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RESEARCH ARTICLE Open Access

A subgroup of microRNAs defines PTEN-
deficient, triple-negative breast cancer
patients with poorest prognosis and
alterations in RB1, MYC, and Wnt signaling
Dong-Yu Wang1, Deena M. A. Gendoo2, Yaacov Ben-David3,4, James R. Woodgett5 and Eldad Zacksenhaus1,6*

Abstract

Background: Triple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors
with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to
induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to
induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and
determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs.

Methods: Publically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to
identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape
and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict
response to therapy.

Results: In TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-
145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with
PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other
TNBCs (hazard ratio (HR) = 3.91; P < 0.0001), and this was validated on an independent cohort (HR = 4.42; P = 0.0003). The
PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation, high RB1-loss signature
and high MYC, PI3K, and β-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients
selected on the basis of Pten-low and RB1 signature loss or β-catenin signaling-high. Connectivity mapping predicted
response to inhibitors of the PI3K pathway.

Conclusions: This analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized
for aggressive therapy.

Keywords: TNBC, Prognosis, microRNA, PTEN, RB1, TP53, WNT, MYC, PI3K, Therapy

Background
Triple-negative breast cancers (TNBCs) are highly hetero-
geneous with certain tumors progressing to incurable
metastatic disease. Pathologically, they are classified as es-
trogen receptor alpha (ERα)-negative, progesterone
receptor-negative, and HER2/ERBB2/NEU-negative lesions

[1]. No targeted therapy is currently available for TNBC,
and patients are treated with aggressive chemotherapy. A
recent phase III trial shows excellent synergy between T
cell immune-checkpoint blockade therapy and cytotoxic
chemotherapy in metastatic TNBC [2]. Although this treat-
ment extended life span, patients succumbed to their dis-
ease. At the molecular level, TNBCs comprise basal-like
and claudin-low/mesenchymal-like tumors and other sub-
types [1, 3]. Moreover, within each subtype, mRNA-based
expression signatures identify patients at high risk
(reviewed in [4]). Alongside mRNA, microRNAs are also
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used to classify human cancer [5, 6], and integrated
mRNA-miRNA signatures have been deployed [7]. Strati-
fication of TNBCs and identification of patients with ex-
tremely poor clinical outcome are important to prioritize
patients for aggressive treatment and identify new and
personalized therapeutic avenues.
Disruption in RB1, PTEN, and TP53 occurs frequently

in sporadic TNBC [8–10]. These three tumor suppres-
sors are also the most frequent drivers of metastasis in
diverse types of solid human cancers [11]. Thus, under-
standing the impact of these tumor suppressors on clin-
ical outcome is informative not only for BC but also for
other malignancies.
We recently demonstrated that inactivation of Pten in

the mouse mammary gland induces mostly benign mam-
mary tumors that fail to sprout secondary tumors fol-
lowing orthotopic transplantation into recipient mice.
However, a rare group of Pten-deficient tumors with fea-
tures of basal-like BC was efficiently transplantable [12].
These transplantable tumors exhibited low expression of
microRNA-145, which was further demonstrated to
functionally cooperate with Pten loss to promote
tumorigenesis. These observations raised the question of
whether in human BC and particularly in TNBC,
PTEN-deficiency cooperates solely with miR-145 loss,
with other or with additional microRNAs to define an ag-
gressive subgroup of TNBCs. Here, we employed a sys-
tematic approach to identify microRNAs that cooperate
with PTEN loss to predict poor clinical outcome. We
identified a group of miRs comprising hsa-miR-145,
hsa-miR-4324, hsa-miR-125b, hsa-miR-381, and has-
miR136, the expression of which is lost together with
PTEN in highly aggressive TNBC. These PTEN-low/miR--
low TNBCs exhibit TP53 mutation, loss of RB1 signature,
high signaling of MYC, WNT and PI3K pathways, and a
distinct profile of predicted drug response. This cohort of
patients should be prioritized for precision therapy.

Methods
Datasets selection and data processing
To identify correlated PTEN–miRNA expression pairs
in BC, public datasets with both matched mRNA and
miRNA data, immunohistochemical data for ER, PR,
and HER2, as well follow-up survival tracking were used
in this study. A European Genome-phenome Archive
(https://www.ebi.ac.uk/ega/home), EGAS00000000122
[5, 13], containing 205 TNBCs and a total of 1302 BC
patients with matched mRNA (EGAD00010000434) and
miRNA (EGAD00010000438) data, was selected as a
training cohort. When a particular gene was not available
in EGAD00010000434, its mRNA expression was ob-
tained from EGAS000000000837, in which 1292 BC pa-
tients (205 TNBC) overlapped with EGAD00010000434.
An NCBI Gene Expression Omnibus (https://

www.ncbi.nlm.nih.gov/geo) Super Series GSE22220 [14]
containing 44 TNBCs in a total of 207 BC samples with
matched mRNA (GSE22219) and miRNA (GSE22216)
data was used as a validation cohort. Downloaded mRNA
and miRNA data with normalized Log2 format were
transformed to a median center format for subsequent
analysis. EGA study EGAS00001001753 [15] with copy
number alteration (CNA) data on 1286 BCs, including
205 TNBCs, and gene mutation data of 1194 BC with re-
lated 185 TNBCs was used to identify genomic alterations
of PTEN/miRNA tumors (Additional file 1: Figure S1).

Subgroups and correlations
In the training cohort, 1302 BC samples were randomly
subdivided into two BC subgroups A and B. And along
with the subdivision, the 205 TNBCs of the 1302 BC
were divided into two TNBC subgroups A and B as well,
generating six subgroups of BC and six subgroups of
TNBCs (Additional file 1: Figure S1 for details). To-
gether with the 1302 BC and 205 TNBCs, a total of 14
groups were used to compare expression of PTEN and
miRNAs in the training cohort. To identify the most
correlated pairs, a Pearson correlation was performed
between PTEN mRNA expression levels and all 853
miRNAs in each of the 14 subgroups. Rankings of the
most positive or negative correlation coefficients were
separately produced to evaluate the association between
PTEN and each miRNA. Final sorting order of the asso-
ciation was determined by the average correlation rank-
ing among all BC or TNBC subgroups.

PTEN/miRNA co-expression profiling
For PTEN-low, we used twofold below median as a
cut-off. For miRNAs, we optimized cut-offs using
miR-low vs. miR-high for every single miRNA and then
used the same cut-off for other analysis such as
PTEN-low/miR-low vs others using Kaplan-Meier sur-
vival analysis in the training and validation cohorts.

PTEN/miRNAs profiling by GSEA, mutations and CNVs,
and CRNDE expression
To verify the connection between PTEN/miRNAs profil-
ing and pathway activity of oncogenes and tumor sup-
pressor genes, their relationship were evaluated in two
ways: First, the activities of 18 oncogenic and tumor
suppressor genes pathway signatures in microarray-
based gene expression [16], plus a breast cancer
RB1-loss signature [17], were estimated by using mRNA
expression data. Second, a gene set contained 74
protein-coding cancer genes was obtained from a
large-scale somatic mutation research in breast cancers
[10] and used to distinguish the alteration of breast can-
cer genes by mRNA expression, copy number alter-
ations, and gene mutations.
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Identification of differentially expressed genes in
connectivity map analysis
Gene expression patterns of 11 samples from subgroup
“a” (Pten-low/miR-low tumors) were compared against
the remaining 194 TNBC samples to identify differentially
expressed genes. Log-normalized gene expression values
were parsed in R (version 3.5.0), and differential expres-
sion was conducted using the limma package (version
3.36.2) [18] in R. A linear model per gene (n = 13,583
genes) was fit against the design matrix of the microarray
experiment using the lmfit function, followed by an em-
pirical Bayes adjustment using the eBayes function to gen-
erate several statistics for differential expression (t-stat,
log-odds ratio). Final annotations and multiple-testing
correction (FDR) adjustment was taken using the topTable
function. Differentially expressed genes were considered
based on FDR ≤ 0.05.

Drug perturbation signatures
Transcriptional profiles of cancer cell lines treated with
drugs as part of the BROAD Connectivity map initiative
(CMAP; n = 1309 drugs) were obtained using the
PharamcoGx package (version 1.10.0) [19] in R.
Pre-computed drug perturbation signatures for CMAP
were available for 1288 drugs and used in the down-
stream analysis. These signatures signify the drug con-
centration effect on the transcriptional state of the cell
and were used to identify genes whose expression is per-
turbed by the drug treatment. Details of the linear re-
gression model used to compute these signatures have
been described [19].

Repurposing of CMAP drugs against the TNBC subgroup
Drug repurposing of CMAP drugs for the TNBC sub-
group was conducted on the genes common to the TNBC
gene-list and the CMAP perturbation signatures. TNBC
“signatures” specific to the TNBC subgroup were chosen
by selecting equal numbers of significant (FDR ≤ 0.05) up-
and downregulated differentially expressed genes. A total
of four signature sizes were tested, spanning 100, 150, 200,
and 298 genes, respectively. These TNBC signatures were
compared against drug perturbation signatures from
CMAP to identify drugs that could reverse the TNBC sig-
nature (i.e., could be a potential therapeutic drug for the
TNBC subgroup).
Connectivity scores between CMAP drug perturbation

signatures and each of the four TNBC signatures were
computed using the connectivityScore function of the
PharmacoGx package. Connectivity scores were com-
puted once using the Gene Set Enrichment Analysis
(GSEA) method (based on the KS statistic), and once
using the Genome-Wide Connectivity (GWC) method
(based on the weighted spearman statistic). Drugs
were ranked by their connectivity score and associated

p value, with more negative connectivity scores indicating
an ability for a given drug to reverse the TNBC signature.
Top hits were considered for drugs with connectivity
scores below − 0.5 across all GSEA-based analyses and
across all GWC-based analyses.
Rendering of connectivity scores across the four

TNBC signatures was performed using the qqman pack-
age (version 0.1.4) in R. Top drug hits that were com-
mon between GSEA and GWC analyses, across each of
the TNBC signatures tested, were identified using the
VennDiagram package (version 1.6.17) in R.

Additional statistical analysis
Prism 6 Software (GraphPad Software, La Jolla, CA,
USA) was used for statistical analysis. Pearson correl-
ation was used to evaluate associations between expres-
sion of PTEN mRNA and each miRNA in different
subgroups. T test and ANOVA were used to calculate
differences in gene expression, pathway activity, signa-
ture, CNA, and mutation status between different profil-
ing groups. Kaplan-Meier survival analysis was used to
compare survival curves, and log-rank (Mantel-Cox) test
to calculate p values and hazard ratios (HR). All CMAP
analyses have been conducted using the R statistical soft-
ware (version 3.5.0) (https://www.r-project.org/); listed
software dependencies are available on Bioconductor
(BioC) or the Comprehensive Repository R Archive
Network (CRAN).

Results
Identification of microRNAs whose expression correlates
with Pten loss in breast cancers of all subtypes or in TNBC
To identify microRNAs with expression that correlates
with PTEN loss in BC, we used a study design and data-
sets depicted in Additionalfile 1: Figure S1A. The
EGAS00000000122 dataset includes 1302 BC samples of
which 205 (15.7%) are triple-negative tumors with
mRNA and miRNA expression as well as clinical data.
As low expression of PTEN mRNA is a strong predictor
of its loss, we used low PTEN expression (twofold below
median as a cut-off ) to deduce the status of PTEN as
previously described [12, 20]. Of the 205 TNBCs, 31
were designated PTEN-low by this criterion. Expression
of each of the 853 miRNAs in the database was then
correlated with PTEN expression. miRNAs that either
positively or negatively correlated with low PTEN
mRNA levels in all 1302 BC samples or in the 205
TNBC samples were identified (Additional file 2: Table
S1A). As a first step toward verifying these miRNAs, we
randomly divided the 1302 BC samples into three sub-
groups of ~ 652–653 samples and ranked the correlation
of the miRNAs and PTEN expression in each
(Additional file 2: Table S1B). Kaplan-Meier curves for
all 1302 patients or for two of the three subgroups,
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classified by PAM50, reveal similar kinetics of over-all
survival (Additional file 1: Figure S1B). Likewise, the 205
TNBC samples were divided into three subgroups of
100–105 and the correlation of miRNAs and PTEN ex-
pression ranked (Additional file 2: Table S1). We then
averaged the ranking of each miRNA in the three sets of
cohorts (Fig. 1a; Additional file 2: Table S2). In BC, we
identified expression of hsa-miR-497, hsa-miR-4324,
hsa-let-7c, hsa-miR-199a-5p, and hsa-miR-195 to con-
sistently and positively correlate with Pten-loss, whereas
phsa-miR-13535, hsa-miR-106b, hsa-miR-18a,
hsa-miR-18b, and hsa-miR-93 to negatively correlate
with low PTEN expression (Additional file 1: Figure
S1C; Additional file 2: Table S1C). In TNBC,
hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-
136, and hsa-miR-145 correlated positively, and hsa-
miR-15b, hsa-miR-1290, hsa-miR-16-2*, hsa-miR-93, and
hsa-miR-301b correlated negatively with PTEN-defi-
ciency. Thus, hsa-miR-4324 scored as a positive correl-
ate in both BC and TNBC, respectively, whereas
hsa-miR-93 scored as a negative correlate in both BC
and TNBC. The eight other miRs in each group were
unique to either BC or TNBC.

Expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381,
hsa-miR-145, and has-miR136 cooperates with PTEN-
deficiency to predict poor clinical outcome
As PTEN is lost primarily in TNBC, we focused our atten-
tion on this aggressive subtype. First, we determined the
hazard ratio (HR) for each of the ten PTEN-low-miRNA
pairs in the training 205 TNBC cohort (Additional file 2:
Table S3). Each of the five positive-correlated miRNAs,
which were expressed at low levels together with PTEN,
showed poor prognosis in Kaplan-Meier survival analysis
and robust HR when combined with PTEN-loss. HR
ranged from 3.471 (P < 0.0001) for hsa-miR-136 to 2.406
(P = 0.0008) for hsa-miR-4324 (Fig. 1b–f ), compared with
HR = 1.692 (p = 0.0358) for PTEN-low alone (Fig. 2d). In
contrast, all five miRNAs with negative correlation with
PTEN mRNA showed HR below 2, and only two miRs
(hsa-miR-93 and hsa-miR-301b) yielded significant results
when comparing PTEN-low/miR-high to all other TNBC
(Additional file 2: Table S3).
Next, we validated the results on an independent co-

hort of 44 TNBCs (Additional file 1: Figure S1). Of the
five positively correlated miRNAs, no miRNA data were
available for hsa-miR-4324, but the other miRNAs either
gave significant HRs (hsa-miR-125b and hsa-miR-381)
or showed a trend toward significance (hsa-miR-136 and
hsa-miR-145), possibly reflecting the relatively small
number of patients in this cohort (Fig. 1g–j). For nega-
tively correlated miRs, there was only expression data
for hsa-miR-93 and this showed low HR and no signifi-
cance (Additional file 2: Table S3). For subsequent

studies, we therefore focused on the five positively cor-
relating miRNAs: hsa-miR-4324, hsa-miR-125b, hsa
-miR-381, hsa-miR-136, and hsa-miR-145.

TNBCs with PTEN-low and low expression of 4 or 5 of
hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145,
or has-miR136 exhibit extremely poor clinical outcome
Inspection of a binary heat map of PTEN-deficient
TNBCs revealed a subgroup of patients with low expres-
sion of hsa-miR-4324, hsa-miR-125b, hsa-miR-381,
hsa-miR-136, and/or hsa-miR-145 (Fig. 2a, b). To pro-
vide some flexibility, we combined PTEN-deficient pa-
tient tumors with low expression of either four or all
five miRNAs as group “a.” We designated group “c” as
patient tumors with high expression of all five or four of
these miRNAs, and group “b” as the remaining tumors.
Kaplan-Meier analysis revealed that the PTEN-low/
miR-low patients (group “a”) had significantly worse
prognosis compared to groups “b” and “c” with HR =
3.91 (P < 0.0001; Fig. 2f, h). The PTEN-low/miR-low
TNBC patients also had poor clinical outcome in the
validation cohort relative to the other patients (HR =
4.42; P = 0.0003; Fig. 2c, e, g, i). All five miRNAs must
be considered to select this subpopulation of aggressive
TNBC. These results reveal the existence of a subgroup
of TNBC patients, defined on the basis of PTEN-low/
miR-low status, that exhibit a particularly poor prognosis
that should be identified and urgently treated.

Alterations in genomic and mRNA expression in PTEN-
loss/miR-low TNBCs
We next sought to determine whether PTEN-low/miR--
low TNBCs harbor common genomic alterations that
may be useful diagnostically or therapeutically. To this
end, we took advantage of genomic data on mutation
and copy number alteration (CNA) as well as mRNA ex-
pression available for these cohorts. We specifically
looked for alterations in 93 genes commonly lost in BC
as compiled from exome and whole genome sequencing
[8–10, 21–24]. CNA analysis revealed significant gains
of DNMT3A, and, surprisingly, of the luminal marker
GATA3, as well as deletions of PTEN in the PTEN-low/
miR-low tumors (Additional file 1: Figure S2A, S3).
These CNAs correlated with low mRNA expression of
PTEN but not with high expression of DNMT3A or
GATA3, the latter of which is expressed at low levels in
all TNBCs (Fig. 3). Mutational analysis revealed com-
mon alterations only in p53 (Additional file 1: Figure
S2B). While all PTEN-low/miR-low tumors had p53 mu-
tations, two of each group “b” and group “c” tumors
lacked p53 mutation. Our CNA analysis revealed that
three of the latter four tumors show no gain of its E3 lig-
ase HDM2 and presumably harbor p53 deletions instead
[9]. Notably, p53 mutations may have dominant
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gain-of-function effects that promote metastasis
(reviewed in [25]).
More revealing was mRNA expression analysis (Fig. 3).

First, as expected, expression levels of several luminal
markers such as ERα, GATA3, FOXA1, and XBP1 was
low in all 31 TNBC samples. While expression of PTEN
was invariably low, it was lowest in the PTEN-low/miR--
low (group “a”) tumors (Fig. 3b, c). Expression of FOXP1
(Forkhead Box P1), PIK3R1 (phosphoinositide-3-kinase
regulatory subunit 1), and PDGFRA (platelet derived
growth factor receptor alpha), implicated in ER+ BC,
was also the lowest in this group. In contrast, expression
of BUB1B (BUB1 mitotic checkpoint serine/threonine

kinase B), MLLT4 (a RAS target involved in cell–cell ad-
hesions), MSH2 (DNA mismatch repair protein), BRAF
(a kinase within the RAS-MAPK pathway), and CCNE1
(cyclin E; upstream of RB1) was highest in group “a”
compared to groups “b,” “c” or PTEN-positive tumors.

PTEN-low/miR-low TNBCs exhibit high RB1-loss signature
and elevated MYC, PI3K, and β-catenin signaling
A caveat of gene specific analysis is that while alterations
in each specific gene along a given pathway may be in-
frequent, the whole pathway may be altered in each
tumor through different alterations in pathway constitu-
ent genes; this can be missed when only small groups of

A

B C D

E F G

H I J

Fig. 1 Identification of microRNAs whose expression levels most strongly correlate with Pten-low expression in TNBC. a Correlation ranking of top
miRNAs with PTEN expression in TNBC. b–f Kaplan-Meier curves for top five positively correlated PTEN-miRNA pairs in 205 TNBC samples in the
training cohort. g–j Kaplan-Meier curves for four positively correlated PTEN-miRNA pairs available in a 44 TNBC validation cohort
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samples are analyzed. We therefore performed pathway
activity analysis to capture alterations affecting entire
signaling pathways. We analyzed 18 signaling pathways
using signatures developed by Gatza et al. [16], as well
as a signature for RB1-loss [17, 26], in group “a” versus
“b” plus “c.” Remarkably, the RB1-loss signature, PI3K,
β-catenin and MYC (P < 0.01), and to a lesser extent
E2F1 (P < 0.05), showed increased pathway activity in
the PTEN-low/miR-low subgroup compared to the other
PTEN-deficient TNBCs (Fig. 4a). Notably, EGFR
pathway activity was low in all 31 PTEN-deficient
TNBCs relative to PTEN(+) TNBC (P = 0.0084; Fig. 4a;
Additional file 1: Figure S4), demonstrating again the di-
versity of these tumors.
In accordance with their TNBC status, all tumors ex-

hibited low p53 and ER pathways, indicative of ER− and
p53-loss. RAS signaling was high but not significantly
different among the 31 different PTEN-deficient TNBCs.
Levels of RB1-loss signature, PI3K, β-catenin. and MYC

pathway activities in each group of patients, and survival
curves of PTEN-low/signature-high for each pathway in
the two clinical cohorts are shown in Fig. 4b and Fig. 5a,
b, respectively. The most striking cooperation was seen be-
tween Pten-low and β-catenin signaling-high (HR = 3.33,
P < 0.0001 for the 205 TNBCs and HR= 4.165, P = 0.0054
for the 44 TNBC cohort). This cooperation is striking given
that the HR for PTEN-low is 1.692 (Fig. 2d) and for high
β-catenin signaling alone is insignificant (Fig. 5c).

Landscape of genomic alterations in the WNT pathway in
PTEN-low/miR-low and PTEN-low/β-catenin-pathway-high
subgroups of TNBCs
The PTEN-loss/β-catenin-pathway-high group included
14 patients. Of these, 10 (of 11 patients) were from
group “a,” one from group “b” and three from group “c.”
To identify possible drivers of high β-catenin/WNT sig-
naling in the PTEN-low/miR-low and PTEN-low/β-cate-
nin-pathway-high subgroups of TNBCs, we analyzed

A B D E

F

C

G

H I

Fig. 2 Identification of a PTEN-low/miR-low subgroup of TNBC with exceedingly poor prognosis. Heatmaps of PTEN and five most positively
correlated miRNAs in 205 TNBC (a) and in 31 PTEN-deficient (−) TNBC (b) from training cohort and top four miRNAs in 44 TNBC (c) from the
validation cohort. Map colors: green, low expression; red, high expression. Kaplan-Meier survival analysis on PTEN expression in training 205 TNBC
(d) and validation 44 TNBC (e). f, g Kaplan-Meier survival analysis on PTEN-low/miR-low (group “a”) in 31 PTEN(−) TNBC from training cohort or 30
PTEN(−) TNBC from validation cohort. h, i Kaplan-Meier survival analysis on 205 TNBC or 44 TNBC for group “a” versus the remaining tumors
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alterations in mRNA, CNAs, and mutational landscapes
in these tumors compared to all other lesions in the 205
TNBC database. Expression analysis of components of
the canonical WNT signaling revealed significant in-
crease in several genes including WNT3, FZD9, LRP8,
and TCF7L1, as well as reduction in Axin2 in both the
PTEN-low/miR-low and PTEN-low/β-catenin-pathway--
high subgroups (Additional file 1: Figure S5 and S6).
Notably, Axin2 acts to down-regulate Wnt signaling.
Scatter plots of these genes are shown in Fig. 5d.
Mutational analysis of all Wnt pathway genes revealed

no group “a” specific alterations (Additional file 1: Figure
S7). A single APC mutation was found in group “b,” two
in the PTEN(+) TNBC and none in group “a” or “c.”

Likewise, no APC mutations were found in PTEN-low/
β-catenin-pathway-high group but three were found in
all “others.” No significant CNAs were found in these
groups either. Thus, the major differences we could de-
tect in Wnt signaling were at the level of mRNA.
Of the five microRNAs that are downregulated in

group “a,” miR-136 has been implicated in Wnt signaling
[27]. MiR-136 and other miRNAs such as miR-451 and
miR-181a are known targets of the colorectal neoplasia
differentially expressed (CRNDE) long non-coding RNA
(lncRNA) [28]. However, although CRNDE expression is
significantly higher in group “a” versus PTEN(+) TNBC,
the highest expression of this lncRNA was found in Lu-
minal B and HER2+ BC, and, importantly, there was no

A B

C

Fig. 3 Expression analysis of frequently altered breast cancer genes in the PTEN-low/miR-low subgroup of TNBC. Heatmap for expression of 93 cancer
genes in 31 PTEN(−) TNBC (a). ANOVA analysis of genes with significantly altered expression in PTEN-low/miR-low subgroup “a,” subgroups “b” and “c”
or PTEN(+) TNBC (b). Scatter plots of selected genes with differentially altered expression in the PTEN/miRs groups in 205 TNBCs (c)
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correlation between CRNDE and miR-136 expression in
TNBC (Additional file 1: Figure S8 and S9). Although
the mechanism by which Wnt signaling is induced in
PTEN-low/miR-low TNBC remains to be elucidated, the
level of activation of this pathway provides a therapeutic
target for these aggressive tumors.
Finally, we asked whether the five miRNAs identified

herein target genes on the MYC, β-catenin, and/or PI3K
signaling pathways, which are elevated in subgroup “a.”
To this end, miRNA targets mining was performed to
search for verified interactions and predicted miRNA
binding sites using an updated miRWalk platform ver-
sion 3 (http://mirwalk.umm.uni-heidelberg.de) [29]. A
total of 6327 candidate target genes with 19,287 miRNA
binding sites was obtained with at least one of the five
identified miRNAs. These targets overlapped widely be-
tween the five miRNAs (Additional file 1: Figure S10A).
Among the aggregate 6327 candidate target genes, there
were 223 targets that overlapped between the pathway
activity training genes for PI3K, MYC or β-catenin
pathways, determined as described by Gatza et al. [30]
(Additional file 1: Figure S10B). By collecting mRNA
microarray probes from both EGAD00010000434 and
EGAS00000000083 datasets, expression of the 221 genes
in the TNBC subgroups was determined. Top 20 targets
with most differential expression within groups “a,”
“b,” “c” and PTEN(+) TNBC were selected by

ANOVA (P < 0.05; Additional file 1: Figure S10C). Six
targets that overlapped between the five identified
miRNAs and/or MYC, β-catenin and PI3K pathways
more than once and with significantly higher expres-
sion (t test, P < 0.05) in groups “a” vs PTEN(+)
TNBC are highlighted in panel c and their expression
in groups “a,” “b,” “c” and PTEN(+) is shown in Add-
itional file 1: Figure S10D. Thus, enhanced MYC,
β-catenin and PI3K signaling observed in PTEN-low/
miR-low TNBC is at least in part due to direct dys-
regulation of genes on these pathways in response to
low expression of these miRNAs.

Connectivity map analysis identifies distinct therapeutic
targets for PTEN-low/miR-low TNBCs
To independently determine whether PTEN-low/miR--
low TNBCs may be therapeutically targeted, we calcu-
lated connectivity scores [31] via Gene Set Enrichment
Analysis (GSEA) and Genome-Wide Connectivity
(GWC) map as described [19, 32], comparing the 11
PTEN-low/miR-low TNBCs to the other 194 (205 minus
11) TNBC samples. In keeping with high PI3K pathway
activity in these PTEN-deficient TNBCs, both methods
identified antagonists of the PI3K/mTOR pathway: siro-
limus (rapamycin, an mTOR inhibitor), quinostatin (a
small-molecule inhibitor of class Ia PI3Ks), and
LY294002 (inhibitor of phosphoinositide 3-kinases

A B

Fig. 4 RB1 pathway loss and high β-catenin, WNT, and PI3K signaling in the PTEN-low/miR-low subgroup of TNBC. a Heatmap of probability of
pathway activity in 31 PTEN(−) TNBCs from training cohort. b t test of probability of pathway activity in 205 TNBC from training cohort
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(PI3Ks), Fig. 6 and Additional file 1: Figure S11 and
S12). In addition, both methods identified clofibrate,
which depletes the levels of the lipoprotein VLDL and
thereby promotes breast cancer through PI3K signaling
[33], and resveratrol, which has pleiotropic effects includ-
ing attenuation of PI3K signaling [34]. Thus, multiple
drugs that directly or indirectly suppress PI3K signaling
are predicted to kill this aggressive subgroup of TNBC.

Discussion
We report the identification of a highly aggressive sub-
group of TNBCs that express low level of PTEN mRNA
together with low level of four or all five of the following
microRNAs: hsa-miR-4324, hsa-miR-125b, hsa-miR-381,
hsa-miR-145, and has-miR136. These microRNAs have
been implicated in invasion and metastasis in breast

cancer and other malignancies [12, 27, 35–37], suggest-
ing that their low expression is a driver rather than a
surrogate of poor prognosis. Whether these miRs repre-
sent primary oncogenic alterations or a reflection of up-
stream oncogenic events that suppress their expression
is yet to be determined. The PTEN-low/miR-low TNBC
subgroup exhibited significant hazard ratio of 3.91 and
4.42 in two independent cohorts compared to other
TNBC samples. These tumors harbor TP53 mutations,
RB1 loss and high MYC, WNT/β-catenin, and PI3K sig-
naling activity relative to other PTEN-low tumors that
do not express low levels of these miRNAs. Indeed, the
five microRNAs target genes on the MYC, β-catenin,
and PI3K pathways, which may explain at least in part
their enhanced activity in this aggressive subgroup of
TNBC. These lethal TNBCs overlap to a large extent

A

B

C D

Fig. 5 PTEN-low plus high Wnt/β-catenin and PI3K signaling or RB1 pathway loss identify TNBC patients with poor clinical outcome.
a, b Kaplan-Meier survival curves for PTEN-low plus RB1 signature loss, or high MYC, β-catenin, or PI3K pathway activity in the 205 TNBC
training or 44 TNBC validation cohorts. c High β-catenin pathway activity alone does not stratify TNBC into high and low clinical outcome.
d Altered expression of genes on the Wnt/β-catenin pathway in PTEN-low/miR-low TNBC (subgroup “a”) compared to subgroup “b,” “c” or
PTEN(+) TNBC in the 205 TNBC training cohort
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with TNBC identified on the basis of PTEN-low expres-
sion plus RB1-signature loss, or plus high MYC, PI3K,
or β-catenin signaling. These patients should be identi-
fied and prioritized for specific therapy. Our results
point to possible therapeutic strategies for these patients
including inhibitors of PI3K and Wnt signaling. These
PTEN-deficient tumors also show high levels of RAS sig-
naling and hence are expected to respond to RAS

pathway antagonists such as MEK inhibitors [12]. In
addition, all PTEN-low/miR-low TNBCs showed p53
mutations rather than deletions and may therefore re-
spond well to drugs that induce degradation of mutant
p53 or its conversion to a wild-type-like protein [38].
Generation of a preclinical mouse model for

PTEN-low/miR-low TNBCs would facilitate the assess-
ment of potential therapies for these aggressive tumors.

 
 

A

B C

Fig. 6 Connectivity map by GSEA identifies PI3K and other inhibitors for PTEN-low/miR-low subgroup of TNBC. a Connectivity scores (CS) of drug
hits generated using the GSEA method and different sizes of the TNBC PTEN-low/miR-low subgroup of TNBC/ group “a” signature (four signature
sizes). Each dot represents the connectivity score of a specific drug and colored to reflect the gene signature size used in the connectivity map
analysis. Dots plotted represent drug hits that have a negative CS < (− 0.3) across all signature sizes. Dots above the CS line of − 0.5 indicate drugs that
have a better ability to reverse the TNBC group “a” signature in the connectivity map analysis. b Structure of drugs that show consistent top hits
(CS < − 0.5 across all gene signature sizes) by GSEA. c Venn diagram showing three drugs that appear in both GSEA and GWC analysis with 200 genes.
Connectivity map analysis by GWC and additional Venn diagrams with different gene size are shown in Additional file 1: Figure S9 and 10
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However, this is a formidable task. Our observations that
Wnt signaling is highly induced in these tumors, and
that PTEN-low, β-catenin signaling-high identifies
TNBCs with extremely poor prognosis suggest that a
composite mouse model based on loss of Pten, activa-
tion of β-catenin, and mutation in p53 may exhibit ag-
gressive/metastatic tumors that would mimic human
PTEN-low/miR-low TNBC. β-catenin activation can be
experimentally achieved by conditional expression of a
transgene with exon 3 deletion ([39] and references
therein). However, such β-catenin mutations do not
occur in BC, but rather this pathway is induced by mul-
tiple upstream mechanisms to promote diverse types of
cancer including TNBC [40, 41]. Our search for alter-
ations in the WNT pathway in PTEN-low/miR-low (sub-
group “a”) or in the PTEN-low/β-catenin signaling-high
subgroups only revealed differences at the mRNA level
such as over-expression of WNT3, FZD9, LRP8, and
TCF7L1. Possibly, the trigger for Wnt signaling is pro-
vided by the unique stroma of TNBC [42, 43], other sig-
naling pathways such as NFkB [44], or cooperation
between different tumor clones [45]. Alternatively, other
genomic and proteomic alterations such as in RNF43,
ZNRF3, RSPO2, or RSPO3, not interrogated in our
study, may drive β-catenin pathway activation in
PTEN-low/miR-low tumors [46]. Notably, a recent study
links intracellular pH to β-catenin stability [47], indicat-
ing that tumor microenvironment and post-translational
modifications rather than oncogenic alterations may
drive Wnt signaling in TNBC.
The observation that PTEN-low/miR-low TNBCs also

express high level of RB1-loss signature is consistent
with a recent report that these tumor suppressors to-
gether with p53 are frequently lost in diverse type of
solid metastases [11]. Indeed, TNBC cell lines such as
BT549 harbor mutations in all these tumor suppressors
and are highly aggressive following transplantation into
immune-deficient mice [20, 26]. We previously demon-
strated strong cooperation between loss of Rb and p53
[48, 49], and between loss of Pten and p53 [20, 50] in
mouse models. It would be thus of interest to generate
triple Rb/Pten/p53-mutant tumors and study their meta-
static behavior. We expect these tumors to be highly
sensitive to PI3K inhibition. In addition, we recently
identified CDC25 as a common therapeutic target for di-
verse TNBCs, including RB1/PTEN/P53-deficient TNBC
[20], and demonstrated a strong synergy between
CDC25 and PI3K/mTOR inhibitors even in tumors with
intact PTEN expression. We therefore expect that
PTEN-low/miR-low TNBCs identified herein, which
show alterations in p53 and the RB1 pathway, to be
highly sensitive to this combination therapy.
mRNA- and microRNA-based signatures from primary

lesions and circulating tumor cells have been extensively

used to predict clinical outcome, and some are in clinical
use [35, 51–53]. We show herein that a PTEN-low/
miR-low “signature” provides potent prognostication of
TNBC. The approach we developed here, which can be
simplified by appropriate algorithms, can be used to de-
velop additional integrated mRNA-miRNA-based classi-
fications to stratify cancer patients.

Conclusions
We report the identification of a subclass of TNBCs with
extremely poor prognosis that should be prioritized for
aggressive therapy. These lethal TNBCs express low levels
of five microRNAs, defined in this study, as well as alter-
ations in PI3K/PTEN, RB1, MYC, and WNT signaling.
These features plus an in silico drug prediction analysis
point to a few potential therapeutic targets such as PI3K
and Wnt signaling. Our analysis also provides a rationale
for analyzing cooperating oncogenic driver-miRNA com-
binations in diverse types of cancer.

Additional files

Additional file 1: Figure S1. Overview of breast cancer (BC) datasets,
cohorts and groups used in this project, and subgrouping analysis. (A)
The 1302 BC dataset, which includes 205 triple-negative breast cancers
(TNBC) with matched mRNA and miRNA data from EGAS00000000122,
was used as training cohort. Six subgroups of all BC or TNBC were
randomly divided to correlate expression of PTEN and miRNAs. The 207
BC dataset, which contained 44 TNBC with matched mRNA and miRNA
data from GSE22220, was used as validation cohort. 205 related TNBC
with copy number alteration (CNA) data and 185 related TNBC with gene
mutation data from EGAS00001001753 were used to confirm genomic
changes of PTEN-miRNA co-expression profile. (B) Kaplan-Meier survival
analysis on PAM50 classification of all 1302 breast cancers (BC), and
examples of subgroups 2A-651 BC and 2B-651 BC. (C) Heatmap of
correlation coefficient (r) between PTEN and miRNAs for most positive or
negative correlation in BC (left) or TNBC (right). Figure S2. DNA
sequence variations in TNBC subgroups. (A) Heatmaps of Copy Number
Alteration (CNA) of 93 protein-coding cancer genes among the different
subgroups in 31 PTEN(-) TNBC. (B) Mutational landscape of 74 genes that
have at least one mutated gene among the TNBC subgroups in 28
PTEN(-) TNBC.. Figure S3. Significant changes in copy number alterations
(CNA) in protein-coding cancer genes among TNBC subgroups. CNA of
total gain (1 + 2) and loss (-1 + -2) in TNBC subgroups and CNA changes
of CUX1, DNMT3A, GATA3, MMLLT4, MYC, PBRM1, PTEN and ZNF217.
Figure S4. Low EGFR pathway activity in PTEN-deficient TNBC including
subgroup ‘a’ as compared to PTEN+ tumors. Figure S5. mRNA
expression and CNA of Wnt/β-catenin signaling related genes in PTEN-
low/miRs-low (subgroup ‘a’) TNBC versus other TNBC. Figure S6.
mRNA expression and CNA of Wnt/β-catenin signaling related genes
in PTEN(-)/β-catenin(+) TNBC versus other TNBC. Figure S7. Mutation
in PTEN/β-catenin(+) TNBC versus other TNBC. 173 gene mutation
data were compared and 135 genes with at least one mutation are
shown in order of the number of mutated genes. Figure S8. CRNDE
mRNA expression level and distribution in 1292 BC in
EGAS00000000083. (A) Expression level of CRNDE mRNA in high (> 1),
medium (1 to 0) and low (< 0) was tested by Log-rank test and
revealed no significant difference. CRNDE distribution of mRNA
expression was compared in TNBC subgroups (B) and PAM50
subtypes (C) by ANOVA and t-test. Figure S9. Correlation between
CRNDE expression and target miRNAs in TNBC subgroups and PAM50
subtypes. Pearson correlation was preformed between CRNDE and its
target miRNAs miR-136 and miR-451 in TNBC subgroups and PAM50

Wang et al. Breast Cancer Research           (2019) 21:18 Page 11 of 13

https://doi.org/10.1186/s13058-019-1098-z


subtypes. CRNDE targets miRNAs miR-384 and miR-181a-5p are not
available in EGAD00010000438 miRNA dataset; four miR-181a-related
miRNAs were tested here. Figure S10. Target miRNAs are predicted
to regulate MYC, β-Catenin and PI3K signalling pathways. (A)
Predicted target genes and overlap between the five identified
miRNAs using miRWalk3 miRNAs target mining tool. (B) Detected
target genes overlap with MYC, β-Catenin 3 and PI3K pathway
activity genes. (C) mRNA expression of top 20 detected target genes
on the MYC, β-Catenin and PI3K pathways that are regulated by the
five identified miRNAs. (D) mRNA expression of six detected targets
of the five miRNAs and/or MYC, β-Catenin and PI3K pathway training
genes that appear more than once in panel C. Figure S11.
Connectivity map by GWC identifies PI3K and other drugs for PTEN-low/
miRs-low subgroup of TNBC. Connectivity scores (CS) of drug hits generated
using the GSEA method and different sizes of the PTEN-low/miRs-low TNBC
(group ‘a’; 4 signature sizes). Each dot represents the connectivity score of a
specific drug, and colors reflect gene signature size used in the connectivity
map analysis. Dots plotted represent drug hits that have a negative
CS < (-0.3) across all signature sizes. Dots above the CS line of -0.5,
indicate drugs that have a better ability to reverse the TNBC group
‘a’ signature in the connectivity map analysis. No drugs had score
<-0.5 across all 4 runs. Thus, for this analysis, the stringency cut-off
was set at <-0.45). Figure S12. Overlap between drug hits using
GSEA and GWC connectivity scoring metrics. The number of drug
hits is based on group ‘a’ TNBC gene signature size tested, with CS
<-0.5. Common drugs identified by both methods in each analysis
are highlighted. For 200 gene size, see Fig. 6c. (PPTX 2216 kb)

Additional file 2: Table S1. Ranking of correlation coefficients in top 40
pairs of PTEN vs. miRNAs from each of the 14 subgroups. Table S2.
Average ranking of correlation coefficients in top 40 miR pairs on 7 BC
subgroups and 7 TNBC subgroups. Table S3. Log-rank test of
average-ranked top 20 PTEN/miRNAs pairs in all BC and TNBC on
EGAS00000000122 and GSE22220 datasets. (XLSX 33 kb)
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