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The scale and complexity of software systems are constantly increasing, imposing new challenges for software fault location and
daily maintenance. In this paper, the Security Feature measurement algorithm of Frequent dynamic execution Paths in Software,
SFFPS, is proposed to provide a basis for improving the security and reliability of software. First, the dynamic execution of a
complex software system is mapped onto a complex network model and sequence model. This, combined with the invocation and
dependency relationships between function nodes, fault cumulative effect, and spread effect, can be analyzed. The function node
security features of the software complex network are defined and measured according to the degree distribution and global step
attenuation factor. Finally, frequent software execution paths are mined and weighted, and security metrics of the frequent paths
are obtained and sorted. The experimental results show that SFFPS has good time performance and scalability, and the security
features of the important paths in the software can be effectively measured. This study provides a guide for the research of defect
propagation, software reliability, and software integration testing.

1. Introduction

The increase in complexity of software requirements makes
software developers unsure of the development quality of
software system; in effect the “software crisis” still has not
been completely solved. How to effectively excavate the
inherent characteristics of the software system structure, to
recognize, measure, manage, and control the complexity of
software structure, becomes a key problem for solving the
development bottleneck in the software industry.

Research on the complexity of software network struc-
ture can combine the methods of complex system sci-
ence and statistical physics. Depending on the granularity,
software systems can be composed of different types of
software entities, such as functions, classes, subroutines,
packages, and artifacts. With these entities interacting with
each other, software systems can achieve specific functional

requirements. If the software entities are viewed as nodes and
the relationship between the nodes is abstracted as edges,
the software execution process presents a nonlinear network
structure according to the relationship of the entities [1] and
also a linear sequence structure according to the sequential
characteristics of the execution order. Then, the software
system can be expressed as an abstracted complex network
model and a sequence model, which provides a new train of
thought [2] for the description of the software system.

The root cause of the security danger hidden in software
lies in the vulnerability of the entity itself. The vulnerability
is the measurement of the potential danger of a software
entity to be used as an attack and can be discussed from the
perspective of computer network [3, 4] or software static code
analysis, but the integrity (whole structure) and the dynamic
execution (behavior characteristic) of software system are
ignored. In addition, the degree to which software system
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security is threatened depends not only on the severity of the
fault, but also on the fault propagation capacity of the entity.
If one or more functions fail, the fault may be propagated
to other functions by invocation relationships and further
lead to a part of or the whole software system crashing,
known as “cascading failure” [5]. Therefore, the software
security feature measurement should take into account the
vulnerability and propagation of software entities.

How to quantitatively measure the security features of
nodes from the software complex network is the premise and
basis for further analysis of the software behavior trajectory
path. At present, there are lots of methods for discovering the
important nodes in complex networks. The classic methods
based on centricity contain degree centrality [6], closeness
centrality [7], betweenness centrality [8], eigenvector cen-
trality [9], subgraph centricity [10], and so on. The classic
methods based on random walk model include PageRank
[11], LeaderRank [12], and their improved algorithm NodeR-
ank [13]. Wang and Lü [14] by means of the influence node
mining method prove that the defect propagation capacity
of a node is stronger if the in-degree and out-degree of the
node are bigger. Huang et al. [15] based on the invocation and
dependency relationships between functions with the fault
probability of nodes calculate the fault accumulation degree
of upper nodes by the iteration from the leaf nodes. These
methods attempt to describe the relevance of software node
importance to fault generation and propagation, but fail to
form a measurement of software security.

Sequence or path is the most basic and important way
for the description of dynamic software execution process.
The full execution path of the whole software can reflect
the occurrence order and frequency of the software internal
entities. However, the method of path extraction and mining
is restricted by the nested, circulatory, iteration and the
continuous invocation relationships of entities.Most software
pathmining algorithms are extracted on the basis of complex
networks. For example, Tang et al. [16] propose an algorithm
for shortest pathmining between any two vertices in complex
network. Zhang et al. [17] minimize the length of the
extracted path and reduce the unnecessary time overhead by
further processing the repetitive structure. The GP method
proposed by Nguyen et al. [18] can automatically detect
and fix software vulnerabilities according to the software
execution path. Murtaza et al. [19] predict future software
possible defects by analyzing the historical vulnerability
sequence data with characteristics of Markov to provide
adequate response time. Zou et al. [20] analyze the reliability
of Digital Instrumentation and Control software system
based on the flow network model by finding sensitive paths
in the complexity software.These algorithms are based on the
network to extract path, which can lead to the phenomenon
of repeated reading and approximate connection; also, these
software security analyses cannot work without existing
vulnerability information or real faults as their training data.

In this paper, the Security Feature measurement algo-
rithm of Frequent dynamic execution Paths in Software,
SFFPS, is proposed. A complex network model and a se-
quence model are formed based on software dynamic exe-
cution behavior. It is for early security feature measurement,
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Figure 1: Theory process of model construction.

before there are real vulnerabilities or faults generated, which
can provide the premise for the software quality and reliability
evaluation. The main contributions are as follows.
(1)The software system is mapped to a complex network

model and sequence model, from the nonlinear perspective
to effectively express the characterization of complex correla-
tion between software entities and from the linear perspective
to capture sequential characteristics of the dynamic execu-
tion.
(2)The behavior nature of fault accumulation and prop-

agation is analyzed based on the system structure of software
dynamic execution and standard measurement of security
features (vulnerability and propagation) being defined.
(3) Frequent paths in software dynamic execution are

mined and weighted by the node security features. The key
paths which are worthy of attention are ensured by both their
frequency and security features.

The remainder of the paper is organized as follows.
Section 2 gives the model construction. Sections 3 and 4
develop the definition of the security features and the SFFPS
algorithm. Section 5 provides some examples. Section 6
presents the performance study of SFFPS and shows the rank
of the important paths. Section 7 contains the concluding
remarks.

2. Constructions of Complex Network
Model and Sequence Model

The dynamic execution trace of software systems contains
three phases, which are data collection, tracking data sim-
plification, and data visualization as shown in Figure 1. The
modeling process of simple functions is shown in Figure 2.

Phase 1. Match the entry and exit configuration functions of
the GNU compiler toolchain (gcc), and insert the analysis
function into the entry and exit of the application functions
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Figure 2: Modeling process of invocation relationship between simple functions.

to trace the function execution process. The tracking results
are recorded in the file trace.txt.

Phase 2. The letters “E” and “X” before the tracking addresses
represent the entry and exit of a function, respectively. A
simplification tool Pvtrace is used to analyze the function
invocation according to the letters “E” and “X.” An address
transformation tool Addr2line is used and the address is
transformed to function name.

Phase 3. Map the function invocation order to sequence
model and a visualization tool Graphviz is used to form
the complex network, which defines the global relationship
between all the functions.

According to Figure 2, the corresponding relationships of
function address and function name are as follows:

0x8048690 → M(main); 0x804854d → B;
0x8048585 → C; 0x80485b8 → D.
0x80485f0 → E; 0x8048623 → F, 0x8048656 → G.

Only the addresses with the letter “E” are used for
sequence model construction.

3. The Security Feature Definition and
Measurement of Function Nodes

The security feature measurement of a function node is
based on the software structure; the analysis of vulnerability
and propagation is according to cumulative effect and the

spread effect caused by the mechanism of fault production
and propagation. The global accessibility and fault tolerance
with step attenuation effect are fully considered, so the
node security features are calculated according to the degree
distribution and step attenuation factor.

Definition 4 (software complex network). In a software
complex network, functions are defined as the nodes; the
invocation relationships between functions are defined as
edges.

Definition 5 (vulnerability). Vulnerability of a function node
is the characteristic that a function node may break down
because of the effect of its invocated fault node through
invocation relationship.

Typically, if a node invocates more other nodes, it is more
functional and vulnerable.That is to say, it is more likely to be
affected and be faulted.The calculation of𝑉 (vulnerability) is
as follows:

𝑉 (𝑢) = outDegree (𝑢) + ∑
𝑤∈OS(𝑢)

𝜃 ∗ 𝑉 (𝑤) , (1)

where 𝑢, 𝑤 represent function nodes, 𝑉(𝑢) represents the
vulnerability of node 𝑢, OutDegree (𝑢) represents the out-
degree of node 𝑢, 𝜃 represents the step attenuation factor,
which satisfies 𝜃 ∈ (0, 1), andOS(𝑢) represents the direct out-
neighbor set of node 𝑢.

Definition 6 (propagation). Propagation of a function node
is the characteristic that a function node may propagate its
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Input: Complex network CN, step attenuation factor 𝜃
Output: Node list with security features NFlist
for each node 𝑢 in CN
{ 𝑉(𝑢) = calculation 𝑉(𝑢);
𝑃(𝑢) = calculation 𝑃(𝑢);
NFlist.add (𝑢, 𝑉(𝑢), 𝑃(𝑢)); }

Procedure calculation 𝑉(𝑢)
{ 𝑉(𝑢) = outDegree(𝑢);

For each node 𝑤 ∈ OS(𝑢)
𝑉(𝑢) += calculation 𝑉(𝑤);

return 𝑉(𝑢); }
Procedure calculation 𝑃(𝑢)
{ 𝑃(𝑢) = inDegree(𝑢);

for each node 𝑤 ∈ IS(𝑢)
𝑃(𝑢) += calculation 𝑃(𝑤);

return 𝑃(𝑢); }

Algorithm 1: Calculation of node security features.

fault to the nodes by which it is invocated. The calculation of
𝑃 (propagation) is as follows:

𝑃 (𝑢) = inDegree (𝑢) + ∑
𝑤∈IS(𝑢)

𝜃 ∗ 𝑃 (𝑤) , (2)

where 𝑃(𝑢) represents the propagation capacity of node 𝑢,
inDegree (𝑢) represents the in-degree of node 𝑢, and IS(𝑢)
represents the direct in-neighbor set of node 𝑢.

Algorithm 1 describes the calculation process of vulnera-
bility and propagation.

4. Mining Frequent Paths from
Dynamic Execution with Security
Feature Measurement

The importance of a software dynamic execution path takes
into account two aspects: one is the occurrence frequency
of the path and the other one is the security feature coming
from the nonrepetitive nodes contained in the path. These
two aspects are complementary. For example, if there are
lots of loop bodies in the software execution, loop body
and its subset are always frequent. But because most of its
contained nodes are the same, the fault influence range is
small. Similarly, if a path contains many different nodes
with a lower occurrence frequency, its impact range is large,
but its occurrence possibility is small. That is to say, if the
frequency of a path is very high and the path contains
more nonrepetitive nodes, the path is worthy of more atten-
tion.

4.1. Relative Definitions of Frequent Path. Let 𝐹 = {𝑓1,
𝑓2, 𝑓3, . . . , 𝑓𝑛} be a set of function symbols. 𝑆 is a software
execution path, and it is composed of function symbols
with time-ordered occurrence. Minimal support count (min-
count) can be calculated by mincount = minsup ∗ |𝑆|, where
minsup is a given threshold and |𝑆| is the number of function
symbols in 𝑆. If there are 𝑘 symbols in 𝑆, 𝑆 is a 𝑘-path.

M
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C

Figure 3: Complex network model of simple function invocation
relationship.

Definition 7 (subpath and superpath). A path 𝑆1 = ⟨𝑎1,
𝑎2, . . . , 𝑎𝑚⟩ is a subpath of another path 𝑆2 = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑛⟩,
denoted as 𝑆1 ⊆ 𝑆2, if there are numbers 𝑖1, 𝑖2, . . . , 𝑖𝑚, such that
1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑚 ≤ 𝑛 and 𝑎1 ⊆ 𝑏𝑖1, 𝑎2 ⊆ 𝑏𝑖2, . . . , 𝑎𝑚 ⊆ 𝑏𝑖𝑚.
It can also be said that 𝑆2 is a superpath of path 𝑆1.

Definition 8 (support number). 𝑆 is a path; the support
number of 𝑆, denoted as sup(𝑆), is defined as its occurrence
number in the software execution.

Property 9 (frequent path). A path 𝑆 is frequent if its support
number sup(𝑆) is equal to or more than mincount.

Property 10 (antimonotone). If path 𝐴 is not a frequent path,
any path 𝐵 containing 𝐴, which is a superpath of 𝐴, cannot
be a frequent path.

4.2. Weighting the Frequent Path Based on the Security
Features of Function Node. SFFPS algorithm is for mining
the security features of frequent paths based on the dynamic
execution sequence model and the node security features in
the complex network model. It contains two phases: one is
frequent path mining and the other one is security feature
weighting. First, the function nodes in the sequence model
are read to form the function position set. Then, the position
index is used for pattern growth; this self-growth strategy
can avoid candidate generation and ensure the continuity
of function execution. Finally, path frequency is validated
by minimum support count mincount, and path is weighted
according to the security feature of the nonrepetitive nodes
contained in it.The security features of the frequent paths are
measured. Algorithm 2 describes the mining and weighting
process.

5. An Illustrative Example

The complex network in Figure 2 is a variant of the tree-like
structure in Figure 3, which is redrawn for easier understand-
ing.

Without losing generality, the coordination factor is set
to 0.5. Security features of each node are calculated as follows.
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Input: Function execution path 𝑆, minimal support threshold minsup
Output: Path list with security features Slist
mincount = minsup ∗ |𝑆|;
for each node 𝑆𝑖 in 𝑆
{Pos(𝑆𝑖).add(𝑆𝑖.pos); }

for each Pos(𝑆𝑖)
{ sup(𝑆𝑖) = |Pos(𝑆𝑖)|;
if(sup(𝑆𝑖) <mincount)
Delete Pos(𝑆𝑖);

else
𝐿1 = 𝐿1.add(𝑆𝑖, sup(𝑆𝑖)); }

for (𝑘 = 2; 𝐿𝑘−1! = 0; 𝑘++)
{ gen mine(𝐿𝑘−1);
for each 𝑙𝑚 ∈ 𝐿
{ for each different function symbol 𝑢 in 𝑙𝑚
{𝑉(𝑙𝑚)+=𝑉(𝑢);
𝑃(𝑙𝑚)+=𝑃(𝑢); } } }

Sort each 𝑙𝑚 ∈ 𝐿 by 𝑉(𝑙𝑚), 𝑃(𝑙𝑚) and form Slist;
Procedure gen mine (𝐿𝑘−1)
{ for each 𝑙𝑖 ∈ 𝐿𝑘−1

{ for each position pos in Pos(𝑙𝑖)
{ 𝑆𝑗 = 𝑆[pos + 1];
for each position pos in Pos(𝑙𝑖)

{ if (pos+1 exists in Pos(𝑆𝑗))
{Pos(𝑙𝑖𝑆𝑗).add(pos + 1); } } }

sup(𝑙𝑖𝑆𝑗) = |Pos(𝑙𝑖𝑆𝑗)|;
if (sup(𝑙𝑖𝑆𝑗) <mincount)

delete Pos(𝑙𝑖𝑆𝑗);
else

𝐿𝑘 = 𝐿𝑘.add(𝑙𝑖𝑆𝑗); } }

Algorithm 2: Security feature measurement of frequent paths in software.

As the “main” function is special (vulnerability is always large
and propagation is 0), it is excluded for measurement.

Vulnerability

𝑉(𝐺) = outDegree (𝐺) = 0.
𝑉(𝐶) = outDegree (𝐶) + 𝜃 ∗ 𝑉(𝐺) = 1 + 0.5 ∗ 0 = 1.
𝑉(𝐹) = outDegree (𝐹) + 𝜃 ∗ 𝑉(𝐺) = 1 + 0.5 ∗ 0 = 1.
𝑉(𝐸) = outDegree (𝐸) + 𝜃 ∗ 𝑉(𝐹) = 1 + 0.5 ∗ 1 = 1.5.
𝑉(𝐷) = outDegree (𝐷)+𝜃∗{𝑉(𝐸)+𝑉(𝐹)} = 2+0.5∗
(1.5 + 1) = 3.25.
𝑉(𝐵) = outDegree (𝐵)+𝜃∗ {𝑉(𝐶)+𝑉(𝐸)} = 2+0.5∗
(1 + 1.5) = 3.25.

Propagation

𝑃(𝐵) = inDegree (𝐵) = 1; 𝑃(𝐷) = inDegree (𝐷) = 1.
𝑃(𝐶) = inDegree (𝐶) + 𝜃 ∗ 𝑃(𝐵) = 1 + 0.5 ∗ 1 = 1.5.
𝑃(𝐸) = inDegree (𝐸) + 𝜃 ∗ {𝑃(𝐵) + 𝑃(𝐷)} = 2 + 0.5 ∗
(1 + 1) = 3.
𝑃(𝐹) = inDegree (𝐹) + 𝜃 ∗ {𝑃(𝐸) + 𝑃(𝐷)} = 2 + 0.5 ∗
(3 + 1) = 4.

𝑃(𝐺) = inDegree (𝐺) + 𝜃 ∗ {𝑃(𝐶) + 𝑃(𝐹)} = 2 + 0.5 ∗
(1.5 + 4) = 4.75.

According to the sequence model of the example,
𝑆 = (𝑀)𝐵𝐶𝐺𝐸𝐹𝐺𝐷𝐸𝐹𝐺𝐹𝐺, if the minsup is set to 0.15,
mincount = 0.15 ∗ 12 ≈ 2.

Pos(𝐵) = {1}; Pos(𝐶) = {2}; Pos(𝐷) = {7}; Pos(𝐸) =
{4, 8}.

Pos(𝐹) = {5, 9, 11}; Pos(𝐺) = {3, 6, 10, 12}.

Frequent 1-Path

𝐸, sup(𝐸) = 2, Pos(𝐸) = {4, 8}.

𝐹, sup(𝐹) = 3, Pos(𝐹) = {5, 9, 11}.

𝐺, sup(𝐺) = 4, Pos(𝐺) = {3, 6, 10, 12}.

The mining method of frequent 2-path is based on the
position set of the frequent 1-path by using the adjacent
position value as index to find the extended paths. For
example, the position set of node 𝐸 is {4, 8}, and its extended
position set is {5, 9}. The function nodes in positions 5 and 9
both correspond to node 𝐹. So, Pos (𝐸𝐹) = {5, 9} is obtained,
sup(𝐸𝐹) = 2, and path EF is a frequent 2-path.
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Figure 4: Runtime test of SFFPS with different support thresholds.

Table 1: The security features of frequent paths.

Frequent paths sup 𝑉 𝑃
𝐸 2 1.5 3
𝐹 3 1 3
𝐺 4 0 4.75
𝐸𝐹 2 2.5 7
𝐹𝐺 4 1 8.75

Frequent 2-Path

𝐸𝐹, sup(𝐸𝐹) = 2, Pos (𝐸𝐹) = {5, 9}; FG, sup (𝐹𝐺) = 3.
Pos (𝐹𝐺) = {6, 10, 12}.

The security features of frequent 1-path included in the
function nodes are calculated as before, and the security
features of frequent 2-path are calculated as follows. Table 1
shows the security features of all the frequent paths.

𝑉 (𝐸𝐹) = 𝑉 (𝐸) + 𝑉 (𝐹) = 1.5 + 1 = 2.5;

𝑃 (𝐸𝐹) = 𝑃 (𝐸) + 𝑃 (𝐹) = 3 + 4 = 7.
(3)

6. Experimental Results

Experiments are performed on a PC with Intel� Core�
3.6GHz CPU and 16G main memory, running on Windows
8. We evaluate the runtime and scalability of the algorithm
SFFPS and calculate the fault feature ranks of nodes and
important paths. To test the algorithms in the same coding
environment, all the programs are written in Java using
MyEclipse. Datasets used in the experiment are open-source
software programs of Cflow and Tar obtained from open-
source software library (https://sourceforge.net).

6.1. Runtime and Scalability Tests of SFFPS. By testing the
runtime and scalability of SFFPS, two newest versions of each
Cflow and Tar are selected. The support threshold is from
0.005 to 0.01 for runtime test, and the upper threshold 0.01
is used for scalability test. The total runtime is composed of

three parts, node fault feature calculation, frequent pattern
mining, and weight appending. Figure 4 is the runtime test
of SFFPS with different support thresholds and Figure 5 is
the scalability test with different length percentages of the
sequence when the support threshold is set to 0.01.

From Figure 4, SFFPS performs well in the support
threshold range [0.005, 0.010]. This is due to the adjacency
table which is for the storage of the complex network model.
The calculation of the out-degree and in-degree of the nodes
is made easier, which improves the calculation of node
security feature. Furthermore, as the sequencemodel is based
on the start order of each function, the detailed invocation
and end time of a node are ignored, and the length of the
sequence model is simplified. Also, position value index is
used for the mining and pattern growth of the paths, which
avoids candidate generation, and index methods are always
effective. Finally, the weight appending process achieves
efficiency because fewer nodes are involved by the strategy
of nonrepetition.

From Figure 5, SFFPS shows good scalability on the soft-
ware Cflow. With the increase of the length of the sequence,
the execution time of SFFPS is essentially a linear growth.
From the experimental data, the number of frequent sequen-
ces is also increasing. This indicates that the functions of
Cflow are uniformly distributed. However, the time overhead
of software Tar is quite expensive around 40% of sequence
length; the number of frequent sequences increases rapidly
from 194 when the percentage is 20% to 1123. After that,
the time overhead and the number of frequent sequences
reduces. This indicates that there are more core functions in
software Tar and there are more invocations of core functions
in the early stage of the program.

6.2. The Security Features of the Function Nodes. Tables 2 and
3 show the security feature rank and value of the function
nodes in the newest versions of Cflow and Tar.

From Tables 2 and 3, the security features of the same
function nodes are relatively stable for different versions of
the same software. So, in the process of version evolution, it
can be inferred and predicted that the same function should

https://sourceforge.net
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Figure 5: Scalability test of SFFPS with different percentages of sequence length.

Table 2: Rank and value of function node security features in Cflow.

Vulnerability Propagation

Function name Cflow-1.3 Cflow-1.4 Function name Cflow-1.3 Cflow-1.4
(rank/value) (rank/value)

parse variable declaration 1/45.05 1/47.07 nexttoken 1/33.73 1/36.17
parse declaration 2/40.77 2/41.85 tokpush 2/19.74 3/20.96
yyparse 3/37.50 4/38.82 putback 3/19.32 4/19.32
parse typedef 4/19.33 6/20.78 get token 4/17.86 5/19.08
tree output 5/18.50 5/25.56 linked list append 5/15.47 2/21.06
func body 6/18.15 7/18.28 lookup 6/13.79 6/13.94
parse function declaration 7/17.80 8/17.99 hash symbol hasher 7/12.90 8/13.04
parse dcl 8/16.92 9/17.41 hash symbol compare 7/12.90 8/13.04
expression 9/16.17 10/16.42 yy load buffer state 8/12.86 7/13.27
initializer list 10/12.53 13/12.72 yylex 9/9.93 11/10.54

have approximate rank in a new software version. Also, the
function rank in the old version can be used as a basis for the
version upgrade processwith function nodes remove,merger,
or update. The nodes with larger rank changes should be
given more attention.

Tables 4 and 5 show the frequent paths of Cflow-1.4 in the
top 10 security feature ranks of vulnerability and propagation.

There are double meanings of the paths listed in Tables 4
and 5. One is that the paths are frequent, which first affirms
that the occurrence possibility of the path is relatively large.
The other one is that the security feature values of the paths
are larger, which evaluates the security risk of the path. Only
when both of them work together can we make a persuasive
security measurement.
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Table 3: Rank and value of function node security features in Tar.

Vulnerability Propagation

Function name Tar-1.27 Tar-1.28 Function name Tar-1.27 Tar-1.28
(rank/value) (rank/value)

dump file0 1/42.84 1/44.09 to chars 1/17.28 1/17.28
create archive 2/32.02 2/33.21 assign string 2/11.67 2/11.67
dump file 3/25.92 4/27.04 to octal 3/9.64 3/9.64
dump regular file 4/19.37 5/19.37 tar copy str 4/7.13 4/7.13
dump hard link 5/17.37 6/17.37 set next block after 5/6.64 5/6.64
start header 6/15.62 8/15.62 find next block 6/6.16 6/6.16
dump dir0 7/15.37 7/16.37 start header 7/5.84 7/5.84
dump dir 8/10.68 9/11.18 finish header 7/5.84 7/5.84
close archive 9/7.50 11/8.00 current block ordinal 7/5.84 7/5.84
open archive 10/7.25 10/8.75 flush archive 8/5.83 8/5.83

Table 4: Vulnerability rank and value of frequent paths (minsup = 0.01).

Paths Rank/value
is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline, gnu output handler, set active 1/16.75

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline 1/16.75

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline, gnu output handler 1/16.75

direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline 2/15.75

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler, set active 2/15.75

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler 2/15.75

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline 2/15.75

direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler 2/15.75

direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler, set active 2/15.75

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol 3/14.75

In addition, the frequency of the path can be used to
predict the function nodes that are going to be affected,
and the security features of the path can be used to
evaluate the possible impact scale of the abnormal path.
For example, the main consideration of random fault
detection is the vulnerability. According to the first path
of Table 4, from the perspective of frequency, if the
first three functions of a fault path are “is printable,”
“include symbol,” and “direct tree,” then the next func-
tions which are likely to be affected are “include symbol,”
“print symbol,” “gnu output handler,” and so on. From the
perspective of security features, the path displays higher rank
and value in vulnerability, which indicates the fault location
is relatively accurate. If it is a hostile attack detection, the
attacker expects a wider range effect, so the propagation
should be considered more. In this case, the analysis method
is similar.

7. Conclusion

In this paper, a novel algorithm, SFFPS, is proposed to define
and measure the security feature of dynamic execution path
in software. Complex network model and sequence model
are constructed for the record of invocation relationship and
function execution order. The node degree in the complex
network is used for security feature analysis from a structural
perspective before real fault occurrence. The paths extracted
from the sequence model are used for frequency test and
weighted by the node security features. Finally, frequent
dynamic execution paths with top security feature rank
are mined as important paths which should be of greater
concern. With the experiment, SFFPS can effectively mine
the important paths from the newest versions of software
programs Cflow and Tar. SFFPS can be applied as a basis
for software evolution, a tool for software internal structure
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Table 5: Propagation rank and value of frequent paths (minsup = 0.01).

Paths Rank/value
is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline, gnu output handler, set active 1/36.35

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline 2/34.48

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name, newline, gnu output handler 2/34.48

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler, set active 3/34.42

direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler, set active 3/34.42

include symbol, print symbol, gnu output handler, print symbol, print level, print function name, newline,
gnu output handler, set active 4/32.67

is printable, include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol,
print level, print function name 5/32.60

direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline 6/32.54

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline, gnu output handler 6/32.54

include symbol, direct tree, include symbol, print symbol, gnu output handler, print symbol, print level,
print function name, newline 6/32.54

analysis, and a guidance to fault location and attack detection,
which are helpful for software quality assurance.
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