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ABSTRACT

We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the
Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to
classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape param-
eters, and stellar mass), we apply the techniques of Support Vector Machines, Classification
Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning
True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent,
respectively. Those occasions whereby all four algorithms agree with each other yet dis-
agree with the visual classification (‘unanimous disagreement’) serves as a potential indicator
of human error in classification, occurring in ~9 per cent of ellipticals, ~9 per cent of little
blue spheroids, ~14 per cent of early-type spirals, ~21 per cent of intermediate-type spirals,
and ~4 per cent of late-type spirals and irregulars. We observe that the choice of parameters
rather than that of algorithms is more crucial in determining classification accuracy. Due to
its simplicity in formulation and implementation, we recommend the CTRF algorithm for
classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy
types are : E, 70.1 per cent; LBS, 75.6 per cent; SO—Sa, 63.6 per cent; Sab—Scd, 56.4 per cent,
and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that
divides galaxies into spheroid-dominated (E, LBS, and SO-Sa) and disc-dominated (Sab—Scd
and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of
84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

Key words: methods: statistical — galaxies: fundamental parameters—galaxies: general —
galaxies: structure.
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1 INTRODUCTION

Galaxies are observed to have a wide variety of forms, from bright
massive ellipticals to extended late-type spirals and faint compact
dwarfs. One of the first attempts in categorizing galaxies by their
visual appearance was proposed by Wolf (1908). These so-called
galactic nebulae were arranged according to their shape, size, and
distinguishing features. No continuity or transition between these
groupings was suggested. As imaging technology improved over
the course of the next decade and available data sets grew, new
systems for galaxy classification were proposed by many authors
(e.g. Jeans 1919; Reynolds 1920). This culminated in the devel-
opment of the Hubble (1936) sequence or tuning fork. The Hub-
ble tuning fork divides galaxies into early type:! typically red and
smooth ellipticals; late type: typically blue extended disc-like spi-
rals, both barred and unbarred, and; a bridging population of lentic-
ulars: systems with both a smooth bulge component and an ex-
tended yet smooth disc component. Subsequent extensions to the
Hubble tuning fork have addressed a number of shortcomings in
the initial classification methodology. These include the inclusion
of bulgeless spirals (Shapley & Paraskevopoulos 1940), transition
lenticulars (Holmberg 1958), rings (de Vaucouleurs 1959), barred
lenticulars (Sandage 1961; Sandage, Sandage & Kristian 1975), and
dwarfs/irregulars (Sandage & Binggeli 1984). The success of this
relatively simple and extensible schema for morphological classifi-
cation of galaxies has ensured that the Hubble tuning fork remains
relevant almost a century later.

Hubble-type (HT) classifications have been used to explore a
number of astrophysical phenomena. It was initially noted by
Hubble & Humason (1931) that elliptical and lenticular galaxies
preferentially favour galaxy cluster environments, indicating a po-
tential environmental dependence on galaxy morphology. Oem-
ler (1974) built upon this work some decades later, showing that
the early-type galaxy fraction increases in dense regions. Dressler
(1980) conclusively showed how the fractions of elliptical, lentic-
ular, and spiral+irregular galaxies varied as a function of projected
galaxy density: the morphology—density relation. He found that
dense regions such as galaxy groups and clusters preferentially
harbour elliptical galaxies, whilst less dense ‘field’ regions host
lenticular, spiral, and irregular galaxies (See also Smith et al. 2005).
This apparent relation between morphology and environment has
been further explored in recent years to encompass, amongst oth-
ers, galaxy mass (van der Wel 2008), star formation (Welikala
et al. 2008, 2009), colour (Bamford et al. 2009), the galaxy lu-
minosity function (Kelvin et al. 20144, see also Baldry et al. 2006),
the galaxy stellar mass function (Kelvin et al. 2014b), and galaxy
structure (Hiemer et al. 2014).

Precisely how galaxies form and evolve into their various mor-
phological configurations, and the dependence of this on envi-
ronment, has been the subject of much investigation. Spitzer &
Baade (1951) first suggested that merging events between galaxies,
more common in dense cluster environments, may be responsi-
ble for their transition from a spiral to a lenticular morphology.
Toomre (1977) went further, suggesting that elliptical galaxies may
also be formed via this merging mechanism (see also White &
Rees 1978). In addition to merging, a number of supplementary pro-
cesses which act to modify the morphology of a galaxy have been
proposed, including ram pressure stripping of spiral gas as a galaxy

! The naming conventions ‘early type’ and ‘late type’ refer to the complexity
of visual appearance, and do not imply (nor was it meant to imply) an
evolutionary sequence (Baldry 2008).
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travels through a hot dense intracluster medium (Gunn &
Gott 1972), the rapid decline of star formation due to a loss of its
hot gas reservoir (strangulation: Larson, Tinsley & Caldwell 1980;
Kauffmann, White & Guiderdoni 1993; Balogh, Navarro & Mor-
ris 2000; Diaferio et al. 2001), heating of the galaxy caused
by rapid encounters with other nearby systems (harassment:
Moore et al. 1996), and tidal interactions (Moss & Whittle 2000;
Gnedin 2003b, 2003a; Park, Gott & Choi 2008). Obtaining an ac-
curate estimate of galaxy morphology is therefore essential in order
to facilitate exploration of the formation and evolution of galaxies.

Contemporary catalogues of galaxy morphology vary in size
and classification methodology. Kelvin et al. (2014a, also Moffett
et al. 2016) morphologically classify a local volume-limited sample
of galaxies taken from the Galaxy And Mass Assembly (GAMA,>
Driver et al. 2009) survey. Classification is performed via major-
ity observer consensus based on visual inspection of a composite
three-colour optical-near-infrared (NIR) image. Three independent
expert classifiers are asked a series of questions for each galaxy:
is the galaxy spheroid or disc dominated, is the galaxy a single- or
multicomponent system, and is the galaxy barred or unbarred. This
allows for the galaxy sample to be principally divided into elliptical
(E), early-type spiral (S0-Sa), intermediate-type spiral (Sab—Scd),
and late-type spiral/irregular (Sd-Irr). Additional barred classes for
early- and intermediate-type spirals (SBO-SBa and SBab—SBcd, re-
spectively) are also present. A small subset of ‘little blue spheroid’
(LBS) galaxies, blue compact systems (~7.4 per cent), did not fit
into this classification hierarchy and were excluded at the top level.
This methodology produces accurate classifications yet remains a
time consuming exercise, a problem which will only become more
acute as future data sets increase in size.

A novel alternative is to enlist the support of the wider astronomy
community. The Galaxy Zoo project (Lintott et al. 2008) allows for
volunteer ‘citizen scientists’ to visually classify galaxies via a web
interface. The simple and effective design of the website allows for
a large number of classifiers to visit each galaxy (typically of the or-
der ~60), enabling rapid classification of large data sets. However,
future facilities such as the Euclid space telescope and Large Syn-
optic Survey Telescope will probe much larger volumes, providing
data sets for several billion galaxies. For these future facilities, mor-
phological classification via visual inspection becomes increasingly
prohibitive.

The concept of using automated techniques to quantify galaxy
morphologies stem from this ‘big data overload’ scenario. Moore,
Pimbblet & Drinkwater (2006) demonstrated the use of an auto-
mated Mathematical Morphology algorithm to achieve classifica-
tion into ellipticals and late-type spirals using the images from Smail
et al. (1997). Their approach was unique in that it had fewer free
parameters and that it did not require a classifier to be trained with
a machine learning algorithm. Another widely used approach to
classify galaxies is by the application of statistical machine learn-
ing algorithms. Those that have been used previously used include
artificial neural networks (NN), Support Vector Machines (SVM),
decision trees, and random forests (RF). They are applied to either
galaxy images or to parameters extracted from imaging and spec-
troscopic data. As part of the Kaggle challenge conducted by the
Galaxy Zoo team, Dieleman, Willett & Dambre (2015) presented
a convolutional neural network approach (ConvNets) to classify
galaxy images. Their algorithm was designed to operate with a
training set of 55420 galaxy images, real-time evaluation set of
6158 images, and a test set of 79975 images. Huertas-Company

2 http://www.gama-survey.org
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et al. (2015) applied this algorithm to 58 000 (47 700 training, 5300
validation, and 5000 testing) high-redshift galaxy images® (median
redshift z ~ 1.25) from five Cosmic Assembly Near-infrared Deep
Extragalactic Legacy Survey fields with a result of <1 per cent mis-
classifications.

Abraham et al. (1996)* introduced a new method of discerning
between early-, late-, and irregular-type galaxies, the C—A plane,
where C stands for the central concentration and A for the rotational
asymmetry of the galaxy. This was based on Okamura, Kodaira &
Watanabe (1984) and Doi, Fukugita & Okamura (1993), both of
whom proposed a strong correlation between the mean concen-
tration index and galaxy morphology. The logged values of these
two parameters are plotted in a 2D plane and the separation be-
tween the different galaxy populations are obtained by applying
linear boundaries. Conselice (2003) expanded upon this method by
adding a third dimension, smoothness or clumpiness of the galaxy
(represented by S). He was also among the first groups to consider
additional morphological types such as dwarf ellipticals, dwarf ir-
regulars, and mergers. For more than three dimensions,” this method
becomes difficult. Also, it presents some problems when it comes to
ground-based, high-redshift data. Graham, Trujillo & Caon (2001)
revealed that the concentration parameter, C was unstable in nature
due to its high sensitivity to the image exposure depth. Conselice
(2003) explains that while it is possible to obtain average values for
CAS parameters for data from space-based telescopes (deep Hub-
ble Space Telescope data being the example in the paper) up to a
redshift z ~ 3, the same values for single galaxies will have such
high uncertainties that their usage will be quite limited until such a
time when deeper and high-resolution imaging can be taken.

Huertas-Company et al. (2007) offered a generalization of the
CAS method using SVM. Other examples from literature where a
statistical learning technique was used to classify galaxies include
Banerji et al. (2010, artificial NN), Owens, Griffiths & Ratnatunga
(1996, oblique decision trees), and Gauci, Zarb Adami & Abela
(2010, three decision tree algorithms including an RF approach). All
these methods use measured parameters as inputs to the classifying
algorithms.

The goal of this paper is to explore the viability in using statistical
learning methods to produce robust automated HT morphology
catalogues for data sets with a greater variety in galaxy types. We
have attempted to formulate a general method that will be applicable
to small data sets and surveys that do not have access to such a
wide variety of parameters as we do. Section 2 details the GAMA
(Driver et al. 2009) data set used in this study. Section 3 describes
the various statistical learning algorithms under consideration and
the application of these algorithms to the data set. Results are shown
in Section 4 and the conclusions and future prospects are presented
in Section 5. Unless otherwise stated, a standard cosmology of (H,
Qm, Q) = (70km s~ Mpc~', 0.3, 0.7) is assumed throughout this
paper.

3 The training set actually consists of 8000 galaxies from the Great Ob-
servatories Origins Deep Survey-South field, which are rotated randomly
three times and over three filters to obtain 58 000 galaxy images (Huertas-
Company et al. 2015).

4 The use of concentration index parameter for galaxy classification can be
traced as far back to Shapley & Sawyer (1927) and Morgan (1958).

3 Please note that dimensions refer to the number of parameters used for the
classification process. This terminology is used increasingly when referring
to SVM methods where a kernel function (Gaussian in most cases) is applied
to non-linearly separable data to project the parameter space into a higher
dimension where the data are linearly separable.

2 DATA

In this section, we briefly describe the GAMA survey from which
our data sample is taken, the parameters that we have chosen and
the justifications for choosing these specific parameters.

2.1 Galaxy And Mass Assembly

GAMA is a project designed to study the low-redshift galaxy pop-
ulation, combining data from eight ground-based and four space-
based facilities. It involves both spectroscopic and multiwavelength
imaging programmes which are designed to study structures along
the scales from 1 kiloparsec (kpc) to 1 megaparsec (Mpc) in the
nearby Universe (z < 0.25). The main goal of the GAMA survey
is to test and verify the hierarchical structure formation scenario
that emerges from the Acold dark matter cosmological model by
measuring the structure growth rate, halo mass function, and star-
forming efficiency of galaxies in groups.

The GAMA spectroscopic survey was carried out on the
AAOmega multi-object spectrograph on the Anglo-Australian
Telesecope (AAT). It includes ~300 000 galaxies with magnitudes
down to r~ 19.8 mag [r being the Galactic extinction corrected
Petrosian magnitude in the r band from Sloan Digital Sky Sur-
vey Data Release (SDSS DR6); Adelman-McCarthy et al. 2008]
spanning an area of ~286 deg”. The GAMA imaging programme
compiles and reprocesses data from a number of other contem-
porary imaging surveys (see Driver et al. 2009 for details). The
reprocessed optical and NIR imaging has a pixel-scale resolution of
0.339 arcsec pixel ! . The master GAMA input catalogue, Input-
CatAv07, is primarily based on SDSS DR7 (Abazajian et al. 2009)
photometry. The majority of the redshifts have been attained as
part of the GAMA spectroscopic campaign on the AAT (Hopkins
et al. 2013). Additional redshifts are obtained from a number of
surveys including the SDSS (Smee et al. 2013), Two-degree-Field
Galaxy Redshift Survey (2dFGRS) (Colless et al. 2001), Millen-
nium Galaxy Catalogue (Driver et al. 2005) and others. Full details
may be found in Driver et al. (2009) and Baldry et al. (2014).

2.2 Galaxy sample

The galaxy sample used in this paper is from DR2 of the GAMA
survey (Liske et al. 2015) which gives spectra, redshifts, and sup-
plementary information regarding 72 225 objects from GAMA DR1
(Driver et al. 2011). Our primary sample consists of 7941 galaxies
which have been visually classified into 11 HT's [Kelvin et al. 2014a;
Moffett et al. 2016; see Table 1; refer to the VisualMorphologyv02
catalogue in the VisualMorphology Data Management Unit (DMU)
for further details], spanning a redshift range of 0.002 < z < 0.06.

From our initial sample of 7941 galaxies, we have excluded
those objects that are classified as a ‘star’ or ‘artefact’” (GAMA
HT codes 50 and 60; 374 in number) in the VisualMorphology(02
catalogue. We have also excluded an additional 39 objects for
which the values were missing for one or more of our chosen
parameters. Therefore, the final sample that we apply our sta-
tistical learning methods to consists of 7528 objects. Of these,
the number of objects of each morphological type are: ellipti-
cals — 856 (11.4 percent & 3.3), LBS — 869 (11.5 percent £ 2.0),
early-type spirals — 833 (11.1percent & 0.7), intermediate-type
spirals — 1432 (19.0percent £ 6.0), and late-type spirals and
irregulars — 3538 (47.0 percent +5.9). We computed uncertain-
ties in the sample based on standard deviations of the classifications
by the three human classifiers.
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Table 1. HTclassifications in the GAMA catalogue and their distribution in our data set. The complete data set consists of 7941 objects from which
we remove 374 objects that are visually classified as a ‘star” or ‘artefact’ (GAMA HTs 50 and 60) and 39 objects that do not have valid values for the
parameters we have chosen. Of the remaining 7528 objects, we combine the unbarred (11) and barred (12) early-type spirals as well as the unbarred
(13) and barred (14) intermediate-type spirals to form two new composite data types 1112 and 1314 (henceforth combinedly referred to as SO—Sa and
Sab—Scd, respectively).

GAMA Galaxy type Abbreviation Number of objects Of which Of which

Hubble (per cent in final in training set in test set

type code 7528 sample)

1 Elliptical E 856 (11.4 percent + 3.3) 682 (11.3 per cent) 174 (11.6 per cent)
2 Little blue spheroid LBS 869 (11.5 per cent & 2.0) 689 (11.4 per cent) 180 (12.0 per cent)
11 Early-type spirals S0-Sa } 833 (11.1 percent = 0.7) 657 (10.9 per cent) 176 (11.7 per cent)
12 Early-type spirals (barred) SB0-SBa

13 Intermediate-type spirals Sab—Scd } 1432 (19.0 percent £ 6.2) 1152 (19.1 per cent) 280 (18.6 per cent)
14 Intermediate-type spirals (barred) SBab-SBcd

15 Late-type spirals and irregulars Sd-Irr 3538 (47.0 percent +5.9) 2842 (47.2 per cent) 696 (46.2 per cent)
50 Artefact Artefact 374 - -

60 Star Star

- Incomplete features - 39 - -

Notes: Additional HT's of Not Elliptical (10) and Uncertain (70) Morphologies are available in the GAMA VisualMorphology DMU, though these were
derived for a different sample via a different method and as such are not used in this study (see Driver et al. 2012 for further details).

5235

Table 2. Parameters chosen from the GAMA catalogues and the derived parameters used for training and testing our algorithms. The parameters in the top
panel are those given to the machine learning algorithms as input. Those in the bottom panel are used to derive those in the top panel (with the exception of
visual HT), but were not used directly.

Parameter Catalogue Notes Units Table Reference

Name column name

Stellar mass logmstar Logged in logioM@) StellarMassesv18 Taylor et al. (2011)
catalogue

Mass-to-light ratio logmoverl_i Logged in logioM@ /L, 1) StellarMassesv18 Taylor et al. (2011)
catalogue

g — i colour gminusi Not logged mag StellarMassesv18 Taylor et al. (2011)

u — r colour uminusr Not logged mag StellarMassesv18 Taylor et al. (2011)

Absolute magnitude  absmag_r Not logged mag StellarMassesv18 Taylor et al. (2011)

Ellipticity GALELLIP_r Not logged no unit SersicCatSDSSv09 Kelvin et al. (2012)

Sérsic index GALINDEX _r Logged no unit SersicCatSDSSv09 Kelvin et al. (2012)

Half-light radius - Logged logio(kpc) - -

in kpc

Kron radius in kpc - Logged logio(kpc) - -

(semimajor axis)

Kron radius in kpc - Logged logjo(kpe) - -

(semiminor axis)

Half-light radius GALRE_r - arcsec SersicCatSDSSv09 Kelvin et al. (2012)

Kron radius KRON_RADIUS - units of A_IMAGE  ApMatchedCatv06 Hill et al. (2011)

or B_IMAGE

Angular size A_IMAGE Used to calculate pixels ApMatchedCatv06 Hill et al. (2011)

(semimajor axis) Kron radius in kpc

Angular size B_IMAGE Used to calculate pixels ApMatchedCatv06 Hill et al. (2011)

(semiminor axis) Kron radius in kpc

Redshift Z_TONRY Used to calculate no unit DistancesFramesv14 Baldry et al. (2012)
Kron and half-light radii in kpc

Hubble type HUBBLE_TYPE_CODE  Barred and unbarred no unit VisualMorphologyv02  Kelvin et al. (2014a)

counterparts merged
for training the
algorithms

Moffett et al. (2016)

2.3 Chosen parameters

The choice of input parameters is crucial for the effectiveness of
statistical learning algorithms. We want to recreate the classification
process that the human eye would perform upon seeing an image,
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It is decidedly non-trivial to differentiate between galaxies using
only parameters that give similar information, for example, galaxy
colour. InLange etal. (2015), the separation between early- and late-
type galaxies in the GAMA catalogue are defined as u — r = 1.5 mag
and g — i = 0.65 mag. Values greater than these would represent
the redder (early-type) galaxies, while values less than these would
represent bluer (late-type) galaxies. Using only colour to ascribe
morphology of a galaxy gives a good general picture of the appar-
ent bimodality of the local galaxy population, but neglects the fact
that colour traces star formation, while morphology reflects the dy-
namic evolution of the galaxy. While they are related, they are not
the same. The colour information alone may bias against certain
morphological types such as blue ellipticals and red spirals (see
fig. 20 of Kelvin et al. 2012). The addition of extra features such
as Sérsic index undoubtedly helps provide a more accurate separa-
tion of early- and late-type galaxies (Driver et al. 2006; Cameron
et al. 2009).

Our objective has been to choose a broad range of parameters
that will allow us to successfully morphologically classify galaxies
with minimal failures. We have been careful to select astrophys-
ically meaningful parameters that denote different aspects of the
physicality of a galaxy. As listed in Table 2, we have parameters
that are known to directly trace galaxy morphology (Sérsic index,
stellar mass, and colour), parameters that trace galaxy morphol-
ogy indirectly (mass-to-light ratio) and parameters that are based
on galaxy structure (Kron radius, ellipticity, half-light radius, and
absolute magnitude). We have attempted to remove the effects of
redshift on all the chosen parameters. We also note that in this
work, we have not accounted for the errors in the chosen set of
parameters.

The total stellar mass, mass-to-light ratio, absolute magnitude,
and g — i and u — r colours are taken from the table StellarMass-
esvl8 in the GAMA DMU Stellar Masses (Taylor et al. 2011).
Total stellar masses have been derived using stellar population
synthesis (SPS) modelling using Bruzual and Charlot models
(Bruzual & Charlot 2003) assuming a Chabrier initial mass function
(Chabrier 2005). SDSS and VISTA-VIKING photometry have been
used for this calculation (roughly equivalent to rest-frame u — Y).
The mass-to-light ratio has been calculated using the SDSS rest-
frame i band. The g — i and u — r colours are rest-frame colours using
AB photometry that has been k-corrected to redshift z = 0 calcu-
lated from the spectral energy distribution (SED) fit. Together, these
colours provide a wide wavelength baseline. Absolute magnitude
has been calculated using the rest-frame r band from the best SPS
SED fit.

Ellipticity, Sérsic index, and half-light radius have been taken
from the table SersicCatSDSSv09 in the DMU Sérsic Photometry
(Kelvin et al. 2012). These are based on 2D single Sérsic function
fits to SDSS r-band images.

We obtained Kron radii in arcseconds by multiplying the Kron
radius with the angular sizes in semimajor and minor axes and the
angular resolution of the main GAMA imaging data set (0.339arc-
sec pixel™!). These values were converted into kpcs using flow-
corrected spectroscopic redshifts from the catalogue Distances-
Framesv14 (Baldry et al. 2012).

We use morphology for training purposes and to test the ro-
bustness of our algorithms. We also note that our parent sam-
ple (Kelvin et al. 2014a; Moffett et al. 2016) is magnitude lim-
ited (M, < —17.4mag) and we do not expect it to be overly
sensitive to dwarf galaxy populations. The complete list of pa-
rameters that we have used for training and testing are given in
Table 2.

0.5
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logmstar

0

Component 2

0.1 b
0.2 F absmag

g-i

m/l - u-r

-0.3
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05 04 -03 -02 -0.1 0 01 02 03 04 05
Component 1

Figure 1. Results of PCA performed on the selected parameters to de-
termine their impacts on the classification process. The component labels
correspond to the parameters given in Table 2 in the following manner: ell
= ellipticity; R. = half-light radius in kpc; Krony = Kron radius in kpc
(major axis); Krong = Kron radius in kpc (minor axis); logmstar = stellar
mass; g-i = g — i colour; u-r = u — r colour; m/l = mass-to-light ratio; n
= Sérsic index; absmag = absolute magnitude. Please see Table 2 for more
details. The analysis was performed using the MATLAB function pca.

2.4 Principal component analysis

We perform principal component analysis (PCA, Pearson 1901) on
the parameters that we have chosen from the GAMA catalogues (see
Section 2.3, Table 2). PCA is one of the methods by which parame-
ters are generally chosen for functions such as classification. In our
case, we had already defined the criterion for choice of parameters
as their distance independence or the possibility of removal of their
distance dependence. Therefore, our PCA is a secondary method, to
see statistically, the impact each parameter has on the classification
process. It was done using the MATLAB function pca. Approxi-
mately 86 per cent of the variability in our parameters is contained
in Components 1-3 of PCA. For visualization convenience, we have
plotted the first two components in Fig. 1.

Of the two plotted components, Component 1 contains
~57 per cent of the variance of the parameters and Component 2
contains ~17 per cent. Both stellar mass (logmstar) and absolute
magnitude (absmag) have a significant impact on Component 1,
but a smaller contribution towards Component 2. The parameters
g — i (g—1) and u — r (u-1) colours and mass-to-light ratio (mm/[) have
very similar contributions to both the components, and are therefore
redundant to a great extent.

Of the other parameters that we have chosen, Sérsic index (n),
Kron radii (Kron, and Krong), and half-light radius (R.) seem to
have significant contributions towards both Components 1 and 2,
thereby representing sizeable variability in the data set. Ellipticity
(ell) seems to be the one with the least variance among our param-
eters. A detailed analysis of how much each parameter affects the
classification process is given in Section 4.

2.5 Data preprocessing

Classes 12 and 14 are the barred counterparts of classes 11 and 13.
Their numbers are low in our sample, at 80 and 195, respectively.
A potential reason for this, as noted in Kelvin et al. (2014a) is that
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Figure 2. A sample of galaxies classified as elliptical (type 1, E) in the GAMA visual morphology catalogue. Postage stamps are log scaled, span an area
of 3 x Kron radius of each galaxy, and are ordered from top-left to bottom-right by increasing stellar mass. Overlaid on each galaxy image are: (top left)
the GAMA CATAID of the galaxy; (top right) the numeric HT codes indicating the predicted classification as determined by the SVM, CT, CTRF, and NN
classifiers, respectively; (bottom left) the total stellar mass in units of logio(M¢), and; (bottom right) the flow-corrected spectroscopic redshift of the galaxy.
The row-wise median physical scales for these galaxies in kiloparsecs are 5.5, 5.4, 7.4, 7.5, and 2.9.

there were noticeable disagreements among the classifiers about the
presence of bars in these systems. Another reason could be that, for
edge-on systems, it is impossible to verify the presence of bars and
therefore they would be classified as unbarred. Due to the relatively
low numbers of galaxy systems hosting bars in our sample, we opt to
merge the barred classes with their unbarred counterparts. We merge
the classes 11 and 12 (SO-Sa and SBO-SBa) to form a new class
1112. Likewise, we merge classes 13 and 14 (Sab—Scd and SBab—
SBcd) to form a new class 1314. This simplifies the classification

problem, albeit marginally. The machine learning classifier that we
formulate concentrates on predicting the GAMA Hubble types 1, 2,
1112, 1314, and 15. Figs 2-6 show examples of each galaxy type
from our final sample. They are created using SDSS g-, r-, and
i-band imaging by the GAMA Panchromatic Swarp Imager tool.®

6 http://gama-psi.icrar.org/psi.php
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Figure 3. As Fig. 2, but for LBS (type 2) galaxies. The row-wise median physical scales for these galaxies in kiloparsecs are 4.6, 5.1, 4.0, 5.0, and 19.0.

Each image spans a diameter equivalent to 3 x Kron radius of the
galaxy in arcseconds, and is log scaled.

To construct and evaluate classifiers using statistical learning
methods, the data sample is randomly split into training and test
sets. The training set is used for constructing classifiers, containing
80 per cent of the data sample. The test set is used for the evalua-
tion of the classifiers’ prediction abilities, containing the remaining
20 per cent of galaxies. In our case, the training and test sets contain
6022 and 1506 galaxies, respectively. We consistently use the same
training and test sets for all considered statistical learning methods
described in Section 3. The data are normalized before training, i.e.
we centre each parameter at its mean value, and scale it to have unit
standard deviation. The distribution of HT's for the full data sample,
training, and test subsets are presented in Table 1.
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3 METHODS

In this section, we outline the galaxy classification problem in the
context of statistical learning. We also describe the methods that we
apply to solve this classification problem.

3.1 The classification problem

We consider the parameters of a galaxy to be components of a
multidimensional vector x = (xi,x2, ..., xp)T e R”, where (-)7
denotes the transpose of a vector or matrix. Thus, x is a p x 1
column vector. In our case p = 10, and we use the parameters
described in Table 2.
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Figure 4. As Fig. 2, but for early-type spiral (type 1112, SO-Sa) galaxies. The row-wise median physical scales for these galaxies in kiloparsecs are 15.9,

24.3,17.4,13.5,and 11.8.

In the context of statistical learning, the vector space R” is of-
ten called feature space, the elements x € R” are called feature
vectors, and the components x; of the feature vectors are called
features. The feature vector x belongs to one of the T classes.
For convenience, we label the classes as 1, 2, ..., 7. In our
case T = 5, and the classes correspond to the considered HTs
as {1,2,1112,1314, 15} = {1,2,3,4,5}. Lety € {1, 2, ..., T}
denote the class label of x.

Suppose that there is an ideal classifier f*:x +> y that for
each feature vector x assigns its true classification y. A statisti-
cal learning method aims to construct a classifier f : x — y that
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approximates f*. For this purpose, statistical learning methods use
observational data of the pairs (x;, y;) that contain feature vectors
x; for which the corresponding class y; is known. A set made up
of such pairs (x;, y;) is called the training set, and we denote it as
Z = {(xi,yi),i = 1,2,...,N}.

Every statistical learning method consists of a family of classifiers
fthat depends on certain parameters. Using a learning procedure, a
particular classifier is chosen from this family based on the classi-
fier’s behaviour on the training data set. The selection is typically
done such that the classification is well predicted on the training set,
ie. f(x;i) & yj, so as to give low training errors. The quality of the

MNRAS 474, 5232-5258 (2018)
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Figure 5. As Fig. 2, but for intermediate-type spiral (type 1314, Sab—Scd) galaxies. The row-wise median physical scales for these galaxies in kiloparsecs are

12.5,21.8,12.4,17.5, and 18.1.

classifier is then evaluated on the test set, where the classification
is known. The data of the test set are not used for constructing the
classifier. Thus, the performance of the classifier on the test set can
be seen as an estimation of its performance on sets with unknown
classification.

The methods that we consider here for classifying galaxies
are: SVM, Classification Trees (CT), Classification Trees with
Random Forest (CTRF), and NN. We have used the realiza-
tion of these methods in MATLAB R2014b. The outputs pro-
vided by the algorithms that we have formulated are multi-
class labels, denoting which galaxy type the algorithms deem the
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galaxy to be of. They are described in detail in the following
subsections.

3.2 Support Vector Machines

The SVM method was originally designed for binary classifi-
cation (Cristianini & Shawe-Taylor 2000; Hastie, Tibshirani &
Friedman 2009, chapter 12). In this method, for each feature vector
x, there is a class label z € {—1, 1}. Therefore for each x; in the
training set, the corresponding class is z;. The details of the structure
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Figure 6. As Fig. 2, but for late-type spiral and irregular (type 15, Sd-Irr) galaxies. The row-wise median physical scales for these galaxies in kiloparsecs are

28.9,9.6,8.1,12.4, and 17.0.

and definitions of the SVM classifier that we employ are given in
Appendix Al.

We use the MATLAB function svmtrain for constructing SVM
classifiers. For computing the result f (x) of the SVM classifier f,
function svmclassify has been used.

In order to use SVM for multiclass classification, the multiclass
classification problem is reduced into a series of binary classification
problems. For this purpose, we consider a tree structure approach
(Campbell 2001). We propose a tree formed by the binary classifiers
Cis, Csp, Cg, and C, as depicted in Fig. 7. This tree structure is
inspired by the distribution of HTs in our data set represented in
Table 1. Here, C|s is the binary classifier that classifies a galaxy as
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HT 15 or not. Cg, then classifies into spirals and not spirals. Further
classification is done by Cg into HT 1 (E) or HT 2 (LBS). C, splits
the output of the Cg, binary classifier into HTs 1112 and 1314. All
the binary classifiers in this tree structure are constructed with the
SVM method. At each binary classifier, the data are split by roughly
50 per cent.

3.3 Classification Trees with hyper-rectangular partitions

In the CT method, the feature space is partitioned into a set of hyper-
rectangular regions R, (Breiman et al. 1984; Hastie et al. 2009,
chapter 9). An example of such a partition is presented in Fig. 8.

MNRAS 474, 5232-5258 (2018)
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Figure 7. The binary CT determined for the SVM method. The classifier
Ci5 classifies a galaxy as HT 15 or not. Then, Cy; classifies into spirals
and not spirals. Further classification is done by Cg into HT 1 (E) or HT
2 (LBS). C, splits the output of the Cy), classifier into HTs 1112 and 1314.
All the binary classifiers in this tree structure are constructed with the SVM
method.
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Figure 8. Illustrative example CT method using hyper-rectangular parti-
tions. This unit square is successively split (s; — s4) into five nodes R using
the two features x; and x;.

The goal of this method is to make the partitions such that each
region R, contains training feature vectors that belong only to one
class, say ky, € {1,2, ..., T}, or at least the majority of the training
feature vectors in Ry, is from one class k. Then, for each feature
vector x, the CT classifier identifies a region R,, that contains x,
and then assigns k,, as the predicted class for x. The method is
discussed in detail in Appendix A2.

The CT partitioning can also be represented by a binary tree, i.e.
the partition presented in Fig. 8 can be represented by the tree in
Fig. 9. The top node of the tree, which is called root, represents the
complete feature space. Feature vectors that satisfy the condition
Xx; < s are assigned to the next lower node on the left, while
the other feature vectors are assigned to the next lower node on
the right, and so on. The nodes at the bottom of the tree, which
are called terminal nodes or leaves, correspond to the regions of the
final partition of the feature space: R;, Ry, ..., Rs.

The node splitting is recursively repeated for the new nodes. The
node is not split if any of the following conditions is satisfied:

(1) The node is pure.

Figure 9. A binary classification tree determined for the CT method as
applied to the example unit square shown in Fig. 8.

(ii) The node contains less than a certain number (standard value
adopted here is 10) of training feature vectors.

(iii) Any node splitting gives new nodes that contain less or equal
to a certain number (standard value adopted here is 0) of training
feature vectors.

(iv) If a certain number of nodes (the default value for the
MATLAB function that generates the node splitting is N — 1) are
created.

For our work, we constructed the CT classifier using the
MATLAB function fitctree and the function predict was
used for computing the result of the CT classifier. In the constructed
CT classifier for our data set, a full description of the derived nodal
splits becomes increasingly complex beyond the first leaf. There-
fore, we describe the splits which were determined up to and includ-
ing the first leaf only. The splitting feature in the top node (i.e. at the
root of the constructed tree) is x; which corresponds to the stellar
mass of a galaxy. The split point for this feature was determined to
be log M = 9.276. The next leaf node (in the regime x; < 9.276) has
the splitting feature x¢, which is the half-light radius, with the split
point determined to be log R. = 0.0514. The alternative node (i.e.
the galaxies in the regime log M > 9.276) has the splitting feature
xg, which is u — r colour, with the split point u — r = 1.842.

The structure of the classifier in the CT method is quite simple.
Notably, no arithmetic operation is used for estimating the class of
the feature vector x. Only a comparison between numbers is used.
Therefore, the evaluation of the result of the CT classifiers is very
fast, which is a distinct advantage of this method.

However, CT classifiers are known to have the following draw-
back. f (x;) can be in a good agreement with y;, but outside the
training set, the predictive performance of the CT classifier may
be rather poor. This phenomenon is called overfitting. To overcome
this drawback, the idea of RF has been proposed (Hastie et al. 2009,
chapter 15; Breiman 2001). This leads to the CTRF method that we
explore in the next subsection.

3.4 Classification Trees with Random Forest

The essential idea of the CTRF method is to improve the perfor-
mance of a single CT by averaging over several differently trained
CTs. In order to achieve this, a certain number of samples are cre-
ated by random sampling with replacement from the training set.
The sampling is done using uniform distribution, where each sam-
ple is of the same size as the original training set. By using sampling
with replacement, any element of the training set can be selected
more than once for the same random sample. More details on this
process are given in Appendix A3.
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Figure 10. A network diagram for the single hidden layer feed-forward
NN.

Each CT classifier in a RF is trained on a different sample of
the training data. Moreover, the use of the modified CT learning
algorithm, namely the use of random subsets of the features, en-
sures the decorrelation between the constructed CT classifiers. This
means that the tree structure of the involved CT classifiers differ
from one CT to another. These two properties allow the combina-
tion via majority vote of the CTs in the RF to correct the overfitting
of each CT classifier. For building our CTRF classifier, we used the
MATLAB class TreeBagger, and the function predict was
used for calculating the outcome of the CTRF classifier.

The choice of the number of samples B in RF can be done by
observing the out-of-bag error. This error is the mean prediction
error on each training example using only the CT classifiers that did
not have this example in their training sample (Hastie et al. 2009,
p. 593). In our case, we observed that this error stabilizes for
B =100, and therefore, we used this number for our CTRF classifier.

3.5 Single hidden layer feed-forward Neural Networks

The last statistical learning method that we consider is NN (Hastie
et al. 2009, chapter 11). This is a classification method inspired by
the central nervous system or biological NN of animals. In compar-
ison to the other mentioned methods, NN constructs classifiers with
a more complicated mathematical structure, and the algorithms for
constructing NN classifiers are more complex. However, a typically
good performance of the NN classifiers outside the training sets
makes them very popular.

An NN consists of units that are organized in layers. Typically, a
network diagram, such as in Fig. 10, is used to represent an NN. In
this work, we implement the most widely used NN ensemble called
the single hidden layer feed-forward NN. It consists of three layers:
the input layer, hidden layer, and output layer.

The units in the input layer correspond to the features x;. The
kth unit vy in the output layer models the probability for the feature
vector to belong to class k. The units in the hidden layer wy,,, m =1,
2, ..., M, can be seen as additional features that are derived from

GAMA: automatic galaxy classification — 5243

the features x;. The structure of the NN that we have considered is
explained in more detail in Appendix A4.

For defining our NN classifier, we used the MATLAB function
patternnet. Then, the weights of the NN classifier were deter-
mined using the function train, and the evaluation of the result of
the classifier was performed. We consider values for the number of
units in the hidden layer M in the interval [10,500] and examine the
performance of the corresponding NN classifiers on the so-called
validation set. For this set, we randomly sample 15 per cent of the el-
ements in the training set. These elements were not used for training
the NN classifiers. We find that the True Prediction Ratio (TPR) for
the validation set increases as a function of M; however, the relative
increase in TPR significantly diminishes as we tend towards larger
values of M. We therefore adopt M = 500 as the optimal trade-off
between classification accuracy and computational complexity of
the NN classifier.

4 RESULTS

The CT, CTRF, SVM, and NN codes are run using the parameters
shown in Table 2. Fig. 11 shows the classification success rate for
each morphological type considered in addition to the total sample
(‘all’). Galaxy populations are arranged along the x-axis, as indi-
cated. Classification success rate is characterized by the parameter
TPR shown on the y-axis. TPR (y-axis)’ represents the quality mea-
sure of the classifiers. It is defined as the ratio of the number of
correctly classified galaxies to the total number of galaxies con-
sidered. The TPR for the machine learning algorithms CT, CTRF,
SVM, and NN are represented by the colours yellow, green, pink,
and blue, respectively, for each morphological type. As can be seen,
the morphological-type Sd-Irr (Type 15) typically returns the high-
est success ratio at ~90 per cent. The morphological-type Sab—Scd
(Type 1314) returns the lowest average success ratio, typically in
the range ~55 per cent. Potential reasons for this are discussed in
detail in Section 5, but principally revolve around the idea that our
algorithms in their current configuration may be more suited to clas-
sify single component rather than more complex multicomponent
systems. The overall average success rate across all morphological
types is found to be ~76 per cent, with the notable exception of the
CT method (see Table 3).

Classification errors can be also characterized using a confusion
matrix, (aii)iT.j=1' The entry of this matrix a;; in the ith row and jth
column is the number of galaxies from the class j that are classified
as the class i by the classifier.

Note that the above considered quality measure TPR of a classifier
for the class j can be calculated using the confusion matrix (aij):j=l
of this classifier:

This quality measure is also known under the names true positive
rate or recall.
The TPR of a classifier for all classes is calculated as

T
D i1 G
T

TPR,, = .
i j=1%j

7 Here onward, this parameter is used interchangeably with accuracy of
classification (Sokolova & Lapalme 2009).
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Figure 11. Histograms showing the TPRs from panel 1 of Table 3. The different HT's in our sample are represented on the x-axis and the TPR values for each
type as obtained by the four statistical learning algorithms are shown on the y-axis. The percentage of galaxies of a certain type are shown in brackets next to

the HT codes.

In addition to the TPR, another useful characteristic of the classi-
fier performance is the Positive Predictive Value (PPV) or precision.
It is calculated for the class j using the confusion matrix (aij) !

aj g E LBS  SO-Sa  Sab-Scd
PPV = &7 — g E 122 12 35 9
i=1 it 2 LBS 13 138 3 12
Another important characteristic is the F-score of the classifier. c 50-Sa 22 0 112 30
For the class j, it is defined as the harmonic mean of TPR; and PPV;: E Sab—Scd 10 3 2 149
%) Sd-TIrr 7 27 2 80
| = 2 TPR; - PPV; ) Performance characteristics
TPR; + PPV; E  LBS S0-Sa  SabSed
The confusion matrices and the mentioned performance charac- TPR 70.1 76.7 63.6 332
teristics of the considered classifiers are presented in Tables 4— PPV 66.0 704 67:5 67.1
F 68.0 734 65.5 59.4

8. The actual classification is given in the columns and the

Table 3. TPRs in percentages for the classifiers obtained by the methods considered in Section 3 on the test set are given in
panel 1. Panel 2 represents the results of binary classification using CTRF method. The galaxy types E, LBS, and SO-Sa are
collectively considered as spheroid-dominated systems and Sab—Scd and Sd-Irr as disc-dominated systems.

HT E LBS S0-Sa Sab-Scd Sd-Trr All
1 2 1112 1314 15

35 3.4 3.7 3.0 1.4 1.2

CT 615133 63.3737 56.313% 529731 82.07)¢ 69.0173
CTRF 70.732 75.612 63.6733 56.4720 88.971 76.27 11
SVYM 701732 76739 63.633 53.2+3% 89.2%! 75.8+11
NN 67.2133 72.2%34 62.5733 57.9720 89.8719 76.0111

Spheroid-dominated Disc-dominated All
1.4 0.8 0.7
CTRF 84.9713 925108 89.870%

classes for the SVM classifier.

Table 4. Confusion matrix and performance characteristics for five galaxy

ij=1 Visual classification

Sd-Irr

30

36
621

Sd-Irr
89.2
84.3
86.7
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Table 5. As for Table 4, but for the CT classifier.

Visual classification

5 E LBS  SO-Sa  Sab-Sed  Sd-Irr
3 E 107 21 38 11 17
2 LBS 4 114 3 8 41
% S0-Sa 37 3 99 34 9
— 3
g S R 3 b i S
Performance characteristics
E LBS S0-Sa Sab-Scd Sd-TIrr
TPR 61.5 63.3 56.3 52.9 82.0
PPV 55.2 67.1 54.4 56.7 81.7
F 58.2 65.1 55.3 54.7 81.9
Table 6. As for Table 4, but for the CTRF classifier.
Visual classification
5 E LBS  SO-Sa  Sab-Sed  Sd-Irr
B3] E 123 15 31 5 11
g LBS 8 136 4 10 31
% S0-Sa 24 1 112 25 2
fé Sab-Scd 8 2 26 158 33
F
Q Sd-TIrr 11 26 3 82 619
Performance characteristics
E LBS S0-Sa Sab-Scd Sd-TIrr
TPR 70.7 75.6 63.6 56.4 88.9
PPV 66.5 72.0 68.3 69.6 83.5
F 68.5 73.7 65.9 62.3 86.2
Table 7. As for Table 4, but for the NN classifier.
Visual classification
5 E LBS  SO-Sa  Sab-Sed  Sd-Irr
S E 117 13 28 7 4
- LBS 9 130 3 11 27
% S0-Sa 27 0 110 23 2
Z Sab-Scd 12 3 27 162 38
Z Sd-Trr 9 34 8 77 625
Performance characteristics
E LBS SO0-Sa Sab-Scd Sd-TIrr
TPR 67.2 72.2 62.5 57.9 89.8
PPV 69.2 72.2 67.9 66.9 83.0
F 68.2 72.2 65.1 62.1 86.3
Table 8. As for Table 4, but for the binary CTRF classifier.
é Visual classification
3 Spheroid Disc
'S Spheroid 450 73
—3 Disc 80 903
[E Performance characteristics
L; Spheroid Disc
‘cCE TPR 84.9 92.5
m PPV 86.0 91.9
F 85.5 92.2
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classification predicted by the classifiers in rows. The rows and
columns represent the five galaxy types.

For Tables 4-7, the left diagonal represents the objects that are
correctly classified by the respective classifiers. For e.g. in Table 4,
122, 138, 112, 149, and 621 objects which were visually classified
as E, LBS, SO-Sa, Sab—Scd, and Sd-Irr were correctly classified
by the SVM classifier. The other columns show how many of the
objects were classified into which other galaxy types. The same
format is followed in all the confusion matrices.

A general trend that is observed for all classifiers is that the
‘misclassifications’ by the classifiers are mostly from neighbouring
classes. For e.g. in Table 4, most of the misclassifications by the
SVM classifier of the visual E galaxies are as type SO—Sa. Another
interesting inference is that galaxies visually classified as classes
LBS and Sd-Irr are frequently confused with each other by all four
classifiers. This hints at a possible similarity in properties between
these galaxy types.

The confusion matrix of the binary CTRF classifier shown in
Table 8 is similar to that of the multiclass classifiers. The actual
and predicted classifications are represented by the columns and
rows, respectively. 450 spheroid-dominated and 903 disc-dominated
objects are classified correctly by the binary classifier, while the
misclassifications are for 80 and 73 objects, respectively.

The PPV for the corresponding classes gives a measure of clas-
sification error by showing how exact the classifier is. For e.g. in
Table 4, in the case of type Sab—Scd, while the SVM classifier only
positively classifies 53.2 per cent of the time, there is a probability
that when it does, it is 67.1 per cent correct. This measure depends
heavily on how balanced the data set is, i.e. if there are more objects
of a certain galaxy class in the data sample, that particular galaxy
type will have a higher value of PPV. This can be seen clearly in
the case of galaxy-type Sd-Irr for all the classifiers. It can also be
observed in the case of the binary CTRF classifier, for which the
data set is more balanced than for multiclass classification, there
is a subsequent increase in the PPV of spheroid-dominated objects
(which is still the minority class).

The F-score represents the balance between the precision and
recall for the classifier. For an unbalanced data set such as ours,
the classifier could, in theory, get a higher accuracy rate just by
choosing a majority class. In such cases, an F-score is often used to
choose an optimum classifier, by choosing one that has consistently
high F-scores for all the classes. In case of the four algorithms
considered in this study, that classifier is CTRF as can be seen for
both the binary and multiclass classifications.

The CT algorithm is observed to be the lowest grossing method
over the entire sample, with an average accuracy of 69.0 per cent.
The other three methods, CTRF, SVM, and NN have comparable
values for classification accuracy at 76.2 per cent, 75.8 per cent, and
76.0 per cent, respectively. This leads us to conclude that perhaps
the choice of parameters is a more important factor in classification
accuracy rather than the choice of algorithms. Fig. 12 represents
the classification efficiencies of these three methods by GAMA
HT and for the entire test set. Here, CTRF, SVM, and NN algo-
rithms are represented by green, pink, and blue, respectively. The
number of objects that are classified ‘correctly’ by each method
is shown in brackets next to the algorithm labels. The number of
objects not classified ‘correctly’ by any of the three algorithms is
given in the top left corner, while the total number of visual HTs
is given in the top right corner. As can be seen in the case of each
individual visual HT and in the total test set (panel 6), the overall
performance of the CTREF classifier is slightly better than the other
two. Based on these results, we recommend the CTRF classifier for
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Figure 12. Venn diagrams representing the effectiveness of classification by CTRF, SVM, and NN methods for each GAMA HT and over all types. The
number of objects ‘correctly’ classified by each method is shown in brackets next to the algorithm labels. The number of objects which were not classified
‘correctly’ by any method is shown in the top left corner, while the total number of objects is given in the top right corner.

further use in astrophysical practice. Even though the improvement
in classification accuracy is marginal, CTRF has a simpler math-
ematical structure. The CTRF machine learnt classifications will
be our primary automatic classifications used for further analysis
below.

Figs 2-6 show several example postage stamp images of different
galaxy types from our test set. The postage stamps span an area of
3x Kron radius of each galaxy and are ordered according to their
stellar masses (low-mass galaxies at the top and high-mass galax-
ies at the bottom). Classifications for different statistical learning
algorithms are overlaid on the top right corner of these images in
the order SVM, CT, CTRF, and NN. As can be seen, the majority
of machine learnt classifications agree well with their visual HT,
however, there are instances where one or more algorithms classify
a galaxy as something different from its visual classification. All
four algorithms are in agreement with each other in 1040 out of the
1506 galaxies in our test set. And out of these 1040 objects, 143 (i.e.
~10 per cent of the total test set) differ from the respective visual
classification. This ‘unanimous disagreement’ occurs with varying
frequency for the different morphological types:® ~9 per cent for
type E, ~9 percent for type LBS, ~14 percent for type SO-Sa,
~21 percent for type Sab—Scd, and ~4 percent for type Sd-Irr.
This phenomenon could be due to two reasons, (1) the visual clas-
sification might be inaccurate and, based on the parameters that
were used for training, the galaxy belongs to a different class, or,
(2) some vital information to classify this galaxy is missing, i.e. the
given parameters are not sufficient. Fig. 13 shows a few examples

8 All the numbers quoted here (and henceforth in the same context) are
percentages on the total test set.

of galaxies that exhibit this phenomenon. Further analysis of this
interesting occurrence is required to explore why a host of machine
learning algorithms may consistently agree with one another yet
disagree with the human eye.

4.1 Analysis : CTREF classifier

Figs 14 and 15 represent the TPRs obtained by the CTRF classifier as
a function of the total stellar mass and redshift, respectively, for the
galaxies in our test set. In both cases, the errors are calculated using
the agbeta function from the astro library in R (Cameron 2011).
This estimates the confidence intervals from quantiles of a beta
distribution fit to the data, and is especially suited for small to
intermediate data samples.

In Fig. 14, the TPRs obtained by the CTRF classifier are plotted
against the total stellar masses of the galaxies from our test set. The
first panel represents all galaxies, while the distributions of distinct
GAMA HTs are plotted in the subsequent panels (see the legend).
We find that the accuracy in classification decreases as the total
stellar mass increases. This becomes evident in the extreme mass
trends observed for HTs SO-Sa and Sab—Scd. In case of elliptical
galaxies (type 1, E), the TPR values seem to be increasing after
a dip at log;o M@ ~ 10.5. This seems to be a real rather than a
statistical effect, as the bin centred at log;o Mo = 10.5 has more
objects in it than the one centred at log;o M = 11. For type
Sd-Irr, the success rate drops significantly from ~90 percent at
low mass to ~30percent at logjo M > 10. It seems that the
algorithm finds it increasingly difficult to classify type Sd-Irr at
higher masses, however, we note that the very low number statistics
for this population in this mass regime (both in training and test
sets), as evidenced by the relatively large error bars could also
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Figure 13. Figure illustrating unanimous disagreement. The x-axis represents the visual classification of the objects, while the y-axis shows the unanimous
automatic classifications. For example, the galaxy in the bottom most row with ID 611782 has been visually classified as LBS while all four algorithms used in
this study classify it as type E. The prime diagonal represents objects for which the visual classification and the four algorithms are in agreement (highlighted
in green). The number of objects in each bin is noted in the top right corner of each postage stamp. The other blank spaces denote the absence of objects of

x-axis type unanimously classified by the four algorithms as the y-axis type.

be a contributing factor. This trend holds true for type LBS as
well. Moffett et al. (2016) note that types LBS and Sd-Irr together
account for only about 10 per cent of the total stellar mass density
of the parent sample, and that their frequencies drop to nearly zero
above the mass range log;o M = 10.0. The reason for the decrease
in TPR values in case of early- and intermediate-type spirals is not
clear at this time, but may be related to the increasingly apparent
complexity of structure in galaxies of these types at higher mass
regimes.

Fig. 15 is a similar representation of the TPRs with the redshifts
of all the galaxies in the test set along the x-axis. The first panel

represents all the galaxies in our test set, while the succeeding panels
represent the different HTs (see the legend). For the total sample,
the trend is to be expected, considering that we have attempted
to choose redshift independent parameters. However, we observe
varying trends along the subpopulations. The trend for each HT
subpopulation is similarly consistent with a flat relation with red-
shift, with the notable exception of type Sab—Scd, for which the TPR
is lower at low redshifts and goes on to increase at higher redshifts.
This may be due to the fact that local galaxies are better resolved
than distant galaxies, and therefore the automated algorithms may
be having a harder time processing the extra structural data. The
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Figure 14. Representation of the TPR as a function of total stellar mass (log) for the method that we recommend, CTRF. The distribution over the total test
set is represented in the first panel. The individual contributions of the different GAMA HTs are plotted in the subsequent panels as indicated. The lower and
upper boundary fractional errors for the data set are calculated by using the agbeta function from the astro library in R (Cameron 2011).

apparent angular scale from z = 0.02 to 0.06 decreases by a factor
of ~3, which has the effect of blurring stellar populations within
the galaxies.

Figs 16-20 show the location of galaxies in the Sérsic index —
g — i colour plane with each figure representing a different visual
HT morphology. Data point types and colours represent the mor-
phological types assigned to each galaxy by the CTRF classifier.
The marginal histograms represent the distributions of g — i colour
(top) and Sérsic index (right) for the visual and CTRF classifica-
tions. The efficiency of classification by the CTRF classifier for
different HTs can be visually inspected from these histograms.

Fig. 16 shows all visually classified elliptical galaxies in the
Sérsic index versus g — i colour plane. Most of the objects for

which the classifier is unable reproduce the visual classification
are determined to be early-type spirals (S0-Sa). The objects that
have been classified by the CTRF classifier as SO-Sa are all red-
ward of the main population, whilst other types are scattered in the
blue low Sérsic index tail of the E distribution. One reason for this
could be the potential systematic misclassification of face-on red SO
galaxies as ellipticals. If true, our machine learning algorithm may
provide a robust automated means by which we could apply correc-
tions to currently existing visual morphological data sets to address
the issue of E/SO confusion. Another reason for this ‘spheroid-
disc tension’ between the human eye and the automated algorithms
could be the presence of discy elliptical ‘ES’ (Liller 1966; Graham,
Ciambur & Savorgnan 2016; Savorgnan & Graham 2016) class with
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Figure 15. As Fig. 14, but as a function of redshift.

intermediate discs in our sample. It could also be a wider ‘red disc
detection’ issue, however, we note that the Sérsic indices for many
of these objects are of the order of n ~ 4 which indicates spheroid-
dominated systems.

Fig. 17 shows objects that are visually classified as LBS (type 2,
represented as green squares). The instances where the CTRF clas-
sifier is not in agreement with the visual classifications are repre-
sented by the other colours and points in the scatter plot. In general,
most of the objects which were not found to be LBS by the CTRF
method have been classified as late-type spirals and irregulars, ex-
cept towards the redder end of the scatter plot, where they have
been classified as elliptical galaxies. We note that in the visual clas-
sification of this particular type, the ‘blue colour’ was a secondary
characteristic, the objects were primarily classified on the basis of
their shape and size.

Fig. 18 shows objects visually classified as early-type spiral
galaxies (type 1112, SO-Sa, barred and unbarred, represented as

black diamonds). The CTRF classifier’s classifications that do not
agree with the visual morphology are almost equally divided be-
tween ellipticals (red circles) and intermediate-type spirals (purple
triangles). They seem to be uniformly distributed in Sérsic index
space, while there appears to be some dependence in g — i colour,
with the objects classified as ellipticals clustered in an area red-
der than the objects that are classified as intermediate-type spirals.
Classification as intermediate-type spiral follows a trend observed
by Owens et al. (1996), in that differentiating between neighbouring
classes of galaxies such as these is more difficult than differentiat-
ing between non-neighbouring classes. The population of elliptical
galaxies we find might be an indicator that the human eye is fallible
when classifying this type of galaxy. Very few objects are classified
as late-type spirals and irregulars or LBS (mostly at the bluer end).

Fig. 19 shows objects that are visually classified as intermediate-
type spirals (type 1314, Sab—Scd, purple triangles). In most in-
stances where the CTRF classifier disagrees with the visual
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Figure 16. Scatter plot with marginal histograms showing all visually clas-
sified elliptical (type 1, E) galaxies in Sérsic index and g — i colour space.
Data point colours and types vary according to their CTRF classification, as
indicated by the inset legend. Marginal histograms show the distribution for
all (grey) and visually classified elliptical (red) galaxies.
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Figure 17. As Fig. 16, for LBS (type 2).

classification, it classifies objects as late-type spirals and irregu-
lars. However, at the redder and higher Sérsic index end, some
objects are classified as early-type spirals. This is also the galaxy
type for which the classifiers of the machine learning algorithms
that we have applied disagree the most with visual classifications.
Fig. 20 shows objects that are visually classified as late-type spi-
rals and irregulars (type 15, Sd-Irr, represented as blue triangles
pointing down). For this particular galaxy type, all four machine
learning algorithms have a high agreement rate with the visual
classifications (>80 per cent). As is shown, the disagreements are
evenly divided between types LBS and intermediate-type spirals,
while there are a few objects classified as ellipticals. The classi-
fications as LBS and ellipticals could be an indication that these
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Figure 18. As Fig. 16, for early-type spirals (type 1112, SO-Sa, barred, and
unbarred).
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Figure 19. As Fig. 16, for intermediate-type spirals (type 1314, Sab—Scd,
barred, and unbarred).

objects may have more in common with early-type galaxies than is
currently conceived. The classifications as intermediate-type spirals
are likely due to the Owens et al. (1996) observations mentioned
previously.

4.2 Impact of chosen parameters on the CTRF classifier

We perform a sensitivity test to ascertain the impact of each param-
eter on the classification process of our CTRF algorithm. In order to
achieve this, we remove all the parameters mentioned in the upper
panel of Table 2 one by one, and obtain the TPRs, retraining the
CTREF classifier in each instance. The results of this are shown in
Table 9.

The removal of Sérsic index lowers the overall rate of accuracy the
most, by almost 1.4 per cent. All other increases and decreases from
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Figure 20. As Fig. 16, for late-type spirals and irregulars (type 15, Sd-Irr).

the overall TPR caused by the removal of parameters are within the
error limits defined in Table 3. The only parameter whose removal
causes an increase in the overall TPR is absolute magnitude, by
0.3 percent. This indicates that for the total data sample, Sérsic
index is the parameter that contributes most to the classification
process by the CTRF algorithm. This, however, does not hold true
for the individual HTs.

Removal of u — r colour and stellar mass does not affect the
classification in the case of elliptical galaxies. Absolute magnitude

GAMA: automatic galaxy classification ~— 5251

and mass-to-light ratio have an almost similar effect on the TPR
values, albeit in different directions. When absolute magnitude is
removed, the TPR value increases by 1.1 per cent and when mass-
to-light ratio is removed, the value decreases by 1.2 per cent. The
parameters for which the accuracy falls outside the error bars are
ellipticity and half-light radius.

In case of LBS galaxies, the parameters that affect the classifica-
tion process the most are half-light radius, Kron radius (semimajor
and semiminor), mass-to-light ratio, and stellar mass. The param-
eters that have a similar effect on the classification rate are Kron
radius (semiminor axis), mass-to-light ratio, and stellar mass, a de-
crease by ~4 per cent. The decrease in TPR values is drastic in the
case of both half-light radius and Kron radius (semimajor axis),
~7 per cent and ~5 per cent, respectively.

For early-type spiral galaxies, the changes in TPR are within
the error bars except in the case of Sérsic index. When Sérsic in-
dex is removed prior to training the classifier, the accuracy drops
by ~5percent. The effects caused by the absence of Kron radius
(semiminor), mass-to-light ratio and u — r colour are analogous, a
decrease of ~1 per cent. Same is the case with Kron radius (semi-
major) and absolute magnitude, by ~2 per cent. When g — i colour
is excluded from the process, the TPR values remain the same as
that from the original run.

The change in accuracy for intermediate-type spirals after remov-
ing the parameters one by one, are all within the error limits of the
values from Table 3. As in case of early-type spirals, removing g — i
colour has no effect on the original TPR values. Sérsic index and
Kron radius (semiminor) contribute to a decrease in TPR values by
~(0.7 per cent each; Kron radius (semimajor), half-light radius, and
u — r colour to an increase by ~0.4 per cent each; and mass-to-light
ratio and stellar mass to an increase by ~1 per cent each. Remov-
ing absolute magnitude seems to matter the most, by increasing the
accuracy by ~2 per cent.

Table 9. Results of parameter sensitivity test on the CTRF algorithm in percentages are shown in panel 1. In panel 2, similar results for
redundant parameters according to the PCA performed in Section 2.4 (Fig. 1) are shown. The results for the CTRF classifier from the original

run are shown in panel 3.

Parameter E LBS S0-Sa Sab-Scd Sd-Irr All
removed 1 2 1112 1314 15

Sérsic index 67.8 76.7 58.5 55.7 87.9 74.8
Kron radius 69.0 71.7 62.5 55.7 88.7 75.2
in kpc

(semiminor axis)

Half-light radius 65.5 68.9 60.8 56.8 90.5 75.3
in kpe

Kron radius 67.8 70.6 61.4 56.8 89.8 75.5
in kpe

(semimajor axis)

Ellipticity 66.7 74.4 63.1 57.1 88.8 75.6
Mass-to-light ratio 69.5 71.7 62.5 57.5 89.1 75.8
g — i colour 67.2 76.7 63.6 56.4 88.8 76.0
Stellar mass 70.7 71.7 64.2 57.5 88.8 76.0
u — r colour 70.7 74.4 62.5 56.8 89.0 76.0
Absolute magnitude 71.8 73.3 61.4 58.2 90.0 76.5
Mass-to-light ratio 68.4 75.0 63.7 60.0 89.1 76.6
and g — i colour

Mass-to-light ratio 67.8 75.6 60.8 57.9 89.7 76.2
and u — r colour

u — r colour 69.5 76.1 61.4 60.4 89.4 76.8
and g — i colour

All chosen parameters 70.7+32 75.6722 63.6733 56.4129 88.9711 76.2+11
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The changes in TPR in case of late-type spirals and irregulars
are mostly within the error bars of the original results, except in the
case of half-light radius where it increases by ~2 per cent, which
seems to have the most impact on classification accuracy as well.
Ellipticity, g — i colour, and stellar mass have a similar effect on the
TPR values (decrease by 0.1 per cent). u — r colour seems to have a
similar impact on the classifier’s performance for this galaxy class,
an increase of the TPR by 0.1 per cent.

In the PCA, we performed (represented in Fig. 1), ellipticity was
found to be the parameter which contained the least variability. But
as can be seen from Table 9, while it might not be the most important
parameter overall, it has a significant impact in the classification
accuracies of individual HTs, especially elliptical galaxies. The
TPR of ellipticals fall by 4 per cent when this parameter is removed.

Also represented in Fig. 1 is the redundancy of the parameters,
mass-to-lightratio, and g — i and u — r colours. We also explore here,
the impact on the classification accuracies when these parameters
are removed two at a time. These results are represented in the
second panel of Table 9.

When mass-to-light ratio and g — i colour are removed, there is
a marginal increase in the overall TPR value, to 76.6 per cent. This
increase is reflected in the individual HTs, SO-Sa, Sab—Scd, and
Sd-Irr. The accuracies take a consequent dip in case of types E and
LBS.

The removal of mass-to-light ratio and # — r colour does not make
a significant overall impact, with the TPR value remaining the same
as that of the original run, at 76.2 per cent. Among the individual
HTs, the accuracy of LBS remains unchanged, while that of types
E and SO-Sa decrease. The individual TPRs of types Sab—Scd and
Sd-Irr reflect marginal increases.

Removing g — i and u — r colours resulted in an increase in the
overall TPR value, to 76.8 per cent. This increase was contributed
by the increases in the TPRs of galaxy types LBS, Sab—Scd. and
Sd-Irr. The accuracies of types E and SO-Sa was found to drop
marginally.

The slight increases and decreases in the TPR values when the
parameters are removed one by one are largely within the error
margins defined for the TPRs from the original run and therefore
are not deemed significant. Similar is the case when redundancies
in parameters are removed.’ Therefore we conclude that, while the
individual HTs might be sensitive to certain parameters more than
the others, all parameters contribute to some extent in the overall
classification process of the CTRF algorithm.

4.3 CTREF classifier for binary classification

With the same training, test, and parameter sets that we have
employed in multiclass classification, we constructed a binary
CTRF classifier with two classes, spheroid-dominated and disc-
dominated.!® The galaxies which were visually classified as el-
lipticals (type 1, E), LBS (type 2), and early-type spirals (type

91t is interesting to see that the TPR values for Sab—Scd, the class that
performs the worst during classification by all our algorithms, experience
significant increases when the redundant parameters are removed. However,
since this does not make a noteworthy change in the overall rate of accuracy,
we have decided to overlook this improvement and keep the parameter set
as is.

10°We use this terminology based on the visual classification of the data set.
Since lenticular galaxies are gathered under the same umbrella as Sa-type
galaxies, an early- to late-type galaxy split would involve reclassifying the
entire visual sample, which is beyond the scope of this work.

Table 10. Panel 1 shows the results of parameter sensitivity test performed
with the binary CTRF classifier. The results with all chosen parameters
(Table 2) are shown in panel 2.

Parameter Spheroid Disc All
removed -dominated -dominated

Half-light 78.7 92.1 87.4
radius in kpc

Sérsic index 82.5 90.4 87.6
Kron radius 82.6 91.4 88.3
in kpc

(semimajor axis)

Kron radius 83.8 91.2 88.6
in kpc

(semiminor axis)

Mass-to-light ratio 83.6 91.4 88.7
Stellar mass 83.0 92.0 88.8
Ellipticity 84.9 91.3 89.0
g — i colour 84.3 91.6 89.0
Absolute magnitude 84.8 91.6 89.2
u — r colour 83.8 92.1 89.2
All chosen 849714 92.5%0% 89.8707
parameters

1112, SO-Sa) were considered as spheroid-dominated, while the
intermediate-type spirals (type 1314, Sab—Scd) and late-type spirals
and irregulars (type 15, Sd-Irr) were considered as disc-dominated.

This binary CTRF classifier returned a total success ratio of
89.8 percent’)s with individual TPRs of 84.9 percent™7 and
92.5 per cent’ )5 for the spheroid- and disc-dominated classes, re-
spectively. This significant increase from the original CTRF clas-
sifier’s TPRs proves that as the number of classes into which clas-
sification is made increases, the classification accuracy decreases.
This might also be directly related to the size of the data set, and
how well each class is represented in the training set.

Similar to the analysis in Section 4.2, we also explored the im-
pact the different parameters might have on the classification per-
formance of the classifier constructed by the CTRF algorithm. The
results of this are given in Table 10.

Removing half-light radius from the parameter set used for train-
ing and testing the CTRF algorithm seems to be the have the most
impact on the performance of the binary CTRF classifier. While the
overall success rate drops by 2.46 per cent, the values for spheroid-
and disc-dominated systems fall by ~6 per cent and ~0.4 per cent,
respectively. This points at the greater significance of half-light
radius in the classification of spheroid-dominated galaxies rather
than the disc-dominated ones. This is in agreement with the results
represented in Table 9 in which the classification accuracies fall
consistently for these three classes (E, LBS, and S0-Sa) in the case
of multiclass classification.

Ellipticity and g — i colour, and absolute magnitude and u — r
colour seem to have similar overall effect on the classification pro-
cess, drops by ~0.8 percent and ~0.6 per cent for the respective
pairs. The fluctuations in the TPR values are most significant in
the case of ellipticity for disc-dominated systems. The entire con-
tribution to the change in TPR while ellipticity is removed as a
classifying criterion comes from disc-dominated systems. This is
a very interesting development because, in the case of multiclass
CTREF classification discussed in Section 4.2, ellipticity is one of
the parameters that cause the TPR to decrease for all three galaxy
types collectively called as spheroid-dominated. This might indi-
cate cross-contamination between these three galaxy types in the
visually classified sample which confuses the classifier.
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The accuracy rates (both overall and individual) fall beyond the
error margins when parameters such as Sérsic index, Kron radii
(major and minor axes), mass-to-light ratios, and stellar mass are
removed. According to this study, the parameters that influence our
CTREF algorithm the most are half-light radius, Sérsic index, Kron
radii, mass-to-light ratio, and stellar mass.

5 DISCUSSION

In this section, we discuss in greater detail our previously recovered
results. To begin, we note that type 15 (Sd-Irr galaxies), account for
almost 50 per cent of our test set, and the associated TPR success
values are above 80 per cent for all considered automated classifi-
cation methods. This could indicate one of three scenarios; (1) as
the percentage of objects in a certain class increases, the accuracy
of classification increases as well, (2) the algorithms that we tested
are more effective in classifying a particular HT (type 15 in our
case) using the parameters that we have prescribed or (3) the human
classifications may be biased towards being able to more accurately
classify Sd-Irr type galaxies.

The first scenario is not generally supported by our own results.
The TPR values for type 1314 are consistently low across all four
considered methods and yet it is the second most populous type in
both our training and test sets. This warrants additional analysis in
future works; by testing the codes on larger data samples and by
fine-tuning the classification algorithms by introducing techniques
such as cross-validation.

As to the second scenario, the successful utilization of our
adopted functions are directly linked to our choice of parameters.
It may be that one or more of the parameters that we have chosen
are more effective in classifying certain HTs while falling short in
others. For example, the complexity in the structure of the galaxy
might not be well defined by the parameters that we have cho-
sen. As can be seen in Table 3, the TPR values are considerably
higher for single component systems such as ellipticals (type 1, E)
and late-type spirals/irregulars (type 15, Sd-Irr) compared to mul-
ticomponent systems such as early- and intermediate-type spirals
(types 1112, SO-Sa and 1314, Sab—Scd, respectively).

All four algorithms are in agreement with each other in 1040
out of the 1506 galaxies in our test set. And out of these 1040
objects, 143 (i.e. ~10percent of the total test set) disagree with
the classification by visual inspection. Of these, ~9 per cent are el-
lipticals, ~9 per cent are LBS, ~14 per cent are early-type spirals,
~21 per cent are intermediate-type spirals, and ~4 per cent are late-
type spirals and irregulars. These are illustrated in Fig. 13. There
seems to be an element of symmetry in this occurrence. For instance,
as can be seen from the figure, no objects that have been visually
classified as SO-Sa are machine classified unanimously as Sd-Irr,
this pattern holds true in converse as well. But this is not always
the case. No visual LBS galaxies have been unanimously machine
classified as SO-Sa objects, but one visual SO-Sa galaxy has been
machine classified unanimously as LBS. This, along with the pos-
sibility of unanimous disagreement being a potential indicator of
human error in classification by visual inspection are interesting
paths to follow in future works that extend this study.

When we train a machine, for e.g. to classify galaxies (our case)
based on visual classifications, what we essentially do is train it
to reproduce our classification strategy, replete with our human
biases. For instance, if, beyond a certain redshift, the human eye is
ineffective in distinguishing between certain classes of galaxies, the
data set that we apply to the algorithms will reflect the same bias.
Therefore, we propose that the disagreement between the machine
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and the visual classifications could be due to one of two reasons, (1)
the visual classification is inaccurate, and based on the values of the
parameters used to train and test the algorithms, the galaxy belongs
to one of the other classes, or (2) the parameters do not sufficiently
characterize what we see while classifying by eye.

In Figs 16, 17, and 20, it can be seen that the CTRF method repli-
cates the visual classification to a greater extent than in Figs 18
and 19. This leads us to speculate that our algorithms in their
present configuration might be more effective in classifying single-
component systems such as ellipticals and late-type spirals rather
than multicomponent systems like early- and intermediate-type
spirals.

One of the methods that we have used in our work is SVM with
a tree structure. With this approach, the accuracy obtained on our
entire test set is 75.8 per cent. The accuracies for the different HT's
are represented in Table 3. This value seems encouraging when
we compare our results to Huertas-Company et al. (2007), who
also used an SVM approach in their work to obtain morphological
classification to a sample of 1500 galaxies from the SDSS (500 to
train and 1000 to test). Their method was a generalization of C-A
system using non-linear SVM boundaries with 12 dimensions. The
mean accuracy of the method was ~80 per cent. We note that the
Huertas-Company et al. (2007) method only classifies galaxies into
early and late types, while our algorithm classifies galaxies into five
distinct morphological types, which may explain why their success
ratio is ~4 per cent higher than ours.

In our NN method, we reproduce the classifications learned on
the training set to an accuracy of 76.0 per cent on the test set. Banerji
et al. (2010) applied artificial NN to a sample of almost one mil-
lion objects from the SDSS previously classified by human eye
by volunteers as part of the Galaxy Zoo project. Their training set
consisted of 75000 objects, classifying the test set into three mor-
phological classes (early-types, spirals, and point sources/artefacts)
with 12 parameters. The accuracy of their approach was close to
90 per cent. Considering that our training set and test sets are much
smaller compared to Banerji et al. (2010) and that we use a larger
range of classification types, our value of 76.0 per cent is highly
promising.

Our CT algorithm uses classification (decision) trees to attain
morphological classification with an accuracy of 69.0 per cent on
our entire test set. The size of the data set and the number of
classification types for the method of Owens et al. (1996) is com-
parable to our own. They use a sample of 5217 galaxies from the
ESO-LV'! catalogue (Lauberts & Valentijn 1989) using 13 parame-
ters to discern between five morphological types (ellipticals, lentic-
ulars, early-type spirals, late-type spirals, and irregulars). With a
fivefold cross-validation on their approach, they achieved an aver-
age accuracy of 63 percent on a test set which amounted to 1/5th
of the whole set. They have compared their results with Storrie-
Lombardi et al. (1992) which applied an artificial NN approach
to the same data with an accuracy of 64.1 percent and Lauberts
& Valentijn (1989) whose automated classifier reproduced classi-
fications to an accuracy of 56.3 percent. We note however, that
Storrie-Lombardi et al. (1992) have used ~30 per cent of their to-
tal data sample as the training set and 70 per cent as the test set in
contrast to our method of adopting a larger training set and smaller
test set as detailed in Section 2.5. The improvement of 69.0 per cent
accuracy that we observe is undoubtedly due to this reason. Fur-
thermore, we have 2000 more objects in the data sample which will
influence the classification accuracy.

" http://archive.eso.org/wdb/help/eso/esolv.html
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Table 11. Summary of the results from this study (top) alongside results from several other studies from the literature using a variety of statistical learning
methods (bottom).

Statistical Total sample Training set Test set Number of Dimensions Accuracy Reference
learning classes
method
SVM 75.8 per cent
7528 6022 (80 percent) 1506 (20 per cent) 5 10
NN 76.0 per cent Results from our work
CT 69.0 per cent
CTRF 76.2 per cent
SVM ~1500 500 (33 percent) 1000 (67 per cent) 2 (early-type, 12 80 per cent Huertas-Company
late-type) et al. (2007)
NN ~1000 000 ~75000 ~925000 3 (early-type, 12 90 per cent Banerji et al. (2010)
(7.5 per cent) (92.5 per cent)
spirals, point
sources/artefacts)
Oblique CT 5217 ~4174 ~1043 (20 percent) 5 (E, SO, Sa+Sb, 13 63 per cent Owens et al. (1996)
(80 per cent) Sc+S8d, Irr)
Three CT 75000 67500 7500 (10 per cent) 3 (ellipticals, 13 96.2 per cent Gauci et al. (2010)
(90 per cent) spirals, unknown)
algorithms
including
CTRF
ConvNet 58000 47700 5000 (~9percent) 5 (probablities?) Run on images ~99 per cent Huertas-Company
(~82 per cent) et al. (2015)
5300 (~9 per cent) Dieleman et al. (2015)
used for

real-time evaluation
during training

Note. “Probabilities for each galaxy having a disc or a spheroid, being a point source, having an irregularity or being unclassifiable are the outputs.

Among our methods, the CTRF algorithm which employs an RF
of 100 trees was found to have an accuracy of 76.2 per cent. This
method has a marginal, but encouraging higher accuracy among all
four methods that we have tested. Gauci et al. (2010) performed a
comparison of different CT algorithms to a data set of 75 000 objects
from the SDSS previously classified by the Galaxy Zoo project. The
algorithms of CART, C4.5, and RF are tested with a tenfold cross-
validation technique where, in each run, nine subsets of the data
are used for training and one for testing. The success rate was
97.33 per cent for an RF algorithm with 50 trees and 96.2 per cent
over all the methods. However, Gauci et al. (2010) have only three
classification types (elliptical, spiral, and unknown morphology)
compared with five in this study.

We trained a binary CTREF classifier that classifies our data sam-
ple to spheroid- and disc-dominated systems. For this, we consider
galaxy types E, LBS, and SO-Sa as spheroid-dominated and galaxy
types Sab—Scd and Sd-Irr as disc-dominated. The overall accu-
racy rate for this classifier is ~90 percent with individual TPRs
for spheroid- and disc-dominated systems to be ~85 per cent and
~93 per cent, respectively.

The results from our binary CTRF classifier has clarified certain
aspects about the effectiveness of our overall study. The results
indicate that the number of data types into which the classification is
done is a very important criterion for accuracy. There is an increase
of almost 14 per cent overall accuracy when the number of types
changed from 5 to 2. It is conceivable that the size of the data set
and how comprehensively the different galaxy types are represented
in the training and test sets play a role in the performance accuracy as
well. This can be seen in the higher accuracy of the disc-dominated
galaxies which make up ~67 per cent of the total data set. So a way

to address the decrease in accuracy as the galaxy types increase
might be to increase the size of the data set accordingly.

To facilitate future studies and to aid in comparison with other
works (see Table 11), the machine learning algorithms employed in
this study have not been significantly modified beyond their default
setups as detailed in Section 3. There are several avenues that could
be pursued in order to make them more precise. Applying the SVM
method for multiclass classification using error-correcting output
codes is one such approach (Dietterich & Bakiri 1995). There are
indications in literature that this technique could be more accurate
than the tree structure that we have considered in this work. Assign-
ing probabilities to our classifications rather than binary values may
be a useful tool to see the effectiveness of the classification process.
Owens et al. (1996) posit that differentiating between neighbouring
classes of galaxies (for e.g. types 1112 and 1314 in our sample) is
more complicated than differentiating between non-neighbouring
classes of galaxies. By analysing the probabilities assigned to each
class by the classification algorithms and manual examination, it
might be possible to define criteria or introduce parameters that
provide a more robust delineation between neighbouring galaxy
types. Introducing PCA as a means to choose a robust set of param-
eters and extensive error analysis of the parameters that we have
chosen are other interesting prospects, allowing for the introduction
(e.g. some measure of asymmetry) or elimination of parameters
(e.g. ellipticity) which do not seem to be vital in predicting mor-
phology. The methods that we have chosen construct classifiers with
different mathematical structures. Therefore, each constructed clas-
sifier may capture different aspects of the ideal classifier effectively.
Using a combination of classifiers constructed using different statis-
tical learning methods may give rise to a new classifier with better
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accuracy (and closer to an ideal classifier) than each classifier taken
individually (Chen, Pereverzyev & Xu 2015; Kriukova et al. 2016).
The design of appropriate combination strategies is another avenue
that we may explore in the future.

6 CONCLUSION

In this study, we have used the statistical machine learning algo-
rithms of SVM, CT, CTRE, and NN to carry out morphological
classifications for 7528 galaxies from the GAMA survey. These
galaxies were previously visually classified independently by three
classifier teams and the majority vote has been included in the
GAMA catalogue. The algorithms are trained on a set of 6022 ob-
jects (80 percent of the data set) using 10 distance independent
parameters. These algorithms are subsequently tested on the re-
maining 20 per cent of the data set (1506 objects) to classify them
into five galaxy types: elliptical (type 1, E), LBS (type 2), early-type
spirals (type 1112, SO-SBa), intermediate-type spirals (type 1314,
Sab-SBcd), and late-type spirals and irregulars (type 15, Sd-Irr).
We draw the following conclusions from our study.

(i) The success rates on the entire test set are 69.0 percent,
76.2 percent, 75.8 percent and 76.0percent for the CT, CTRE,
SVM, and NN algorithms respectively. While the performance of
the SVM, CTREF, and NN algorithms are very similar, the CTRF
algorithm has a marginally better success rate and a simpler math-
ematical structure. We therefore recommend this algorithm to pro-
vide robust, automated HT classifications when applied to future
extragalactic surveys.

(i1) Our algorithms have a greater success rate in case of single-
component systems such as ellipticals, and late-type spirals and
irregular galaxies. This is especially clear when we look at the
success rate of type 15 galaxies (Sd-Irr). They form 47 per cent of
our entire sample. The success rates of all four algorithms are above
80 per cent for this galaxy type and close to 90 per cent for CTRF,
SVM, and NN algorithms.

(iii) We find that the success rates decrease with increasing stellar
mass. This trend seems drastic in case of HT's SO-Sa, Sab—Scd, and
Sd-Irr. This apparent phenomenon warrants further investigation.

(iv) We do not find a universal trend in the success rates with
respect to redshift, however, we find that there is some redshift
dependence within each galaxy type. This is especially apparent in
the case of type Sab—Scd, for which, the success rates are lower at
lower redshifts and increase towards higher redshifts.

(v) In the cases where all four machine learning algorithms
agree with each other, they disagree with the visual classifica-
tion ~10percent of the time, with ~9 percent being ellipticals,
~9 percent LBS, ~14 per cent SO-Sa, ~21 per cent Sab—Scd, and
~4 per cent Sd-Irr. These unanimous disagreement fractions could
be a potential indicator for human error in visual classifications.
Further exploration of this is an interesting path to investigate for
future work.

(vi) When we decrease the number of galaxy types into which
classification is done, the accuracy of classification increases con-
siderably. Our binary CTRF classifier achieved an overall accu-
racy of 89.8 per cent with the spheroid- and disc-dominated classes
achieving accuracies of 84.9 per cent and 92.5 per cent, respectively.
This hints that a way to cope with the decrease in classification ac-
curacy as the galaxy types increase might be to use larger data
sets.

(vii) There are many possible avenues to pursue following from
this study. These include introducing analysis methods such as PCA
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or cross-validation to create a robust data set of input features,
foregoing the SVM tree structure in favour of error-correcting codes,
and using an ensemble of classifiers constructed using different
statistical learning methods.
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APPENDIX A: METHODS IN DETAIL

A1l Support Vector Machines

In SVM, the constructed classifier f'is of the following form:

N
f (x) = sign (g (x)) = sign (b—i—ZaiK(x,xi)) (A
i=1
where K is a positive definite kernel,'?> and b, o, i=1,2,..., N
are certain coefficients from R. We set & := (ay, oo, . . ., aN)T.

The coefficients b, o are chosen as the solution of the following
minimization problem:

N
A
E (I —zig (i), + EaTKa — min, (A2)
D, 0
i=1

where (a); :=max (0, a), K is the N x N kernel matrix with entries
Kij = K (xi,xj), and A > 0 is a penalty parameter. Note that the
minimization problem in equation (A2) is convex, and therefore,
various methods of convex optimization (e.g. Boyd & Vanden-
berghe 2004) can be used to solve it. We employ the sequential
minimal optimization method, which is suggested in MATLAB as
the standard method to solve this. The first term in equation (A2)
measures the closeness of f (x;) = sign (g (x;)) to z;, i.e. it tells us
how well the classification is predicted on the training set, while
the second term penalizes coefficients in &, and A gives a trade-off
between the two terms. We take the default value for A, which is
A=1.

Due to the nature of the function (-), in equation (A2), many
values of «; are equal to 0. Therefore, in the representation in
equation (A1), the linear combination involves functions from a
subset of {K (-, x;), i =1,2,..., N}, and the corresponding x;
are called support vectors.

The kernel that we have chosen is the Gaussian Radial Basis
Function given as:

12
K (x,x') =exp <_Hx—x”) , (A3)
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where o is the scaling factor, whose default value we have retained
aso = 1.

The SVM method is illustrated by an example in Fig. Al. In
this example, the feature vector is (x;, xp) € [—1, 1] x [—1, 1]
and D := {(x1, x2) | x} +x3 < (1/2)*} is a disc with its centre as
(0, 0) and radius 1/2. The ideal classifier f* assigns the feature
vector to class 1 if it belongs to D, and to class —1 otherwise.
We generate a training set Z that consists of 100 feature vectors
x;i = (x1,1, x2,;). Features x; ; and x,,; are randomly sampled using
the uniform distribution over [—1, 1]. The classes for the feature

12 Recall that a symmetric function K : R” x R? — R (here symmetric
means that K (¥, ¥2) = K (X2, ¥;) for any ¥, ¥, € R”) is called positive
definite kernel if forany m € N and any distinct ¥y, ..., ¥y, € R, them x m
matrix K with entries Kjj = K (¥;, ¥;) is positive definite.
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Figure A1l. Illustrative example for the SVM method in the case of two
features x; and x,. The feature vector belongs to the class 1 if it is inside the
red curve, which is the ideal decision boundary. Otherwise, the feature vector
is in the class —1. The black curve is the decision boundary constructed by
the SVM method using the training data in the picture. The corresponding
constructed SVM classifier assigns the feature vectors inside this black
curve to class 1, and outside the black curve to class —1. The training
feature vectors that are additionally marked by a small surrounding circle
are the support vectors.

vectors x; in the training set are determined using the ideal classifier
f*. Then, we construct the function g using the described SVM
method with kernel equation (A3) and 0 = 1.

The red curve is the boundary of D, which can be called as
the ideal decision boundary. The black curve consists of feature
vectors x for which g(x) = 0. This curve is called the SVM decision
boundary. For the feature vectors inside this curve, we have g(x) >
0, and therefore, these feature vectors will be classified by the
constructed SVM classifier f as class 1. The other feature vectors
satisfy the condition g(x) < 0, and therefore, they are assigned by
fto class —1. The training feature vectors inside the small circles
are the support vectors.

In general, the SVM decision boundary may have an arbitrary
shape, and it may also consist of several closed curves. The support
vectors are located near the SVM decision boundary, in a way
supporting and defining its shape.

A2 Classification Trees with hyper-rectangular partitions

In the CT method, the feature space is split into the rectangular
partitions by a recursive binary method. First, it is split into two
regions, {x € R” | x; < s} and {x € R? | x; > s} using a selected
feature x; and a split point s. Then, one or both of these regions are
split similarly into two more regions. this process continues until a
certain stopping condition is fulfilled.

An example of the above-described partition for two fea-
tures (x;, xp) with values in the unit square is presented in

Fig. 8. In this example, the first split is made at x; = s;.
Then, the region {x € R” | x; < s} is split at x, = s;, and the
region {x € R” | x; > 51} at x; = s3. In the end, the region

GAMA: automatic galaxy classification ~— 5257

{x € R?” | x; > s3} is split at x, = s4. Thus the partition of the
feature space into five rectangular regions Ry, R,, ..., Rs shown in
Fig. 8 is obtained.

The nodes of the CT are split based on the impurity measure of the
node. We represent the region that corresponds to the node ¢ as R;.
Let N, := #{x; € R} denote the number of training feature vectors
in R,. The mathematical notation #R is used for the number of ele-
ments of a set R. We further define py(t) :=#{x; € R, | yi = k} /N,
as the proportion of the training feature vectors in the node 7 (or,
which is the same, in the region R,) that belong to class k. Impurity
measure /(¢) of the node 7 is a function of the proportions py(?). It
tells us how even the distribution of the feature vectors in the node ¢
are over the classes. It has a maximum value when the feature vec-
tors are distributed evenly over the classes in the node ¢, i.e. when
p@®=1/T,k=1,2,..., K. Incontrast, when the node ¢ contains
feature vectors only from one class, say class £, i.e. when p,(t) = 1,
and px(t) = 0, k #~ £, then the impurity measure /() has a minimal
value, and the node is called pure. As the impurity measure, we
consider the Gini index : I(r) = 1 — 3_,_, p(2).

The goal of the node splitting is to obtain new nodes with smaller
impurity measures. This is achieved by defining a characteristic
called impurity gain, and the splitting is then done such that this
gain is maximized. Let P(R;) = N,/N denote the proportion of the
training feature vectors in the node #. Consider a particular splitting
candidate of the node ¢, i.e. a particular splitting feature and a split
point, and denote the corresponding new left node as #; and the new
right node as #,. Then, the impurity gain is defined as :

Al =P(R)I(t)— P (R,)I(t1)— P (Ry,)I(n), (A4)

and then, the splitting candidate for which this impurity gain is
maximum is chosen.

There is a finite number of splitting candidates. For each feature
Xq, ¢ = 1, ..., p, possible splitting points are obtained from the
training data by sorting x; q in the ascending order. Note that x; g
is the gth component of the feature vector x;, and those feature
vectors x; are considered that belong to the splitting node. Then,
the maximization of the impurity gain (equation A4) is done by
checking through all possible splitting candidates.

A3 Classification Trees with Random Forest

Using random sampling with replacement, B random samples Zy,
b =1, ..., B of the training set Z are created. Consider the set
Z ={1,2,..., 10} with 10 elements. Then, four random samples
of Z that are made using the random sampling with replacement of
10 elements from Z can be, for example, the following:

2, =(3,4,9,6,3,8,4,9,3,10),
Z,=(2,8,4,7,5,5,2,4,1,8),
Z3=(1,1,2,4,10,5,6,2,8, 10),
Z,=(2,3,8,4,7,6,6,7,2,8).

On each training sample 2, a CT classifier f, is trained using
a modified CT learning algorithm. In this modified algorithm, at
each node split, possible splitting features are taken from a ran-
dom sample of all used features. Typically, these random samples
contain ,/p (rounded down) features (p is the number of features,
Section 3.1). The resulting CTREF classifier assigns a classification
to a feature vector x using the majority vote of the constructed CT
classifiers {fy,, b=1,...,B}.
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A4 Single hidden layer feed-forward neural networks

The arrows in the network diagram, Fig. 10 indicate the dependence
between network units, and this dependence is modelled as:
W = g1 (Qom +ogx), m=1,2,....M,

O =P +Biw k=1,2,...,T,

= gk@) = fi(x), k=12,...,T,
where w = (wy, wa, ..., wy)', and ¥ = (3y, Do, ..., 0r) . The
numbers &g, Bok and vectors o, € R”, B, € RM are model param-
eters called weights. The complete set of these weights is denoted
by 6. The functions g; and g i are called transfer functions. For g,
we take the tan-sigmoid transfer function:
~ (exp(s) — exp(—s))

(exp(s) + exp(—s))’

and for g, x, we take the softmax transfer function,

g1(s)

exp (%)
-
> =1 €xp (Dr)
The softmax transfer function ensures that the unit values v belong
to the interval (0, 1) and satisfy ZLI vy = 1, which allows vy to be
interpreted as the probability to belong to class k. The mentioned
conditions on vy require the second transfer function g, x, in contrast
to the first transfer function gy, to vary with k.

&k (V) =

Once the weights @ of the NN are chosen, the NN classifier is
defined as:

fx)= argglax Sic (x)

i.e. for any feature vector, the class with the highest probability is
taken.

During the training process, the weights @ of the NN are tuned
such that the error function E () is minimized. The error function
describes how well the NN model fits the training data. As the error
function, we consider the cross-entropy function:

N T
E@®)=-Y Y vlog fi (xy),

i=1 k=1
where vy = 1 if y; = k, and vix = O otherwise. The minimiza-
tion of the error function can be done by gradient-based methods.
We use the scaled conjugate gradient backpropagation algorithm
(Moller 1993) which is suggested in MATLAB for tuning NN used
for classification problems.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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