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Abstract—The concept of smart metering allows real-time
measurement of power demand which in turn is expected to result
in more efficient energy use and better load balancing. However,
finely granular measurements reported by smart meters can lead
to starkly increased exposure of sensitive information, including
various personal attributes and activities. Even though several
security solutions have been proposed in recent years to address
this issue, most of the existing solutions are based on public-
key cryptographic primitives such as homomorphic encryption,
elliptic curve digital signature algorithms (ECDSA), etc. which
are ill-suited for the resource constrained smart meters. On
the other hand, to address the computational inefficiency issue,
some masking-based solutions have been proposed. However,
these schemes cannot ensure some of the imperative security
properties such as consumer’s privacy, sender authentication,
etc. In this paper, we first propose a lightweight and privacy-
friendly masking-based spatial data aggregation scheme for
secure forecasting of power demand in smart grids. Our scheme
only uses lightweight cryptographic primitives such as hash
functions, exclusive-OR operations, etc. Subsequently, we propose
a secure billing solution for smart grids. As compared to existing
solutions, our scheme is simple and can ensure better privacy
protection and computational efficiency, which are essential for
smart grids.

Index Terms—Privacy, spatial data aggregation, smart grids

I. INTRODUCTION

Smart grids are expected to enhance the efficiency of
current power grids by using advanced digital information
and communication technology. The combined volatility of
both power supply and power demand is a growing problem
that needs to be solved by the smart grids. Unlike water or
gas, electricity is not easily or economically storeable in large
quantities with current technologies. Therefore power grids
are required to maintain a balance between power production
and demand across short time scales. To ensure smart load
balancing between production and demand, the deployment
of smart meters is being pursued by many countries. The
smart meters measure and report power consumption on a
regular basis. This feature facilitates better power consumption
monitoring, control and prediction, which in turn results in cost
savings to both the power suppliers and consumers, as well as
an immense reduction in the carbon dioxide emissions to the
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atmosphere [1]. To achieve these objectives, grid operators
require effective spatial data aggregation schemes, where an
aggregator periodically aggregates the electricity consumption
of a group of consumers in a geographical region, each
equipped with a smart meter. This consumption data may
be used by the utility to dynamically update its prices in
order to implement demand-side management. In addition, the
aggregated consumption data may be used for supply-demand
management, for example, by ramping production up or down
as needed. These management features are particularly im-
portant in the context of increasing penetration of renewable
energy sources (such as solar panels and wind turbines) in
power grids across the world, given their inherent variability.

While smart meters offer some clear benefits, accurate
and fine-grained measurements of household energy con-
sumption trigger serious privacy concerns [2], [3]. In this
regard, fine-grained smart meter data may reveal an user’s
presence/absence in his/her house, which electrical appliances
they are using at any moment, or even their daily habits at
home. Since the usage of smart meters is essential for better
supply and demand management in smart grids, it is important
to develop technologies that reconcile privacy with the desired
utility and functionality of smart meters.

A. Related Work

Over the last decade, some interesting data aggregation
schemes have been proposed under various settings (e.g., smart
metering systems [4-25], and [34-38], vehicle-to-grid networks
[39], and wireless sensors networks [40]). To tackle the privacy
issues in smart grids, a number of research results have been
proposed in recent years. These can be divided into two cat-
egories: public-key-based (such as homomorphic encryption
based) schemes and masking-based schemes. We first consider
the existing public-key-based schemes followed by the existing
masking-based schemes, and elaborate on their strengths and
weaknesses. In 2010, Garcia et al. [4] proposed a multi-party
computation protocol that allows a number of smart meters in
a locality to compute a partial aggregation of their data without
revealing their individual measurements by taking advantage
of Paillier homomorphic encryption [5]. However, this scheme
lacks efficiency in terms of computation and communication
overheads. In addition, due to the malleability of homomorphic
encryption, this scheme is also vulnerable to data forgery
attacks. Similarly, Lu et al. designed a privacy-preserving
data aggregation protocol [6] using the Paillier homomorphic
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cryptosystem, which also causes higher computation overhead
on entities like smart meters. Liang et al. proposed a usage-
based dynamic pricing scheme for smart grids [7] by using
a fully homomorphic technique devised by Naehring et al.
[8]. Fully homomorphic techniques are difficult to implement
with current computing resources which limits the practical
applicability of this scheme. Chia-Mu et al. introduced a ring
signature based scheme to protect users’ usage profile [9].
However, the computational cost increases with the size of
the ring. Liu et al. have proposed an aggregation scheme
based on blind signatures [10]. However, this scheme does not
protect the privacy of the consumer’s usage data profile. Also,
Zhang et al. have proposed a self-certified signature scheme
without considering usage data integrity and consumer’s pri-
vacy [11]. Sui et al. have designed an incentive-based data
aggregation scheme which is constructed with the assumption
of an anonymity network, where the sources of usage reports
are anonymous [12]. Therefore, it is hard to identify any
smart meter or any communication failure. Besides, in this
scheme the aggregator is unable to verify the legitimacy of
the smart meter and the usage data, which may lead to forgery
attacks. Li et al. introduced a hop-by-hop technique for data
aggregation in smart grids [13], [14]. However, aggregation
in the presence of node failures as well as the methodology
to construct the aggregation tree have not been explicitly
addressed. In addition, as shown in [15], the schemes presented
in [13], [14] cannot ensure privacy during smart metering and
reveal the identity of the users. Also, the public key signatures
used in these schemes result in higher computation cost. A
few more homomorphic encryption based schemes have been
proposed in [15]-[19]. However, in these schemes, the smart
meter is not authenticated during data aggregation. Thus, a
dishonest or fake smart meter may falsify the data, leading
to inaccurate aggregation result. Besides, these schemes does
not support consumer’s privacy. Also, the data aggregation
schemes presented in [17] and [18] do not ensure data integrity.
In [19] Jo et al. proposed two data aggregation schemes based
on Paillier homomorphic encryption and elliptic curve digi-
tal signature algorithms (ECDSA), respectively. While their
ECDSA-based scheme can ensure sender authentication, the
usage report transmitted by each smart meter SM i reveals it’s
identity IDSMi , which is fixed for all transactions. Therefore,
an adversary can easily identify if the usage data is from the
same consumer’s end and link IDSMi

to an actual user. Thus,
the scheme presented in [19] cannot ensure anonymity of a
consumer. Apart from the schemes above, a few more public-
key-based data aggregation protocols have been introduced in
recent years [30], [31]. In [30] a discrete logarithm problem
(DLP)-based data aggregation scheme is introduced, in which
the authors allows a substation to access private data using a
shared key. Hence, this scheme cannot ensure strong privacy.
Abdullah et al. proposed a lattice based homomorphic data
aggregation scheme [31]. However, lattice-based encryption
systems incur a huge computational and communication cost.
Besides, the scheme presented in [31] does not support indi-
vidual sender authentication and consumer’s privacy features.
Hence, the security solution in [31] is not suitable for smart
grids. Koo et al. [34] investigated some of the state-of-the-art

Table I
NOTATIONS AND CRYPTOGRAPHIC FUNCTIONS

Symbol Definition
PS Power Supplier

HAN Home area network
SM Smart meter
TPA Third-party aggregator
PIDi Pseudo identity of SMi

TIDi Temporary identity of SMi

IDSMi
Identity of smart meter SMi

IDA Identity of the TPA
ki Secret key of the SMi

Kas Shared secret key between TPA and PS
khi Shared integrity key between SMi and TPA
Ek[x] Plaintext x encrypted using key k

data aggregation schemes in smart grids, where they found that
most of the existing solutions cannot ensure authenticity of the
metering data and consumer’s privacy. Vahedi et al. [35] re-
cently proposed a privacy preserving data aggregation scheme
for smart grids using ECDSA. Even though their scheme
can guarantee authentication of the source and integrity of
the usage data. However, in their scheme consumers reveal
their identity, and hence cannot ensure consumer’s privacy.
The solution in [36] preserves the usage privacy thanks to
the property of bilinear pairings. However, this solution incurs
high communication and computational overheads due to the
generation and distribution of keys and of the encrypted
measurements of each involved entity. Additional overheads
come from random public parameters that should be signed to
ensure their integrity and authenticity.

Next, we consider the existing masking-based data aggre-
gation schemes. In 2011, Kursawe et al. suggested a set of
masking-based schemes for privacy in smart grids [20]. In their
schemes, the authors utilized the concept of Decisional Diffie-
Hellman (DDH) groups and bilinear mapping for checking the
correctness of the shared masking value, which are computa-
tionally expensive and ill-suited for resource constrained smart
meters. Besides, it lacks the ability to deal with a dishonest
or malicious smart meter that falsifies usage data in order to
make the final aggregation result incorrect. Also, during data
aggregation, the smart meters reveals their identity, which is
fixed for all sessions. Thus, this scheme cannot ensure con-
sumer’s privacy, where an adversary can easily comprehend
and target a specific user and reveal the consumer’s activity
through human-factor-aware data aggregation (HDA) attacks
[25]. , Shi et al. presented a method that combines masking and
distributed differential privacy using noise [21]. However, in
their scheme the aggregator can do partial decryption of the
meter reading. Hence, the scheme presented in [21] cannot
ensure the desired privacy. In [22], Danezis et al. proposed
another masking-based scheme where their objective was to
examine the usage of complex functions on smart meters by
splitting them into Boolean circuits. However, their approach
costs more computing rounds and also negatively affects the
bandwidth and latency. Moreover, in this scheme each smart
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meter sends its usage data without any integrity protection.
Furthermore, the schemes presented in [21] and [22] cannot
guarantee sender authentication and the consumer’s privacy.
Recently, Knirsch et al. proposed a masking-based approach
for data aggregation [23]. Their scheme utilizes the concept
of homomorphic hashing for checking the correctness of the
shared secrets. However, this construction has a couple of is-
sues. First, it is complicated to implement and computationally
expensive to compute. Second, it cannot ensure security of the
hashed data, and an attacker can compute the original message
block by taking the logarithm of the hash for that block. Third,
it can be shown that the data aggregation scheme presented
in [23] is vulnerable to collusion attacks. In this case, when
the aggregator (DC in [23]) colludes with a smart meter SM2,
then the aggregator can know the usage data of another smart
meter SM1, which is a serious privacy issue. Apart from [20]-
[23], a masking-based multi-hop data aggregation scheme has
been proposed in [24]. During data aggregation, each smart
meter needs to select n proxies and add masking values to
meter readings. Proxies remove these masking values to obtain
an aggregated reading. However, this scheme is difficult to
implement in practice, cannot ensure the integrity protection
of the usage report, and does not provide sender authentication.
Recently, Baloglu et al. proposed a solution [37] that combines
masking using noise with Decisional Diffie-Hellman (DDH)
based encryption, where DDH is used for the encryption of the
noisy usage data. In their scheme, metering data is transmitted
to at least two aggregators to maintain the integrity and to
increase the reliability. This solution incurs high setup and
communication cost. Moreover, the proposed solution in [37]
cannot ensure sender authentication and consumer’s privacy
properties.

Motivation: Even though several solutions have been pro-
posed for privacy-preserving data aggregation in smart grids,
most of the existing works are based on computationally ex-
pensive operations such as homomorphic encryption etc. These
are not suitable for resource constrained smart meters, which
typically have limited computational capability. For example,
a smart meter from Atmel’s family with ARM Cortex-M4 pro-
cessor can provide a maximum CPU speed of 780 MHz [33].
As such, this smart meter may not be suitable to perform any
computationally expensive operations. Also, since smart grid
systems are mostly operated in a large scale, computationally
expensive operations may impair the efficiency of the system.
Besides, homomorphic encryption based differential privacy
does not guarantee the correct summation result [23]. On the
other hand, existing masking-based approaches suffer from the
following weaknesses:

• In existing masking-based approaches, a smart meter is
not authenticated during data aggregation. In other words,
the identity and the legitimacy of the smart meters are not
verified. Consequently, a dishonest or fake smart meter
may falsify the data, which will cause an inaccurate
aggregated result.

• In existing masking-based schemes, computationally ex-
pensive operations such as DDH group and Bilinear
mapping, or homomorphic hashing are used for verifying

Figure 1. System model for smart grid metering.

the correctness of the masking secrets, which are not
suitable for the resource-limited smart meters.

• None of the existing schemes (including homomorphic-
encryption-based schemes) ensure anonymity of the con-
sumer. In this case, each smart meter reveals it’s identity,
which is fixed for all transactions. Therefore, an adversary
can easily understand that the usage data is from the
same consumer’s end and reveal the consumer’s activity
through HDA attacks [25].

B. Our Contribution

This paper first proposes a spatial data aggregation scheme
which provides up-to-date and accurate aggregated consump-
tion information to the power grid about any group of con-
sumers. Subsequently, we propose a secure billing solution. In
this regard, we only utilize lightweight cryptographic primi-
tives like one-way hash functions, exclusive-or operations, etc.
In the proposed scheme, no information about the individual
consumers is disclosed. However, the power grid can still
monitor the total amount of power needed by its customers
situated in a specific region or locality, without compromising
the privacy of any individual customer.

The rest of the paper is organized as follows. In Section II,
we explain the underlying smart grid model, security goals,
and the preliminaries that are relevant to this article. In Section
III, we present the proposed spatial data aggregation scheme
with a secure billing solution for smart grids. Security of the
proposed scheme is analyzed in Section IV. In Section V,
we formally analyze the privacy of our proposed scheme. A
discussion on the performance of the proposed scheme is given
in Section VI. Finally, the conclusion is drawn is Section VII.
The symbols and cryptographic functions used in this paper
are defined in Table I.

II. SYSTEM AND ADVERSARY MODEL AND SECURITY
GOALS

In this section, we first briefly describe the network archi-
tecture of the proposed privacy-preserving data aggregation



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY , VOL. XX, NO. X, XXX 2018 4

mechanisms for smart grids and also present the adversary
model. Subsequently, we define the security goals of the
proposed scheme.

A. System Model

Figure 1 shows the system model considered in the paper
for smart grid metering, which also forms the foundation of
the proposed data aggregation scheme. Our system model
consists of four major entities: a power supplier (PS), a third-
party aggregator (TPA) employed by the power supplier, a set
of smart meters (SMs), and numerous home area networks
(HANs). In our system model, the PS is responsible for the
distribution of electricity to each HAN. The TPA periodically
aggregates the electricity consumption of a group of HANs in
a geographical region, and provides the data to the PS. The PS
may use this data to adjust its electricity prices for demand-
side management and also to provide appropriate feedback
to its power generating stations or suppliers. In this way, the
TPA plays a crucial role in maintaining the balance between
power production and demand. Each HAN is composed of a
SM and a set of home appliances. The SM sends its periodic
readings to the TPA through an in-home network (e.g. WiFi).
The TPA and PS communicate through the public Internet (a
cellular network based Internet access is shown as an example
in Figure 1).

B. Adversary Model

In our adversary model we consider the PS as a trusted
organization (e.g. owned by the government, such as Singapore
Power in Singapore and National Grid in United Kingdom).
On the other hand, the TPA is owned by a private company
whose main responsibility is to assist the PS. Therefore, in
our system model we consider the TPA as a honest-but-
curious entity, who may want to know the consumption data
of each HAN and subsequently may try to sell the usage
information to another company, e.g. for marketing materials
for home appliances. On the other hand, here we assume
that various elements inside the core network may also act
as adversaries and be interested in private details of the
power consumption of each HAN. A compromised network
and its various elements (like a router or a switch) may
alter or fabricate the meter’s consumption data. Hence, any
communication through the network may not be secure. Also,
any SM may be the adversary and be interested to know the
consumption data of another SM from a different HAN. An
outside attacker may also try to impersonate as a legitimate
entity (e.g. a SM or the TPA) to send data under its name.
For instance, a dishonest or fake SM could falsify the data for
causing inaccurate aggregation result. In addition, the outside
attacker may eavesdrop on the network transmission media
for obtaining the power consumption data and may also try to
alter or re-transmit them.

C. Security Goals

• Authentication: Before aggregating any data, the TPA
needs to authenticate each SM. This will prevent any

inaccurate aggregation results. Similarly, before obtain-
ing any relevant information from the PS through the
insecure public communication channel, the TPA needs
to authenticate the PS.

• Usage Data Confidentiality: The secrecy of the end-to-
end communication during meter data collection is vital.
Therefore, the electricity consumption data is required
to be kept secret from any third party for protecting the
privacy of the customer. In this regard, even if an outside
or an inside adversary like other SMs from different
HANs or the TPA obtains the messages with electricity
consumption information, then he/she should not be able
to comprehend the encrypted message.

• Usage Data Integrity: The TPA should be able to verify
the integrity of the data received from the SM of each
HAN. Similarly, the TPA needs to verify the integrity of
the relevant information received from the PS during data
aggregation.

• Consumer Privacy: The TPA should not be able to know
the real identity of a HAN user. Only the PS should have
the ability to know a consumer’s real identity. In addition,
after eavesdropping the usage data, an outside adversary
should not be able to comprehend that the data is from
a particular consumer or if two meter readings are from
the same user.

III. PROPOSED PRIVACY-FRIENDLY SPATIAL DATA
AGGREGATION SCHEME

In this section, we propose our privacy-friendly spatial
data aggregation scheme for smart grids, which consists of
two phases: authenticated initialization and data aggregation.
Assume that there are n HANs in a locality which obtain their
power supply from the PS. In the authenticated initialization
phase, smart meter SMi and the aggregator TPA prove their
legitimacy to the PS and subsequently establish a key khi and
a set of temporary identities between them. Besides, this phase
also helps both the SMi and the TPA to update their secret
key khi and establish a new set of temporary identities. In
the data aggregation phase, the TPA periodically aggregates
the electricity consumption of a group of HANs in a locality
without knowing the power consumption of each individual
HAN.

A. Authenticated Initialization

Consider the scenario where the PS is interested in the
aggregated power consumption of a group of n HANs that
are its customers. During the installation of the smart meter
SMi of each household HANi , the PS randomly generates a
pseudo identity PIDi and a secret key ki using the meter’s
pseudo random number generator (PRNG) and assigns them
to SMi . The PS records PIDi and ki for future communication
with SMi . This phase of the proposed scheme consists of the
following steps:

Step AU1: The smart meter SMi generates a random
number Ns and calculates V0 = h(PIDi ||Ns ||ki). Then, SMi

composes a message MA1
: {PIDi ,Ns ,V0} and sends it to

the TPA.
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Figure 2. Authenticated initialization process.

Step AU2: After receiving the request message MA1 , the
TPA generates a nonce Na and calculates a hash-integrity
output V1 = h(IDA||Na ||Kas). Then the TPA composes a
message MA2

: {(PIDi ,Ns ,V0)||(IDA,Nq ,V1)} and sends
it to the PS.

Step AU3: Upon receiving message MA2
, the PS tries

to map the identity PIDi to the real identity of a user,
and then computes and verifies V0 and V1. If the verifi-
cation is successful then the PS generates a new pseudo
identity PIDnew

i and computes T = h(IDSMi ||ki||Ns),
x = h(ki||T ||Ns) ⊕ h(Kas||Na), y = h(T ||Ns||ki) ⊕ Na,
z = h(T ||IDSMi

||ki) ⊕ PIDi
new, V2 = h(Kas||Na||x), and

V3 = h(T ||y||z||ki). After that, the PS composes a response
message MA3

: {x, y, z, V2, V3} and sends it to the TPA.
Step AU4: After receiving the response message MA3

,
the TPA first computes and validates the parameter V2. If
the validation is successful, then the TPA first calculates
TK = x ⊕ h(Kas||Na) and khi = h(TK ||Na||Ns). Then
the TPA generates a set of temporary identities TIDiq =
{tidi1, tidi2, · · · , tidiq} and derives TID∗iq = Ekhi [TIDiq ]
and V4 = h(TIDiq ||khi ||IDA). Finally, the TPA composes a
response message MA4

: {(y, z, V3)||(TID∗iq ||V4)} and sends
it to SMi .

Step AU5: Upon receiving message MA4
, SMi first com-

putes T = h(IDSMi
||ki||Ns) and verifies V3. If the verification

is successful, then SMi derives Na = h(T ||Ns||ki) ⊕ y,
TK = h(ki||T ||Ns), khi = h(TK ||Na||Ns), and PIDnew

i =
h(T ||IDSMi

||ki) ⊕ z. Hereafter, SMi decrypts TIDiq from
TID∗iq and stores {TIDiq , khi} for data aggregation. The
details of this phase are depicted in Figure 2.

B. Data Aggregation

Our data aggregation process consists of the following steps:
Step AG1: To maintain proper balance between power

production and demand, the power supplier PS periodically
(say, every 1 or 2 hours) needs to know the electricity
consumption of the group of n HANs. In order to do that, for
each time interval Tj , the PS picks a set of n random integers
Rj = {r1 , r2 , · · · , rn} from a cryptographic pseudo random
number generator that fully exploits the range {0, · · · , d− 1}
of a uniform distribution, where d �

∑n
i=1 Mi , where Mi

is the meter reading of SMi . Hereafter, the PS selects a
random integer ri ∈ Rj for each smart meter SMi and calcu-
lates ∆i = Eki

[IDSMi
||ri||ki||Tj ] and Hi = h(∆i||ki||Tj).

In this way, for all smart meters of n HANs, the PS
derives (∆∗,H ∗) = {(∆1,H1 ), (∆2,H2 ), · · · , (∆n,Hn)}.
Hereafter, the PS generates a timestamp tps and calcu-
lates RSum =

∑n
i=1(ri mod d), ∆PS = EKas

(RSum ||Tj ),
and HPS = h(∆PS ||Kas ||tps), and sends R∗ =
{(∆∗,H ∗)||(RSum ,∆PS , tps)} to the TPA for using at pre-
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Figure 3. Pictorial representation of step AG1 of the proposed data aggregation scheme.

defined time interval Tj . After receiving message R∗, the
TPA first checks tps and HPS , and then obtains RSum from
∆PS . Subsequently, at the time interval Tj the TPA generates
a timestamp ta and for each smart meter SMi , it computes
δi = h(∆i||Hi ||khi ||ta) and finally distributes (∆i,Hi , δi, ta)
to each smart meter SMi . Upon receiving (∆i,Hi , δi, ta),
smart meter SMi first checks ta , δi, Hi , and then decrypts
∆i and verifies the time interval Tj . This verification prevents
the TPA from repeatedly using the same ∆i for two different
time intervals. If the verification is successful, SMi decrypts
∆i and obtains the random integer ri . Details of this step are
shown in Figure 3.

Step AG2: After obtaining the random integer ri , SMi

generates a timestamp ti and selects an unused temporary
identity tidij ∈ TIDiq and calculates its blinded measurement
Xi = Mi + ri mod d, computes Hi = h(X1 ||khi ||ti), com-
poses a message {tidij ,Xi ,Hi , ti}, and sends it to the TPA.
Finally, SMi deletes tidij from TIDiq . Once all the temporary
identities are used up, SMi needs to ask for a new set from the
TPA. In that case, SMi and the TPA execute the authenticated
initialization phase again. Now, upon receiving the usage data
from each smart meter, the TPA first locates and validates the
temporary identity tidij and key-hash integrity output Hi . If
the validation is successful, the TPA computes

∑n
i=1Xi (i.e.,∑n

i=1 Mi+
∑n

i=1 ri mod d−RSum =
∑n

i=1 Mi ). In this way,
the TPA obtains the aggregated power consumption data of n
HANs. Details of this step are shown in Figure 4. Note that
if any check in the aforementioned steps is invalid, then this

phase of the proposed scheme is aborted. Also, to ensure more
efficient performance of the above data aggregation scheme,
the PS can pre-compute R∗ = {(∆∗,H ∗)||(RSum ,∆PS )}
for several sessions and send them to the TPA. In this way,
we can expedite the data aggregation process. Now, for the
correctness of our protocol, all the smart meters need to
participate during the data aggregation process. To avoid the
failure report problem (i.e. the absence of reports when a smart
meter fails), the TPA needs to do ping tests with the smart
meters on a regular basis. In case the TPA does not receive
any response from smart meter SMi , it informs the PS to take
necessary actions. In this context, the PS first abstains from
creating any ri for that particular smart meter and then initiates
technical support steps to resolve the issue.

Privacy Enhancement Under Collusion: In the system
model considered so far, the PS is assumed to be a trusted
entity (e.g. owned by the government). However, this assump-
tion may not be valid for all scenarios. In this context, if the PS
colludes with the the TPA, then the TPA will be able to know
the individual measurements of the smart meters. However,
this issue can be easily addressed with a few changes to the
proposed scheme. In this regard, some changes are required
in step AG2 of the proposed scheme. In this new scenario,
we assume that each smart meter can directly communicate
with its neighboring smart meters and each meter SMi has
a secure line with its adjacent neighbor SMi+1 . Now, after
obtaining the masking value ri from the TPA, each smart
meter SMi picks a random number si (called its “share”)
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Figure 4. Pictorial representation of step AG2 of the proposed data aggregation scheme.

from a large space and adds this share to its measurement
value Mi yielding Xi , i.e., Xi = Mi + si + ri mod d, which
is then sent directly to the TPA. Additionally, SMi adds si to
the accumulated share value Si−1 that it has received from
SMi−1 and calculates Si = si + Si−1 . SMi then sends
Si to its next adjacent neighbor SMi+1 through the secure
line. This continues up to the last smart meter SMn which
computes Sn = Sn−1 + sn , which equals

∑n
i=1 si. Finally,

SMn encrypts Sn and the timestamp tn with khn and sends
it to the TPA. The TPA computes

∑n
i=1 Xi − (Rsum + Sn)

yielding
∑n

i=1 Mi , which gives the desired aggregated load.
The details of the revised step AG2 are depicted in Figure 5.

C. Secure Billing

We assume that each smart meter SMi maintains a parame-
ter βi for billing. Initially, during meter installation, the value
of βi is set to 0. Now, for each time interval Tj , when SMi

sends its blinded measurement Xi to the TPA for spatial data
aggregation, then SMi also updates βi = M j

i + βi and stores
βi in its memory, where M j

i denotes the meter reading of SMi

at time Tj . Finally, at the end of the month (or any desired
interval), SMi generates a timestamp t and selects an unused
temporary identity tidi and then computes Eki [βi||PIDi],
νi = h(Eki [βi||PIDi]||ki||t), and composes a message
Billi = {“Billing”, tidi, Eki [βi||PIDi], νi, t} and sends it to
the TPA. After receiving the message Billi , the TPA first finds
PIDi corresponding to tidi and then composes a message
Bill∗i = {“Billing”, EKas

[PIDi], Eki [βi||PIDi], νi, t} and
then sends it to the PS. Upon receiving Bill∗i , the PS first
decrypts EKas [PIDi] and then checks the timestamp t and
νi. If they are valid then the PS decrypts and obtains βi

for PIDi. Then the PS defines an acknowledgment ACKi

and generates a timestamp t∗ and a valid key-hash response
λ = h(ACKi ||ki||t∗), and subsequently sends (ACKi , λ, t

∗)
to SMi through the TPA. When SMi receives the acknowl-
edgment ACKi , it first checks the timestamp t∗ and and the
key-hash response λ. If they are valid, then SMi informs its
owner and sets βi to 0; otherwise, it requests the PS for the
acknowledgment.

IV. SECURITY ANALYSIS

This section demonstrates that the proposed scheme ensures
all the security goals listed in Section II.

A. Accomplishment of Authentication

In the authenticated initialization phase of the proposed
scheme, the PS authenticates SMi by verifying the pseudo
identity PIDi and the parameter V0 in request message MA2

,
where only a legitimate SMi can generate the valid key-hash
output V0. The PS authenticates the TPA by using the request
parameter V1, which must be equal to h(IDA||Na ||Kas). On
the other hand, both SMi and the TPA authenticate the PS
by using the response parameters V2 and V3, respectively.
Now, in the data aggregation phase of the proposed scheme,
before aggregating the usage data, the TPA authenticates each
smart meter SMi by using the timestamp ti and the response
Hi . Moreover, in this phase of the proposed scheme, the
TPA authenticates the PS by using hash-response parameter
HPS . Furthermore, in the proposed data aggregation scheme,
if an adversary tries to perform any replay attempt, the
receiving end can easily comprehend such activities by using
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Figure 5. Pictorial presentation of the revised step AG2 for addressing collusion attacks between PS and TPA

the timestamps ti , ta , and tps . On the other hand, during the
billing phase, if an adversary (even TPA) attempts to forge
the billing value βi, then the PS will be able to detect that
by using the key-hash response νi. In this way, the proposed
scheme can detect any forgery attacks..

B. Accomplishment of Secure Key-Establishment

In the authenticated initialization phase of the proposed data
aggregation scheme, each smart meter SMi and the TPA need
to securely establish a key khi , which will protect against dis-
honest or fake smart meters from falsifying data. In this regard,
only the legitimate TPA who knows the secret key Kas can
calculate TK = x⊕ h(Kas ||Na) and khi = h(TK ||Na ||Ns).
Similarly, only an authentic smart meter SMi with the in-
stalled secret key ki can derive T = h(IDSMi ||ki ||Ns),
TK = h(ki ||T||Ns), and khi = h(TK||Na ||Ns). Therefore, the
security of the shared secret key khi depends on the secrecy
of the keys Kas and ki , where it is assumed that the respective
entities (PS, TPA, and SMi ) will not reveal their shared secret
to anyone.

C. Accomplishment of Usage Data Confidentiality

The amount electricity usage in HANi is blinded with the
random integer ri from a large space, i.e., Xi = Mi + ri
mod d. Therefore, the TPA can only know the blinded mea-
surement of each SMi . Besides, after calculating

∑n
i=1Xi −

RSum , the TPA can only obtain the aggregated spatial (i.e.,
a group of HANs’) usage data. This prevents analysis of a
single customer’s data. Also, since the masking integer ri

is chosen randomly, even if the usage of electricity for two
consumers is the same, an adversary (even the TPA) cannot
comprehend it from the blinded measurements. Thus, the pat-
tern of the electricity consumption is protected from detection
by any eavesdropper. Furthermore, for ensuring privacy under
collusion attacks between the PS and the TPA, each smart
meter SMi uses a random share si for obtaining Xi , i.e.,
Xi = Mi + si + ri mod d. Therefore, even if the PS and
the TPA collude, since they do not know the value of si , they
will not be able to obtain the desired Mi . Hence, the proposed
scheme can ensure privacy even under collusion attacks.

D. Accomplishment of Usage Data Integrity

In the proposed scheme, before doing data aggregation, the
TPA first checks whether it has received the same data as that
was sent by each smart meter SMi . For that, the TPA computes
H ∗i = h(Xi ||khi ||ti) and checks whether H ∗i is equal to Hi or
not. This approach facilitates the detection of any manipulation
of the aggregated usage data during communication.

E. Accomplishment of Consumer Privacy

In the proposed data aggregation scheme, no one except for
the PS can gain knowledge of any private information such
as the real-identity of a HAN user. The TPA only knows the
pseudo identity PIDi of an user based on which it accumulates
the reading of each smart meter SMi . We also note that while
sending the usage data, SMi is not allowed to use the same
temporary identity tidij twice. No one except the TPA can
recognize that. Therefore, an outsider cannot guess whether
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the usage data for two consecutive sessions are from the same
HAN. This approach of the proposed scheme is useful for
achieving privacy against eavesdropper (PAE) [32].

V. FORMAL PRIVACY ANALYSIS

In this section, we formally analyze the privacy of the
proposed scheme.

A. Privacy Model

We now consider Ouafi and Phan’s privacy model [29].
In this model, attacker A can eavesdrop on all the channels
between the smart meters and TPA and he/she can also
perform any active or passive attacks. A is allowed to run
the following queries:
• Execute (M, T PA, i): This query represents the passive

attacks. In this context, the attacker can eavesdrop all the
transmitted messages between the smart meter M and
the aggregator T PA in the i-th session. Consequently,
the attacker obtains all the exchanged data between the
T PA and meter M.

• Send(U, V,m, i): This query models the active attacks in
the system. In this query, attacker A has the permission
to impersonate an aggregator U in the i-th session, and
forwards a message m to a smart meter V . Besides,
the attacker has the permission to block the exchanged
message m between the smart meter and the aggregator.

• Corrupt(M,K): In this query, the attacker A has the
permission to access secret information K stored in the
smart meter’s memory.

• Test(M0,M1, i): This query is the only query that does
not correspond to any of A’s abilities or any real-world
event. This query allows to define the indistinguishability-
based notion of untraceable privacy. If the party has
accepted and is being asked a Test query, then depending
on a randomly chosen bit b ∈ {0, 1}, A is givenMb from
the set {M0,M1}. Informally, A succeeds if it can guess
the bit b. In order for the notion to be meaningful, a Test
session must be fresh in the sense of Definition 2.

Definition 1 (Partnership and Session Completion): An
aggregator instance T PAj and a meter instance Mi are
partners if, and only if, both have output Accept(Mi ) and
Accept(T PAj ), respectively, signifying the completion of the
protocol session.

Definition 2 (Freshness): A party instance is fresh at the
end of execution if, and only if (i) it has output Accept with
or without a partner instance and (ii) both the instance and its
partner instance (if such a partner exists) have not been sent
a Corrupt query.

Definition 3 (Indistinguishable Privacy (INDPriv)): It
is defined using the game G played between a malicious
adversary A and a collection of smart meters and reader and
aggregator instances. A runs the game G whose setting is as
follows.
• Learning phase: A is able to send any Execute and Send

query and interact with the aggregator T PA and smart
meter M0 and M1 that is chosen randomly.

• Challenge phase: The attacker selects two meters M0

and M1 and forwards a Test query (M0,M1, i) to
challenger C. After that, C randomly selects b ∈ {0, 1}
and the attacker determines the meterMb ∈ {M0,M1}
using Execute and Send queries.

• Guess phase: The attacker A finishes the game G and
outputs a bit b′ ∈ {0, 1} as guess of b. The success of
attacker A in the game G and consequently breaking the
security of INDPriv is quantified via A’s advantage in
recognizing whether attacker A receivedM0 orM1, and
is denoted by Adv INDPriv

A (k) = |Prb
′

= b]−1/2|, where
k is a security parameter.

Proposition 1: The proposed scheme satisfies Indistinguish-
able Privacy.

Proof. In the proposed scheme, each meter reading is
masked with a new random integer rj . Besides, the tempo-
rary identity TID changes in each session. Therefore, it is
difficult for an adversary to perform any traceability attack by
performing the following phases:
• Learning phase:: In the j-th round, the attacker A

sends an Execute query (T PA,M0, j) and obtains the
parameters {tidM0

j ,XM0
0,j ,H0 ,j}.

• Challenge phase: A selects two metersM0 andM1 and
sends a Test query (M0,M1, j + 1). Next, according to
the randomly chosen bit b ∈ {0, 1}, the attacker is given
a meter Mb ∈ {M0,M1}. After that the attacker A
sends an Execute query (T PA,Mb , j + 1) and obtains
{tidMb

j+1 ,X
Mb
0,j+1 ,H0 ,j+1}.

• Guess phase: In the Learning phase the meter M0 up-
dates its masking secret rj . Therefore, for the two subse-
quent sessions j and j+1 the parameter (XM0

0,j ,XMb
0,j+1 )

and (HM0
0,j ,HMb

0,j+1 ) are calculated as follows: XM0
0,j =

M0,j + rM0,j mod d, XMb
0,j+1 = Mb,j+1 + rMb,j+1

mod d, HM0
0,j = h(XM0

0,j ||khM0
||tM0,j ), and HMb

0,j+1 =

h(XMb
0,j+1 ||khMb

||tMb ,j+1 ). Since rM0,j 6= rMb,j+1,
tM0,j 6= tMb ,j+1 , tidM0

j 6= tidMb
j+1 , and h(·) is an ε-

secure pseudorandom function, the adversary thus needs
to make a random guess. In this context, the advantage of
the adversary at recognizing M0 or M1 can be denoted
by Adv INDPriv

A (k) = |Pr[b
′

= b]− 1/2| ≤ ε.

VI. PERFORMANCE ANALYSIS AND COMPARISON

The objective of the proposed spatial data aggregation
scheme is not only to fulfill several security requirements
for smart meters, but also to ensure that the computational
overhead during the data aggregation process is reasonable.
To manifest the advantages of the proposed scheme, in this
section, we first compare the performance of the proposed
scheme with the following previously proposed non-masking-
based data aggregation schemes for smart grids: [4], [5],
[10], [11], [12] [18], [19], [35], and [36]. Table II shows the
security properties that each scheme supports, and we can
see that the proposed scheme and the schemes presented in
[4], [5], [11], [12], [18], [19], [35], and [36] can guarantee
data confidentiality but [10] cannot. In this regard, during
data aggregation, the scheme presented in [10] reveals the
consumer’s usage profile to the aggregator and the outside
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Table II
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES WITH RESPECT TO NON-MASKING-BASED SOLUTIONS

Scheme Data Confidentiality Data Integrity Sender Authentication Consumer’s Privacy
Garcia et al. [4] Yes No No No
Liang et al. [5] Yes No No No
Liu et al. [10] No Yes No No

Zhang et al. [11] Yes No Yes No
Sui et al. [12] Yes No No Yes

Wang et al. [18] Yes Yes No No
Jo et al. [19] Yes Yes Partial No

Vahedi et al. [35] Yes Yes Yes No
Zhang et al. [36] Yes Yes Yes No
Proposed Scheme Yes Yes Yes Yes

Table III
COMPUTATION COST OF DIFFERENT CRYPTOGRAPHIC OPERATIONS

Machine Paillier
Encryption
[4][5][18][19]

Paillier
Decryption

[4][5][18][19]

Pairing
Time

[10][12][36]

ECDSA
Signature

Generation
[11][19][35]

ECDSA
Signature

Verification
[11][19][35]

SHA-256
[Proposed
Scheme]

2.60 GHz CPU
(Operating as TPA
/PS)

18.62 ms 31.45 ms 161.82 ms 23.81 ms 17.56 ms 0.12 ms

798 MHz CPU
(Operating as SM)

89.70 ms 152.6 ms 685.3 ms 837.92 ms 768.20 ms 0.43 ms

Table IV
VARIATION IN AGGREGATION TIME FOR VARIOUS NUMBER OF SMS

Schemes Number of Smart Meters Aggregation Time

Paillier-based Schemes ([4][5][18][19])
50 1570 ms
80 2175 ms

120 3290 ms

Pairing-based Schemes ([10][12][36])
50 8091 ms
80 12945 ms

120 19418 ms

ECDSA-based Schemes ([11][19][35])
50 878 ms
80 1404 ms

120 2107 ms

Proposed Scheme
50 6.28 ms
80 9.98 ms

120 14.83 ms

adversary. Table II also shows that the some of these schemes
do not support data integrity during data aggregation. This
allows an adversary to alter the usage data and cause an
incorrect aggregated result without the aggregator detecting it.
Next, from Table II we see that most of these non-masking-
based schemes do not support sender authentication. As a
result, a dishonest or fake smart meter may falsify the usage
data, leading to an incorrect aggregation outcome. In [19],
the authors have proposed two data aggregation schemes,
only one of which ensures sender authentication (discussed
in Section IA). Hence, [19] only partially supports sender

authentication. Furthermore, almost all of the existing schemes
allow the transmission of the identity of a smart meter in
plain-text. As a result, an outside attacker can target the
smart meter of a particular HAN and reveal the consumer’s
behavior through HDA attacks. Hence, these schemes cannot
ensure a consumer’s privacy. Sui et al. [12] have considered
this issue and designed their scheme with the assumption of
an anonymity network. However, their scheme needs to bear
the additional computational overhead for establishing such a
network.

To show the effectiveness of our proposed scheme with
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Table V
PERFORMANCE BENCHMARKING BASED ON SECURITY PROPERTIES WITH RESPECT TO MASKING-BASED SOLUTIONS

Scheme Data Confidentiality Data Integrity Sender Authentication Consumer’s Privacy
Kursawe et al. [20] Yes Yes No No

Shi et al. [21] No Yes No No
Danezis et al. [22] Yes No No No
Knirsch et al. [23] Partial Yes No No
Baloglu et al. [37] Yes Yes No No
Proposed Scheme Yes Yes Yes Yes

Table VI
PERFORMANCE COMPARISON BASED ON METHODOLOGIES WITH RESPECT TO MASKING-BASED SOLUTIONS

Scheme Masking Method Utilized Method for Masking Data Integrity
Kursawe et al. [20] Addition of random values Decisional Bilinear Diffie-Hellman

Shi et al. [21] Noisy Statistics Decisional Diffie-Hellman
Danezis et al. [22] Complex function with Boolean circuits -
Knirsch et al. [23] Addition of random shares (generated from PRNG) Homomorphic hashing
Baloglu et al. [37] Noise and DDH Encryption Decisional Diffie-Hellman
Proposed Scheme Addition of random values (generated from PRNG) Normal secure non-collision hash function

respect to the existing non-masking-based schemes, we con-
ducted simulations of the cryptographic operations used by
various schemes on an Ubuntu 12.04 virtual machine with
an Intel Core i5-4300 dual-core 2.60 GHz CPU (operating as
the TPA or the PS as per the scheme). To simulate a smart
meter, we used a single-core 798 MHz CPU with 256 MB
of RAM, which reflects the capabilities of real smart meters.
The simulations used the JPBC library Pbc-0.5.14 [26], JCE
[27], and the Paillier library libpaillier-0.8 [28] to evaluate the
execution time of different cryptographic operations. Table III
shows the computation time of the cryptographic operations
for 768 bits of data. From Table III, we can see that SHA-
256 leads to significantly lower computation cost as compared
to other primitives, and hence is better suited for resource
constrained smart meters. Table IV shows the variation in the
aggregation time for different numbers of SMs in the proposed
scheme, Paillier homomorphic encryption-based schemes ([4],
[5], [18] and [19]), pairing-based schemes ([10], [12]), [36])
and ECDSA signature-based schemes ([11], [19]), [35]). It can
be seen from Table IV that the aggregation time is significantly
lower in the proposed scheme as compared to the others.

Next, we compare the performance of the proposed scheme
with existing masking-based aggregation schemes for smart
grids: [20], [21], [22], [23], and [37]. Table V shows the
security properties that each scheme supports, and we can
see that our proposed scheme and the schemes presented in
[20], [22], [37] can guarantee data confidentiality, while the
schemes presented in [21] and [23] cannot. In [21], the TPA
is allowed to know the individual meter readings (discussed
in Section IA). The scheme presented in [23] can only ensure
data confidentiality when the aggregator (DC in [23]) does not
collude with a smart meter (discussed in Section IA). Hence,
we say that the scheme presented in [23] can partially ensure
data confidentiality. Table V also shows that although most
of the masking-based schemes (except [22]) can ensure data

integrity, they do not authenticate the sender (smart meter)
during the data aggregation process. Consequently, a dishonest
or fake smart meter may falsify the data, leading to an inaccu-
rate aggregated result. Moreover, similar to the existing non-
masking-based schemes, the schemes presented in [20], [21],
[22], [23], [37] allow the smart meters to send their identity
in plain-text. Hence, these schemes cannot ensure security
under HDA attacks. On the other hand, the proposed scheme
ensures data integrity and sender authentication through one-
way non-collision hash functions. In addition, smart meters use
their temporary identities during the data aggregation process,
and meters are not allowed to use a temporary identity more
than once. Thus, an attacker cannot isolate or identify the
information from any specific HAN.

Next, we compare the existing masking-based schemes
and our scheme with respect to masking and data integrity
methodologies. From Table VI, we can see that both the
proposed scheme and the scheme presented in [23] use the
same approach of masking, where the masking random values
are generated from a cryptographic pseudo random number
generator. Table VI also shows that the proposed scheme uses
the normal secure one-way hash-function for verifying the
masking data integrity. On the other hand, existing masking-
based schemes use computationally expensive operations such
as decisional bilinear Diffie-Hellman, homomorphic hashing
etc. for the same purpose, which result in high computational
overhead on resource limited smart meters. Now, in order to
analyze the performance of the proposed scheme in terms
of computation cost more comprehensively, we compare it
to Knirsch et al.’s scheme [23]. In this context, we conduct
simulations of the cryptographic operations used in [23] (such
as homomorphic hashing) on the same platform that we
used for the performance evaluation of the non-masking-based
schemes: an Ubuntu 12.04 virtual machine with an Intel Core
i5-4300 dual-core 2.60 GHz CPU (operating as the TPA) and



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY , VOL. XX, NO. X, XXX 2018 12

200 400 600

Number of Smart Meters

0

20

40

60

80

100

120

140

160

180

200
D

at
a 

A
gg

re
ga

tio
n 

T
im

e 
(m

s)

 89.6

24.06

123.45

 44.08

187.92

 69.32

Knirsch et al. [23]
Proposed Scheme

Figure 6. Variation of aggregation time in terms of number of SMs

a single core 798 MHz CPU and 256 MB of RAM (operating
as a smart meter). The simulations used the GNU MP library
and the JCE library [27] to evaluate the execution time of the
cryptographic operations such as homomorphic hashing, and
naive one-way non-collision hash function (SHA-256). Figure
6 shows the aggregation time as a function of the number of
SMs for the proposed scheme and [23] for aggregating 768
bits of data. In this regard, for ensuring data integrity support
of 768 bits of data for 200 smart meters, the homomorphic
hashing used in [23] takes 88.83 ms and naive one-way non-
collision hash function (used in our proposed scheme) takes
only 23.29 ms. The masking time is 0.77 ms for both schemes.
It can be seen from Figure 6 that the aggregation time is
significantly lower in the proposed scheme as compared to
others. Hence, the proposed scheme can be used for efficient
data aggregation in smart grids.

A. Computation Cost During Billing
In our billing phase, each smart meter needs to perform

one symmetric-key encryption (AES-CBC) and one hash op-
eration, which takes an additional 0.79 + 0.43 = 1.22 ms.
The TPA needs to perform one symmetric-key encryption
and one symmetric-key decryption operation, which takes
0.31 + 0.42 = 0.73 ms. The PS needs to perform one
symmetric-key decryption and two hash operations which take
0.42+2×0.12 = 0.66 ms. Therefore, the overall computation
cost for the billing phase is 2.61 ms.

B. Complexity of the Proposed Scheme
Table VII shows a detailed analysis of the complexity for

our data aggregation scheme where N denotes the number of
smart meters. The complexity value is given for both the smart
meters and the TPA. Here, the operations conducted in each
smart meter is of constant complexity and the smart meters can
do their operations in parallel. For the TPA, the complexity
increases linearly with the number of smart meters. Generally,
while smart meters have limited computational capabilities,
the TPA will have powerful computational resources, and thus
the proposed scheme scales well with the size of the grid.

Table VII
COMPLEXITY FOR ONE ROUND OF SPATIAL DATA AGGREGATION

SMi TPA
Addition O(1) O(N )

Hash O(1) O(N )
Messages in O(1) O(N )

Messages out O(1) O(1)

VII. CONCLUSION

This paper proposed a lightweight and privacy-friendly
spatial data aggregation scheme for securely obtaining the
power demand in a smart grid. Security of the proposed
scheme is analyzed to confirm its robustness against known
attacks. In addition, the privacy of individual meter readings
is analyzed under the honest-but-curious adversary model.
Performance analysis of the proposed scheme with existing
data aggregation schemes shows that the proposed scheme
has significantly lower computational cost as compared to
other approaches and is hence the best option for smart grid
environments.
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