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Abstract Velocity pulsing has previously been observed in continuous turbidity currents in lakes and
reservoirs, even though the input flow is steady. Several different mechanisms have been ascribed to the
generation of these fluctuations, including Rayleigh-Taylor (RT) instabilities that are related to surface
lobes along the plunge line where the river enters the receiving water body and interfacial waves such as
Kelvin-Helmholtz instabilities. However, the understanding of velocity pulsing in turbidity currents remains
limited. Herein we undertake a stability analysis for inclined flows and compare it against laboratory
experiments, direct numerical simulations, and field data from Lillooet Lake, Canada, and Xiaolangdi
Reservoir, China, thus enabling an improved understanding of the formative mechanisms for velocity pulsing.
Both RT and Kelvin-Helmholtz instabilities are shown to be prevalent in turbidity currents depending on
initial conditions and topography, with plunge line lobes and higher bulk Richardson numbers favoring RT
instabilities. Other interfacial wave instabilities (Holmboe and Taylor-Caulfield) may also be present. While
this is the most detailed analysis of velocity pulsing conducted to date, the differences in spatial scales
between field, direct numerical simulations, and experiments and the potential complexity of multiple
processes acting in field examples indicate that further work is required. In particular, there is a need for
simultaneous field measurements at multiple locations within a given system to quantify the spatiotemporal
evolution of such pulsing.

Plain Language Summary Turbidity currents are dense mixtures of sediment and water that flow
along the bottoms of lakes, reservoirs, and oceans. Deposits of turbidity currents can provide a continuous
record of climate variations, form submarine fans, and abyssal plains, two of the largest sediment features on
Earth, and create economically important sources for oil and gas. Turbidity currents supply nutrients and
oxygen to deep ocean and lake basins and are the primary cause of deposition and loss of storage capacity in
water reservoirs. Turbidity currents that are driven by prolonged river flow and constant supplies of
suspended sediment are referred to as continuous turbidity currents and can flow for weeks to months.
Continuous turbidity currents are characterized by regular fluctuations in velocity or pulsing even though the
river inflow does not fluctuate. This study examines the causes of pulsing and is of practical importance
because pulsing increases mixing between the river and lake or ocean and produces distinct features in the
rock record.

1. Introduction

Turbidity currents are sediment-laden underflows that enter less dense bodies of water and flow downward
along the bed until their sediment load is deposited and neutral buoyancy is reached (see Meiburg & Kneller,
2010, for a recent review). Turbidity currents are initiated by one or more processes such as landslides, debris
flows, mine tailings disposal, seismic-induced subaqueous slumps, and increased river discharge (Normark,
1989). These flows are important mechanisms for sediment transport and deposition in subaqueous environ-
ments and are capable of distributing substantial amounts of sediment across great distances and forming
distinctive deposits in deep and distal locations (Desloges & Gilbert, 1994; Weirich, 1986). Deposits of turbid-
ity currents can provide a continuous record of climatic and catchment conditions (Crookshanks & Gilbert,
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2008) and are linked to the formation of submarine fans and abyssal plains,
two of the largest sediment features on Earth (Bradford et al., 1997;
Middleton, 1993), which may subsequently form economically important
hydrocarbon reservoirs. Turbidity currents are also vital in nutrient
cycling (Eadie et al., 2002), oxygenating deep oceanic and lacustrine
basins (Hsu & Kelts, 1985; Lambert & Luthi, 1977), and are the primary
cause of sedimentation and loss of storage capacity in water reservoirs
(De Cesare et al., 2001).

Turbidity currents that are driven by prolonged river flow and constant
supplies of suspended sediment are often referred to as continuous
turbidity currents and can persist for long periods (Figure 1a). For instance,
continuous turbidity currents have been documented in Lake Luzzone (De
Cesare et al., 2001) and Lake Lugano (De Cesare et al., 2006) in Switzerland,
Lake Ohau in New Zealand (Cossu et al., 2015), Lillooet Lake in Canada
(Best et al., 2005; Desloges & Gilbert, 1994; Gilbert, 1975; Gilbert et al.,
2006; Menczel & Kostaschuk, 2013), and the Xiaolangdi Reservoir on the
Huanghe (Yellow) River in China (Wei, 2010; Wei et al., 2013). Studies in
the Congo Canyon in the Atlantic Ocean (Azpiroz-Zabala et al., 2017) show
that weeklong turbidity currents can develop, not directly from river
flow but from an erosive front that feeds sediment to an expanding
trailing body.

Best et al. (2005) were the first to measure whole field dynamics of contin-
uous turbidity currents in their study of Lillooet Lake, and they found that,
even though the river inflow was steady, there was a distinct pulsing in the
velocity structure. Such pulsing is likely to enhance mixing between the
influent and ambient water (Lawrence et al., 2013) and produce spatial
variations in bed erosion and deposition that may result in a complex sig-
nature in the geological record (Lamb et al., 2010; Lamb & Mohrig, 2009).

Processes at the plunge point (Figure 1a), where river outflow initially
passes underneath the ambient basin water, have been proposed as a
mechanism for velocity pulsing. Best et al. (2005) suggest that pulses
may be due to shifting positions of plunge line lobes at the river mouth
(Figure 1a). Dai (2008) expanded on this interpretation by proposing that

the pulses may be explained as a turbulent Rayleigh-Taylor (RT) instability. The RT instability occurs during
negative buoyancy where the bottom surface of a layer of a denser fluid overlies lighter fluid in the presence
of a gravitational field. In the turbulent RT instability, the fluid in the upper layer is turbulent at the onset of
the instability and as such is governed by the eddy viscosity (Chakraborty et al., 2006). Dai (2008) proposed
that RT instabilities would result from the negatively buoyant lobes at the river mouth that are generated by
the momentum of the flow as it enters the lake. These lobes extend offshore then sink to the bed, producing
a pulse in the turbidity current. This process then repeats itself, resulting in a shift in the position of the lobes
and hence pulsing underflows.

Pulsing can also result from stratified shear flow instabilities. If the shear across the interface of a stratified
flow, such as a continuous turbidity current (Figure 1a), is strong enough to overcome the stabilizing effect
of the stratification, instability leads to the development of large-amplitude, wave-like structures such as
Kelvin-Helmholtz (KH; Brown & Roshko, 1974), Holmboe (H; Smyth et al., 2007; Smyth & Winters, 2003) and
Taylor-Caulfield (TC; Carpenter et al., 2010; Caulfield et al., 1995; Guha & Lawrence, 2014; Taylor, 1931) instabil-
ities. The profile of the density layer for the TC instability is composed of two distinct steps from high to low
density, as opposed to single steps in the KH and H density profiles (Guha & Lawrence, 2014). Linear stability
analysis is the classical temporal approach to assessing the interfacial stability of a flow (see Carpenter et al.,
2011, for a recent review), and it examines the impact of small disturbances, or perturbations, on a back-
ground flow state. If the perturbations grow over time, this indicates that the background state is unstable
and a different type of flow emerges. Perturbations are taken to be sinusoidal in the along-flow direction,

Figure 1. Definition diagrams. (a) Continuous turbidity current (CTC) gener-
ated by a river entering a lake and related field measurements. U0 is the
mean velocity at the outlet, h0 is the depth at the outlet, θ is delta front slope,
aDcp is acoustic Doppler current profiler, aDv is acoustic Doppler veloci-
meter, and LISST is laser in situ sediment transmissometer. A planform of the
river mouth region is shown on the inset. (b) Velocity and density profiles for
piecewise stability analysis of inclined flows, modified from Negretti et al.
(2008, their Figure 2). ΔU = U2� U1 is the velocity difference over the profile,
U2 is the velocity of the CTC, U1 is the velocity of the return flow, (dU/dy)max
is the maximum value of the velocity gradient in the shear layer, δU is the
thickness of the shear layer, Δρ = ρ2 � ρ1 is the density difference over the
profile, ρ2 is the density of the CTC, ρ1 is the density of the ambient lake
water, and δρ is the thickness of the density layer.
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and their evolution in time is tracked. In the case of stratified shear flow, the background state corresponds to
the basic vertical profiles of horizontal velocity and density (Figure 1b). The KH instability travels at the mean
flow velocity, whereas the H instability is composed of two disturbances that grow at the same rate: a positive
wave cusping into the upper layer and traveling to the right with respect to the mean flow and a negative
wave cusping into the lower layer and traveling to the left with respect to the mean flow. When the velocity
and density profiles are asymmetric, such that they are displaced vertically with respect to each other
(Figure 1b), a hybrid or one-sided instability may result (Lawrence et al., 2013). For hybrid instabilities, the
cusping of the H instability occurs on only one side of the interface, such as in experiments of fresh water over
salt water (Lawrence et al., 1991). Unless the flow is forced at a frequency that favors the negative wave, the
positive wave will dominate. Hybrid instabilities can exhibit complex behavior and cause more mixing than
either the KH or H instability alone (Lawrence et al., 2013).

Most linear stability analyses of stratified shear flows are based on the classic Taylor-Goldstein equation for
horizontal flows and ignore the influence of bed slope (θ: Figure 1), a parameter that is critical to understand-
ing natural continuous turbidity currents. Negretti et al. (2008) focused on the role of bed slope using linear
stability analysis of the two-dimensional momentum equations, written in a coordinate system in which the
longitudinal direction is parallel to the sloping bottom and the vertical direction is orthogonal to the bed
(Figure 1b). Instabilities are assumed to grow faster than the flow acceleration time scale caused by the
inclined bed and although H instabilities were found, their temporal amplification rate was less than the
acceleration due to the slope. Thus, only KH instability was examined in their analysis, with the flow becoming
increasingly unstable as the bed slope steepened.

In the present study, we examine the causes of pulsing in continuous, natural turbidity currents in Lillooet
Lake and Xiaolangdi Reservoir using laboratory experiments, direct numerical simulation (DNS), and field
measurements. Although combining these diverse sets of data is challenging, the results provide unique
insights into the generation of pulsing density underflows. The laboratory and DNS detail the structure of
KH waves under highly controlled conditions, serving as a basis for comparison to the more variable field
flows. Our analyses indicate that pulsing in Lillooet Lake, where plunge line lobes are common, is consistent
with RT instability. In contrast, surface lobes are not obvious in the Xiaolangdi Reservoir and KH instability is
the dominant pulsing mechanism.

2. Materials and Methods
2.1. DNS

The simulation software TURBINS (see Nasr-Azadani & Meiburg, 2011, 2014a; Nasr-Azadani et al., 2013, for
details) is employed to perform DNSs of continuous gravity and turbidity currents. TURBINS is a highly paral-
lel, finite difference-based computational fluid dynamics code that solves the Navier-Stokes equations using
a Boussinesq approximation to describe the motion of the suspension, along with a transport equation for
the sediment concentration field. The sediment grains are assumed to be sufficiently small so that their
inertia is negligible and they move with the fluid velocity, onto which the Stokes settling velocity is superim-
posed (Necker et al., 2002). Complex topography is accounted for via an immersed boundary method (Mittal
& Iaccarino, 2005).

The software TURBINS can be used for both two-dimensional (2-D) and three-dimensional (3-D) simulations
(Nasr-Azadani & Meiburg, 2014a, 2014b). We chose 2-D simulations in this study for several reasons.
Computational cost is much lower for 2-D than for 3-D, allowing us to explore the roles of bed configuration
and sediment size in more detail in 2-D. In addition, TURBINS 3-D simulations are not fully 3-D in that they
have lateral boundaries and the flow is not allowed to expand fully downstream, so 2-D slices within the
3-D simulations are comparable to those from 2-D simulations, although 2-D tends to generate stronger
coherent structures compared to 3-D (Nasr-Azadani & Meiburg, 2014a). The narrow flume tank used in our
laboratory experiment results in limited lateral expansion of the flow as well, so a 2-D DNS is comparable with
the laboratory flow. Field flows in this study are essentially 2-D: the Xiaolangdi Reservoir density underflows
are laterally confined by a subaqueous channel (Wei, 2010; Wei et al., 2013) and cross-flow measurements in
Lillooet Lake show little lateral expansion of the flows over the short offshore distances in our measurements
(Menczel & Kostaschuk, 2013).
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Two-dimensional DNS were conducted for a combination of straight and segmented bed slopes, for gravity
currents with no sediment, and for turbidity currents containing sediment with settling velocities consistent
with sand (150 μm) and silt clay (30 μm)-sized particles. Dimensionless settling velocities are 0.15 (30% mass
fraction) for the sand and 0.0043 (70% mass fraction) for the silt clay. The sand simulations showed that the
sediment is deposited close to the river mouth and did not contribute significantly to the turbidity currents,
which is consistent with field results (e.g., Menczel & Kostaschuk, 2013). The silt clay simulations were quali-
tatively similar to those of the gravity currents without sediment, so herein we examine gravity currents with
zero settling velocity over a single bed slope of 11° beyond the river mouth, a gradient typical of steeper delta
fronts such as at Lillooet Lake. The choice of gravity current simulations also allows us to directly compare our
results with our saline laboratory experiments at similar bed slopes. A no-slip condition is employed along the
bottom boundary, while the free surface is modeled as a stress-free boundary. At the domain outlet, we
impose a convective outflow boundary condition that allows the current to exit the domain freely.

2.2. Laboratory Experiment

The laboratory experiments (see Negretti et al., 2017, for more details on the experimental arrangements)
were conducted in an open, glass-walled tank 6 m in length connecting two 800-L reservoirs. The channel
cross section is 0.25 m wide and 0.2 m deep. The first section of the channel (2 m) is horizontal, permitting
the boundary layer of the gravity flow to adjust and fully develop. The next section (3.5 m) consists of a lin-
ear slope inclined at an angle of 15°, followed by a flat bed. Pumping salt water with an excess density of
5.6 kg/m3 from the first reservoir, using an electric agitator to maintain a uniform salt concentration,
generated the gravity current. Rhodamine 6G dye was added to the salt water to aid in flow visualization.
An outlet at the bottom of the downstream channel was used to control the total water depth and to allow
discharge of the lower layer salty flow such that continuous currents could be maintained.

Particle imaging velocimetry was used to measure flow velocity. Polyamide particles with a mean diameter of
60 μm provided tracers, and a 6-W argon-ion laser generated a laser sheet with a width of approximately 1 m
and a thickness of 5 mm. Images of 0.7 m by 0.5 m were captured with a time-synchronized charged coupled
device (CCD) camera at a rate of 23.8 Hz and a spatial resolution of 0.0435 cm per pixel. The experimental
error in the instantaneous velocity is estimated at 3%.

2.3. Field Experiments

Field measurements were collected using Sontek 500-kHz acoustic Doppler current profilers (aDcps; see
Kostaschuk et al., 2005, for details), a Nortek acoustic Doppler velocimeter (aDv) and a Sequoia laser in situ
sediment transmissometer (LISST-100) that measures both sediment concentration and grain size
(Figure 1a). The aDcps were deployed from both moving and moored launches in Lillooet Lake and the
Xiaolangdi Reservoir. The Lillooet Lake aDcp data reported herein were collected on 22 August 2001 during
a flood on the Lillooet River (see Best et al., 2005, for details), whereas the Xiaolangdi Reservoir measurements
were gathered in September 2007 during moderate flow and low suspended sediment conditions in the
Huanghe River (Wei, 2010). The aDcps provide 3-D velocity and acoustic backscatter profiles, with backscatter
intensity being used to estimate suspended sediment concentrations based on correlations with direct water
samples (Kostaschuk et al., 2005) and LISST-100 measurements (Menczel & Kostaschuk, 2013; Wei, 2010).
Thermistors and the LISST-100 were used to measure water temperature. Boat positions and aDcp velocity
were corrected with real-time kinematic differential global positioning systems that provided a spatial preci-
sion to within ±0.1 m.

The aDv and LISST-100 were deployed just offshore of the plunge point in Lillooet Lake in August 2008
during a period of low river flow and sediment concentrations (Figure 1a). This combination of instruments
was chosen to examine detailed processes at single points throughout the water column. It was not possible
to use the aDcp simultaneously in 2008 because the aDv/LISST-100 deployment interfered with the aDcp
beams (see Figure 1a). The aDv was clamped to a fixed structure attached to a rectangular frame that encased
the LISST-100 and both were deployed together using a cable and boat-mounted winch. The positions of
the LISST-100 and aDv were fixed so that the instruments sampled the flow at the same point in the water
column. The LISST-100 and aDv were first lowered to the bed and suspended sediment and velocity data
were acquired 0.1 m above the bed for 20 min at a frequency of 1 Hz. The instruments were then raised at
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2-m intervals above the bed and the procedure repeated. The drift of the boat was kept at a minimum (±6 m)
through the deployment of two anchors: one at the bow of the boat and the other at the stern.

Velocity signals from the aDcps were smoothed using a Gaussian filter to reduce Doppler noise to 0.02 m/s,
and the velocity data from the aDv were filtered using a signal-to-noise ratio threshold value of 40, as recom-
mended by the manufacturer. The LISST-100 data were screened for quality by removing all data points
greater than five standard deviations from the mean of the total LISST-100 concentration calculated over
all 32 bins; this eliminated extreme outliers that sometimes occurred in the larger grain size bins due to detec-
tion of coarser material beyond the sampling range of the instrument. Following Chikita (2007), water density
was determined from suspended sediment concentration, sediment grain density (assumed = 2,650 kg/m3),
and the density of pure water at the measured water temperature.

2.4. Time Series Analysis

As the velocity measurements in the present study comprise nonstationary data that vary intermittently over
time, wavelet analysis (e.g., Torrence & Compo, 1998) was selected to determine any periodicity in the data.
Wavelet analysis uses functions called wavelets that are localized in time (Farge, 1992) to show the distribu-
tion of variance at different frequencies (or scales), thus decomposing the time series into time-frequency-
space (Grinsted et al., 2004; Torrence & Compo, 1998). The Morlet wavelet was chosen for the present analysis
because it is nonorthogonal and complex. Nonorthogonal wavelets are best suited for time series analysis
when continuous variations in wavelet power are expected, and the Morlet wavelet has been shown to pro-
duce fewer artifacts in gravity current data than other wavelet types (Felix et al., 2005). Furthermore, a com-
plex wavelet function that returns information on both amplitude and phase is more useful for capturing
oscillatory behavior (Torrence & Compo, 1998).

2.5. Outlet Morphodynamics

We use two dimensionless numbers to summarize conditions at the river mouth outlet. The outlet Reynolds
number, Re, is the ratio of inertial forces to viscous forces:

Re ¼ U0h0
ν

; (1)

where U0 is the mean velocity at the outlet, h0 is the depth at the outlet, and ν is the kinematic viscosity. The
outlet Froude Number, Fr, is the ratio of inertial to gravitational forces:

Fr ¼ U0ffiffiffiffiffiffiffiffi
gh0

p ; (2)

where g is acceleration due to gravity. For stratified flows at the outlet, such as the DNS and laboratory
experiment in this study, modified or reduced gravity g’ = g(Δρ/ρ2) is substituted for g, where Δρ = ρ2 � ρ1
is the density excess and ρ1 and ρ2 are the densities of the lighter and denser fluids, respectively. The resulting
numerator in (2),

ffiffiffiffiffiffiffiffi
g’h0

p
, is referred to as the buoyancy velocity Ub.

2.6. Stability Analysis

Dai (2008) used procedures developed by Chakraborty et al. (2006) to examine the length scale, λ, and time
scale, τ, of velocity pulsing in Lillooet Lake from surveys conducted in 2001 by Best et al. (2005):

λ ¼ 4π
ν2e Δρ=ρ1ð Þ

2a

� �1=3

; (3)

τ ¼ 2νe
a2 Δρ=ρ1ð Þ

� �1=3

; (4)

where a = g sin θ is the acceleration of the current on the delta front slope and νe is eddy viscosity. The
difficulty in these calculations is evaluation of eddy viscosity, which is not readily available from routine
measurements, especially in the field (Sumner et al., 2014). Chakraborty et al. (2006) used measured values
of the length scale to determine the eddy viscosity from equation (3) and then substituted this value of νe
into (4) to determine the time scale. Herein we follow their procedures.
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Stratified shear flow instability is examined using the model of Negretti
et al. (2008) for inclined flows. Their governing stability equation is

ϕyy � α2ϕ
� �

� uyy
u� cð Þϕ þ J cosθ

ρy
u� cð Þϕ

þ J sinθ

ια u� cð Þ2 ρyyϕ � ρyuy
u� cð Þϕ þ ρyϕy

� �
¼ 0;

(5)

where the subscript y denotes differentiation in the vertical direction,
α = αr + ιαι, αr is the nondimensional wave number, αι is the spatial ampli-
fication rate,ϕ is the complex amplitude of the disturbance, u(y) = b tanh (y)
is the nondimensional velocity profile, b is the nondimensional (constant)
mean advection, c = ω/α is the complex wave speed, ω = ωr + ιωι, ωr is the
frequency,ωι is the temporal amplification rate of the perturbation, J is the

bulk Richardson number, ρ(y) = tanh (Ry) is the nondimensional density profile, and R = δU/δ ρ is the scale
ratio of the velocity shear layer thickness δU to the density layer thickness δ ρ (Figure 1b). Equation (5) reduces
to the well-known Taylor-Goldstein equation for horizontal flows when θ = 0. The bulk Richardson number
is given by

J ¼ ΔρgδU
ρ0ΔU

2 ; (6)

where ρ0 is the average density of the upper and lower layers and ΔU = U2 � U1 is the difference in velocity
between the lower layer U2 and the upper layer U1 (Figure 1b). The nondimensional wave number is

αr ¼ 2π
λ

ΔU
dU=dyð Þmax

; (7)

where λ ¼ τm u is the wavelength, u is the mean convective velocity of the instabilities, τm is the measured
period of the instabilities, and (dU/dy)max is the maximum velocity gradient in the shear layer (Figure 1b).
Negretti et al. (2008) developed stability diagrams based on J, αr, θ, and R that are used to examine the role
of KH instabilities. They found that KH instability regions increase with θ and transition to stable flow occurs at
lower J and αr as R increases.

Although output from the DNS is nondimensional, dimensional values are required for the stability diagram
of Negretti et al. (2008). The DNS is laboratory scaled so an outlet depth of h0 = 0.1 m is assigned that is com-
parable to our laboratory experiment. Combining h0 = 0.1 m with the DNS stratified value of Fr = 0.9 at the
outlet (Table 1), laboratory density excess Δρ = 5.6 kg/m3 and characteristic density ρ0 = 1, 001.7 kg/m3,
equation (2) converts nondimensional DNS velocity U/Ub to U (m/s). We then determine the required values
of J, αr, and R.

3. Results
3.1. DNS

The DNS illustrates the evolution of the gravity current as it passes beyond the river mouth, over the 11° delta
front slope and onto the flat lake bed (see Figure 2a and supporting information Movie S1). The simulation
shows that the current flowing down the delta front slope has a head and body structure similar to those
in classic finite-volume tank experiments (e.g., Middleton, 1993). A small, but stable, zone of reversed flow
develops just above the bed immediately downslope of the topographic break that marks the transition from
the horizontal river bed to the sloping delta front. A stable plunge point is established quickly at 3x/h0
offshore of the river mouth (Figure 2a). The gravity current develops a constant thickness at 5x/h0 and a
section of downslope propagating, counterclockwise rotating, KH instabilities that persist throughout the
simulation extends from 5–1x/h0. Time series within this zone (Figure 2b) display remarkably periodic KH
billows with thicknesses comparable to the outlet depth and lengths of 1–2x/h0.

Table 1
Outlet Conditions

Experiment Re Fr

DNS 2,000 0.9*, 0.07
Laboratory 3,500 0.6*, 0.07
Lillooet Lake 22 August 2001 3,440,000 0.05
Xiaolangdi Reservoir 6,275,000 0.07

Note. DNS is direct numerical simulation. Re is the outlet Reynolds number
(equation (1)). Fr is the outlet Froude number (equation (2)). Note that for
the DNS and laboratory Fr values marked with an asterisk (*), the reduced
gravity is employed because the flow is stratified at the outlet. The
nonstratified values of Fr for the DNS and laboratory experiment are deter-
mined from the velocity and depth of the density currents at the outlet, so
as to provide a direct comparison with the field data.
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Faster-moving KH instabilities begin to override and pair with slower moving vortical structures as the simu-
lation proceeds (cf. vortex pairing of Winant & Browand, 1974; see Figure 2a and supporting information
Movie S1), causing larger, compound features that propagate along the entire delta front and onto the lake
bed. The vorticity in the bottom boundary layer, which is opposite in sign to the KH vorticity, rolls up into
larger vortices. Occasionally, a boundary layer vortex combines with a KH vortex to form a dipole that sepa-
rates from the bottom boundary. These larger compound features are thicker and have longer wavelengths
compared to individual KH structures. As the flow develops and the gravity current entrains ambient fluid,
patches of higher density develop, which affect the behavior of subsequent compound flow structures. In
some cases, the compound structures ride over the denser patches and develop large eddies that extend
upward through a substantial fraction of the water column. Both the transect and the time series show
persistent patches of return flow beneath the KH and dipole compound structures, reflecting the influence
of local flow separation near the lake bottom (see supporting information Movie S1).

3.2. Laboratory Experiment

The video recording of the laboratory experiment (see supporting information Movie S2) shows that the head
of the current reaches the edge of the delta front slope and starts to accelerate as it descends. After an initial
unsteady phase associated with the passage of the head, a steady two-layer flow is established (Figure 3a). A
thin, stable, accelerating flow develops at the top of the slope to a distance of 0.4 m (Figure 3b) where velocity
reaches a critical value and there is an onset of KH billows and enhanced turbulence. Beyond about 0.6 m,
the KH billows disappear and are replaced initially by vortex pairs that are subsequently suppressed as
turbulence is diminished. The delta-front slope is sufficiently large that the current accelerates again, and

Figure 2. Two-dimensional direct numerical simulation: (a) snapshot of transect at simulation time T = 33 s (see supporting
information Movie S1) and (b) time series of concentration and streamwise velocity (see supporting information Movie S1)
at the time series profile location shown in (a). The flow depth at the outlet h0 normalizes depth, concentration C is
normalized by concentration at the outlet C0, and the buoyancy velocity at the outlet Ub normalizes velocity. KH = Kelvin-
Helmholtz.
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further mixing can occur within the already restratified shear layer. Downslope migration of the KH
instabilities results in distinct velocity pulses in the time series (Figure 3c).

Secondary vortices generated in the bottom boundary layer of the current rotate in the opposite direction to
the primary KH billows (Figure 3a inset). As a KH wave begins to develop, the local velocity below the billow
core is directed in the same direction as the flow. At the same time, the depth of the lower layer is reduced so
that the flow experiences a rapid increase in velocity close to the bed in response to the buoyancy force and
to rotation of the billow. Velocity decreases occur rapidly on the back of the billow, where the depth is larger
and the local vertical velocity is directed away from the bed. This enables detachment of the secondary
vortex from the bottom boundary. In some cases, the secondary vortices can extend through the entire
thickness of the current.

3.3. Field Experiments

Velocity transects from the Xiaolangdi Reservoir reveal several distinct flow zones (Figure 4a). A typical
boundary layer (not shown) with an increase in velocity above the bed characterizes flow in the upstream
riverine input zone (Wei, 2010), which is followed downstream by a transitional zone where maximum
velocity begins to shift downward toward the bed (Figure 4a: 0–700 m). The plunge point marks the position
where offshore flow passes beneath the ambient reservoir water and is usually manifested by the accumula-
tion of woody debris. There is no obvious surface lobe at the river mouth, although this could be obscured by
the woody debris. The underflow, or turbidity current, develops downstream of the plunge point and there is

Figure 3. Laboratory saline gravity current: (a) flow visualization at 46 s (see supporting information Movie S2). h0 is flow
depth at the river mouth outlet. The inset shows the occasional dipolar nature of the KH/boundary layer flow.
(b) Streamwise velocity at 46 s. (c) Velocity time series at the time series profile location shown in (b). KH = Kelvin-Helmholtz.
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a strong upstream return flow. Velocity pulsations are clearly evident in the velocity transect (Figure 4a) and
in the sediment concentration and velocity time series (Figure 4b).

The river mouth zone in Lillooet Lake is composed of a nearly horizontal bed and flow vectors within a zone of
high sediment concentration that plunges downward at the break-in slope with the steeper 11° delta front
(Figure 5a). A distinct surface flow lobe extends offshore in the plunging zone, and velocity vectors shift
downward. The return flow of low sediment concentration ambient lake water interacts strongly with the
lobe of surface outflow from the river, resulting in a prominent accelerated shear layer that extends toward
the bed at the plunge point. The current thins and accelerates below the lobe and then expands offshore into
a distinct velocity pulse of about 200 m in length that pinches out near the end of the record. A strong shear
layer also occurs at the boundary between the pulse and the ambient lake water. The time series (Figure 5b)
of a migrating pulse has a structure similar to that on the transect (Figure 5a) but with a slightly surfaceward
flow within the high-concentration zone at the bed and a counterrotating vortex at the boundary with the
return flow. The overall return flow in the time series is not as strongly downward as that on the transect
and also displays several superimposed small vortices.

3.4. Velocity and Density Profiles

Figure 6 summarizes mean velocity and density profiles from the DNS and laboratory and field experiments.
The profiles are averaged over the durations of the time series shown on Figures 2–5. The Lillooet Lake 2008
profiles are more irregular or segmented because they were collected at discrete levels and flow conditions
may have changed over the 20-min sampling intervals. Velocity profiles for the DNS, laboratory, and Lillooet
Lake 2008 all exhibit clear maxima and then decline toward the bed and surface. The Xiaolangdi Reservoir
and Lillooet Lake 2001 profiles were collected with an aDcp so we are unable to measure the lower 1–2 m
of the flow close to the bed.

Figure 4. Xiaolangdi Reservoir, China, acoustic Doppler current profiler measurements: (a) streamwise velocity transect.
The inset shows the location of the transect (yellow line) and the time series (red star). (b) Time series of streamwise
velocity and suspended sediment concentration (SSC) at the locations shown in (a).
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The DNS and laboratory velocity and concentration/density profiles are similar in shape except that the
density in the laboratory experiment remains constant further above the bed. The Xiaolangdi Reservoir
and Lillooet Lake 2001 profiles also have similar shapes, although the reversed near-surface velocity in
Lillooet is much stronger, perhaps due to up-lake wind-driven currents or other circulation patterns in
the lake. The gravity current is also much thinner and velocities are higher in Lillooet Lake on 13 August
2008 compared to 14 August 2008, with stronger near-surface return flow on 14 August in response to
up-lake winds.

The DNS, Xiaolangdi Reservoir, and Lillooet Lake 2001 velocity and density profiles are not displaced vertically
with respect to each other and so are considered symmetric (cf. Lawrence et al., 1991, 2013; Figure 1b). The
laboratory velocity profile is clearly displaced above the density profile resulting in asymmetric profiles, and
while symmetry is difficult to assess for the irregular Lillooet Lake 2008 profiles, both appear to be
slightly asymmetric.

3.5. Wavelet Analysis

The results of wavelet analysis for the velocity time series are presented in Figure 7. The DNS time series is
highly periodic and has a distinct and narrow zone of significant and high wavelet power at a period of
3.3 s. The laboratory time series is slightly less periodic but also has narrow zone of significant power at
around 2.6 s that extends across the time series. The field time series are more irregular and have a broad

Figure 5. Lillooet Lake acoustic Doppler current profiler measurements: (a) transect and time series (b). The inset in
(a) shows the location of the transect (yellow line) and the time series profile (red star). SSC is suspended sediment
concentration, and the white arrows are velocity vectors based on streamwise and vertical velocity.
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range of significant wavelets extending from low to high periods. The power spectrum for Xiaolangdi
Reservoir has two distinct periodicities at 150 and 600 s, while for Lillooet Lake 2001, the regions of
highest power in the time series are at 300 and 600 s. Time series for Lillooet Lake 2008 are the most
irregular of the data set, with the zones of highest spectral power being within the cone of influence and
thus are not considered herein. Significant, but weak, periods outside of the cone of influence occur at
about 70 s for 13 August and 40 s and 100 s for 14 August.

3.6. Outlet Morphodynamics

Table 1 summarizes outlet morphodynamics for the DNS and laboratory and field experiments. The low
values of Re for the DNS and laboratory experiment are representative of conditions found in other labora-
tory experiments and low-energy mixing events observed in oceans and lakes (e.g., Carpenter et al., 2007).
Froude numbers are all comparable and subcritical (Fr < 1) at the outlet. Values of Re are more than 3

Figure 6. Mean velocity U and density ρ time series profiles for the direct numerical simulation (DNS) and laboratory and
field experiments. Locations of the DNS, laboratory, Xiaolangdi Reservoir, and Lillooet Lake 22 August 2001 time series
profiles are given on Figures 2–5. For the DNS, velocity is made nondimensional by the buoyancy velocity at the outlet Ub
and concentration C is made nondimensional by concentration at the outlet C0.

10.1029/2018JF004719Journal of Geophysical Research: Earth Surface

KOSTASCHUK ET AL. 2837



orders of magnitude larger for the field compared to the DNS and laboratory. The DNS and laboratory
experiments thus have comparable outlet conditions, as do the Lillooet Lake and the Xiaolangdi
Reservoir field studies.

3.7. Stability Analysis

Lillooet Lake has distinct river mouth lobes so we expect the RT instability may play a role in pulsing, an
expectation supported by the agreement between measured and predicted RT periods for Lillooet Lake
(Table 2), particularly the 2008 observations. Lobes are indistinct in Xiaolangdi Reservoir and the predicted
RT period is around an order of magnitude larger than the measurements (Table 2), so RT instability is not
linked to pulsing. The DNS and laboratory experiments do not have outlet lobes and thus RT predictions
(τp) are not included in this comparison.

Stability analyses for stratified shear flows, using the model of Negretti et al. (2008), are summarized on
Table 2 and Figure 8. Values of the ratio of the shear layer thickness to the density layer thickness are
R ≈ 1 in our experiments, with the exception of the laboratory where R ≈ 2 (Table 2). Both the bulk
Richardson number, J, and nondimensional wave number, αr, for Lillooet Lake 2008 (Table 2) fall well outside
of the critical values for KH instability and are not plotted on Figure 8. For Lillooet Lake 2001, the larger period
plots within the KH zone but the smaller period does not. The DNS, laboratory, and Xiaolangdi Reservoir
observations all clearly fall within the KH zone.

Figure 7. Wavelet analysis of streamwise velocity (U) time series. Locations of the direct numerical simulation (DNS), laboratory, Xiaolangdi Reservoir, and Lillooet
Lake 22 August 2001 time series are given on Figures 2–5 and the mean profiles on Figure 6. Time series used for wavelet analysis were taken within the shear
layer of each profile, at heights above the bed of y/h0 = 0.7 for the DNS, y = 0.04 m for the laboratory, and y = 5m for the Xiaolangdi Reservoir and Lillooet Lake.
The DNS and laboratory data were sampled at 5 Hz, the Xiaolangdi Reservoir and Lillooet Lake 2001 at 0.2 Hz, and the laboratory and Lillooet Lake 2008 at 1 Hz. For all
experiments the upper panel is the velocity time series and the lower panel is the wavelet power spectrum. Power for the DNS is based on U/Ub and on U for
the remaining series. The contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. The cross-hatched region is
the cone of influence, where zero padding has reduced the variance. The black contour is the 5% significance level, using a white-noise background spectrum.
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4. Discussion

Here we examine some of the inevitable complexity of the field data, in terms of driving forces, the potential
influence of stratification, and the issues surrounding comparison of field data with simulations and experi-
ments undertaken at scales that are orders of magnitude smaller. Subsequently, we discuss evidence for
the different pulsation mechanisms and the implications of these in terms of predicting which mechanisms
operate in different settings.

4.1. Driving Forces and the Role of Temperature

Normark (1989) found that continuous turbidity currents occur whether lakes are thermally stratified or
nearly isothermal, because temperature is thought to contribute little to the density difference between
turbidity currents and the ambient lake water. In our laboratory experiment, temperatures are similar in
the saline and freshwater tanks so it does not affect density excess. However, the density excess in the

saline laboratory current is much larger compared to the field, causing
density in the laboratory experiment to remain constant further above
the bed (Figure 6; also see Lawrence et al., 2013). Temperatures are
similar in the Huanghe River and Xiaolangdi Reservoir (Wei, 2010) and
the density excess that drives the turbidity currents is thus mainly due
to suspended sediment. In Lillooet Lake in 2001, suspended sediment
generated a density excess 0.22 kg/m3 more than that due to tempera-
ture because of high sediment concentrations in Lillooet River. For
Lillooet Lake 2008, temperature played a larger role and the density
excess for suspended sediment was only ~0.10 kg/m3 larger than that
of temperature.

4.2. Potential Influence of Stratification

Stratification in the receiving water body can complicate the behavior of
turbidity currents by splitting them into interflows and underflows
(Cortes et al., 2014, 2015; Wells & Nadarajah, 2009), an effect that may influ-
ence the turbidity currents in Lillooet Lake during the low river flow in
2008 (Menczel & Kostaschuk, 2013). Large topographic obstacles on the
bed can cause the turbidity currents to loft upward (Stevenson & Peakall,
2010) but such obstacles are absent in our study. Density stratification
within the currents themselves (Gladstone et al., 2004) can also impact cur-
rent dynamics and mixing. The Lillooet Lake 2001 turbidity current is the
most likely candidate for density stratification because it was generated
during a river flood when both fine silt clay and suspended sand were
transported to the river mouth. The aDcp data (Figure 5) suggest that

Table 2
Parameters for Stability Analysis

Experiment θ (rad) λ (m) τm (s) τp (s) J αr R

DNS 0.20 0.35 3.3 — 0.40 0.20 1.13
Laboratory 0.26 0.13 2.6 — 0.38 0.40 2.10
Lillooet Lake 22 August 2001 0.19 68 300 112 0.32 0.95 1.05

136 600 159 0.48
Lillooet Lake 13 August 2008 0.12 10 70 73 0.75 3.2 0.87
Lillooet Lake 14 August 2008 0.12 4.5 40 70 0.82 11 1.09

11 100 112 4.3
Xiaolangdi Reservoir 0.002 49 150 1,800 0.03 0.90 1.14

195 600 3,500 0.25

Note. θ is bed slope, wavelength λ ¼ τm u , τm is measured period, u is the mean convective velocity of the instabilities
(mean velocity of the time series in the shear layer), τp is predicted Rayleigh-Taylor period (equation (4)), J is the bulk
Richardson number (equation (6)), αr is the nondimensional wave number (equation (7)), and R is the ratio of the velocity
shear layer thickness δU to the density layer thickness δρ (Figure 1b). DNS = direct numerical simulation.

Figure 8. Stability analyses for inclined flows based on data from Table 2.
Instability boundaries are from Negretti et al. (2008, their Figures 7 and 10)
and separate Kelvin-Helmholtz instability (below the θ � R lines) and stable
flow (above the θ � R lines). The boundaries are θ = 0.2, R = 2 for the
laboratory; θ = 0.2, R = 1 for Lillooet Lake 22 August 2001 and the direct
numerical simulation (DNS); and θ = 0, R = 1 for the Xiaolangdi Reservoir.
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stratification may be occurring in this current, although the related density profile (Figure 6) is smooth and
not stepped as would be expected from stratification.

4.3. Spatial Scales and Their Importance

There are significant differences in spatial scales that complicate direct comparisons of offshore transects in
the present paper. The Xiaolangdi Reservoir transect, with a river mouth depth h0 ∼ 10m (Figure 4a), covers a
depth range from the plunge point of<2y/h0 and an offshore distance of x/h0 around 150. In comparison, the
Lillooet Lake 2001 transect, with h0 ∼ 12m (Figure 5a) spans a depth range of 3.5y/h0 and an offshore range of
only 35x/h0. The thickness of the laboratory gravity current at the mouth is h0 ∼ 0.06m (Figure 3a) so the
depth range is 5y/h0 with an offshore extent of 12x/h0. The DNS transect (Figure 2a) has a depth range of
10y/h0 and an offshore distance of 40x/h0. The field observations are thus less extensive in terms of the depth
scale compared to the laboratory and DNS, and the offshore distance scale for the Xiaolangdi is much larger
than the other experiments.

The DNS (Figure 2a) and laboratory (Figure 3a) transects are very similar close to the outlet where the flow
accelerates, thins, and then passes basinward into the zone of KH instabilities. This is reflected in similar outlet
Reynolds and Froude numbers (Table 1). The lakeward persistence of coherent pulses in the Xiaolangdi
Reservoir transect (Figure 4a), however, is much larger than in the laboratory or DNS. Outlet Reynolds
numbers, and hence inertial forces, for the Xiaolangdi Reservoir are 3 orders of magnitude larger than the
laboratory and DNS cases, so the turbidity current can persist much farther offshore (Table 1).

4.4. Nature of Vortices and Production of Compound Structures

In the laboratory experiment, near-bed secondary vortices develop within individual KH billows (Figure 3a),
but these are not obvious in the DNS flows (Figure 2a) or the Lillooet and Xiaolangdi field data (Figures 4a
and 5a). In the DNS, the large dipole downslope of the KH zone may develop from secondary vortices, but
in this case the structure is much larger than the individual KH billows. The KH zone is also followed down-
slope by a zone of less well-defined structures in both the laboratory experiment and DNS. These structures,
as well as the lower frequency structures in the field, may be related to the compound structures generated in
the DNS. Ellison and Turner (1959) describe the compounding of KH instabilities as the “irregular succession
of large eddies,” which was explained by Turner (1973) as the result of the growth and subsequent overturn
or collapse (resembling spirals) of KH instabilities, which in turn produce patches of turbulent mixing. The
near-bed return flow beneath the laboratory KH and the compound vortices in the DNS are not evident in
the Xiaolangdi or Lillooet Lake 2001 measurements, possibly because the aDcp cannot resolve flow close
to the bed. Periodic upslope velocities were recorded in Lillooet Lake near-bed (y = 0.1m) aDvmeasurements
(Figure 6: Lillooet Lake 13 August 2008), even though the mean flow is downslope, suggesting that such flow
reversals may exist in the field.

4.5. Velocity Pulsation Mechanisms

The RT analysis (Table 2) indicates that RT instability likely plays a role in velocity pulsing in Lillooet Lake
where surface lobes are well developed. The velocity pulse captured on the transect in Lillooet Lake 2001
(Figure 5a) is qualitatively consistent with the RT mechanism (e.g., Dai, 2008) as well. However, the present
analysis suggests that RT instability does not play a role in the Xiaolangdi Reservoir, in agreement with the
lack of obvious lobes. Importantly, the Xiaolangdi Reservoir also has much lower slopes than Lillooet Lake.
Since the period of RT instability is proportional to the inverse square of the acceleration of the current on
the delta front slope (equation (4)), the low slope of the Xiaolangdi Reservoir bed results in predicted periods
that are much larger than measured (Table 1).

The DNS, laboratory, Xiaolangdi Reservoir, and one of the Lillooet Lake 2001 observations fall within the KH
field on Figure 8, but the Lillooet Lake 2008 data do not. Physically, the low velocities of the Lillooet 2008
flows do not generate sufficient shear across the interface necessary to overcome the stabilizing effect of
the stratification, so KH waves do not develop. Khavasi et al. (2014) analyzed the stability of particle-laden
stratified shear layers and found that large particles make the flow more susceptible to instability. This could
affect the Lillooet Lake 2001 current because of possible contributions of suspended sand.

The field data and stability analysis suggest that different types of underflow will be associated with different
formative mechanisms for velocity pulsing. Systems with steep slopes, like those with Gilbert-style deltas in
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lakes or coarse-grained fan deltas that also exhibit flows with high bulk Richardson numbers, are likely to be
dominated by RT instabilities. Systems on lower slopes and with lower bulk Richardson numbers will likely
display KH instabilities. This in turn may affect the nature of the initial slope and lead to feedback in the
system that reinforces the type of instability. Systems with RT instabilities will undergo increased sedimen-
tation closer to the inlet as a result of repeated growth and decay of lobes and associated movement in the
locus of the initial turbidity current, in turn potentially leading to restriction in the development of subaqu-
eous channels (Best et al., 2005). This enhanced sedimentation and lack of topographic confinement will
reinforce the development of smooth, steep slopes, thus encouraging further RT instability. In contrast,
systems associated with KH instabilities will have relatively lower sedimentation near to source and are
more likely to undergo subaqueous channelization (Best et al., 2005), thus reinforcing KH instabilities.
Potentially, the two different types of instability help reinforce input systems that tend toward two different
topographic end members.

While we have demonstrated an improved understanding of RT and KH instabilities herein, the wide range in
significant wavelets in the field time series (Figure 7) suggests that our simple interpretations based on sta-
bility analysis of inclined flows must be treated with caution, even though they provide valuable insights into
gravity current morphodynamics. There may well be a mix of RT, KH, H, hybrid, and TC instabilities operating
simultaneously and at a wide range of scales (e.g., Caulfield et al., 1995), particularly for near-horizontal flows
such as the Xiaolangdi Reservoir.

5. Conclusions

Velocity pulsing is ubiquitous in continuous, natural turbidity currents in Lillooet Lake and the Xiaolangdi
Reservoir. Pulses have been attributed to RT instability generated by sinking surface lobes along the plunge
line where the river enters the receiving water body, and to interfacial waves along the underflow such as KH
instability. DNSs and laboratory experiments provide details on the dynamics of KH instabilities and their
amalgamation. Stability analyses for inclined flows suggest that velocity pulsing in the DNS, laboratory,
and Xiaolangdi Reservoir is due to KH instability, whereas RT instability contributes to pulsing in Lillooet
Lake. Interpretations of the causes of pulsing in geophysical flows must be treated with caution, however,
because of difficulties in collecting and interpreting field measurements where a wide range of processes
may be operating simultaneously at many spatial and temporal scales. Velocity pulsing however is clearly
a fundamental component of continuous turbidity currents and must be incorporated into models of
their behavior.

The results from field measurements, including Lillooet Lake and the Xiaolangdi Reservoir, are limited to a
few positions and fail to capture the full spatial evolution of turbidity currents. A fully 3-D field study of natural
turbidity currents could be accomplished using the water column capabilities of multibeam echo sounders,
as described by Best et al. (2010). Multibeam echo sounders can provide detailed visualizations of suspended
sediment concentrations and velocity and reveal the temporal evolution and growth of instabilities along
mixing interfaces. Multibeam echo sounders also enable high-precision bathymetric mapping that would
enhance understanding of the relationship of turbidity currents and bed morphology.
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