakpoint positions and the PRDM9 

motif sites found, analysis was carried out to align these two data sets. Several 

breakpoints were found to align within or adjacent to the PRDM9 motif sites. When this 

data was visually displayed using a genome browser tool, there was a pattern of PRDM9 

motif sites aligning with the 5’ deletion breakpoints. 
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There are several ways to test the significance of the presence of PRDM9 binding motifs 

within mtDNA. For example, an algorithm could be constructed and used to test the 

probability that other randomly generated motif sequences with the same degeneracy 

as the motif considered here will be found in the mtDNA sequence (Basu et al., 2005; 

Basha Gutierrez and Nakai, 2016). Another way would be to use a replication cohort. 

This would require more mitochondrial sequencing data from individuals from several 

populations, however due to a lack of African mtDNA sequences it would also be 

beneficial to have more of these sequences in particular. There is an absence of data 

regarding mtDNA deletion accumulation in African populations due to limited resources 

as well as difficulties surrounding mitochondrial patient diagnosis. Studies using African 

mtDNAs have comprised small sample numbers or have been comprised of populations 

such as South African or African-American which will typically have some 

representation of European haplogroups and are not representative of the variety of 

African populations (van der Walt et al., 2012; Silva et al., 2015; Farha et al., 2016; 

Scheible et al., 2016). The frequency of pathogenic mtDNA mutations, deletions and 

insertions in African and Asian populations are not as well reported or understood as in 

European populations (Schaefer et al., 2004).  

The discovery of multiple PRDM9 binding motifs within the human mtDNA sequence, as 

well as the potential pattern of these sites aligning with mtDNA breakpoints, raises the 

possibility that PRDM9 protein has a functional role within this organelle.  
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Chapter 5 Genotyping PRDM9 in patients harbouring mtDNA deletions 

 

5.1 Overview 

The mechanisms leading to mtDNA deletion formation remain elusive and are thought 

to primarily be related to replication or transcription events.  Individuals harbouring 

mtDNA deletions often have mutations in nuclear genes involved in mtDNA 

maintenance such as PolG and twinkle helicase (PEO1) (Spelbrink et al., 2001; Van 

Goethem et al., 2001; Tyynismaa et al., 2004). Due to the frequency of mtDNA deletions 

and the frequency of variants in these genes within the human population it is 

reasonable to assume that other genes could be associated with an increased incidence 

of mtDNA deletions.  

The C2H2 zinc finger (ZnF) repeat region of PRDM9 is responsible for binding to DNA 

motifs through hydrogen bonding between the amino acids of the protein and the 

nucleic acids present in the major groove of the DNA molecule (Wu et al., 2013).  This 

ZnF region is highly polymorphic in the human population, driven by selection 

pressures acting to create different recombination sites within individual genomes 

(Berg et al., 2010).  

There are twenty-one PRDM9 alleles found in the human population (Figure 5.1 B). 

Allelic differences can be caused by single nucleotide polymorphisms (SNPs) within the 

ZnF repeat region (Figure 5.1 A) or by the number of repeat regions present (Jeffreys et 

al., 2013). PRDM9 recognises regions of DNA containing the binding motif which is of 

interest in a mitochondrial setting due to PRDM9 binding motifs being present in the 

mtDNA.  
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Figure 5.1 List of all PRDM9 zinc finger repeats and alleles known in H.Sapiens. A) Sequences of each zinc finger, SNPs are highlighted in colour. B) The structure and 
number of ZnF repeats comprising the ZnF domain for each PRDM9 allele. Adapted from (Berg et al., 2011).
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5.2 Hypothesis 

PRDM9 binding sites within the mtDNA are potentially mediating mtDNA deletion 

formation, therefore, PRDM9 alleles will be associated with the risk of deletion 

formation within the population. 

 

5.3 Aims  

The principle aim of this study is to amplify, sequence and haplotype the ZnF repeat 

region of PRDM9 in patient and control DNA samples and determine if there is an 

association between any of the PRDM9 haplotypes and the formation of mtDNA 

deletions.  
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5.4 Sample Cohort  

Obtaining the case and control DNA cohorts is described in Section 3.1. Further 

information about the single deletion patient DNA samples is provided in Table 5.1.  

ID DNA number Tissue Type DNA conc. (ng) Genotyped 

M0044-13 2013/0049 SKM 66.9   

M005-04 2004/0010 SKM   Yes 

M0078-11 2011/0449 SKM 83.6 Yes 

M0101-09  2009/0103 SKM 81.8 Yes 

M0112-10 2010/0143  SKM 81.8 Yes 

M0116-10 2010/0145 SKM 75.6   

M0183-11 2011/0210 SKM   Yes 

M0202-09 2009/0175 SKM 47   

M0205-08 2008/0347 NF   Yes 

M0216-13 2013/0206 SKM 5.9 Yes 

M0221-11 2011/0241 SKM 37.9 Yes 

M0223-11 2011/0243 SKM 34 Yes 

M0226-12 2012/0289 SKM 192 Yes 

M0229-11 2011/0899 SKM 94.2 Yes 

M0271-12 2012/0379 CD   Yes 

M0271-12 2012/0380 CD 60 Yes 

M0271-12 2012/0381 CD 43.1 Yes 

M0271-12 2012/0382 CD 58.5 Yes 

M0283-03 2003/0319 SKM   Yes 

M0283-04 2004/0377 UR   Yes 

M0284-09 2009/0234 SKM 31.5   
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M0284-12 2012/0329 SKM 136.1   

M0292-11 2011/0924 SKM 72.5   

M0293-11 2011/0923 SKM 142.9 Yes 

M0298-10 2010/0317 SKM 144.8   

M0451-09 2009/0412 SKM 95.5 Yes 

M0478-11 2011/0527 SKM 49.2   

M0483-11 2011/0499 SKM 44.8 Yes 

M0511-10 2010/0496 SKM 65.4 Yes 

M0516-11 2011/0502 SKM 14.7   

M0517-11 2011/0503 SKM 23.9   

M0531-09 2009/0498 SKM 46.6 Yes 

M0532-08 2008/0461 SKM   Yes 

M0560-07 2007/0616 SKM   Yes 

M0585-11 2011/0564 SKM 45.5 Yes 

M0625-11 2011/0629 SKM 242   

M0626-12 2012/0675 SKM 3.5   

M0653-08 2008/0590 SKM   Yes 

M0680-11 2011/0702 SKM 74.9 Yes 

M0688-09 2009/0612 SKM 500 Yes 

M0734-08 2008/0705 SKM   Yes 

M0766-12 2012/0803 SKM 51.6 Yes 

M0812-11 2011/0794 SKM     

M0858-11 2011/0827 SKM     

M0936-09 2009/0919 SKM 28.2 Yes 
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M0941-10 2010/0859 SKM 122   

M0959-12 2012/1020 SKM 53.4 Yes 

M0966-10 2010/0940 SKM 53.4 Yes 

M0987-12 2012/1022 SKM 59.2 Yes 

M1074-10 2010/1051 SKM 14.6 Yes 

M1089-09 2010/0023 SKM 153.6 Yes 

M1207-11 2011/1381 SKM 137.9   

M1352-12 2012/1360 SKM 7.4 Yes 

M1480-12 2012/1465 SKM 6.6   

M1648-12 2012/1627 SKM 14.3 Yes 

M0413-04 2010/1253 SKM   Yes 

M0124-05 2005/0192 SKM   Yes 

M0158-06 2006/0132 SKM   Yes 

M0180-03 2003/0244 NF   Yes 

M0258-08 2008/0255 SKM   Yes 

M0274-05 2005/0352 SKM   Yes 

M0288-04 2004/0632 UR   Yes 

M0629-07 2007/0686 SKM   Yes 

M0919-08 2008/0792 SKM     

 M0265-05 2005/0869 SKM   Yes 

 M0433-10 2010/0172 SKM   Yes 

 M0999-06 2006/0387 SKM   Yes 

M0478-11 2011/0527 SKM 49.2 Yes 

Table 5.1 Details of patient DNA samples used in this study. Newcastle Mitochondrial NSCT Diagnostic 
Service codes are given along with the unique DNA number, tissue type the DNA was extracted from and 
concentration (if known). CD = cardiac muscle, SKM = skeletal muscle, UR = urine. Successfully sequenced 
and genotyped samples denoted with 'yes' were included in the analysis. 



 

109 

 

5.5 Experimental Method  

Highly repetitive regions of DNA are known to be difficult to amplify and sequence due 

to mispriming events leading to PCR artefacts or collapsing of partially amplified 

oligonucleotides (Stirling, 2003). The ZnF repeat region of the PRDM9 gene proved to be 

one such region therefore requiring substantial method optimisation. 

 

5.5.1 Polymerase chain reaction amplification of the zinc finger repeat region of 

PRDM9 

Primers specific to the PRDM9 zinc finger region (NCBI Reference Sequence: 

NC_000005.10) were selected based on a previous publication (Berg et al., 2011) which 

extensively genotyped the PRDM9 ZnF repeat region in human blood and sperm DNA 

samples.  

 

 

Figure 5.2 Schematic of the functional domains of PRDM9. The C2H2 ZnF domain is at the C-terminus. 
Primer annealing sites are depicted by blue arrows and nested sequencing primers are in orange. 

 

Primer set 1 (PN0.6F and PN2.5R) was used for initial PCR amplification. Nested primers 

(PN1.2F and PN2.4R) were then used to sequence the amplicon. Primer annealing sites 

are shown in the schematic Figure 5.2. Primer sequences are detailed in Table 5.2. 
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Gene Primer Sequence Application Product 

length (bp) 

Origin Annealing 

temp. 

PRDM9  PN0.6F   TGAGGTTACCTAGTCTGGCA PCR 1864 Berg 

et al. 

62°C 

PRDM9  PN2.5R   ATAAGGGGTCAGCAGACTTC PCR 1864 Berg 

et al. 

62°C 

PRDM9  PN1.2F   TGAATCCAGGGAACACAGGC Sequencing 1257 Berg 

et al. 

50°C 

PRDM9  PN2.4R   GCAAGTGTGTGGKGACCACA Sequencing 1257 Berg 

et al. 

50°C 

Table 5.2 Details of primers used to amplify and sequence PRDM9 amplicons. 

 

The PRDM9 PCR amplicon is 1864 bp in length and is highly repetitive. Initial PCR was 

attempted using Immolase Taq polymerase protocols (Bioline, London, UK). However, 

due to the repetitive nature of this DNA fragment, long-range high fidelity PCR 

techniques were required for sufficient amplification. TaKaRa protocols were optimised 

using healthy control DNA as template. 

Temperature gradients were used to determine the optimum annealing temperature of 

the PRDM9 primers (Figure 5.3). PCR reaction mixture was as follows; 0.5 mM betaine, 

200 μM dNTPs, 1.25 U TaKaRa LA Taq polymerase, 0.2 μM primers (forward and 

reverse), dH2O and 100 ng DNA made to final volume of 25 μL with nanopure water. 

Thermocycling conditions were: denaturation at 94 °C for 1 min, 98 °C for 10 secs, 

annealing at 62 °C for 15 min, for 30 cycles followed by a final extension for 10 min at 

72 °C. PCR conditions were optimised using a control DNA sample (Figure 5.3). PRDM9 

amplicons were visualised via electrophoresis and UV exposure, showing highly specific 

amplification of one clear band at 1900 bp representing the full length ZnF region of 

PRDM9 (Figure 5.3). 
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Figure 5.3 Gradient PCR of the PRDM9 ZnF region. Control DNA was used as a template. Annealing 
temperatures were as follows; lane 1 55°C, lane 2 57°C, lane 3 59°C, lane 4 60°C, lane 5 62 °C, lane 6 64 °C, 
lane 7 negative control. PRDM9 PCR products were electrophoresed on a 1% agarose gel. 

 

Single deletion patient DNA samples were then amplified using this reaction (Figure 

5.4). Lanes 1 to 13 of Figure 5.4 show specific PCR amplification of PRDM9. Individuals 

with ZnF length differences could be distinguished by the presence of additional bands 

on the electrophoresis, for example lane 9 (Figure 5.4) which appears is heterozygous 

for the haplotypes A and a shorter allele. 

 

 

Figure 5.4 PCR of the PRDM9 ZnF region in single deletion patient samples. PRDM9 PCR product was 
visualised after electrophoresis on 1% agarose gels. A molecular weight marker was used to size the 
products (far left lane). Sizes are denoted in base pairs. 
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The size of the fragments was used to identify individual samples that could be 

heterozygous for the ZnF repeat region of PRDM9. For example, PCR products in lanes 5 

and 19 (Figure 5.5) clearly have additional bands to the 1900 bp expected product. 

These individuals are potentially heterozygous for haplotypes A and a longer allele. 

 

 

Figure 5.5 PCR of the PRDM9 ZnF region in single deletion patient samples. PRDM9 PCR product was 
visualised after electrophoresis on 1% agarose gels. A molecular weight marker was used to size the 
products (far left lane). Sizes are denoted in base pairs. 

 

Samples typically had faint bands at lower molecular weight such as the samples in 

Figure 5.5. These bands are probably fragments which have collapsed during the 

amplification due to the complexity of this repeat region. Mispriming events may also 

produce a small amount of shorter product detectable by gel electrophoresis. 

 

5.5.2 Sequencing and molecular cloning of single deletion patients 

Nested primers specific to the PRDM9 amplicon were used to sequence the ZnF repeat 

region, 1257 bp in size (Table 5.2). Initial Sanger sequencing reads were only 600 bp in 

length due to the capacity of the capillary used on the ABI3130xl Genetic analyser. Using 

a forward primer in one sequencing reaction and a reverse primer in a separate, but 

identical, reaction, 1200 bp reads could be analysed for each individual DNA sample. 

Sequencing data was analysed using Seqscape sequencing software aligning to the 

reference PRDM9 sequence (NCBI Reference Sequence: NC_000005.10). 
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Figure 5.6 Electropherograms of the PRDM9 ZnF repeat in a representative DNA sample. Top image; 
alignment of forward and reverse amplicons to the reference sequence entered into the Seqscape 
software. Middle image; sequencing trace for the reverse primed amplicon. Bottom image; sequencing 
trace for the forward primed amplicon. 

 

Depending on the quality of the sequencing there was a gap spanning 6 to 56 

nucleotides as highlighted by the red box in Figure 5.6. This gap was in the middle of the 

region of interest where the most allele defining repeats lie. In addition, sequencing 

traces usually became less efficient towards the end of the amplicon due to technical 

limitations of the machine in detecting nucleotides effectively. Electropherograms lose 

quality towards the end of forward and reverse strand reads and therefore much of the 

middle section of the PRDM9 amplicon was impossible to genotype. In this instance 

genotyping was not possible. 

To modify this protocol the capillary array length in the sequencing machine was 

changed to a longer array allowing longer high quality and highly accurate nucleotide 

calls along the read length. This allowed sequencing of almost the entire amplicon for 

each primer used and allowed comparisons to be made between the sequence obtained 
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with the forward and reverse primers individually. This array allowed for overlap in the 

sequencing traces obtained from each individual primer so that variants could be 

confirmed using both forward and reverse reads (Figure 5.7). 

 

 

Figure 5.7 Electropherograms of the PRDM9 ZnF repeat in a representative DNA sample using a longer 
sequencing capillary. Top image; alignment of the forward and reverse amplicons to the reference 
sequence entered into the Seqscape software. Bottom image; sequencing traces of forward and reverse 
amplicons over the middle region of the ZnF repeat domain.  
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Although electropherograms were of high quality using the longer array, there were still 

artefacts observed in samples sequenced using this method. Figure 5.8 shows a typical 

sequencing trace for one of the ZnF repeats used to genotype the individual. Multiple 

peaks are present at each position making it difficult to define a real heterozygous signal 

from noise. 

 

 

Figure 5.8 Electropherogram of the PRDM9 ZnF region. Top image; sequencing trace of the PRDM9 ZnF 
repeat in a representative DNA sample. The 150 base pair window is shown at the top of the image. Below 
are magnified images of the sequencing traces depicted in the red boxes. 

 

The green arrow in Figure 5.8 shows a base which would be considered as heterozygous 

T/C due to the peaks being of equal height. The red arrows depict bases where there are 

two peaks present but the expected bases GG are not reduced in height, or where the 

expected C nucleotide is under the signal for an A nucleotide. 



 

116 

 

Aligning DNA sequences from individuals that were heterozygous for repeat length 

variation in the PRDM9 allele proved difficult to genotype as the Seqscape software was 

unaware of the length differences. To overcome this I created reference sequences using 

only the ‘A’ or ‘J’ repeats listed in Figure 5.1. Figure 5.9 shows the misalignment of one 

such DNA sample that was heterozygous for a 13 repeat length allele and a longer allele. 

Variant calling in blue shows the number of base pair calls that did not match the 

reference sequence due to the ‘insertion’ of an extra ZnF repeat sequence. 

 

 

Figure 5.9 Electropherogram of the PRDM9 ZnF region in a patient with a heterozygous extended repeat 
allele. The red arrow shows variant calls highlighted in blue along the length of the amplicon analysed. 
The red box shows mismatching of the sequencing calls (green base pairs) to the reference sequence 
(black base pairs) in the sample. 

 

The ‘A’ repeat is present in every PRDM9 allele as the first repeat in the sequence and 

the ‘J’ allele is always the last repeat of the allele with the exception of allele L15 (Figure 

5.1). Forward sequencing files were aligned to a continuous ‘A’ repeat reference and 

reverse sequencing files to the continuous ‘J’ reference. For most individuals harbouring 

length variants this strategy allowed accurate genotyping.   
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To validate the allele status assigned to each DNA sample, molecular cloning of each 

allele was performed. PRDM9 was amplified in the patient DNA samples. PCR products 

were electrophoresed, gel extracted and ligated into the pGEM-T Easy Vector. Colonies 

containing a single allele were picked and PRDM9 was amplified using primers 

annealing to the pGEM-T vector sequence (Table 5.3).  

  

Target Primer Sequence Annealing Temp Source 

p-GEM vector 

Reverse 

5´-d(TCACACAGGAAACAGCTATGAC)-3´   62 °C Promega Cat. No. 

Q5421 

p-GEM vector 

Forward 

5´-d(CGCCAGGGTTTTCCCAGTCACGAC)-3´ 62 °C Promega Cat. No. 

Q5601 

Table 5.3 Details of primers used to amplify the PRDM9 insert sequence in the p-GEM vector sequence 
used to clone the amplicon. 

 

Colony PCR reaction mixture was as follows; 0.5 mM betaine, 200 μM dNTPs, 1.25 U 

TaKaRa LA Taq polymerase, 0.2 μM primers (forward and reverse), 10 μL dH2O 

containing a colony stab. Thermocycling conditions were: denature at 94 °C for 1 min, 

98 °C for 10 secs, annealing at 62 °C for 15 min, for 30 cycles followed by a final 

extension for 10 min at 72 °C. 

PRDM9 amplicons were successfully cloned as confirmed by colony PCR (Figure 5.10). 

Length variants can be seen in lanes 5 and 8 (Figure 5.10). 
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Figure 5.10 Colony PCR followed by gel electrophoresis of PRDM9 amplicons from single deletion patients. 
PCR products were electrophoresed on a 1% agarose gel. M corresponds to the molecular weight marker. 
Lanes 1-15 contain patient PRDM9 PCR product, lane 16 is a negative control PCR product. 

 

The PCR products were then sequenced as described above. Sequencing traces appeared 

to be of good quality (Figure 5.11) and length variants were genotyped using a different 

reference sequence as described above. 

 

 

Figure 5.11 Sequencing traces of the ZnF repeat region from colony PCR DNA samples. Representative 
150bp section is shown. 

 

Sequencing analysis was performed as before and the results were documented in a 

separate file to the original results. In addition, a second experimentally blind invigilator 

carried out the genotyping of the sequencing traces obtained and the allele status results 
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were compared. Both assessors agreed on the vast majority of the genotypes showing 

that there was no analysis bias. 

 

5.6 Results 

5.6.1 Statistical analysis of genotyping results  

Overall, 8 PRDM9 alleles were detected in the case group and 6 in the control group. 

Chi-squared comparisons were performed on the allele counts to determine if there was 

any statistically significant difference between the groups.    

   

  Cases   Controls   

 
Allele   100   96 P value 

A 15 85 13 83 0.8397 

B 97 4 94 2 0.6833 

C 98 2 95 1 1 

D 99 1 96 0 1 

E 99 1 96 0 1 

L9 98 2 94 2 1 

L20 99 1 95 1 1 

L24 96 4 93 3 1 

 

  100   92 

 

  

Students t-test 0.9462064 

 
Table 5.4 Distribution of alleles in case and control groups. Total allele counts are shown for each group. 
The number of each allele type is shown in the right hand columns versus all other alleles (left hand 
columns). P values were calculated using Chi squared and two-tailed Fishers exact test or a two-tailed 
Students t-test. 

 

Total allele counts were 100 and 96 for the case and control groups respectively (50 

cases versus 48 controls). Firstly, alleles were counted for each group and a Students 

t-test performed on the allele distribution (Table 5.4). Of the total alleles 85% of case 

and 87% of control cohort alleles were ‘A’. This was representative of the population 
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frequency of the ‘A’ allele published by Berg et al., 2012 as 85.7% in Europeans. The 

distribution of the other alleles found in the cohorts was also similar to those previously 

published for the population. Cases and controls had a similar distribution of alleles 

(Two-tailed Students t-test, p = 0.9462).   

Alleles were grouped into allele ‘A’, allele ‘B’ and ‘Rare’ (all other alleles). There was no 

statistically significant difference between the number of A, B or Rare alleles in cases 

versus the control group (Table 5.5). 

 

  

Cases 

100   

Controls  

96   P value 

A 15 85 13 83  0.8397 

B 96 4 94 2 1.00 

Rare 89 11 89 7 0.4609  

Table 5.5 Allele counts for case and control groups. Alleles were grouped as ‘A’, ‘B’ or ‘Rare’ referring to 
any allele that was not A or B genotype. P values were calculated using Chi-squared and two-tailed 
Fisher’s exact test. 

 

Allele length variation was tested by grouping alleles into ‘Short’ <13 repeats, ‘Normal’ 

13 repeats or ‘Long’ >13 repeats. There was no statistically significant difference 

between the number of Short, Normal or Long alleles in cases versus controls (Table 

5.6). 

  

    

Cases 

100   

Controls 

96   P value 

E <13 Short 99 1 96 0  1.00 

A Normal 4 96 1 95  0.3691 

C,D >13 Long 97 3 95 1  0.6214 

Table 5.6 Allele counts for case and control groups. Alleles were grouped by ZnF repeat length. P values 
were calculated using Chi-square and two-tailed Fisher’s exact test. 
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Finally, the distribution of individuals who were homozygous ‘A’, heterozygous ‘A/N’ or 

homozygous ‘N/N’ (where N is any other allele) was tested. All samples apart from one 

control individual were homozygous or heterozygous for the ‘A’ allele, consistent with 

both patient and control DNA samples being collected in the UK and assumed to be of 

European descent. Differences in genotype were statistically significant in the cases 

versus controls (Table 5.7). There were significantly more (p=0.0047) heterozygous 

individuals in the case group. 

  

  

AA AN NN P value 

Cases 100 85 15 0 0.0047  

Controls 96 88 7 1   

Cases 100 85 15    0.0097 

Controls 96 88 8     

Table 5.7 Allele counts for case and control groups. Alleles were grouped by genotype ‘AA’, ‘AN’ or ‘NN’. P 
values were calculated using Chi squared test. 

 

5.6 Discussion 

PRDM9 binding motifs are present at multiple sites along the mtDNA sequence, leading 

us to hypothesise that there may be a functional role for PRDM9 in the mitochondria. 

The ZnF region of PRDM9 is responsible for binding to DNA and is a highly polymorphic 

region. This ability to rapidly alter the nucleotide sequence of the ZnF domain allows 

PRDM9 protein to adapt to shifts in the recombination hotspots of the nuclear genome 

between generations. Loss of this ability leads to a lack of viable offspring and ultimately 

speciation events (Myers et al., 2010; Flachs et al., 2014). The possible role of PRDM9 in 

mitochondria lead us to hypothesise that PRDM9 alleles may increase susceptibility to 

mtDNA deletion formation in individuals. Access to mitochondrial patients harbouring 

single deletions provided us with a means to perform a gene screen to address whether 

any PRDM9 allele is over-represented in this cohort. 

 The ZnF region of the human PRDM9 gene was successfully genotyped in 50 mtDNA 

single deletion patient and 48 healthy control DNA samples. The distribution of PRDM9 

alleles found in both case and control groups was indicative of the population 
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frequencies previously published, validating the European nature of our DNA samples. 

There was no statistically significant association between PRDM9 allele status and the 

presence of mtDNA single deletions. There were significantly more heterozygous 

individuals in the case group versus controls (p=0.0047). However based on the results 

in Table 5.4, there does not seem to be any particular PRDM9 allele associated with this 

observation. The alleles most common after ‘A’ are ‘B’ and ‘L24’ but the frequency of 

these alleles was not statistically different between case and control groups (Table 5.4). 

There are several reasons for this observation. Firstly, the number of individual samples 

in both the case and control groups was small (50 and 48 respectively). An association 

between a particular SNP or genotype and the disease being studied would have to be 

strong to be significant with such a small sample size. Using the parameters; a 

significance level (p value) of 0.05 and an effect size of 0.5 (Cohen’s d = medium), 

statistical power calculations show that 130 individual samples would be required for 

an 80% chance of statistical significance. A smaller effect size would require even more 

samples suggesting that this study was underpowered.  

Secondly, this genomic region is highly polymorphic and appears to be under selective 

pressures acting to recombine the genome and allow for higher genetic diversity 

between individuals within the population. This means that the individual zinc finger 

repeat units that comprise the PRDM9 ZnF domain are not highly conserved and are 

therefore not predicted to have a detrimental effect when mutated. This is also possible 

because of the ability of PRDM9 to adapt its amino acid sequence to bind slightly 

different DNA motif regions. Heterozygous individuals will more than likely have subtle 

shifts in recombination events at the genome level compared to homozygous individuals 

but this does not necessarily have a negative impact on the health of the individual. In 

addition, if PRDM9 protein binds to mtDNA then it must be able to recognise a wide 

range of mtDNA haplogroups. It is exclusively the maternal mtDNA haplogroup which is 

inherited by the offspring however, there are four possible PRDM9 alleles (two maternal 

and two paternal) leading to potentially dramatic genomic recombination shifts. If 

PRDM9 could only interact with some subsets of mtDNA sequences then there would be 

very little chance of viable offspring from individuals with different PRDM9 allele status 

and mtDNA haplogroups. Since both PRDM9 haplotype and mtDNA haplogroup are 

associated with global population location then this would lead to possible speciation 
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events within the human population. This is unlikely as genetic theories determine that 

it is advantageous to outbreed and increase individual and population fitness. 

Several patient samples shown in Table 5.1 failed to amplify and therefore could not 

have a PRDM9 genotype assigned. This is likely due to the quality of the DNA samples. 

The PRDM9 ZnF domain is a highly repetitive PCR product and therefore proved difficult 

to amplify. Successful amplification relies on good quality starting template DNA in 

terms of purity as well as concentration. In addition to ensure that the PCR reaction 

itself is successful, most of the amplicon produced in each amplification cycle must be 

the full-length product so that miss-priming doesn’t occur. The longer and more 

repetitive a DNA fragment, the more likely it is that the copy of the template DNA will 

collapse during the extension phase to produce smaller fragments than the intended 

amplicon. 

Analysis of the PRDM9 ZnF repeat region also proved difficult due to the repetitive 

nature of this amplicon. Genotype specific SNPs were highlighted in Berg et al., 2011. 

Due to the polymorphic nature and complexity of this genomic region it was often 

difficult to assign a genotype to each repeat and sometimes appeared to be somewhat 

subjective. Mostly this was due to the quality of the DNA sequence obtained for each 

individual DNA sample. Any heterozygous signals were scrutinized and assessed for 

likelihood of the assigned nucleotide, that is to say, if there was no reported alternative 

in the literature or in a database then the wild type nucleotide was assumed to be 

homozygous. To ensure that the genotyping was not wholly subjective an independent 

marker was used to verify the sequencing and assign a genotype to the samples. The 

complexities of the PRDM9 ZnF repeat region proved technically challenging for 

genotyping and allele association. Although there was a significant difference between 

the numbers of heterozygous individuals in the case cohort it is unlikely that this result 

is truly informative.  

Larger cohorts of mtDNA deletion patients are required to confirm this finding in 

combination with relevant functional studies. It would be particularly interesting to 

haplotype trios including the parents of the affected individual to identify if there is a 

trend in the likelihood that one parent might pass on a particular haplotype to their 

affected offspring. This was the case in a study where mothers were statistically more 

likely to carry the associated PRDM9 allele present in her affected child (Woodward et 
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al., 2014). With the increasing availability and affordability of next generation 

sequencing (NGS) technologies it would perhaps also be more efficient to haplotype 

PRDM9 amplicons using a long range sequencing protocol. This would allow for single 

molecule sequencing reads that have more accurate base calling and can be haplotyped 

with higher throughput than the method presented in this chapter. 

In conclusion, PRDM9 alleles were genotyped in a single deletion patient cohort and 

compared to healthy controls. There was a significant increase in the number of 

individuals carrying heterozygous PRDM9 alleles in the patient cohort. However, no 

single allele was over-represented indicating that PRDM9 genotype is unlikely to affect 

mtDNA deletion risk. Functional studies are required to experimentally determine 

whether PRDM9 interacts with mtDNA in vivo. 



 

125 

 

Chapter 6 PRDM9 expression in human tissue and cell lines. 

 

6.1 Overview 

In order to understand the relevance of PRDM9 binding motifs found in mtDNA 

sequences, PRDM9 protein expression was investigated in human cell lines and tissue 

samples. PRDM9 remains an elusive protein with previous studies focussing on Mus 

musculus or partial recombinant human proteins (Hayashi et al., 2005; Mihola et al., 

2009; Eram et al., 2014; Davies et al., 2016; Patel et al., 2016). Although these studies 

have confirmed the methyltransferase activity of the protein as well as its ability to 

direct DNA cross-over events, the true functional role of full length human PRDM9, as 

well as interacting partner proteins, timing of expression and cellular localisation 

remains unknown. Although murine models are of importance to our understanding of 

molecular pathways and interactions, the PRDM9 proteins differ between mouse and 

human at the amino acid sequence level and thus might function differently in vitro. In 

addition, PRDM9 has been described as the primary genetic candidate for speciation 

events. This is suspected to be due to its polymorphic nature and motif binding ability, 

which leads to a genetic complementation barrier resulting in non-viable zygotes (Berg 

et al., 2010; Jeffreys et al., 2013; Flachs et al., 2014). For this reason, cross species 

comparisons of PRDM9 protein functions are helpful and necessary but investigations 

using human PRDM9 are warranted to ascertain its function.  

The human PRDM9 protein is not predicted to have a mitochondrial targeting sequence 

according to an in silico prediction tool (MitoP2 Elstner et al. (2009)) and does not 

appear on the extensive mitochondrial proteome database (MitoCarta2.0 Pagliarini et al. 

(2008); Calvo et al. (2016)). Due to the discovery of PRDM9 binding sites within the 

mitochondrial genome, it would be important to explore PRDM9 protein localisation in 

the context of the mitochondria. To investigate the expression of PRDM9, we had unique 

access to a range of difficult to obtain human tissue samples as well as both primary and 

immortalised cell lines.  
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6.2 Aim 

The aim of this study was to identify PRDM9 protein in human tissue and cell lines using 

a variety of detection methods. This would provide an appropriate model to study the 

localisation of this protein, in particular, to elucidate any mitochondrial function. 

 

6.3 Tissue samples and cell lines 

Details of the tissue samples used in this study are provided in Table 6.1.  

Tissue Log no. Stage Storage Source Disease 

Human Foetal Gonad HDBR#11942 11pcw -80 °C HDBR N/A 

Human Placenta HDBR#12168 5pcw -80 °C HDBR N/A 

Human Placenta HDBR#12169 6pcw -80 °C HDBR N/A 

Human Placenta HDBR#12170 10pcw -80 °C HDBR N/A 

Human Skeletal 

Muscle 

PFC_H_351_126 23yrs -80 °C MRG Tissue 

Resource 

N/A 

Human Ovary (Left) PFC_H_02_07 50yrs -80 °C MRG Tissue 

Resource 

MELAS 

Human Ovary (Right) PFC_H_01_07 50yrs -80 °C MRG Tissue 

Resource 

MELAS 

Table 6.1 Details of tissue samples used in the study. Tissue type, identification number, age, storage 
conditions, source and disease state are provided. 
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Details of the cell lines used in this study are provided in Table 6.2. 

Cell Line Type State Source 

HEK293 Human Embryonic Kidney Immortalised Prof. R.N. Lightowlers 

143B Osteosarcoma Immortalised Dr A. Gómez-Durán 

NT2 Neuron-committed Teratocarcinoma Immortalised Dr A. Gómez-Durán 

H9 Human Embryonic Stem Cell Stem cell Prof. M. Lako 

AM Fibroblast Primary Newcastle Biobank 

F011 Fibroblast Primary Newcastle Biobank 

M014 Myoblast Primary Newcastle Biobank 

M062 Myoblast Primary Newcastle Biobank 

M235 Myoblast Primary Newcastle Biobank 

M259 Myoblast Primary Newcastle Biobank 

Table 6.2 Cell lines used in this study. Cell line, cell type, state and source are provided. Professor R.N. 
Lightowlers, Institute of Neuroscience: Dr A. Gómez-Durán and Professor M. Lako, Institute of Genetic 
Medicine, all Newcastle University. 

 

Detailed methods and a full list of antibodies used in this study are provided in Methods 

Sections 3.6, 3.8 and Table 3.2. 



 

128 

 

6.4 Results 

6.4.1 Detecting PRDM9 in cell lines 

Available cell lines were investigated for the presence of PRDM9 protein by gel 

electrophoresis followed by Western blotting with a commercially available PRDM9 

antibody (Abcam, Cambridge, UK). To assess which cell model would be most 

appropriate; primary myoblast, primary fibroblasts and immortalised HEK293 cell 

lysates were run alongside a human testes (HuT) protein lysate sample (Figure 6.1). 

Testes tissue lysate was a kind gift from Professor David Elliot (Institute of Genetic 

Medicine, Newcastle University). After 60 minutes of exposure there was a faint signal 

detected in all sample lanes however there were three bands visible at ~90, ~65 and 

~40 kDa. There was no protein detection in the human testes lysate using 4 µL of lysate 

of unknown concentration, however GAPDH signal was also low suggesting that there 

might not have been a high enough quantity of protein used to detect PRDM9. 

 

Figure 6.1 Western blot detection of PRDM9 in different cell lines. Protein size marker was included (M), 
sizes are provided in kDa. 20 µg of myoblast, fibroblast and HEK293 cell lysate was loaded on a 4-20% 
bis-tris gel alongside 4 µL human testes lysate of unknown protein concentration (HuT). Membrane was 
incubated with anti-PRDM9 (1:500 dilution) or GAPDH (1:1000 dilution) overnight at 4°C. 
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In order to determine whether the faint bands observed in Figure 6.1 were PRDM9, 

larger amounts of protein were required. HEK293 cells were chosen as the most 

appropriate model because immortalised cells typically divide at a much faster rate 

without replicative senescence and provide more cellular material than primary cell 

lines (Hayflick, 1965). Optimal protein concentration for detection was performed by 

running concentration gradients (Figure 6.2). Double the volume (8 µL) of human testis 

tissue lysate was used compared to the previous blot (Figure 6.2 A). There was a single 

band corresponding to a peptide slightly larger than the predicted molecular weight of 

103 kDa in both the HEK293 and human testes sample lanes. There was also a band at 

~60 kDa in the highest concentration HEK293 sample lanes. Detection of these bands 

was very weak and required long exposure times. Next, a higher protein concentration 

gradient of HEK293 cell lysate was tested (Figure 6.2 B). Bands were observed at ~100 

and ~60 kDa but additional bands were also seen at ~120 and ~30 kDa. Thus, loading 

higher amounts of protein onto the gel gave more non-specific banding when using the 

anti-PRDM9 antibody to detect protein levels. 

 

Figure 6.2 Western blot detection of PRDM9 in HEK293 cell and human testes lysate. Protein size marker 
was included on each blot (M), sizes are denoted in kDa. A) HEK293 cell lysate gradient from 40-5 µg 
protein was loaded on a 4-20% bis-tris gel alongside 8 µL human testes lysate of unknown protein 
concentration (HuT). B) HEK293 cell lysate gradient from 120-50 µg was loaded on a 4-20% bis-tris gel. 
Membrane was incubated with anti-PRDM9 (1:500 dilution) or GAPDH (1:1000 dilution) overnight at 4°C. 
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Due to the embryonic nature of PRDM9 expression, the human embryonic stem cell line 

H9 (H9 hESC) was investigated for PRDM9 protein expression (Figure 6.3).  The HEK293 

cell lysate was immunoblotted alongside H9 as a comparison. As expected from previous 

results, HEK293 lysate gave bands at ~120 and ~60 kDa in size as well as faint bands at 

several other molecular weights. Bands were observed at ~60, ~50 and ~20 kDa in the 

H9 sample lanes. The band at ~120 kDa and a weaker band at ~80 kDa observed in the 

HEK293 samples were not present in the H9 samples. Overall, this suggests that the 

HEK293 and H9 cell lines have completely different protein expression profiles using the 

commercially available PRDM9 antibody in this study. Importantly, the band detectable 

at a molecular weight close to that of PRDM9 (103 kDa) was observed in the HEK293 

sample lysate only.  

 

 

Figure 6.3 Western blot detection of PRDM9 in HEK293 and H9_hESC cell lysates. Protein size marker was 
included (M), sizes are denoted in kDa. Protein concentration gradient for each sample lysate was loaded 
on a 4-20% bis-tris gel (100 – 25 µg). Membrane was incubated with anti-PRDM9 (1:500 dilution) 
overnight at 4°C. 
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The well-established immortalised cell line Neuron-committed Teratocarcinoma (NT2) 

is derived from a human embryonic teratoma. As it is of embryonic origin, it was tested 

for PRDM9 protein expression by immunoblotting alongside three primary myoblast cell 

lines available in our laboratory (Figure 6.4). Detection of PRDM9 was unsuccessful in 

all cell lines tested, even after 1 hour of membrane exposure. Incubation of the samples 

with anti-βactin showed that protein was detectable in all sample wells further 

confirming that PRDM9 was not present in these cell lines (Figure 6.4). 

 

 

Figure 6.4 Western blot detection of PRDM9 in primary myoblast and NT2 cell lysates. Protein size marker 
was included (M), sizes are denoted in kDa. 75 µg sample lysate was loaded on a 4-20% bis-tris gel. 
Membrane was incubated with anti-PRDM9 (1:500 dilution) overnight at 4°C. 
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To check antibody specificity, two antibodies against PRDM9 were kindly provided by 

the HPA (AlbaNova, Stockholm, Sweden). These antibodies were used for Western blot 

detection of PRDM9 in HEK293 cell lysate (Figure 6.5). Bands were detected at ~55, ~45 

and ~25 kDa using the Abcam and HPA antibodies respectively (Figure 6.5Figure 6.5). 

When compared to levels of β-actin detectable in the lysate (Figure 6.5) the bands 

detected using the Abcam and HPA059555 antibodies appeared to be very faint 

compared to HPA063372 (Figure 6.5). No band was observed at the predicted PRDM9 

weight, 103 kDa, using any of the antibodies.  

 

 

Figure 6.5 Western blot detection of PRDM9 in HEK293 cell lysate. 100 µg total protein was loaded in each 
sample well and electrophoresed on 4-20% bis-tris gels. Protein size marker was included on each blot 
(M), sizes are provided in kDa. A) PRDM9 protein was immunoblotted using either Abcam, HPA059555 or 
HPA063372 antibody against PRDM9. B) β-actin protein was immunoblotted for each sample lane as a 
loading control. Membrane was incubated with anti-PRDM9 (1:500 dilution) or anti-βactin (1:1000) 
overnight at 4°C. 

  



 

133 

 

The peptide sequence used to generate the antibody against PRDM9 was commercially 

available (Abcam, Cambridge, UK). This peptide comprises amino acids 432-481 of the 

human PRDM9 protein sequence and could therefore be used for antigen binding assays 

to elucidate which of the protein bands detected by blotting could potentially be PRDM9. 

Briefly, HEK293 cell lysate was incubated with purified PRDM9 antigen peptide, 

Western blotted and compared to untreated HEK293 total lysate. The strongest band at 

~55 kDa in the total cell lysate sample lane was blocked in the sample incubated with 

the antigen (Figure 6.6, red arrow).  

 

Figure 6.6 Western blot detection of PRDM9 in HEK293 cell lysate blocked with 1 µg/mL antigen peptide. 
Protein size marker was included on each blot (M), sizes are provided in kDa. Total lysate: 100 µg total 
HEK293 cell lysate was loaded and electrophoresed on a 4-20% bis-tris gel (left).  Blocked lysate: after 
incubation with PRDM9 peptide antigen, 100 µg HEK293 cell lysate was loaded and electrophoresed on a 
4-20% bis-tris gel (right).    

 

Together, these data suggest that the protein observed at ~55 kDa is the specific target 

of this antibody. Although this does not confirm that full length human PRDM9 is being 
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detected, the protein target at ~55 kDa is detectable in HEK293 cell lysate using this 

antibody. 

 

6.4.2 Detecting PRDM9 in subcellular fractions 

In order to localise PRDM9 to the mitochondria, subcellular fractions were carried out 

using HEK293 cells. Nucleus, cytoplasm and mitochondria were isolated by differential 

centrifugation and each fraction lysed for protein content. Detection of PRDM9 by 

Western blotting showed differential protein binding in the mitochondria compared to 

nucleus or cytoplasm which showed similar banding profiles (Figure 6.7).  

 

 

Figure 6.7 Immunoblotting of HEK293 subcellular fractions. 50 µg total protein was loaded in each sample 
well and electrophoresed through 4-20% bis-tris gels. Protein size marker was included (M), sizes are 
denoted in kDa. Membrane was incubated with anti-PRDM9 (1:500 dilution), anti-MTCO2 (1:1000) or 
anti-βactin (1:1000) overnight at 4°C. 
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Mitochondrial fractions showed enrichment of a band at ~60 kDa which was also 

present in the nuclear and cytoplasmic fractions (Figure 6.7). Bands at ~100 kDa and 

~30 kDa were observed exclusively in the mitochondrial fractions.  Although there was 

slight contamination of the nuclear fraction, the cytoplasmic and mitochondrial fractions 

were pure as shown by mitochondrial encoded cytochrome C oxidase II (MT-CO2) 

protein detection.  

In order to purify the mitochondrial fractions further, a percoll gradient method was 

used to separate the mitochondria and the mitochondrial associated membrane (MAM) 

so that the ‘pure’ mitochondria could be compared to the ‘crude’ mitochondrial fractions 

(Section 3.6.3). When this subcellular fraction was immunoblotted with anti-PRDM9 

there was a faint band detected in the crude mitochondrial sample lanes (Figure 6.8 A). 

This band was not present in the pure mitochondrial fraction or the cytosol or nuclear 

fractions. Purity of the fractions was tested by blotting with different antibodies specific 

to different cellular compartments (Figure 6.8 B). Heat shock protein family A member 5 

(HSPA5/Bip1) is an endoplasmic reticulum (ER) chaperone protein of 72 kDa in size and 

was mostly present in the cytoplasmic fraction as shown in the left hand panel in Figure 

6.8 B. The protein was also detected in the nuclear and mitochondrial fractions 

suggesting some contamination most likely due to the chaperone/stress response 

nature of Bip1 when it will shuttle from the ER to the cytosol. The structural protein α-

tubulin was detected in the nuclear and cytosolic fractions at 50 kDa but was not 

detected in the mitochondrial fractions suggesting that these samples were not 

contaminated by components of the cytoskeleton. An integral component of the 

mitochondrial outer membrane is the voltage-dependant anion-selective channel 

protein 1 (VDAC1/Porin) protein which creates a channel for the diffusion of small 

hydrophilic molecules. Immunodetection of VDAC1 (31 kDa) showed that it was present 

in the mitochondrial fractions but absent in the cytoplasm (Figure 6.8 B, right hand 

panel). There was faint VDAC1 detection in the nuclear fraction suggesting that some 

mitochondrial membrane may have contaminated this. VDAC1 is also present in the 

plasma membrane of the cell which may suggest why a relatively small amount was 

present in the nuclear/membrane fraction. Finally, histone H3 protein was used to show 

purity of the nuclear fraction. This protein is an important structural protein involved in 

chromosomal packaging, transcriptional silencing and epigenetic modification within 
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the nucleus. Detection of this 13 kDa protein was observed in nuclear, cytosolic and 

crude mitochondrial fractions suggesting that the nuclear membrane may have been 

disrupted during initial cell fractionation or that some cell nuclei were present in the 

subsequent fraction steps (Figure 6.8 B, left hand panel). 

 

 

Figure 6.8 Immunoblotting of HEK293 subcellular fractions. 40 µg total protein was loaded in each sample 
well and electrophoresed through 4-20% bis-tris gels. Protein size marker was included (M), sizes are 
denoted in kDa. Membrane was incubated with anti-PRDM9 (1:500), anti-HSPA5 (Bip1, 1:1000) 
anti-VDAC1 (1:250) anti-α tubulin (1:1000) or anti-histone H3 (1:1000) overnight at 4°C. 
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The detection of PRDM9 by Western blotting of whole cell protein lysates and 

subcellular fractions proved difficult. Cell lines either showed very low protein levels or 

no protein at all when commercially available PRDM9 antibodies were used. Each 

detection method and cell line appeared to give different peptide banding profiles 

suggesting that the protein was not produced in any of the cell lines tested or that the 

available antibodies are not reliable.  
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6.4.3 Detecting PRDM9 expression in tissue 

Several tissue types were investigated for PRDM9 expression by immunofluorescent 

staining. Tissues were chosen based on the likelihood that they would contain cells 

possibly undergoing meiosis and therefore express PRDM9: foetal gonad tissue isolated 

from an 11 post-conception week foetus, human placenta samples from 5, 6 and 10 post 

conception weeks and ovary tissue from an adult with a known mitochondrial disease 

(MELAS syndrome). Human skeletal muscle was used as an internal control because it is 

post mitotic and should not express PRDM9. 

In order to increase antibody specificity a fragment antigen binding (F(ab)) antibody 

against human PRDM9 was kindly provided by Dr M. Vedadi (Toronto Children’s 

Hospital, Toronto, Canada).  This F(ab) fragment is an antibody which still binds to the 

antigen but is monovalent, lacking the Fc portion of the antibody structure. This allows 

for more targeted binding to the antigen without potential cell surface receptor binding 

by the Fc fragment. It also allows better tissue penetration since the F(ab) fragment is 

much smaller in size than a traditional divalent antibody structure. This antibody was 

raised in phage λ and requires anti-human IgG as a secondary antibody for detection. 

Two commercially available PRDM9 antibodies were also tested as a comparison. 

Firstly, human muscle tissue was analysed for the presence of PRDM9 using the 

anti-PRDM9 F(ab) antibody and anti-human IgG secondary antibody (Figure 6.9).  

Secondary antibody specificity was tested on muscle sections at different concentrations 

(Figure 6.9 A, B & C). Positive staining was observed at all concentrations indicating that 

the secondary antibody produced a high level of non-specific binding. Tissue sections 

stained with both primary and secondary antibodies gave positive signal around the 

periphery of the individual muscle fibres (Figure 6.9 D, E & F). PRDM9 signal did not 

co-localise with the nuclei as shown by nuclear staining with 4’6-diamidino-2-

phenylindole dihydrochloride (DAPI) which binds to AT rich regions of DNA and emits 

blue fluorescence. Different concentrations of secondary antibody were tested to 

estimate levels of background staining. All three secondary antibody concentrations 

showed similar staining patterns (Figure 6.9 D, E & F).  
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Figure 6.9 Immunofluorescent staining of human skeletal muscle tissue. A, B & C) human muscle section stained with secondary anti-human IgG antibody. (A) 
1:1000 antibody dilution. (B) 1:2000 dilution. (C) 1:5000 dilution. D, E &F) human muscle section stained with anti-PRDM9 F(ab) primary and anti-human IgG 
secondary antibodies. (D) 1:1000 dilution. (E) 1:2000 dilution. (F) 1:5000 dilution. Nuclei are stained with DAPI in all samples. 



 

140 

 

Ovary tissue sections were assessed for PRDM9 expression by immunofluorescence 

(Figure 6.10). Positive staining was observed using the PRDM9 F(ab) antibody (Figure 

6.10 A). However, anti-human IgG control sections showed high levels of non-specific 

staining using only this antibody on the tissue (Figure 6.10 B). This suggested that the 

anti-human IgG was not a suitable antibody for use on human tissue sections as shown 

by previous staining in muscle tissue (Figure 6.9).  

 

 

Figure 6.10 Immunofluorescent staining of human ovary tissue. All samples were imaged using the 
AxioImager (Leica). A & B) Serial sections were incubated with anti-PRDM9 F(ab) primary and anti-
human IgG-594 secondary (A) or secondary only (B). C & D) Serial sections were incubated with anti-
PRDM9 (Novex) primary and anti-mouse-594 secondary (C) or secondary only (D). E & F) Serial sections 
were incubated with anti-TOMM20 primary and anti-mouse-488 secondary (E) or secondary only (F).  
Nuclei are stained with DAPI in all samples. 
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Secondly, the anti-PRDM9 commercially available antibody (Novex, ThermoFisher 

Scientific, Loughborough, UK) was used to stain ovary tissue sections.  This antibody is 

recommended for immunoprecipitation only but was tested as a comparison to the 

F(ab) antibody. Positive staining was observed (Figure 6.10 C) however, there was also a 

high level of background staining when using only anti-mouse IgG antibody on the tissue 

(Figure 6.10 D). This suggests that the ovary tissue is sequestering the secondary 

antibody due to some sort of physical property of the tissue rather than a true antigen 

binding reaction with the antibody. 

Finally, an antibody targeted to translocase of outer mitochondrial membrane 20 

(TOMM20) was used to stain the tissue as a positive control. Positive staining was 

observed (Figure 6.10 E) and appeared to be specific to the mitochondria as there was 

no co-immunofluorescence with the nuclear DAPI staining. Interestingly, the 

mitochondria appeared to be clumped within the cell and not the dynamic network that 

is often observed in other cell and tissue types. Moreover, secondary anti-mouse IgG2 

control sections showed that the staining was not due to non-specific antigen binding 

(Figure 6.10 F). 

Immunofluorescent staining of human ovary sections showed that the PRDM9 

antibodies gave positive staining however, secondary antibody controls suggest that this 

positive signal is not specific. This is perhaps due to the nature of the tissue itself or the 

non-specificity of the antibodies. Staining of this tissue with a mitochondrial specific 

antibody (TOMM20) showed specific staining patterns but the mitochondrial network 

appeared clumpy and distorted. This could be due to the nature of the mitochondrial 

disease state of the female the tissue was taken from (MELAS syndrome) or due to the 

storage and treatment of the tissue once removed. Haematoxylin and eosin staining of 

the tissue showed freezing artefacts as well as degradation of the tissue structures when 

compared to other ovary sections in the literature (see Appendix B). 
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Isolated foetal gonad tissue sections were a kind gift from Dr V. Floros (MRC 

Mitochondrial Biology Unit, Cambridge University, UK). Sections were stained using 

both the PRDM9 F(ab) and anti-PRDM9 Novex antibodies (Figure 6.11). Sections stained 

with secondary anti-human IgG and anti-mouse IgG showed positive staining (Figure 

6.11 B & E). Sections that had not come into contact with any antibody and had only 

been treated with DAPI also showed positive staining suggesting that this tissue has high 

levels of auto-fluorescence (Figure 6.11 C & F).  In contrast, staining of this tissue with 

an antibody targeted to mitochondrial translocase of outer membrane (TOMM20) was 

specific to the mitochondrial network in this tissue (Figure 6.11 G, H & I). No 

background staining was observed in secondary antibody only or DAPI only controls 

(Figure 6.11 H & I).
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Figure 6.11 Immunofluorescent staining of foetal gonad sample. All samples were imaged using the AxioImager (Leica). A-C) Serial sections were incubated with 
anti-PRDM9 F(ab) primary and anti-human IgG-594 secondary (A), secondary only (B) or no antibody (C). D-E) Serial sections were incubated with anti-PRDM9 
(Novex) primary and anti-mouse-594 secondary (D), secondary only (E) or no antibody (F). G-I) Serial sections were incubated with anti-TOMM20 primary and 
anti-mouse-488 IgG2a secondary (G), secondary only (H) or no antibody (I). Nuclei are stained with DAPI in all samples. 
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Immunofluorescence was also performed using placenta tissue (Figure 6.12). Staining 

tissue sections with PRDM9 F(ab) antibody produced a positive fluorescent stain 

however as shown in previous tissue sections, the anti-human IgG antibody alone also 

gave a similar fluorescent stain suggesting that this signal is non-specific (Figure 6.12 

A & B). Staining placenta tissue with the anti-PRDM9 Novex antibody did not show any 

positive fluorescent stain (Figure 6.12 C). Secondary only control staining with anti-

mouse antibody also showed no fluorescent signal (Figure 6.12 D).  Therefore we 

conclude that PRDM9 is not detectable in placenta tissue using the antibodies tested in 

this study.  

 

 

Figure 6.12 Immunofluorescence of human placenta tissue. All samples were imaged using the AxioImager 
(Leica). A & B) Serial sections were incubated with anti-PRDM9 F(ab) primary and anti-human IgG-594 
secondary (A) or secondary only (B). C & D) Serial sections were incubated with anti-PRDM9 (Novex) 
primary and anti-mouse-594 secondary (C) or secondary only (D). Nuclei are stained with DAPI in all 
samples. 
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PRDM9 protein was not detected by immunofluorescent staining in the tissues used in 

this study. The F(ab) fragment antibody used is not appropriate for human tissue 

staining as it was not raised in an animal and therefore requires anti-human IgG as a 

secondary antibody for detection. This antibody can react with most IgG antigens 

present in the tissue samples therefore producing off target staining. The Novex 

anti-PRDM9 antibody required anti-mouse IgG secondary antibody for detection. This 

antibody produced a non-specific fluorescent signal when used to stain both ovary and 

foetal gonad tissue sections but not in the placenta sample.   
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Tissue samples were also analysed for protein expression by gel electrophoresis and 

Western blotting. Ovary tissue lysate was blotted with anti-PRDM9 giving a strong single 

band at a large molecular weight >200 kDa (Figure 6.13 A). Before the gel was 

transferred to a PVDF membrane, it was reversibly stained with InstantBlue™ 

Coomassie brilliant blue stain (Figure 6.13 B). Staining total protein showed a strong 

signal at ~180 kDa most likely due to multiple high molecular weight proteins. 

 

 

Figure 6.13 Western blot detection of PRDM9 in ovary lysate. Protein size marker was included on each 
blot (M), sizes are denoted in kDa. A) Ovary lysate gradient from 20-60 µg protein was loaded on a 4-20% 
bis-tris gel. B) Ovary lysate gradient from 20-60 µg protein was loaded on a 4-20% bis-tris gel. Gel was 
stained with Coomassie brilliant blue and imaged. Membrane was incubated with anti-PRDM9 (1:500 
dilution) or GAPDH (1:1000 dilution) overnight at 4°C.  

 

Foetal gonad tissue (F3) was kind gift from Dr V. Floros (MRC Mitochondrial Biology 

Unit, Cambridge University, UK). F3 tissue lysate was immunoblotted with anti-PRDM9 

(Figure 6.14 A). No protein was detected in this sample lysate using the PRDM9 

antibody, when the GAPDH antibody was used a band was detected confirming that 

there was protein present in the sample lanes. Staining the gel before transfer to PVDF 
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membrane with InstantBlue™ Coomassie brilliant blue confirmed total protein content 

of the F3 lysate correlates with the concentration of protein loaded (Figure 6.14 B).  

 

 

Figure 6.14 Western blot detection of PRDM9 in foetal gonad (F3) tissue lysate. Protein size marker was 
included on each blot (M), sizes are denoted in kDa. A) F3 lysate gradient from 20-60 µg protein was 
loaded on a 4-20% bis-tris gel. B) F3 lysate gradient from 20-60 µg protein was loaded on a 4-20% bis-tris 
gel. Gel was stained with Coomassie brilliant blue and imaged. Membrane was incubated with anti-PRDM9 
(1:500 dilution) or GAPDH (1:1000 dilution) overnight at 4°C.  

 

  



 

148 

 

6.4.4 Immunoprecipitation of PRDM9  

Due to the non-specific protein banding observed by Western blotting, 

immunoprecipitation (IP) of PRDM9 was carried out using a range of different PRDM9 

antibodies. Four different anti-PRDM9 antibodies were used for IP throughout this study 

as detailed in Section 3.7.4 (Table 3.3). 

Initial IP was carried out using the Novex anti-PRDM9 antibody. This antibody was 

specified as only appropriate for IP and not for other immunodetection methods, 

therefore it was potentially more suitable than the antibody used in previous detection 

methods. After incubation of total HEK293 cell lysate with anti-PRDM9 antibody the 

unbound, wash and final elution lysates were electrophoresed. Staining the gel with 

Coomassie brilliant blue showed strong protein detection in the unbound lysate lanes as 

expected (Figure 6.15 A & B). Weak protein staining was seen in the wash lysate lanes, 

which was also expected as any further unbound protein would be captured in this 

washing step. No protein bands were detectable in the final elution lysates suggesting 

that no protein had bound to the anti-PRDM9-A/G bead complexes during the assay.  

As a test for sensitivity of the Coomassie stain, gels were next treated with metallic silver 

(Ag). Using this staining method, protein bands were visualised in the final elution 

sample lanes (Figure 6.15 C & D). This was also the case in the ‘blank’ sample lane where 

no antibody was present in the reaction suggesting that some protein was either 

contaminating this sample or that the A/G beads themselves were contributing protein 

during the final elution step (Figure 6.15 D). Interestingly, a band at ~100 kDa was 

present in the elution sample lanes where the initial protein input was 5000 and 

3000 µg (Figure 6.15 C & D). As expected, a band was present at ~50 kDa in the samples 

where antibody was added to the reaction mix. This band corresponds to the IgG heavy 

chain of the antibody complex which is pulled-down in the final elution step and is 

present in high amounts.     
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Figure 6.15 Immunoprecipitation of PRDM9 from HEK293 cell lysate. Protein lysate was incubated in the 
presence or absence (denoted Blank) of the Novex anti-PRDM9 antibody. Unbound protein (U), bead wash 
(W) and final protein elute (E) were loaded on 4-20% bis-tris gels and electrophoresed until samples had 
migrated through the entire gel. A & B) Gels were stained with Coomassie® blue. C & D) Gels were stained 
with metallic silver (Ag). Protein size markers were run on each gel in the left hand lane, sizes in kDa are 
denoted.  
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In order to determine whether the ~100 kDa band detected by silver staining in Figure 

6.15 was PRDM9, Western blotting was carried out using gels run in parallel with the 

same IP sample lysates. After probing with anti-PRDM9 (Abcam) three distinct bands 

could be detected in final elution sample lanes but were absent in the blank sample lane 

(Figure 6.16). The band at ~50 kDa most likely corresponds to the IgG heavy chain 

which is detectable by secondary antibody binding. Other bands were observed at ~140 

and ~45 kDa, the identity of these protein species is unknown. A faint band was 

detectable in the unbound protein lysate lanes at ~25 kDa, most likely corresponding to 

the IgG light chain. 

 

Figure 6.16 Western blot detection of immunoprecipitated PRDM9 from HEK293 cell lysate. Protein lysate 
was incubated in the presence or absence (denoted Blank) of the Novex anti-PRDM9 antibody. Unbound 
protein (U), bead wash (W) and final protein elute (E) were loaded on 4-20% bis-tris gels and transferred 
onto PVDF membranes. 
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Next, the four anti-PRDM9 antibodies (Novex, Abcam, HPA063372 and HPA059555) 

were compared to determine whether any were appropriate for IP of PRDM9 protein 

(Figure 6.17). The Novex antibody produced a single band at ~100 kDa in the final 

elution lysate (Figure 6.17 A). The other three antibodies gave multiple bands in the 

final elution lysates. The Abcam antibody gave three bands at ~50 kDa which could be 

the IgG heavy chain or unknown proteins of this size. As previous Western blot 

detections had shown this antibody to bind a species of ~55 kDa, this result was 

expected when using it for IP. The HPA antibodies were used at different concentrations 

as there was a limited amount of these samples. The results seen in Figure 6.17 B are 

most likely due to an excess of antibody in the HPA063372 reaction and too little 

antibody in the HPA059555 sample.  

 

 

Figure 6.17 Immunoprecipitation of PRDM9 in HEK293 cell lysate. Protein lysate was incubated in the 
presence or absence (denoted Blank) of the Novex, Abcam, HAP063372 or HPA059555 anti-PRDM9 
antibodies. Unbound protein (U), bead wash (W) and final protein elute (E) were loaded on 4-20% bis-tris 
gels and electrophoresed until samples had migrated through the entire gel. A & B) Gels were stained with 
Coomassie® blue. Protein size markers were run on each gel in the left hand lane, sizes in kDa are denoted. 
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Immunoprecipitation of PRDM9 was attempted using ovary lysate, which had previously 

shown PRDM9 detection by Western blot (Figure 6.13). Gel staining using Coomassie 

brilliant blue showed three protein bands at ~48, ~45 and ~12 kDa (Figure 6.18 A). 

Silver staining the gel also showed these three bands and additionally bands at ~100 

and ~140 kDa (Figure 6.18 B). Interestingly there were some high molecular weight 

proteins detected in the ‘blank’ elution sample lanes where antibody was not added to 

the reaction mix (Figure 6.18 A & B).    

 

Figure 6.18 Immunoprecipitation of PRDM9 from ovary tissue lysate. Ovary lysate was incubated in the 
presence or absence (denoted Blank) of anti-PRDM9 F(ab). Unbound protein (U), bead wash (W) and final 
protein elute (E) were loaded on 4-20% bis-tris gels and electrophoresed until samples had migrated 
through the entire gel. A) Gel was stained with Coomassie® blue. B) Gel was stained with metallic silver 
(Ag). C) Gel was transferred onto PVDF membrane and Western blot detection performed using anti-
PRDM9 antibody (Abcam). Protein size markers were run on each gel in the left hand lane, sizes in kDa are 
denoted. 
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Western blot detection of PRDM9 was tested for in the IP sample lysates. When 

incubated with anti-PRDM9 (Abcam) a single band was detected in the elution sample 

lanes at ~50 kDa but was absent in the blank sample lanes (Figure 6.18 C). This band 

corresponds to the IgG heavy chain of the antibody used in the IP reaction. A high 

molecular weight band was detected in the unbound lysate sample lanes of the 2400 µg 

and blank IP reactions. This protein species might be a non-specific binding target of the 

antibody or could be a peptide present in the ovary lysate containing a PRDM9 molecule 

in complex with other peptides making it much larger than the predicted molecular 

weight of 103 kDa. 
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In order to determine whether there were different proteins binding the anti-PRDM9 

antibody in the ovary tissue and HEK293 cell lysates we directly compared ovary, 

HEK293 and 143B lysates (Figure 6.19).  When gels were stained with Coomassie 

brilliant blue there were two protein bands present in the final elution lanes at ~45 and 

~12 kDa (Figure 6.19 A & B). There was also a faint band at ~100 kDa in the HEK293 

elution sample lane (Figure 6.19 A). The control ‘blank’ sample, where no antibody was 

added to the IP reaction mix, showed a single band at ~12 kDa which could correspond 

to a contaminating peptide or perhaps a peptide fragment present on the A/G beads 

used in the assay (Figure 6.19 B).  

 

 

Figure 6.19 Immunoprecipitation of PRDM9 in ovary, HEK293 and 143B lysates. Lysates were incubated 
in the presence or absence (denoted Blank) of anti-PRDM9 F(ab). Unbound protein (U), bead wash (W) 
and final protein elute (E) were loaded on 4-20% bis-tris gels and electrophoresed until samples had 
migrated through the entire gel. A & B) Gels were stained with Coomassie® blue. C & D) Gels were 
transferred onto PVDF membranes and Western blot detection performed using anti-PRDM9 antibody 
(Abcam). Protein size markers were run on each gel in the left hand lane, sizes in kDa are denoted. 
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To test for PRDM9 presence in the IP samples, Western blot detection was performed on 

gels run in parallel using the IP sample lysates. Incubation of the membranes with anti-

PRDM9 (Abcam) detected a band at ~50 kDa in the unbound and final elution sample 

lanes corresponding to the IgG heavy chain (Figure 6.19 C & D). A band at ~25 kDa was 

also observed in the final elution sample lanes which corresponds to the IgG light chain. 

These bands were absent in the control ‘blank’ sample further confirming that they are 

most likely IgG peptides from the antibody used in the IP reactions (Figure 6.19 D).  

Ovary tissue, HEK293 and 143B cell lysates showed the same protein profile when IP 

was attempted using the Novex PRDM9 antibody. There was a faint band in the HEK293 

elution sample at ~100 kDa which was not detected by Western blot detection 

suggesting that this might be contamination by another peptide of this molecular weight 

and most likely not PRDM9. 

In almost all IP reactions there was detection of protein in the ‘blank’ sample where 

beads were incubated with protein lysate only. To determine whether this detection was 

due to contaminating protein from the sample lysate or from the A/G beads themselves, 

two different beads (Thermo Fisher Scientific, Loughborough, UK) were incubated in 

wash buffer in the presence or absence of PRDM9 F(ab) antibody (Figure 6.20). When 

incubated in the presence of PRDM9 F(ab), a protein band was detected at ~40 kDa in 

the elution sample from both beads (M280 and T1). There was a band detected at 

~10 kDa that was also present when there was no antibody added to the reaction 

suggesting that the beads themselves contaminate the elution samples with a peptide 

species. 
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Figure 6.20 Test of A/G bead contamination in immunoprecipitation reactions. M280 or T1 beads were 
incubated in the presence or absence of F(ab) PRDM9. Wash (lanes W) sample and elution (lanes E) 
sample were electrophoresed on 4-20% bis-tris gels and stained with Coomassie brilliant blue. Protein 
size marker (lane M) was included on the gel, sizes are denoted in kDa. 
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6.4.5 Mass spectrometry analysis of PRDM9 immunoprecipitation samples 

Mass spectrometry (MS) analysis was performed on bands cut out from gels containing 

the IP samples. Peptide fragments were analysed in a shotgun approach where amino 

acid sequences were re-aligned using online protein databases to identify the peptides 

present in the sample. Methods relating to the MS analysis are detailed in Section 3.8.5. 

HEK293 cell lysate was incubated with the Novex anti-PRDM9 antibody and the gel 

containing the samples sent for mass spectrometry analysis (Figure 6.21). Final elution 

lysate showed three bands at ~100, ~45 and ~15 kDa. To identify the peptides being 

pulled down by this antibody, we analysed all three bands from this elute (Figure 6.21).  

 

 

Figure 6.21 Immunoprecipitation of PRDM9 in HEK293 cell lysate. Lysate was incubated with Novex 
anti-PRDM9 antibody. Unbound (U), bead wash (W) and final protein elute (E) were loaded on 4-20% 
bis-tris gels and electrophoresed until samples had migrated through the entire gel. 

 

The top 16 peptides, based on confidence score (log(e)), identified by MS are shown in 

Table 6.3. Unfortunately, PRDM9 peptide sequence was not detected in the sample. The 

most abundant peptides were members of the keratin protein family, from 
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contamination of the gel by hair or skin cells present during the sample or gel 

preparation. Trypsin was also found in the MS analysis, this is most likely excess enzyme 

remaining after digestion of the gel slices during preparation of the sample. 

Immunoglobulin heavy variable 3-7 protein was identified and is a fragment from the 

antibody used in the IP reaction. In addition, filaggrin family member 2 (FLG2) peptide 

was detected in the sample. This protein is primarily involved in epithelial homeostasis 

and is important for cornification of skin suggesting that it was likely another 

contaminant of the IP gel during processing (Dang et al., 2016). 

Other identified peptides were found in very low abundance but are also predicted to be 

contaminants of the pull down (Table 6.3). For example, eukaryotic translation 

elongation factor 1 alpha (EEF1A1), actin alpha 1 (ACTA1) and phenylalanyl-tRNA 

synthetase (FARSB) were all identified in the sample however this is probably due to the 

relative abundance of these proteins within the cell and therefore the lysate. Actin 

filaments and members of the transcription/translation processes are some of the most 

abundant cellular proteins and are in this case presumed to be carry over contamination 

in the IP elution. 
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Table 6.3 Mass spectrometry protein read-out for HEK293 lysate IP. Identifier protein code, log (I), refractive index (rI), expectation value (log(e)), isoelectric point 
(pI) and molecular weight is provided along with a description of the protein.
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Mass spectrometry was also performed on an IP sample using ovary tissue lysate and 

the PRDM9 F(ab) fragment antibody (Figure 6.22).  

 

 

Figure 6.22 Immunoprecipitation of PRDM9 in ovary tissue lysate. Lysate was incubated with Novex 
anti-PRDM9 antibody. Unbound (U), bead wash (W) and final protein elute (E) were loaded on 4-20% bis-
tris gels and electrophoresed until samples had migrated through the entire gel. 

 

The most abundant peptides identified in the MS analysis were subunits of the 

immunoglobulin protein family (Table 6.4). The abundance of these peptides indicates 

that the band identified on the IP gel was most likely a large multiprotein complex 

mostly comprised of antibody fragments. This was caused by insufficient amounts of 

sample reducing agent used to linearise the peptide molecules and limit protein 

aggregation or insufficient denaturation of the sample by heating at 95 °C. These two 

steps usually effectively separate the IgG peptides from any other protein in the sample, 

which was clearly not the case in this reaction given the MS result (Table 6.4). 
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Table 6.4 Mass spectrometry protein read-out for ovary lysate IP. Identifier protein code, log (I), refractive index (rI), expectation value (log(e)), isoelectric point 
(pI) and molecular weight is provided along with a description of the protein.  
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6.4.6 PRDM9 mRNA expression analysis by RT q-PCR 

Expression of PRDM9 mRNA was analysed in HEK293 cells by RT q-PCR. Primers were 

designed to align to the full length human PRDM9 mRNA transcript (NM_020227). 

Primer details are listed in Table 6.5. Reactions were set up as follows; 10 µL 2X iTaq™ 

Universal SYBR® Green supermix, 1 - 4 µM forward and reverse primer, 2 - 5 µg cDNA, 

made up to a final volume of 25 µL with dH2O. All reaction plates were run on the Bio-

Rad® iQ™5 thermocycler using the following program; denaturation at 95 °C for 30 

seconds followed by 40 cycles of 95 °C for 15 seconds and 62.5 °C for 30 seconds. 

Immediately after product amplification melt curve analysis was performed using a 

0.5 °C/2 seconds increment from 65 - 95 °C.   

 

Primer Forward Sequence 5’-3’ Reverse Sequence 5’-3’ Product length 

PRDM9 1 AGGCTGTGAACTGCTGGTCTGG GGCCCTTGAAATCTCCCTCTG 364 bp 

PRDM9 2 GAAACCCTTGAGCCTTTGGC AGAAGGCCCTGCTCCAATTC 77 bp 

PRDM9 3 TTTGTCGTGCAGCGTGAAAC GAAGGCCCTGCTCCAATTCT 91 bp 

GAPDH CTGACTTCAACAGCGACACC ATGAGGTCCACCACCCTGT 94 bp 

Table 6.5 Details of primers used for gene expression analysis by RT q-PCR amplification. Transcript 
target, forward and reverse primer sequence and amplicon product length are shown. 

 

Amplification of a product using these primers was technically challenging. Firstly, 

PRDM9 primer set 1 was described in a publication assessing mRNA expression in 

human samples (Liu et al., 2007). These primers were then tested with HEK293 whole 

cell RNA which was reverse transcribed to cDNA before RT q-PCR was performed. 

Reactions were attempted with increasing primer concentrations of 1, 2 and 4 µM using 

a 1 in 10 dilution series of cDNA, from a starting concentration of 2 µg. Product 

amplification was only achieved when 4 µM of each primer was used (Figure 6.23). Melt 

curve analysis confirmed that primers were specific for the PRDM9 transcript as they 

did not denature until temperatures of >85 °C (Figure 6.23 A & B). However, 

amplification was not achieved until after cycle 34 suggesting that the amount of 

transcript was very low in abundance (Figure 6.23 C). The PRDM9 threshold cycle (Ct) 

values from standard curve analysis showed that PRDM9 was being amplified and that 

there was no contamination in the negative control wells (Figure 6.23 D). However, the 

variation was large between triplicate samples and only the two highest concentration 
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standards showed any amplification suggesting again that the transcript level was low in 

the HEK293 cell sample. 

 

 

Figure 6.23 PRDM9 expression measured by RT q-PCR. Primer set 1 was used to amplify a 364bp PRDM9 
product. A) Melt curve chart of primer set 1 in each sample well is shown by plotting relative fluorescence 
units (RFU) against temperature (°C). B) Melt peak chart of primer set 1 C) Amplification chart of primer 
set 1 product shown by plotting RFU against reaction cycle. D) Plot of threshold cycle values (Ct) against 
starting quantity of cDNA. 

 

Next, primers for the house keeping gene glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) were tested using HEK293 cDNA. Efficient amplification of the product was 

achieved when using 1 µM of each primer and 2 µg of cDNA (Figure 6.24). Melt curve 

analysis showed specificity of the primers by denaturing at ~84 °C and in relation to the 

amount of template cDNA added to each reaction (Figure 6.24 A & B). Amplification of 

GAPDH product was achieved at 18 cycles and dilutions of standards showed a linear 

decrease in Ct values as cDNA concentration increased ten-fold (Figure 6.24 C & D). 
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Figure 6.24 GAPDH expression measured by RT q-PCR. Primers specific for GAPDH transcript were used 
to amplify a product. A) Melt curve chart in each sample well is shown by plotting relative fluorescence 
units (RFU) against temperature (°C). B) Melt peak chart of C) Amplification chart of GAPDH product 
shown by plotting RFU against reaction cycle. D) Plot of threshold cycle values (Ct) against starting 
quantity of cDNA. 

 

In order to increase PRDM9 product amplification, another set of primers specific for 

PRDM9 were designed. PRDM9 primer set 2 showed amplification when using 4 µM of 

each primer and 4 µg HEK293 cDNA (Figure 6.25). Amplification was achieved after 30 

cycles of PCR amplification (Figure 6.25 A). This primer set was slightly less specific than 

primer set 1 as shown by melt curve analysis (Figure 6.25 B). This primer set did 

however give product amplification in four of the standard cDNA dilutions tested 

(Figure 6.25 C). Compared to GAPDH product amplification the PRDM9 Ct values were 

high suggesting that transcript abundance was low in the HEK293 cell sample (Figure 

6.25 D).  
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Figure 6.25 PRDM9 and GAPDH expression measured by RT q-PCR. A, B & C) PRDM9 product 
amplification using primer set 2. A) Amplification shown by plotting relative fluorescence units (RFU) 
against PCR amplification cycle number.  B) Melt peak chart of PRDM9 primer set 2 shown by plotting RFU 
against temperature (°C). C) Plot of threshold cycle values (Ct) against starting quantity of cDNA. D) 
GAPDH product amplification. Plot of threshold cycle values (Ct) against starting quantity of cDNA. 

 

A final primer set, PRDM9 primer set 3, was used and showed amplification using 4 µM 

of each primer with 5 µg of HEK293 cDNA (Figure 6.26). Again, amplification was not 

achieved until ~30 cycles of PCR amplification (Figure 6.26 A). This primer set appeared 

to be less specific than primer sets 1 and 2, as shown by melt curve analysis (Figure 

6.26 B). Threshold values were variable between the sample triplicates (Figure 6.26 C). 

PRDM9 amplification was again very low when compared to the efficiency of GAPDH 

product amplification (Figure 6.26 D). 
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Figure 6.26 PRDM9 and GAPDH expression measured by RT q-PCR. A, B & C) PRDM9 product 
amplification using primer set 3. A) Amplification shown by plotting relative fluorescence units (RFU) 
against PCR amplification cycle number.  B) Melt peak chart of PRDM9 primer set 2 shown by plotting RFU 
against temperature (°C). C) Plot of threshold cycle values (Ct) against starting quantity of cDNA. D) 
GAPDH product amplification. Plot of threshold cycle values (Ct) against starting quantity of cDNA. 

 

Expression analysis of PRDM9 was attempted using three different primer sets designed 

to anneal to the mRNA transcript sequence. Primer set 2 appeared to amplify the 

product most efficiently however, this was only achieved when using high amounts of 

starting cDNA. Even when 5 µg of cDNA was used in the reaction the threshold cycle 

values were high suggesting that transcript levels were very low in the sample. 

Unfortunately due to a lack of appropriate tissue, a positive control of PRDM9 

expression was not available to test the efficiency of the primer sets. Isolation of RNA 

from human testes tissue would be the most appropriate tissue in which to test the 

expression levels and compare the HEK293 cell sample. 

 



 

167 

 

6.5 Discussion 

In order to detect human PRDM9 protein in cell lines and tissue samples a variety of 

assays were used including immunodetection, IP, IF, MS and q-PCR. Given the embryonic 

nature of the PRDM9 protein, tissues and cell lines were selected based on their 

embryonic origin.  Tissue samples were selected based on the likelihood that they would 

contain cell types undergoing meiosis and therefore express PRDM9. Ovary, foetal gonad 

and placenta were tested for PRDM9 expression alongside skeletal muscle, presumed to 

not express PRDM9 as it is a post-mitotic tissue type. 

Several cell lines available in the laboratory were tested for PRDM9 protein expression. 

Primary myoblast and fibroblast cell lines showed very low levels of protein expression 

when a PRDM9 antibody was used for detection. The nature of these cells in culture 

makes them slow to divide and they reach replicative senescence by 15-18 cell divisions. 

For this reason it was not feasible to grow sufficient amounts of cells for investigations 

which require high quantities of protein such as immunoprecipitation or subcellular 

localisation.  

Protein was not detected using the PRDM9 antibody with lysate from the immortalised 

cell lines derived 143B and NT2. Therefore, cell investigations in this study primarily 

used HEK293 cells. This was due to the embryonic nature of this cell line as well as its 

ability to proliferate quickly and indefinitely, providing a large amount of cellular 

material for these investigations. When high quantities of protein were used, a protein 

band at ~100 kDa could be detected in HEK293 and human testis lysate leading us to 

believe that this cell line was appropriate for further investigation of PRDM9. 

Subcellular fractions of HEK293 cells were also blotted for using PRDM9 and a range of 

antibodies against organelle specific proteins. Protein detected with the PRDM9 

antibody showed the presence of two peptides which were exclusively localised to the 

mitochondrial fraction. However, multiple bands were detected using these samples and 

methods to separate the fractions further by dissociation of the MAM showed a 

completely different peptide profile to previous membranes. 

Unfortunately, commercially available antibodies against PRDM9 appear to be 

non-specific and unreliable, giving multiple band detection on immunoblots as well as 

different protein banding profiles. This intra-assay variability means that any positive 
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PRDM9 detection is not reproducible. For this reason, PRDM9 localisation studies 

cannot confirm the presence of this protein in the mitochondrial fraction of HEK293 

cells although enrichment of a ~60 kDa band was observed via subcellular fraction 

immunoblotting. Peptide blocking experiments were carried out to identify which 

protein band detected by the PRDM9 antibody was likely to be the desired protein. 

These experiments show that a ~55 kDa peptide was the target of this antibody 

however, this does not confirm that this commercially available antibody recognises full 

length human PRDM9 protein. Currently, three PRDM9 transcripts have been identified 

although only one is predicted to be protein encoding. The existence of two alternative 

transcripts could partially explain the different peptides identified by immunodetection 

however, further peptide characterisation would be needed to confirm this. 

Immunofluorescent assays were attempted using two PRDM9 antibodies available. 

Staining of tissues appeared to be dependent on the condition and age of the tissue 

samples used. For example, ovary tissue had been stored for a long period of time whilst 

muscle, foetal gonad and placenta samples were frozen more recently. The F(ab) 

antibody was not appropriate for human tissues as the secondary (anti-human IgG) 

antibody reacted with multiple peptide antigens, not exclusively the anti-PRDM9 F(ab). 

In addition, the Novex antibody gave high levels of background staining on all samples 

tested apart from placenta. The IF images showed that high fluorescence was normally 

detected in fibrous regions of the tissues where there were connective structures but no 

DAPI positive cell types. This suggested that the nature of these regions prevented the 

antibodies (primary or secondary) from penetrating the tissue or prevented the wash 

out of excess antibody during the preparation of these samples.   

Immunoprecipitation of PRDM9 was attempted in HEK293 and ovary tissue lysates. 

These IP experiments were largely unsuccessful again due to the unreliability of PRDM9 

antibodies. Samples from IP were also sent for mass spectrometry analysis to confirm 

the presence or absence of PRDM9 protein. Unfortunately, both samples only contained 

contaminating peptides and antibody fragments from the reaction itself. PRDM9 was not 

detected in the MS analysis. 

Furthermore, gene expression of PRDM9 was investigated by RT-qPCR amplification in 

HEK293 cells. Although the primer sets used appeared to be specific to the PRDM9 
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mRNA transcript there was a very low level of the product detected in the samples. Even 

when high quantities of cDNA were used as template the threshold cycle values 

appeared high suggesting that any PRDM9 transcript produced by the cell was in low 

abundance and could therefore not be reliably quantified. The amount of cDNA required 

for low level detection is achievable using immortalised cell RNA but would prove more 

difficult for tissue analysis.  

Human PRDM9 is expressed during meiosis in gametocytes and therefore has so far only 

been detected in testis tissue, which continually produces new gametes in 

post-pubescent males as well as in foetal ovarian tissue at 23 weeks post conception 

(Liu et al., 2007). PGCs are difficult to obtain and require specialist dissection and 

sorting techniques to ensure a pure cell population (Tang et al., 2015). Collecting cells in 

this way from foetal tissue would result in very small amounts of cellular material and 

would therefore require high sensitivity single cell based assays to perform analysis for 

the presence of PRDM9. Primordial germ cell differentiation is possible using mouse 

ESCs and would provide a unique insight into characterising the expression profile of 

this protein either by transcript analysis or protein levels (Nakatsuji and Chuma, 2001). 

The main limiting factor of this experimental approach is the lack of a PRDM9 antibody 

against the murine protein.  

Human testis would appear to be the most appropriate tissue in which to study PRDM9 

expression given the availability of cells undergoing meiosis within this tissue. 

Availability of this tissue type is limited due to a lack of samples available for research. 

Most testicular biopsies from adult males are carried out to investigate infertility issues 

or suspected tumours (Ni et al., 2016; Song et al., 2016a; Zhang et al., 2016). The amount 

of tissue taken at biopsy tends to be small and would therefore provide a limited amount 

of RNA, DNA or protein for analysis, especially after clinical investigations for which the 

tissue was taken have been performed.  

Human PRDM9 expression analysis should either focus on utilising testicular tissue 

samples available for research or using primordial germ cell differentiation techniques. 

As shown in this study, PRDM9 protein did appear to be detectable in testis lysate and 

using freshly extracted protein and RNA would hopefully further confirm this finding. 

The low levels of PRDM9 expression coupled with rapid turnover of the protein will 
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make detection of PRDM9 extremely difficult. In this case, producing a cell culture based 

model or purifying recombinant protein would provide the largest amount of material 

for functional assays.  
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Chapter 7 Modifying PRDM9 expression levels in a cell culture model. 

 

7.1 Overview 

Previous studies attempting to elucidate the functional role and structure of the PRDM9 

protein have focussed on Mus musculus  protein as a model or partial PRDM9 constructs 

utilising recombinant protein technologies (Mihola et al., 2009; Billings et al., 2013; 

Eram et al., 2014). These studies have interrogated the histone methyltransferase 

activity of the PR domain, which has homology to the well characterised SET domain; 

known to be essential for methyltransferase function in other protein families posessing 

this characteristic (Eram et al., 2014; Powers et al., 2016). Purified PRDM9 zinc finger 

array constructs have been used to assess DNA binding affinity and motif specificity 

(Davies et al., 2016). Crystal structures of human PRDM9 have also been described, 

giving an insight into the potential functions of each region of the protein (Patel et al., 

2016). Other regions of the PRDM9 protein are predicted to have important functional 

roles including protein-protein interactions through the Krüpple-associated box (KRAB) 

domain and transcriptional regulation through the SSX repression domain (SSXRD), 

however these have not yet been experimentally determined. A schematic of PRDM9 

protein structure is shown in Figure 7.1. 

 

 

Figure 7.1 Structure of the human PRDM9 protein. KRAB, SSXRD, zinc knuckle, PR/SET, zinc finger and 
C2H2 zinc finger array are denoted. 
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7.2 Aims 

The aims of this Chapter are; 

1. To identify PRDM9 protein expression by immunodetection using transient 

knockdown.  

2. To perform PRDM9 protein overexpression.  

This will provide two different cell culture models for investigating some of the 

functions of this protein in mammalian cells. 
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7.3 Experimental Methods 

Overlapping Methods are described in Chapter 3, Sections 3.8.6, 3.10.3 and 3.11.1. 

 

7.3.1 PRDM9 siRNA transfection optimisation 

The PRDM9 antibodies commercially available showed nonspecific binding by 

immunodetection methods outlined in Chapter 6. In order to further investigate 

whether any of the detected peptides were indeed PRDM9, knockdown of PRDM9 was 

attempted using short interfering RNA oligonucleotides (siRNA). This transient system 

allows targeted knockdown of mRNA species produced by the cell (Rao and Huang, 

1979; Hillman et al., 1987). Degradation of RNA by siRNA occurs through the RNA 

interference (RNAi) pathway involving many members of the Argonaute protein family, 

namely an RNAseIII-like protein (DICER) and RNA induced silencing complex (RISC) 

(Hammond et al., 2001; Hutvagner and Zamore, 2002; Doi et al., 2003). An siRNA oligo, 

specific to the PRDM9 transcript, was transfected into HEK293 cells in a dose dependent 

manner. After 72 hours of transfection, cells treated with siRNA targeted to PRDM9 

displayed cytotoxicity with concentrations higher than 5 nM (Figure 7.2). Control cells 

treated with lipofectamine transfection agent or 20 nM non-targeting scramble siRNA 

did not display cytotoxic effects compared to untreated controls. Cells treated with 5 nM 

PRDM9 siRNA showed normal cell growth suggesting that this was the optimum 

concentration of this oligo in HEK293 cells (Figure 7.2). 
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Figure 7.2 Cell counts of HEK293 cells after 72 hours of treatment with siRNA. Cells were seeded in 9.5cm2 
tissue culture plates at a density of 1.2x106 cells/well at the start of the experiment. Cells were either; 
untreated, PRDM9 siRNA treated (5, 10 or 20 nM) or non-targeting scramble siRNA (20 nM) treated for 72 
hours before harvested and counted using trypan blue to assess cell death. 
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7.3.2 Overexpression plasmid validation 

The transient overexpression system used in this study was the pcDNA3.1(+) plasmid 

containing full length PRDM9 cDNA (Figure 7.3).  

 

 

Figure 7.3 Plasmid map of pcDNA3.1(+) containing full length human PRDM9 cDNA. Cytomegalovirus 
(CMV) enhancer and TATA box (green), MCS denotes the multiple cloning site, BGH polyadenylation signal 
(pink), SV40 early polyadenylation signal (blue), ampicillin/hygromycin/kanamycin resistance elements 
(yellow), pUC ori sites on complementary strands (light blue). 
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Three different pcDNA3.1(+) plasmids were used in this study. Firstly, a 

pcDNA3.1(+)PRDM9 plasmid was a kind gift from Dr M.Vedadi (Toronto Childrens 

Hospital, Toronto, Ca).  This plasmid contained full length human PRDM9 cDNA 

validated in the laboratory of Dr Vedadi. Secondly, an independent full length huPRDM9 

pcDNA3.1(+)PRDM9 was designed (synthesised by Genscript, Ontario, CA). Thirdly, a 

partial huPRDM9 plasmid containing amino acids 195-385 was designed (synthesised 

by Genscript, Ontario, CA). These plasmids will herein be referred to as plasmid 1, 

plasmid 2 and plasmid 3 respectively. 

All three plasmids were validated by PCR and Sanger sequencing of the PRDM9 insert 

sequence (Figure 7.4). Colony PCR amplification of purified plasmids 1 and 2 showed a 

single band at ~2700 bp corresponding to the full length PRDM9 cDNA insert sequence 

(Figure 7.4 A & B). The PCR products were Sanger sequenced and compared to all 

available sequences using NCBI Basic Local Alignment Search Tool (BLAST). The 

constructs from both labs had 98% amino acid similarity to human PRDM9 protein. 

Plasmid 3 was also PCR amplified and as predicted, a clear band corresponding to partial 

PRDM9 at ~740 bp in size was observed (Figure 7.4 B). This construct had 97% amino 

acid sequence similarity to human PRDM9. Colony number 1 was chosen to be purified 

for each plasmid (Figure 7.4; lane 1 A, lanes 1 and 5 B). 
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Figure 7.4 Validation of PRDM9 plasmids by PCR amplification. A) Colony PCR of pcDNA3_PRDM9_Flag 
plasmid 1 (provided by the Vedadi lab). Lanes 1-5: PCR product of insert DNA from colonies transformed 
with the pcDNA3_PRDM9_Flag construct. Lanes 6-10: PCR product of insert DNA from colonies 
transformed with pcDNA3 plasmid DNA as a control. B) Colony PCR of pcDNA3_PRDM9_Flag plasmid 2 
and partial pcDNA3_PRDM9_Flag plasmid 3. Lanes 1-5: PCR product of insert DNA from colonies 
transformed with plasmid 2. Lanes 6-10: PCR product of insert DNA from colonies transformed with 
plasmid 3. 
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7.3.3 Transfection efficiency optimisation 

In order to easily monitor the transfection efficiency of HEK293 cells using the 

pcDNA3.1 system, a plasmid expressing green fluorescent protein (GFP) was kindly 

provided by Professor Hanns Lochmüller (Institute of Genetic Medicine, Newcastle 

University, UK). The expression of this protein can be visualised whilst the cells are in 

culture using a GFP filter on a benchtop microscope (Zeiss Axiovert). Images were 

collected at 24 and 48 hours post transfection and compared (Figure 7.5). Using 6 µg of 

plasmid DNA for 24 hours appeared to be sufficient for a satisfactory level of 

transfection. 
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Figure 7.5 Transfection of HEK293 cells with a green fluorescent protein (GFP) expressing pcDNA3.1 plasmid. Cells were transfected with 6, 9 or 12 µg plasmid DNA 
for 24 hours (top panel) and 48 hours (bottom panel). Cells were imaged under normal culture conditions using the GFP filter on a bright-field microscope (Zeiss 
Axiovert). 
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As there was no difference in transfection efficiency between 6 and 12 µg plasmid DNA, 

the plasmid was tested at a lower amount of 3 µg (Figure 7.6). When compared to the 6 

µg plasmid transfection image (Figure 7.6 B), there was less GFP signal but still a high 

level of transfection when using 3 µg plasmid DNA (Figure 7.6 A). 

 

 

Figure 7.6 Transfection of HEK293 cells with a green fluorescent protein (GFP) expressing pcDNA3.1 
plasmid. Cells were transfected with 3 (A) or 6 (B) µg plasmid DNA for 72 hours Cells were imaged under 
normal culture conditions using the GFP filter on a bright-field microscope (Zeiss Axiovert). 
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7.4 Results 

7.4.1 PRDM9 knockdown by siRNA 

Expression of PRDM9 protein was previously tested in HEK293 cells by various protein 

detection methods (Chapter 6). By using this model it was observed that multiple 

peptides were detected using available antibodies against PRDM9. Blocking anti-PRDM9 

with immunising peptide showed that a peptide of 55 kDa was the target of this 

antibody (Figure 6.6). To elucidate whether any of these detected peptides were 

specifically PRDM9, knockdown was attempted using siRNA. Cells were transfected for 

48 and 96 hours before pellets were collected and protein expression investigated by 

immunoblotting. Using the anti-PRDM9 antibody, three peptide bands could be detected 

in all PRDM9 siRNA samples as well as control treatments (Figure 7.7 A & B). These 

peptides were ~75, ~55 and ~30 kDa in size which correlated with previous 

immunoblots using this antibody (Chapter 6). After 48 hours of treatment, there was a 

slight reduction in the expression level of the 55 kDa band in the 20 nM siRNA treated 

cells compared to 5 and 10 nM treatments (Figure 7.7 A). However, none of these 

peptides were detected in the scramble siRNA control and only two bands were detected 

in cells treated with transfection agent lipofectamine only, suggesting that this was not a 

PRDM9 specific observation and was most likely due to variability of the antibody. 

The 55 kDa band detected in the immunoblots in Figure 7.7 were quantified by 

measurement and normalisation of densitometric band intensity relative to β-actin 

(Figure 7.7 C). Detection of this band was previously shown to be blocked by addition of 

the PRDM9 immunising peptide indicating that it is the primary peptide bound by the 

commercially available anti-PRDM9 antibody. Quantification of samples after 48 hours 

siRNA treatment showed that this peptide was present at higher levels in the 10 nM 

siRNA treated cells compared to untreated or control samples (Figure 7.7 C). 

Quantification of samples after 96 hours siRNA treatment showed no difference in band 

intensity between treated or control samples (Figure 7.7 C). This observation confirms 

that this siRNA knockdown was either not PRDM9 specific or that PRDM9 was not 

present within the cell line and could therefore not be targeted for degradation. 
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Figure 7.7 Immunoblot detection of PRDM9 in HEK293 cells treated with PRDM9 siRNA. 60 µg of protein was loaded onto 4-20% bis-tris gels. A) Cells were treated 
for 48 hours with siRNA targeting PRDM9 mRNA. B) Cells were treated for 96 hours with siRNA targeting PRDM9 mRNA. Membranes were incubated with anti-
PRDM9 (1:500) or anti-βactin (1:1000) overnight at 4°C. C) Quantification of PRDM9 after 48 and 96 hours of treatment with siRNA. Immunoblot detection of a 55 
kDa peptide band was quantified by optical density relative to β-actin. 
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7.4.2 Transient overexpression of PRDM9 in HEK293 cells 

To determine whether PRDM9 protein could be detected in a cell culture model, 

transient overexpression was attempted using plasmid 1. Cells were transfected with 

1 µg of Flag-PRDM9 or empty pcDNA3.1 plasmid DNA for 24, 48 or 72 hours and 

compared to non-transfected control HEK293 cells. Cells were then harvested and lysed 

for total cellular protein. Immunodetection using an antibody against Flag tag protein 

did not detect Flag peptide in any of the samples (Figure 7.8).  

 

 

Figure 7.8 Immunodetection of Flag-PRDM9 in cells transfected with overexpression plasmid DNA. 1 µg 
plasmid DNA was transfected for 24, 48 or 72 hours. 75 µg protein was loaded on 4-12% bis-tris gels in 
duplicate. Blank lysates were untreated HEK293 cells grown in parallel with transfected cells. Vector 
lysates were HEK293 cells treated with pcDNA3.1 plasmid not containing any insert cDNA. Protein size 
marker was included on the gel (M), sizes are denoted in kDa. Membranes were incubated with anti-Flag 
(1:1000) or anti-βactin (1:1000) overnight at 4 °C. 
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Next, expression was attempted with 3 and 6 µg of plasmid 1 DNA for 72 hours in 

parallel, with plasmids expressing GFP and doking protein 7 (DOK7) as transfection and 

antibody detection controls respectively (Figure 7.9). The pcDNA3.1 plasmid containing 

Flag tagged DOK7 cDNA was a kind gift from Dr Juliane Muller (Institute of Genetic 

Medicine, Newcastle University, UK). DOK7 protein was detected at the predicted weight 

of ~55 kDa using 3 µg plasmid DNA with a marked increase in protein band intensity 

using 6 µg suggesting that the transfection efficiency using this method is satisfactory 

for protein overexpression. Peptide bands were detected in all samples at ~80 and 

~100 kDa in size using the Flag antibody, implying that these bands were non-specific 

antibody binding events. This PVDF membrane was overexposed to ensure that no 

PRDM9 protein was present and this most likely lead to the detection of non-specific 

peptides (Figure 7.9). 

 

 

Figure 7.9 Immunoblot detection of PRDM9-Flag overexpression. 75 µg of protein was loaded onto 4-20% 
bis-tris gels. Cells were transfected for 72 hours with 3 or 6 µg plasmid DNA. Untreated controls are 
denoted as ‘Blank’.  Protein size marker was included on the gel (M), sizes are denoted in kDa. Membranes 
were incubated with anti-Flag (1:1000) or anti-βactin (1:1000) overnight at 4 °C. 
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Higher quantities of plasmid were used for cell transfection. Plasmid DNA at 6, 9, 12, 15 

and 18 µg was transfected to enable detection of PRDM9 protein (Figure 7.10). When 

the Flag antibody was used for immunodetection, a single band was present at 

~100 kDa in the PRDM9 transfected samples only (Figure 7.10). Again, DOK7 protein 

was also detected at a molecular weight of ~55 kDa, detectable at shorter exposure 

times than the 100 kDa PRDM9 band suggesting that the DOK7 expression plasmid was 

producing much higher amounts of detectable protein than the PRDM9 expression 

plasmid. 

 

 

Figure 7.10 Immunodetection of PRDM9 in an overexpression cell model. Cells were transfected with 6, 9, 
12 or 18 µg plasmid DNA for 72 hours. 75 µg of protein was loaded onto 4-20% bis-tris gels. Protein size 
marker was included on the gel (M), sizes are denoted in kDa. Membranes were incubated with anti-Flag 
(1:1000) or anti-βactin (1:1000) overnight at 4 °C. 
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In order to determine whether the inefficiency of Flag-PRDM9 overexpression level was 

due to the protein itself or the plasmid used, two new pcDNA3.1(+)-PRDM9 contructs 

were designed (synthesised by Genescript). Cells were transfected with plasmid 

containing full length PRDM9 cDNA (plasmid 2) or partial PRDM9 cDNA (amino acids 

195-385, plasmid 3) for 72 hours before being analysed for expression by 

immunoblotting. Plasmids 2 and 3 were transfected in 1, 3 or 5 µg quantities to 

determine the optimum amount of plasmid required to induce protein expression 

(Figure 7.11). Immunoblot detection using the Flag antibody showed that full length 

PRDM9 was produced after transfection (Figure 7.11 A). A clear band was detected at 

~100 kDa in all samples transfected with plasmid 2, with the strongest detection 

observed using 1 µg of plasmid. Weak bands were also detected at ~140, ~80 and ~70 

kDa. The plasmid expressing DOK7 was used as a positive control and as expected 

produced a single band at ~55 kDa. Flag protein was not detected in non-transfected 

HEK293 cells further supporting that the peptide detected in the transfected samples is 

Flag-PRDM9. 

As expected, a low molecular weight protein was detected after plasmid transfections 

with plasmid 3 (Figure 7.11 B). A single band, at ~28 kDa, was strongly detected at all 

plasmid 3 amounts transfected. This band was detected using a shorter exposure time 

and expressed at higher levels than that of the full length PRDM9 protein product 

suggesting that the partial protein is more easily expressed using this system. In 

addition, when compared to the DOK7 control plasmid, the partial PRDM9 protein 

overexpression appeared to be more efficient than the full length construct.  
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Figure 7.11 Immunodetection of PRDM9 in an overexpression cell model. A) Full length huPRDM9 protein was transiently expressed in HEK293 cells for 72 hours. 
DOK7 construct was also transiently expressed as a control. Cell lysate was electrophoresed in 4-20% bis-tris gels and Western blotted. B) Partial huPRDM9 protein 
was transiently expressed in HEK293 cells for 3 days. DOK7 construct was also transiently expressed as a control. Cell lysate was electrophoresed in 4-20% bis-tris 
gels and Western blotted. Protein size markers were included on each gel, sizes are denoted in kDa. Membranes were incubated with anti-Flag (1:1000) or 
anti-βactin (1:1000) overnight at 4 °C. 
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Detection of full length PRDM9 by immunoblotting was achieved twice using this 

transient transfection system. To assess whether low levels of transfection efficiency 

could be detected in single cells, immunofluorescent staining was attempted. Due to the 

nature of HEK293 cells, imaging protocols were developed using poly-L-lysine coated 

glass cover slips to enhance cell attachment and limit the loss of cells during the staining 

protocol. This cell line tends to clump, with poor adhesion to glass or plastics, rather 

than a monolayer, making it difficult to image single cells in isolation. Protocols were 

therefore developed to image the cells after 24 hours of transfection with plasmid DNA 

whilst the cells were at a low density (~60% confluent), hence forming a monolayer. 

Antibodies against mitochondrial proteins; heat shock protein 60 kDa (HSP60), optic 

atrophy 1 (OPA1), PEO1 and TFAM or Flag protein were optimised on non-transfected 

HEK293 control cells (Figure 7.12). Positive staining was achieved using anti-HSP60, 

which has mitochondrial localisation but functions as a chaperone from the cytoplasm to 

the inner mitochondrial matrix, therefore also appears to have cytosolic localisation 

(Figure 7.12 A). Staining with anti-OPA1 showed clear mitochondrial localisation and 

staining of the entire mitochondrial network (Figure 7.12 B). Similarly, staining with 

anti-PEO1 (Twinkle helicase) showed mitochondrial network staining due to its location 

within the mitochondrial matrix within proximity of mtDNA (Figure 7.12 C). 

Unfortunately, anti-TFAM stained cells did not show positive mitochondrial staining 

possibly due to non-specificity of this particular antibody or due to its suitability for 

immunofluorescent staining procedures (Figure 7.12 D). As OPA1 staining gave the 

clearest mitochondrial staining signal it was used in subsequent staining experiments. 

Staining for Flag protein did not show any positive staining as expected in this cell line 

(Figure 7.12 E). HEK293 cells stained with secondary antibodies only showed that there 

was no auto-fluorescence at antibody dilutions of 1:1000 (Figure 7.12 F).  
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Figure 7.12 Immunofluorescent staining of HEK293 cells with antibodies against mitochondrial proteins. Cells were seeded at 2 x 105 cells/well and grown on poly-
L-lysine coated glass coverslips for 24 hours. A) Staining with anti-PEO1 (1:100) overnight at 4 °C and anti-rabbit alexafluor®-488 secondary (green). B) Staining 
with anti-HSP60 (1:200) overnight at 4 °C and anti-rabbit alexafluor®-488 secondary (green). C) Staining with anti-OPA1 (1:250) overnight at 4 °C and anti-rabbit 
alexafluor®-488 secondary (green). D) Staining with anti-TFAM (1:100) overnight at 4 °C and anti-rabbit alexafluor®-488 secondary (green). E) Staining with anti-
Flag (1:1000) overnight at 4 °C and anti-mouse alexafluor®-594 secondary (red). F) Staining with alexafluor®-488 (green) and alexafluor®-594 (red). All slides were 
stained with DAPI nuclear stain (blue) and imaged on the AxioImager (Zeiss).  



 

190 

 

Cells were transfected with each of the three overexpression plasmids: full length 

Flag-PRDM9, partial Flag-PRDM9 or control Flag-DOK7. Transfection was carried out 

using 1 µg plasmid DNA for 24 hours before the cells were stained with both anti-OPA1 

and anti-Flag (Figure 7.13). Anti-OPA1 (green) showed mitochondrial network staining 

in all transfected samples although some single cells appeared to have very little visible 

mitochondria or clustering of mitochondria around the nucleus (shown in blue). This is 

most likely due to the rounded cell shape and clumped nature of HEK293 cells. Staining 

of Flag protein (red) showed primarily nuclear localisation of both full length and partial 

PRDM9 proteins (Figure 7.13 A, B, D and E). There also appeared to be Flag signal in the 

cytoplasm of the cells. Interestingly, Flag signal in the DOK7 expressing cells also 

showed nuclear localisation (Figure 7.13 C and F). This protein is known to play a key 

role in the function of the neuromuscular junctions of skeletal muscle cells and therefore 

usually localises to the plasma membrane (Okada et al., 2006). As HEK293 cells are 

distinct in their properties from muscular and neuronal cell types it would be 

reasonable to assume that localisation of this protein would be different in this cell type. 

However, nuclear localisation of DOK7 might indicate that there is aberrant expression 

within the HEK293 cells. Perhaps this protein is aggregated within compartments 

surrounding or close to the nucleus or perhaps there is delivery of the protein into the 

nucleus. The images taken are from one plane and do not represent any 3D image stacks 

(such as Z stacks), therefore localisation cannot be reliably determined as it could be 

that the 3D orientation of the cell shows that any ‘nuclear’ localisation is in fact just 

cytoplasmic signal close to or surrounding the cell nuclei.          
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Figure 7.13 Immunofluorescent staining of transfected cells using OPA1 and Flag antibodies. Cells were seeded at 2 x 105 cells/well and grown on Poly-L-lysine 
coated glass coverslips for 6 hours before transfection with 1 µg plasmid DNA for 24 hours. Coverslips were incubated with anti-OPA1 (1:250) and anti-Flag 
(1:1000) overnight at 4 °C followed by secondary antibodies (Alexafluor®-488 or Alexafluor®-594) at 1:1000 dilution. A&D) Cells were transfected with full length 
Flag-PRDM9 pcDNA3.1 plasmid DNA. B&E) Cells were transfected with partial Flag-PRDM9 pcDNA3.1 plasmid DNA. C&F) Cells were transfected with Flag-DOK7 
pcDNA3.1 plasmid DNA. DAPI was used as a nuclear stain on all coverslips (blue). All images were taken using the Axioimager (Zeiss) at x40 magnification. 
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7.5 Discussion 

PRDM9 protein expression level was modified in a cell culture model; firstly using 

targeted siRNA knockdown and secondly using plasmid overexpression. Experimentally 

altering the PRDM9 transcript and protein levels was attempted because previous 

analysis showed PRDM9 was not reliably detected in several cell lines and tissue 

samples (Chapter 6). Creating an appropriate experimental model is essential to further 

understand the functional role of this protein.  

To determine which peptide band was actually the target of the PRDM9 commercial 

antibodies described in Chapter 6, knockdown of PRDM9 was attempted in HEK293 cells 

using a pre-designed siRNA transfection system. Due to the inaccuracy of the PRDM9 

antibodies available as well as a lack of positive control for PRDM9 expression, it was 

not possible to effectively assess whether the siRNA oligo had silenced the PRDM9 

transcripts using this system. A band at 55 kDa was successfully blocked when 

incubated with the immunizing PRDM9 peptide (Chapter 6), however this band was not 

a specific target of the siRNA oligo used in this study. This suggests that the 55 kDa 

peptide detected is either not PRDM9, is a PRDM9 peptide from an alternative transcript 

or does not contain the region of the sequence targeted by this particular siRNA oligo.  

As PRDM9 is a meiotic specific protein, it is unlikely that the full length functional 

transcript is expressed in HEK293 cells. In this case, there would be no target for the 

PRDM9 specific siRNA oligo to bind to and degrade via the DICER and RISC RNA 

interference pathway. To test this hypothesis, a cell line or tissue type expressing 

PRDM9 would need to be used in the knockdown experiment to confirm that this system 

is specific to PRDM9 and that it is measurable either by protein expression analysis or 

q-PCR of mRNA levels. The tissue expressing the highest levels of detectable PRDM9 

protein is human testis and this tissue type, or cells derived from such tissue would be 

the most appropriate positive control for this siRNA experiment. 

Overexpression of PRDM9 was attempted using three different plasmids. Firstly, 

transfection with plasmid 1 produced modest PRDM9 expression. Western blot 

detection showed a protein band at the expected size of ~100 kDa but only in cells 

transfected with very high quantities of plasmid. Unfortunately, this overexpression was 

only achieved once using this system and was therefore not reliable for use in further 
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experiments. It is not clear why plasmid 1 transfection was not efficient, it could be due 

to protein folding based on the amino acid sequence used to generate the peptide. 

Transfection with plasmid 2 showed expression of a band at the expected size of 

~100 kDa when cells were transfected with only 1 µg of plasmid DNA. The 

overexpression product was produced at very low levels when compared to a control 

transfection using a DOK7 construct as well as a loading control. To test whether this 

was caused specifically by the construct cDNA sequence used, a partial PRDM9 construct 

was also synthesised and transfected. This smaller protein product was highly 

expressed in our system when compared to the DOK7 and loading control protein levels. 

In conclusion, partial PRDM9 constructs express detectable peptides much more 

efficiently than full length PRDM9 constructs. This is likely due to the smaller overall 

size of the plasmid being transfected as well as the faster transcription and translation 

rates associated with smaller DNA sequences. Following this observation, localisation 

experiments could be performed using partial PRDM9 peptides to elucidate whether any 

portion of the protein has mitochondrial localisation.   

Differences in overexpression efficiency could be due to the number of cells successfully 

transfected with the plasmid or the stability of the full length protein product. 

Transfection efficiency estimated using a pcDNA3 plasmid expressing GFP, showed that 

only ~30% of the cells are transfected with and express the desired protein using this 

transfection protocol. Several key steps are involved in expression of transfected DNA 

constructs; accessibility of plasmid DNA (pDNA) to transcription machinery within the 

cytosol, which is dependent on endosomal escape and dissociation of mRNA complexes; 

the stability of the nucleic acids; the extent of compaction of pDNA within the lipo- or 

lipopoly-plex used for delivery and finally the ability to unpackage nucleic acids once 

inside the cytoplasm (Goncalves et al., 2016). The pDNA must be delivered into the cell 

by either electroporation, heat shock or lipid coating, however, recent assay 

developments for mammalian cell culture recommend cationic lipid based delivery as 

the most efficient and least cytotoxic method (Jafari et al., 2012; Cai et al., 2016). Of 

course, this delivery method presents possible problems in terms of pDNA unpackaging 

followed by accessibility to the transcription and translation machinery required for 

expression. Lipid coated DNA is much less likely to be accessed by cellular components 

than naked DNA due to the longer time required for the pDNA to escape its protective 
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coating (Prasad et al., 2003). Another consideration when altering expression by 

plasmid transfection is the role of cellular responses to the transfected pDNA. For 

example, clatherin-dependent or calveolae-mediated endocytosis are the mechanisms 

by which the pDNA is taken up by the cell and transported internally (Das et al., 2016). 

The pDNA must be taken up efficiently by these endosomes and then released so as to be 

available for transcription/translation machinery. Activation of immune-response or 

cellular stress pathways to clear away any foreign DNA molecule might also be 

upregulated leading to a dampening down of the effectiveness of the transfected plasmid 

either by exocytosis or degradation of the molecule (Poecheim et al., 2016). 

Overexpression of full length PRDM9 protein using the transient pcDNA3.1 plasmid 

system allowed low levels of protein to be detected via immunoblotting and 

immunofluorescence. However, results were variable and unreliable using these two 

detection techniques as only three PVDF membranes and only one immunofluorescent 

assay successfully showed detection of PRDM9. Immunoprecipitation followed by mass 

spectrometry would be the best method to determine whether the positive detection 

observed was in fact PRDM9 protein. In addition, all transfections were performed on 

cells grown in 9.5 cm2 tissue culture wells, yielding a relatively low quantity of protein, 

not sufficient for mitochondrial extractions, localisation or DNA binding studies.  

Achieving PRDM9 expression to perform localisation studies and DNA binding assays 

using the system described would require large amounts of transfection agent and 

plasmid DNA. To overcome the technical challenges surrounding the investigation of this 

protein, cell lines containing stable overexpression constructs were created as described 

in Chapter 8.   
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Chapter 8 Characterisation of a PRDM9 stable overexpression cell 

culture model. 

 

8.1 Overview 

PRDM9 protein levels were undetectable in tissue samples or cell lines investigated 

previously (Chapter 6) most likely due to the fact that the expression of this protein may 

be highly regulated during meiosis. In addition, transient overexpression systems 

outlined in Chapter 7 were inconclusive and did not provide enough material for 

mitochondrial investigations which typically require substantial amounts of cellular 

material. To address this, two stable cell lines were created with full length PRDM9 

cDNA constructs under the tetracycline inducible promoter (Hillen and Berens, 1994; 

Hinrichs et al., 1994; Yao et al., 1998).  One cell line was created using human PRDM9 

cDNA, whilst the other contained an identical PRDM9 cDNA with an N-terminal Flag-tag 

(Figure 8.1).  
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Figure 8.1 Overview of the system used in this study to stably overexpress PRDM9 cDNA in mammalian 
cells. Two PRDM9 cDNA constructs are depicted 1. no tag, 2. Flag tag. After integration of the constructs 
into the genome, tetracycline is added to the cells in culture. Expression of PRDM9 is induced.  PRDM9 
protein can be detected using anti-PRDM9 or anti-Flag antibodies. 

 

8.2 Aim 

The aim of this study was to create a stable cell culture model expressing PRDM9 

protein using an inducible promoter to control the induction and level of expression. 

This is advantageous as it would allow large quantities of cells overexpressing PRDM9 to 

be used for experiments such as mitochondrial fractionation. Using a Flag-tagged cDNA 

construct allows protein detection independent of PRDM9 antibodies. 
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8.3 Experimental Method 

Brief methods are detailed in Section 3.11.2. 

8.3.1 Overexpression plasmid validation 

Plasmid map of the pcDNA5/FRT/TO vector containing PRDM9 cDNA is shown below 

with multiple cloning sites depicted (Figure 8.1). The location of the PRDM9 cDNA insert 

sequence can be seen in orange; in this vector the insert is under the control of the CMV 

promoter but with tetracycline operator elements in between (Figure 8.1). Tetracycline 

must bind to these elements before expression of the insert gene can occur.  

 

 

Figure 8.2 pcDNA5/FRT/TO containing the PRDM9 cDNA insert sequence. Plasmid elements are: 
cytomegalovirus (CMV) enhancer and TATA box (green), multiple cloning site (MCS), BGH 
polyadenylation signal (pink), SV40 early polyadenylation signal (blue), 
ampicillin/hygromycin/kanamycin resistance elements (yellow), pUC ori sites on complementary strands 
(light blue), tetracycline operator elements and Flp recombination target (FRT) site are shown in black. 
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The PRDM9 cDNA sequence described previously (Chapter 6) was sub-cloned from the 

pcDNA3.1 plasmid into pcDNA5/FRT/TO plasmid by restriction enzyme digestion 

(Figure 8.3). To create a PRDM9 insert construct without a tag, ApaI and BamHI 

enzymes were used for DNA digestion (Figure 8.3 A). The PRDM9 cDNA insert sequence 

with an N-terminal Flag-tag was digested using XhoI and HindIII enzymes (Figure 8.3 B). 

Products from both digests were electrophoresed on 1% agarose gels and visualised by 

UV exposure to show a clear band at ~2.7 Kb corresponding to the PRDM9 insert 

sequence (Figure 8.3).  

 

Figure 8.3 Sub-cloning of full length PRDM9 cDNA from pcDNA3 into pcDNA5/FRT/TO. A & B) Restriction 
enzyme digestion products were resolved on 1% agarose gels by electrophoresis. DNA size marker was 
included on the gel (M), sizes are given in base pairs. A) Digestion of full length PRDM9 cDNA using ApaI 
and BamHI enzymes. B) Digestion of Flag tagged PRDM9 cDNA using XhoI and HindIII enzymes. 
pcDNA3.1: ~8111 bp, pcDNA5/FRT/TO: ~7837 bp, PRDM9: ~2700 bp. 
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The PRDM9 product was gel extracted and used in subsequent ligation reactions with 

digested and gel extracted pcDNA5/FRT/TO plasmids (Figure 8.3). Successfully ligated 

plasmids were determined by colony PCR of competent E.coli transformed with the 

ligation product. Two sets of primers were used, one pair aligned to the CMV promoter 

sequence and pcDNA5 plasmid sequence, the other pair aligned to the CMV promoter 

and the BGH polyadenylation sequence (Figure 8.4). 

 

 

Figure 8.4 Schematic showing alignment of the primer sets used to amplify the pcDNA5 insert sequence.  

  

Primer details are listed in Table 8.1. Temperature gradients were used to determine the 

optimum annealing temperature of the primer sets. PCR reaction mix was as follows; 

0.5 mM betaine, 200 μM dNTPs, 1.25 U TaKaRa LA Taq polymerase, 0.2 μM primers 

(forward and reverse), dH2O and 50 ng DNA made to final volume of 25 μL with 

nanopure water. Thermocycling conditions were: denaturation at 94 °C for 1 min, 98 °C 

for 10 secs, annealing at 62 °C for 15 min, for 30 cycles followed by a final extension for 

10 min at 72 °C.  

 

Target Sequence 5’-3’ Annealing Temperature 

CMV Forward CGCAAATGGGCGGTAGGCGTG 62 °C 

pcDNA5 Reverse GAGGAAATTGCATCGCATTGT 62 °C 

BGH Reverse CCTCGACTGTGCCTTCTA 62 °C 

Table 8.1 Primer details for amplification of insert sequences from pcDNA3.1 and pcDNA5 plasmids. 
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PRDM9 amplicons were visualised via electrophoresis and UV exposure, showing 

amplification of a band at 2.7 kb corresponding to the PRDM9 cDNA construct (Figure 

8.5).  

 

 

Figure 8.5 Colony PCR using plasmid specific primers. PCR products were electrophoresed on 1% agarose 
gels and visualised with UV exposure. DNA size marker was included on the gel (M), sizes are given in base 
pairs. A) Colony PCR of PRDM9 insert ligated into pcDNA5/FRT/TO, 16 colonies were screened. B) Colony 
PCR of Flag-PRDM9 insert ligated into pcDNA5/FRT/TO, 16 colonies were screened.  

 

In order to successfully integrate the PRDM9 insert sequences from the pcDNA5 vector 

into the genome of the HEK293 cells, a second plasmid expressing Flp recombinase 

enzyme must be co-transfected (Figure 8.6). The enzyme catalyses recombination 

between FRT sites present on the pcDNA5/FRT/TO plasmid and within the TRex293™ 

genome. As the genomic DNA recombines and is repaired by double strand break repair 

complexes, the hygromycin, tetracycline operator and PRDM9 elements are 

incorporated between FRT sites. The cell now harbouring this gene cassette confers 
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hygromycin resistance and will express PRDM9 in the presence of tetracycline (Figure 

8.6). 

 

Figure 8.6 Schematic of the Flp mediated recombination event. PRDM9 cDNA on pcDNA5 plasmid is 
recombined into the transfected cell genome using the integrated FRT sites and Flp recombinase enzyme 
expressed on the pOG44 plasmid. 

  

The plasmid containing Flp recombinase, pOG44, was a kind gift from Prof R.N. 

Lightowlers (Institute of Neuroscience, Newcastle University) and was expanded in our 

lab via transformation of competent E.coli. Purified plasmid DNA was digested with XbaI 

enzyme which cuts the plasmid at one site and KpnI which cuts the plasmid at two sites 

producing two different sized DNA fragments. After digestion with XbaI, a clear band 

could be seen at 5785 bp (Figure 8.7). After digestion with KpnI there were two clear 

bands at 347 bp and 5438 bp confirming that pOG44 had been successfully purified 

(Figure 8.7). Colony number 1 (Figure 8.7 lane 1 & 9) was taken forward for use in all 

related experiments. 
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Figure 8.7 Restriction digest of pOG44 plasmid DNA purified from competent E.coli. 50 ng DNA was 
electrophoresed on a 1% agarose gel and visualised by UV exposure. DNA size marker was included on the 
gel (M), sizes are given in base pairs. Lanes 1-8 show DNA digested with XbaI enzyme. Lanes 9-16 show 
DNA digested with KpnI enzyme. 

 

8.3.2 Creation of stable overexpression cell lines 

The HEK293 cell line was previously modified to contain an FRT recombinase site 

within the genome (TRex™293 cells, Invitrogen, Thermo Fisher Scientific, 

Loughborough, UK), herein referred to as HEK293 cells. Both PRDM9 cDNA constructs 

were integrated into a ‘transcriptionally silent’ region of the genome through cell 

transfection as described in Section 3.11.2. Non-transfected cells were used as a control 

in all experiments. After 14 days of culture in antibiotic selection media, colonies of 

successfully transfected cells could be seen (Figure 8.8). Colonies were left to grow and 

colonise the well completely before being transferred into larger culture plates and 

flasks. 



 

203 

 

 

Figure 8.8 Cell colony formation following transfection of TRex™293 cells with pcDNA5_PRDM9 
constructs and selection with 200 µg/mL hygromycin and blasticidin. A) Colony formed after integration 
of the PRDM9 pcDNA5 construct. B) Colony formed after integration of the Flag-PRDM9 pcDNA5 
construct. 
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After 8-10 weeks of antibiotic resistance and establishment of a homogenous 

population, cell lines were screened for PRDM9 cDNA integration into the genome by 

PCR amplification as described above. PCR products were electrophoresed using 1% 

agarose gels and visualised via UV exposure. Amplification of a band at ~2700 bp was 

achieved when the CMV and pcDNA5 primers were used. This band corresponds to the 

PRDM9 cDNA construct and is observed in both of the overexpression cell lines but not 

in control HEK293 cells (Figure 8.9). The origin of the other PCR products was most 

likely due to non-specificity of the primers used. These primers would ordinarily be 

used with isolated plasmid DNA and would therefore not have off target binding. Indeed, 

when these primer sequences were entered into NCBI BLAST they did align to other 

regions of the human genome. The product at 2.7 kb was then gel extracted and Sanger 

sequenced and aligned to the PRDM9 mRNA sequence (NM_001310214.1) to confirm 

that this was indeed the PRDM9 cDNA sequence. 

 

 

Figure 8.9 PCR amplification of PRDM9 constructs in stably transfected cell lines. PCR products were 
electrophoresed on a 1% agarose gel. DNA size marker was included on the gel (M), sizes are given in base 
pairs. Lanes 2-4 show the PCR product from each of the cell lines using primer set 1. Lanes 6-8 show the 
PCR product from each of the cell lines using primer set 2. Lanes 5 & 9 are negative controls where PCR 
mix did not contain DNA. Arrow indicates the PRDM9 insert sequence at the predicted size of ~2700 bp. 
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8.4 Results 

8.4.1 Analysis of PRDM9 overexpression by immunoblotting 

To determine whether the pcDNA5/FRT/TO stable overexpression model was 

successful, PRDM9 protein expression was investigated. Cells were seeded at 3 x 105 

cells per well and when 60% confluency was reached, tetracycline was added to the 

growth media for 24 hours. Protein from both the PRDM9 construct and the 

Flag-PRDM9 construct were blotted for using either PRDM9 or Flag antibodies. After 24 

hours of tetracycline treatment there was a band observed in the PRDM9 cell line at 

~80 kDa in size (Figure 8.10 A). The band was present in cells treated with the highest 

doses of tetracycline but was not detected at lower treatment concentrations or in the 

untreated control (Figure 8.10 A). In the cell lines transfected with Flag-PRDM9 there 

was an observed band at ~100 kDa in size (Figure 8.10 B). Similarly, this band was 

detected in cells treated with the highest concentration of tetracycline but was not 

present at lower treatment concentrations or in the untreated control (Figure 8.10 B). 

 

 

Figure 8.10 Immunodetection of PRDM9 protein in overexpression cell lines. Stably transfected cells were 
treated with tetracycline for 24 hours at decreasing concentrations. Blank refers to untreated cells. 
A) Protein extracted from PRDM9 stably transfected cells. PVDF membrane was incubated with 
anti-PRDM9 (1:500) overnight at 4°C. B) Protein extracted from Flag-tagged PRDM9 transfected cells. 
PVDF membrane was incubated with anti-Flag (1:1000) overnight at 4°C. Membranes were incubated 
with anti-βactin (1:1000) overnight at 4°C. 
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The protein bands detected in the two cell lines differed in molecular weight by ~20 kDa 

(Figure 8.10). Only the Flag-PRDM9 cell line showed a band at the expected size of 

~100 kDa whereas the PRDM9 cell line showed a band at ~80 kDa. In Figure 8.10 B the 

band at ~100 kDa was faint even after the membrane was overexposed suggesting that 

there was a low level of detectable protein in the cells. The presence of multiple bands 

also points to the abundance of PRDM9 protein being low as Flag should only be 

detectable in cells transfected with the construct and treated with tetracycline. The 

presence of these bands in the untreated sample indicates that these bands are 

non-specific. 

PRDM9 detection was achieved once although multiple passages of these cell lines were 

investigated by immunoblotting. This suggested that the earliest passages of the cells, 

after the selection process, were more likely to have PRDM9 expression induced by 

tetracycline treatment. To determine whether this detection issue was due to a 

heterogeneous cell population, transfected cells were re-selected using single cell 

dilution followed by hygromycin resistant clone selection. Colonies derived from a single 

cell containing the stably integrated constructs were assessed for PRDM9 expression by 

immunoblot analysis of protein lysate (Figure 8.11). Five single cell colonies were 

expanded from the PRDM9 containing cell line and six from the Flag-PRDM9 line. Each 

colony was split into two wells; one treated with 1 µg/mL tetracycline whilst the other 

was grown in standard culture medium as an internal control. When the samples were 

immunoblotted with anti-Flag there was a band detected at ~100 kDa in five of the 

colonies from the Flag-PRDM9 cell line but no detection in the untreated controls, the 

PRDM9 cell line or parental HEK293 cells (Figure 8.11). There was also a band detected 

at ~60 kDa which appeared in all sample lanes suggesting it is a non-specific peptide 

bound by anti-Flag. The detected peptide at ~100 kDa in size was very weak compared 

to the detected band at ~60 kDa and the loading control β-actin suggesting that if this 

peptide is PRDM9, the expression level is very low in this cell line. This immunoblot was 

also incubated with commercially available anti-PRDM9 but no peptide was detected 

suggesting that the antibody was not appropriate for detection in these transgenic cell 

lines.
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Figure 8.11 Immunodetection of PRDM9 in cells derived from hygromycin resistant single colonies.   Five colonies were selected for PRDM9 construct integration, 
six colonies were selected for Flag-PRDM9 construct integration and compared to HEK293 parental cell line. Colonies were treated with 1 µg/mL tetracycline (+) for 
24 hours or untreated (-). Protein size ladder was included on the gel (M), sizes are denoted in kDa.  
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Clone number 3 from each of the overexpression cell lines was then treated with 

1 µg/mL tetracycline and the mitochondria extracted using a digitonin-based protocol 

described in Section 3.6.4. This mitochondrial extract (Mt) was then compared to whole 

cell protein extract (WhC) and immunodetection was carried out using anti-Flag (Figure 

8.12). There was not a clear single peptide detected using anti-Flag and any faint bands 

detected were also present in the HEK293 control cell line.  

 

 

Figure 8.12 Immunodetection of Flag-PRDM9 in mitochondrial extracts from overexpression cell lines. 
75 µg protein from mitochondrial (Mt) or whole cell (WhC) extracts was loaded on 4-20% bis-tris gels. 
Protein size marker was included on the gel (M), sizes are given in kDa. Membrane was incubated with 
anti-Flag (1:1000), anti-SDHA (1:2000), anti-VDAC (1:500), anti-TFAM (1:500), anti-mtCO2 (1:1000) or 
anti-βactin (1:1000) overnight at 4 °C. 

 

To assess the purity of this mitochondrial fraction several antibodies against 

mitochondrial proteins were used (Figure 8.12). Detection of VDAC1, transcription 
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factor A mitochondrial (TFAM) and succinate dehydrogenase complex flavoprotein 

subunit A (SDHA) proteins showed that the mitochondrial extracts did contain 

mitochondria but at much lower levels than the whole cell protein extracts. There was 

also a high amount of β-actin in the mitochondrial extracts suggesting that the extraction 

was not pure and also contained contaminating cytosolic proteins. 

 

8.4.2 Analysis of PRDM9 expression by RT q-PCR 

Protein detection was inconclusive in the overexpression cell lines as only three blots 

showed possible Flag-PRDM9 peptide detection at 100 kDa. To assess whether PRDM9 

transcript was being produced in the overexpression cell lines created, PRDM9 mRNA 

levels were measured by RT q-PCR amplification using PRDM9 specific probes. PRDM9 

transcript detection was normalised to the house-keeping gene β-actin as described in 

Section 3.12.2. Two PRDM9 assays were tried however, one probe/primer set 

(Hs00360639_m1) did not detect PRDM9 amplification on several real time assay runs 

and was therefore not used again. The PRDM9 probe/primer set Hs01633270_s1 gave 

PRDM9 amplification and was used on all samples measured in triplicate on each plate, 

and each plate was run in triplicate to control inter-plate and intra-run assay variability.  

Cycle threshold (Ct) values were very high for the PRDM9 amplicon measured in all cell 

lines tested, indicating low level expression. When normalised to β-actin transcript 

levels, the amount of PRDM9 transcript measured in the HEK293 control cell line was 

higher than in either of the PRDM9 overexpression cell lines (Figure 8.13). Differences in 

transcript expression could be seen between cell lines but also between tetracycline 

treated or untreated cells over the time course of 24-72 hours. Unexpectedly, in several 

of the sample groups tested there appeared to be higher PRDM9 transcript expression in 

the untreated cell lines compared to tetracycline treated, contrary to the expected result 

(Figure 8.13). 
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Figure 8.13 Quantification of PRDM9 transcript levels in overexpression cell lines and HEK293 controls. A, B & C) Cells were untreated (yellow) or treated (lilac) 
with 1 µg/mL tetracycline for 24, 48 or 72 hours. 2-ΔCt values were normalised to β-actin transcript levels and plotted using Graphpad Prism analysis software. D & 
E) PRDM9 transcript levels (2-ΔCts) in overexpression cell lines were normalised to control HEK293 transcript values, shown by the dotted line at y = 1. Students 
t-test was used to assess significance of each treatment group vs the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27     
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Although there were statistically significant differences between treated and untreated 

samples in all three cell lines (Figure 8.13 A, B and C) there was no correlation or trend 

in the transcript levels with respect to increased or decreased transcript levels before or 

after treatment. In addition, normalising 2-ΔCt values of the transgenic lines to the 

HEK293 control cell line showed that the PRDM9 transcript level was less than or 

equivalent to the control at majority of time points tested (Figure 8.13 D and E). 

If the transgenic cell lines created in this study were actively transcribing PRDM9 after 

addition of tetracycline then it would be expected that the PRDM9 mRNA transcript 

levels would be higher in these cell lines compared to control HEK293 cells. This was not 

the case, as measured in three independent experiments, suggesting that PRDM9 

transcript is not overexpressed in these transgenic cell lines.   

 

8.4.3 Immunofluorescent staining of PRDM9 in overexpression cell lines 

Detection of PRDM9 by protein and mRNA detection experiments was inconclusive, 

therefore, immunofluorescent staining using the Flag antibody was attempted in fixed 

cells as described in Section 3.9.4. If PRDM9 is being expressed at low levels in a 

proportion of the cultured cells then single cell imaging analysis may show detectable 

protein expression. As a positive control, cells were stained using the mitochondrial 

protein OPA1 as optimised previously on HEK293 cells (Chapter 7). 

Cells overexpressing Flag-PRDM9 were treated with 1 µg/mL tetracycline for 72 hours 

before staining with anti-Flag (red) and anti-OPA1 (green) and compared with 

untreated controls (Figure 8.14). All slides imaged showed positive OPA1 staining of the 

mitochondria in the Flag-PRDM9 cells (Figure 8.14, green signal). Positive staining was 

also seen with the Flag antibody (Figure 8.14, red signal) however, this signal was also 

seen in untreated control samples. The single cells shown (Figure 8.14) are 

representative of the variable pattern of anti-Flag staining observed, suggesting that this 

is not a specific signal. Furthermore, the presence of this staining in the untreated cells 

suggests that this is not Flag-PRDM9 protein, as it would not be expressed in the absence 

of tetracycline (Figure 8.14 B and D).  
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Figure 8.14 Immunofluorescent staining of Flag-PRDM9 cells. Cells were treated with 1 µg/mL tetracycline for 72 hours (A, C&E) or were untreated (B, D&F). 
Staining with anti-Flag (1:1000) and anti-OPA1 (1:250) overnight at 4 °C, anti-mouse alexafluor®-594 secondary (red), anti-rabbit alexafluor®-488 (green) and 
DAPI nuclear stain (blue). All slides were imaged on the AxioImager (Zeiss) using GFP and DAPI filter sets. 
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Next, the PRDM9 commercially available antibody (Abcam, Cambridge, UK) was used for 

staining in PRDM9 overexpressing cells. This staining procedure was carried out on 

untreated cells or cells treated with 1 µg/mL tetracycline for 72 hours as an internal 

control. In addition, the PRDM9 antibody was raised in rabbit and could not be used 

alongside the OPA1 antibody described previously. In this case, an antibody against 

TFAM, raised in mouse, was used as a positive staining control. Positive staining of 

TFAM was seen in both treated and untreated cell samples (Figure 8.15, red signal). 

Positive staining of PRDM9 (green) was observed in some of the single cells imaged 

(Figure 8.15 A). However, there was also green fluorescent signal observed in some of 

the cells not treated with tetracycline (Figure 8.15 B) suggesting that this staining was 

not specific. 
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Figure 8.15 Immunofluorescent staining of PRDM9 cells. Cells were treated with 1 µg/mL tetracycline for 72 hours (A&C) or were untreated (B&D). A & B) Staining 
with anti-PRDM9 (1:500) and anti-TFAM (1:250) overnight at 4 °C, anti-mouse alexafluor®-594 secondary (red), anti-rabbit alexafluor®-488 (green) and DAPI 
nuclear stain (blue). C & D) Staining with anti-TFAM (1:250) overnight at 4 °C, anti-mouse alexafluor®-594 secondary (red) and DAPI nuclear stain (blue). All slides 
were imaged on the AxioImager (Zeiss) using GFP and DAPI filter sets.
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8.4.4 Indirect measurement of PRDM9 activity by assessing histone methylation 

levels 

Detection of PRDM9 mRNA and protein levels was variable in the cell lines created in 

this study. PRDM9 has been shown previously to mono-, di- and tri-methylate H3K4 in 

the nucleus (Hayashi et al., 2005; Grey et al., 2011; Eram et al., 2014). To determine 

whether the transient PRDM9 protein was having any effect in the stable cell lines, H3K4 

methylation status was investigated by immunoblotting (Figure 8.16). Mono-, di- and tri-

methylation status was visibly increased in the PRDM9 overexpression cell lines 

compared to the HEK293 non-transfected control cell line. 
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Figure 8.16 Immunodetection of histone methylation status in cell lines. PRDM9 and Flag-PRDM9 overexpression cell lines were compared to the HEK293 parental 
cell line. Cells were treated with 1 µg/mL tetracycline (+) or untreated (-) for 24, 48 or 72 hours. Membranes were incubated with anti-H3K4me3 (1:1000), 
anti-H3K4me2 (1:1000), anti-H3K4me1 (1:1000) or anti-βactin (1:1000) overnight at 4 °C. 
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Quantification of protein levels showed that tri-methylation of H3K4 (H3K4me3) was 

significantly increased in the PRDM9 transgenic cell lines at all treatment time points 

compared to the control cell line (Figure 8.17).  

 

 

Figure 8.17 Quantification of Western blot analysis for H3K4 methylation status. Untreated samples are 
shown in grey, tetracycline treated samples in purple. Densitometric analysis was performed using ImageJ 
software. Values were normalised to β-actin levels and analysed using Graphpad analysis software. Error 
bars show SD. Students t-test was used to assess significance of each treatment group vs the un-treated 
partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27     

 

Di-methylation of H3K4 (H3K4me2) was also significantly increased at all treatment 

time points in the Flag-PRDM9 but not the PRDM9 overexpression line (Figure 8.18). 

Although not statistically significant, there was a trend towards increase of H3K4me2 in 

the PRDM9 transgenic line after tetracycline treatment (Figure 8.18 C). 

 

 

Figure 8.18 Quantification of Western blot analysis for H3K4 methylation status. Untreated samples are 
shown in pink, tetracycline treated samples are shown in red. Densitometric analysis was performed 
using ImageJ software. Values were normalised to β-actin levels and analysed using Graphpad analysis 
software. Error bars show SD. Students t-test was used to assess significance of each treatment group vs 
the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27     
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Finally, mono-methylation of H3K4 (H3K4me1) was significantly increased at 72 hours 

of tetracycline treatment in the Flag-PRDM9 but not the PRDM9 overexpression line. 

Although not significant, it does appear that levels of H3K4me1 are trending towards an 

increase in the PRDM9 overexpression cell line after 24 hours of tetracycline treatment 

(Figure 8.19 C). 

 

 

Figure 8.19 Quantification of Western blot analysis for H3K4 methylation status. Untreated samples are 
shown in pale blue, tetracycline treated samples are shown in dark blue. Densitometric analysis was 
performed using ImageJ software. Values were normalised to β-actin levels and analysed using Graphpad 
analysis software. Error bars show SD. Students t-test was used to assess significance of each treatment 
group vs the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27     

 

The control cell line (HEK293) also had significantly increased levels of tri- and di-

methylation of H3K4 at 24 hours of tetracycline treatment (Figure 8.17 and Figure 8.18). 

This could be due to the tetracycline treatment itself which might be having off target 

effects on the cell leading to activation of other factors controlling histone methylation. 

If this is the case, then PRDM9 overexpression might only be influencing the methylation 

status of H3K4 after 48 hours of treatment.  

 

8.4.5 Measuring mitochondrial protein expression in overexpression cell lines 

Indirect measurement of PRDM9 function was achieved by the observed increase in 

histone methylation status in the overexpression cell lines (Section 8.4.4). Next, 

mitochondrial protein levels were investigated to assess whether PRDM9 expression 

was affecting either nuclear encoded or mtDNA encoded mitochondrial protein levels.  

TFAM plays an essential role in mtDNA transcription as well as replication and repair 

and is also thought to be the main protein moiety required for efficient packaging of the 
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plasmid mtDNA into nucleoid structures (Kukat et al., 2015). In this case, TFAM protein 

levels cannot be used to directly quantify mtDNA copy number inside the cell but can be 

used to estimate whether cells are depleted of mtDNA or have increased mtDNA (Collu-

Marchese et al., 2015; Ikeda et al., 2015; West et al., 2015; Stiles et al., 2016). Protein 

levels of TFAM were measured in the PRDM9 overexpression cell lines and the HEK293 

parental cell line as a control (Figure 8.20).  

 

 

Figure 8.20 Immunodetection of TFAM protein levels in cell lines. A) PRDM9 and Flag-PRDM9 
overexpression cell lines were compared to the HEK293 parental cell line. Cells were treated with 
1 µg/mL tetracycline (+) or untreated (-) for 24, 48 or 72 hours. Membranes were incubated with 
anti-TFAM (1:500) or anti-βactin (1:1000) overnight at 4 °C. B-D) Quantification of immunodetection. 
Untreated samples are shown in white, tetracycline treated samples are shown in dark grey. 
Densitometric analysis was performed using ImageJ software. Values were normalised to β-actin levels 
and analysed using Graphpad analysis software. Error bars show SD. Students t-test was used to assess 
significance of each treatment group vs the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = 
***. n=27.     

 

Quantification of TFAM immunoblotting showed no statistically significant difference in 

TFAM protein expression when tetracycline treated cells were compared to untreated 

cells (Figure 8.20 B-D). 
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Next, nuclear encoded OXPHOS subunit proteins were investigated by immunodetection 

(Figure 8.21). There was no statistically significant differences in protein levels between 

tetracycline treated or untreated cells with respect to mitochondrial ATP synthase 

subunit alpha (CV-α), complex III subunit core 2 (CIII-core2) or complex II subunit 

30 kDa (CII-30) when normalised to β-actin. There was also no difference in protein 

levels over the treatment time period tested (24-72 h). 
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Figure 8.21 Immunodetection of mitochondrial oxidative phosphorylation subunit levels in cell lines. PRDM9 and Flag-PRDM9 overexpression cell lines were 
compared to the HEK293 parental cell line. Cells were treated with 1 µg/mL tetracycline (+) or untreated (-) for 24, 48 or 72 hours. Membranes were incubated 
with anti-OXPHOS (1:250) or anti-βactin (1:1000) overnight at 4 °C. 
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8.4.6 Assessing mtDNA in overexpression cell lines 

As PRDM9 motif binding sites were found in mtDNA (Chapter 4), we hypothesised that 

overexpression of the protein might have an impact on mtDNA copy number levels. 

Quantification of mtDNA levels was measured by multiplex probe based assay 

amplification of MT-ND1, MT-ND4 and the nuclear encoded house-keeping gene RNASEP. 

An mtDNA deletion control DNA sample was included on each run as a comparison. This 

control was previously extracted from a cell line known to harbour a large scale deletion 

between positions m.7982- m.15504 at a heteroplasmy level of 70% (Diaz et al., 2002). 

mtDNA copy number was significantly increased in the treated Flag-PRDM9 cells 

compared to untreated controls at all time points measured (Figure 8.22 B). This was 

also the case for the PRDM9 cell line but only at 48 hours of treatment. Copy number in 

the HEK293 control cell line was varied, with a significant increase at 24 hours 

tetracycline treatment followed by a decrease at 48 hours and then stabilisation by 72 

hours (Figure 8.22 A). 
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Figure 8.22 Quantification of mtDNA copy number in overexpression cell lines. A, B & C) Cells were untreated (pink) or treated (grey) with 1 µg/mL tetracycline for 
24, 48 or 72 hours. 2-ΔCt values were normalised to RNase P and plotted using Graphpad Prism analysis software. D & E) 2-ΔCts in overexpression cell lines were 
normalised to control HEK293 values, shown by the dotted line at y = 1. Students t-test was used to assess significance of each treatment group vs the un-treated 
partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27    
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As described previously (Chapters 4 & 5) we hypothesised that a functional role for 

PRDM9 in the mitochondria could be to mediate deletion formation, a common 

occurrence during the normal ageing process and in several mitochondrial disorders. 

Whole mitochondrial DNA was amplified using a long range PCR protocol in the cell lines 

overexpressing PRDM9 to test for any possible mtDNA deletion formation. Reaction 

mixture was as follows; 2 mM Mg2+ buffer, 200 µM dNTPs, 0.25 µM primer (forward and 

reverse) and 1.25 U GXL PrimeSTAR DNA polymerase made to a final volume of 25 µL 

with dH2O. The reactions were carried out in a thermocycler using the following 

program; denaturation for 1 minute at 94 °C, followed by 30 cycles of denaturation at 98 

°C for 10 minutes, annealing and extension at 68 °C for 15 minutes and final extension at 

72 °C for 10 minutes. Details of mtDNA specific primers used in this PCR are detailed in 

Table 8.2. 

  

Target Primer 5’-3’ Annealing Temp 

mtDNA 16F CTCAAAGGACCTGGCGGTGCTTC 68 °C 

mtDNA 16R GTAGTGTTCTGGCGAGCAGTTTTG 68 °C 

Table 8.2 Details of mtDNA long range PCR primers used in this study. 

 

No mtDNA deletion was observed in any of the samples tested in three independent 

experiments (Figure 8.23). The deletion control DNA described above (~70% deletion 

heteroplasmy) was included in each experiment. This control shows two bands when 

electrophoresed, one at ~16.5 Kb and another at ~10 Kb confirming the presence of a 

large scale mtDNA deletion using this assay (Figure 8.23).   
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Figure 8.23 Assessment of deletions in mitochondrial DNA. Long range PCR products were 
electrophoresed on 1% agarose gels. HEK293 cells, PRDM9 overexpression and Flag-PRDM9 
overexpression cell lines were compared against a cell line known to harbour a large mtDNA deletion at 
~60% heteroplasmy. A DNA size marker was included on the gel (M), sizes are denoted in base pairs. 

 

Measurement of mtDNA deletion by PCR can be subject to amplification bias of the 

larger more dominant DNA molecule, in this case the full-length mtDNA. To assess 

whether there were low level mtDNA deletions in the transgenic cell lines, RT-qPCR data 

(described in Figure 8.22) was analysed for differences in mtDNA encoded genes 

MT-ND1 and MT-ND4. No difference was seen in the copy number ratio of the two genes 

suggesting no deletion of the MT-ND4 region of the molecule.  

To test whether there were deletions occurring elsewhere on the molecule, copies of 

MT-ND1 and MT-COIII were directly compared. There was no statistically significant 

difference (Figure 8.24). A value of 1 corresponds to there being no difference in the 

number of copies of the two genes, as seen in all cell lines (Figure 8.24). The mtDNA 

deletion control described in Section 8.4.5 showed an increased copy number of MT-ND1 

compared to MT-COIII, as expected since the region of mtDNA containing MT-COIII is 



 

226 

 

deleted (Figure 8.24, DEL control bin). The deletion heteroplasmy level within this cell 

line is ~70%, as shown by the 3:1 ratio of MT-ND1 to MT-COIII (Figure 8.24). 

This result confirmed that there were no mtDNA deletions in the control HEK293, 

Flag-PRDM9 or PRDM9 transgenic cell lines. 

 

 

Figure 8.24 Quantification of mtDNA deletion level from qPCR data in overexpression cell lines. Cells were 
untreated (blue) or treated with 1 µg/mL tetracycline (green). Ratios of MT-ND1 and MT-COIII amplicons 
were compared and plotted using Graphpad analysis software.  A deletion control DNA sample was run in 
triplicate on each qPCR plate (DEL control). Students t-test was used to assess significance of each 
treatment group vs the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=27     
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8.4.7 DNA damage repair pathway analysis 

The function of PRDM9 protein is to mark sites of the genome for DNA double strand 

breakage and repair through the breast cancer type 2 susceptibility protein (BRCA2) 

mediated homologous recombination pathway. The BRCA2 protein interacts with Rad51 

recombinase to mediate DNA repair mechanisms during DNA crossover events which 

are an integral part of the meiotic cell cycle (Thorslund et al., 2007; Chatterjee et al., 

2016). The Mre11 double strand break repair nuclease protein complex is important for 

homologous recombination via BRCA1 mediated DNA repair mechanisms during the 

mitotic cell cycle (Jensen and Russell, 2016). Importantly, these two repair mechanisms 

act at different times due to cell type and whether the cell is undergoing meiotic or 

mitotic cell divisions (Roy et al., 2012). In order to assess whether the PRDM9 expressed 

in our cell lines was influencing either pathway, protein levels of Rad51 and Mre11 were 

assessed through immunodetection (Figure 8.25). 
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Figure 8.25 Immunodetection of Rad51 and Mre11 protein levels in cell lines. PRDM9 and Flag-PRDM9 overexpression cell lines were compared to the HEK293 
parental cell line. Cells were treated with 1 µg/mL tetracycline or untreated for 72 hours. Membranes were incubated with anti-Rad51 (1:1000), anti-Mre11 
(1:1000) or anti-βactin (1:1000) overnight at 4 °C. 
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Rad51 protein levels measured in three independent experiments were quantified 

(Figure 8.26). In all three cell lines protein levels were variable however there was a 

general trend towards a decrease in Rad51 protein levels in the treated groups after 48 

and 72 hours of tetracycline treatment. However, this was only significantly different in 

the treated Flag-PRDM9 cell line at 48 and 72 hour time points (Figure 8.26 B).    

 

Figure 8.26 Quantification of Western blot analysis for Rad51 protein expression. Untreated samples are 
shown in yellow, tetracycline treated samples are shown in lilac. Densitometric analysis was performed 
using ImageJ software. Values were normalised to β-actin levels and analysed using Graphpad analysis 
software. Error bars show SD. Students t-test was used to assess significance of each treatment group vs 
the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=9     

 

Quantification of Mre11 protein levels showed that there was no significant difference in 

the transgenic cell lines when treated with tetracycline compared to untreated controls 

(Figure 8.27). There was a significant decrease in Mre11 protein level in the HEK293 

control cell line at 24 hours tetracycline treatment.  

 

Figure 8.27 Quantification of Western blot analysis for Mre11 protein expression. Untreated samples are 
shown in blue, tetracycline treated samples are shown in orange. Densitometric analysis was performed 
using ImageJ software. Values were normalised to β-actin levels and analysed using Graphpad analysis 
software. Error bars show SD. Students t-test was used to assess significance of each treatment group vs 
the un-treated partnered group. ≥0.05 = *: ≥0.005 = **: ≥0.0005 = ***. n=9     
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8.5 Discussion 

In order to investigate the cellular functions of human PRDM9 protein, full length cDNA 

constructs were stably integrated into the HEK293 cell genome under the control of a 

tetracycline inducible promoter. In this model, it is possible to switch on the 

overexpression of the cDNA construct by addition of tetracycline to the cell growth 

medium. This system allows for proteins which are potentially cytotoxic to be expressed 

in low quantities for a controlled period of time. This was a potentially advantageous 

system for PRDM9 protein overexpression as previous experiments indicated that this 

construct was difficult to express and isolate using transient expression plasmids 

(Chapter 7). Although it was not possible to reliably reproduce detectable full length 

PRDM9 protein expression using this experimental system, it was possible to indirectly 

measure PRDM9 function by assessing histone protein methylation status.  

 

8.5.1 PRDM9 expression in stably transfected cell lines 

When the cell lines were treated with tetracycline it appeared that PRDM9 protein 

expression was induced compared to untreated controls, as shown by Flag antibody 

immunodetection. However, this detection showed that protein expression was low and 

was not reliable as most lysates tested did not have detectable levels of PRDM9 protein. 

In addition, PRDM9 overexpression was more reliably detected in the cell line 

harbouring the Flag tagged construct than the untagged PRDM9 cell line. This is most 

likely due to the unreliable nature of the anti-PRDM9 antibody when compared to the 

well-established and experimentally verified anti-Flag antibody.  

Quantifying PRDM9 mRNA transcript levels in the cell lines was also variable. A lack of 

positive PRDM9 control meant that optimisation of Taqman™ assays was difficult. 

 

8.5.2 Indirect measurements of PRDM9 function 

In order to establish whether PRDM9 was being transiently expressed at all in these two 

cell lines, we next asked whether it was possible to assess any functional consequences 

of this protein. Both murine and human PRDM9 have known methyltransferase activity 

and specifically target histone 3 lysine 4 (Hayashi et al., 2005; Grey et al., 2011; Eram et 

al., 2014). It was possible to quantify tri-, di- and mono- methylation of H3K4 protein by 
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immunodetection using well established commercially available antibodies. The 

overexpression cell lines showed increased levels of both H3K4me3 and H3K4me2 after 

gene expression induction by tetracycline treatment. This effect was increased over time 

with cells treated for 72 hours showing the largest increase in methylation status when 

compared to 24 and 48 hours treatment as well as the HEK293 control samples. 

Previous methyltransferase activity studies have shown that recombinant PRDM9 

peptide has a higher affinity for H3K4 protein when it is mono- or di- methylated 

suggesting that the primary function is to increase both di- and tri- methylation levels, 

consistent with our data. Levels of mono-methylation were increased in the Flag-PRDM9 

cells treated with tetracycline suggesting that there is also the potential for the protein 

to act on un-methylated H3K4, consistent with previous reported data. The PRDM9 

cDNA construct might be more stable when expressed with the Flag tag present than 

without it.  

Overall, the assessment of Rad51 and Mre11 protein levels showed variation in the 

expression of both when cells were treated with tetracycline compared to untreated 

controls. Although there was an overall trend towards decreased expression of Rad51 in 

the Flag-PRDM9 transgenic cell line there was a similar trend in the HEK293 control cell 

line, although not statistically significant. This data suggests that attempting to dissect 

the protein family members involved in DSB repair mechanisms is complex and variable 

depending on treatment with tetracycline and timing of cell divisions. In this case, the 

effect of PRDM9 overexpression on Rad51 and Mre11 protein levels cannot be 

elucidated using this method. 

 

8.5.3 Perspectives and future recommendations 

A major problem with the use of this stable overexpression experimental system is that 

tetracycline is used as the inducer of expression by the CMV promoter element. 

Tetracyclines are a widely used group of antibiotics in agriculture and healthcare 

applications however they are also potent inhibitors of mitochondrial biogenesis, 

through the binding of rRNA elements of the 16S ribosome (Chatzispyrou et al., 2015). 

However, investigations into the exact binding sites and the mechanisms by which 

tetracyclines protect against bacterial, viral, protozoan and non-infectious health 

conditions remain conflicted in the literature. The broad range of targets inhibited by 
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tetracycline and its derivatives suggests that RNA species present in the cell may be the 

elements which are bound and inhibited, in particular double stranded RNA molecules 

(Chukwudi, 2016). In any case, the use of tetracycline or its derivatives in laboratory 

research, and in particular mitochondrial based investigations, has limitations with 

respect to data analysis and interpretation (Chatzispyrou et al., 2015; Moullan et al., 

2015). Any observation deemed statistically significant is likely to be confounded by the 

impact of the treatment itself rather than exclusively the effect of the protein/gene of 

interest, in this case PRDM9 overexpression. To overcome this, cell lines could be 

created to constitutively overexpress PRDM9 without the need for a tetracycline 

controlled promoter sequence. This was not attempted since experiments using 

transient constitutive expression did not show any detectable PRDM9 expression 

(Chapter 7) however this result might differ when using a stably transfected model. 

In this experimental system, PRDM9 is being expressed in a mammalian cell line which 

is not undergoing meiosis and therefore the protein is not required by the cell. The 

functional role of PRDM9 as a methyltransferase is primarily to allow DSB events to 

occur followed by homologous chromosome crossovers. This process itself would be 

potentially detrimental to a post mitotic cell which has no requirement for DSB events 

within the nucleus. In this case, the cell would presumably try to silence any transcript 

or peptide which might be contributing to DSB events through several possible cellular 

degradation pathways. 

Proteasomal degradation is a complex and highly regulated cellular pathway which 

targets proteins or peptide fragments for breakdown and recycling in response to 

several cellular signals. For example, proteins could be misfolded, aggregated, retarded 

or pathogenic therefore compromising cellular function in some way. In such cases, the 

proteins are targeted for ubiquitination followed by proteasomal degradation either 

through autophagosome formation or delivery by chaperone protein complexes (Hjerpe 

et al., 2016). It is possible to experimentally block such protein degradation through 

several small chemical inhibitors or antibiotics. For example, chloroquine and leupeptin 

are well-established inhibitors of lysosomal degradation and has previously been used 

to show lysosome specific mRNA-protein complex degradation and endocytosis (Seguin 

et al., 2014; Hashimoto et al., 2015). The compound MG132 is a potent proteasome 

inhibitor which specifically targets the 26S pathway (Han et al., 2009) and can be used 

to elucidate the proteasomal pathway responsible for degradation of proteins of interest 
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(Pedersen et al., 2016). Brefeldin A blocks protein transport from the ER to the Golgi 

apparatus and can be used to elucidate the levels of protein recycling (Fernandez-

Messina et al., 2016). Cyclohexamide binds to the ribosome preventing the translocation 

step of peptide elongation in eukaryotic cells (Schneider-Poetsch et al., 2010). Using 

cyclohexamide in pulse-chase experiments could be informative for assessing the rate of 

protein degradation, although it would only be specific to the protein of interest through 

immunoprecipitation pull down assays. 

The functional role of PRDM9 in nuclear recombination is also unknown. Recent data 

shows that PRDM9 most likely interacts with SPO11 which is required for DNA double 

strand break formation (Lange et al., 2016) and it is reasonable to assume that other 

proteins within this pathway are interacting or are affected by PRDM9 during meiosis. 

The cell lines created could be used to further uncover the mechanisms underlying 

meiotic recombination. Chromosome crossover events and global histone methylation 

changes could be studied in this model however investigations would still require 

stabilisation of overexpressed PRDM9 protein. 

Although it was possible to create cell lines harbouring full length human PRDM9 cDNA 

under the control of a tetracycline inducible promoter, the detection of PRDM9 by 

immunoblotting, immunofluorescence or RT-qPCR was not reproducible. Indirectly 

measuring PRDM9 function through H3K4 methylation status shows that our model is 

consistent with previously published data with respect to its nuclear methyltransferase 

activity. Due to a lack of expression, it was not possible to determine PRDM9 cellular 

localisation with respect to the mitochondria in the cell lines created. However, through 

further efforts to block degradation of this protein by the proteasome, lysosome or 

mRNA processing pathways, it would be possible to use this model to answer further 

questions surrounding the localisation and function of PRDM9. 
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Chapter 9 General Discussion  

 

9.1 Overview  

In addition to the detailed discussion sections in each results chapter, the main findings 

of this thesis will be described in the context of the results as a whole. The limitations of 

each study will be described along with suggestions for future investigations which will 

be necessary to fully determine the observations outlined in this thesis. 

The main aim of this thesis was to determine the presence of PRDM9 binding sites 

within the human mtDNA sequence and to elucidate the mechanism by which PRDM9 

protein potentially binds to the molecule, or functions within the mitochondria. In order 

to investigate the possible link between PRDM9 and mtDNA deletion mediation, three 

broad approaches were undertaken; an in silico assessment of PRDM9 motifs within 

mtDNA sequences, a PRDM9 genotyping association study in a single deletion patient 

cohort and investigations into PRDM9 protein function using several approaches.  

 

9.2 Main findings and experimental limitations 

9.2.1 PRDM9 binding motifs are present in human mtDNA 

A DNA motif was found to be enriched within recombination hotspots throughout the 

human genome and was later identified as the target of PRDM9 protein binding (Myers 

et al., 2008). The function of human PRDM9 protein is of interest in a mitochondrial 

context due to the previous identification of a protein binding motif within the mtDNA 

sequence (Myers et al., 2008). The presence of PRDM9 motifs within the mtDNA was 

further explored in this thesis.  

Chapter 4 outlines the in silico method used to detect the presence of 11 independent 

PRDM9 motifs previously identified within the nuclear genome (Jeffreys et al., 2013). 

Motifs were identified in a large cohort (n=31,554) of mtDNA sequences screened using 

this pipeline. Overall, the 11 motif sites showed clustering within the molecule at sites 

within both the major and minor arcs. Population stratification was then performed, 

revealing differences in motif presence between populations shown by broad 

haplogrouping of European, Asian and African sequences. The motifs found within the 
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mtDNA sequences trended towards the expected population specific PRDM9 allele. For 

example, European sequences were expected to contain more motif sites recognized by 

allele ‘A’ than African sequences, which in contrast show more motif sites recognized by 

allele ‘C’. This was expected based on previous PRDM9 allele data from both European 

and African genome analysis (Berg et al., 2010; Berg et al., 2011; Jeffreys et al., 2013). 

Some motif positions identified in this analysis were described previously as flanking 

mtDNA deletion sites (Samuels et al., 2004) suggesting that there might be a functional 

role for PRDM9 protein within the organelle. The data suggest that PRDM9 motif sites 

are prevalent within the molecule and that the position and number of these sites is 

somewhat determined by population mtDNA haplogroup.  

This analysis alone does not prove that there is any functional role for PRDM9 within the 

mitochondria. Available mtDNA deletion breakpoint data was therefore downloaded and 

aligned with the known PRDM9 motif sites to ascertain whether or not the two data sets 

show a pattern of overlap. It was observed that several breakpoints occur at or within 

PRDM9 motif sites on the mtDNA molecule suggesting that there was adequate data to 

prompt functional investigations into the potential role of this protein within the 

mitochondria in vivo. 

9.2.2 PRDM9 alleles are not associated with increased risk of mtDNA single deletion 

The PRDM9 ZnF region is highly polymorphic due to rapidly changing hotspot usage 

throughout human evolution (Myers et al., 2010; Lesecque et al., 2014). Interestingly, 

SNPs within the ZnF region of this gene have been associated with several genomic 

rearrangement disorders, cancer and infertility (Irie et al., 2009; Borel et al., 2012; 

Hussin et al., 2013), though the true pathogenic nature of these variants remains to be 

determined in larger cohorts. In order to determine whether PRDM9 alleles are 

associated with a greater risk of mtDNA deletion formation, the ZnF region was 

genotyped in a cohort of 48 single deletion patients versus 50 healthy controls. Although 

multiple PRDM9 alleles were identified in both case and control cohorts, there was no 

association between any of the alleles and deletion risk. However, there was a 

statistically significant difference in the number of heterozygous individuals in the case 

group compared to the controls. This result could be due to sample bias as only 98 

individuals were genotyped and only 48 of those were patients, or it could be that 

increased heterozygosity at the PRDM9 allele locus is influencing mtDNA deletion 
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formation in this patient group. This genotyping analysis would need to be performed 

using a larger cohort to determine whether this heterozygosity observation is truly 

statistically significant. Additionally, further information concerning characterisation of 

patient mtDNA could be used to better understand whether there is any difference in 

PRDM9 allele distribution due to haplogroup status or deletion breakpoint sites. 

9.2.3 Identifying a model system in which to study PRDM9 protein function 

Expression of PRDM9 is predicted to occur during meiosis of male and female gametes 

(Hayashi et al., 2005; Sun et al., 2015). For this reason, PRDM9 protein studies in mice 

have focused on using testes tissue, where spermatocytes undergo maturation 

(Parvanov et al., 2010). Little is known about the expression pattern of the human 

PRDM9 protein however it is assumed to be similar, if not identical, to that of the mouse. 

Studies into the functional role of human PRDM9 have used partial protein constructs, 

either using the C-terminal ZnF array or a section of the protein spanning the PR/SET 

domain (Wu et al., 2013; Eram et al., 2014; Patel et al., 2016).  

In this study, detection of PRDM9 protein was tested in several cell lines and human 

tissue samples. In order to use tissues as close as possible to embryonic origin, we 

established a collection of female gonadal samples including ovary, placenta and foetal 

gonad. The cell type explored most in this thesis was HEK293, which is embryonic in 

origin. Using protein lysates from tissue and cells, PRDM9 protein detection was not 

possible, as confirmed by mass spectrometry of immunoprecipitated protein. Several 

different PRDM9 antibodies were used throughout this study however, no positive 

PRDM9 signal could be detected. This is most likely due to two factors; the sensitivity of 

protein detection relative to abundance within the cell/tissue and the unreliability of 

appropriate antibodies used to detect this protein. Detection of PRDM9 mRNA 

expression was also performed using RT-qPCR. Although standard curve analysis 

showed that there was amplification of the target transcript, it was present at in very 

low quantity making detection difficult. Together these data suggest that PRDM9 

transcript levels are in low abundance within the cell lines and tissue types tested and 

that the mRNA species are likely rapidly degraded when the cell is not undergoing active 

meiosis. This presents as a major limitation in studying the functional role of this protein 

in human cells and tissues. 
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9.2.4 Characterisation of a PRDM9 overexpression system 

Overexpression of full length PRDM9 was attempted using a transient plasmid 

transfection system. This system showed partial success, as PRDM9 was detected on 

three occasions by immunoblotting. However, the variability of this technique in 

addition to the relatively low number of cells used in this experimental system lead us to 

create a stable overexpression model. These cell lines showed modest PRDM9 

expression under the control of a tetracycline inducible promoter. One cell line, 

harboring PRDM9 fused to a Flag tag, showed expression of a protein at the expected 

size of 103 kDa, specifically detected with anti-Flag. The second cell line, expressing 

untagged PRDM9, did not always show expression of a protein at the expected size, 

possibly due to the nonspecific nature of the PRDM9 antibody.  

In order to assess whether PRDM9 was not being adequately expressed or being rapidly 

degraded by the cell, histone H3 methylation status was assessed. Interestingly, the cell 

lines overexpressing PRDM9 showed an increased amount of H3K4 methylation. Eram et 

al. (2014) showed previously that overexpression of a partial human PRDM9 construct 

was able to carry out methyltransferase activity in HEK293 cells. This is confirmed in 

our model using the full length PRDM9 protein.  

 

9.3 Future investigations 

9.3.2 PRDM9 localisation 

Whilst the PRDM9 overexpression cell lines showed increased H3K4 methylation, there 

was variable detection of the protein itself. When PRDM9 protein was detectable by 

immunoblot, it was expressed in low quantities compared to other proteins suggesting 

that PRDM9 is being actively degraded by the cell, possibly through ubiquitin pathways 

and the proteasome. A lack of detection of mRNA also suggests that the mRNA product 

could be targeted for degradation by deadenylation or endonuclease mediated 

pathways. These hypotheses could be experimentally tested by adding small chemical 

inhibitors to the cell lines in culture.  

It is important to establish whether PRDM9 has any mitochondrial localization before 

further investigations are carried out. Overexpression of a partial PRDM9 peptide 

sequence was successful (as shown in Chapter 7). This experiment could be extended to 
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other regions of the protein to establish whether any are targeted to the mitochondria. 

Based on the observations from such experiments, further organelle investigations could 

be warranted. 

9.3.4 Studies using animal models 

Using animal models such as mouse or zebrafish would be beneficial to further explore 

the potential role of PRDM9 in the mitochondria. Zebrafish can be used as an excellent 

model for oogenesis and reproduction, as gametocytes can be easily harvested (Elkouby 

and Mullins, 2016). These qualities could be employed to further understand the timing 

of expression of PRDM9 and localization of PRDM9 protein. Transgenic zebrafish lines 

are widely available and could be used to model whether a loss of the PRDM9 gene has 

any effect on cellular function (Howe et al., 2017). Localisation of PRDM9 to the nucleus 

was observed in mouse testes tissue (Flachs et al., 2014). However, the authors 

concluded that PRDM9 shuttles to the cytoplasm, although its function in this 

compartment was not clear and has not been studied. Immunofluorescent imaging 

analysis of this tissue could be explored using different antibody markers to understand 

where PRDM9 localises to within the cytosol. Lysosomal, endoplasmic reticulum and 

mitochondrial specific markers would help to further understand what happens to 

PRDM9 when it does not translocate to the nuclear compartment. 

Additionally, a putative binding site for PRDM9 protein has been identified in the mouse 

genome and this could be explored in the mtDNA sequence of several mouse strains 

using publically available sequencing data (Davies et al., 2016). The in silico approach 

outlined in this study could be extended to various taxa, specifically to species closely 

related to Homo sapiens to determine whether a conserved mechanism for PRDM9 

binding in mammalian mtDNA exists. This has not been explored, most likely due to a 

lack of identification of the PRDM9 motif in each individual species. Due to the 

polymorphic nature of the gene, it is probable that the binding motif varies between 

species.  

9.3.3 Elucidating the role of PRDM9 in the nucleus 

Partial recombinant PRDM9 protein has been used previously to assess 

methyltransferase activity and binding affinity of PRDM9 protein to oligonucleotides 

containing the genomic recognition motif (Wu et al., 2013; Eram et al., 2014). In 

addition, a recent study showed that PRDM9 interacts with SPO11 further supporting 
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the role of PRDM9 in the nDNA double strand break pathway (Lange et al., 2016). The 

cell lines created in this project could be utilized to further investigate the mechanisms 

of action of the protein within the nucleus and perhaps help uncover other potential 

protein-protein interactions. Directed mutagenesis of PRDM9 in this cell model could be 

used to understand how different regions of the protein affect nuclear genomic 

recombination patterns.  

 

9.4 Final conclusions 

Throughout this thesis the experimental steps taken to determine whether the 

recombination regulator PRDM9 has involvement in the mediation of mtDNA deletions 

have been described.  

 PRDM9 recognition motifs were identified within 99.9% of human mtDNA 

sequences, however the true functional role of this protein within the 

mitochondria remains unknown.  

 Finding a model in which to study PRDM9 protein function proved difficult due to 

its meiotic specific expression profile.  

 Two stable overexpression cell lines were created and showed promising results 

based on Flag-tag immunodetection and upregulated histone H3 lysine 

methylation. This cell culture model may provide some insights into the function 

of PRDM9 but must be interpreted with caution due to the biologically 

engineered nature of this system.  

 Using animal models would allow further charactrisation of PRDM9 in the tissues 

and cell types in which it is normally expressed, i.e. testes and gametocytes. 

Mitochondrial localization and mtDNA binding have not been determined during this 

study, however to the best of my knowledge this is the first time a cell culture model has 

been created to express full length human PRDM9 and might be of use in future 

experiments.  
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Appendix A: Alignment of mtDNA deletion breakpoint data with 

PRDM9 motif sites 

 

Seven figures are presented below which show visual representations of alignment 

between the mtDNA deletion breakpoint data and PRDM9 motif sites as described in 

Section 4.3.3. 

 

 

Figure A.1 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 2 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 2 sites. 
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Figure A.2 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 4 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 4 sites. 
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Figure A.3 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 5 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 5 sites. 
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Figure A.4 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 6 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 6 sites. 
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Figure A.5 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 7 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 7 sites. 
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Figure A.6 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 9 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 9 sites. 
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Figure A.7 Visual representation of the alignment between deletion breakpoints and PRDM9 motif 11 sites 
within the mtDNA.  Images were generated using the UCSC genome browser. A) The whole image 
generated using this online tool. B) Magnified version of image A. C) Magnified version of image C. Blue 
arrows represent regions where there is visual alignment of the breakpoints and PRDM9 motif 11 sites. 
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Appendix B: PRDM9 ZnF genotyping data 

 

Two tables are presented below showing the genotyping data for the mtDNA single 

deletion patient cohort (Table B.1) and the control cohort (Table B.2) described in 

Chapter 5.  

     Repeat No.           

Patient ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Allele status 

10 A B C D D E C F G H F I J     A 

  A B C D D E C F T P F Q J     L24 

23 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

132 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

143 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

172 A B C D D E C F G H F I J     A 

  A B C D D C C F G H F I J     B 

192 A B C D D E C F G H F I J     A 

  A B C D D E C F G G F I J     A 

206 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

210 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

241 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

243 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

244 A B C D D E C F G H F I J   A 

  A B C D D C C F K H L H I J  C 

255 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     B 

289 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

319 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

347 A B C D D E C F G H F I J   A 

  A B C D D E C F G K F Q J   L20 

352 A B C D D E C F G H F I J     A 

  A B C D D E C F K G H F I J   D 

377 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 
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379 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

380 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

381 A B C D D E C F G H F I J     A 

  A B C D D E C F T P F Q J     L24 

382 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

387 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

412 A B C D D E C F G H F I J     A 

  A B C D D E C F T P F Q J     L24 

449 A B C D D E C F G H F I J     A 

  A B C D D C C F G H F I J     B 

461 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

496 A B C D D E C F G H F I J     A 

  A B C D D E C F G P F Q J     L9 

498 A B C D D E C F G H F I J     A 

  A B C D D C F K H L H F I J   C 

499 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

527 A B C D D E C F G H F I J     A 

  A B C D H F I J         E 

564 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

590 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

612 A B C D D E C F G H F I J     A 

  A B C D D E C F G P F Q J     L9 

616 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

632 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

702 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

705 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

803 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

899 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

918 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

923 A B C D D E C F G H F I J     A 
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  A B C D D E C F T P F Q J     L24 

940 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

1020 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

1022 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

1051 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

1253 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

1360 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

1627 A B C D D D F C F G H F I J   C 

  A B C D D E C F G H F I J     A 

869 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F Q J     A 

103 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F F J     A 

 

Table B.1 Genotyping  analysis of single deletion patient cohort. PRDM9 ZnF repeat types are given in the 
order they appear on the amplicon and were designated a repeat type according to Berg et al 2012. 

 

 

     Repeat No.           

Control ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Allele status 

501                 

1 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

2 A B C D D E C F T P F Q J     L24 

  A B C D D C C F K H L H I J   C 

3 A B C D D E C F G P F Q J   L9 

  A B C D D E C F G H F I J     A 

4 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

5 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

6 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

7 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

8 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 
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9 A B C D D E C F G H F I J     A 

  A B C D D E C F G K F Q J   L20 

10 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

11 A B C D D E C F G H F Q J     A 

  A B C D D C C F G H F I J   B 

12 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

13 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

14 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

15 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

16 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

17 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

18 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

19 A B C D D E C F G H F I J     A 

  A B C D D E C F T P F Q J   L24 

20 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

21 A B C D D E C F G H F I J   A 

  A B C D D E C F G H F I J     A 

22 A B C D D E C F G H F I J   A 

  A B C D D E C F G H F I J   A 

23 A B C D D E C F G H F I J     A 

  A B C D D E C F T P F Q J   L24 

24 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

601                 

1 A B C D D E C F G H F I J     A 

  A B C D D C C F G H F I J   B 

2 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

3 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

4 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

5 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

6 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 
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7 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

8 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J   A 

9 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

10 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

11 A B C D D E C F G H F I J   A 

  A B C D D E C F G H F Q J   A 

12 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F Q J     A 

13 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F Q J     A 

14 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 

15 A B C D D E C F G H F I J     A 

  A B C D D E C F G P F Q J   L9 

16 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

17 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

18 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

19 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

20 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

21 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F Q J     A 

22 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

23 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J    A 

24 A B C D D E C F G H F I J     A 

  A B C D D E C F G H F I J     A 
Table B.2 Genotyping  analysis of control cohort. PRDM9 ZnF repeat types are given in the order they 
appear on the amplicon and were designated a repeat type according to Berg et al 2012. 
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Appendix C: Histological staining 

 

To assess the quality of the ovary tissue samples compared to healthy control muscle 

tissue, hematoxylin and eosin (H & E) staining was performed (Figure C.1). Hematoxylin 

stains the cell nuclei whilst eosin counterstains, showing tissue morphology. Staining 

cryosections of the ovary samples described in Chapter 6 show that the gross 

morphology of the tissue was not as would be expected (Figure C.1 A, B, C & D). The 

state of the tissue suggests that perhaps multiple freeze/thaw cycles or poor tissue 

collection resulted in freezing artefacts. In contrast, healthy muscle tissue from a young 

individual showed expected muscle tissue morphology (Figure C.1 E & F). This tissue 

biopsy was taken recently and has only been through 2 freeze/thaw cycles when used 

for cryosectioning. Overall, the morphology observed from the H & E staining suggests 

that degraded ovary tissue might explain why immunofluorescent stainings described in 

Chapter 6 had a high level of background immunofluorescent signal. 
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Figure C.9.1 Hematoxylin and eosin staining of tissue cryosections. A & B: section from ovary sample PFC-
H-01-07 at 5X magnification (A) and 10X magnification (B). C & D: section from ovary sample PFC-H-02-
07 at 5X magnification (C) and 10X magnification (D). E & F: section from muscle sample PFC-H-351-126 
at 5X magnification (E) and 10X magnification (F). 
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Appendix D: Lentivirus overexpression system 

 

PRDM9 overexpression was also attempted by lentiviral plasmid overexpression, 

described in detail below. 

 

D.1 Lentivirus overexpression system 

In order to overexpress PRDM9 in cell lines other than the modified HEK293 line, for 

example 143B osteosarcoma or HeLa, lentiviral vector overexpression was attempted. 

Cloning of the full length PRDM9 cDNA construct into the pWPXLd plasmid was 

attempted using the pWPXLd vector (Figure D.1). Expression using this vector system 

relies on the retroviral elements derived from HIV-1 which allow stable integration of 

the gene of interest into the genome of both dividing and non-dividing cells. This system 

splits retroviral packaging elements over two plasmids, the transfer plasmid containing 

the gene of interest is shown in Figure D.1.  

 



 

281 

 

 

Figure D.9.1 Schematic of pW PXLd plasmid containing full length human PRDM9 cDNA insert sequence. 
Plasmid elements shown are: SV40 early polyadenylation signal (black), stem loop 2 HIV1 SD for HIV1 
splicing (dark blue), PsiΨ RNA binding site for packaging, Rev Response Elelment (dark blue), EF1α 
promoter element (green), Central Polypurine Tract for DNA transcription (black arrow), Woodchuck 
hepatitis virus post-transcriptional regulatory element WPRE (light blue), 5’ and 3’ Long Terminal 
Repeats (red), ampicillin/hygromycin/puromycin resistance elements (yellow) and gpt plasmid selective 
survival element (pink). 

 

The cloning strategy used for this expression system was to digest the Flag-PRDM9 

cDNA construct from the pcDNA3.1 plasmid used in previous experiments and sub-clone 

the product into pWPXLd using restriction enzyme digestion. The 

pcDNA3.1 Flag-PRDM9 plasmid sequence was checked for all possible restriction 

enzyme sites using the NEBcutter V2.0 (http://nc2.neb.com/NEBcutter2/). PmeI sites 

were found to flank either end of the PRDM9 insert sequence (Figure D.2 A) and could 

also be used to digest the pWPXLd vector. Digestion of pcDNA3 yielded a product at the 

predicted size of ~2700 bp as shown by agarose gel electrophoresis (Figure D.2 B).  
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Figure D.1.2 Sub-cloning of Flag-PRDM9 cDNA sequence into pWPXLd vectors. A) Restriction enzyme sites 
on the pcDNA3.1 Flag-PRDM9, PmeI sites are highlighted in boxes and flank the PRDM9 insert sequence 
(a). B) Agarose gel size separation of restriction enzyme digest products. pcDNA3.1, Flag-PRDM9 and 
pWPXLd digest products are indicated by arrows on the right hand side. 

 

Two pWPXLd plasmids were digested, one with hygromycin and the other with 

puromycin antibiotic resistance genes, both were successfully digested with PmeI in the 

presence of shrimp alkaline phosphatase (Figure D.2 B). The DNA products were 

purified from the gel shown in Figure D.2 B and used for ligation reactions. 
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A vector molar ratio of 1:3 was used for ligation of the Flag-PRDM9 cDNA insert into 

pWPXLd vectors. Briefly, ligation reactions were set up as follows; 5 µL T4 ligase, 2 µL 

2X ligase buffer, 50 ng vector DNA and 66.7 ng insert DNA were mixed by gentle 

pipetting and incubated at 16 °C for 16 hours. Due to the large plasmid size, several 

competent cells were used to produce expansion of the ligation product (detailed in 

Section 3.10) without successful colony growth. Next, a vector to insert ratio of 1:1 was 

used in ligation reactions, also without successful bacterial colony growth.  

Finally, to eliminate any possible negative effects of using only one restriction enzyme in 

the cloning procedure, such as self-religation, the PRDM9 cDNA sequence was PCR 

amplified using pcDNA3.1 Flag-PRDM9 as template.  Primers for PRDM9 cDNA were 

designed to introduce a BamHI restriction site in the reverse prime site (Table D.1). This 

would allow the use of BamHI and PmeI enzymes in the digest reactions and limit self-

ligation of the plasmids which is a risk when using only one enzyme.  

 

Primer Sequence 5’-3’ Annealing Temp. (°C) 

Forward PmeI GCTAGCGTTTAAACTTAAGCTT 72 

Reverse BamHI AGAATTCTGCAGGATCCCAGCACAGTGGCGG 72 

Table D.1 Details of primers used to amplify the Flag-PRDM9 insert sequence. 

 

PCR reaction mix was as follows; 1X reaction buffer, 250 µM dNTPs, 0.5 µM primer 

(forward and reverse), 1 U Phusion DNA polymerase, 10 ng DNA made up to a final 

volume of 20 µL with dH2O. Reactions were placed in a thermocycler using the following 

programme; denaturation at 98 °C for 30 seconds, followed by 30 cycles of denaturation 

at 98 °C for 10 seconds, annealing at 72 °C for 30 seconds, extension at 72 °C for 90 

seconds and final extension at 72 °C for 10 minutes. PCR products were visualised by 

1% agarose gel electrophoresis followed by UV exposure. Temperature gradients were 

performed using two different reaction buffers provided. No amplification was achieved 

using a gradient PCR from 50-60 °C using either buffer. Amplification did not occur 

using the High Fidelity PCR buffer at annealing temperatures ranging from 62-72 °C 

(Figure D.3). Amplification was achieved using the GC Rich Template PCR buffer at all 
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temperatures but was most specific at 70-72 °C (Figure D.3). A band at 2700 bp 

corresponds to the length of the PRDM9 insert sequence however bands were also 

detected at ~2800 and ~125 bp. These are most likely artefacts from the complex 

repetitive nature of the PRDM9 zinc finger array which could lead to collapsed 

fragments or mispriming events producing smaller or longer products than the expected 

2700 bp amplicon. 

 

 

Figure D.1.3 PCR amplification of Flag_PRDM9 cDNA using Phusion High Fidelity Taq polymerase. 
Temperature gradients were performed using High Fidelity (HF) buffer or GC rich template buffer.  Size 
marker in base pairs is shown in lane M. 

 

After gel extraction of the PCR product at 2700 bp, adenosine nucleotide overhangs 

were added using the Bioline polymerase kit as follows; 0.2 mM dATP, 1X PCR buffer, 1 

mM MgCl2, 1 U DNA Taq polymerase, 25 µL PCR product made up to final volume of 50 

µL with dH20. This reaction mix was incubated at 72 °C for 20 minutes. Next, to ensure 

that the size of the pWPXLd was the limiting step for successful bacterial 

transformation, the PCR product was ligated into the much smaller 4 Kb TOPO cloning 

vector (Thermo Fisher Scientific, Loughborough, UK). Briefly, 4 µL PCR product (with A 

overhangs), 1 mM NaCl and 50 ng TOPO vector DNA was incubated at room temperature 

for 5 minutes before transformation of competent cells, as described in Section 3.10.3. 

Unfortunately only three colonies had grown from the plated out transformed cells. One 

colony survived through antibiotic selection when grown in antibiotic selection medium 

and was used for maxi-prep DNA extraction. 
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Purified TOPO-PRDM9 plasmid was digested using BamHI and PmeI enzymes which had 

been incorporated into the 3’ and 5’ ends of the PRDM9 sequence by PCR. Digested DNA 

product was analysed by gel electrophoresis (Figure D.4). The pWPXLd plasmids were 

digested and gave a single band at ~11,000 bp as expected when digested with BamHI 

or PmeI alone and as a double digest. Digestion with PmeI or double enzyme digest 

showed a single band at ~6,000 bp as expected, however, the TOPO-PRDM9 plasmid 

gave two small bands when digested with BamHI alone suggesting that there was 

incorporation of more than one BamHI restriction site. 

  

 

Figure D.1.4 Restriction digest of plasmid DNA purified from competent E.coli. 25 ng DNA was 
electrophoresed on a 1% agarose gel and visualised by UV exposure. DNA size marker was included on the 
gel (M), sizes are given in base pairs. pWPXLd vectors containing either hygromycin or puromycin 
resistance genes were digested with BamHI, PmeI or both (Double digest). The TOPO-PRDM9 plasmid was 
also digested with BamHI, PmeI or both (Double digest).  

 

Sub-cloning the full length PRDM9 cDNA insert into the pWPXLd plasmid was not 

successful. Sub-cloning full length PRDM9 cDNA into pWPXLd was unsuccessful and 

some optimisation of the methodology was required. A number of different approaches 

were tested, such as; lowering incubation temperature (16, 25 and 37 °C), using low-salt 

growth media and agar plates (0.5%), transformation of several competent cell lines 

recommended for large plasmid transformations (TOP10, DH5α and Stbl3) as well as 

trying restriction digest and PCR amplification strategies. Due to the unreliability of this 
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insert incorporation and the difficulties in obtaining positively transformed E.coli 

colonies this lentivirus strategy was not continued.    
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Appendix E: Analysis of NuMt sites at recombination hotspots 

 

E.1 NuMt sites in relation to genomic recombination hotspot regions 

Genomic recombination ‘hotspots’ are defined as regions of the genome where 

chromosome crossovers have occurred, in accordance with genome reshuffling during 

meiosis. Hotspot location data was downloaded from the HapMap database for each 

chromosome. Nuclear mitochondrial (NuMt) sequence locations were downloaded from 

(Li et al., 2012). NuMt sequence locations were incorporated into the hotspot data sets 

for each chromosome and positions compared. Proximity of NuMts to hotspots was 

calculated by subtracting the start positions from each other and alignments were 

verified by eye. In total, 36 NuMts were identified within 20 hotspot regions (Table E.1). 

These regions were present on 13 chromosomes with chromosome 2 containing the 

highest number (4 different hotspot regions). Interestingly, single hotspots containing 

multiple NuMts were found on chromosomes 11 and 14 (Table E.1).   
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Chromosome Start End Type Length Distance from HS start

1 147327001 147350001 HS 23000

1 147332804 147332915 NUMT 111 5803

1 205442001 205445001 HS 3000

1 205444544 205444632 NUMT 88 2543

2 68485001 68491001 HS 6000

2 68487872 68488036 NUMT 164 2871

2 85294001 85301001 HS 7000

2 85295952 85296153 NUMT 201 1951

2 133179001 133183001 HS 4000

2 133182673 133182730 NUMT 57 3672

2 180604001 180608001 HS 4000

2 180604074 180604289 NUMT 215 73

2 180604379 180604467 NUMT 88 378

3 153370001 153378001 HS 8000

3 153376674 153376776 NUMT 102 6673

3 169653001 169656001 HS 3000

3 169654585 169654656 NUMT 71 1584

4* 14508001 14513001 HS 5000

4* 14507530 14507742 NUMT 212 -471

4* 14507834 14508073 NUMT 239 -167

4 182155001 182159001 HS 4000

4 182158556 182158693 NUMT 137 3555

5 93895001 93920001 HS 25000

5 93903161 93906623 NUMT 3462 8160

6 133470001 133474001 HS 4000

6 133471710 133471933 NUMT 223 1709

9 85041001 85047001 HS 6000

9 85042306 85042806 NUMT 500 4695

9 85042830 85042944 NUMT 114 4171

11 103271001 103279001 HS 8000

11 103272857 103273350 NUMT 493 6144

11 103274883 103275102 NUMT 219 4118

11 103275372 103276049 NUMT 677 3629

11 103276576 103276694 NUMT 118 2425

11 103276718 103276943 NUMT 225 2283

11 103277402 103277483 NUMT 81 1599

11 103277548 103277680 NUMT 132 1453

11 103277962 103278170 NUMT 208 1039

11 103278536 103278708 NUMT 172 465

11 103278904 103279035 NUMT 131 97

14 84634000 84640000 HS 6000

14 84637696 84638079 NUMT 383 2304

14 84638350 84638625 NUMT 275 1650

14 84638769 84639028 NUMT 259 1231

14 84639090 84639184 NUMT 94 910

14 84639187 84639382 NUMT 195 813

15 34685000 34689000 HS 4000

15 34686922 34687072 NUMT 150 1922

15 34833000 34837000 HS 4000

15 34833143 34833293 NUMT 150 143

18 59539001 59542001 HS 3000

18 59541804 59542118 NUMT 314 2803

21 46786000 46797000 HS 11000

21 46796121 46796299 NUMT 178 10121

22 46863000 46867000 HS 4000

22 46866181 46866230 NUMT 49 3181
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Table E.1 Alignment data of genomic hotspots and NuMt positions. HS denotes ‘hotspot’; NUMT denotes 
‘nuclear mitochondrial’. Chromosome location and start and end positions are provided. Length of HS or 
NuMt is shown along with the distance of the NuMt sequence from the start of the HS region. 

  

In contrast, a hotspot on chromosome 4 was identified as being downstream of two 

NuMt regions, one overlapping the beginning of the hotspot (Table E.1).  

 

The HapMap Phase III data consists of genome data from 1301 individuals from 11 

population groups. The Phase III build shows the most common ‘events’ based on the 

combined data to give an overall view of general human genome patterns. This makes 

the hotspot data unbiased as it is not population specific. The NuMt data used in this 

study was generated by Li et al using comparisons between the mitochondrial revised 

Cambridge Reference Sequence (rCRS) and the HG19 genome build. This genome is a 

composite of sequences from multiple individuals. The group also analysed data from 

artificial mixes of mtDNA sequences which differed at 34 positions along the molecule. 

These methods ensure that the NuMt data provided is reliable and not population 

biased. Although these data sets have been compiled with efforts to minimise 

confounding factors such as population genetics, there will undoubtedly be differences 

between individuals and this analysis is perhaps not applicable to all genomes. However, 

it provides an overview of the alignment between NuMt sequences and recombination 

hotspots in a model of a generic human genome which represents a large proportion of 

the population. 
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Appendix F: Attendance at scientific meetings 

 

The content of this thesis has been presented in the form of a poster presentation at 

three scientific meetings in 2016:  

1. Mitochondrial Medicine: Developing New Treatments for Mitochondrial Disease, May 

2016, Cambridge, UK. 

2. United Mitochondrial Disease Foundation: Mitochondrial Medicine 2016, June 2016, 

Seattle, USA. 

3. Newcastle University Institute of Ageing: Postgraduate Research Day 2016, June 2016, 

Newcastle, UK. 
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At present 805 mitochondrial DNA (mtDNA) deletions have been described. Short direct 

repeat regions of DNA flank many of these deletions, suggesting that specific regions of 

the mtDNA molecule have a susceptibility to deletion formation. PRDM9 is a meiotic-

specific protein responsible for determining where recombination hotspots will occur in 

the nuclear genome. It binds a specific DNA consensus sequence through its zinc finger 

repeat region. 

The aim of this project is to determine whether the PRDM9 binding motif is present in 

the mtDNA molecule and investigate whether PRDM9 plays a role in mtDNA deletion 

formation. 

A bioinformatic approach was used to screen mtDNA sequences from 31,000 individuals 

for the presence of the PRDM9 binding motif. The motif was found in 99.9% of the 
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sequences searched at a position known to flank a previously described deletion 

(m.5327). Several sequences contained the motif more than once with some sequences 

containing up to 3 motif sites in total. Classifying the sequences by broad haplogrouping 

(African, Asian and European) showed population differences with respect to the 

number of motifs present. Further analysis of the European sequences showed 

differences between sub-haplogroup status and the number of motifs present 

Genotyping via Sanger sequencing of the PRDM9 zinc finger repeat region in a cohort of 

48 single deletion patients and 50 healthy controls showed no correlation between 

PRDM9 allele status and the presence of the ‘common’ 4977bp mtDNA deletion.  

Subcellular fractions of HEK-293T cells followed by SDS-PAGE and immunoblotting with 

anti-PRDM9 antibody showed PRDM9 protein is enriched in mitochondria. However, the 

antibody gave unreliable multiple banding on Western blot membranes. To address this, 

stable cell lines overexpressing FLAG-tagged PRDM9 under control of the tetracycline 

inducible promoter were created. PRDM9 expression was detected by immunoblotting. 

PRDM9 was previously reported to directly methylate the lysine 4 residue on histone 3 

and measurement of H3K4me3 protein levels in these cell lines showed a significant 

increase.  

The PRDM9 recognition motif previously described is present in human mtDNA. PRDM9 

protein appears to be enriched in the mitochondrial fraction of HEK-293 cells suggesting 

that PRDM9 may play a role in mediating mtDNA maintenance during development.  
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