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1. Introduction

Quantum transport studies the motion of electrons in structures small enough, andyat
temperatures low enough, that the quantum-mechanical nature of the electromiplays
a dominant role in determining their behaviour [1]. Such studies are not! only of
fundamental interest, but also point towards future quantum-technological developments
in fields such as electronics and computation. Unlocking such developments, however,
requires that we learn to understand and control quantum effects in transport Systems.

In 2010, Brandes [2] first proposed the use of quantum feedback contrel [3, 4, 5] to
manipulate the flow of transport electrons and described a feedback scheme,to suppress
fluctuations in the inherently stochastic flow of electrons through.a quantum dot. This
work spawned a number of theoretical proposals to use feedback to produce a range
of interesting transport effects such as stabilisation of noneguillibriuny/quantum states
6, 7, 8] and the realisation of a mesoscopic Maxwell’s demon [9, 10, 14]7 These ideas were
reviewed in Ref.[12], and recently, a scheme very closefte, Brandes’ noise-suppression
proposal was realised in experiment [13].

Most of these developments have utilised measurementsbased quantum control
[14, 3], where the quantum system of interest (thes“plamt”) is measured and the results
processed as the informational grist of a classical feedbaekdoop. In contrast, in coherent
quantum control [15], no explicit measurement is made but rather the plant is connected
to a quantum-mechanical controller and theiminteraetions form an autonomous feedback
loop that is quantum-mechanical and phase eoherent. The main advantages of coherent
feedback control over its measuremdent-based eounterpart are held to be reduced noise
and increased speed [16].

In Refs. [17, 18], Emary and Gough cénsidered the application of coherent control
to quantum transport, taking their cue from the quantum feedback networks of Gough
and James [19, 20, 21, 22, 23, 46, 24]-In their approach, transport was described within
the Landauer-Biittiker theory {25], applicable to non-interacting phase-coherent electron
systems, with plant and ¢ontroller modelled by scattering matrices. By coupling these
building blocks together inleop geometries, a form of coherent feedback is implemented,
the analysis of which amountsife finding the composite scattering matrix of the plant-
controller complex.

Ref. [17] considered a, specific feedback geometry consisting of a four-lead plant
attached to a two-lead controller. In the current work, we consider a complementary
arrangement with a twoslead plant and a four-lead controller. Unlike the unrestricted
controllers of\Ref. [17], the ones we consider here have particularly simple structures,
with jugt a single®eontrol parameter. In terms of an optical analogy, these controllers
are equivalent to banks of identical beam-splitters with the beamsplitting angle the
control parameéter. We show here that, even with these highly-constrained controllers,
interesting and useful actions of the feedback loop can be produced. This is because the
feedbaekdoops exhibit strongly nonlinear relationships between the plant transmission
and the transmission of the feedback circuit. We describe several applications of this
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effect: the first is to amplify differences in plant transmission originating from changes
in an external parameter; the second is to increase the precision of a quantum dot energy
filter; and the third is to distinguish between plants that are otherwise indistinguishable.

In contrast to previous works [17, 18], we consider here the performance of these
feedback schemes at finite bias. This is important because, at finite bias, electzons have
a range of energies and thus pick us different phases as they travel around the feedback
loop, and this affects the way they interfere. Thus, we expect finite bias te lead to
phase averaging [26, 27, 28|, which will, to some extent, undo the gains made By the
coherent control. We investigate the impact of this phase averagingsbothyin general
and on our applications and identify the voltage scale(s) over which feedbag¢k-enhanced
functionalities can be maintained undiminished.

This paper is organised as follows. Sec. 2 introduces our feedback geometry and
transport observables. In Sec. 3 we address the phases aeguired by/the electrons as
they travel through the feedback loop, and in Sec. 4 we introducereiir simple controllers
and study the resultant feedback scattering matrices. "We,then turn to applications.
Sec. 5 discusses the amplification of differences in thé tramsmission of a single-channel
plant caused by the variation of an external parameter. Defailed account is given of
the performance of this set up at both zero anddfimite bias. Sec. 6 then considers the
plant to be a quantum dot, modelled as a single-resonant’level, and considers the use
of feedback to modify both the positionsand width of its resonance. Again, the effect
of finite bias is discussed. Our final application, discussed in Sec. 7, considers a multi-
channel system where feedback is employed to distinguish between two plant matrices
that have identical transmission probabilities but different phases. We conclude with
the discussions in Sec. 8, including parameter estimations for realisation in quantum
Hall edge channels.

2. Feedback Geometry

We consider the geometny sketched in Fig. 1, in which a two-lead plant is connected
in a loop geometry with afour-lead controller. This is similar to that considered in
Ref. [17] but with the rele of plant and controller reversed. Leads A and B are external
leads, across which®the tranSport properties of the plant-controller complex will be
calculated. Leads C and\D are internal to the feedback loop. We assume that all
leads are bidireetional and support N transverse modes in the relevant energy range.
Within the Landaner-Biittiker approach [25], the plant is represented by the 2N x 2N-
dimensional ‘Sedttering matrix P(F, \) which, in principle, depends on the energy F at
which séattering occurs as well as on some external parameter A. In terms of vectors
b™(E) and b°"*(E) containing the appropriate annihilation operators of the leads, the
plaait scattetifig matrix acts as b°"(E) = P(E, \) b™(FE). In terms of transmission and
reflection blocks, P = P(E, A) has the form

rp t
P:<t£ TZ) (1)
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Figure 1.  Sketch of the feedback geometry considered here. Circuit blocks are
labelled with the corresponding scattering matrix: P isithe plant, K is the controller,

and blocks @ and ®p, describe the phases accumulated by the electrons as they travel
between plant and controller (in internaldead$:C and D). Conduction properties of the
resultant feedback circuit are measured between leads A and B.

The control matrix is 4N x 4N dimensional and has block structure

KI KH
K= . 2
( KIII KIV ) ( )

[ Kaa Kamy) . [ Kac Kap \ .
KI - 3 KH - )
KBA KBB KBC KBD

K = < Hom KCB > ;K = ( Koo Koo ) ) (3)

with

Kpa fRps
where submatrix K¢y fdeseribes the scattering from lead X to lead Y.
The final elementsiin Fig. 1 are the “phase blocks” labelled ®¢ and ®p. These
are scattering matricesithat account for the phases accumulated by the electrons in
travelling betweén,plant and controller. The scattering matrices read

0 eifc 0 eop
‘IDC-(emC 0 >, (I)D—<ei5D 0 ) (4)

where agp and Bep are diagonal matrices of the various phases. Whilst not strictly
part of the plant, it behoves us for the formal development to combine these phases with
thegplant matrix. Utilising the bidirectional series-product ¢ [17], we define

Po(E,\) = ®c(E)OP(E,\)0Pp(E)

iBc [1e76) B! Liap
_ [ etreent etpen™ ) (5)
etPp t petec eZBDxrlpelaD
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This can then be written as the simple matrix product Py(E,\) = € - P - ¢ where
a and B are matrices containing all phases of that particular type along the diagonals,
first those from lead C and then those from lead D.
Following the argument of Ref. [17], the scattering matrix of the complete féedbaeck
system is
1
S=Ki+ Knmpcbf(m, (6)

with 15y, a unit matrix of dimension 2N x 2N.

2.1. Finite-bias current and noise

The conduction properties of Eq. (6) for various plant and controller formithe subject of
this work. The main observable and control target we will be interésted in is conductance
G = 1/V, where V' > 0 is the applied bias between leads A and'B and 7 is the resulting
current. We will express the conductance in terms of @y = 2¢%/h, the conductance
quantum (spin degeneracy is assumed). In the LandauersBiittiker’approach, the current
is given by

=23 [ETB)ME) - HERN )
Here fap(E) = [1+ e(E_“A«B)/(’“BT)rl aréythe Fermifunctions of leads A and B with
common electronic reservoir temperature 7T, andychemical potentials y14 g such that the
voltage across the sample is V' = (s — pup)/esFurthermore, T,,(E) are the transmission
probabilities associated with matrix’S. These\are obtained as the eigenvalues of the
matrix 't where t = ¢(FE) is the transmission subblock of the total scattering matrix
S(E) [compare Eq. (1)]. In theéyzero-temperature limit, 7 — 0, the Fermi functions
reduce to step functions and the current becomes

26 HA
=3 /H dBT. (B). (8)

We will also consider the zero-frequency shot noise which, in the same limit, is given by

[25]
S £Go ¥, /“A dET,(E)[1 - T,(B)), (9)

as well as thé corresponding Fano factor F' = S/(el).

3. Phase and phase averaging

Thephases,contained in matrices o and B will, in general, consist of both geometrical
and dynangical contributions. If we assume a linear dispersion about a Fermi energy
of Eyn= 04 the wave number of the electron in the nth subband of lead v = C,D
reads k,, = k,n(0) + E/(hvy,), with k,,(0) the relevant Fermi wavenumber and v,



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - QST-100163.R1

Quantum transport control: amplification, filtering and switching at finite bias 6

the corresponding velocity. Travelling a distance L,,, between plant and controller, the
phase accumulated by an electron will be [27]
L,, B,
hv,,(0)
where «,,,(0) contains both the geometric phase and the Fermi-edge cofitribution
kyn(0)L,,. A similar relation holds for 5,,(E).
For simplicity, we will consider the homogeneous case for these phaseés, 1.e.xthat the

an(E) = ayn(0) + (10)

phase accumulated is the same for each channel and each lead, and assumex

E
vn E) = vn = &= e 11
Oun(E) = Bun(E) = 0 = a0 + - (1)
This form introduces a single voltage scale associated with phase eftects
hv
Ve = — 12
=, (12)

where v and L are the homogeneous electron velocity andgath length between plant and
controller. In this case, the plant matrix develops an owerall 'energy-dependent phase

Py(E, \) = Xoot2B/(Va) p(p ), (13)

We can assess the effect of this energy-depéndent phase by assuming that plant
and control matrices are independent of E, except througﬁ this phase. In this case, we

)e2nE/(eVe) “and similarily for

can decompose the scattering matrix as S(£) = dio0 8™
its transmission subblock t(E) = Y0 M2k, (eVa) Evaluatmg the energy-integral in

Eq. (7) [30], we obtain the current

L _
= n;ﬂt 27T]<IBT)CSC}1 [27r(n —m) eli/:] sin {(n V;n)V] , (14)
where we have assumed a symumeétrical bias ps = —pup = eV/2 and where kg7 is

the thermal energy of the leads. Thisyform shows the importance of the parameter
Vs as setting the voltage sealecover which phase-averaging effects become important.
For temperature kg7 > eVg4 the off-diagonal elements are exponentially suppressed
by thermal fluctuations. “In the/low temperature limit kg7 < eVsp, we obtain the
conductance

G =Gy n;()t(”)t(mﬁsinc [%] . (15)
This form shéws that for.V < V3, the conductance reduces to its coherent limit and that
the leading-ordér correction to this behaviour scales like (V/ Vq>)2. At higher voltages,
the conductancefor each value of n — m shows “lobes” as a function of voltage, similar
to those predicted for the Mach-Zehnder interferometer [27]. Here, however, since the

1 This situation could, for example, be approached in transport through quantum Hall edge channels by
changing the local potential landscape of the different interconnecting “leads” to make the accumulated
phases mateh, as well as by considering high-energy electron transport in the outer edge channels [29]
such that sub-band offsets make up but a small contribution to the total energy of the electrons and
the wveloeities are thus uniform.
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ég Figure 2. Sketches of feedback loops with thedwo simple controllers, K'Y on the
31 left and K on the right, in the single-channel case. The action of each controller
32 (large grey square) is decomposed interms of two “beamsplitters”, each represented by
33 a short red line. The bottom two sketches show the circuits “unfolded” such that the
34 action of the beamsplitters in each @ase is@lear. In the K1) case, both beamsplitters
35 scatter between all fourdeadsmln. the K (?) case, one beamsplitter acts between leads
36 AC and the other between BDx»This second feedback loop can therefore be decomposed
2273 as the series combination of two beamsplitters with the plant in the middle.

39

22 electrons can make multiple fround trips in the loop, the overall conductance is the
42 superposition of signals withedifferent/periods (n —m)V/(27Vs). A similar analysis can
43 be performed for the noige, but the results are similar and we do not show it here.

44

45

46 4. Simple controllershand switching

47

jg In Ref. [17] the notion of ideal control” was discussed where, with free choice of control
50 matrix, the scattering matrix for the joint plant-control system could be set arbitrarily
51 regardless of thedorm of,the plant matrix. For this to be possible, the control matrix
gg needs to haveidimension equal to or exceeding that of the plant matrix. In this light it
54 is clear ghen that without further restriction, the 4-lead controller considered here will
55 enable ideal control since its dimension is twice that of plant matrix P.

56 . . . . .

57 Here, however, we are interested in a different problem, viz., what can be achieved
58 when we are restricted to particularly simple controllers. We consider two such
2(9) controllers, with scattering matrices K and K®, each of which just has a single

control parameter, 6, that controls the feedback “strength”. The controllers in question
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consist of a set of identical 4-port “beamsplitters” that preserve the channel index. In
a transport set-up, these would most readily be realised with quantum point contaets
[31]. Sketches of these two controllers embedded in feedback loops are shown in Figl2.

The first controller K1) scatters electrons between all four of its leads anddiasithe
scattering matrix

X  sinfX
K(l) _ COS 1
< —sinfX’' cosfX' |’ (16)

where X is an exchange matrix with elements X;; = 6;on—;11 and _X"1is,similar but
with alternating signs X;; = (—=1)"0;an—j41. From Eq. (6), the scatfering matwix for the
feedback loop with this controller reduces to

cosO 1oy — Pp X' ~
Ioy —cosOPp X'

In the limit & — 0, we obtain the feedback matrix S — Xilwhereas for § — 7/2,
we have S — —XPpX’. Thus, varying the feedbaek, parameter § we can steer

S =Xx

(17)

the system from a purely transmissive one, whose propertiesiare independent of the
plant, to a system whose scattering matrix is linear in the plant matrix. Exceptions
to this generic behaviour occur when the denomimator,in Eq. (17) is singular. For
example, consider the plant matrix Py = e** [,y dwhich¥represents a reflection of all
channels with a 2aq phase accumulationsln this case, the determinant of denominator
in Eq. (17) with @ — 0 reads Det (Ioy =€z X") "= (1 + ¢4o0)N " This is zero for
ap=(2m+1)w/4; m=0,£1,£2,... and Eq. (17) can not be used directly. However,
re-evaluating S without the seried fesummation for the special case of Py = ily gives
the feedback matrix SV = —i XX’ =Biag[—1,i, —i,...] for all values of the feedback
parameter 6. In this case, theh, the systemiis completely reflective.

We will make use of this hehayiour to give a circuit whose conduction properties
depend abruptly on the plant matrixy, With 6 small, most plant matrices will give
a feedback circuit that is_highly trapsmissive since, for § — 0, we have S - X.
However, when the plant matfix resembles Py = t15y, the behaviour of the feedback
circuit will switch to the singulardimit S = —iX X', which is purely reflective. Thus,
the behaviour of the feedback eircuit will switch rapidly as the plant approaches a purely
reflective state.

The controlmatrix of our second controller reads

no) < cos 0l sinflgy ) ‘ (18)

=sinflyy cosflyy

This induees seattering only between leads A and C, and between B and D. It thus
effectively actsf@s two sets of beamsplitters, one on either side of the plant, see Fig. 2
andse ‘ofythis controller therefore resembles enclosing the plant in what, in optical
terms, would be something like a generalised Fabry-Pérot resonator [32].

The feedback matrix for the feedback loop with K® reads

g2 _ o8 0lony — Py (19)

~ lgy —cosOPy

Page 8 of 18
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For § — 0, the feedback matrix becomes S — 1,5, whereas for # — /2, we obtain
S®? — —Py. Thus varying 6 changes the circuit from complete reflection tosbeing
the same as the plant except for an overall phase. In a similar fashion to the above,
there is an exception to this behaviour when the denominator is singular. When, for
example, P = iX’ we obtain S® = —iX’ instead. Thus, this set-up shows an abrupt
switching behaviour with 6 — 0 from reflection for most scattering matric¢es to complete
transmission for e.g. Py — iX'.

5. Signal amplification

Our first application of this formalism is to look at how the feedback,loop can be used
to amplify changes in the transmission of a single-channel plant. Letdisieonsider a plant
matrix

Py = 2i00t2iB/(eVe) ( vi-—Tp V1p ) , (20)

Ty V1-Tp
where Tp € [0, 1] is the plant transmission probability. We, set oy = 7/4 in order to
trigger the singular limit discussed above, and williinitially consider the £ = 0 case.
The transmission of the feedback circuit for this plamt With control matrix KM as a
function of the plant transmission 7p is

Tp (3 + cos 202
4 (4Tp cos? 6 + sint (9) '
and this result in plotted in Fig. 3#As We seeithat the feedback-circuit transmission is

TO[Tp] = (21)

a monotonically-increasing function ofsthe plant transmission with a nonlinearity that
increases with increasing cos . Indeed forysmall 6, the transmission is approximately
unity across most of the range of 7Tp, and only when Tp approaches zero, does the
behaviour switch and the transmission rapidly drop to zero. For small Tp, we find
TO ~ (1 —2ese?0)* Tp, whichhis valid for 7 < 1. The quantity n = (1 — 2csc?0)?
thus represents the smallésignal gain for the transmission in this circuit. For § = 7 /4
and 0 = /8, this evaluates as approximately 9 and 160 respectively.

To investigate the, effectsioéf applied bias on this amplification, we will consider
plant matrix Eq. (20)swithia plant transmission 7p independent of energy but depending
sinusoidally on an external parameter A:

o= Tp(\) = T sin® (1)), (22)

with Ty thel magimum transmission of the plant and hence the signal amplitude. A
plant of this form _amight, for example, arise from an interferometer geometry with A
proportional tofsome external magnetic field or difference in path-length. We shall
assume, that 75/« 1 and that the aim of the feedback loop is to increase the amplitude
of the oscillations. We set oy = m/4 again and maintain the energy-dependence of the
phase.

Fig."3B shows the transmission of the feedback circuit as a function of control
parameter \ with 7 = 0.1, and the amplification of the original signal is apparent.
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Figure 3. Signal amplification with the feedback controller K*). A. Transmission of
the feedback circuit, 7} as a function of the plant transmission, Tp, with plant matrix
Eq. (20) for F = 0. Changingthe feedback control parameter 6 changes the degree
of nonlinearity and hence the scope for amplifying changes in plant transmission. B.
Transmission M) ayvhen the plant transmission is a sinusoidal function of parameter \,
see Eq. (22). With T =.0.1 the amplitude of these oscillations is small. However, with
increasing cos 6, themonlinear response of the feedback circuit leads to an amplification
of their magnitude. C. The eonductance on this circuit as a function of A for various
voltages. The feedback angle here is 0 = /8 such that amplification is strong. As
voltage increases, the high-amplitude oscillations become smoothed out due to phase
averaging. D. The peak-to-peak conductance AG of the oscillations as a function of
voltage (@ = 7 /8)n'Fhis shows that the signal amplification drops by half over a scale
of V/Vg ~0:2. For voltages lower than this, amplification is robust with the results
largely independent of Tj. In all cases, the fixed phase angle was ay = 7/4.

For small cog#, the response is approximately linear with the gain 1 above. For larger

cos #, the nonlinearity of the response is manifest and we see distortion of the original

sinusoid«"Fig. 3Ggillustrates what happens at finite bias. If we had only the plant

matrix (between our contacts, the conductance oscillations would be unaffected by the

increase imbias. However, in the feedback circuit, the amplified oscillations are subject

to phase-averaging and they thus wash out with increasing bias. This point is illustrated
further in Fig. 3D which shows the peak-to-peak conductance AG = Gax — Gin 0f the
feedback circuit as a function of the applied bias for # = 7/8. At small bias, V' — 0,
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Figure 4. Noise properties of the single-channel feedback circuit discussed in Fig. 3.
Panels A. and B. show the shotnose and Fano factor as a function of external parameter
A at various applied biaginPanels C. and D. show the shotnose and Fano factor as a
function of bias for select values of WAt low voltage, and away from from the endpoints
A = 0,1, the feedback gives rise to a strong suppression of the Fano factor. As voltage
increases, the A-dependence is washed out and suppression spreads to envelop the
complete range of A. Parameters as in Fig. 3C unless otherwise stated.

the conductance differencedAGNsalmost one. However, by the time the voltage reaches
V/Vs &~ 0.2, it has been reduced to AG ~ 0.5 and it then trails off further. This
highlights the impottahce of thedrole of parameter Vg is determining the voltage scale
over which phase-avéraging effects act. That the conductance disappears over a scale of
V/Vg ~ 0.2 and nét V'/Vg, ~ is indicative that more than the lowest voltage-dependent
component in Bg.\(15) is\eontributing to the phase averaging here, and hence multiple
round-trips are beingmmade by the electrons in the feedback loop. These results also
show a degree of robuistness with respect to variations in parameter T, which is to say
that, providing the#oltage is below the threshold at which significant phase-averaging
occurs,/the peak-to-peak conductance remains the same for a wide range of T values.
This.azises,from the saturation of upper bound for the transmission. Above V/Vg = 0.2,
however, dephasing is strong and this robustness disappears, resulting in a peak-to-peak
conductange that very much depends on the plant transmission.

In"Fig. 4 we consider the noise properties of this system. In the limit V' — 0



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - QST-100163.R1

Quantum transport control: amplification, filtering and switching at finite bias 12

the noise and Fano factor for this single-channel model are simply proportional to
T (1 —TM) and 1 — TW respectively. For small T without feedback, the Fano fagtor
is therefore close to one through the whole range of A. The application of feedbagk,
however, reduces the noise relative to the current, leading to a dramatic reductionnef
the Fano factor, most markedly at A = 1/2. This behaviour can be seen in Panels A and
B of Fig. 4. These figures also show the noise and Fano factor at finite bias’and bothishow
a smearing out of the A-dependent behaviour as voltage increases. What, is‘remarkable
is that, for the parameters considered here, the Fano factor in the large-voltageslimit
is close to 0.1 across the entire A range. Thus, even in the strongly.dephased classical
limit, the feedback loop leads to a suppression of the Fano factor./ This is¢particularly

marked around A = 0 and A = 1 where the Fano factor is one without.feedback.
~

6. Energy filter

We now consider the second controller K2 and first consider it acting on a plant as in
Eq. (20) with ag = 7/4 and E = 0. The output trauS$missionyin this case 7® can be
related to the response of Eq. (21) as
TOTp) =1 - TW[1 - Tp). (23)
L/

The result is thus a mirroring of the transmission/in Kig. 3A along the “No FB” line

() is close to zérénfor mostyef its range with a rapid jump to

such that transmission 7’
T® a1 close to Tp = 1. The dominantisuppression of transmission shown by this
response can be utilised to sharpen features i, the plant transmission. To show this, we
consider a single-channel plant whosetransmiission is dependent on energy (rather than
on some external parameter ag before), and take as example a single-level quantum dot

with scattering matrix [33]

) 1 —= i . i
P@(E) _ e2za(E) C B zl"-Z!-FE—ET . _zF—&-E&ET ) ) (24)
i+ E—FE, il+E—FE,

Here, E, is the energy of thie reSonant level and I' describes its width (we assume
equal left and right, barriers). £The transmission of this matrix is the Lorentzian
Te(E) = T2/ [I? + (E'%,E,)’]. Figure 5A shows the transmission of the plant both
without and witli feedback™(static phase oy = 0). Increasing feedback parameter
0 > m/2 causesithe resonance to sharpen. This feedback scheme could therefore be
used to increase the mtility of the quantum dot as an energy-filter, e.g. [34, 35]. For
values 0 < /2 4the feedback loop can be used to increase the width of the resonance
(not showm): Figure®5B shows that by changing the overall phase ag, not only the width,
but alsg the position of the transmission resonance can be altered.

Choosing parameters such that the feedback gives a pure narrowing of the
resonance,gwe now look at the effects of bias on this effect. Figure 5C shows the
conductange of the dot as a function of the resonance position with the centre of the bias
window set at an energy F = 0. As bias increases, the resonant profile of the conductance
peakuflattens and broadens. Figure 5D shows the FWHM of the conductance peak as
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31

32

33 Figure 5. Conductance properties of the feedback circuit with a single-level quantum
34 dot plant and K® contreller. A: Without feedback, the transmission of the single-
gg level quantum dot as a function'of,the resonance position E, is a Lorentzian with
37 width parameter I'. With phase angle oy = 0, changes in control angle € reduce the
38 width of the resonance. B: Variations in the phase angle ag can shift the transmission
39 peak at the same time'as changing its width. Here, the control angle was 6 = 37 /4.
40 C: The conductanée G at finite bias. As voltage is increases, the resonance broadens
41 and flattens. Here .= 37 /4/and ap = 0. D: The FWHM of the conductance peak as
42 a function of yoltagesfor, various control angle 6.

43

44

22 a function of voltagexWith mesféedback and for eV < I', the FWHM is approximately
47 constant as the bias.windew s still able to resolve the details of the resonance. For
48 eV > T, however, the entire resonance fits inside the bias window such that that
gg FWHM increases linearly with V. Somewhat surprisingly, we observe that this picture
51 remains in tact under the application of feedback, with only the width of the original
52 resonance being reduced. This indicates that the phase-averaging caused by the small
gi finite bias does mot significantly affect the resonance-narrowing effect of the feedback.
55

gs 7. Multi-channel switching

58 : . .

59 Wenew extend our analysis to the multi-channel case and consider an N-channel plant

60 that can switch discretely between two states, each with its own scattering matrix.
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We assume that the difference in the conduction properties of the two plant states is
negligible and the role of the feedback circuit is to help distinguish between them.
We decompose our plant scattering matrices as [36]

(O ) (5 ), O
LoV VTp V1—Tp 0o V']

where U, V', U’, V" are four N x N unitary matrices and Tp = diag(Tps, Tpa,. .. Tpa)
is an N x N diagonal matrix with the transmission eigenvalues on the diagonalk, We
consider the extreme case for our problem, where all the transmission-probabilities Tp,,
for the two plant matrices are homogeneous and identical to oné another. “The two
plant matrices thus differ only in the phase matrices U, V', etc. Since, the transmission
probabilities are the same for both matrices, the two plants alofie hay@ indistinguishable
conductance properties. By enclosing the plants in a feedbagk leop, however, the phase
matrices play a role, and thus lead to the possibility that the plants ' may be separated.

To assess this effect, we consider a large set of plant“matrices; generated randomly.
We generate a pair of matrices by choosing each of UgWV jetc. from the circular unitary
ensemble and keep all transmission probabilities equal and fixed at a value T;. We then
calculate the conductance of each of these matricesswhen,.combined with controller K
with ag = 0 and then vary the angle 6 such that the difiérence in conductance AG at
zero bias for any particular pair is maximised. "We repeat the procedure for 300 pairs
of matrices of increasing size N, and look atithe average value of AG for the set. The
results as a function of bias are outlined in"Kig. 6x

Without feedback, AG would bézere by construction. At zero bias, however, we see
that the average conductance differenegp AG with the feedback loop is & 0.5G,. This is
then seen to saturate as the namber of channels /V increases and thus, relative to overall
conductance, the size of the contrel effect decreases like 1/N. While a decrease with N
is unsurprising, since we have 'but a single control parameter irrespective of the size of
plant we seek to control, it is n@{eworthy that the relative size of the control effect scales
like 1/N and not 1/N?2, ag might he expected based on a parameter-counting argument.
Turning to finite bias,.we sée that the magnitude of AG drops off with increasing V'
due to phase averaging. Indeed AG reaches zero when V/Vg =~ 7, showing that it is
the first off-diagonal‘@entribution in Eq. (15) that is dominant in the averaged feedback
behaviour. Fig. 6ialso makes clear that there is significant variation between the various
instances of plant-matrixpairs. The standard deviation of our results for N = 8 is shown
in Fig. 6. This shows a narrowing around the V/Vg & 7, again indicating the importance
of the first offrdiagonal term. The inset of this figure shows several results for individual
plant-matrix pairs. These display highly non-monotonic behaviour as functions of V,
which also includes sign reversal. Nevertheless, the overall trend is towards a decreasing
AGfor largeW/Vg > .
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—— 1 Channel
- -- 4 Channel
.- 8 Channel

AG/Gy

AG/Gy

ViVe

L

Figure 6. Main panel: Theaverage conductance difference AG between two plant
matrices with identical transmission probabilities when placed in a feedback loop with
controller K. Results are shown as @ function of voltage for N = 1,4, 8-channel
matrices with the mean gonstructed over 300 random matrix pairs. The pink region
represent one standard deviation'from the mean (N = 8 case). Inset: Four individual
instances of the conductance difference for N = 8. Similar results were obtained for
other values of N {In all cases the transmission amplitudes of the plant matrices were
all set to be Ty = 0.5.

8. Discussion ~

In this work we have comsidered coherent control of quantum transport within a
scattering approach, and havefécussed on the control effects achievable with two simple,
generic controllersaThese controllers each give rise to a circuit whose transmission is
a nonlinear function of ‘plant transmission and this has been seen to be useful in a
number of contextsy We/have described how this nonlinearity can be used to amplify
changes in the plant tramsmission or detect changes where none would be visible in the
transmission of the plant alone. We have also seen how the feedback circuit can affect
transmigsion as afunction of energy, and in particular in enhancing the energy-filtration
provided,by a quantum dot. This range of application demonstrates that, even though
we dre far from the “ideal control” scenario open to unrestricted controllers [17], even
highly-constrained controllers can be of significant utility.

We.have also considered how these schemes function at finite applied bias and have
identified the voltage scale Vg over which phase-averaging effects becomes significant.
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In the amplifier application, the gain was cut by a half when the voltage reached
V/Vge ~ 0.2, and this we take to be a typical value for the point at which coherent
control functionality is significantly degraded. The energy-filter example did not show
any strong disruption at finite bias, but this was because the width of the resonanee
is masked at high bias anyway. Finally, in our multi-channel example, a complicated
response as a function of voltage was observed, which reflects the non-trivial ‘energy
structure of circuits involving multiple round-trips. Interestingly, when such behaviour
is averaged over a large number of plants, it is the phase-averaging properties of agingle
round-trip that dominates.

The most likely current physical context in which these ideas could be tested is in the
edge-channel transport in the quantum Hall effect, where electroni@ analogues of optical
beamsplitters are readily realised with quantum point contacts [34]: “A Tlarge range of
interferometric experiments have been realised with such set-ups [37438, 39, 40, 35].
For typical edge-channel velocities of v = 10°ms™! [40, 29] and ftefconnects L = 10nm
in length, we obtain a value for the phase-averaging scale ¥ ~ 10mV. For L = 10um,
which is a typical Mach-Zehnder arm length [35] orfechereneeéflength at filling factor
v = 2[39], we obtain Vg ~ 101V. To avoid the negative phase-averaging impacts of finite
bias on feedback-enhanced functionality, the operating bias should be kept significantly
below these levels and this clearly suggests intércodneets €loser to the former value in
length than the latter.

We have only considered the homogeneeus case for the phases here. For any
particular geometry, inhomogeneous phases ean be,included without issue. And whilst
this will certainly complicate the speéifies.of the response, the same general principles
are expected to hold. For a simple estimation of whether phase-averaging will impact
the circuit, the largest value éfithe length-tesvelocity ratio L/v should be considered.

Finally, we note that the onlytincoherent process we have considered here is phase
averaging due to finite bias. In any physical realisation, other incoherent effects such as
Coulomb interactions [41, 42543y 44] and phonon emission [45, 46] will also contribute
to degrade coherent feedbackdschemes. Impact of these effects remains the subject of
future work.
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