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SUMMARY BOX 

Significance of this study: 

What is already known about this subject?  

 Short chain fatty acids (SCFA), derived from fermentation of dietary fibre by the gut 

microbiota, have been shown to improve host insulin sensitivity. 

 We have previously shown that supplementing the diet with inulin propionate ester (IPE), 

designed to deliver the SCFA propionate to the colon, improves glucose homeostasis in 

humans, but the underlying mechanisms are unclear.  

What are the new findings?  

 Dietary supplementation with 20 g/day of IPE or the high-fermentable control fibre inulin for 

42 days improved insulin sensitivity compared to the low-fermentable fibre control cellulose 

in adults with overweight and obesity. There were no differences with IPE compared to 

inulin. 

 Fasting insulin following each supplementation period were associated with different 

plasma metabolome profiles. A positive association between plasma N-acetyl glycoproteins 

and fasting insulin was observed following cellulose supplementation, which was not found 

after inulin or IPE supplementation. Tyrosine (positively) and glycine (negatively) were only 

associated with fasting insulin following inulin supplementation. 

 The improvement in metabolic health with IPE relative to cellulose supplementation was 

accompanied with decreased pro-inflammatory IL-8 levels. Analysis in vitro found that 

peripheral blood mononuclear cells isolated from healthy humans secrete less IL-8 in media 

containing sodium propionate compared to both sodium acetate and sodium chloride.  

 IPE supplementation caused changes in gut bacterial populations compared with cellulose 

only at the species level. Inulin supplementation changed gut bacterial composition at both 

the class and order level, relative to cellulose, and promoted a bifidogenic effect. 

How might it impact on clinical practice in the foreseeable future? 

 Strategies that promote colonic propionate production may represent a more targeted route 

to improve glucose homeostasis in individual patients, depending on the underlying 

mechanisms contributing to the metabolic disorder. 
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ABSTRACT 

Objective: To investigate the underlying mechanisms behind changes in glucose homeostasis 

with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut 

bacterial composition, plasma metabolome and immune responses. 

Design: Twelve non-diabetic adults with overweight and obesity received 20g/day of inulin-

propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable 

fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, 

placebo controlled, crossover design. Outcome measurements of metabolic responses, 

inflammatory markers and gut bacterial composition were analysed at the end of each 42-day 

supplementation period. 

Results: Both IPE and inulin supplementation improved insulin resistance compared to cellulose 

supplementation, measured by homeostatic model assessment (HOMA) 2 (Mean±SEM 1.23±0.17 

IPE vs. 1.59±0.17 cellulose, P=0.001; 1.17±0.15 inulin vs. 1.59±0.17 cellulose, P=0.009), with no 

differences between IPE and inulin (P=0.272).  Fasting insulin was only associated positively with 

plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE 

supplementation decreased pro-inflammatory IL-8 levels compared to cellulose, whilst inulin had 

no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial 

populations at the class level (increased Actinobacteria and decreased Clostridia) and order level 

(decreased Clostridales) compared to cellulose, with small differences at the species level 

observed between IPE and cellulose.  

Conclusion: These data demonstrate a distinctive physiological impact of raising colonic 

propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin 

were accompanied with different effects on the plasma metabolome, gut bacterial populations and 

markers of systemic inflammation. 

Word Count: 251 (250 max)  
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INTRODUCTION 

In both epidemiological studies and randomised controlled trials, higher intakes of dietary fibre are 

associated with a reduced risk of type 2 diabetes1. An improvement in metabolic health risk factors 

is greatest when dietary fibre intake exceeds 25 g/day1, however, at the population level, average 

intakes are considerably below this amount2. Understanding the mechanisms by which increased 

dietary fibre intake exerts health benefits may allow us to exploit them to prevent or treat metabolic 

disease. 

Dietary fibre intake modulates the composition and activity of the gut microbiota3. An improvement 

in whole-body insulin sensitivity following increased dietary fibre intake has been linked to 

increased colonic production of the short chain fatty acids (SCFAs) acetate, propionate and 

butyrate, the major end-products of dietary fibre fermentation by the gut bacteria4 5. Evidence in 

human trials has shown that increasing dietary fibre intake protects against weight gain6 7 and 

improves markers of insulin sensitivity8-10. These positive effects have been observed with a 

number of dietary fibre supplements, including whole-grain diets10, resistant starches9 and inulin-

type fructans8, which produce varying amounts of SCFAs in the gut owing to the complex 

interaction between the physicochemical properties of the substrate and the gut microbiota5 11. 

SCFAs have been suggested to improve insulin sensitivity via effects on metabolic pathways and 

receptor-mediated mechanisms at various tissue and organ sites12. Specifically, SCFAs act as 

ligands for G-protein-coupled receptors (GPR) free fatty acid receptor 2 (FFAR2), FFAR3 and 

GPR109a, which are expressed throughout the body and have been shown to modulate energy 

homeostasis13.  Our previous work has primarily focused on the role of the SCFA propionate, as a 

number of studies have shown that mice receiving a gut microbial transplant that promotes caecal 

propionate production have improved body composition and glycaemic control14 15. We have 

described how inulin-propionate ester (IPE) can target delivery of propionate to the colon16 17, and 

observed that long-term ingestion of 10g/day IPE ameliorates body weight gain and the 

development of abdominal visceral adipose tissue in overweight human adults16. A secondary 

outcome of this study was the observation that IPE improved glucose homeostasis, which was 

associated with a direct action of propionate on human islet β-cells18. These studies indicated in 

vitro that FFAR2 is expressed in human islets and that propionate-mediated signalling potentiated 

glucose-stimulated insulin release and protected from apoptopic stimuli18. Long term colonic 

propionate delivery also reduced levels of non-esterified fatty acid (NEFA)18, a recognised factor 

that contributes to β-cell dysfunction and peripheral insulin resistance19. The stimulation of FFAR2 

expressed on adipocytes has previously been shown to inhibit adipocyte lipolysis and the levels of 

circulating NEFA20. 
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Insulin resistant states that develop with increasing adiposity have been linked to the activation of 

inflammatory responses in different organ sites, including adipose tissue, liver and skeletal muscle, 

which increases secretion and systemic levels of pro-inflammatory cytokines21. It is recognised that 

increased dietary fibre intake and SCFA production has a profound effect on inflammatory and 

immune function in the colon, largely through effects on the generation of regulatory T cells 

(Treg)22 23 and mucosal secretion of immunoglobulin (Ig) A24. Previous work highlights that SCFAs 

can also influence inflammatory and immune responses beyond their site of production in 

peripheral tissues24-26. Supplementing naïve T cells cultures with propionate enhanced Treg 

development  and reduced the expansion of inflammatory Th17 cells26. The improvements in 

glucose homeostasis we have previously observed following long-term colonic propionate delivery 

may be partly explained by a dampening of the low-grade systemic inflammation that accompanies 

obesity. 

Although there is increasing evidence that gut bacteria play a role in insulin resistance, the 

mechanisms have not been fully elucidated. Our previous work explored the effect of increasing 

colonic propionate production on gut bacterial composition, using batch-culture fermentation 

models in vitro, and found that improvements in host metabolic health with IPE supplementation 

were not due to changes in the gut bacterial populations examined16. However, batch-culture 

models lack the complexity of the human gut; 16S ribosomal ribonucleic acid (rRNA) gene 

sequencing of stool samples would allow a more physiologically relevant and deeper interrogation 

of the impact of long term colonic propionate delivery on gut bacterial composition and the 

association of these changes with improvements in host metabolism. 

The primary aim of the present study was to elucidate the underlying mechanisms behind 

improvements in glucose homeostasis following long-term delivery of propionate to the human 

colon. In our previous studies, inulin was used as a control to account for changes to the 

composition and metabolic activity of the gut microbiota that may derive from the inulin content of 

IPE21. We have previously found that 10 g/day IPE improved glucose homeostasis compared to an 

inulin control16 18, however, inulin has itself been associated with improvements in metabolic 

responses when compared to a non- or low-fermentable control, particularly when supplemented in 

higher doses (>15g/d)8 27.   Consequently, the present randomised crossover trial used 20 g/day of 

IPE and inulin to probe the common mechanisms underlying improvements in insulin sensitivity 

following dietary supplementation with a high-fermentable fibre and to differentiate them from those 

driven specifically from the selective delivery of propionate to the human colon with IPE.   
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METHODS 

All participants provided informed written consent prior to the clinical trial, which was approved by 

the London Brent Research Ethics Committee (14/LO/0645). The study was carried out in 

accordance with the Declaration of Helsinki and is registered with the ISRCTN registry 

(ISRCTN71814178). 

Men and women aged 18-65 years, with a body mass index (BMI) of 25-40 kg/m2 were recruited. 

Detailed exclusion criteria are presented in the supplementary material. The study was conducted 

using a randomised, double-blind, placebo controlled, crossover design (Suppl. Figure 1). 

Participants received 20 g/day of a low-fermentable fibre control (cellulose; microcrystalline 

cellulose (ACI Group Ltd, Slough, UK)), a high-fermentable fibre control (inulin; (Beneo-Orafti HP, 

Kreglinger Europe, Antwerpen, Belgium)) and IPE for 42 days each in a random order. The 20 

g/day dose of IPE would have provided 14.6 g/day of inulin (and 5.4 g/day esterified propionate) to 

the diet16. Cellulose was used as a negative control due to its low fermentability and consequent 

low SCFA production. The supplements were provided to volunteers in 10 g ready-to-use sachets 

and they were instructed to mix the contents into their normal diet twice a day. There was a 

washout period of at least 28 days between supplementation periods. The mean ± SEM washout 

period between supplementation periods 1-2 and 2-3 was 44±6 and 44±9 days, respectively. All 

participants were instructed to maintain their usual dietary and physical activity habits during the 

study period and regular communication between participants and study investigators encouraged 

good compliance. Participants returned their used and unused sachets to facilitate the estimation 

of compliance rates. 

At the end of each 42 day supplementation period, participants attended the NIHR Imperial Clinical 

Research Facility to determine outcome measures. The primary outcome was change in glucose 

homeostasis. The day prior to the study visits, participants were requested to refrain from 

strenuous exercise and alcohol and to consume a standard evening meal prior to fasting overnight 

for >10 hours. 

 

Mixed meal test (MMT) 

A cannula was inserted into an antecubital vein and two fasting blood samples were collected >5 

min apart. At 0 min, participants were served a standard liquid meal (Ensure Plus, Abbott, UK: 660 

kcal; 88.9 g carbohydrate, 21.6 g fat, 27.5 g protein) that was ingested within 10 min.  Postprandial 

blood samples were taken at 10, 20, 30, 45, 60, 90, 120 and 180 min and analysed for glucose, 

insulin, NEFA, active glucagon-like-peptide 1 (GLP-1), total peptide YY (PYY) and SCFA levels. 1H 

NMR spectroscopy was performed on fasting plasma samples for metabolite analysis. A detailed 

description of blood sample collection and analysis is presented in the supplementary material.   
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Immune and inflammatory phenotyping 

Immunoglobulin (Ig)-A, IgG, IgM and C-reactive protein were measured in fasting serum samples 

by the Department of Chemical Pathology, Imperial College Healthcare National Health Service 

Trust (ICHNHST). Interleukin (IL)-6, IL-8, IL-10, IL-12, IL-17A and tumor necrosis factor alpha 

(TNF-α) were measured in fasting serum using the Cytometric Bead Array (BD Biosciences, UK), 

according to the manufacturer’s protocol. Lipopolysaccharide binding protein (LBP) was measured 

in fasting serum by enzyme-linked immunosorbent assay (HyCult Biotechnology, The 

Netherlands), according to the manufacturer’s protocol. Whole blood (30ml) was collected into 

heparin-coated tubes and peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-

Hypaque (Amersham Biosciences, UK) and cryopreserved in 10% dimethyl sulfoxide/fetal calf 

serum.  A detailed description of PBMC analysis is presented in the supplementary material.    

Stool deoxyribonucleic acid (DNA) extraction and 16S rRNA gene sequencing 

(Metataxonomics) 

A stool sample was collected from volunteers on the final day of each supplementation period. 

DNA was extracted from each stool sample using the PowerLyzer PowerSoil DNA Isolation Kit (Mo 

Bio, Carlsbad, CA, USA) following manufacturer’s instructions, with the modification that samples 

were beaten for 3 min at speed 8 in a Bullet Blender Storm (Chembio Ltd, St. Albans, UK). A 

detailed description of stool sample collection and metataxonomic analysis is presented in the 

supplementary material.   

Calculations and statistical analysis 

A detailed description of statistical analysis is presented in the supplementary information, Data 

are presented as means ± SEM and P<0.05 was considered significant. 
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RESULTS 

 

Of 14 volunteers enrolled and randomised into the study, data were analysed from the 12 

volunteers that completed all three 42 day supplementation periods. The characteristics of these 

volunteers at screening are presented in Table 1. There was no evidence of carry-over effects in 

the main outcome measures across the three supplementation periods (Suppl. Table 1; Suppl. 

Figure 2).   

Stool concentrations of SCFAs were not different following the three supplementation periods 

(Figure 1A), however, the molar percentage of propionate was significantly higher following IPE 

supplementation compared to cellulose (27.9±2.6 vs.21.0±2.0%, P=0.019; Figure 2B). There were 

no differences in the total or molar percentages of SCFAs in fasting or postprandial blood between 

supplementation periods (Figure 1C-D; Suppl. Table 2).    

Both inulin and IPE supplementation significantly improved measures of insulin sensitivity 

compared to cellulose supplementation, as assessed by homeostatic model assessment 2 

(1.17±0.15 inulin vs. 1.59±0.17 cellulose, P=0.009; 1.23±0.17 IPE vs. 1.59±0.17 cellulose, 

P=0.001; Figure 2A) and the Matsuda Insulin Sensitivity Index (4.0±0.7 inulin vs. 3.2±0.5 cellulose, 

P=0.014; 4.0±0.6 IPE vs. 3.2±0.6 cellulose, P=0.002; Figure 2B). Inulin (6.3±1.5 vs. 8.3±1.3 

mmol/L× µU/ml, P=0.042) and IPE supplementation (6.5±1.0 vs. 8.3±1.3 mmol/L×µU/ml, P=0.042) 

also significantly improved adipose tissue insulin resistance compared to cellulose 

supplementation (Figure 2C). The improvements in glucose homeostasis observed following inulin 

and IPE supplementation were not associated with differences in body weight, compliance, self-

reported food intake, physical activity or gastrointestinal side-effects compared with cellulose 

supplementation (Suppl. Table 3-4).  

The improvement in indices of insulin sensitivity following inulin and IPE supplementation were 

driven by a significant reduction in fasting insulin values compared to cellulose supplementation 

(9.0±1.2 inulin vs. 12.3±1.4 µU/mL cellulose, P=0.004; 9.4±1.2 IPE vs. 12.3±1.4 µU/mL cellulose, 

P=0.004; Figure 2D).  There were no differences in the fasting or postprandial values of other 

individual hormones or metabolites measured following the three supplementation periods (Suppl. 

Table 5, Suppl. Figure 3). 1H NMR spectroscopy was performed on fasting plasma samples and 

the dataset from the cellulose, inulin and IPE trials were modelled whereby fasting insulin values 

were used as Y to build an individual model per trial (Table 2). This analysis identified common 

metabolites that were positively (valine and arginine) and negatively (high-density lipoproteins 

(HDL) and unsaturated lipids) associated with fasting insulin following all three supplementation 

periods. Glutamine was negatively associated with fasting insulin following both inulin and IPE 

supplementation, but not cellulose, whilst tyrosine (positively) and glycine (negatively) were only 
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associated with fasting insulin following inulin supplementation. N-acetyl glycoproteins were only 

positively associated with fasting insulin following cellulose supplementation. 

PBMCs obtained from participants following the three supplementation periods were stained with 

an immune-phenotyping antibody panel for multi-parameter flow cytometry to investigate potential 

modulation of lymphocyte subsets (Figure 3A-F).  The mean proportion of Treg among CD4+ T 

cells in the periphery was increased with inulin and IPE supplementation compared to cellulose, 

although this did not reach significance (P=0.104; Figure 3A). In addition, there were no 

differences in the proportion of peripheral Th17 cells (P=0.179; Figure 3B), the ratio of Treg:Th17 

cells (P=0.758; Figure 3C) or proportion of CD19+ B cells (Figure 3D, P=0.920) between 

supplementation periods. Given interest in the potential of SCFA supplementation to modulate T 

cell function, we also examined T cell effector recall responses to antigens, using the 

cytomegalovirus/Epstein–Barr virus/flu (CEF) viral peptide pool and a recombinant Pseudomonas 

antigen, OprF. There were no differences in T cell response to CEF or OprF stimulation between 

supplementation periods (Figure 3E-F).  

Differences in inflammatory and immune markers following the three supplementation periods are 

presented in Suppl. Table 6. IL-17 and TNF-α are not shown, as only three volunteers had 

detectable values for these analytes. IPE supplementation significantly increased IgG levels 

compared to cellulose supplementation (10.29±0.45 vs. 9.89±0.38 g/L, P=0.002; Figure 4A). In 

addition, IPE supplementation significantly decreased IL-8 levels (Figure 4B) compared to cellulose 

supplementation (5.86±0.59 vs. 8.69±1.74 pg/mL, P=0.041), with a trend observed for a difference 

between IPE and inulin supplementation values (5.86±0.59 vs. 8.05±1.36 pg/mL; P=0.050). 

Analysis in vitro (Figure 4C) observed that healthy human PBMC cultured with sodium propionate 

secrete significantly less IL-8 compared to both sodium chloride (P=0.021) and sodium acetate 

(P=0.040).  

Both IPE and inulin supplementation periods decreased the diversity of bacterial species compared 

to cellulose (Suppl. Figure 4A-C). The decrease in bacterial diversity observed with both inulin and 

IPE was not related to differences in richness, whilst there was a decreased enrichment (changes 

in evenness) with inulin compared to cellulose supplementation. We found no differences between 

supplementation periods on gut bacterial populations at the phylum level. At the class level, we 

observed an increase in Actinobacteria and decrease in Clostridia with inulin supplementation 

compared with cellulose (Suppl. Figure 5A), whilst at the order level we found a decrease in the 

proportion of Clostridales with inulin supplementation compared with cellulose (Suppl. Figure 5B). 

At the species level, we found that the supplementation with inulin resulted in a higher proportion of 

Anaerostipes hadrus, Bifidobacterium faecale and Bacteroides caccae and a lower proportion of 

Blautia obeum, Blautia luti, Oscillibacter spp., Blautia faecis and Ruminococcus faecis, compared 

to cellulose (Suppl. Figure 6). IPE supplementation resulted in a higher proportion of Bacteroides 
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uniformis and Bacteroides xylanisolvens and a lower proportion of B. obeum and Eubacterium 

ruminantium compared to cellulose (Suppl. Figure 7). We also found that the IPE supplementation 

resulted in a higher proportion of Fusicatenibacter saccharivorans and a lower proportion of A. 

hadrus, B. faecale and Prevotella copri compared to the inulin supplementation period (Suppl. 

Figure 8). 
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DISCUSSION 

The aim of the present study was to explore the mechanisms behind changes in insulin sensitivity 

observed when selectively increasing propionate delivery to the human colon compared to a high-

fermentable fibre. We hypothesised that supplementing the diet of adults with overweight and 

obesity with 20 g IPE for 42 days would improve insulin sensitivity compared to both a high- (inulin) 

and low- (cellulose) fermentable fibre control through modulatory effects on gut bacterial 

composition, reductions in NEFA levels and improvements in inflammatory markers. In our 

previous work, we observed that dietary supplementation with 10 g/day IPE improved glucose 

homeostasis compared to an inulin control16 18. In the present study, we found that dietary 

supplementation with 20 g/day IPE promoted no superior impacts on measures of glucose 

homeostasis compared to inulin, yet both IPE and inulin improved insulin resistance relative to 

cellulose. 

The improvements in insulin sensitivity observed with IPE or inulin appear to encompass separate 

effects on gut bacterial communities and markers of systemic inflammation. Furthermore, we 

modelled fasting insulin responses with plasma metabolome profiles and observed that different 

metabolites were associated with fasting insulin after each supplementation period.  We observed 

a positive association between plasma N-acetyl glycoproteins and fasting insulin after cellulose 

supplementation, which was not found following inulin or IPE supplementation. N-acetyl 

glycoproteins have previously been linked with increased insulin resistance28 and elevated risk of 

type 2 diabetes29. Following both inulin and IPE supplementation, fasting insulin was negatively 

associated with glutamine. Previous studies have observed a similar inverse relationship between 

glutamine and insulin resistance30. Tyrosine and glycine have also been identified as biomarkers of 

glucose homeostasis31 32 and we found that fasting insulin was only associated with these amino 

acids following inulin supplementation. Our data therefore indicates that the observed improvement 

in insulin sensitivity following inulin supplementation was related to a favourable modulation of 

amino acid metabolism. 

Previous reports have linked raised colonic SCFAs production with anti-inflammatory responses, 

thus we explored the effects of IPE supplementation on a range of systemic inflammatory and 

immune parameters. Findings from murine models would predict that raising colonic propionate 

delivery would expand the proportion of Treg cells, whilst pro-inflammatory Th17 cells would be 

lowered23 26 33, although the majority of effects have been limited to colonic immune subsets rather 

than systemic populations. Until the present study, there has been limited opportunity to explore 

these impacts in a human cohort.  Both inulin and IPE supplementation induced a modest 

enhancement in peripheral Tregs, although this did not reach significance. Neither IPE nor inulin 

supplementation had significant effect on T cell effector recall responses to antigens.  We found 

that IPE significantly decreased circulating IL-8 levels compared to cellulose supplementation. This 
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outcome was supported by our observation that propionate significantly reduced the secretion of 

IL-8 from cultured human PBMCs. SCFAs have recently been shown to supress IL-8 production 

from human intestinal Caco-2 cells34 and human umbilical vein endothelial cells35. It was also 

shown that propionate had a greater potency to suppress IL-8 expression compared to acetate34 

and the present study observed that the reduction in IL-8 from human PBMCs was only found with 

propionate and not acetate. IL-8 is a key chemokine bringing neutrophils and macrophages to sites 

of inflammation and contributing to the pro-inflammatory profile characteristic of metabolic 

syndrome21. This chemotaxis can subsequently impact processes that impair insulin signalling21, 

and studies have associated elevated levels of IL-8 with increased insulin resistance in humans36 

37. Consequently, the inhibition of IL-8 by IPE supplementation appears to be driven by the 

selective delivery of propionate to the colon and may partly explain the observed improvements in 

glucose homeostasis.  

IPE supplementation also promoted a small but highly significantly increase in serum IgG levels 

relative to cellulose. The physiological relevance of this minor elevation in peripheral IgG in 

humans is unclear, but is consistent with an observation from rodent studies that SCFA treatment 

increases the expression of genes that enhance antibody production in B cells, which improves 

systemic immune responses 24. To the best of our knowledge, this is the first evidence in vivo in 

humans that selectively increasing colonic propionate delivery increases circulating IgG levels and 

it would be of future interest to determine if this effect of IPE on adaptive immunity can decrease 

susceptibility to pathogen exposure.  

Metataxonomic analysis of stool samples compared the impact of each supplementation period on 

gut bacterial composition. The improvements in metabolic markers following inulin and IPE 

supplementation was observed despite decreased stool bacterial diversity compared to cellulose. 

This outcome appears counterintuitive given the commonly accepted association in humans 

between a lower gut bacterial diversity and poor health38. Nevertheless, previous studies have also 

found that dietary supplementation of a single fermentable substrate can reduce indices of stool 

bacterial diversity in humans39, yet improve metabolic responses40. No changes were found at the 

phylum level and differences at the class and order level were only detected between the inulin 

and cellulose supplementation periods. This finding supports the concept that dietary intervention 

in ‘free-living’ humans has a more selective effect on gut bacterial species compared to the 

extensive shift in gut bacterial populations reported in rodent models27 41. We observed that both 

IPE and inulin decreased the abundance of selective species of Firmicutes (IPE: B. obeum, E. 

ruminantium; Inulin: B. obeum, B. luti, B. faecis, R. faecis, Oscillibacter spp.) and stimulated the 

growth of Bacteroides species (IPE: B. uniformis, B. xylanisolvens; Inulin: B. caccae) compared to 

cellulose.  This observation supports our previous work in vitro showing that both IPE and inulin 

increase the abundance of Bacteroides spp.16. The improvement in metabolic homeostasis 

following dietary supplementation with inulin-type fructans has been linked to an increased growth 
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of Bifidobacterium species27 42, which have also been shown to decrease in obesity and type 2 

diabetes43 44. Interestingly, only inulin supplementation promoted a bifidogenic effect, with 

increased abundance of B. faecale compared to both cellulose and IPE. The difference between 

inulin and IPE confirms our observations in vitro16, but was unanticipated considering that 20 g/day 

IPE supplementation would itself provide 14.6 g/day of inulin to the diet, and previous work has 

demonstrated that lower intakes (12 g/day) stimulate Bifidobacterium abundance in the human 

faecal microbiota41. We conclude that the high levels of propionate delivered to the colon by IPE 

inhibit the bifidogenic action of inulin fermentation.  Previous investigations in both animal and 

humans models have linked the increased abundance of bifidobacteria from feeding inulin-type 

fructans with an improved gut barrier function27 42.This change has been associated with 

improvements in host glucose homeostasis through reduced endotoxemia, which can directly 

induce insulin resistance in peripheral tissues45. It is therefore surprising that the observed 

changes in gut bacterial populations with inulin supplementation were not associated with altered 

inflammatory and immune responses.  Inflammatory changes were, however, only measured in 

peripheral blood samples and we cannot exclude the possibility that the changes in gut bacterial 

composition promoted by inulin supplementation had localised effects on inflammatory responses 

within the intestinal mucosal environment46 47 . Despite the increase in bifiodobacteria following 

inulin supplementation there were no differences in circulating LBP following the three 

supplementation periods. The bifidogenic action of inulin fermentation and reduced endotoxemia 

reported in rodent studies has commonly been found in animals fed a high-fat diet, which promotes 

considerable impairments to gut integrity42. In comparison, all volunteers in the present study had 

relatively low levels of LBP (<15µg/ml), suggesting there was limited scope for the bifidogenic 

effect of inulin to translate into improvements in gut permeability. 

We hypothesised that IPE supplementation would reduce NEFA levels, as found in our previous 

experiments18, yet fasting and postprandial NEFA concentrations were unaffected after IPE feeding 

relative to both inulin and cellulose. The major methodological differences that may explain this 

discrepancy are the shorter supplementation period in the present study and the fact that the IPE 

was not provided with the standard test meal. This methodological detail may also explain why we 

were unable to detect any differences in circulating SCFAs or anorectic hormone release between 

the three supplementation periods. Blood samples were collected and analysed following an 

overnight fast and up to 180 min following a standard mixed meal test. A longer study protocol (>6 

hours) with the addition of the fermentable substrates to the test meal may have been necessary to 

observe differences in peripheral circulating levels of SCFAs and their potential effects on intestinal 

PYY and GLP-1 release48. We chose not to add the fibre supplements to the test meal so that any 

observed effect on postprandial metabolism was independent of possible acute alterations in 

digestion and absorption caused by the physiochemical properties of each fibre supplement. 
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In summary, in a cohort of adults with overweight and obesity both inulin and IPE supplementation 

improved measures of insulin resistance relative to cellulose, however, there was no significant 

difference between IPE and inulin. Despite this comparable improvement to metabolic health, IPE 

supplementation generated distinct effects on gut bacterial species and markers of systemic 

inflammation and immune function compared to those observed with the supplementation of inulin 

alone. Taken together the present study suggests that manipulating the colonic fermentation profile 

of a dietary fibre in favour of propionate promotes selective effects on the mechanisms that 

contribute to metabolic dysregulation. It would be of interest to establish the individual effects of 

delivering acetate and butyrate to the colon as, in the future, this would support the development of 

fermentable carbohydrate that deliver a specific SCFA profile to improve metabolic health and 

glucose homeostasis. 
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TABLES 

Table 1. Characteristics of participants at screening. 

Sex, n   

Male 3 

Female 9 

Age  

(y) 60 ± 1 (49-65) 

Race or ethnicity  

(n)   

White 11 

Black 1 

Weight  

(kg) 84.6 ± 3.2 (68.6-113.1) 

BMI  

(kg/m2) 29.8 ± 0.9 (26.2-37.0) 

HbA1c  

(mmol/mol) 35.5 ± 1.0 (30-42) 

Triglycerides  

(mmol/L) 1.0 ± 0.1 (0.6-1.3) 

Cholesterol 

(mmol/L) 5.2 ± 0.3 (3.6-6.9) 

LDL Cholesterol 

(mmol/L) 3.2 ± 0.2 (2.1-4.8) 

HDL Cholesterol 

(mmol/L) 1.5 ± 0.1 (0.9-2.1) 

Alanine Transaminase 

(IU/L) 22.0 ± 2.6 (10-38) 

Data are expressed as mean ± SEM; ranges in parentheses. 
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Table 2. Metabolites observed in fasting plasma that were significantly associated with fasting 
insulin following 42 days of cellulose, inulin and inulin propionate ester (IPE) supplementation. 

Trial R
2
Y

a
 Q

2
Y

b
 Metabolite Association

c
 

Cellulose 0.94 0.31 Valine ↑ 

  
  

d
U1 ↑ 

  
  

Arginine ↑ 

  
  

e
NAC1 ↑ 

  
  

e
NAC2 ↑ 

  
  

HDL ↓ 

  
  

Unsaturated lipids (mainly 

HDL) 
↓ 

  
  

Phosphocholine lipids ↓ 

Inulin 0.98 0.2 Valine ↑ 

  
  

d
U1 ↑ 

  
  

Arginine ↑ 

  
  

Tyrosine  ↑ 

  
  

HDL ↓ 

  
  

Glutamine ↓ 

  
  

Unsaturated lipids (mainly 

HDL) 
↓ 

  
  

Glycine ↓ 

IPE 0.97 0.32 Valine ↑ 

    
d
U1 ↑ 

    
Arginine ↑ 

    
HDL ↓ 

    
Glutamine ↓ 

    

Unsaturated lipids (mainly 

HDL) 
↓ 

    
Phosphocholine lipids ↓ 

          
a,b

Validation parameters of the corresponding Partial Least Squares regression models. 
c
Sign of association: 

↑Upregulation and ↓ downregulation at higher values of fasting insulin. 
dUnknown metabolite. eNAC, N-acetyl 

group of glycoproteins. 
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FIGURES LEGENDS 

 

Figure 1. The total and molar percentages of acetate, propionate and butyrate measured in stool 

(A-B) and fasting serum (C-D) following 42 days of cellulose, inulin and inulin propionate ester 

(IPE) supplementation. Mean ± SEM (n=12). *=P<0.05. Data were analysed by repeated measures 

ANOVA with post hoc Fishers LSD tests.  
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Figure 2. A. Homeostatic model assessment 2 – insulin resistance (HOMA2-IR), B. Matsuda 

Insulin Sensitivity Index (ISI), C. adipose tissue insulin sensitivity (AT-IR) and D. fasting insulin 

following 42 days of cellulose, inulin and inulin propionate ester (IPE) supplementation. Each 

individual symbols represents a volunteer and lines represent mean ± SEM (n=12). *=P<0.05, 

**=P<0.01. A. and D. were analysed by repeated measures ANOVA with post hoc Fishers LSD 

tests. B. and C. were analysed by Friedman test and post hoc Wilcoxon signed rank test.  
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Figure 3.A. The proportion of CD4+ Treg and B. Th17 cells, C. the ratio of Treg:Th17, D. the 

proportion of CD19+ B cells, E. IFNϒ T cell spot forming cell response to the CEF (CMV/EBV/flu) 

peptide pool, and  F.  IFNϒ T cell spot forming cell response to the Pseudomonas aeruginosa 

antigen, OprF.following 42 days of cellulose, inulin and inulin propionate ester (IPE) 

supplementation. Each individual symbols represents a volunteer and lines represent mean ± SEM 

(n=12). A. and E. were analysed by repeated measures ANOVA. B. C. D. and F. were analysed by 

Friedman test.  
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Figure 4.  A. IgG and B. IL-8 in fasting serum following 42 days of cellulose, inulin and inulin 

propionate ester (IPE) supplementation. Each individual symbols represents a volunteer and lines 

represent mean ± SEM (n=12). C. IL-8 release from PBMCs isolated from 12 healthy volunteers 

cultured for 48 with 4mM sodium chloride, 4 mM sodium acetate and 4mM sodium propionate. The 

concentration of IL-8 produced following culture with media-alone was subtracted from the treated 

samples to determine change in IL-8. Mean ± SEM (n=12). *=P<0.05, **=P<0.01. . A. was 

analysed by repeated measures ANOVA with post hoc Fishers LSD tests. B. and C. were analysed 

by Friedman test and post hoc Wilcoxon signed rank test.  
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