
 
 

Shaded tangles for the design and verification of
quantum programs
Reutter, David; Vicary, Jamie

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Reutter, D & Vicary, J 2019, 'Shaded tangles for the design and verification of quantum programs' Proceedings
of the Royal Society  A.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Citation required

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/188667495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/shaded-tangles-for-the-design-and-verification-of-quantum-programs(551fb304-5b06-47bc-b738-31c6adefad7e).html


Shaded tangles for the design and
verification of quantum programs

David Reutter Jamie Vicary
Department of Computer Science Department of Computer Science

University of Oxford University of Oxford
david.reutter@cs.ox.ac.uk jamie.vicary@cs.ox.ac.uk

March 6, 2019

Abstract

We give a scheme for interpreting shaded tangles as quantum programs,
with the property that isotopic tangles yield equivalent programs. We an-
alyze many known quantum programs in this way—including entanglement
manipulation, error correction and teleportation—and in each case present a
fully-topological formal verification, yielding in several cases substantial new
insight into how the program works. We also use our methods to identify
several new or generalized procedures.

1 Introduction

1.1 Overview

In this paper we introduce a new knot-based language for designing and verifying
quantum programs. Terms in this language are shaded tangles, which look like
traditional knot diagrams, possibly involving multiple strings and strings with open
ends, and decorated with a shading pattern. Examples of shaded tangles are given in
Figure 2. The overall goal of this paper is to use this language to identify a number
of new or generalized protocols; an extensive summary of our results is given in
Section 1.2.

(a) Qudit
(b) Qudit

preparation
(c) 1-qudit

gate
(d) 2-qudit

gate

Figure 1: Part of the graphical language along with
its interpretation in terms of quantum structures.

1



We give an operational semantics in which a shaded tangle is interpreted as a
linear map between Hilbert spaces. Since this is the basic mathematical foundation
for quantum information, this enables us to interpret our shaded tangles as quantum
programs. Under this interpretation, we read our shaded tangles as quantum circuits,
with time flowing from bottom to top, and with individual geometrical features of
the diagrams—such as shaded regions, cups and caps, and crossings—interpreted
as distinct quantum circuit components, such as qudits (a qudit is a d-dimensional
quantum system; a qubit is a qudit for d = 2), qudit preparations, and 1- and 2-qudit
gates (see Figure 1 for this part of the graphical language.)

Given two shaded tangles with the same shading pattern on their boundaries, we
say they are isotopic just when, ignoring shading and considering them as ordinary
knotted strings, one can be deformed topologically into the other. We show that
our semantics is sound with respect to this isotopy relation: that is, if two shaded
tangles are isotopic, then they have equal interpretations as quantum programs.

This yields a powerful method for the design and verification of quantum proce-
dures. We draw one shaded tangle for the program, describing the exact steps the
quantum computer would perform, and another shaded tangle for the specification,
describing the intended computational effect. The program is then verified simply
by showing that the two shaded tangles are isotopic. Since humans have an innate
skill for visualizing knot isotopy, this verification procedure can often be performed
immediately by eye, even in sophisticated cases. We illustrate this idea in Figure 2,
which illustrates the program and specification for constructing a GHZ state, an
important primitive resource in quantum information. It can be seen by inspection
that, ignoring shading, the tangles are isotopic, and hence the program is correct.
By reference to Figure 1, we see that the program Figure 2(a) involves three qudit
preparations, two 1-qudit gates, and two 2-qudit gates.

1.2 Main results

In our main results, we apply this new high-level technique to represent and verify
13 quantum programs, some generalized from their form in the literature, and some
completely new. We give a summary here of the programs we analyze. In this
summary, we make use of some basic concepts from quantum information theory. A
Hadamard matrix is a unitary matrix with all coefficients having the same absolute

(a) Program (b) Specification

Figure 2: Shaded tangles giving the program and specification for constructing a
tripartite GHZ state.

2



value; they are important primitive structures in quantum information, playing a
central role in quantum key distribution and many other phenomena [? ]. A unitary
error basis is a basis of unitary operators on a finite-dimensional Hilbert space,
orthogonal with respect to the trace inner product; they provide the basic data
for all quantum teleportation and dense coding procedures [? ], and some error
correction procedures [? ? ].

• Section 4.1. A generalization of a program due to Uchida et al [? ] for
constructing GHZ states.

• Section 4.2. Programs due to Raussendorf and others [? ? ] for constructing
cluster chains [? ], resources of central importance in quantum information.

• Section 4.3. Programs due to Briegel and others [? ? ] for interconverting
certain GHZ and cluster states.

• Sections 4.4 and 4.5. Programs due to van den Nest and others [? ] for cutting
and splicing cluster chains, which play an important role in measurement-based
quantum computation [? ]. We generalize these programs to qudits and to
new classes of cluster chains.

• Section 4.6. A new program for robust state transfer in a cluster state–based
quantum computer.

• Section 5.1. A generalization of programs due to Karlsson, Hillery, Grudka
and others [? ? ? ] for measurement-based teleportation along a GHZ state.

• Section 5.2. A generalization of a program due to Raussendorf and Briegel [?
] for measurement-based teleportation along a cluster chain.

• Section 5.3. A program for teleportation along an n-party GHZ state, which
we believe is folklore, with a new robustness property against a broad family
of errors.

• Section 5.4. A program due to Yu, Jaffe and others [? ? ] which reduces
resource requirements for executing a distributed controlled quantum gate.

• Sections 6.1 and 6.2. The phase code and the Shor code [? ? ? ], important
error correcting codes in quantum information, which are built from Hadamard
matrices.

• Section 6.3. New generalizations of the phase code and Shor code, based on
unitary error bases rather than Hadamard matrices.

1.3 Significance

We outline some areas of potential significance of our work.

Novelty. Several of the programs we verify are in fact generalizations of those
described in the literature, or are completely new, thereby making our results
potentially of interest in mainstream quantum information science. Perhaps most

3



significantly, we highlight: the new program for robust state transfer in a cluster-
state quantum computer (Section 4.6); the new constructions of error correcting
codes based on unitary error bases (Section 6.3); and our identification of the π

2
-

rotations around the X-axis on the Bloch sphere as having privileged topological
properties among all qubit Hadamard matrices (Section 2.3). In particular, we aim
to rebut a common criticism that categorical methods in quantum information are
useful only to recast known phenomena in a formal setting, without generating new
knowledge [? ].

Insight. Throughout, the shaded tangle syntax gives considerable new insight into
why each procedure works. For example, in our verification of error correcting codes,
the errors are literally ‘trapped by bubbles’ and removed from the diagram, and in
our verification of cluster chain surgery procedures the qubits are literally untangled
from the chain. In both cases, this gives a powerful intuition for these schemes which
we believe to be new. This stands in contrast to traditional verification methods
in quantum computer science [? ], where a program is often given as a series of
linear maps encoded algebraically (for example, as matrices of complex numbers),
and verification involves composing the maps and examining the result; from this
perspective, high-level structure can be difficult to perceive, and it may be unclear
whether a program can be generalized.

Efficiency. Where our methods apply, we can often give the program, specification
and verification in a concise way; compare for example our discussion of Figure 2
above with the traditional verification of a related program due to Uchida et al [?
], which requires a page of algebra, and is also less general. As a consequence, even
in this short extended abstract, we are able to give detailed analyses of 13 distinct
procedures. We suggest that our methods would therefore be suitable for reasoning
about large-scale quantum programs, such as architectures for quantum computers.

1.4 Criticism

Completeness. We define our semantics to be sound if topological isotopy im-
plies computational equivalence, and complete if computational equivalence implies
topological isotopy. The main semantics we give is sound, allowing the verification
method for quantum programs that we use throughout the paper. However, it is
not complete, meaning that there exist quantum programs that cannot be verified
by our methods. Achieving completeness is an important focus of future work. We
note that the ZX calculus (see Section 1.5), a dominant existing high-level approach
to quantum information, shares this property of being sound but not complete [? ],
although it is complete for the stabilizer fragment [? ].

Universality. Our language is also not universal, meaning that not all quantum
programs can be constructed. It would be easy to make it universal by adding
additional 1-qubit generators; however, without completeness, this has limited value.

Algorithms. All of our examples are in the broad area of quantum communication;
we do not study quantum algorithms, such as Grover’s or Shor’s algorithms [? ].
These algorithms have been analyzed in the related CQM approach [? ]; in future
work we aim to analyze them using our new syntax.

4



1.5 Related work

Categorical quantum mechanics (CQM). Our work emerges from the CQM
research programme, initiated by Abramsky and Coecke [? ] and developed by them
and others [? ? ? ? ? ? ? ? ? ? ? ? ? ], which uses monoidal categories with
duals to provide a high-level language for quantum programs, using in particular
a graph-based language called the ZX calculus [? ? ]. CQM verifications have
been given for some programs related to those that we analyze, including the Steane
code [? ], and cluster state arguments [? ? ]. Many of the advantages of our calculus
over traditional techniques—such as the power of the diagrammatic language, and
its topological flavour—inherit directly from the CQM programme.

The current authors have previously shown that CQM methods can be extended
to a higher-categorical setting [? ? ? ], developing the work of Baez on a categorified
notion of Hilbert space [? ], and this paper develops these ideas further.

We give here some important points of distinction between traditional CQM
techniques and our present work. Unlike the ZX calculus, our calculus is purely
topological, and hence complex deductions can sometimes be perceived by eye in a
single step. Also, our calculus is incomparable in strength to the ZX calculus, which
is restricted (in its basic form) to Clifford quantum theory; neither calculus can
simulate the other in general. As a result, we are able to analyze many protocols
that have not previously been analyzed with ZX methods, as well as discover a
number of new and generalized protocols.

Statistical mechanics. There is a rich interplay between quantum information
(QI), knot theory (KT) and statistical mechanics (SM). The KT-SM and SM-QI
relationships are quite well-explored in the literature, unlike the KT-QI relationship,
which is our focus here.

The KT-SM relationship was first studied by Kauffman, Jones and others [? ?
? ], who showed how to obtain knot invariants from certain statistical mechanical
models. Much of the mathematical foundations of our paper are already present in
the paper [? ], including the shaded knot notation. Work on the SM-QI relationship
has focused on finding efficient quantum algorithms for approximating partition
functions of statistical mechanical systems [? ? ? ? ], for which the best known
classical algorithm is often exponential. ‘Chaining’ these relationships allows one to
take a knot, obtain from it a statistical mechanical model, and then write down
a quantum circuit approximating the model’s partition function, giving overall
a mapping from knots to quantum circuits, which ends up closely matching the
construction we present. In particular, the relation between Hadamard matrices
and shaded tangles, and the specific Hadamard matrices used in this paper are well-
known, going back to results of Jones [? ] on building link invariants from statistical
mechanical models. The novelty here is of course the large range of new and existing
quantum programs which we are able to analyze using this knot-theoretic notation.

The direct KT-QI relationship has also been emphasized by Kauffman and
collaborators [? ? ], by Jaffe, Liu and Wozniakowski [? ? ? ? ? ] and also
in the field of topological quantum computing [? ], where (as here) a strong analogy
is developed between topological and quantum entanglement.

Planar algebras. The graphical notation we employ can be described formally

5



as a shaded planar algebra, although we do not use that terminology in this paper,
preferring a more elementary presentation. The relationship between shaded planar
algebras and Hadamard matrices was first suggested by Jones [? ], and developed
by the present authors [? ? ? ]. In particular, although we are using 2-categorical
terminology, most planar diagrams in this work can alternatively be understood
in terms of Jones’ spin model planar algebra [? , Example 2.8]. (This is not the
case for the diagrams with overlapping regions in Section 5, which explicitly use the
monoidal structure of the underlying 2-category, which is not a part of the basic
spin model planar algebra.)

Recently, Jaffe, Liu and Wozniakowski have described a related tangle-based
approach to quantum information based on planar para algebras [? ? ? ? ? ]. In
particular, up to a Fourier transform, the Hadamard matrix in Figure 7(b) coincides
with the one used for the braiding in [? ]. Nevertheless, there are several points of
distinction that can be drawn between our work and theirs. Firstly, their planar para
algebra setting is quite different to the mathematical structure we use. Secondly,
their diagrams must be decorated with additional indices encoding measurement
results, while our diagrams do not require such indices. Thirdly, there is little
overlap between the quantum procedures analyzed so far in each setting (although
see Section 5.4.)

Classical verification. There has been some work on using knot-theoretic methods
for verification in linear logic [? ? ] and separation logic [? ]. We do not see a
direct technical connection to our results, although we expect this to be a fruitful
direction for further investigation.

2 Mathematical foundations

2.1 Graphical calculus

The graphical calculus for describing composition of multilinear maps was proposed
by Penrose [? ], and is today widely used [? ? ? ? ? ]. In this scheme, wires
represent Hilbert spaces and vertices represent multilinear maps between them, with

A

L

C

E F

T

U

S

B

D

L

M

N

∑

t∈T

⊕

u∈U

As

L

Ct

Esu Fu

Bst

Dut

Lst

Mstu

Nut

(a) A diagram in our
generalized calculus.

(b) Its interpretation
for any s ∈ S.

Figure 3: The generalized graphical calculus.

6



wiring diagrams representing composite linear maps.
In this article we use a generalized calculus that involves regions, as well as wires

and vertices; see Figure 3(a) for an example. This is an instance of the graphical
calculus for symmetric monoidal 2-categories [? ? ? ? ] applied to the 2-category
2Hilb of finite-dimensional 2-Hilbert spaces [? ]. (Here and throughout, we use
the term ‘2-category’ to refer to the weak structure, which is sometimes called
‘bicategory’.) The 2-category of 2-Hilbert spaces can be described as follows [?
? ]:

• objects are natural numbers;

• 1-morphisms are matrices of finite-dimensional Hilbert spaces;

• 2-morphisms are matrices of linear maps.

We represent composite 2-morphisms in this 2-category using a graphical nota-
tion involving regions, wires and vertices, which represent objects, 1-morphisms
and 2-morphisms respectively. In Section 5, we also use the monoidal structure of
2Hilb, represented graphically by ‘layering’ diagrams above each other. Here we use
a particular fragment of this language, which—except for the monoidal structure—
corresponds to the spin model planar algebra of Jones [? , Example 2.8]. Nonethe-
less, we emphasize that we use the techniques of monoidal 2-categories here, and
not the techniques of planar algebras.

Elementary description. While these structures are widely used in higher repre-
sentation theory, they are not yet prevalent in the quantum computing community.
To help the reader understand these new concepts, we also give a direct account of
the formalism in elementary terms, that can be used without reference to the higher
categorical technology (see also [? ]).

In this direct perspective, regions are labelled by finite sets. Wires and vertices
now represent families of Hilbert spaces and linear maps respectively, indexed by
the elements of the sets labelling all adjoining regions. A composite surface diagram
represents a family of composite linear maps, indexed by the elements of all regions
open on the left or right. For regions open only at the top or bottom of the diagram,
we take the direct sum over elements of the indexing set, while for closed regions,
we take the vector space sum over elements of the indexing set.

(a) = = (b) = = (c) = (d) = |S|

(e) L = L (f) λ







 = λ = λ = λ

Figure 4: Some identities in the graphical calculus.

7



We give an example in Figure 3. In the diagram on the left, regions are labelled by
finite sets (S, T, U ), with unshaded regions labelled implicitly by the 1-element set;
wires are labelled by families of finite-dimensional Hilbert spaces (A,B,C,D,E, F );
and vertices are labelled by families of linear maps (L,M,N). For wires and vertices,
the families are indexed by the sets associated to all neighbouring regions: for
example, for s ∈ S and t ∈ T , we have Hilbert spaces As, Bst and Ct, and
Lst : Bst ⊗ Ct −→ As is a linear map. The single diagram on the left represents
an entire family of linear maps, with the maps comprising this family given by the
right-hand diagram for different values of s ∈ S. We take the direct sum over index
u ∈ U , since its region is open only at the bottom of the diagram, and the vector
space sum over index t ∈ T , since its region is closed.

Given this interpretation of diagrams D as families of linear maps Di, we define
two diagrams D,D′ to be equal when all the corresponding linear maps Di, D

′
i are

equal; we define the scalar product λD as the family of linear maps λDi; we define
the adjoint D† as the family of adjoint linear maps (Di)

†; and we say that D is
unitary if all the maps Di are unitary. Following convention [? ], we depict the
adjoint of a vertex by flipping it about a horizontal axis.

Restricted calculus. We use a highly restricted part of this calculus; it is this
restricted part that agrees with the spin model planar algebra, as we mention above.
Every shaded region we assume to be labelled by a single fixed finite set S. All
wires bound precisely one shaded region and one unshaded region, and these wires
are always labelled by a family of 1-dimensional Hilbert spaces C. Nonetheless, the
calculus is not trivial. For example, we can build the identity on a nontrivial Hilbert
space as the diagram Figure 1(a); under the rules set out above, this is the identity
map on ⊕s∈S(C⊗ C) ' C|S|.

Also, we add the following components to our language. In the first case there
is an open region, and we use the obvious isomorphism C ' C ⊗ C to build the
associated families of linear maps.

∀s ∈ S,C ' C⊗ C 1 7→
∑

i∈S |i〉 (1)

Flipping these components about a horizontal axis denotes the adjoint of these maps,
as discussed above. With these definitions the equations illustrated in Figure 4 can
be demonstrated; in that figure, the vertex L and the scalar λ ∈ C are arbitrary.

2.2 Shaded tangles

The Reidemeister moves [? , Section 2.4] are the basic relations of classical knot
theory. In this section we present an equational theory of shaded knots, which use
shaded versions of the Reidemeister moves. This theory follows work of Jones [? ]
on shaded tangle invariants from statistical mechanical models.

We begin by supposing the existence of a shaded crossing, depicted as follows:

(2)

We say that this crossing satisfies the basic calculus when it satisfies the equations
of Figure 5(a)–(d), and the extended calculus when it additionally satisfies equation

8



Figure 5(e)–(f). In presenting this calculus, λ is an arbitrary nonzero constant, and
we implicitly use the rule described in Section 2.1 regarding the representation of
the adjoint as a reflected diagram, which causes the crossing type to change; this
calculus also defines a rotated crossing in Figure 5(a). A shaded tangle diagram is
a diagram constructed from the components of this calculus, the shaded cups (1),
and their adjoints.

The extended calculus has the following attractive property.

Theorem 2.1. Two shaded tangle diagrams with the same upper and lower bound-
aries are equal under the axioms of the extended calculus (up to an overall scalar
factor) just when their underlying tangles, obtained by ignoring the shading, are
isotopic as classical tangles.

We emphasize that there is no corresponding full isotopy statement for the basic
calculus since it only satisfies a subset of the shaded Reidemeister moves.

In 2Hilb, we can classify representations of the basic calculus as follows. Note
that from the discussion of Section 2.1, a vertex of type (2) represents in 2Hilb a
linear map of type C|S| −→ C|S|, and is therefore canonically represented by a matrix,
which we assume to have matrix entries Ha,b.

Theorem 2.2. In 2Hilb, a shaded crossing yields a solution of the basic calculus
just when it is equal to a self-transpose Hadamard matrix.

The following theorem identifies the additional constraint given by the extended
calculus.

Theorem 2.3. In 2Hilb, a self-transpose Hadamard matrix satisfies the extended
calculus just when:

∑|S|−1
r=0 HarHbrHcr =

√
|S|HabHacHbc (3)

A full classification of representations of this extended calculus is not known. How-
ever, it is known that solutions exist in all finite dimensions; we present this in
Appendix A.

2.3 Programs and specifications

Scalar factors. From this point onwards we drop the scalar factors appearing in the
shaded tangle calculus, since they complicate the diagrams. More formally, every

(a) = (b) = = (c) =
1

|S|
=

(d) = (e) = λ (f) =
√
|S|

Figure 5: The shaded tangle calculus.

9



component we use in the remainder of the paper is proportional to an isometry, and
we silently replace it with its isometric equivalent.

Programs. We write our quantum programs in terms of four basic components of
this shaded tangle language.

• Qudits. As mentioned above, Figure 1(a) is interpreted as the identity map
on C|S|, some finite-dimensional Hilbert space. This gives us our qudit.

• Qudit preparations. In expression (1) above we draw a blue ‘cup’ to indicate
the state

∑
i∈S |i〉 ∈ C|S|, which we interpret as a qudit preparation (see

Figure 1(b).)

• Qudit gates. Applying our graphical calculus, given that (2) corresponds to
a self-transpose Hadamard with matrix entries Hij = Hji, we obtain concrete
representations for our 1- and 2-qubit gates, given in Figure 6.

Specifications. We can write our specifications using the entire language, including
all the cups and caps arising from (1) and their adjoints. We excluded some of these
components from the program language illustrated in Figure 1 because they are not
directly interpretable as circuit components. This does not prevent us using them
in specifications, however, since these will not be directly executed; they exist only
to define the mathematical behaviour of the overall program.

= 1√
d

(
H11 ∙∙∙ H1d

∙∙
∙ ∙∙∙ ∙∙
∙

Hd1 ∙∙∙ Hdd

)

=






H11 ∙∙∙ 0 0 ∙∙∙ 0

∙∙
∙ ∙∙∙ 0 0

∙∙∙ ∙∙
∙

0 0 H1d 0 0 0

0 0 0 H21 ∙∙∙ 0

∙∙
∙ ∙∙∙ 0 0

∙∙∙ ∙∙
∙

0 ∙∙∙ 0 0 ∙∙∙Hdd






(a) 1-qudit gate (c) 2-qudit gate

= 1√
d

(
H11 ∙∙∙ Hd1

∙∙
∙ ∙∙∙ ∙∙
∙

H1d ∙∙∙ Hdd

)

=






H11 ∙∙∙ 0 0 ∙∙∙ 0

∙∙
∙ ∙∙∙ 0 0

∙∙∙ ∙∙
∙

0 0 H1d 0 0 0

0 0 0 H21 ∙∙∙ 0

∙∙
∙ ∙∙∙ 0 0

∙∙∙ ∙∙
∙

0 ∙∙∙ 0 0 ∙∙∙Hdd






(b) Adjoint 1-qudit gate (d) Adjoint 2-qudit gate

Figure 6: Explicit expressions for the 1- and 2-qudit gates.

(a) =
1
√

2

(
1 1
1 -1

)

=






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1






(b) =
e

πi
8

√
2

(
1 -i
-i 1

)

= e- πi
8






1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1






Figure 7: Different examples of our circuit elements.

10



Examples. We give some concrete examples of our basic circuit components.
Some programs we analyze require only the basic calculus to be satisfied, in which
case we can choose any self-transpose Hadamard matrix as our basic data. A
standard choice is the qubit Fourier Hadamard, which satisfies the basic calculus
but not the extended calculus, illustrated in Figure 7(a). Other programs require
a Hadamard representing the extended calculus; an example is the metaplectic
Hadamard illustrated in Figure 7(b) constructed using the methods of Appendix A.
This Hadamard has been used in the cluster state literature for neighbourhood
inversion on a cluster graph [? , Proposition 5], an operation we verify in Section 4.5
for a linear graph.

3 Entangled states
In this section we describe several forms of entanglement and their representations
in our graphical calculus.

3.1 GHZ states

GHZ states were introduced by Greenberger, Horne and Zeilinger [? ] to give
a simplified proof of Bell’s theorem. We define the unnormalized n-partite qudit
GHZ state as follows:

|GHZn〉 :=
∑d−1

k=0 |k, ∙ ∙ ∙ , k〉 (4)

Proposition 3.1. GHZ states are represented as follows:

|GHZn〉 = (5)

This arises directly from the representation of GHZ states in the CQM programme [?
]. Important special cases for qubits are the |+〉 state |GHZ1〉 = |0〉 + |1〉, and the
Bell state |GHZ2〉 = |00〉 + |11〉.

3.2 Cluster chains

Another important class of entangled states are the cluster states or graph states [?
? ? ] and their qudit generalizations associated to Hadamard matrices [? ]. Cluster
states have numerous applications, most prominently in the theory of measurement
based quantum computation [? ? ] and quantum error correction [? ]. Here we will
focus on qudit cluster chains, cluster states entangled along a chain.

Given a self-transpose d-dimensional Hadamard matrix H, the n-partite qudit
cluster chain associated to H is the following, where we conjugate the matrix due
to our conventions:

|Cn〉 :=
∑d−1

a1,...,an=0 Ha1,a2 ∙ ∙ ∙Han−1,an |a1 ∙ ∙ ∙ an〉 (6)

Proposition 3.2. Cluster chains are represented as follows:

|Cn〉 = (7)

11



This is essentially the same as the representation of cluster states used in the CQM
programme [? ? ]. If all Hadamard matrices in (6) are the Fourier Hadamard, then
this recovers conventional cluster chains [? ].

3.3 Tangle gates and tangle states

More generally, a tangle gate is any circuit built from 1- and 2-qudit gates and their
adjoints, and a tangle state is a tangle with no inputs built from qudit preparations
and tangle gates (see Figure 8.) Such tangle states and gates can be arbitrarily
complex, and have all the algebraic richness of knot topology. If a Hadamard
represents the extended calculus, then two tangle states or gates are equal just
when the corresponding tangles are isotopic, as established by Theorem 2.1.

4 Manipulating quantum states
In this section we verify a wide variety of programs for creating and manipulating
entangled states, including a new program for robust state transfer within a cluster
chain–based quantum computer.

4.1 Constructing GHZ states (Figure 2)

Overview. We can use our formalism to design and verify a program for construct-
ing n-partite GHZ states.

Program Figure 2(a). Begin by preparing n qudits, then apply a sequence of
2- and 1-qudit gates as indicated in Figure 2(a) for n = 3 qudits.

Specification Figure 2(b). This is the 3-qudit instance of (5), the tangle state
corresponding to a GHZ-state.

Verification. Immediate by isotopy: the middle and rightmost qudit preparations
in Figure 2(a) move up and left, underneath the diagonal strand, producing Fig-
ure 2(b).

Reidemeister moves. This only requires the basic calculus.

Novelty. The GHZ version is known for the qubit Fourier Hadamard and was
described very recently [? ] for the qudit Fourier matrices Hab = e

2πi
d

ab. For the
self-transpose qudit Hadamard case covered here, the procedure seems new.

4.2 Creating cluster chains

Overview. Analogously to Section 4.1, we can consider the design of a program to
create a cluster chain.

1

2

Figure 8: A tangle gate and a tangle state.

12



Program. We illustrate this in (7): we begin with n qudit preparations, then
perform 2-qudit gates a total of n − 1 times.

Specification. We also take expression (7) to be the specification, Proposition 3.2
shows that this recovers the standard algebraic definition (6).

Verification. Trivial, the program and specification are equal.

Novelty. This procedure is well known for conventional and generalized cluster
states [? ? ]. Our treatment here is not fundamentally different to the CQM
analysis of Coecke, Duncan and Perdrix [? ? ].

4.3 Local unitary equivalence (Figures 9 and 10)

Overview. In the case of 2 or 3 parties, cluster chains can be converted into GHZ
states by applying 1-qudit gates on certain sites. This means that, in a strong sense,
they are equivalent computational resources. The reverse process, converting GHZ
states to cluster chains, could be just as easily described.

Program. For 2 and 3 parties, we illustrate the programs in Figure 9(a) and
Figure 10(a), respectively. 1 Construct a cluster state. 2 Perform a 1-qubit gate at
certain sites.

Specification. Illustrated in Figure 9(b) and Figure 10(b), these are instances of
the general GHZ specification (5).

Verification. Immediate by isotopy. For the 2-party case, a loop of string in the
lower-left of Figure 9(a) contracts to the top of the diagram, giving Figure 9(b). For
the 3-party case we perform similar contractions for loops of string at the lower-
left and lower-right of Figure 10(a), which move above and below a third strand
respectively, giving Figure 10(b).

Reidemeister moves. This only requires the basic calculus.

1

2

(a) Program (b) Specification

Figure 9: Converting a 2-party cluster state into a GHZ state.

1

2

(a) Program (b) Specification

Figure 10: Converting a 3-party cluster state into a GHZ state.

13



Novelty. This is known both for conventional [? ] and generalized [? ] cluster
chains. For more than 3 parties it is known to be false, and indeed our method fails
in these instances.

4.4 Cutting cluster chains (Figure 11)

Overview. Given a cluster chain of length n we can cut a target node from the
chain, yielding two chains of total length n−1 and the target node in the |+〉 state.
In some variants the target node is instead destroyed by a projective measurement,
and controlled operations performed on the adjacent qudits [? , Section 3]; the
mathematical structure is identical to the version we analyze. A similar comment
applies to the splicing procedure of Section 4.5.

Program Figure 11(a). 1 Prepare a cluster state, of which only a central part is
shown. 2 Perform two adjoint 2-qudit gates both involving a central target qudit.

Specification Figure 11(b). Prepare two separate cluster chains, and separately
prepare the target node in the |+〉 state.

Verification. Immediate by isotopy: starting with Figure 11(a), we cancel the
inverse pairs of crossings on the left and right of the central qudit, yielding Fig-
ure 11(b).

Reidemeister moves. This only requires the basic calculus.

Novelty. For the qubit Fourier Hadamard matrix this is well known; see [? ] and [?
, Section 3]. Here, and in the next subsection, our verification provides new insight
into how these chain manipulation programs work.

1

2

(a) Program (b) Specification

Figure 11: Cutting a cluster chain.

1

2

(a) Program (b) Specification

Figure 12: Splicing a cluster chain.

14



4.5 Splicing cluster chains (Figure 12)

Overview. Given a cluster chain of length n we can splice a target node from the
chain, yielding a single chain of length n−1, and the target node in the |+〉 state.

Program Figure 12(a). 1 Prepare a cluster state, of which only a central part is
shown. 2 Perform a 1-qudit gate on the target qudit, and then two 2-qudit gates
involving the target qudit and each of its adjacent qudits.

Specification Figure 12(b). Prepare a cluster chain of length n−1, and separately
prepare the target node in the |+〉 state.

Verification. By isotopy, although harder to see by eye than previous examples.
Looking closely, one can see that the target qudit in Figure 12(a) is unlinked from the
other strings, and so the entire shaded tangle can be deformed to give Figure 12(b).

Reidemeister moves. This requires the extended calculus.

Novelty. It is well-known that certain local operations on cluster chains splice
the chain (neighbourhood inversion on graph states, see [? ] and [? , Prop. 5]);
our analysis is more general since it applies for any qudit Hadamard satisfying the
extended calculus. The standard procedures use cluster chains based on the qubit
Fourier Hadamard, and require additional phase corrections, which effectively serve
to convert the Hadamard into one representing the extended calculus. We avoid
this by building the cluster chain itself from a Hadamard representing the extended
calculus.

4.6 Cluster-based quantum state transfer (Figure 13)

Overview. In real quantum computing architectures that make heavy use of cluster
states, such as the ion trap model [? ], qubits are encoded in individual atomic
structures, often arranged in a linear chain. One may want to move a target
qubit to a different position in the chain—for example, to enable a multi-qubit
gate to be applied, or to put the target qubit into position to be measured—but
physically moving individual atoms may be impractical [? ], and the 2-qubit swap
gate |ij〉 7→ |ji〉 may be hard to implement.

Here we introduce a state transfer program for moving a target qubit along a

1

2

1

2

(a) Program (b) Specification

Figure 13: Cluster-based quantum state transfer.

15



cluster chain, which uses only the tangle interaction used for generating the cluster
states which the machine may be optimized to perform, and which is robust against
tangle gate errors on the non-target qubits.

Program Figure 13(a). 1 Begin with a target qudit on the left, and a cluster
state to the right, corrupted with an arbitrary tangle gate. 2 Perform a repeating
sequence of 1- and 2-qudit tangle gates along the chain as indicated.

Specification Figure 13(b). 1 Move the target qudit to the rightmost position.
2 Recreate the cluster state with tangle gate error on the remaining qudits.

Verification. Immediate by isotopy: the tangle state in the lower-right of Fig-
ure 13(a) moves up and left, underneath the diagonal wires, producing the shaded
tangle Figure 13(b).

Reidemeister moves. This requires the extended calculus.

Novelty. We believe this procedure is new.

5 Teleportation
Teleportation is a major theme in quantum information, playing an important
structural role in the design of quantum computers. Here we use our topological
calculus to verify a wide range of teleportation protocols. Our analysis in this
section requires some small modifications to our graphical language, which we briefly
describe.

Partitions. In this section it will often be important that the resources are parti-
tioned, with qudits controlled by a number of different agents. Where appropriate
we use vertical dashed lines to indicate this partitioning as an informal visual aid.

Measurement. It is standard that if a qudit is used only as the control side of a
controlled 2-qudit unitary, then it may be considered as having been measured, and
the controlled unitary interpreted as a classically controlled family of 1-qubit gates [?
, Exercise 4.35]. To indicate this in our formalism, we shade the corresponding qudit
red, and interpret it as a classical dit. As with partitions above, this is an informal
visual aid; with respect to the mathematics, the red and blue shaded regions are
equivalent. When a red region meets a vertical dashed partitioning line, we interpret
this as classical communication.

Overlapping. When multiple red regions exist at once, we are sometimes forced
by the protocol topology to draw them as overlapping. This will necessitate the use
of new sorts of crossings, such as those in the upper-left of Figure 14(a). Unlike the
crossings of blue regions which represent Hadamards, these crossings of red regions
are mathematically trivial, and simply encode the reordering of classical data. In
terms of our categorical semantics, this overlapping is described by the monoidal
structure of the 2-category. In terms of knot theory this corresponds to the shaded
virtual knots of Kauffman and others [? ], which also have two kinds of crossing.
In this extended abstract we treat aspects of virtual shaded knot theory, and the
corresponding Reidemeister moves, informally.

16



5.1 Measurement-based GHZ teleportation (Figure 14)

Overview. Teleport a state from agent 1 to agent n using a shared n-partite GHZ
state and classical communication, with all corrections performed by agent n. (Note
relationship to Section 5.2.)

Program Figure 14(a). We illustrate the program for three agents: Alice, Bob
and Charlie. 1 Alice has a qudit to be teleported, and all agents share a GHZ state,
perhaps generated according to Section 4.1. 2 Alice applies a 2-qudit gate. 3 Alice
and Bob measure all their qudits in the complementary basis determined by the
Hadamard, and send the results classically to Charlie. 4 Charlie performs unitaries
on his qudit, dependent on Alice and Bob’s measurement results.

Specification Figure 14(b). Alice’s qudit is passed to Charlie, and the classical
dits are produced by measuring |+〉 states.

Verification. By isotopy; the three ‘cups’ forming the GHZ state can be pulled up
one at a time.

Reidemeister moves. This only requires the basic calculus.

Novelty. This protocol was first described by Karlssen [? ] for the qubit 3-party
case, by Hillery [? ] for the qubit n-party case and by Grudka [? ] for qudit Fourier
matrices. For general self-transpose Hadamards this seems new.

Discussion. This program can be understood as distributing Alice’s initial state
across all parties. Only after all parties cooperate and reveal their measurement
results can Alice’s state be reconstructed by Charlie. From this perspective the
procedure is reminiscent of a secret sharing protocol, and it has been discussed in
these terms by Hillery [? ].

Alice Bob Charlie

1

2

3

4

Alice Bob Charlie

(a) Program (b) Specification

Figure 14: Measurement-based GHZ teleportation.

17



5.2 Measurement-based cluster chain teleportation (Figure 15)

Overview. Teleport a state from agent 1 to agent n using a shared n-party cluster
chain and classical communication, with all corrections performed by agent n. (Note
relationship to Section 5.1.)

Program Figure 15(a). Almost identical to the program of Section 5.1, except
with an initial cluster chain rather than GHZ state, and Charlie’s steps are slightly
modified.

Specification Figure 15(b). Alice’s qudit is passed to Charlie, and the classical
dits are produced by measuring |+〉 states.

Verification. Similar to Section 5.1.

Reidemeister moves. This only requires the basic calculus.

Novelty. This program is known in the case of conventional qubit cluster states [? ?
]. We believe this program is new for the generalized cluster chains considered here,
based on arbitrary self-transpose Hadamards, and in fact a further generalization to
arbitrary Hadamards is straightforward.

5.3 Robust GHZ teleportation (Figure 16)

Overview. Given a chain of n agents sharing a GHZ resource state, teleport a
qudit from agent 1 to n, in a way which is robust against a large class of errors in
the resource state.

Program Figure 16(a). We illustrate the program for 3 agents Alice, Bob and
Charlie. 1 Alice begins with a qudit to be teleported, and all 3 agents share a
GHZ state, perhaps generated according to Section 4.1. 2 An error in the form of
an arbitrary tangle gate (see Section 3.3) acts on part of the GHZ state as shown.
3 Alice performs a 2-qudit gate, then measures her qudits in the complementary

Alice Bob Charlie

1

2

3

4

Alice Bob Charlie

(a) Program (b) Specification

Figure 15: Measurement-based cluster chain teleportation.

18



basis determined by the Hadamard, sending the left and right qudit results to Bob
and Charlie respectively. 4 Bob applies a controlled unitary to his qudit, then
measures his qudit in the complementary basis, and sends his result to Charlie.
5 Charlie performs unitaries on his qudit dependent on Alice’s and Bob’s results.

Specification Figure 16(b). Alice’s qudit is passed to Charlie, and the classical
dits are produced by applying a tangle gate (in fact, the shading-reversal of the
tangle gate used in Figure 16(a)) to |+〉 states and measuring in the computational
basis.

Verification. By isotopy, the entire tangle error can be pulled up, ‘underneath’ the
lower diagonal strand, inverting its shading. The lower ‘cup’ of the GHZ state can
then be pulled up similarly.

Reidemeister moves. The GHZ teleportation program requires the basic calculus,
and robustness under tangle errors requires the extended calculus.

Novelty. Ignoring the robustness property, we believe this program to be folklore;
note that for 2 parties it corresponds to ordinary Bell state teleportation, and
the measure-correct pattern repeated here serves to convert |GHZn〉 to |GHZn−1〉.
The generalization here to arbitrary self-transpose qudit Hadamards, and (with the
extended calculus) the robustness property, seems to be new.

5.4 Nonlocal controlled unitaries (Figure 17)

Overview. Suppose that Alice and Bob have separate qudits, and they want to
perform a 2-qudit controlled unitary of the following form, where Bob’s qudit is the
control:

U =
∑d−1

i=0 Ui ⊗ |i〉 〈i|

Tangle Gate

Alice Bob Charlie

1

2

3

4

5

Tangle Gate

Alice Bob Charlie

(a) Program (b) Specification

Figure 16: Robust GHZ teleportation.

19



Both qudits are to be kept coherent throughout. The naive solution would be for
one party to transport their system to the other party; for the 2-qudit unitary to be
performed; and for the system to then be transported back. We describe a protocol
to achieve this task with only one quantum transport required.

Program Figure 17(a). 1 Bob prepares a |+〉 state, entangles it with his qudit
and transports it to Alice. 2 Alice performs a 1-qubit gate, performs the controlled
unitary C, measures in the complementary basis, then sends the result to Bob.
3 Bob performs a correction.

Specification Figure 17(b). Alice’s qudit is transported to Bob, who performs
the controlled unitary, then passes it back. The classical dit arises from measuring
a |+〉 state.

Verification. Immediate by isotopy.

Reidemeister moves. This only requires the basic calculus.

Novelty. A version of this program based on qudit Fourier Hadamards and in-
volving an initial teleportation step was considered by Yu et al. [? ] and described
graphically by Jaffe et al. [? ]. We generalize this here to arbitrary self-transpose
Hadamard matrices. However, Jaffe et al describe a different generalization to mul-
tiple agents, which we cannot capture.

6 Quantum error correction
We now apply our shaded tangle calculus to the theory of quantum error correc-
tion. We give a graphical verification of the phase and Shor codes, and we give a
substantial new generalization of both based on unitary error bases. This verifica-
tion is based on the Knill-Laflamme theorem [? ], a powerful theorem in quantum

Alice Bob

1

2

3

C

Alice Bob

C

(a) Program (b) Specification

Figure 17: Execution of a nonlocal controlled unitary.

20



information which establishes a correspondence between error correcting codes and
mathematical properties of the encoding isometry. Given an encoding map satisfying
these properties, a full error correcting protocol can be constructed.

Basic definitions. We begin by establishing notation. For n, k, p, d ∈ N, an
[[n, k, p]]Ed code uses n physical qudits to encode k logical qudits, in a way which is
robust against errors occurring on at most b(p − 1)/2c physical qudits, such that
each error is drawn from the subgroup E ⊆ U(d). We will be concerned with two
types of errors: full qudit errors, for which E = U(d), and phase errors, for which
E = P ⊂ U(d), the subgroup of diagonal unitary matrices. The Knill-Laflamme
theorem [? ] gives a way to identify these codes.

Definition 6.1. An operator e : (Cd)n −→ (Cd)n is (p, E)-local when it is of the form
e = U1 ⊗ ∙ ∙ ∙ ⊗ Un, such that Ui ∈ E for all 1 ≤ i ≤ n, and such that at most p − 1
of the operators Ui are not the identity.

Theorem 6.2 (Knill-Laflamme [? ]). An isometry i : (Cd)k −→ (Cd)n gives an
[[n, k, p]]Ed code just when, for any (p, E)-local operator e : (Cd)n −→ (Cd)n, the com-
posite

(Cd)k i
−→ (Cd)n e

−→ (Cd)n i†
−→ (Cd)k (8)

is proportional to the identity.

Informally, the Knill-Laflamme theorem says that we have a [[n, k, p]]Ed code just
when, if we perform the encoding map, then perform a (p, E)-local error, then
perform the adjoint of the encoding map, the result is proportional to our initial
state. To be clear, any proportionality factor is allowed, even 0.

Representing errors. Following the general rules of our graphical calculus pre-
sented in Section 2.1, we represent arbitrary qudit phases and qudit gates as follows,
respectively:

We draw them in red as they are interpreted here as errors.

6.1 The phase code

Overview. We present a [[n, 1, n]]Pd code: that is, a code which uses n physical
qudits to encode 1 logical qudit in a way that corrects b(n−1)/2c phase errors on
the physical qudits. The data is a family of n d-dimensional Hadamard matrices.

Program. The encoding map i is depicted in Figure 18(a).

Specification. Satisfaction of the conditions of Theorem 6.2.

Verification. In Figure 19 we illustrate the n = 3 version of the code. We must
therefore show that the composite i† ◦ e ◦ i, for any 3-local phase error in which
2 qudits are corrupted by arbitrary phases, is proportional to the identity. Given
the symmetry of the encoding map, there are two cases: the errors can occur on

21



adjacent or nonadjacent qudits. We analyze the case of adjacent errors here; the
verification for nonadjacent errors is analogous. In the first image of Figure 19 we
represent the composite i†◦e◦i, using some artistic licence to draw the closed curves
as circles. We apply RII moves to cause the errors to become ‘captured’ by bubbles
floating in unshaded regions, which therefore (see Figure 4(f)) give rise to overall
scalar factors.

Reidemeister moves. This only requires the basic calculus.

Novelty. A major novel feature is the visceral sense of how the protocol works that
Figure 19 conveys: the phase errors are ‘captured by bubbles’ and turned into scalar
factors. We believe this intuition has not been described elsewhere.

In terms of the mathematics, for the qubit Fourier Hadamard, this code is very
well known [? ? ]. The generalization to arbitrary qudit Hadamard follows from
work of Ke [? ]. Our treatment reveals a further generalization: each of the n
Hadamards used to build the encoding map i may be distinct, since throughout the
verification, we only ever apply the basic calculus moves to a Hadamard and its
own adjoint. Furthermore, note that our usual requirement for the Hadamards to
be self-transpose is not necessary here, since we never rotate the crossings.

6.2 The Shor code

Overview. We present a [[n2, 1, n]]
U(d)
d code: that is, a code which uses n2 physical

qudits to encode 1 logical qudit in a way that corrects b(n−1)/2c arbitrary physical
qudit errors. The data is a family of n d-dimensional Hadamard matrices.

n

...

n n
n2

...

... ...

(a) Phase code (b) Shor code

Figure 18: The encoding maps i for the phase and Shor codes.

i

e

i†

RII
=

Fig. 4(f)
∝ RII

=
Fig. 4(f)

∝

Figure 19: Verification of the [[3, 1, 3]]Pd phase code.

22



F.4(c)
=

F.4(e)
=

RII
=

F.4(f)
∝ RII

=
F.4(f)
∝

Figure 20: Verification of the [[9, 1, 3]]
U(d)
d Shor code.

Program. We choose the encoding map from Figure 18(b).

Specification. Satisfaction of the conditions of Theorem 6.2.

Verification. In Figure 20 we illustrate one error configuration for the n = 3 case,
where e encodes two full qudit errors. All other cases work similarly. The general
principle is the same as for Section 6.1.

Reidemeister moves. This only requires the basic calculus.

Novelty. For d = 2, n = 3 and the qubit Fourier Hadamard, this is exactly Shor’s
9-qubit code [? ]. The qudit generalization for a general Hadamard is discussed
in [? ]. As with the phase code, our version is more general still, since each of the
Hadamards can be different.

6.3 Unitary error basis codes

Overview. We show that the phase and Shor codes described above still work
correctly when the Hadamards are replaced by unitary error bases (UEBs). These

new codes have the same types [[n, 1, n]]Pd2 , [[n2, 1, n]]
U(d)

d2 as the phase and Shor codes,
except with the additional restriction that the systems are of square dimension, since
unitary error bases always have a square number of elements.

Unitary error bases (UEBs). UEBs are fundamental structures in quantum
information which play a central role in quantum teleportation and dense coding [?
], and also in error correction when they satisfy the additional axioms of a nice error
basis [? ]. However, the new UEB codes we present here are seemingly unrelated,
and do not require the additional nice error basis axioms. UEBs are defined as
follows.

Definition 6.3. On a finite-dimensional Hilbert space H, a unitary error basis is a
basis of unitary operators Ui : H −→ H such that Tr(U †

i Uj ) = δij dim(H).

UEBs have an elegant presentation in terms of our graphical calculus [? ? ].

23



(a) Phase code (b) Full qudit code

Figure 21: The Knill-Laflamme condition for UEB codes.

Theorem 6.4 (See [? ]). Unitary error bases correspond to vertices of the following
type, satisfying equations analogous to Figure 5(b) and (c):

(9)

For a precise description of the necesasry equations see [? , Proposition 9]. The
wires with unshaded regions on both sides represent the Hilbert space Cd, and the
shaded region is labelled by a set of cardinality d2.

Program. We choose the following encoding maps to generalize the phase and Shor
codes, respectively:

Specification. Satisfaction of the conditions of Theorem 6.2.

Verification. The procedure is identical to the phase and Shor code verifications,
the only difference being that some regions are differently shaded. To make this
clear, in Figure 21 we give the graphical representations of the Knill-Laflamme
i† ◦ e ◦ i composites for these new codes; compare these images to the first graphics
in Figures 19 and 20.

Novelty. As error correcting codes, these have precisely the same strength as the
traditional phase and Shor codes. However, they are constructed from completely
different data, and therefore push the theory of quantum error correcting codes in
a new direction. (Although some UEBs can be constructed from Hadamards, they
do not all arise in that way [? ? ].) This showcases the power of our approach to
uncover new paradigms in quantum information.

24



Data accessibility. This paper has no additional data.

Authors’ contributions. Both authors contributed equally to the current work.

Competing interests. We declare we have no competing interests.

Funding. J.V. is funded by a Royal Society University Research Fellowship.

Ethics. This work did not involve any collection of human data.

Acknowledgements. We thank Paul-André Mellies for suggesting the shaded
tangle representation, Amar Hadzihasanovic for detailed conversations about the
protocol in Section 5.4, Matty Hoban, Nathan Bowler and Niel de Beaudrap for
telling us some useful things about cluster states, and Arthur Jaffe, Zhengwei Liu
and Alex Wozniakowski for discussions about planar para algebras.

References

25



A Reidemeister III Hadamard matrices

The additional RIII condition (3) induces substantial constraints on a self-transpose
Hadamard matrix. Here, we show that these equations have solutions in all finite
dimensions. We consider two different families of solutions: Potts-Hadamard matri-
ces, and metaplectic invariants. Almost everything in this section follows directly
from results of Jones [? ] on building link invariants from statistical mechanical
models.

Potts-Hadamard matrices. A Potts-Hadamard matrix is a self-transpose Hadamard
matrix of the following form, that satisfies (3):

= λ + μ (10)

In tensor notation, this means that Ha,b = λ δa,b + μ. We can classify Potts-
Hadamard matrices exactly.

Theorem A.1. Every Potts-Hadamard matrix has μ = 1√
d
λ with

λ ∈ U(1) and λ2 + λ
2

= −
√

d (11)

where d is the dimension of the Hadamard matrix. This has the following solutions:

• d = 2 and λ ∈ {e
3πi
8 , e−

3πi
8 , e−

5πi
8 , e

5πi
8 };

• d = 3 and λ ∈ {e
5πi
12 , e−

5πi
12 , e−

7πi
12 , e

7πi
12 };

• d = 4 and λ ∈ {i,−i}.

The d = 2 Potts-Hadamard matrices have the following form:

e- πi
8

√
2

(
1 i
i 1

)
e

πi
8

√
2

(
1 -i
-i 1

)
e

7πi
8

√
2

(
1 i
i 1

)
e- 7πi

8

√
2

(
1 -i
-i 1

)

In fact, it can be shown by direct calculation that these are the only two dimensional
self-transpose Hadamard matrices fulfilling (3).

Equation (10) (together with (11)) is a rescaled version of the defining relation
of Kauffman’s bracket polynomial [? ]; evaluating one of these matrices on a closed
link diagram therefore yields (after suitable renormalization) the Jones polynomial
of the link at certain roots of unity.

Metaplectic invariants. Following Jones and others [? ? ? ], given d ∈ N with
d > 0, we make the following definitions:

ξ := −e
πi
d ω := 1√

d

∑d−1
k=0 ξk2

(12)

Let λ be a square root of ω, and for 0 ≤ a, b ≤ d − 1, define Ha,b as follows:

Ha,b =
λ
√

d
ξ(a−b)2 (13)

Then we have the following.

Theorem A.2. The coefficients Ha,b define a self-transpose Hadamard satisfying (3).

This establishes that solutions to our graphical equations can be found in all finite
dimensions.

26



= = = =

RI RII RIII

Figure 22: The unshaded Reidemeister moves up to rotations and reflections.

B Omitted proofs
Theorem 2.1. Two shaded tangle diagrams with the same upper and lower bound-
aries are equal under the axioms of the extended calculus (up to an overall scalar
factor) just when their underlying tangles, obtained by ignoring the shading, are
isotopic as classical tangles.

Proof. It is well known that two tangle diagrams are isotopic just when they can be
transformed into each other using local Reidemeister moves. All Reidemeister moves
can be obtained from arbitrary rotations and reflections of the moves depicted in
Figure 22. Since our tangles are shaded, they transform under shaded Reidemeister
moves - ordinary Reideimeister moves with a choice of checkerboard shading. Thus,
up to rotations and reflections, there are 2 shaded versions of RI, 4 shaded versions
of RII and 2 shaded versions of RIII. To prove Theorem 2.1, we therefore have to
show that (up to scalar factors) all these shaded Reidemeister moves are implied by
the basic axioms of the extended calculus presented in Figure 5. Using the shaded
RII equations, it can be shown that the two shaded RIII equations are equivalent.
Using shaded RII and RIII, it can be shown that the two shaded RI equations are
equivalent. Therefore, two shaded tangles are isotopic if and only if they can be
transformed into each other using all four shaded RII equations and one shaded RI
and RIII equation, respectively.

Theorem 2.2. In 2Hilb, a shaded crossing yields a solution of the basic calculus
just when it is equal to a self-transpose Hadamard matrix.

Proof. Solutions to the shaded Reimeister II equations in 2Hilb Figure 5(b) and (c)
were classified in terms of Hadamard matrices in [? , Proposition 7]. The ad-
ditional equation Figure 5(d) implies that the corresponding Hadamard matrix is
self-transpose. An equivalent classification using slightly different terminology can
be found in [? ].

Theorem 2.3. In 2Hilb, a self-transpose Hadamard matrix satisfies the extended
calculus just when:

∑|S|−1
r=0 HarHbrHcr =

√
|S|HabHacHbc (3)

Proof. Translating the Reimeister III equation Figure 5(f) into the corresponding

27



family of tensor diagrams (as described in Figure 3) yields the following:

=
√
|S|

! ∀
d−1

a,b,c=0










d−1∑

x=0

a x

c

b

Hc,x

Hb,x

Ha,x =
√
|S| a

b

c

Ha,b

Ha,c

Hb,c










Here a, b, and c label the left, top right, and bottom right shaded region, respec-
tively. The central shaded region is labelled by x and summed over. Note that
the Hadamard matrix H is self-transpose. Thus, this results in equation (3). Simi-
larly, the Reidemeister I equation Figure 5(e) translates into the following equation
which is a direct algebraic consequence of (3) for a = b (with λ =

√
|S|Ha,a):∑|S|−1

r=0 Hc,r = λ. An equivalent classification using slightly different terminology
can be found in [? ].

Theorem A.1. Every Potts-Hadamard matrix has μ = 1√
d
λ with

λ ∈ U(1) and λ2 + λ
2

= −
√

d (11)

where d is the dimension of the Hadamard matrix. This has the following solutions:

• d = 2 and λ ∈ {e
3πi
8 , e−

3πi
8 , e−

5πi
8 , e

5πi
8 };

• d = 3 and λ ∈ {e
5πi
12 , e−

5πi
12 , e−

7πi
12 , e

7πi
12 };

• d = 4 and λ ∈ {i,−i}.

Proof. For a shaded crossing of the form (10) the two Reidemeister II equations look
as follows:

!
=

(10)
= λλ + λμ + μλ + μμ

Fig. 4(d)
= |λ|2 +

(
λμ + μλ + d |μ|2

)

1

d
!
=

(10)
= λλ + λμ + μλ + μμ

28



Fig. 4(c)
= |μ|2 +

(
λμ + μλ + |λ|2

)

In other words, |λ| = 1, |μ| = 1√
d
, and λμ + μλ = −1. Reidemeister III yields the

following:

(10)
= λ + μ

RII
= λ + dμ

!
=

√
d

(10)
=

√
d λ +

√
d μ

In short, μ = λ√
d
. Together with the constraints from RII this proves the theorem.

Theorem A.2. The coefficients Ha,b define a self-transpose Hadamard satisfying (3).

Proof. Note that ω (defined in (12)) and its square root λ have modulus one. A proof
of this fact using the discrete Fourier transform can be found in [? , Proposition
2.15]. Therefore, |Ha,b| = 1√

d
. The matrix H is unitary, since

d−1∑

c=0

Ha,cHb,c
(13)
=

1

d

d−1∑

c=0

ξ(a−c)2−(b−c)2 =
1

d
ξa2−b2

d−1∑

c=0

ξ2bc−2ac (12)
=

1

d
ξa2−b2

d−1∑

c=0

e
2πi
d

(b−a)c = δa,b.

It satisfies (3), since

d−1∑

r=0

Ha,rHb,rHc,r
(13)
=

λ

d
3
2

d−1∑

r=0

ξ−(a−r)2+(b−r)2+(c−r)2 =
λ

d
3
2

ξb2+c2−a2
d−1∑

r=0

ξr2+2r(a−b−c)

=
λ

d
3
2

ξb2+c2−a2−(a−b−c)2
d−1∑

r=0

ξ(r+(a−b−c))2 =
λ

d
3
2

ξb2+c2−a2−(a−b−c)2
d−1∑

r=0

ξr2

(14)

(12)
=

λ

d
ξ−2a2+2ab+2ac−2bc.

29



The second equality in (14) holds since ξd2
= 1. On the other hand,

√
dHa,bHa,cHb,c =

λ

d
ξ−(a−b)2−(a−c)2+(b−c)2 =

λ

d
ξ−2a2+2ab+2ac−2bc.

Thus, H is a self-transpose Hadamard matrix fulfilling (3).

30


	Introduction
	Overview
	Main results
	Significance
	Criticism
	Related work

	Mathematical foundations
	Graphical calculus
	Shaded tangles
	Programs and specifications

	Entangled states
	GHZ states
	Cluster chains
	Tangle gates and tangle states

	Manipulating quantum states
	Constructing GHZ states (Figure 2)
	Creating cluster chains
	Local unitary equivalence (Figures 9 and 10)
	Cutting cluster chains (Figure 11)
	Splicing cluster chains (Figure 12)
	Cluster-based quantum state transfer (Figure 13)

	Teleportation
	Measurement-based GHZ teleportation (Figure 14)
	Measurement-based cluster chain teleportation (Figure 15)
	Robust GHZ teleportation (Figure 16)
	Nonlocal controlled unitaries (Figure 17)

	Quantum error correction
	The phase code
	The Shor code
	Unitary error basis codes

	Reidemeister III Hadamard matrices
	Omitted proofs

