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The endemic Malagasy frog radiations are an ideal model system to study patterns
and processes of speciation in amphibians. Large-scale diversity patterns of these
frogs, together with other endemic animal radiations, led to the postulation of new
and the application of known hypotheses of species diversification causing diversity
patterns in this biodiversity hotspot. Both extrinsic and intrinsic factors have been
studied in a comparative framework, with extrinsic factors usually being related to
the physical environment (landscape, climate, river catchments, mountain chains),
and intrinsic factors being clade-specific traits or constraints (reproduction, ecology,
morphology, physiology). Despite some general patterns emerging from such large-
scale comparative analyses, it became clear that the mechanism of diversification in
Madagascar may vary among clades, and may be a multifactorial process. In this
contribution, I test for intrinsic factors promoting population-level divergence within a
clade of terrestrial, diurnal leaf-litter frogs (genus Gephyromantis) that has previously
been shown to diversify according to extrinsic factors. Landscape genetic analyses of
the microendemic species Gephyromantis enki and its widely distributed, larger sister
species Gephyromantis boulengeri over a rugged landscape in the Ranomafana area
shows that genetic variance of the smaller species cannot be explained by landscape
resistance alone. Both topographic and riverine barriers are found to be important in
generating this divergence. This case study yields additional evidence for the probable
importance of body size in lineage diversification.

Keywords: landscape divergence, speciation, riverine barriers, topographical complexity, Madagascar

Introduction

Mechanisms of lineage diversification are still poorly understood biological phenomena. Large
animal radiations are thought to be the result of the complex interaction between parameters of
past and present physical environments (extrinsic factors), and factors intrinsic to the organisms
(e.g., aspects of the phenotype and its evolutionary history). In order to obtain a quantita-
tive understanding of the process of speciation, the relative importance of both types of factors
needs to be assessed. For example, in African cichlid fishes, if optimal values for both extrin-
sic and intrinsic factors are in concordance (e.g., solar radiation and lake depth as extrinsic
and sexual dichromatism as intrinsic), the likelihood of lineage diversification can be partially
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predicted (Wagner et al., 2012). The endemicMalagasy frog radi-
ations have been extensively studied for their phylogenetic rela-
tionships (e.g., Wollenberg et al., 2007, 2008, 2011; Vieites et al.,
2009) and biogeography, while less is known about their ecology
(except for general ecological modes like habitat and breeding
biology, Glaw and Vences, 2007). These frogs are sharing the
island with other endemic radiations (Lemurs, Tenrecs, Vanga
birds), resulting in patterns of diversification being shared among
radiations andMadagascar thus constituting a goodmodel region
to infer the processes causing species diversity, species richness
and endemism (Wollenberg et al., 2008; Vences et al., 2009).
Regarding the Malagasy frogs, both extrinsic and intrinsic factors
have been studied, with extrinsic factors usually being related to
the physical environment (landscape, climate, river catchments,
mountain chains), and intrinsic factors being clade-specific traits
or constraints (reproduction, ecology, morphology, physiology).
Additionally, geographic range size can be the result of and act as
an extrinsic as well as an intrinsic factor (reviewed in Cooper and
Purvis, 2009).

Most research in Madagascan frogs has been conducted on
extrinsic factors, as the available data on genetics and distribu-
tion data facilitates this type of study. Following general practice
in biogeographic inference, observed patterns (e.g., two phyloge-
netic clades being situated in two different climatic regimes), are
being related to the diversification process (the difference in cli-
mate led to the evolution of the two groups). However, despite
that extrinsic factors often correspond to phylogeographic splits
of more basal clades (e.g., Kaffenberger et al., 2012) these large-
scale extrinsic factors fail to explain the majority of the more
recent speciation events. In the case of the Madagascan frog
genus Gephyromantis, three basal splits in the phylogeny mir-
ror distribution areas in three different areas of faunal endemism,
but most of species diversification events (46 in total, not con-
sidering taxonomic uncertainty or possible extinctions), could
not be explained by such barriers (Kaffenberger et al., 2012).
To this end, more fine-scale factors impeding gene flow over
the landscape need to be studied. Given the fact that most
Madagascan amphibian species diversity is located in the Eastern
Rainforest biome corresponding to an underlying escarpment,
topographic heterogeneity might be an important factor con-
tributing to this diversity (Wollenberg et al., 2008). For example,
Guarnizo and Cannatella (2013) found that elevational bands are
the most important predictor for diversification between recent
sister species of AndeanDendropsophus frogs. Other studies have
emphasized the importance for smaller rivers, or montane ridges
as barriers for frog dispersal (e.g., Zhan et al., 2009; Gehring et al.,
2012). As for intrinsic factors, recent studies in frogs have empha-
sized the importance of body size on clade diversity (Van Bocxlaer
et al., 2010; Zimkus et al., 2012). Testing this hypothesis for the
largest Malagasy frog radiation (Mantellidae, with 242 species),
revealed that smaller species indeed have higher clade diversity,
smaller distribution areas, and higher mitochondrial substitution
rates (Wollenberg et al., 2011). However, this trend was not statis-
tically significant within the mantellid frog radiation (Wollenberg
et al., 2011), potentially due to the small portion of large frogs
with large range sizes within mantellids available for comparative
testing. Pabijan et al. (2012) found nucleotide divergence between

spatially separated populations in a subset of mantellid frogs to be
inversely correlated with body size, which supports the hypothe-
sis that body size as an intrinsic factors plays a role in generating
genetic diversity.

Without doubt, both intrinsic and extrinsic factors contribute
to generating Madagascan amphibian species diversity (Vences
et al., 2009; Brown et al., 2014). The question is, what is their
relative contribution? Under the assumption that similar pro-
cesses of selection will produce similar outcomes, one way to
test such interactions is to compare patterns across sister species
that only differ in intrinsic factors. The subgenus Gephyromantis
(Mantellidae/Gephyromantis) is a group of diurnal, inconspicu-
ous leaf-litter frogs endemic toMadagascar. From what is known,
many of the up to 18 species of the subgenus deposit eggs on land,
and have pseudo-direct development, with varying degrees of
reduction of a free-swimming tadpole stage (Randrianiaina et al.,
2011). Within the subgenus Gephyromantis, one monophyletic
lineage is comprised of small, microendemic frogs (containing
the species Gephyromantis enki, G. blanci, G. runewsweeki) and a
monophyletic lineage of larger frogs with wider distribution (con-
taining populations of the species Gephyromantis boulengeri).
WhileG. runewsweeki andG. blanci are elusive and probably only
occurring in single, small patches of habitat, G. enki is widely dis-
tributed in Ranomafana National Park (RNP). There, it inhabits
mid- to high-elevations. G. boulengeri occurs from RNP to Nosy
Mangabe in the North–East, and is also widely distributed in
lowlands. Since these two lineages containing small and medium
sized frogs are sister to each other, (1) they are of the same evo-
lutionary age (Wollenberg et al., 2011). (2) They share the same
general mode of reproduction, thus being similar in breeding
biology. (3) Both clades being diurnal and occupying similar call-
ing positions, they are ecologically similar. (4) Inhabiting partly
the same area (Ranomafana) means, that there they are faced with
the same obstacles to dispersal. The main differences observed
betweenG. enki and G. boulengeri are (1) body size, and (2) range
size. Because of their similarities in most other life-history traits
relevant for amphibians, these two species therefore comprise an
ideal system to test whether different body and range size cause
different patterns of genetic divergence over a landscape. In this
paper I test whether population genetic structure of these two
species is affected by landscape resistance and geographical bar-
riers the same way or differently. Within RNP, both species occur
on both sides of a large river (the Namorona River). Further,
elevation steadily increases within a short distance. Wollenberg
et al. (2011) proposed that a microendemic phenotype (small
frogs with small range sizes) would diversify faster than frogs
with a combination of larger range and body size. This leads to
the expectations of: (1) Increased level of genetic differentiation
in G. enki compared to G. boulengeri, and (2) Topographic
structures such as elevational bands or the Namorona River
constituting strong barriers to diversification for G. enki.

Materials and Methods

To test these hypotheses, I analyzed sequences of the
mitochondrial cytochrome b (cytb) gene and the nuclear
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recombination-activating gene 1 (RAG1) gene of populations of
both clades and other members of the subgenus Gephyromantis.
For cytb, 106 sequences of G. enki and 58 sequences of G.
boulengeri were analyzed. For RAG1, 30 sequences of G. enki and
33 sequences of G. boulengeri were analyzed. Amplification and
sequencing protocols for newly determined sequences follow
Kaffenberger et al. (2012). Specimen and locality information,
and Genbank accession numbers are listed in Supplementary
Table S1. For visualization of genealogical relationships, reticulate
evolutionary networks were constructed from each (phased for
RAG1) alignment with the software NETWORK V.4.611 (Fluxus
Technology Ltd, 1999–2012). The Median-joining algorithm was
applied (Bandelt et al., 1999). The resulting networks were edited
in NETWORK and Corel Draw (V.X6). Extensive networks
were constructed for all haplotypes without removal of single
sequence haplotypes.

Locality datasets were constructed for both species (for coor-
dinates, see Supplementary Table S1) as input files for the spatial
analyses. First, I constructed environmental niche models for
both G. enki and G. boulengeri in the software Maxent 3.3.3k
under standard settings (Phillips et al., 2006; Phillips and Dudík,
2008). The models (random seed) were created per species
for Madagascar as background with 10,000 background points.
A resistance map was then calculated for each species by applying

the circuit theory to the Maxent models (software Circuitscape V.
4.0, McRae, 2006; McRae and Shah, 2009). In this approach, land-
scapes are represented as conductive surfaces, with high resis-
tances assigned to barriers for movement and dispersal (McRae
and Shah, 2009). Output was set to resistances. These resistance
maps are commonly used to predict patterns of gene flow. Values
for landscape resistance and for elevation were extracted from the
resistance map and a digital elevation model for each sampling
locality per species in DIVA GIS (V.7.5.0, Hijmans et al., 2001).

Genetic distance matrices of G. enki and G. boulengeri were
constructed in MEGA (V.6, Tamura et al., 2004, 2013) using
the Maximum Composite Likelihood model. All codon posi-
tions were included. The genetic distance matrices were spatially
decomposed using the PCNM function (Principal Components
of the Neighborhood matrix, Borcard and Legendre, 2002;
Borcard et al., 2004) in R (package vegan, Oksanen et al., 2011).
PCNMs with negative Eigenvectors or very small values were
then discarded prior to analysis.

One dataset per species containing the genetic distance
PCNMs and the extracted values for elevation and landscape
resistance was assembled for statistical analysis (StatSoft,
Tulsa, OK, USA). A regression analysis was conducted
with landscape resistance and elevation as independent
variables and the genetic PCNMs as dependent variables,

FIGURE 1 | Landscape genetic divergence of two Gephyromantis
species, corrected by isolation-by-resistance. (A,B) Show resistance maps
computed for each species and images of the frogs. Dark red and orange show
high landscape connectivity, respectively. White triangle represents a minimum
convex polygon of the sampling localities within Ranomafana National Park
(RNP). (C) Shows a significant but weak correlation between spatially

decomposed genetic distances and landscape resistance (gray – RAG1, black –
cytb, solid circles and solid fit line – G. boulengeri, open circles and dotted fit
line – G. enki). (D) Squared residuals of genetic distance to landscape resistance
compared between the two species. Double asterisks denote significance of
differences computed with Kruskal–Wallis test. G. enki in average has a higher
residual variance in genetic distance over its distribution area than G. boulengeri.
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FIGURE 2 | (A) Sampling localities, and Median joining haplotype networks of
G. enki haplotypes found inside RNP. (B) cytb, (C) RAG1. Green – sampling
localities north of Namorona River/RNP, yellow – sampling localities south of
Namorona River/RNP. Teal – Ambohitsara. Red dots on networks denote

median vectors, numbers represent number of mutational steps (default = 1).
Bubble sizes correspond to number of sequences per haplotype as shown in
the scale inset figure (Map Data: Google, 2015 CNES/Astrium, Image Landsat,
2015 Digital Globe).

FIGURE 3 | Results from the BARRIER analysis showing barriers to
dispersal within RNP. Sampling localities of G. enki in yellow. (A) Based on
cytb Maximum Composite Likelihood distances; a-g- G. enki dispersal
barriers as yellow bars. (B) based on RAG1 Maximum Composite Likelihood
distances; k-s- G. enki dispersal barriers as yellow bars; Map Data: Google,
2015 Digital Globe.

in order to compute residuals. These residuals represent
the remainder of the genetic variance of each species and
marker, after removing the effect of isolation by resistance
and topography. Two data points of G. boulengeri were

removed from the cytb dataset, as their residuals exceeded
twice the size of the standard deviation and thus repre-
sented outliers. The regression was then repeated with
exclusion of these two data points. Localities included were
(1) within RNP: Ranomafana, Station Valbio, Valbio: Campsite,
Ambatolahy, Sahamalaotra, Kidonavo, Ranomafanakely,
Sakaroa, Talatakely II, Talatakely II, Talatakely III, and Station
Thermale, and (2) outside RNP: Ifanadiana, Ambohitsara,
Andasibe (Supplementary Table S1). To determine whether the
remainder of genetic variance differs between the smaller species
and the larger one, a Kruskal–Wallis test was then performed in
STATISTICA.

To analyze the genetic divergence of the smaller species
G. enki within RNP, which represents the extent of its spatial
distribution, a spatial representation of barriers to dispersal
was computed using the methods of Manniet et al. (2004)
within the software Barrier 2.2. Barrier identifies spatial
boundaries corresponding to areas of high genetic distance
using Monmonier’s maximum difference algorithm (Manniet
et al., 2004). These barriers were computed for cytb and
RAG1 separately. Arlequin (V. 3.5, Excoffier and Lischer,
2010) was used to assess haplotype diversity of sampling
localities, and to test hypotheses of diversification across
barriers for each genetic marker separately. For this pur-
pose, analysis of molecular variance (AMOVA) was run on
two groups; (1) including populations on both sides of the
Namorona river, and (2) including populations separated by
elevational bands. Populations were grouped according to
north and south of the Namorona River, with a northern group
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containing Ranomafana, Valbio, Valbio: Campsite, Ambatolahy,
Sahamalaotra, Kidonavo, Ranomafanakely, and a southern
group containing Sakaroa, Station Thermale, Talatakely I,
Talatakely II, and Talatakely III sampling localities. Populations
grouped by three elevational bands were 1-Ranomafana,
Station Thermale (630–640 m.asl.), (2) Ambatolahy, Campsite,
Station Valbio, Talatakely I, Talatakely II, Talatakely III,
Sakaroa (900–1000 m.asl.), (3) Sahamalaotra, Ranomafanakely,
Kidonavo (1140–1160 m.asl.). AMOVAs were performed
using pairwise differences and 10,000 random permutations.
Significance of recovered fractions was tested with 10100 random
permutations.

Results and Discussion

Genetic Diversity of the Smaller Species G.
enki within RNP is Greater than in the Larger
Species G. boulengeri
Maxent returned good AUC values for both G. enki (0.99) and
G. boulengeri (0.99) for the environmental niche model com-
putation. The resistance maps computed on the basis of these
environmental niche Models showed that landscape resistance
for both G. enki and G. boulengeri is low in the Ranomafana
area (Figure 1). Regression results reveal that some genetic dif-
ferentiation of both G. enki and G. boulengeri can be explained
by landscape resistance and the prevalence of different eleva-
tional bands in the area (isolation-by-resistance, McRae, 2006).
A correlation between landscape resistance and the spatially
decomposed genetic distances is shown in Figure 1. This analysis
included all populations for both species. The regression mod-
els were significant for the G. enki cytb (R2 = 0.45, p < 0.0001)
and the G. boulengeri RAG1 (R2 = 0.1, p < 0.04) datasets, but
not for the G. enki RAG1 (R2 = 0.03, p < 0.4) and the G.
boulengeri cytb (R2 = 0.03, p < 0.5) datasets. Residuals were
then computed and used for hypothesis testing. The smaller
species G. enki in average showed higher residual genetic vari-
ance than the larger species G. boulengeri after controlling for
landscape resistance and topography. A Kruskal–Wallis test for
landscape-independent genetic divergence was significant for
cytb, but not for RAG1 [KW-H: 11.88; p = 0.0006 for both
markers combined (not shown), KW-H: 7.1322, p = 0.0076
for cytb alone, KW-H: 0.5336, p = 0.4651 for RAG1 alone;
Figure 1].

Conclusively, the results confirm the expectation that
among two ecologically similar sister species of frogs, the
smaller species shows higher genetic variance over the same
geographic area, independently from isolation-by-resistance.
These results correspond well to the analysis of Pabijan
et al. (2012), who found a similar trend for a set of
mantellid frogs over a larger distance (between Andasibe
and RNP).

Landscape Effects on Diversification of the
Smaller Species G. enki
Haplotype networks generated for G. enki showed a sepa-
ration of haplotypes between localities north and south of

the Namorona River (Figure 2). While the RAG1 network
showed some haplotypes restricted to the northern popula-
tions, the southern populations were all allocated to haplo-
types that also occurred north of the Namorona River. The
faster evolving cytb gene, however, showed a clear distinction
between two haplotype groups that differed in one mutated
position between northern and southern banks of the river
(Figure 2). This distinction was not perfect, but hints at the
Namorona River being a barrier for these frogs. The esti-
mated dispersal barriers for G. enki exist this riverine barrier,
close to and parallel to the Namorona River (e.g., a,c,e,f,g,
Figure 3). Additionally, barriers perpendicular or far away from
the Namorona River (e.g., b,d, Figure 3) suggest the impor-
tance of elevational bands for impeding G. enki gene flow.
The AMOVA for two classes of barriers (riverine versus eleva-
tional) confirmed that G. enki showed both significant within-
population differentiation as also high within-group differentia-
tion (Table 1). Furthermore, significant among-group variation
was detected for both classes of barriers in cytb, but not in
RAG1.

Sampling localities on opposite sides of the Namorona River
explained 32.04% of the molecular variance of cytb found
in G. enki. The location of populations on either side of
the Namorona River was a significant predictor for genetic
divergence, also the elevational bands (perpendicular to the
Namorona River) explained a significant portion of molecu-
lar variance in cytb of G. enki. With 19.22%, this grouping
explained 12.82% less variance than the riverine barrier group-
ing. No single best predictor for genetic divergence of G.
enki was found, which indicates that any topographic struc-
ture can act as a barrier for a small frog, not only large
rivers.

The Namorona River is therefore a stronger bar-
rier to dispersal of G. enki than the elevational profile
of RNP. This might be explicable by the fact that the

TABLE 1 | Analysis of molecular variance (AMOVA) for the partitioning of
genetic variation of the mitochondrial cob gene and the nuclear RAG1
gene within and among populations of G. enki.

Opposite sides of
river

Across
elevational bands

cytb

Among groups 32.04∗∗ 19.22∗

Among populations
within groups

13.57∗∗ 22.88∗∗

Within populations 54.39∗∗ 57.89∗∗

RAG1

Among groups −1.37 6.22

Among populations
within groups

25.68∗∗ 20.80∗

Within populations 75.68∗∗ 72.97∗∗

Shown is percentage of variance explained for: populations grouped according
to position relative to the Namorona River, and populations grouped by eleva-
tional bands. Significance of fractions (covariance components) tested with 10100
permutations, indicated with ∗p < 0.05 or ∗∗p < 0.01. Significant among-group
divergence in bold.
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subgenus Gephyromantis is the only clade of Malagasy frogs
that has a terrestrial mode of development. Tadpoles of many
Malagasy frog species are adapted to fast-flowing streams and
can therefore be expected to cross a riverine barrier, but not G.
enki (Glaw and Vences, 2007; Randrianiaina et al., 2011). These
results conform to the expectation that fine-scale topography, in
this case located in the lower montane RNP in Madagascar, con-
tains multiple barriers for diversification for a small species of
frog which are not limiting gene flow for its larger sister species.
Besides the classic question of whether large scale biogeographic
barriers such as the Amazon impedes dispersal and gene flow
(Lougheed et al., 1999; Gascon et al., 2000, 2006), recently also
smaller water bodies have been confirmed as barrier for recent
amphibian diversification events (Ratsoavina et al., 2013; Munoz-
Ortiz et al., 2014; van de Vliet et al., 2014, but see Dahl et al.,
2013).

In addition to the confirmation of a small river and fine-scale
topography serving as a dispersal barrier for a small rainforest
frog, this study also confirms the hypotheses that a small and a
larger sized, ecologically similar sister species pair of frogs show
different patterns of landscape divergence. Adding to recent evi-
dence for an effect of life-history traits on evolutionary processes
shaping biodiversity (Fouquet et al., 2012), this case study shows
that intrinsic factors such as body size, and associated distribu-
tion area size, might be important for diversification of Malagasy
frogs.
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