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Abstract

We compute the rovibrational eigenstates of the H2O-H2 Van der Waals complex using the accurate rigid-rotor potential
energy surface of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] with the MultiConfiguration Time Dependent
Hartree (MCTDH) method. The J = 0 − 2 rovibrational bound states calculations are done with the Block Improved
Relaxation procedure of MCTDH and the subsequent assignment of the states is achieved by inspection of the wave-
functions’ properties. The results of this work are found to be in excellent agreement with previous time independent
calculations reported for this complex and therefore confirms the high accuracy as well as efficiency of the MCTDH
approach for the rovibrational spectroscopic study of such weakly bound complexes.
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1. Introduction

Simulating material properties from first principles at
the molecular level is a very challenging goal for all tech-
nological materials development or for a more fundamen-
tal perspective. This may require an accurate ab initio
potential energy surface (PES) which should be accurate
enough to be used for a large range of applications starting
from gas-phase to the study of the bulk-phase properties.
For many years, the field of van der Waals molecules, or
weakly bound complexes (implying non-covalent bonding
between atoms), has emerged and their molecular spec-
troscopic properties (like tunneling splittings in water clus-
ters) have been used to test or/and develop accurate many-
body PESs. Usually those molecular cluster PESs are ex-
panded as a sum of low-order many body terms[1, 2, 3,
4, 5, 6, 7]. It was shown that including up to three-body
terms is enough to correctly reproduce the infrared and
Raman spectrocopy of liquid water[8, 9]. The accuracy of

the ab initio two-body term, the dimer potential, may be
evaluated by a direct comparison between observed exper-
imental spectrum and theoretical spectrum obtained by
solution of the Schrödinger equation as was done recently
in the study of the water dimer[10, 11].

The H2O-H2 van der Waals complex is an example of a
molecular dimer with relevance in domains beyond chem-
ical physics. It is indeed an important system within the
astrophysical context since H2O is the third most abun-
dant polyatomic system after CO and H2. Thus the com-
plex involves two of the most abundant molecules in the
Interstellar Medium (ISM), which are also important on
Earth. The knowledge of an accurate PES is thus required
in order to determine the efficiency of the molecular (H2O)
cooling through its inelastic collisions with molecular hy-
drogen [12, 13, 14, 15, 16, 17]. This van der Waals complex
is also of interest for gas storage materials such as hydro-
gen clathrate hydrates[18, 19, 20] due to their potential
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as efficient and environmentally friendly materials for hy-
drogen storage. Indeed, most of the theoretical studies of
one or more H2 molecules encapsulated in clathrate hy-
drate make the assumption that the interaction between
the guest molecule and the host ice-water structure can
be described as a sum of pairwise water-hydrogen dimer
interactions[21, 22].

The quantum dynamics of H2O-H2 is complicated by
the inherently large amplitude motions which character-
ize weakly-bounded complexes with light-atoms and their
associated large zero-point-energies (ZPE). All intermolec-
ular motions are delocalized over the various minima of the
PES. The previous theoretical spectroscopy studies have
used a time-independent approach to solve the Schrödinger
nuclear equation and compute the rovibrational bound
states within the rigid rotor model. Those previous spec-
troscopic calculations have been performed by Wang and
Carrington [23] using a combination of Discrete Variable
Representation (DVR) and Finite Basis Representation
(FBR) with Lanczos diagonalization as well as by Avoird[24]
who used a Close Coupling (CC) methodology combined
with a Davidson algorithm to determine the rovibrational
states. Those two time independent calculations have also
used the accurate five dimensional ab initio potential of
Valiron et al.[25] which was obtained from the original
nine-dimensional potential energy surface by averaging over
the intramolecular vibrational ground state probability den-
sities of water and hydrogen.

In this work, we describe the numerical solution of
the rovibrational Schrödinger equation for this complex
using an efficient time-dependent method: the MCTDH
approach. This approach was recently used by Ndengué
et al.[26] in an inelastic scattering study of the Ar-H2O
atom-triatom complex and has demonstrated remarkable
accuracy in comparison to CC calculations on this same
system. This work on the water-hydrogen complex is an
immediate continuation of the previous work and repre-
sents the first application of the MCTDH methodology
for the rovibrational spectroscopy of a diatomic-triatomic
system.

This article is organized as follows: first we will discuss
the computational procedure, introducing the MCTDH
method, the Hamiltonian (kinetic operator and the po-
tential energy surfaces) and how the rovibrational states
calculations are done. Next we will present and discuss
our results and conclude with perspectives.

2. Computational procedure

2.1. Rigid Body diffusion monte carlo calculations

In order to benchmark the ground state calculation,
we have performed the ground state calculation of the
para-para H2O–H2 complex using Diffusion Monte Carlo
(DMC). Indeed, this is a practical method to solve ac-
curately the many-body vibrational Schrödinger equation
and is particularly suited to the determination of the vi-
brational ground state. DMC replaces the resolution of the

time-independant Schrödinger equation by the simulation
of a diffusion process in imaginary time τ = it on a given
multidimensional PES. In particular, DMC avoids the con-
vergence problems that can be encountered in discrete-
variable representation or in spectral approaches due to
the finite basis set representation, and thus is often used as
a reference method to provide benchmark values. We use
the rigid-body version of DMC (RB-DMC), initially pro-
posed by Buch [27], and used by other authors [28, 29] to
compute the vibrational ground state of weakly bounded
clusters. For these molecular systems, decoupling the fast
intramolecular modes from the slow intermolecular modes
is a very good approximation and we can consider each
rotor as a rigid body since this approximation was already
validated in the case of water dimers[30]. Our RB-DMC
simulations are performed with the Xdmc code developed
by Benoit[31] (see also Ref. [32] for implementation de-
tails). In this study we use 500 replicas, a stabilization
period of 11 × 100 cycles with ∆τ = 30 a.u. and an av-
eraging phase of 2000 × 100 cycles with ∆τ = 5 a.u. We
get a RB-DMC vibrational ground state of −33.58 ± 0.16
cm−1 in very good agreement with the previous values of
Wang and Avoird. The water–hydrogen system is indeed
strongly anharmonic and has a very weakly bound vibra-
tional ground state.

2.2. The MCTDH method

The MultiConfiguration Time Dependent Hartree [33,
34] method is a time-dependent method in which each de-
gree of freedom is associated with a small number of or-
bitals or single particle functions (SPFs) which, through
their time dependence, allow efficient description of the
molecular dynamical processes. The total MCTDH wave
function is expanded in Hartree products, that is, products
of single-particle functions

Ψ(Q1, . . . , Qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1···jf (t)

f∏
κ=1

φ
(κ)
jκ

(Qκ, t)

=
∑
J

AJΦJ , (1)

where f is the number of degree of freedom of the sys-
tem, Q1, . . . , Qf are the nuclear coordinates, Aj1···jf de-

notes the MCTDH expansion coefficients, and φ
(κ)
jκ

(Qκ, t)
are the nκ SPFs associated with each degree of freedom
κ. The subsequent equation of motion for the coefficients
and single particle functions are derived after replacing the
wave function ansatz into the time dependent Schrödinger
equation. To solve the equations of motion, the κ SPF are
represented on a primitive basis or discrete variable repre-
sentation (DVR) grid of Nκ points,

ϕ
(κ)
jκ

(Qκ, t) =

Nκ∑
iκ=1

c
(κ)
iκjκ

(t)χ
(κ)
iκ

(Qκ) (2)
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Figure 1: Definition of the Jacobi vectors for the H2O-
H2 dimer. Gj is the center of mass of the jth monomer.
~R1 joins the center of mass of G1 and G2 and defines the

z− axis. In the current calculations the
~
R

(j)
i vectors have

fixed lengths.

where in general the nκ of Equation (1) is such that nκ <
Nκ. Thus, the MCTDH method propagates a wave func-
tion on a small time-dependent, variationally optimized
basis set of single-particle functions, which in turn are de-
fined on a time-independent primitive basis set.

2.3. The Kinetic Energy Operator

For the MCTDH algorithm to be efficient, the Hamil-
tonian operator must be written as a sum of products
(SOP) of single-particle operators. The Kinetic Energy
Operator (KEO) has always the required form when us-
ing polyspherical coordinates, such as the Jacobi coordi-
nates used in this work where we followed the approach of
Ref.35 the subsystem KEO derivation presented by Gatti
and Iung[36] which was used recently to describe an asym-
metric rotor – atom collision[26]. As was the case with
previous MCTDH calculations involving fragments, we do
not work in the Body-Fixed frame but in the E2 frame[36]
which is obtained by rotation of the two first Euler angles
of the SF frame. A choice of the vectors for this calcula-
tion is displayed in Figure 1. The KEO in the E2 frame is
generally expressed as

2T̂ = − 1

µR

∂2

∂R2
+ 2T̂A + 2T̂B

+
1

µRR2

(
~J† ~J + (~LA + ~LB)2 − 2(~LA + ~LB) ~J

)
E2

,(3)

where µR is the reduced mass of the H2O–H2 cluster, the
A and B subscripts refer respectively to the H2O and H2

fragments. J , LA and LB are respectively the total an-
gular momentum of the system and the angular momenta
of the fragments A (H2O) and B (H2). The rigid rotor

Hamiltonian of the H2O molecule is expressed as[37]

T̂A =
A

2

(
L2
A,+ + L2

A,− + LA,+LA,− + LA,−LA,+
)

−C
2

(
L2
A,+ + L2

A,− − LA,+LA,− − LA,−LA,+
)

+BL2
zBFA , (4)

where the rotational constants have values A = 27.8572
cm−1, B = 14.5145 cm−1and C = 9.2799 cm−1. The rigid
rotor kinetic energy of the H2 fragment is written simply
as T̂B = BH2

~L2
B where the rotational constant BH2

=
59.2434 cm−1. The final form of the KEO translated and
implemented in the MCTDH code is then

2T̂ = − 1

µR

∂2

∂R2
+ 2T̂A + 2T̂B

+
1

µRR2

(
J(J + 1) + ~L2

A + ~L2
B − 2L2

A,z − 2L2
B,z

)
+

1

µRR2
(LA,+LB,− + LA,−LB,+ − 2LA,zLB,z)

+
1

µRR2
(C+(J,K)(LA,+ + LB,+))

+
1

µRR2
(C−(J,K)(LA,− + LB,−)) , (5)

with

LA(B),± = LA(B),x ± iLA(B),y, (6)

and

C±(J,K) =
√

(J(J + 1)−K(K ± 1). (7)

2.4. The Potential Energy Surface

The potential energy operator just as the KEO needs
to be expressed in the product form. For systems of low
dimensionality which are not already in the product form,
there exists an efficient fitting procedure (Potfit)[38, 39]
implemented in the MCTDH package[40] to obtain the
desired representation. For high dimensionality potentials
MultiGrid[41], Multi-Layer[42] and Monte Carlo[43] ver-
sions exist to transform a general potential to the prod-
uct form. However those implementations often lead to
a large number of potential terms which will slow down
the computations, for example in scattering calculations
where several long propagations are necessary to obtain
the cross-sections. In this work, we are able to go around
this difficulty since the potential[25] is already provided in
a multipolar form and we only had to make a transforma-
tion to express it in the coordinates representation used
for the MCTDH calculations.

The surface from Ref.25 is expressed as

V (R, θ, ϕ, θ′, ϕ′) =
∑
i

vi(R)t̄i(θ, ϕ, θ
′, ϕ′) (8)
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where i = {lA,mA, lB , l} and t̄lA,mA,lB ,l is expressed as

t̄i(θ, θ
′, ϕ, ϕ′) =

1

2π
αlA,mA

lA∑
r1=−lA

lB∑
r2=−lB

βi,r1

(
lA lB l
r1 r2 r

)
×
(
P r2lB (cosθ′)P rl (cosθ)cos(r2ϕ

′ + rϕ)
)

(9)

with

αlA,mA =

√
2lA + 1√

2 + 2δmA,0
, (10)

and

βi,r1 =
1

2π

(
δmA,r1 + (−1)lA+mA+lB+lδ−mA,r1

)
. (11)

The maximum order of the terms involved in the ex-
pansion are lA = 11, lB = 6, resulting in 149 vi(R) terms
in equation (8) with mA(≥ 0), lA and lA + lB + l always
even because of symmetry considerations. The BF of the
original PES is defined such that its origin is the center of
mass of the H2O molecule, the z− axis is its C2 axis with
the positive z in the direction of the O atom and the xz
plane is the molecular plane. The angles (θ, ϕ) and (θ′, ϕ′)
represent respectively the collisional direction and the H2

fragment orientation in the Body-Fixed (BF) frame. In the
MCTDH implementation, the dynamics in the E2 frame
is described by 6 coordinates, R the fragments’ separation
and 5 angles: αA, βA, γA, θB and φB . The origin of the
E2 frame is the center of mass of H2O as was the case
with the BF frame. The z − axis is the axis of ~R, the
connecting vector between the centers of mass of H2O and
H2. The 3 Euler angles αA, βA, γA give the orientation
of of H2O in our frame while the other 2 spherical angles
θB and φB give the orientation of the H2 fragment. We
point out that the BF Frame and the E2 Frame mentioned
here correspond respectively to the Molecule Fixed (MF)
Frame and the Dimer Fixed (DF) Frame described in the
work of Wang and Carrington [23]. A cut of the PES ex-
pressed in the set of coordinates used by Valiron et al is
shown in Figure 2.

As Van der Avoird and Nesbitt[24] noticed, there are
two ways to transform the PES from the MF Frame set
of coordinates to DF Frame set of coordinates. In the
first approach the coordinates are related according to
θ = βA, ϕ = π − γA and θ′, ϕ′ can be expressed in terms
of αA, βA, γA, θB , φB with the use of the inverse Euler ro-
tation matrix; then the PES in the appropriate frame can
be numerically generated. This procedure, used by Wang
and Carrington,[23] is not convenient for this work as it
would require to build a new SOP expansion of the PES
after the surface is numerically transformed. The second
approach,[24] which is the one we selected, relates the co-
efficients of the multipolar expansion in both frames and
thus allows one to generate the PES exactly in the E2

Frame directly in the SOP form. The correctness of the

Figure 2: 2D cut of the PES in the set of coordinates
used by Valiron et al[25]. The figure shows the global and
secondary minima of the PES.
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multipolar expansion can then be verified by comparison of
the PES values with the ones generated from the first ap-
proach. This second approach saves a significant amount
of time and allows a lot of flexibility in the calculations.

2.5. Rovibrational states calculations with MCTDH

The rovibrational bound states of the H2O–H2 complex
are obtained with the block improved relaxation method[44,
33], implemented in the MCTDH package[40]. The block
improved relaxation is derived from the improved relax-
ation method[45], an MCSCF approach where the SPFs
are optimized by relaxation[46] (propagation in imaginary
time) and the coefficients vector (A-vector) is determined
by diagonalization of the Hamiltonian matrix evaluated in
the set of SPFs. The working equations of the improved re-
laxation and block improved relaxation have already been
presented elsewhere[47, 33] and thus aren’t given here.

The primitive basis, its range and the number of the
SPFs used for the calculations of the rovibrational states
are summarized in Table 1. We see that not more than
48,000 Single Particle Functions are used to run the calcu-
lations. As the calculation method is the Block Improved
Relaxation, we have to perform several of those to obtain
the complete set of expected rovibrational levels. Each
calculation for a block of 6 functions with 48,000 SPFs
and using 32 processors on a Linux based cluster takes
approximately 48 hours. While the time for each calcula-
tion is not very long, the blocks are typically done sequen-
tially, waiting for each block to complete (or be near com-
pleted) before starting the next block of higher states: this
procedure adds to the overall duration of the calculation
which therefore could even take longer than traditional
time-independent calculations, depending on the number

4



of desired states. However, quite often in this type of ap-
plication, one is interested only in a limited number of low
lying states making this procedure advantageous. A primi-
tive basis composed of Fast Fourier Transform (FFT) func-
tions for the intermolecular distance R was coupled with a
Wigner-DVR[37] basis where αA, γA are replaced by their
momentum representation kα, kγ and a two dimensional
extended Legendre-K DVR[48] (replacing φB by kφ) to de-
scribe respectively the orientation of the H2O and the H2

fragments in the E2 frame. The Wigner and Legendre-
K DVRs switch between their respective FBR (Wigner
and Spherical harmonics) and DVR to calculate the ac-
tion of the derivatives of operators (and the singularities)
and to evaluate the potential respectively. Leforestier[37]
defined the unitary transformation that goes from the 3D
DVR to the 3D FBR: this transformaton is what is imple-
mented in the MCTDH code for the Wigner-DVR, and a
2D version for the Legendre-K DVR. For testing purposes,
we also ran (J = 0) calculations with the angular prim-
itive basis composed of the ”usual” Wigner-DVR basis
and a two dimensional Legendre DVR. The (Wigner,K,K)
and (KLeg,K) DVRs are then replaced by their counter-
parts the (Wigner,Exp,Exp) and (PLeg,Exp) DVRs, where
KLeg and PLeg are respectively the extended Legendre
DVR and two dimensional Legendre DVR. Results of the
two sets of calculations were confirmed to be identical,
with the second set running faster than the first one. How-
ever that approach is not yet implemented in the MCTDH
package for J > 0: thus, in the rest of this work we used
only the first method for our calculations.

After transforming the PES from Equation (8) to the
E2 frame we can write

V (R, βA, γA, αA, θB , φB) =
∑
rβ ,rγ
rα,rθ

Ṽrβ ,rγ
rα,rθ

(R)frβ ,rγ
rα,rθ

(ωA, ωB)

(12)

where

frβ ,rγ
rα,rθ

(ωA, ωB) = D
(rβ)
rαrγ (αA, βA, γA)?Crθ,−rα(θB , φB)

(13)

with D and C being respectively the Wigner D-matrix and
the Racah normalized spherical harmonics. The action of
the potential on the wavefunction can then be obtained
using kα, kγ and kφ to express the angles αA, γA and φB ,
where in the following we drop the indices A and B for
simplicity.

V̂Ψ(R, β, kγ , kα, θ, kφ) =
∑
rβ ,rγ
rα,rθ

V̄rβ ,rγ
rα,rθ

(R, β, kγ , kα, θ, kφ)

×Ψ(R, β, kγ − rγ , kα − rα, θ, kφ + rα). (14)

The primitive basis set was selected from previous work
[23] done on this system for which a convergence of the re-
sults to 0.002 cm−1 or less for the low lying states was re-

Table 1: Parameters of the primitive basis used for the
rovibrational calculations of H2O-H2. FFT stands for the
Fast Fourier Transform. Wigner stands for the Wigner
DVR. KLeg is the extended Legendre DVR. The units for
distance and angle are bohrs and radians respectively.

Coords. Primitive Number of Range SPF
Basis Points basis

R FFT 96 4.0–26.0 10-20
β Wigner 9 0–π 20-80
γ K 17 -8,8
α K 17 -8,8
θ KLeg 9 0-π 20-30
φ K 17 -8,8

ported. Also, the number of SPFs was increased in the cal-
culations from a relatively small number for the lower lev-
els to significantly higher values for higher excited states.
This however presents a challenge since currently symme-
try is not implemented for the Wigner primitive basis in
the MCTDH package. The calculations for para/ortho
H2O and H2 were done without differentiating these states
and the results we obtained were general and did not sep-
arate bound from resonance states for the various sym-
metries. For this work we will only address bound states
of this system as reliable data are available for compari-
son. The calculations of resonances will be described and
discussed in future work where we will take advantage of
a recently presented procedure to obtain resonances with
MCTDH[49].

3. Results and discussion

3.1. Rovibrational states and symmetry

The rovibrational states of the H2O-H2 cluster for J =
0, 1, 2 were computed with the method described above.
For this work the assignment was straightforward as two
sets of data[23, 24] (obtained with the same PES) which
agreed very well with our calculations are already avail-
able in the literature and thus served as reference for the
assignment. Comparisons of our calculations with previ-
ous results are displayed in Tables 3, 4, 5 and 6. It is
worth pointing out that the difference between the two
sets of previous results probably arise from the difference
in the rotational constants values used by each group of
authors; in our work we used the values used by Wang and
Carrington[23]. Note also that their computed pH2O-pH2

ground state also agrees well with our RB-DMC results.
As described previously, the assignment of states re-

sulting from MCTDH calculations (at least in its current
implementation) while not trivial, is about as difficult as
it is with other methods for rigid rotor Van der Waals sys-
tems. Though the calculations that were performed here
did not include the symmetries of the dimer, it is possible
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Table 2: Convergence of the rovibrational energies (cm−1)
of H2O-H2 for J = 0. The results are displayed for various
SPF basis and reported as n1/n2/n3 where the ni are the
number of SPF functions for R, (β,γ,α), (θ,φ).

10/40/20 20/60/25 20/70/30 10/80/30 20/90/40
-33.551 -33.562 -33.562 -33.563 -33.563
-12.826 -12.845 -12.845 -12.845 -12.846
-7.412 -7.418 -7.421 -7.421 -7.421
-7.412 -7.418 -7.421 -7.421 -7.421
-2.057 -2.064 -2.064 -2.064 -2.064
1.418 1.411 1.411 1.411 1.411

within the MCTDH code to implement and use symmetry
of the Wigner-DVR and KLeg-DVR and thus run 4 sep-
arate type of calculations to treat the specific pH2O-pH2,
pH2O-oH2, oH2O-pH2 and oH2O-oH2 cases presented in
previous work. Thus in our computations, amongst the
results, we expected to obtain the real bound states for
some cases along with resonances from other cases as we
do successive block improved relaxation calculations. In
previous work by van der Avoird and Nesbitt[24] or Wang
and Carrington[23], the primitive basis was constrained
such that K, the projection of the total angular momen-
tum writes K = mA +mB . Then, for example, K = 0 re-
quires mA = −mB and all the states that will result from
their rovibrational calculations will present those charac-
teristics. While this type of constraint is difficult to im-
plement within the MCTDH program, it is still possible
to obtain from the results of our calculations the rovibra-
tional states that fullfill those conditions for a specific J
and K and discard the other dummy states (with J = 0
and K = mA + mB = ±1 for example) which may also
appear in the calculations. We show in Table 2 the con-
vergence of the first few states for J = 0, an output from
the MCTDH calculations. We use for these calculations a
primitive basis which is similar in its range and size to the
results reported by Wang and Carrington[23], but where
we varied the number of SPFs. We can see from the Table
the convergence of the calculation, but also the dummy
(or spurious) states in italic, as mentioned earlier.

The results of the rovibrational calculations from the
Heidelberg MCTDH program provide relevant information
that can be used to assign the various states. First, it is
possible to remove spurious or non-physical rovibrational
states (as we mentioned before) with 〈mA〉 + 〈mB〉 > J
from the calculations by individually analysing each state,
doing for example a short time single-state calculation.
The value of 〈mA〉 + 〈mB〉 allows also one to determine
the character of the rovibrational state (Σ, Π, ∆, ...). It
is worth pointing out that for our calculations we didn’t
notice any spurious states but for another system (H2O-
HCN) currently being investigated this check is relevant.
Secondly, in a block calculation where no use of symmetry

Table 3: Rovibrational energy levels (cm−1) of pH2O-pH2

for J = 0, 1, 2. The parity (P ) e and o stand for even
and odd respectively. The character and dominant jkakc
are expressed as Λ(jkakc) where Λ can be Σ, Π, ∆ for
K = 0, 1, 2 (see text for details). Comparisons are made
with other calculations reported for the same PES: Wang
& Carrington[23] and Van der Avoird & Nesbitt[24]. En-
ergies are in cm−1.

P Λ(jkakc) Ref. [23] Ref. [24] This Work
J = 0

e Σ(000) -33.576 -33.567 -33.563
e Σ(000) -2.064 -2.062 -2.064

J = 1
o Σ(000) -32.194 -32.184 -32.181
o Σ(000) -1.400 -1.398 -1.398

J = 2
e Σ(000) -29.443 -29.433 -29.430
e Σ(000) -0.163 -0.163 -0.156

Table 4: Same as Table 3 for oH2O-pH2.

P Λ(jkakc) Ref. [23] Ref. [24] This Work
J = 0

e Σ(101) -12.850 -12.834 -12.846
o Σ(110) 15.618 15.657 15.638
e Σ(101) 21.939 21.946 21.944

J = 1
o Σ(101) -12.071 -12.055 -12.065
e Π(101) -6.077 -6.062 -6.058
o Π(101) -5.452 -5.437 -5.435
e Π(110) 6.951 6.992 6.963
o Π(110) 7.314 7.355 7.325
e Σ(110) 17.300 17.339 17.320
o Σ(101) 21.885 21.891 21.897
e Π(101) 22.961 22.967 22.963
o Π(101) 23.614 23.619 23.613

J = 2
e Σ(101) -10.261 -10.245 -10.253
o Π(101) -3.367 -3.352 -3.349
e Π(101) -1.759 -1.744 -1.743
o Π(110) 9.073 9.114 9.085
e Π(110) 10.094 10.135 10.105
o Σ(110) 20.579 20.618 20.598
e (101) 22.524 22.529 22.525
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Table 5: Same as Table 3 for pH2O-oH2.

P Λ(jkakc) Ref. [23] Ref. [24] This Work
J = 0

e Σ(000) 64.879 65.083 64.892
e Σ(000) 109.911 110.115 109.913
e Σ(111) 115.120 115.335 115.075
o Σ(111) 117.733 117.956 117.958

J = 1
o Σ(000) 66.294 66.498 66.307
o Π(000) 80.176 80.378 80.233
e Π(000) 80.217 80.419 80.274
o Σ(000) 110.897 111.100 110.898
e Π(111) 111.370 111.585 111.378
o Π(111) 111.442 111.656 111.439
o Σ(111) 116.408 116.623 116.448
e Π(000) 117.361 117.561 117.393
o Π(000) 117.609 117.807 117.616

J = 2
e Σ(000) 69.114 69.318 69.127
e Π(000) 82.910 83.112 82.966
o Π(000) 83.031 83.232 83.086
e Σ(000) 112.766 112.966 112.770
o Π(111) 113.602 113.816 113.610
e Π(111) 113.761 113.974 113.756
o Π(000) 118.451 118.654 118.566

was made such as in our calculations, the character ortho
or para of the rovibrational states could be determined
from the expectation value of the grid population of the θ
DOF. In other words the average value 〈j〉 of the rovibra-
tional state where j is the angular momentum quantum
number of the H2 fragment. As it is well known for H2,
para and ortho states have respectively an even and odd
j progression and therefore the value of 〈j〉 provides the
necessary information to differentiate the states. Alter-
natively, using the Extended Legendre DVR filtered with
even or odd functions could also allow one to differentiate
pH2 from oH2 states. Third, the j of the dominant jkakc
use in the assignment can be determined from the expec-
tation value of the grid population of the β DOF. Finally,
as an alternative to all the previous methods, one could
use projection methods like the one described by Wang
and Carrington[23] to assign the states.

4. Conclusion

We report calculations of rovibrational energies on the
H2O-H2 system in the rigid rotor approximation, obtained
with the MCTDH algorithm on the Valiron PES[25]. Our
results are found to be in very close agreement with the val-
ues previously reported. The calculations performed here
with the MCTDH program are relatively fast, computa-
tionally cheaper and relatively easier to implement than

Table 6: Same as Table 3 for oH2O-oH2.

P Λ(jkakc) Ref. [23] Ref. [24] This Work
J = 0

e Σ(101) 93.685 93.895 93.676
o Σ 98.380 98.595 98.730
e Σ(101) 114.211 114.424 114.854
o Σ(110) 122.565 122.797 122.711
o Σ 129.095 129.310 129.138
e Σ(101) 137.485 137.687 137.481
o Σ(101) 140.783 140.985 140.850
e Σ(101) 140.992 141.196 140.945

J = 1
o Π(101) 83.224 83.434 83.248
e Π(101) 83.454 83.664 83.478
o Σ(101) 95.309 95.518 95.300
e Σ(101) 98.834 99.047 99.020
o Π(101) 100.004 100.210 100.004
e Π(101) 100.899 101.110 101.063
o Σ(101) 115.389 115.602 115.047
e Σ(110) 123.879 124.111 124.025
e Π(110) 126.158 126.383 126.229
o Π(110) 126.261 126.486 126.324
e Σ(111) 130.346 130.561 130.414
e Π(101) 134.439 134.804 134.542
o Π(101) 134.596 135.147 134.634
o Σ(101) 138.501 138.702 138.505
e Π(101) 138.912 139.111 138.919
o Π(101) 139.077 139.276 139.074
e Σ 141.847 141.698
o Σ(101) 142.015 142.218 141.972

J = 2
e Π(101) 85.596 85.806 85.619
o Π(101) 86.257 86.467 86.282
e Σ(101) 98.511 98.721 98.619
o Σ(101) 100.781 100.990 100.953
e Π(101) 102.588 102.794 102.588
o Π(101) 104.190 104.402 104.359
e ∆(101) 110.678 110.890 110.727
o ∆(101) 110.712 110.924 110.727
e Σ(101) 117.757 117.971 117.432
o Σ(110) 126.476 126.707 126.613
e ∆(110) 126.858 127.081 126.878
o ∆(110) 126.881 127.105 126.916
o Π(110) 129.049 129.273 129.109
e Π(110) 129.300 129.523 129.359
o Σ(111) 132.833 133.048 132.880
e Π(101) 135.858 136.066 135.897
o Π(101) 136.705 136.913 136.750
o Π(101) 139.904 140.104 139.936
e Π(101) 140.305 140.505 140.324
e Σ(101) 140.333 140.534 140.324
o ∆(101) 142.044 142.242 142.061
e ∆(101) 142.079 142.277 142.090
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standard calculations and therefore appear as a bright
prospect for the investigation of similar or other even more
complex systems. Additionally, the extension to full di-
mensionality (9D) calculations on this system can be eas-
ily implemented and performed at a lower cost than other
traditional methods, even though it may become more dif-
ficult to implement the symmetry in higher dimensionality.
This work opens the path to a systematic study of various
similar systems[50] and is an important step towards our
study of H2O+H2 collisions which will be presented in a
future paper.
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