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ABSTRACT Identifying the most influential spreaders in a weighted complex network is vital for optimizing
utilization of the network structure and promoting the information propagation. Most existing algorithms
focus on node centrality, which consider more connectivity than clustering. In this paper, a novel algorithm
based on clustering degree algorithm (CDA) is proposed to identify the most influential spreaders in a
weighted network. First, the weighted degree of a node is defined according to the node degree and strength.
Then, based on the node weighted degree, the clustering degree of a node is calculated in respect to the
network topological structure. Finally, the propagation capability of a node is achieved by accounting the
clustering degree of the node and the contribution from its neighbors. In order to evaluate the performance
of the proposed CDA algorithm, the susceptible-infected-recovered model is adopted to simulate the
propagation process in real-world networks. The experiment results have showed that CDA is the most
effective algorithm in terms of Kendall’s tau coefficient and with the highest accuracy in influential spreader
identification compared with other algorithms such as weighted degree centrality, weighted closeness
centrality, evidential centrality, and evidential semilocal centrality.

INDEX TERMS Clustering degree, influential spreaders, weighted complex network.

I. INTRODUCTION
Complex networks are pervasive in our daily life [1], such
as social network, traffic network, power grid, and software
network etc.. While these networks provide convenience for
our lives, certain risk still exists. If a failure occurs in the
important nodes, it can cause catastrophic failure of the entire
network. For example, in early 2008, there was a massive
snowfall lasted for many days in southern China and it caused
large-scale blackout because the critical towers and major
transmission lines were severely damaged [2]. Therefore,
it is of theoretical and practical significance for identify-
ing the important nodes in complex networks. In the cus-
tomer network, the most influential customers can promote
new products to achieve the maximum benefits [3]. In the
microblog network, the most influential microblog leaders

can attract lots of attention and spread information in a short
period of time to a greater range [4]. In the software network,
the key functions need to be protected, and this can reduce the
overhead of software fault location and dailymaintenance [5].
Therefore, how to accurately and effectively identify the
influential spreaders in complex network becomes a hot topic
in many fields.

In the real-world networks, the objects can be represented
as nodes and the connections between the objects are edges.
Different real-world networks have different importance of
nodes and edges. Therefore, the research of weighted com-
plex networks should be paid more attention. In the cur-
rent literature, researchers have proposed many algorithms
for identifying key nodes. In [6], classical centrality algo-
rithms including degree centrality (DC) [7], betweenness

19550
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7159-1424
https://orcid.org/0000-0002-9867-8439
https://orcid.org/0000-0001-7282-7638


Q. Wang et al.: CDA: Clustering Degree Based Influential Spreader Identification Algorithm

centrality (BC) [8] and closeness centrality (CC) [9] are
extended to be applied in weighted complex networks, but
they are circumscribed in weighted networks. A variety of
algorithms are proposed to identify influential spreaders in
weighted networks. Wei et al. [10] proposes the evidential
centrality algorithm (EVC) based on the Dempster–Shafer
evidence theory [11], [12]. The propagation capability of
a node is obtained by the node degree and strength in a
weighted network. This algorithm is simple and similar to
DC, i.e. the global structure of the network is ignored.
Gao et al. [13] propose the evidential semi-local centrality
algorithm (ESC) to consider not only the degree and strength
of every node, but also the EVC value of its neighbors
within 2 steps range. However, the topological connection
of the node neighbors is ignored. If a node is closely con-
nected with its neighbors, there must be more affection
between each other hence the more influential the node is.
Ren et al. [14] propose the evidential local structure central-
ity algorithm (ELSC) that considers the EVC value of the
neighbors within 2 steps range as well as the topological
connections between neighbors to identify influential spread-
ers based on the Dempster–Shafer evidence theory. There
are also some other node rank algorithms that perform well
in unweighted network and further applied to the weighted
network with promising performance. Such as eigenvector
centrality [15], k-shell decomposition [16], PageRank [17]
and LeaderRank [18], and so on. However, all above algo-
rithms only consider the sum of the edge weights or ignore
the difference of neighbor contribution.

The number and the weight of the edge should be consid-
ered when evaluating the propagation capability of a node
in weighted complex network, since they both play impor-
tant roles in different aspects [6]. For example, a sales-
man is expected to have a large number of the connected
edges in the social network in order to achieve maxi-
mize product impact, a high possibility is that a high
edge weight may mean a potential important customer.
So, it is important to consider the contribution degree of the
node’s neighbors for identifying influential nodes in complex
networks.

In this paper, a novel algorithm called clustering degree
algorithm (CDA) is proposed to identify the influential
spreaders by considering comprehensively the degree and
strength of node as well as the network topology and the
differentiated contribution degree of its neighbors. In order
to compare the performance between CDA and other algo-
rithms, the Kendall’s tau coefficient [27] is employed for the
node rank correlation; and the SIR model [19] is applied for
the propagation ability of the top-k nodes in each algorithms.

The rest of this paper is organized as follows.
Section 2 presents the relevant definitions of the algorithm.
A clustering degree algorithm is proposed in Section 3 and
a case study is presented in this section as well. There-
after, in Section 4, the performance of CDA is verified by
experiments with real data sets. Finally, the conclusions are
summarized in Section 5.

II. DEFINITIONS
A weighted and undirected network G = (V ,E,W ) is con-
sidered, where V represents the node set, E represents the
edge set of the network and W represents the weight set of
edge. |V| indicates the number of node, and |E| indicates
the number of edge. E(i, j) represents the connected edge
between node i and j, and W (i, j) represents the weight of
edge E(i, j).
Definition 1: Node Strength. The strength of node i is the

sum of weights of all edges connected to nodei.
Node Strength (NS) is defined as follows.

NS(i) =
∑
j∈0i

W (i, j) (1)

where 0i represents the set of direct neighbors of node i.
Definition 2: The Weighted Degree of node. The weighted

degree of node i is the combination of the degree and the
strength of node i.

TheWeighted Degree (WD) of a node is defined as follows.

WD(i) = αK (i)+ (1− α)NS(i) (2)

where K (i) is the degree of node i and α is a tuning param-
eter. Without losing generality, the tuning parameter α is set
to 0.5 [20].
Definition 3: The Clustering Degree of node. The cluster-

ing degree of node i is determined by the weighted clustering
coefficient and the weighted degree of node i.

The Weighted Clustering coefficient (CW) of node is
defined as follows [21].

CW (i) =
1

NS(i)[K (i)− 1]

∑
j,k

W (i, j)+W (i, k)
2

aijajkaki

(3)

aij = 1, if node i is connected with node j. Otherwise,
aij = 0. Node j and node k are arbitrary direct neighbors
of node i. The number of closed triplets in the neighborhood
of a node and the total relative weight with respect to the
strength of the node are considered. The normalization factor
NS(i)[K (i) − 1] accounts for the maximum possible number
of triplets the edge weight may participate, it ensures that
0 ≤ CW (i) ≤ 1.
In a complex network, node propagation capability is

attributed directly to node position. In general, the node
that locates closer to the core of the network will have
larger weighted clustering coefficient and greater propagation
capability.

The Clustering Degree (CD) of a node is defined as
follows.

CD(i) = WD(i)× f (CW (i)) (4)

The function f (.) is a Sigmod function f (x) = 1/(1+e−x).
It ensures a monotonic increasing between 0 and 1. Because
the minimum value of the CW of the node is 0 and its
maximum value is 1. Thus the value of f (x) function ranges
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between 0.5 and 0.7311. Then, CW can be well used to prove
the topology affection for the node propagation.

Therefore, the Clustering Degree (CD) of a node can be
rewritten as follows.

CD(i) = WD(i)×
1

1+ e−CW (i) (5)

Definition 4: The Propagation Capability of node. The
propagation capability of node i is determined by the clus-
tering degree of node i and the neighbors of node i.
The Propagation Capability (PC) of a node is defined as

follows.

PC(i) = CD(i)+
∑
j∈0i

W (i, j)
Wmax

CD(j) (6)

where Wmax is the maximum edge weight, W (i,j)/Wmax is
a standardized factor that ranges from 0 to 1.

III. CDA ALGORITHM
A. THE CLUSTERING DEGREE ALGORITHM
When the propagation capability of a spreader is measured
in weighted network, the weighted degree of node is defined
according to the node degree and the strength. It is a simple
local index and similar to degree centrality algorithm. This
paper combines the information of the network topology and
the weighted clustering coefficient that used to measure the
core and the peripheral location of a node in the network.
Further consideration is given to the propagation capability of
the spreader greatly influenced by its direct neighbors where
each neighbor’s contribution to the corresponding spreader is
measured by the edge weight.

In CDA algorithm, firstly, the weighted degree (WD) of a
node is calculated according to the degree and the strength of
the node. Then, based on the weighted degree, the location of
the node is measured by the weighted clustering coefficient.
A larger clustering coefficient means that the node has a
closer distance to the core of the network and a stronger
propagation capability. The clustering degree (CD) of a node
is obtained based on the weighted clustering coefficient and
the weighted degree. Finally, the propagation capability (PC)
of a node is achieved by the clustering degree and the different
neighbor contributions (edgeweight). The pseudo-code of the
algorithm is shown as Algorithm 1.

In line 1, α is initialized. This is the tuning parameter
of the node degree and strength. Lines 2-4 are the process
to compute the weighted degree (WD) of a node according
to the node degree and strength. Lines 5-7 are the process to
calculate the clustering degree (CD) of a node according to
the weighted clustering coefficient and the weighted degree
of a node. The propagation capability (PC) of a node is
calculated in lines 8-12. The node is sorted in line 13, the
higher the value of PC is, the more influential the node is.

B. AN SAMPLE CASE STUDY
To better explain the algorithm CDA, a simple network with
10 nodes and 13 edges is constructed to demonstrate how

Algorithm 1 CDA
Input: adjacent matrix graph = (aij)N×N and adjacent
table adjList corresponding to weighted complex network
Output: The ranked list and the PC of every node
Process:
01) Initialize α
02) node strengthNS(i)← the weights of all the connected
edges of node i.
03) K (i)← the degree of node i
04) weight degree WD(i)← α × K (i)+ (1− α)× NS(i)
05) CW(i)← the local clustering coefficient of node i
06) f (i)← the CW(i) is mapped to the sigmod function
07) clustering degree CD(i)← WD(i)× f (CW (i))
08) Wmax ← maximum all edge weight W
09) foreach direct neighbor node j of i
10) contribution of j to iIj→i+ =

W (i,j)
Wmax

CD(j)
11) end for
12) PC(i)← CD(i)+ Ij→i
13) sort(PC,’descend’)

CDA works. The network is undirected and weighted as
shown in Figure 1. The calculation process of CDA is shown
in Figure 2. Take node 5 as an example to illustrate the
implementation process of CDA.

FIGURE 1. An example network schematic diagram.

FIGURE 2. The calculation process of CDA in example network.

Step 1: The strength of node 5 is calculated by (1).

NS(5) =
∑
j∈0i

W (i, j) = 27
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Step 2: The weighted degree of node 5 is calculated by (2).

WD(5) = α × K (i)+ (1− α)× NS(5) = 16

Step 3: The weighted clustering coefficient of node 5 is
calculated by (3).

CW (5) =
1

NS(5)[K (5)− 1]

×

∑
j,k

W (i, j)+W (i, k)
2

aijajkaki = 0.3796

Step 4: The clustering degree of node 5 is calculated by (5).

CD(5) = WD(5)× f (5) = 9.50

Step 5: The propagation capability of node 5 is calculated
by (6).

PC(5) = CD(i)+
∑
j∈0i

W (i, j)
Wmax

CD(j) = 29.12

The propagation capability of all nodes in the example is
shown in Figure 2. If only the node degree and strength are
considered, the propagation capability of node 4 and node 7
can not be distinguished as WD(4) = WD(7) = 11. More-
over, as seen in Figure 1, node 4 is closer to the core location
of the network than node 7, so node 4 should have stronger
propagation capability than node 7. By further considering
the topology of the node in the network node 4 and node
7 can be distinguished successfully as the clustering degree
of node 4 is greater than the clustering degree of node 7,
which is consistent with the actual situation. However, if only
the clustering degree of node is considered, the propagation
capability of node 1 and node 9 can not be distinguished as
CD(1) = CD(9) = 0.5. By fully incorporating contribution
of neighbors to a spreader, the proposed CDA algorithm
again successfully distinguished node 1 and 9 by different
propagation capability.

TABLE 1. Rank of node propagation capability with different algorithms.

For the above example, Table 1 shows the sorted node
propagation capability calculated by different algorithms,
including WDC, WCC, EVC, ESC, CDA and the SIR model.
The rank of WDC and EVC is consistent and they can not
distinguish the propagation capability of node 4 and 7 as
well as the propagation capability of node 1 and 9. WCC can
not distinguish the propagation capability of node 1 and 8.

The propagation capability of each node can be distinguished
by ESC and CDA. Among them, node propagation capabil-
ity rank is consistent based on ESC and CDA. In addition,
comparing with the real propagation capability of node based
on SIR model, only ESC and CDA can accurately identify
the node rank in the network (except node 3 and 10). The
superiority of CDA over ESC will be further demonstrated
in section 4.4. So this example shows that CDA is feasible
and objective for identifying the influential nodes in weighted
networks.

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL DATA
The real datasets used to evaluate our proposed algorithm are
taken from http://www-personal.umich.edu/∼mejn/netdata/,
including Zachary, Netscience and Hep. The Zachary [22]
network is a weighted network consisting of 34 nodes, each
node represents a member in the club, and each edge indicates
a friend relationship outside the clue between that member
and other members. The edge weight indicates the degree of
closeness between members. The Netscience [23] network
is a weighted network consisting of 1589 nodes, each node
represents a scientist, the edges represent collaboration on
papers between scientists, and the edge weight represents
their collaboration times. Here, the largest component with
379 scientists is considered. The Hep [24] network is a
weighted network containing 8361 nodes, each node rep-
resents a scientist, the edges represent collaboration post-
ing preprints between scientists on the High-Energy Theory
E-Print Archive between Jan 1, 1995 and December 31, 1999,
and the edge weight represents their collaboration times.

The basic topological properties are shown in Table 2.

TABLE 2. The basic topological properties of the three real networks.

In Table 2, the |V| and |E| represent the total number of
nodes and edges;Kavg andKmax represent the average and the
maximum node degree; W and Wmax represent the average
and the maximum edge weight; andC indicates the clustering
coefficient of the network.

B. THE SIR MODEL
The SIR model is widely used for examining the propagation
ability of nodes [25]. In this model, each node has three
possible states: S (Susceptible), I (Infected) and R (Recov-
ered). At the initial stage, only one node is infected and the
other nodes are susceptible. During the propagation process
of each step, each infected node randomly selects its direct
susceptible neighbors with probability P, and then enters the
recovered state with probability equal to 1. The propagation
process will stopwhen there isn’t any new node to be infected.
In weighted networks [26], the susceptible neighbor node j is
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FIGURE 3. The Kendall’s tau τ values corresponding to different
algorithms in different networks. (a) In the Zachary network. (b) In the
Netscience network. (c) In the Hep network.

infected by the infected node i with probability P.

P =
(

W (i, j)
Wmax + 1

)β
, β > 0 (7)

where W (i, j) represents the weight of edge E(i, j); Wmax
indicates maximum edge weight and β denotes the regulatory
factor of propagation speed. As W (i, j)/(Wmax + 1) < 1, the

FIGURE 4. The average number of infected nodes by top-k nodes of
different algorithms. (a) In the Zachary network. (b) In the Netscience
network. (c) In the Hep network.

propagation speed and value of β are inversely proportional.
Finally, the actual propagation capacity of the initial infected
nodes is quantified according to the number of infected
nodes. At each step t of the propagation process, the number
of infected nodes is represented by F(t). The reliability of
the results is ensured by averaging over 500 independent
experiments.
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FIGURE 5. The number of infected nodes by initially top-10 nodes in Zachary network. (a) Comparison between WDC and CDA.
(b) Comparison between WCC and CDA. (c) Comparison between EVC and CDA. (d) Comparison between ESC and CDA.

C. THE KENDALL’S TAU COEFFICIENT
The Kendall’s tau coefficient τ is widely used in the cor-
relation analysis. The bigger the Kendall’s tau coefficient,
the better the correlation between the observations. In this
paper, it is used to analyze the rank correlation of the nodes
achieved by a certain algorithm and that of the SIR model.
It considers a set of joint observations consisted of random
variables X ={x1, x2, . . . ,xn} and Y = {y1,y2, . . . ,ym},
n,m ∈R. Here, X represents the node rank based on a certain
algorithm and Y represents the node rank based on the SIR
model. If (xi − xj)(yi − yj) > 0, the observations have
concordant rank in X and Y. If (xi − xj)(yi - yj) < 0,
they are considered to be inconsistent rank in X and Y.
If (xi - xj)(yi - yj) = 0, they have the same rank in X
and Y. Then the Kendall’s tau coefficient τ is defined as
follows [27].

τ =
nc − nd

0.5n(n− 1)
(8)

where nc and nd indicate the number of concordant pairs
and inconsistent pairs, respectively.

D. EFFECTIVE VERIFICATION AND COMPARISON
BASED ON THE SIR MODEL
In this section, different real networks are applied for the
effectiveness comparison between CDA and other algo-
rithms, i.e. WDC,WCC, EVC and ESC, in terms of Kendall’s
tau coefficient, rank of top-k nodes and top-10 node propa-
gation score. However, WCC needs to calculate the distance
between any two nodes in the network, so it is not suitable
for applications in disconnected networks. Disconnected net-
work means a network with isolated nodes. The Hep network
is a disconnected network, therefore, WCC is incapable in the
Hep network, but it can be used in other networks.

1) KENDALL’S TAU COEFFICIENT
The Kendall’s tau coefficient τ is used to analyze the rank
correlation of the nodes between a certain algorithm and the
SIR model in three real networks. The corresponding values
of τ for different β in different networks are shown in figure 3,
β ranges from 0.6 to 1.

In Zachary network, the curve of CDA is above the curves
of other four algorithms, it indicates that CDA has the highest
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FIGURE 6. The number of infected nodes by initially top-10 nodes in Netscience network. (a) Comparison between WDC and
CDA. (b) Comparison between WCC and CDA. (c) Comparison between EVC and CDA. (d) Comparison between ELSC and CDA.

accuracy of node rank comparing to the other four algorithms.
In Netscience network, CDA performs the best. In Hep net-
work, CDA performs the best; ESC is relatively poor per-
formed. The experiment shows that the rank correlation of
nodes between CDA algorithm and the SIRmodel of different
β is the best, which is the node rank of CDA is the most
accurate among the five algorithms. However, the Kendall’s
tau coefficient τ can only evaluate the rank correlation of
nodes between an algorithm and the SIR model, and cannot
evaluate the propagation ability of nodes.

2) RANK OF TOP-K NODES
In order to further verify the effectiveness of CDA and other
four algorithms, the rank of top-k nodes is obtained byWDC,
WCC, EVC, ESC and CDA. Then the SIR model is applied
to evaluate the number of infected nodes by the top-k nodes,
F(t) represents the number of infected nodes by SIR model
as mentioned above and t is the step value which is set to 3.
Here, β = 1. The average number of infected nodes by each
top-k node of different algorithms are shown in Figure 4. The
curve of CDA is downward sloping the most gently among
the five algorithms. Namely, the propagation ability of the

top-k nodes based on CDA decreases most steadily with the
increasing of k. It also illustrates that the top-k node rank of
CDA is consistent with the ability of node infection. So the
top-k nodes of CDA is the most accurate among the five
algorithms.

3) TOP-10 NODE PROPAGATION SCORE
The propagation ability of the different top-10 nodes between
CDA and other algorithms is compared by the SIR model.
The rank of top-10 nodes by WDC, WCC, EVC, ESC and
CDA in different networks are listed in Tables 3, Table 4 and
Table 5.WCC is incapable in the HEP network, soWCC does
not appear in Table 5.

The SIR model is applied to evaluate node propagation
capability, the top-10 nodes are used as initial nodes to infect
other nodes in the network, the infection situation of each step
in the propagation process is analyzed, and the number of
infected nodes in the network are compared when the propa-
gation stops. The simulation results are shown in Figures 5-7.

The top-10 nodes selection by different algorithms may be
the same or different, and the propagation ability of the same
nodes does not need to be compared. For example, in Zachary
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TABLE 3. The top-10 nodes ranked by five algorithms in Zachary network.

TABLE 4. The top-10 nodes ranked by five algorithms in Netscience
network.

TABLE 5. The top-10 nodes ranked by five algorithms in Hep network.

network, the top-10 different nodes based on ESC and CDA
are node 24 and node 31, respectively. Therefore, only the
propagation capability of node 24 and node 31 need to be
compared (As shown in Figure 5 (c)). If the top-10 nodes
of the two algorithms are identical, and the total propagation
ability of the top-10 nodes is the same. At this point, a bet-
ter algorithm is determined by verifying the consistency of
node rank and propagation ability. For example, in Zachary
network, the top-10 node of WDC is exactly the same as
the top-10 node of CDA. The top-1 nodes of the two algo-
rithms are node 34, while the top-2 nodes are node 1 and
node 3, respectively. Therefore, the propagation capability
of node 1 and node 3 need to be compared. The experi-
mental results show that the propagation capacity of node 3
is stronger than that of node 1 (As shown in Figure 5 (a)).
Therefore, the top-10 node rank of CDA is more accurate
than WDC.

From Figures 5-7, it is clear that the curve of CDA is above
the curves of other algorithms at the node propagation process
in different networks. In other words, CDA is the best among

FIGURE 7. The number of infected nodes by initially top-10 nodes in
Netscience network. (a) Comparison between WDC and CDA.
(b) Comparison between EVC and CDA. (c) Comparison between
ESC and CDA.

the five algorithms for the number of infected nodes at each
step during the propagation process. What’s more, when the
propagation of the infected nodes stops, the final number
of infected nodes based on CDA is the largest among the
five algorithms. It further illustrates that CDA can identify
the propagation ability of top-10 nodes better than WDC,
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WCC, EVC and ESC, and provide the most reasonable node
rank list. CDA is a weighted degree centrality based algo-
rithm, and further considers the topology of nodes in the
network. So, it has good perform especially when there is
obvious community structure in the network.

V. CONCLUSION
In this paper, CDA is proposed to identify the influential
spreaders in weighted complex networks. By taking into
account the node degree, strength, topological position and
the neighbor node contribution, results show that CDA algo-
rithm is more effective and produces better list of the most
influential nodes. The performance of the CDA has been
evaluated by applying the SIR model to simulate the spread-
ing process in real-world networks. Comparing with WDC,
WCC, EVC and ESC, the CDA algorithm has achieved the
closest node rank to the real propagation ability. In addition,
the propagation ability of the top-k nodes based on CDA
decreases the most steadily with the increasing of k, it also
illustrates that the node rank of CDA is consistent with the
ability of node infection, and the node rank is the most accu-
rate among the five algorithms. Meanwhile, the propagation
ability of CDA and other algorithms with different top-10
nodes is compared. CDA can identify the of top-10 spreading
ability nodes better than WDC, WCC, EVC and ESC.
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