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ABSTRACT

Theresearchworkpresentedinthisarticleinvestigatesandexplainstheconceptual
mechanisms of consciousness and common-sense thinking of animates. These
mechanismsarecomputationallysimulatedonartificialagentsasstrategicrules to
analyzeandcomparetheperformanceofagentsincriticalanddynamicenvironments.
Awarenessandattentiontospecificparametersthataffecttheperformanceofagents
specifytheconsciousnesslevelinagents.Commonsenseisasetofbeliefsthatare
acceptedtobetrueamongagroupofagentsthatareengagedinacommonpurpose,
withorwithoutself-experience.Thecommonsenseagentsareakindofconscious
agentsthataregivenwithfewcommonsenseassumptions.Theso-createdenvironment
hasattackerswithdependencyonagentsinthesurvival-foodchain.Theseattackers
createathreatmentalstateinagentsthatcanaffecttheirconsciousandcommonsense
behaviors.Theagentsarebuiltwithamulti-layercognitivearchitectureCOCOCA
(ConsciousnessandCommonsenseCognitiveArchitecture)withfivecolumnsandsix
layersofcognitiveprocessingofeachpreceptofanagent.Theconsciousagentsself-
learnstrategiesforthreatmanagementandenergylevelmaintenance.Experimentation
conducted in this research work demonstrates animate-level intelligence in their
problem-solvingcapabilities,decisionmakingandreasoningincriticalsituations.
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INTRodUCTIoN

Consciousnessisacomplexmentalstatethatinvolvestheintegrationofmanydifferent
mentalabilities.Thoughitisaboldclaimthatagentscanbemadefullyconscious,
agentscanonlybebuiltwithaminimumsetofmentalabilitiesthatcanmakethem
conscious.Themainpurposeofthisresearchistounderstand,adopt,andtestsome
oftheprinciplesandcomplexitiesofanimateconsciousnessandcommonsenseon
either robotsor syntheticagents.Thispaperaimsatproposinga self-configurable
computational model for implementing and testing animates consciousness and
commonsensecriticsusingacognitiveapproach.

BACKGRoUNd

Therearemanyexistingcognitivearchitecturesthatarebuilttotestandimplement
cognitivecapabilitiesofthehumanmind.TheEmotionMachineArchitecture(EM-
ONE) demonstrated human common sense thinking capability in the Roboverse
environment (Singh, 2005; Minsky, 2006). The Computational Model for Affect
MotivationandLearning(CAMAL)(Darryl&Suzanne,2004;Darryl,2010,2002,
2001)architectureemulatesemotions.TheSocietyofMindCognitiveArchitecture
(SMCA)investigatedtheconceptofmindasacontrolsystembyusingthe“Society
of Agents” metaphor that uses fungus eater testbed (Vijaykumar & Darryl, 2008;
Vijaykumar, 2008). The CERA-CREMIUM architecture of Arrabales (2009)
demonstrateddifferentlevelsofconsciousnessonartificialagents.Theresearchwork
presentedinthisarticleattemptstoaddresstheproblembyusingideasfromAIand
cognitive science.Cognitive capabilities of animals andhumans are evidentwhen
theyexhibitabilitiessuchaslearning,remembering,perceiving,thinking,decision-
making,recognizing,andvisual,verbal,andlanguageskillsintheirusualinteractions.
Cognitivescienceproposestheoriestobuildartificialmindsbasedonnaturalmind
architecturescalledcognitivearchitectures(Anderson,1993;1996;Armstrong,1968).
Thesearchitectureshelpinmodellingarangeofhumanbehaviorsintomachinesto
makethemintelligentacrossadiversesetoftasksanddomains.Themainfocusof
anycognitivearchitectureistorepresent,organize,utilize,andacquiretheknowledge
whileperformingthetask(Newell,1972;1990;1992).

Theory of Conscious Agents
AccordingtoRussell(2003),anagentis“anythingthatcanbeviewedasperceiving
itsenvironmentthroughsensorsandactinguponthatenvironmentthroughactuators.”
Themappingbetweentheperceptsequenceandtheactionchoseniscalledtheagent
function,whereastheinternalprocessesthatchooseactionsaccordingtothepercept
sequencearetheagentprograms.
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Mostofthehumanmentalprocessesareunconsciousthoughhumansareconsidered
ashighlyconsciousagents(Bargh&Morsella,2008).Theconsciousagentsarethe
entitiesthatexhibitintelligentbehaviorwithpropertiessuchasautonomy,reactiveness,
andpro-activenessorbeing rational.According toDonaldDHoffman (2014), the
mathematicaldefinitionofaconsciousagent involves threementalprocessessuch
asperception,decisionmaking,andaction.Anagentbeinginaconsciousstatecan
also have subjective experiences, wishes, beliefs, desires, and complex thoughts
(Block,1995;2002;2002;2007;Shoemaker,1996). It shouldbeable tounderstand
a relatively complex sequence of actions at an abstract level and respond to such
situations (Franklin,2009).Aminimumprerequisite forconsciousagents is social
interactionwithitspeersintheenvironment.

Conscious Agents with Common sense Critics
Commonsenseisasetofbeliefsorpropositionsthatareconsideredtruebymostpeople
astheyexperiencethesameandbyvirtueofthiswouldbetheobvioustruejudgment.
Theotherdefinitionofcommonsenseisthe“senseofthingsgivenbyeachsensory
organwhichcanbeinterpretedandintegratedintoasingleimpressionamongmultiple
possibleimpressions(Antonio&Giuseppe,1999;BarrySmith&D.W.Smith,1995).
”Thesecommonsenseresponsesinapersoncanbepresentedineitheraconsciousor
anunconsciousstate.Thequalityofactionsresultingfromcommonsensedrastically
differsfromactionsowingtoconsciousthinkingorundertheinfluenceofemotions.
Commonsense is sometimesacceptedamongpeoplebelonging to the sameplace,
culture,andoccupation.Insomesituations,actionsattributedtocommonsensecan
improveperformanceandinsomecases,theymaynoteventriggeranyreaction.In
thisresearch,commonsenseisconsideredtotriggerwhenagentsarenotinfluenced
byemotions.

The work presented in this article focuses on building intelligent agents that
arehighlyconsciousofexternalworldandadoptcommonsenseandconsciousness
strategiestorespondindynamicenvironments.

Theories of Consciousness
Dennett’s (1991) Multi-Draft-Model (MDM) and Bernard Baar’s (1997) Global
WorkspaceTheory(GWT)suggeststhatthehumanbrainisaparallelsetofspecialized
unconsciousnetworksofinformationprocessors.Eachoftheseprocessornetworks
functionsindependentlyandbecomesconsciousbasedonthecontext.Theinformation
sensedisbroadcastedtoallthesenetworksbyacontextprocessor.Thesenetworks
cooperativelyworktogethertoproduceacognitivetaskbyusingacentralinformation
exchangememoryareacalled“GlobalWorkspace.”Thismemoryislimitedinsizeand
isashort-termresource.Thesensedinformationislaidoutbyeachoftheprocessor
networks tounderstanddifferentperspectivesof the information.Theseprocessors
then send the processed view to other processors by getting an access to global
workspaceandmakeitaconsciousexperience.Asitisashort-termmemoryanda
limitedresource,eachconsciousexperiencecanonlystayforafewsecondsandthen
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switch to the next experience. These mechanisms enable GWT to account for the
abilityofconsciousnesstohandlenovelsituations,itsserialprocessionofstates,and
thetransitionofinformationbetweenconsciousnessandunconsciousness(Baarsand
KatherineMcGovern,1988,Baars,1998,2003;Baars,FranklinS,2003).

AccordingtotheBDImodelproposedbyBratman(1988),thepracticalreasoning
processofhumanshastwosteps:(a)considerallthedesiresofanagentand(b)select
the most desirable one by mapping it to its current belief set. In this deliberated
step, theagentpursuesandadoptsan intention toachieveadesire.The intentions
arepersistentinnatureandrecurtilltheyareachieved.Iftheintentionchosenfails
repeatedlytoachievethedesiredstate,theagentcandropthisandupdateitsbelief
set.Hence, intentionsare theprime reason foranagent tochange its futurebelief
set.Ineachintentionalstateanagentconsidersoradoptsoptionsthatareconsistent
withthatintention.Inprinciple,intentionsjustifythepossibilityofachievingagoal
state in the current state. The second step in practical reasoning process involves
generatingaplanofactionsbasedongoals,beliefs,andactionsofagentsbyusing
means-ends reasoning.A runningagent adoptsvaryingplans that are triggeredby
externalorinternalevents.Thisplaninvolvesasequenceofactionsthatareselected
basedontheavailablesetofbeliefs.

Asdiscussedabove,practicalreasoningsystemsaredesignedbasedonBDImodels
thathelpinachievingthegoalsofagents.HenceBDImodelsandGWTprinciples
are adopted in buildingConsciousness andCommon senseCognitiveArchitecture
(COCOCA)architecture.

ANIMATe TeSTBed SeTUP

Theanimatetestbedhasbeenusedasacomputationaltooltomeasuretheperformance
ofecologicallyinspiredagents.Theseagentsconsciouslysurviveinanenvironment
bydemonstratingnaturalbehaviorofsurvivalinunknownenvironments.

TheTestbedsetupconsideredforCOCOCAagentisa30X30gridenvironment,
whichcanalsobevariedtodifferentsizes.Thisisfilledwithfoodparameters,trap
points,andobstacles,asshowninFigure1.Therawfruits,dryfruits,andjuicyfruits
are createdwithdifferent calorificvalues.All parameters are randomlycreated in
randompositions.Both theagent and theattackerconsumeoneunitof energy for
eachmoveinnormalgridsand2unitsintrapgrids.Thesetrapgridsarehiddenand
areperceivedasnormalgridsbyagents.Boththeattackerandtheagentarecreated
with100units.Theagentsandattackersalwaysmaintainenergyforatleast30next
moveswithoutfood.

The attackers always look for a nearby agent as a prey to satisfy their food
requirement.Theattackersensurethattheydonotattackagentswheningroupand
agentswithcommonsenseuse thisknowledge toescape the threat.Asafe-zone is
alsocreatedinanenvironmentwheretheattackerdoesnotenterandthisisknownto
thecommonsenseagentstoo.

The agents of different levels of consciousness have been created to test their
performanceinagivenscenario.Theagents’mostpreferablefoodistherawfruit,
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whichgivesthemmaximumenergy.Anagentcollectsdryfruitsasenergystorefor
long-termsurvival.Here,theresourceparameteristhedryfruitandtheagentalways
triestocollectmaximumnumberofdryfruits.Thejuicyfruitistheleastpreferred
foodandhaslesscaloricvalue.Theconsciousnessoftheagentshasbeentestedby
measuringtheirsurvivalratesinthepresenceofanattacker.Theotherperformance
parametersarethenumberofdryfruitscollectedandtheenergylevelmaintained.

Theagentssimulatedinanimatetestbedcanbelongtooneofthesecategories:
FSMagent,threat-consciousagent,energy-consciousagent,conscious2agent,learning
agent,andacommonsenseagent.Eachagenttypesimulatesdifferenttypesofcognitive
capabilitiesthatcontributetotheagent’sconsciousness(seeTable1).

THe PRoPoSed ANd deVeLoPed CoCoCA (CoNSCIoUSNeSS 
ANd CoMMoN SeNSe CoGNITIVe ARCHITeCTURe)

The COCOCA is a six-layer cognitive architecture developed for building control
systemsforagentsthatareconscioustosurviveinnewanddynamicenvironments.
Thelayersincludedarereflexive,reactive,deliberative,conscious,meta-reasoning,
andcommonsense,asshowninFigure2.Theagentsofeachlayerexhibitdifferent
levelsofintelligentbehaviorinthedomain-specifictasksastheyhavevaryingcognitive

Figure 1. Animate testbed setup for COCOCA agents
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capabilities.Theperceptofanagentiselaboratedateachlayerbymappingitwith
differententitiestoformnewassociations.Thisleadsanagenttoshowdifferentlevels
ofintelligenceateachlayer.Thereflexesandreactivebehaviorsaresimplemapping
of percept on to behaviors that are implemented through control theory and finite
statemachines.Thedeliberativelayerandabovearetheconsciousbehaviorsthatare
implementedbyusingBeliefDesireandIntention(BDI)models.Theselayersdepict
rationalbehaviorsinagents,whichhavedesiresbasedontheirbeliefsandemotions.
Theserationaldesiresofagentsaretreatedasimplicitorexplicitgoalsthatresultin
controlstates,whichinturntriggermotivations.Theconsciousactionsofagentsare
themotivatedbehaviorsthatsatisfytheirimplicitorexplicitgoals.Eachlayerbelow
provides a service to the layer above and hence the functions coded in the lower
levellayersareinvokedandcontrolledbyfunctionsinthelayersabove.Forexample,
deliberativeactionsatthedeliberativelayerusetheservicesofreactiveandreflexive
layerbehaviorstoconstructdeliberatedbehaviors.

TheCOCOCAagent’sSense-Plan-Act(SPA)cycleisdistributedamongsixlayers
andfivecolumnsofarchitecturewithdifferentcontrolprocessesandrepresentations
ineachlayer.Thesenseddatafromtheenvironmentisprocessedineachlayerthrough
perceptionfiltersforgeneratingdifferentlevelsofabstractions.Thefivecolumnsof
thearchitecturearePerception,Affect/Emotion,Cognition,Motivation,andAction.

Informationoftheexternalworldisperceivedintheperceptioncolumn.Iftheinput
stimulusisrelatingtoanalarmingevent,itoverridesmotivationsofahigherlayerand
generatesanimmediateactionatthereflexivelayeritself.Asitisfurtherprocessed
inahigherlayer,theassociationanobjectformswithotherobjectsisevaluatedtosee
ifthatobjecttriggersemotionsinagentsandinturnaffectstheperformance.

In the deliberative layer the precepts are mapped on to agents’ Belief-Desire-
Intention (BDI) to trigger motivated actions. The attention selector processes in
theconsciousnesslayerevaluatethemotivatedactionsinthedeliberativelayerand
update thebeliefset frequently.Theself-reflective layermonitorseveryconscious
actiontriggeredandtheireffectontheagent’sinternalstateandexternalworld.This
formsa feedbackforconvertingsomeof thebeliefsascommonsensebeliefs.The
parametersthatmayaffecttheimmediategoalorcantriggerfearasanemotioninan
agentarepushedintoglobalworkspaceorworkingmemorytogetconsciouscontrol.
The emotions and motivations play a major role in generating consciousness and
commonsenseinanagent’sbehavior.Thisleadsanagenttomanageitsmotivations
andgoalsbyselectingappropriatestrategies.Thestrategiescanbeeitherconscious
orcommonsensethatisbasedonthemeta-reasoninglogicadoptedbyanagent.The

Table 1. Energy parameters in animate testbed environment

Parameter Type Preference Representation Affect-value (Units of 
Energy Given)

Rawfruit Numeric Energy<30 GreenSquare 5units

Juicyfruit Numeric Ifencountersonitsway GoldenSquare 1unit

Dryfruit Numeric Energy>30 YellowSquare 3units
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defaultmeta-reasoning is: if innormal scenarios,commonsense triggersand if in
fear, consciousness improves.These strategies selectedareconstructed intoaction
setandsenttoanactiongenerator,whichinturnchangestheexternalenvironment
(seeFigure3).

Figure 2. Layers of COCOCA architecture
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design of Reflexive and Reactive Agents
The reflexive and reactivebehaviorsof agents are closely associatedwith sensing
subsystem and actuator subsystem. As defined in Sloman architecture (2014), the
reflexive layer is defined with a set of ballistic actions that form the response for
alarmingevents inexternalworld.Thereflexesare like interrupts thatcandisable
the deliberated actions and execute with higher priority. The reactive behavior in
anagentistheawarenessabouthowtoreactforaparticularexternal/internalevent.
Forexample,havingtheawarenessofconsumingafruittogainenergyisareactive
behavior.Thesereactivebehaviorsareinitiatedandcontrolledbymotivationinthe
deliberativelayer,whicharetriggeredtoachievethegoals.

The reflexivebehaviorsaredesignedbyusingFinite-State-Machine (FSM),as
showninFigure4.Thesearethepre-definedresponsesforobjectsintheenvironment.
AllagentsuseFSMasabasicalgorithmformovementintheenvironment.TheFSM

Figure 3. Cognitive cycle of COCOCA agents
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definesactionforeachpossibleagentstateintheenvironment.TheCOCOCAagents’
internalstatecanbeeitherstatic,active,orturned.Atanygiventime,theagentlives
instateS,andbyexecutinganactionAtheagentcanmovetoanewstateS’oritmay
remaininthesamestate.Thealgorithmdefinesthepossibleactionanagentcanexecute
beinginastate.Itgivesthepre-conditionsandpost-conditionsforeveryactionthat
isbeingexecuted.Theagentisinitiallycreatedina“static”stateandchangestoan
“active”statewithanexecutionofanaction.Theagentmustbeintheactivestateto
moveinanydirection.Totakeaturninthecorner,theagentmustbeinthe“turned”
state.Iftherearenomovespossibleincurrentposition,thestateoftheagentagain
changesto“static”stateirrespectiveofitscurrentstate.Ifthecurrentstateis“turned”
andthereisfreespaceinnextmove,itsstatechangestoactiveagain.

design of deliberative Layer
Thedeliberativebehaviorsaremonitoredbycontrolprocessesinhigherlayersand
arebrokendowntoasequenceofreflexiveandreactivebehaviors.Theprocessesin
thislayerusetheBDImodelforreasoningandplanning.

Theperceivedinputsareprocessedinthislayertoformassociationwithcurrent
the set of beliefs. The cross-product of the belief set and desire set gives a set of
intentionsthatarepossibleinthecurrentstate.Theconsciousprocessinhigherlayer
weighstheintentionsetandchoosestheonewithhigherweightasadeliberatedaction.
Thebelief setof anagent isdefinedwith the facts about theenvironmentand the
self.Thissetinitiallycontainsthefactsoftheexternalworldsuchastheavailability
ofrawfruits,dryfruits,juicyfruits,obstacles,andborderofthearena.Thesetalso
includesitsinternalparameterssuchasitsenergylevel,state,direction,name,and
color.Thedesiresetisasetofactionsthatanagentcanexecutebasedontheactuator
set at its disposal. There is a subset of beliefs that are defined as common sense
beliefs.Commonsenseagentsmayhavethesamesetofdesiresbutuseadifferent
setofbeliefsforreasoning.

ThedeliberativecycleofaCOCOCAagentshowninFigure5explainstheBDI
modeladoptedinthislayer.Thislayermaintainsanupdatedsetofbeliefs,whichare
continuouslycross-verifiedwithparameters in theenvironment ineachcycle.The
environmentandagentkeepchangingtheirstatestoanewstateoneachactionand
inturntheirbeliefsetsgetupdated.Theintentionalactionsarethenconstructedasa
sequenceoftasksatlowerlayers.Theseintentionsinturnbelongtoeitherconscious
strategyorcommonsensestrategy.

design of Conscious Agents
Theconsciouslayerisdesignedbyusingtheaxiomatic(Aleksander,I.&Dunmall,
2003; Aleksander, I., 2007) theory by simulating cognitive abilities that make an
agent conscious. The conscious agents are built by using proactive attitudes like
beliefs,desires, intentions,andemotionsthatformthebasisformotivatedactions,
whichareconsciousbydefault.Theagentsaregivenacollectionofstrategiesthat
suitsdifferentenvironmentalconditions.Theconsciousagents,basedontheirgoals,
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choosetherequiredparameters,whichareinfocalattention,fromtheperceptionlist.
Thechangesintheenvironmentmakeanagenttriggerdifferentactionsbychoosing
different strategies.Eachconscious strategydepictsdifferent cognitive abilities to
demonstrate consciousness levels in the agents. The conscious agents use internal
affect value of objects in the external world and BDI set to choose the strategies.
Thesestrategiesworkonapartialorderplanningtoaccomplishthegoalsassigned.
TheinternalstructureoftheconsciousagentisshowninFigure6.

Figure 4. Finite state machine for reflexive behavior
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Consciousness Layer
Theconsciouslayercognitiveprocesswillhaveanaccesstodeclarativeknowledge
andproceduralknowledge;hence, theagentsof this layerwillhaveself-awareness
andconsciousnessof“IknowIknow”levelofTheoryofMind.Thecontrolprocess,
on receiving the perceived information from the layer below, will be able to infer
possibleactions.Themappingisdoneafteraconsciousevaluationofeachperceptand
itseffectongoalachievement.Thislayerdefinesstrategiesforplanningbasedonthe
currentstateoftheagentandtheagent’spreferenceswithrespecttogoalachievement.
Thelayerhasimplicitlearningprocess,arote-learningforrememberingtrapsafter
experiencingthem.

Theagentsintheconsciouslayerarebuiltbyusingbehaviorsinthedeliberative
layer and in-turn in the reactive and reflexive layers. The state-transition diagram
forconsciousagent isasshown inFigure7.Theagentof this layercanbe threat-
conscious,energy-conscious,orboth.Initially,theagentdemonstratesexplorebehavior

Figure 5. Deliberative layer design
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Figure 6. Internal structure of a conscious agent

Figure 7. State-transition diagram for designing conscious agents
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by using simple reflexive behaviors and consume every fruit in the environment.
Whenitsinternalperformanceparametersareaffected,theagentchangesitsstateto
theconsciousstate.Theseagents inconsciousstateevaluate its internalneedsand
externalenvironmentstatetochoosetheoptimalstrategy.Theseagentsadoptlearning
methodstorepeatthebeststrategies.

designing energy-Conscious Agents
Theinitialsetofbehaviorsandactionsofagentsis:
BehA: { Reactive-Rfruit, Reactive-Jfriut, Reactive-
Dfruit, Go-Idle} 
ActionA: { MoveForward, MoveUp, MoveRight,MoveLeft, 
consume-Rfruit, consume-Jfriut, consume-Dfruit } 
IPiA: { Internal-state, Initial-Energy, Threshold-Energy 
(EMaxThr

= 60,  EMin
Thr
 = 30)}

where Internal-state can take one of the states in the 
given set: 
               {NEW, ACTIVE, IDLE, cONSCIOUS} 
BelifA

 = { CST1, CST2,CST3,CST4,CST5, CST6,CST7}
Energy consumption in agent: One Move – 1 unit, Idel – 0 
units, on trap – 2 units
Agent behavior in the NEW state:
     step1 Create internal state of agent { Energy =100, 
STATE = NEW} 
     step2 Initialize its belief set  
     step3 Initialize its action set 
     step4 RUN agent 
Agent behavior in the ACTIVE state: 
     Step 1   Agent with Simple-Reflexive-Explore 
{Update-Energy} 
     Step 2   Adopt default Conscious-Strategy { 
Update-Energy} 
     Step 3   Monitor internal parameters { EMaxThr

<= 
Energy <= EMinThr

 }
     Step 4   If Energy <= EMaxThr

 go to IDLE state 
     Step 5   Go to step 1 
Agent behavior in the CONSCIOUS state: 
     Step 1   If Energy <= EMinThr

     Step 2  Initialize strategic-planning 
     Step 3   Evaluate Pre-conditions  
{current energy-level, current position (Grid-location), 
current precepts}  
     Step 4   Change Strategy {Choose next strategy 
available in list} 
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     Step 5   Monitor Energy  
          if  EMaxThr

>= Energy >= EMin
Thr

               i. Initiate learn-fruit 
               ii. Update knowledge 
          Else Go to step 4 
Agent behavior in the IDLE state: 
     Step 1   Agent in same position for next 5 
cycles 
     Step 2   If Energy > EMinThr

 AND Energy < EMax
Thr

          Change state to ACTIVE  
Else Change state to CONSCIOUS

Characteristics of Conscious Agents

• Attention in Conscious Agents: The conscious agents have self-awareness of
theirinternalstatessuchasgoals,beliefs,anddesires.Theagentspossessaccess-
consciousnessandareawareofdifferentfoodparametersintheenvironment.For
example,iftheenergyofanagentdropsbelowtheminimumthreshold,theagent’s
attentionisfocusedtowardsfruitsintheenvironment.

• Attention Switching in Conscious Agents:Theconsciousagentsaredesigned
todynamicallyswitchtheirattentiontodifferentparameterstomeetthechanging
needs.Theattentionswitchinginanagentcantriggerduetoachangeineither
theexternaleventortheinternalstate.

• Learning in Conscious Agents: The conscious agents adopt the rote-learning
methodtomemorizeexperiences.Theagentsexistinginunknownenvironmentsor
havingincompleteknowledgeabouttheenvironmentfacedifficultyinreasoning
anddecision-makingincriticalconditions.

Thelearninginagentstartsassoonitnoticesthatitsinternalstateisnotadesiredstate
andthecurrentstrategyisfailingtoachieve.Theagentsaregivenalistofstrategies
without theknowledgeofnecessarypreconditions toapply them.Theagentsgeta
positiverewardifthecurrentstrategyisaffectingtheparameterconnectedwithdesired
state;else itgetsanegative reward.Thestrategygettingapositive rewardwillbe
learntbysavingthepreconditionwhenitwasapplied.

Ageneralizedreinforcementlearningalgorithmgivenbelowallowsanagentto
learnadoptdifferentstrategiesondifferentconditions.Inlearningenergymaintenance
thesetofstates,actionsetandlearningparametersareasgivenbelow.
Set of States S = {LowEnergy

, High
Energy

, , Current
Energy

}
Set of Actions A = { CST1, CST2,CST3,CST4} 
(CST1: Consume-only-Rfruit, CST2: Move-opposite-2steps, 
CST3: Jump-2steps-ahead 
CST4:Consume-only-Dfruit) 
Q(s,a) is the cumulative reward gained in previous 
strategy adopted (+ve value  if energy increased 
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otherwise -ve) 
R(s, a’) is the reward gained by applying current 
strategy 
Pbest

 is the previous best cumulative reward gained for 
any strategy adopted by an agent 
BestAvg

  is the feasible incremental reward expected after 
adopting a strategy   
Step 1: Initialize Q(s,a) =0  
     α = 0.1 
     ϒ = 0.9   
Step2: Calculate Q(s’,a’) + = α * (R(s, a’) +

 ϒ *  (P
best

  
- Q(s,a)) 
Step3:   if Q(s’,a’) > BestAvg

     Save strategy with precondition 
     BestAvg

 =Q(s’,a’)
     Else if Q(s’,a’)  <  BesAvg

     Unlearn strategy for current preconditions 
     Step 4: s =s’ and Q(s,a) =Q(s’,a’) 
     Step 5: go to step 2

Common Sense Layer
The common sense agents are by default conscious agents with respect to state-
transitionsandbehaviorpreferences.Theseagentsaregivensomeinitialcommonsense
strategies,whicharesimilartobeliefs.Theagentsswitchtocommonsenseif they
havecomeacrosssuchsituationsrepeatedlyintheirpastexperiences.Theattackersin
theenvironmentcreateathreatstateforagentsandsurvivalbecomesadecisivegoal
ifthereisathreatforlife,irrespectiveoftheirenergylevel;theystrivetoescapethe
threatbyusingtheircommonsense.Asimilarbehaviorhasbeencreatedbygivinga
commonsensebeliefsetthatsayswhatplansitcanadopttoescapethethreat.

Thecommonsenseagentsadoptknownstrategiesfirstandthenlearntooptimize
the behavior. The initial strategies are regularly updated by agents through their
experiences.Thecommonsensestrategiesareusedbyagentswhentheyareaware
thattheycanalwaysescapefromtheattacker.

Common Sense Agent’s Behavior in the CONSCIOUS 
State for Threat Management
Step 1   If  Threat-level = HIGH 
Step 2  Initialize strategic-planning 
Step 3   Evaluate Pre-conditions  
     {Current Threat-level, current position (Grid-
location), current precepts}  
Step 4   Choose strategy from common sense by mapping 
pre-conditions 
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Step 5   Monitor Threat-level  
     if Threat – level == MEDIUM  
               Continue with the same strategy 
          Else if Threat-level == LOW 
               Update current strategy as best for 
current pre-conditions  
          Else if Threat-level == HIGH 
               Delete the strategy from list 
               Go to step 5

Meta-Reasoning Layer
Themeta-reasoningisalayerabovetheconsciouslayeroftheCOCOCAarchitecture.
Thislayerhasself-reflectionthatmonitorsandcontrolsthebehaviorsofagents.The
meta-reasoningprocessmonitorsthefeedbackofeveryconsciousstrategyofanagent
thataffectstheagent’sinternalstateandexternalenvironment.Ifthedesiredstates
ofagentsareachievedrepeatedlybythesamestrategyinthesamepre-conditions,it
willbesavedtocommonsensestrategies.Theemotionsduetoexternaleventsare
usedbytheselayerstoself-adjusttheresponsesinthenextcycles.

Attacker Strategies
Theattackerkillsagentsforitssurvival.Itadoptsdifferentstrategiestoattackagents
whentheyarealoneoringroup.Theattackerdoesnotkillanagentwhentheagent
isinthesafe-zone,whichisdefinedintheenvironmentandwhentheagentsarenot
ingroup.ThestrategyisshowninFigure8.

ReSULT ANALySIS oF CoCoCA AGeNTS 
IN SIMULATed ANIMATe TeSTBed

Theresultsarecapturedfromtheagent’sbehavior inhandlingtheir innerstates in
criticalconditions.Allagent typesareevaluatedforenergy-levelmaintenanceand
escaping rates asperformancemetrics.Figure9 is agraph that shows the energy-
levelmaintenanceinFSM,energy-conscious,andconscious2agentsinasingle-agent
environmentandintheabsenceofanattacker.Theseagentsareseparatelycompared
forenergylevelsastheyconsciouslymonitorenergylevelsandusethesamebelief
set.TheFSMagentistheleast-consciousagentanddoesnotmaintainenergylevels
evenwhensufficientfruitsareavailable in theenvironmentas italwaysgoeswith
defaultstrategy.

Theenergy-consciousagentmaintainsitsenergylevelonthreshold,anddoesnot
consumerawfruitunlessitsenergyleveldropsbelowthethreshold.Thereinforcement
learning in conscious agents enables energy conscious agents to achieve this by
dynamicallychangingthestrategiesthataremoreprobabletoachievethegoalstate.

In the presence of an attacker, the agents are evaluated for escape-count. As
energy-consciousagentsarenotthreat-conscious,theycanbekilledbyanattacker,but
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duringitssurvivalitsenergymaintenanceisbettercomparedtothethreat-conscious
andFSMagents.

Figure10isagraphthatshowsthenumberofcycleseachagent typesurvived
fromanattackerbyescaping.Thethreat-consciousagentcouldescapeformaximum
numberofcyclesasitadoptsbetterstrategies.Thecommonsenseagentsalsoperform
onparwiththreat-consciousagentsbyusingcommonsense.TheFSMandenergy-
conscious agents are least performers in the presence of an attacker as they lack
consciousawarenessofathreat.

Theinitialdistancebetweentheagentandanattackeraffectsthenumberofcycles
itcansurvive.Ifthisdistanceisverysmall,theagentsurvivesforveryfewcycles;if
not,itcansurvivealittlelonger.Table2showsthesurvivalcyclesandescapecount
ofdifferentagents.

Figure 8. Attacker Strategy-1
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Figure 9. Comparison of FSM, energy-conscious, and conscious2 agents

Figure 10. Survival of agents in the presence of an attacker
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CoNCLUSIoN

Theresearchworkhighlightstheideathatmanyaspectsofconsciousnessandcommon
sensethinkingcanbesimulatedonagents.Theresearchexperimenthasprogressively
achievedtheresultsrequiredtojustifytheoutcomes.Theconceptualmechanismsof
consciousnessandcommonsensehavebeencomputationally representedbyusing
cognitivearchitecturecalledCOCOCAwithsix-layers-five-columns.Experimentation
isconductedbyusinganimate testbedwithsimulatedagents.Theagentsaremade
to survive in an environment with attacker coexistence. This makes an agent to
consciouslyfocusonthethreatlevelineachmovetomakeadecisionforthenextmove.

Theagentsofbasiclayerssuchasreflexiveandreactivearedesignedbyusing
simple FSM logic. The deliberative agents are built with the BDI model to show
motivatedactions.Theconsciousagentstendtomaintaindesiredstatesaccordingto
theirnativebehaviorbychangingstrategies.Thisprocessinconsciousagentsleads
to learning optimal behaviors. The meta-reasoning layer upgrades common sense
strategies.Theagentsofcommonsenselayerarethedefaultconsciousagentswith
aninitialsetofcommonsense.Theseagentshavepre-handknowledgeforsomepre-
conditionsandadopttheseknownstrategiesincriticalconditions.Theworkcarried
outconcludesthatalayerofmeta-reasoningcanbuildaknowledgebaseofcommon
sensethroughexperience.

Thecomparativestudyofconsciousnessandcommonsenseaspectscanimprove
theperformanceofagentsincriticalsituations.Allconsciousagentsperformbetter
thantheFSMagentsforbothenergy-levelmaintenanceandintacklingthreatsinthe
environment.Theenergy-consciousagentsarenotevaluatedforescapefromattackers
astheylackstrategiesforescaping.Butthethreat-consciousagentsdomaintainenergy
levelsabovethresholdwhilesimultaneouslymanagingtoescapefromthreats.

Table 2. Escape count of agents

Agent Type Number of cycles survived Number of times escaped

Threat-conscious 135 60

Conscious2 108 51

Commonsense 113 45
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