
A Flexible Approach to Introductory Programming

Engaging and motivating students.

Neil Gordon†
Computer Science

University of Hull

Hull, UK

n.a.gordon@hull.ac.uk

Mike Brayshaw
 Computer Science

University of Hull

Hull, UK

m.brayshaw@hull.ac.uk

Simon Grey
 Computer Science

University of Hull

Hull, UK

 s.grey@@hull.ac.uk

ABSTRACT

In this paper, we consider an approach to supporting students of

Computer Science as they embark upon their university studies.

The transition to Computer Science can be challenging for students,

and equally challenging for those teaching them. Issues that are

unusual – if not unique – to teaching computing at this level include

 the wide variety in students background, varying from no

prior experience to extensive development practice;

 the positives and negatives of dealing with self-taught

hobbyists who may developed buggy mental models of the

task in hand and are not aware of the problem;

 the challenge of getting students to engage with material that

includes extensive practical element;

 the atypical profile of a computing cohort, with typically

80%+ male students.

The variation in background includes the style of prior academic

experience, with some students coming from traditional level 3 (i.e.

A-levels), some through more vocational routes (e.g. B-Tech,

though these have changed in recent years), through to those from

experiential (work based) learning. Technical background varies

from science, mathematical and computing experience, to no direct

advanced technical or scientific experience.

A further issue is students’ attainment and progression within

higher education, where the success and outcomes in computer

science has been identified as particularly problematic. Computer

Science has one the worst records for retention (i.e. students leaving

with no award, or a lower award than that originally applied for),

and the second worst for attainment (i.e. achieving a good degree,

that being defined as a first or a 2:1).

One way to attempt to improve these outcomes is by identifying

effective ways to improve student engagement. This can be through

appropriate motivators – though then the balance of extrinsic versus

intrinsic motivation becomes critical. In this paper, we consider

how to utilize assessment – combining the formative and

summative aspects - as a substitute for coarser approaches based on

attendance monitoring.

CCS CONCEPTS

• Computing Education • Computer-managed instruction

• Computer Science education • Human Computer Interaction

KEYWORDS

Flexible Pedagogy; Introductory Programming; Gamification;

Student Engagement.

1 Introduction

A key component of computing courses is that of developing the

ability to program [1], [20]. However, achieving this is a challenge

[22]: Woodfield [25] identified computer science as one of the

worst performing UK disciplines, in terms of both attainment and

retention. As a discipline that includes both theory and application,

the ability to carry out practical application through programming

means that students must be able to translate the theory and skills

they learn into actual practice as we aim to develop computational

thinking [24]. Where practice can include motivational activities, it

has the potential to improve student engagement in their studies,

and thereby to potentially improve their attainment.

Computer Science is atypical to most subjects, in that the

experience prior to university can vary from a decade of

programming – with algorithmic thinking and coding now a part of

primary education [16] – to those with no experience of computing

including programming itself. As a follow up to Woodfield’s

report, Gordon [14] identified a range of approaches that are

specific to computing and that can support students in their studies;

of particular relevance to programming are those of using

pedagogic styles that encourage engagement (gamification

techniques, developing student communities and peer support, and

using assessment to direct student focus).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and the full citation on

the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CEP '19, January 9, 2019, Durham, United Kingdom

© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6631-1/19/01…$15.00

https://doi.org/10.1145/3294016.3294025

CEP '19, January 9, 2019, Durham, United Kingdom Gordon et al.

2 Engagement indicators and measures

Student engagement in higher education is a commonly used term,

though can be more difficult to define and measure [1]. For

Computer Science education, where classes can be large (300+) and

resources limited, encouraging student engagement and identifying

those who are not engaging is critical. Attendance monitoring is

occasionally used as a proxy for engagement [18], though our

investigation of outcomes shows that this is not particular effective.

Moreover, in terms of motivating the desired activities in our

students, the use of extrinsic motivation – such as attendance

monitoring – may have other unwanted effects, whilst failing to

engender the desired impact on learning [17].

3 Flexible Learning and Technology

Technology can enable a more flexible approach to learning and

assessment, providing mechanisms to allow students to gain more

control over their pace, place and mode of learning. These 3-

dimensions of flexibility [13] are particularly relevant in the

context of teaching computing, where large, disparate cohorts with

differing academic backgrounds and levels of engagement can

benefit from tailored learning and support. As noted earlier, the

challenge of large classes means that individual teaching can be

limited. Equally, the varied background means that assuming the

same level of progress is inappropriate.

Flexible pedagogy [23] is concerned with enabling (some level of)

student choice. Technologies such as virtual learning

environments, interactive learning tools and suitable subject

specific tools (programming tutors) can enable students to have

(some level of) choice [13].

4 Programming tutor systems

Developing the skill of programming raises a number of challenges.

One is what high-level language, and correspondingly what

programming environment, to use. At school and university level,

early approaches to programming may be based on visual (block

based) programming [21], such as Scratch, Blockly or the BBC

Microbit language. Another choice is whether to look to interpreted

languages (Basic, Python) or compiled ones (which may be include

intermediate languages, as with Java and C#). A key issue here is

the initial size of the story – in terms of the narrative of the virtual

machine - that you are trying to tell the neophyte programmer [3],

[8]. The bigger the story the more they have to learn and therefore

the bigger is the conceptual task and the more chances there are of

developing misconceptions, leading to loss of confidence and

motivation. In choosing a language, many have a strong paradigm

that can create barriers to initial learning (for example, with OOP

languages, the size of the story of the virtual machine and the OO

syntax and requirements can be barriers to students understanding

the more fundamental programming concepts). The Development

Environment themselves can also provide a barrier to students: with

the complexity of many modern IDEs creating a steep learning

curve.

One approach is to let pedagogy be used to drive the flexibility.

Discovery learning allows the learners to find their explanations

and solutions [5]. They find it in their own language and as an

extension to their then mental model of the problem [18]. However

just letting this happen as a natural process is slow, haphazard, and

prone to meandering and dead ends and thus leading to a

demotivating experience. Elsom-Cook [9] [10] [11] proposed to

make this more efficient via the notion of Guided Discovery

Learning. This aims to keep all the openness and flexibility of

discovery learning but with the subtle guiding of the user through

the process, keeping close to the point and avoiding unwanted

diversions. Butterworth and Brayshaw [4] developed a

programming tutor, building on earlier work that identified the

benefits of visualizing the functionality of a program and

emphasizing the transparency and story behind the virtual machine

[9]. Butterworth and Brayshaw provided a scaffolded approach to

programming, with skeletal code fragments and directed activities

to limit the scope of students. They aimed to meet the meet the

flexibility of discovery learning with suitable guiding on the

journey. By enabling students to progress through activities in a

structured way, they could identify their own individual progress,

and be offered appropriate challenging levels (akin to moving

through the levels in a game) as they completed activities.

5 A framework for teaching programming

We now explain this flexible approach to programming, with

attendance monitoring replaced by students engaging with the

teaching resources. The framework proposed in Figure 1 shows the

scope of the range of tools intended to support the teaching of

programming. These can be categorized into four main areas as:

1. Student Interface: a web browser interface for the student

to interact with the code, as well as the working copy of

the code being worked upon;

2. A source control host for the student code (in the example

we use subversion, though other systems such as GIT

would be equally viable);

3. Tutor services: control over the problems and access to

code examples

4. Tutor Interface: edit the activities, link activities to

learning outcomes, configure gamified aspects and

review progress.

At this point, various aspects have been implemented and utilized.

These include the use of source control (SVN) to identify student

behaviours and track specific difficulties, as well as an approach to

scaffolding the learning so that students can focus on particular

aspects of programming that the teacher identifies as critical. The

primary aim is to improve student engagement, with the intended

consequence of improving their development of computational

thinking.

A Flexible Approach to Introductory Programming CEP '19, January 9, 2019, Durham, United Kingdom

5.1 What is it?

The overall framework identifies a collection of tools and systems

that provide students with programming tasks and activities. Code

management tools (such as subversion) are used to track student

interaction with the work, and to gauge their level of engagement.

The programming tutor tool provides an interface and scaffolding

for the specific programming work that the students need to do. The

intention is to remove the barriers that a full IDE and the full syntax

of an OOP language such as C# can create, thus allowing students

on the introductory programming course to focus on the key

programming concepts, such as conditional statements or iteration.

The tool provides a mechanism for students to learn to program,

without the distractions of artefacts of the language syntax and the

IDE.

A key feature of this approach is the use of interaction with the

staged activities as a better catalyst for engagement, than extrinsic

motivators such as attendance monitoring. The programming tutor

thus encourages students to focus on the relevant programming

concept and to do so on a regular basis.

5.2 Why are we doing it?

The earlier discussion identified some of the rationale for this

approach: as we seek to improve student engagement, to remove

the barriers of unnecessary (at that point) language syntax (e.g.

class constructs in OOP), and the complexity of a fully functioning

IDE.

Furthermore, traditional approaches to teaching programming were

based on the lecture, workshop, lab model. In one sense, this model

of teaching reflects a science based “flipped learning” model,

where the lecture is used to provide the material, ready for the

workshop discussion and then practical (lab) application. Some of

the problems that the traditional model faces are that

a) student attention and active engagement in a lecture can

be limited;

b) workshops and labs are both relatively labour intensive,

whilst the students who need the most help may not come

forward to ask for it, or be recognized as needing that

help by the staff

5.2 Where does it fit?

This framework and case study is based on the first year of

computer science at our institution, based on our experience of a

cohort of anywhere from 160 to 300 students. Given the challenges

of the mixed background, the cohort is streamed into those with

evidence of a fair level of programming knowledge, and those with

a lower degree of programming, i.e. effectively novice

programmers. The framework and tool are primarily targeted at

these novice programmers.

5.3 Does it work?

Early evaluation of the use of source control shows this can be a

better gauge of student engagement than attendance, since the

activity closely aligns with the desired behaviours of a software

developer. The programming tutor tool is still under evaluation as

Student Interface

Web

Browser

Working

Copy

Source Control

Hosted

Webpage

Golden Copy

Tutor Services

Challenge

Picking

Unit

Testing

Gamified

Component

Source Control

Analysis

Tutor Interface

Constructed

Learning Net

Problem

Authoring

Gamification

Configuration

Student

Progression

feedback

Virtual Learning Environment [Learning Tools Interoperability interface]

Figure 1: Framework for teaching programming

CEP '19, January 9, 2019, Durham, United Kingdom Gordon et al.

we are currently using it, but early appraisal shows that students are

effectively engaging with the materials as they attempt to complete

the programming activities presented within the tutor. The student

interface connects to the source control system to provide the initial

golden copy of code, and then enables students to work on their

own copy.

6 Conclusions and next steps

This paper has considered some of the challenges in teaching

introductory programming. We have provided a framework for

supporting students in this transition, along with some proposals for

providing a flexible structure to enable students to learn at their own

pace and in a style, which suits them. This approach utilises both a

pedagogic and a technological framework, with a flexible and

gamified pedagogic methodology, scaffolded by the

interconnecting technologies of source control and engaging

interactive interfaces. Next steps for this work are a formal

assessment of the impact on student engagement and learning, to

assess the effectiveness of this in terms of

 motivation and engagement: potentially improving

student interaction with learning materials, their active

participation in workshops;

 learning outcomes: enabling students to become more

proficient programmers;

 discipline skills: improving the development of

computational thinking..

REFERENCES
[1] Association of Computing Machinery. 2005. Computing Curricula 2005.

[2] Axelson, R.D. and Flick, A., 2010. Defining student engagement. Change: The

magazine of higher learning, 43(1), pp.38-43.

[3] Borning A. and O’Shea T. 1987 Deltatalk: An Empirically and Aesthetically

Motivated Simplification of the Smalltalk-80 Language. In: Bézivin J., Hullot

JM., Cointe P., Lieberman H. (eds) ECOOP’ 87 European Conference on

Object-Oriented Programming. ECOOP 1987. Lecture Notes in Computer

Science, vol 276. Springer, Berlin, Heidelberg

[4] Brayshaw, M., Gordon, N., Nganji, J., Wen, L. and Butterfield, A., 2014, June.

Investigating heuristic evaluation as a methodology for evaluating pedagogical

software: an analysis employing three case studies. In International Conference

on Learning and Collaboration Technologies (pp. 25-35). Springer, Cham.

[5] Bruner, J.S., 1961, The Act of Discovery, Harvard Educational Review, 31(1),

21-3.

[6] Butterfield, A.M., and Brayshaw, M., A Pedagogically Motivated Guided

Discovery Tutoring System for C#, Proceedings of the HEA STEM

(Computing) Learning Technologies 2014 Workshop, University of Hull;

01/2014.

https:www.researchgate.net/publication/263213711_Proceedings_of_the_HEA_

STEM_%Computing%29_Learning_Technologies_2014_Workshop.

[7] du Boulay, B., O’Shea, T, Monk, J. The black box inside the glass box,

International Journal of Human-Computer Studies – Special issue: 1969-1999,

the 30th Anniversary, 51(2), Aug 1999, pp. 265-277, Academic Press, Duluth,

MN, USA.

[8] Eisenstadt, M., 1983, A user-friendly software environment for the novice

programmer, Communications of the ACM, 12(12).

[9] Eisenstadt, M., and Brayshaw,M., 1988, The Transparent Prolog Machine

(TPM): An execution Model and graphical debugger for logic programming,

5(4), pp. 277-342.

[10] Elsom-Cook, M., 1984, Design Considerations for an intelligent tutoring system

for LISP, PhD Thesis (Unpublished), Department of Psychology, University of

Warwick, UK.

[11] Elsom-Cook, M., 1990a, Guided Discovery Tutoring, in M Elsom-Cook,

Guided Discovery Tutoring: A Framework for ICAI Research, London: Paul

Chapman.

[12] Elsom-Cook, M., 1990b., Extended Computer-Aided Learning Minimalism in

Guided Discovery Learning, in M Elsom-Cook, Guided Discovery Tutoring: A

Framework for ICAI Research, London: Paul Chapman.

[13] Gordon, N. (2014). Flexible pedagogies: Technology-enhanced learning. From

the report series Flexible Pedagogies: Preparing for the Future. The Higher

Education Academy, January. Online at: http://www.

heacademy.ac.uk/resources/detail/flexiblelearning/flexiblepedagogies/tech_enha

nced_learning/main_report (accessed 20 June 2014).

[14] Gordon, N. "Issues in retention and attainment in Computer Science." York:

Higher Education Academy (2016).

[15] Gordon, N., Brayshaw, M. and Grey, S., 2013. Maximising gain for minimal

pain: Utilising natural game mechanics. Innovation in Teaching and Learning in

Information and Computer Sciences, 12(1), pp.27-38.

[16] The Guardian, 2014. Coding at school: a parent's guide to England's new

computing curriculum.

https://www.theguardian.com/technology/2014/sep/04/coding-school-

computing-children-programming

[17] The Guardian, 2018. Why are students faking attendance? They feel cheated by

the system. Online: https://www.theguardian.com/higher-education-

network/2018/apr/13/why-are-students-faking-attendance-they-feel-cheated-by-

the-system.

[18] Nyamapfene, A., 2010. Does class attendance still matter?. Engineering

Education, 5(1), pp.64-74.

[19] Papert, S., 1980, Mindstorms: Children, Computers and Powerful Ideas,

Brighton:Harverster Press.

[20] Quality Assurance Agency. 2016. Subject Benchmark for Computing.

[21] Ray, P.P., 2017. A survey on visual programming languages in internet of

things. Scientific Programming, 2017.

[22] Rogerson, C. and Scott, E., 2010. The fear factor: How it affects students

learning to program in a tertiary environment. Journal of Information

Technology Education: Research, 9, pp.147-171.

[23] Ryan, A. and Tilbury, D., 2013. Flexible Pedagogies: new pedagogical ideas.

Higher Education Academy, London.

[24] Wing, J.M., 2008. Computational thinking and thinking about computing.

Philosophical transactions of the royal society of London A: mathematical,

physical and engineering sciences, 366(1881), pp.3717-3725.

[25] Woodfield, R., 2014. Undergraduate retention and attainment across the

disciplines. Higher Education Academy, p.45.

[26] Zepke, N., 2013. Student engagement: A complex business supporting the first

year experience in tertiary education. International Journal of the First Year in

Higher Education, 4(2).

