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ABSTRACT
We adapt a modern scheme of smoothed particle hydrodynamics (SPH) to our tree N-body/SPH
galactic chemodynamics code GCD+. The applied scheme includes implementations of the
artificial viscosity switch and artificial thermal conductivity proposed by Morris & Monaghan,
Rosswog & Price and Price to model discontinuities and Kelvin–Helmholtz instabilities more
accurately. We first present hydrodynamics test simulations and contrast the results to runs
undertaken without artificial viscosity switch or thermal conduction. In addition, we also
explore the different levels of smoothing by adopting larger or smaller smoothing lengths, i.e.
a larger or smaller number of neighbour particles, Nnb. We demonstrate that the new version
of GCD+ is capable of modelling Kelvin–Helmholtz instabilities to a similar level as the mesh
code, ATHENA. From the Gresho vortex, point-like explosion and self-similar collapse tests, we
conclude that setting the smoothing length to keep Nnb as high as ∼58 is preferable to adopting
smaller smoothing lengths. We present our optimized parameter sets from the hydrodynamics
tests.
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1 IN T RO D U C T I O N

Since it was introduced by Lucy (1977) and Gingold & Monaghan
(1977), the smoothed particle hydrodynamics (SPH) methodology
has become a regular tool for the numerical simulation of a wide
range of astronomical phenomena. Hernquist & Katz (1989) were
the first to suggest that the SPH approach would also prove in-
valuable in the simulation of galaxy formation and evolution. Since
then, a number of SPH codes have been developed to simulate such
systems, incorporating various physical processes ranging from ra-
diative cooling to star formation and supernovae (SNe) feedback
(e.g. Katz 1992; Navarro & White 1993; Steinmetz & Muller 1995;
Katz, Weinberg & Hernquist 1996; Carraro, Lia & Chiosi 1998;
Kawata 1999; Mori, Yoshii & Nomoto 1999; Sommer-Larsen,
Gelato & Vedel 1999; Springel, Yoshida & White 2001; Governato
et al. 2004; Kobayashi 2004; Springel 2005; Stinson et al. 2006;
Martı́nez-Serrano et al. 2008; Okamoto, Nemmen & Bower 2008;
Saitoh et al. 2008; Schaye & Dalla Vecchia 2008; Merlin et al. 2010;
Springel 2010b; Scannapieco et al. 2012).

Parallel to the development of such particle-based codes, grid-
or mesh-based approaches have been employed for modelling the
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formation and evolution of galaxies (e.g. Cen & Ostriker 1992).
Algorithmic enhancements to a fixed grid approach, such as adaptive
mesh refinement (AMR), has led to a massive improvement in
the capability of grid-based codes for simulations which require a
large dynamic range, including those of galaxy formation (Teyssier
2002; Kravtsov 2003; Tasker & Bryan 2008; Gibson et al. 2009;
Joung, Cen & Bryan 2009; Sánchez-Blázquez et al. 2009). Code
comparisons between SPH and AMR (Frenk et al. 1999; Ascasibar
et al. 2003; O’Shea et al. 2005; Voit, Kay & Bryan 2005; Tasker et al.
2008; Gibson et al. 2009; Mitchell et al. 2009; House et al. 2011;
Pilkington et al. 2012) demonstrate that the competing approaches
lead to generally consistent results. That said, comparing the results
of hydrodynamics simulations of the formation of a galaxy cluster,
Frenk et al. (1999) claim that SPH codes lead to lower entropy in the
central region of the simulated cluster (see also Ascasibar et al. 2003;
Dolag et al. 2005; O’Shea et al. 2005; Voit et al. 2005; Wadsley,
Veeravalli & Couchman 2008; Mitchell et al. 2009). They suggest
that SPH may underestimate turbulence in the central region.

Agertz et al. (2007) carried out a series of experiments in order to
compare and contrast SPH and AMR in more of a ‘controlled’ en-
vironment. They conclude that there is a ‘fundamental’ discrepancy
between these approaches by demonstrating that SPH, at least in its
conventional form, cannot capture Kelvin–Helmholtz instabilities
(KHI) as accurately as an AMR approach. They further suggest that
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this discrepancy is not due to the resolution, but is a fundamental
attribute of the scheme itself (see also Imaeda & Inutsuka 2002;
Okamoto et al. 2003).

We also note that Springel (2010a) developed a moving mesh
code, AREPO, which combines the advantages of the Lagrangian
method and the superior hydrodynamics modelling of mesh codes.
Many comparison studies between SPH and the moving mesh code
are seen in Kereš et al. (2012), Sijacki et al. (2012) and Vogelsberger
et al. (2011).

Recently, Price (2004, 2008, 2012) described a new scheme to
improve the conventional implementation of SPH and demonstrated
the successful capture of KHI (see also Read, Hayfield & Agertz
2010; Abel 2011; Murante et al. 2011; Garcı́a-Senz, Cabezón &
Escartı́n 2012; Read & Hayfield 2012; Saitoh & Makino 2012 for
alternative solutions). In what follows, we apply this scheme to our
original galactic chemodynamics code GCD+ (Kawata & Gibson
2003). GCD+ is a three-dimensional tree N-body/SPH code that
incorporates self-gravity, hydrodynamics, radiative cooling, star
formation, SN feedback and metal enrichment. At its heart, the
new scheme differentiates itself from the conventional approach via
the manner by which diffusion of thermal energy is introduced;
we adopt primarily the formalism described by Rosswog & Price
(2007). We demonstrate that this new scheme does indeed advance
the abilities of SPH codes in a suite of controlled hydrodynamics
tests. We focus only upon hydrodynamics simulations in this paper
and will study cases including radiative cooling and star formation
in a forthcoming work. Note that our applied schemes have previ-
ously been presented in the literature, and as such, none of them
are ‘new’. However, GCD+ is a unique code, and we combined the
advanced SPH schemes suggested by different researchers – i.e. the
Rosswog & Price (2007) scheme, the entropy equation by Springel
& Hernquist (2002) and the Saitoh & Makino (2009) time-step
limiter, which in consort contribute to make GCD+ a new and ad-
vanced galaxy simulation code. There are certainly other extant SPH
schemes which are more advanced, but within the context of galaxy
simulations, this new version of GCD+ is somewhat unique. The
present version of the code has been successfully applied to galaxy
simulations (Grand, Kawata & Cropper 2012; Rahimi & Kawata
2012) – i.e. we have confirmed that the same scheme described in
this paper is applicable to galaxy simulations. This paper describes
the performance of the updated GCD+ when applied to basic hy-
drodynamics tests. Note that our aim is not to test the code against
extensive sets of such tests. We focus only on several tests useful for
simulations of galaxy formation and evolution. We present how the
code behaves in various situations, and how we chose the optimized
parameter set of the new SPH scheme for our applications to galaxy
simulations. We stress that this paper describes the performance for
a new and practical galaxy simulation code, not for a specialized
code which perhaps performs better than our code for some specific
test simulations.

Section 2 describes briefly the implementation of this new scheme
within GCD+. Section 3 presents the performance of the new version
of GCD+ under several basic hydrodynamics tests. We here focus on
the level of smoothing, i.e. number of neighbour particles, Nnb, and
several parameters involved in the artificial viscosity (AV) scheme.
A summary of this study is presented in Section 4.

2 GCD+ U P DAT E : A DVA N C I N G G A L AC T I C
C H E M O DY NA M I C S

We now describe the specific modifications made to the galactic
chemodynamics code GCD+, which themselves are patterned closely

after the methodology described by Rosswog & Price (2007). As
such, we only outline the final formulae adopted and refer the inter-
ested reader to Rosswog & Price (2007) for their formal derivation.

The density of the ith SPH particle is defined by

ρi =
∑

j

mjW (rij , hi), (1)

where rij ≡ |xi − xj | and hi is the smoothing length of the ith par-
ticle. The SPH smoothing kernel of W is described by a spherically
symmetric spline kernel (Monaghan & Lattanzio 1985; Steinmetz
1996):

W (r, h) = 8/(πh3)

×

⎧⎪⎨
⎪⎩

1 − 6(r/h)2 + 6(r/h)3 if 0 ≤ r/h ≤ 1/2,

2[1 − (r/h)]3 if 1/2 ≤ r/h ≤ 1,

0 otherwise.

(2)

We note in passing that the new version of GCD+ only takes into
account the smoothing length of the ith particle, hi, to derive the
density, while the original version of GCD+ (Kawata 1999) used the
pair-averaged smoothing length, hij = (hi + hj)/2. The smoothing
length is determined by

hi = η

(
mi

ρi

)1/3

. (3)

Here, η is a free parameter; we compare the cases of η = 2 and
2.4 in the next section. The solution of equation (3) is calculated
iteratively until the relative change between two iterations is smaller
than 10−3 (see Price & Monaghan 2007 for more details). Note that
in our definition of the kernel, our smoothing length corresponds to
twice that used by Rosswog & Price (2007), who adopt η = 1.2.
We take this simple traditional kernel of equation (2), and do not
consider more sophisticated kernels recently suggested by several
authors (e.g. Read et al. 2010; Valcke et al. 2010; Dehnen & Aly
2012; Read & Hayfield 2012). Although there are many benefits
of applying more sophisticated kernels, it is also demonstrated that
such kernels are unstable when the number of neighbour particles is
too low (e.g. Dehnen & Aly 2012). We note from our applications
to galaxy evolution simulations (e.g. Rahimi & Kawata 2012) that
equation (3) leads to a lower number of neighbour particles around
the density peak, compared to a nearly homogeneous density region.
Therefore, in this paper we use the traditional kernel which is known
to be more stable with a small number of neighbour particles.

Euler’s equation is written as

dvi

dt
= −

∑
j

mj

{
Pi

�iρ
2
i

∇iWij (hi) + Pj

�jρ
2
j

∇iWij (hj )

}

+Qv,i

−G
∑

j

mj

{
φ

′
ij (hi) + φ

′
ij (hj )

2

}
eij

−G

2

∑
j

mj

{
ζi

�i

∇iWij (hi) + ζj

�j

∇iWij (hj )

}
. (4)

The first term of equation (4) corresponds to the pressure gradient,
where Wij(hi) = W(rij, hi), ∇iWij (hi) = ∂W (rij , hi)/∂xi and

�i = 1 − ∂hi

∂ρi

∑
k

∂Wik(hi)

∂hi

. (5)

From equation (3), ∂hi/∂ρi = −hi/(3ρi). To mitigate the pair-
ing instability (Schüssler & Schmitt 1981), following Thomas &
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Couchman (1992) and Steinmetz (1996), we also apply the con-
stant kernel gradient at (r/h) ≤ 1/3, i.e.

∇W = ∇W (r/h = 1/3) if r/h ≤ 1/3. (6)

With a small value of η (see equation 3) applied in this paper, it is
known that the pairing instability is not serious if the particles are
homogeneously distributed (e.g. Price 2012). However, in galaxy
simulations we often have a higher number of neighbour particles
than that expected in the homogeneous case. Moreover, because of
thermal instability due to radiative cooling, the minimum smooth-
ing and softening are often required to be applied (e.g. Navarro
& White 1993; Wadsley, Stadel & Quinn 2004),1 which could en-
hance the pairing instability. Therefore, we apply equation (6) to
only the pressure gradient for safety. This could be a problematic
choice because in theory this breaks the consistency between the
kernel and the kernel derivative. However, the results in Section 3
encouragingly demonstrate that our applied scheme works well for
the hydrodynamics tests.

The second term of equation (4) corresponds to the AV,

Qv,i = −
⎛
⎝∑

j

mj

αAV
ij (t)vsigvij · eij

ρij

⎞
⎠

×∇iWij if xij · vij < 0

= 0 otherwise, (7)

where vij = vi − vj , eij = (xi − xj )/|xi − xj |, ρ ij = (ρ i + ρ j)/2
and

∇iWij = 1

2

{
1

�i

∇iWij (hi) + 1

�j

∇iWij (hj )

}
. (8)

The signal velocity vsig adopted is

vsig = cs,i + cs,j − βAVvij · eij

2
, (9)

where cs,i is the sound velocity of the ith particle. We set βAV =
3.0 as explained later. The amount of AV is controlled by a time-
dependent parameter,

αAV
ij (t) = 1

4

[
αAV

i (t) + αAV
j (t)

]
(fi + fj ), (10)

where (Balsara 1995)

fi = |〈∇ · v〉i |
|〈∇ · v〉i | + |〈∇ × v〉i | + 0.0002cs,i/hi

, (11)

〈∇ · v〉i = − 1

ρi

∑
j

mjvij · ∇iWij (hi) (12)

and

〈∇ × v〉i,x = − 1

ρi

∑
j

mj

[
vij,z∇i,yWij (hi) − vij,y∇i,zWij (hi)

]
(13)

in order to suppress AV in pure shear flows. The viscous parameter
αAV

i (t) varies with time. Morris & Monaghan (1997) suggested the

1 For example, we often set the minimum smoothing length to be half that
of the minimum softening length. When the smoothing length reaches the
minimum value, we set �i = 1 (equation 5). We also set ζ i = 0 (equation 17),
when the softening length hits the minimum value. In this paper, we do not
apply the minimum softening or smoothing lengths.

following function to evolve this viscous parameter (see also Cullen
& Dehnen 2010 for a more sophisticated AV switch):

dαAV
i (t)

dt
= −αAV

i (t) − αAV
min

τi

+ Si, (14)

where we set αAV
min = 0.5 or 0.05, depending on η, which will be

discussed below, and

τi = hi

0.2cs,i
. (15)

Rosswog et al. (2000) and Rosswog & Price (2007) adopt the source
term,

Si = max(−∇i · vi , 0)(αAV
max − αAV

i (t)), (16)

and set the maximum of the viscous parameter to be αAV
max = 2.0.

The third term of equation (4) corresponds to the gravitational
force and employs the adaptive gravitational force softening sug-
gested in Price & Monaghan (2007), where the softening length
is matched to that of the smoothing length. The fourth term of
equation (4) is the correction term for adaptive softening, where

ζi = ∂hi

∂ρi

∑
j

mj

∂φij (hi)

∂hi

. (17)

We apply a cubic splice softening, as suggested by Price &
Monaghan (2007); the associated formulae for φ

′
and ∂φ/∂h can

also be found in their paper.
Following Springel & Hernquist (2002) (and different from Ross-

wog & Price 2007), instead of the energy equation, we follow the
entropy equation, which is written as

dAi

dt
= γ − 1

ργ−1
Qu,ij , (18)

where Ai = Pi/ρ
γ
i = [(γ − 1)/ργ−1

i ]ui is the entropy and ui is the
thermal energy hereafter of the ith particle. Qu, ij is zero if xij · vij >

0. Otherwise, it is described by

Qu,ij = −
∑

j

mjvsig

ρij

{
αAV

ij (t)

2
(vij · eij )2 − αC

ij (t)(ui − uj )

}

× eij · ∇iWij , (19)

where αC
ij (t) = [αC

i (t) + αC
j (t)]/2. The second term within the

parentheses of equation (19) corresponds to the artificial thermal
conductivity (AC) (Rosswog & Price 2007; Price 2008). The ther-
mal conductivity parameter, αC, evolves between 0 and 2 following

dαC
i (t)

dt
= −αC

i (t)

τi

+ SC
i , (20)

where the source term is

SC
i = 0.05hi |∇2ui |/√ui (21)

and (Brookshaw 1985)

∇2ui = 2
∑

j

mj

ui − uj

ρj

eij · ∇iWij

rij

. (22)

We apply an individual time-step scheme to integrate equations
(4) and (18). We also employ the time-step limiter suggested by
Saitoh & Makino (2009). In Section 3.3, we demonstrate that this
time-step limiter is critical. The time step for SPH particles is based
upon dti = min(dtCFL,ij , dtDYN,i), where the Courant–Friedrich–
Levy condition is calculated by

dtCFL,ij = CCFL
0.5hi

vdt,ij

, (23)
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Table 1. Model parameters.

Model η αAV, min AC AV switch

H24 2.4 0.5 Yes Yes
H24NA 2.4 1.0 No No

H2 2.0 0.05 Yes Yes

where vdt,ij = vsig,ij if xij · vij < 0, otherwise vdt,ij = 0.5(cs,i +
cs,j − vij · eij ). We set CCFL = 0.2. The requirement that the force
should not change significantly within one time step is satisfied by

dtDYN,i = CDYN

(
0.5hi

|dvi/dt |
)1/2

. (24)

We set CDYN = 0.2. The values of CCFL and CDYN are chosen after
testing in one-dimensional Riemann problems in Section 3.1. We
integrate equation (4) with the leap-frog method and equation (18)
using the trapezoidal rule (Hernquist & Katz 1989). We also imple-
ment the Fully Asynchronous Split Time-integrator (FAST) scheme
(Saitoh & Makino 2010) which allows the use of different time steps
for integrating hydrodynamics and gravity.

3 R ESULTS

Having outlined the improvements made to GCD+, we now test its
performance. We especially explore the impact of the choice of the
parameter η of equation (3) and the AC and AV switch that are
newly implemented. We present the results of mainly three differ-
ent models: models with η = 2.4 (H24) and 2 (H2) and a model
with η = 2.4 without the AC or the AV switch (H24NA). A sum-
mary of these models is presented in Table 1. Models H24 and
H2 are expected to have Nnb ∼ 58 and ∼33, respectively, when
the particles are distributed homogeneously in three-dimensional
space. These are conventionally used values. We did not take a
higher value of η because it leads to a larger number of neigh-
bour particles and requires more computational costs.2 We applied
a higher αAV, min for model H24. The reason behind this choice is
demonstrated in Section 3.1. We apply βAV = 3.0 in all the models.
We demonstrate in Section 3.3 that a lower βAV fails to repro-
duce the analytic solution of the point-like explosion test (see also
Price & Federrath 2010 who recommended an even higher value of
βAV = 4.0).

3.1 One-dimensional Riemann problems

Our first experiments involve a version of the classical one-
dimensional Riemann problems (e.g. Toro 1997). The initial condi-
tions are set by assuming the simulation region spans from x = −0.5
to 0.5; the region for which x < 0 is set to (ρL, PL, vL), and the
region for which x > 0 is set to (ρR, PR, vR), adopting γ = 5/3
throughout. We show three problems summarized in Table 2. Fig. 1
shows the results of problem A for models H24, H24NA and H2,
using 540 particles. As also demonstrated in the literatures (e.g.
Price 2008), one can see a clear jump in thermal energy and pres-
sure at the contact discontinuity in model H24NA. On the other
hand, including the AC, the contact discontinuity is resolved, and

2 Using a large number of neighbour particles is also not recommended with
the traditional SPH kernel of equation (2) because of the increasing pairing
instability (Schüssler & Schmitt 1981; Dehnen & Aly 2012; Price 2012).
Although we use equation (6) to mitigate the paring instability, we avoid
applying a large η also for this reason.

Table 2. Riemann problems’ (γ = 5/3) initial conditions.

Problem ρL vL PL ρR vR PR

A 1.0 0.0 1.0 0.125 0.0 0.1
B 1.0 −2.0 0.4 1.0 2.0 0.4
C 1.0 0.0 1000.0 1.0 0.0 0.01

Figure 1. Results of a one-dimensional Riemann problem A with models
H24 (top), H24NA (middle) and H2 (bottom) at t = 0.2. The grey line
represents the analytic solution.

the pressure and thermal energy distribution is much smoother in
models H24 and H2, although there is still a small jump. A smooth
pressure distribution at the contact discontinuity is key to accurately
simulating KHI (Price 2008); as such, it would appear that models
with the AC and AV switch are promising tools for modelling KHI
within an SPH framework. It is also remarkable that the number
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Figure 2. Comparison of L1(v) from different models with different number
of particles for a one-dimensional Riemann problem A. Circles, triangles
and stars show the results of models H24, H24NA and H2. Crosses show
model H24 but applying αAV, min = 0.05. The dashed line indicates the
L1(v) ∝ N−1 relation for a reference.

of particles employed to resolve the shock front in model H2 is so
low. As expected, if we adopt a higher η value, a greater number of
particles are required to resolve the shock front.

Following Springel (2010b), we measure an L1 error norm de-
fined by

L1(V ) = 1

N

∑
i

|Vi − Vc(xi)|, (25)

where N is the number of SPH particles, vi is the velocity of the
particle i and vc(xi) is the analytic solution for the problem. We
run problem A with different models and resolutions and summa-
rize L1(v) values in Fig. 2. Model H2 shows the error declining as
L1(v) ∝ N−1, similar to what is shown in Springel (2010b). Inter-
estingly, adopting higher η leads to higher error and slower con-
vergence. Although snapshot of model H24NA shows significantly
worse results than model H24 (Fig. 1), L1(v) shows similar results.
It means that L1(v) is not a good measure for how well the code
captures the contact discontinuity. We also show the L1(v) results
of a model with η = 2.4 and αAV, min = 0.05 with crosses in Fig. 2.
This clearly demonstrates that if we apply the lower αAV, min with a
larger η, it induces unacceptably high scatter in the velocity field.
Therefore, we apply the higher value of αAV, min for model H24.

Fig. 3 shows the results of problem B for model H24, using 540
particles. We do not show the results of each model for this problem

Figure 3. Results of a one-dimensional Riemann problem B with model
H24 at t = 0.35. The grey line represents the analytic solution.

Figure 4. Comparison of L1(v) from different models with different number
of particles for a one-dimensional Riemann problem B. The dashed line
indicates the L1(v) ∝ N−1 relation for a reference. Symbols are the same as
defined in Fig. 2.

because all the models reproduce the analytic solution equally well.
Fig. 4 shows the L1(v) results of problem B. As expected, since
model H2 has less smoothing, the L1(v) error norm is lower than
models H24 and H24NA.

Fig. 5 shows the results of problem C at t = 0.008 for models
H24, H24NA and H2. Fig. 6 represents L1(v) for problem C. There
is less difference among the three different models in L1(v) for
problem C. However, one can see a much bigger jump in thermal
energy and pressure at the contact discontinuity in model H24NA,
compared to problem A (Fig. 1). Even for this stronger shock case,
the AC helps to resolve the contact discontinuity and captures the
correct shock feature.

3.2 Gresho vortex test

To check the stability of our models in a rotating system, we run
the so-called Gresho vortex test (Gresho & Chan 1990; Springel
2010b) with different models and different number of particles.
This is a two-dimensional problem. We initially set particles on a
hexagonal grid (Price 2004) in a two-dimensional periodic region
and the rotation velocity as a function of radius as follows:

Vrot(R) =

⎧⎪⎨
⎪⎩

5R for 0 ≤ R ≤ 0.2,

2 − 5R for 0.2 ≤ R ≤ 0.4,

0 for R ≥ 0.4.

(26)

The gas density is constant, ρ = 1, and γ = 5/3 is adopted. We then
assume an initial pressure, which is a function of radius, following

P (R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 + 25
2 R2 for 0 ≤ R ≤ 0.2,

9 + 25
2 R2

−20R + 4 ln(R/0.2) for 0.2 ≤ R ≤ 0.4,

3 + 4 ln 2 for R ≥ 0.4.

(27)

In this condition, the centrifugal force is balanced by the pressure
gradient and the initial rotation velocity should be maintained.

Fig. 7 shows the rotation velocity profile of all three models at
t = 1.0 in our lowest resolution test. Although the rotation velocity
should be kept constant, all the models have slower rotation veloci-
ties at t = 1.0 because of the angular momentum transfer due to the
AV. Fig. 8 displays L1(v) error norm for the Gresho test with differ-
ent resolutions. As also shown in Springel (2010b), all of our mod-
els show very slow convergence or saturation, i.e. higher resolution
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Calibrating an updated SPH scheme within GCD+ 1973

Figure 5. Results of a one-dimensional Riemann problem C with models
H24 (top), H24NA (middle) and H2 (bottom) at t = 0.008. The grey line
represents the analytic solution.

simulations do not improve the results significantly. Nevertheless,
L1(v) of model H24 is significantly lower than that of the other
models. This demonstrates that the angular momentum transfer due
to the AV is suppressed by applying larger η and employing the
AC and the AV switch. Dehnen & Aly (2012) discuss that adopting
a more sophisticated kernel function will reduce L1(v) error norm
dramatically. However, at this stage we hesitate to use such kernels
because of the possible instability when the number of neighbour
particles becomes low, as discussed above.

3.3 Point-like explosion test

We next consider the Sedov–Taylor-type spherical explosion test.
Following Springel & Hernquist (2002), we set a three-dimensional

Figure 6. Comparison of L1(v) from different models with different number
of particles for a one-dimensional Riemann problem C. The dashed line
indicates the L1(v) ∝ N−1 relation for a reference. Symbols are the same as
defined in Fig. 2.

periodic boundary box with a low temperature and homogeneous
density (ρ = 1). At t = 0, we deposit E = 1 energy on the central
particle and simulate the evolution thereafter. The analytic solution
can then be derived via the adoption of Sedov–Taylor self-similarity.
Fig. 9 shows the density and pressure of the gas particles as a
function of radius at t = 0.07 for different models and resolutions,
while the solid line represents the analytic solution. We note that
the particles in the region of |x| < 0.1, |y| < 0.1 and |z| < 0.1
show incorrect behaviour and do not plot them in Fig. 9. We think
that this is due to our initial setting of the particles at square grid
points. The particles along each axis are in the special location,
and the particles are aligned to the radial direction. However, it will
be extremely rare in a galaxy simulation that many particles are
radially aligned from a single star particle which is producing some
feedback, like SNe. For the purpose of calibrating the parameter
for the galaxy simulations, we ignore such special condition in this
test.

Fig. 9 demonstrates that model H24 reproduces the analytic func-
tion well, and higher resolution simulations recover its analytic so-
lution better. Model H24NA is equally good in density distribution.
However, the pressure distribution shows a significant scatter. This
demonstrates the importance of checking the pressure profile, in
addition to the radial density profile. Model H2 shows a sharper
density profile than model H24; however, both the density and pres-
sure display greater scatter. In these figures, we also demonstrate
that βAV = 1.0 is not suitable for model H24. Fig. 9 also shows
model H24, but with βAV = 1.0. Although this model roughly re-
produces the density profile of the analytic solution, the density and
pressure show significant scatter, especially in the high-resolution
run. Since in galaxy simulations we include radiative cooling which
is sensitive to the density, we conclude that this model is unaccept-
able for our purpose. Finally, the bottom panels of the figure show
that if the time-step limiter suggested by Saitoh & Makino (2009)
is not adopted, the code gives an incorrect density and pressure pro-
file, as also demonstrated by Saitoh & Makino (2009) and Durier
& Dalla Vecchia (2012). This is because the particles in the cold
and homogeneous interstellar medium are allowed to integrate their
hydrodynamics equations with a larger time step. The expanding
shells can pass these particles before their subsequent integration
time occurs. This will lead a massive underestimate of the effect of
feedback in galaxy simulations. We stress that the individual time-
step limiter must be implemented within SPH codes for galaxy
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1974 D. Kawata et al.

Figure 7. Velocity profile at t = 1.0 in the Gresho vortex test with 9040 particles which were initially set on a hexagonal grid (80 particles along the x-axis).
From left to right, the panels show the results of models H24, H24NA and H2. Red dots and lines show the mean values. The solid lines are the correct solution.

Figure 8. Comparison of L1(v) from different models with different number
of particles for the Gresho vortex test. N indicates the number of particles
along the radius within R = 0.5. The dashed line indicates the L1(v) ∝ N−1

relation for a reference. Symbols are the same as defined in Fig. 2.

simulations where the strong feedback from stellar wind and SNe
are included.

3.4 KHI test

Agertz et al. (2007) introduced a straightforward test which allows
for a given code (particle- or grid-based) to be assessed in terms
of its ability to resolve KHI (see also Price 2008; Junk et al. 2010;
Valcke et al. 2010; McNally, Lyra & Passy 2012). In this section, we
demonstrate that the updated GCD+ can resolve such instabilities.
Following Price (2008), we consider a two-dimensional periodic
boundary region with x = {−0.5, 0.5} and y = {−0.5, 0.5}. The
region within |y| < 0.25 is set to be the high-density region (with
ρh = 4), while the rest is the low-density region (with ρ l = 1).
Equal-mass particles are adopted in both regions, and N1D, h (N1D, l)
particles are used to cover the x-axis for the high-density (low-
density) region. The two regions are in pressure equilibrium and
we assume Ph = Pl = 2.5. The high-density (low-density) region
has velocity Vx,h = −0.5 (Vx,l = 0.5). We also added sinusoidal
perturbations to the vertical velocity, using vy(x) = δvy sin(λ2πx),
setting δvy = 0.01 and λ = 1.0. As before, we assume γ = 5/3.
Following Price (2008), we consider a time-scale of KHI as

τKHI = 2π/ω, (28)

where

ω = 2π

λ

(ρhρl)1/2|Vx,h − Vx,l|
(ρh + ρl)

. (29)

Our initial condition leads to a time-scale for KHI of τKHI = 2.5
and we run simulations for t = 2τKHI = 5.0.

Since there is no analytic solution for this test, we compare the
results of our code to those of a publicly available mesh code ATHENA

(Stone et al. 2008). In the ATHENA runs, we chose the Harten-Lax-
van Leer-Contact (HLLC) Riemann solver and third-order interpo-
lation. We set the same initial condition as above for the ATHENA

runs. However, as discussed in Robertson et al. (2010), it is im-
portant for grid codes to initially resolve the contact discontinuity.
Following Springel (2010b) and Robertson et al. (2010), we apply
the following ‘ramp’ function to the density and velocity:

R(y) = 1

1 + exp[2(y − 0.25)/δy]

1

1 + exp[2(y + 0.25)/δy]
. (30)

We run the two cases with δy = 0.01 and 0.05. In addition to test
Galilean invariance, we also run the case where the whole region is
moving with vx, 0 = 100.0. Springel (2010b) argues that applying
the smooth change of density at the contact discontinuity is also
important for the SPH simulations (see also Valcke et al. 2010).
However, it is difficult to assign such density profile in the SPH
run without changing the particle masses, which we do not prefer
to do because equation (3) is designed for the case that all the
SPH particles have the same particle mass. Instead, we modify the
thermal energy, and therefore entropy after calculating the initial
density with the SPH kernel, so that the pressure is constant initially.
This roughly corresponds to δy = 0.01 for our lowest resolution
simulation case.

To quantitatively compare the results, we calculate the mixing
statistics for a property f, such as density, suggested by Robertson
et al. (2010) as follows. First, the average 〈f〉 and dispersion σ f

for each row are calculated. Then, the ratio of σ f/〈f〉 is averaged
by∑

σf /〈f 〉 =
∑

i(σf /〈f 〉)i dy

Ny dy
, (31)

where (σ f/〈f〉)i is σ f/〈f〉 for row i, dy = (L = 1.0)/Ny is the grid
size and Ny is the number of grids along the y-axis. For GCD+
runs, we measure the property smoothed with the SPH scheme in
the N1D, l × N1D, l grid. We calculate the mixing statistics for both
density and entropy, s = P/ργ , following Robertson et al. (2010),
and shown in Fig. 12.
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Figure 9. Radial density (left) and pressure (right) distributions at t = 0.07 in the point-like explosion test with different models and resolutions. Left-hand,
middle and right-hand panels show the results of Np = 323, 643 and 1283, and from top to bottom the panels represent the results of models H24, H24NA and
H2, a model same as H24, but with βAV = 1, and a model same as H24, but without the individual time-step limiter (Saitoh & Makino 2009). The solid lines
show the analytic solution. Note that we do not plot the particles in the region of |x| < 0.1, |y| < 0.1 and |z| < 0.1 because the particles in these regions show
incorrect behaviour, possibly due to the initial grid particle setting. We also plot only every about (N/323) particles.

Fig. 10 demonstrates that the updated GCD+ is capable of captur-
ing KHI, and leads to similar results to those of the ATHENA, such
as shown in Fig. 11, especially until t = 3.7 ∼ 1.5tKHI. At the later
times, the grid code develops instabilities at smaller scales, said
instability depends upon resolution (see Fig. 12). Fig. 11 shows
that if the initial density profile was not smoothed enough, the
small-scale instability develops faster, and lead to the resolution-
dependent results. Fig. 11 also demonstrates that the development
of grid size-dependent small-scale instabilities is sensitive to their
global velocity field, i.e. Galilean non-invariance. However, if we
apply enough smoothing to the initial density profile, i.e. δy = 0.05,
the results are not sensitive to the velocity field or resolution, up to
t = 3.7 ∼ 1.5tKHI. Mixing statistics shown in Fig. 12 demonstrate it
quantitatively.

In Fig. 12, model H24 shows a similar level of mixing as the
ATHENA results. There is a small dependence on the resolution, and
we can see in Fig. 10 that the small-scale perturbations grow espe-
cially in the higher resolution run. Model H24NA shows in Fig. 10
that without AC or the AV switch, normal SPH can still handle the
rough features of KHI. However, as seen in the mixing statistics, it
depends heavily on the resolution. Moreover, the features are much
less smooth and the mixing of the two phases seems not to take
place. Model H2 in Fig. 10 demonstrates that even with a low-η
model the KHI is captured with the new version of GCD+. However,
compared to model H24, some resolution-dependent behaviour re-
mains (Fig. 12); we can see that higher η aids in the capture of
KHI.

3.5 Self-similar collapse test

To see the performance of the updated SPH scheme with self-
gravity, we next run the so-called self-similar collapse test.

Bertschinger (1985) derived a self-similar solution for the collapse
of an overdense perturbation in an Einstein–de Sitter (� = 1) uni-
verse. Navarro & White (1993) introduced a test simulation based
upon this self-similar solution. Following Navarro & White (1993),
we consider a spherical volume which initially follows the Hubble
expansion, and set a central spherical perturbation with mass of
0.05Mtot and radius of 0.1Rini, where Mtot is the total mass and Rini

is the initial radius of the simulation sphere. To focus on testing hy-
drodynamics performance, we consider a pure gas collapse case, i.e.
�b = 1.0, and no dark matter. We set a glass-like distribution of the
particles to describe the initial sphere with two different resolutions
which employ N = 17 162 and 137 145 particles, respectively.

The dimensionless parameters for radius, �, radial velocity, vr,
density, D, and pressure, P, are defined by

�(r, t) = r

rta(t)
,

Vr(�) = t

rta
vr(r, t),

D(�) = ρ(r, t)

ρH
,

P (�) =
(

t

rta

)2
p(r, t)

ρH
. (32)

Figs 13 and 14 show the results in these dimensionless parameters
at an arbitrary time when 3570 and 30 843 particles are within the
shock radius, rshock = 0.34rta, for the lower and higher resolution
simulations, respectively, in model H24. Dots within each panel
represent the simulation results for the gas particles, while the grey
lines correspond to the analytic solution of Bertschinger (1985).
Figures demonstrate that although all the models reproduce the
analytic solution, the radial velocity has too much scatter around
the shock front in model H24NA. Moreover, model H24NA shows
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Figure 10. Density distributions at t = tKH = 2.5 (left), t = 3.7 (middle)
and t = 5.0 (right) with models H24 (top panels), H24NA (middle panels)
and H2 (bottom panels). Top, middle and bottom panels in each panel show
the results of simulations with different number of particles of N1D, l = 64,
128 and 256, respectively.

significantly larger scatter in pressure around the shock front. This is
similar to the results seen in Section 3.3. It is interesting to note that
AC significantly stabilizes the oscillation in velocity and pressure
around the shock. Although model H24 applies a relatively high
αAV, min, a comparison between models H24 and H24NA presents
the benefit of the AV switch, and model H24 shows a sharper shock

feature, especially visible in the high-resolution simulations. Model
H2 shows an even sharper shock feature than model H24. However,
the scatter in radial velocity is significantly larger in model H2,
compared to model H24. Therefore, we conclude that model H24
is superior to model H2, and model H24 is our best model.

3.6 Self-gravitating gas disc

The Gresho vortex test in Section 3.2 shows a disappointing result.
However, some basic test problems are often too critical. The target
systems for our galactic science may not require the high level
of accuracy. In this section, we demonstrate that our best model,
H24, achieves satisfactory angular momentum conservation in a
disc galaxy simulation with self-gravity.

We set up an isolated disc galaxy which consists of self-
gravitating gas disc with no bulge component in a static dark matter
halo potential. We use the standard Navarro–Frenk–White (NFW)
dark matter halo density profile (Navarro, Frenk & White 1997), as-
suming a standard cold dark matter (�CDM) cosmological model
with cosmological parameters of �0 = 0.266, �b = 0.044 and H0 =
71 km s−1 Mpc−1, i.e. h = 0.71:

ρDM = (1 − �b/�0)
3H 2

0

8πG
× ρc

cx(1 + cx)2
, (33)

where

c = r200

rs
, x = r

r200
(34)

and

r200 = 1.63 × 10−2

(
M200

h−1 M

)1/3

h−1 kpc, (35)

where ρc is the characteristic density of the profile, r is the distance
from the centre of the halo and rs is the scale radius. The halo mass
is set to be M200 = 1012 M and the concentration parameter is set
at c = 10.

The gaseous disc is set up following the method described in
Springel, Di Matteo & Hernquist (2005). The radial surface density
profile is assumed to follow an exponential law with a scale length
of Rd = 4 kpc and the total gas mass of 1010 M. The initial vertical
distribution of the gas is iteratively calculated to reach hydrostatic
equilibrium assuming the constant temperature of T = 105 K. We
chose the relatively high temperature initially, to generate a stable
gas disc and avoid non-axisymmetric structures to develop. We run
the simulations with different number of particles, N = 104, 105 and
106.

Because the initial condition is not perfectly equilibrium, we run
simulations for 1 Gyr and let the system to relax. Then, using the
relaxed system as an initial condition, we run the system for 2
Gyr. This test is similar in spirit to what is shown in the appendix
of Navarro & Steinmetz (1997). Following Navarro & Steinmetz
(1997), we analysed the half-mass radius of the disc and the radius
that contains half its total angular momentum, and name the ratio
between these radii as RJM, 0.5. We also define a more critical indi-
cator, RJM, 0.25, which is the ratio between the radii that contain a
quarter of its total mass and angular momentum. This ratio is ex-
pected to decrease if the angular momentum is transferred outwards
which brings the gas inwards. Fig. 15 shows the time evolution of
RJM, 0.25 and RJM, 0.5 in different models and resolutions. Solid lines
of Fig. 15 demonstrate that model H24 shows less than 10 per cent
change in RJM, 0.5 and less than 20 per cent change in RJM, 0.25 even
in the lowest resolution simulations. Dramatic improvement is seen
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Calibrating an updated SPH scheme within GCD+ 1977

Figure 11. Same as in Fig. 10, but for the ATHENA code results with �y = 0.01 and vx, 0 = 0.0 (top left-hand panels), �y = 0.01 and vx, 0 = 100.0 (top
right-hand panels), �y = 0.05 and vx, 0 = 0.0 (bottom left-hand panels) and �y = 0.05 and vx, 0 = 100.0 (bottom right-hand panels). Top, middle and bottom
panels in each panel show the results of simulations with N = 642, 1282 and 2562 grids, respectively.

Figure 12. Density (left) and entropy (right) mixing statistics (see the text) as a function of time for different models. Top panels show the results of models
H24, H24NA and H2. Bottom panels show the results of the ATHENA code with �y = 0.01 and vx, 0 = 0.0, �y = 0.05 and vx, 0 = 0.0 and �y = 0.05 and vx, 0 =
100.0. Dashed, dotted and solid lines show the results with number of particles of N1D, l = 64, 128 and 256, respectively.

in higher resolution simulations. In recent years, more than 105 gas
particles are often used to simulate the evolution of the gas disc
(e.g. Grand et al. 2012) and then the numerical angular momen-
tum transport is minimal. The dashed line in the left-hand panels of
Fig. 15 demonstrates that a significant angular momentum transport

is observed if the velocity shear-corrected AV of equation (11) is
not applied (see also the appendix of Navarro & Steinmetz 1997).
Dotted lines in the left-hand and middle panels of Fig. 15 indicate
that although it is a tiny difference, there is systematically more
angular momentum transport, because of the pairing instability, if
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Figure 13. Normalized velocity (upper), density (middle), and pressure
(lower) distribution at an arbitrary time employing the Bertschinger (1985)
self-similar collapse test with models H24 (left), H24NA (middle) and H2
(right), using N = 17, 162 particles. The grey line represents the analytic
solution.

Figure 14. Same as Fig. 13, but for the higher resolution simulations with
N = 137 145. Only 1/8 of the particles are shown to make a comparison
with Fig. 13 easy.

the constant kernel gradient in equation (6) is not adopted. As men-
tioned above, in more general galaxy simulations, the minimum
smoothing and softening are required to be applied, which lead to a
large number of neighbour particles within a fixed smoothing length
and enhance the pairing instability. Therefore, in practice we need
equation (6). Again it seems promising that a more sophisticated
kernel function (e.g. Dehnen & Aly 2012) can minimize angular
momentum transport and paring instability without the constant
kernel gradient. However, such kernels should be tested also in
more practical simulations with self-gravity and radiative cooling.
We wish to explore this in a future study.

4 SU M M A RY

We implement a modern treatment of SPH into our galactic chemo-
dynamics code, GCD+, in particular, new AV and AC. In this paper,
we study how these new schemes work within the context of hydro-

Figure 15. Time evolution of the ratio, RJM, 0.5 (RJM, 0.25) between the
radii that contains its half (quarter of) total mass and angular momentum.
RJM, 0.5 and RJM, 0.25 are normalized to the initial values, RJM, 0.5(t = 0) and
RJM, 0.25(t = 0). Left-hand, middle and right-hand panels show the results
of the simulations with N = 104, 105 and 106. In the left-hand panels, solid,
dotted and dashed lines represent the results of models H24, H24 without
equation (6) and H24 without equation (11). Middle panels show only two
model results, i.e. models H24 and H24 without equation (6). Right-hand
panels show only model H24 results.

dynamics simulations, and focus on the effect of the combination
of the AC, the AV switch and the size of smoothing length.

We demonstrate that the AC and the AV switch help to ‘smooth’
the thermal energy at the contact discontinuity. Because of this
improvement, the new code succeeds in capturing KHI. In essence,
this confirms that the AV and AC scheme proposed by Rosswog &
Price (2007) and Price (2008) remedies the fundamental problem
of SPH outlined by Agertz et al. (2007). We also find that to capture
strong shocks, like that expected in SN explosions for example, the
individual time-step limiter suggested by Saitoh & Makino (2009)
is crucial.

From these basic tests, we conclude that both models H24 and
H2 are acceptable. However, in this paper, the pros and cons of
these two models are highlighted. Model H2 with η = 2.0, i.e.
smaller smoothing length, resolves the shock features more sharply.
However, we found from the Gresho vortex tests that model H2
is less stable compared to model H24 with η = 2.4, i.e. larger
smoothing length. Moreover, model H24 captures KHI better, and
is more stable when a strong shock is involved as demonstrated in
the point-like explosion and self-similar collapse tests. Therefore,
we favour model H24.

In a forthcoming paper, we will carry out more realistic simu-
lations of galaxy formation and evolution, including self-gravity,
radiative cooling, star formation, SNe feedback and chemical evo-
lution, comparing and contrasting the behaviour of the different
model parameters.
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