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Moderate hypothermia within 6 h of birth plus inhaled 
xenon versus moderate hypothermia alone after birth 
asphyxia (TOBY-Xe): a proof-of-concept, open-label, 
randomised controlled trial
Denis Azzopardi, Nicola J Robertson, Alan Bainbridge, Ernest Cady, Geoff rey Charles-Edwards, Aniko Deierl, Gianlorenzo Fagiolo, Nicholas P Franks, 
James Griffi  ths, Joseph Hajnal, Edmund Juszczak, Basil Kapetanakis, Louise Linsell, Mervyn Maze, Omar Omar, Brenda Strohm, Nora Tusor, 
A David Edwards

Summary
Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but 
additional therapies might provide further benefi t. We assessed whether the addition of xenon gas, a promising novel 
therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement.

Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group 
trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs 
of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or 
seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min 
after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated 
in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to 
a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 
24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio 
in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with 
magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these 
outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, 
number NCT00934700, and with ISRCTN, as ISRCTN08886155.

Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly 
assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus 
xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. 
We noted no signifi cant diff erences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 
95% CI 0·90 to 1·32) or fractional anisotropy (mean diff erence –0·01, 95% CI –0·03 to 0·02) in the posterior limb of the 
internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse 
events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. 
No serious adverse events were recorded.

Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, 
but is unlikely to enhance the neuroprotective eff ect of cooling after birth asphyxia.

Funding UK Medical Research Council.

Copyright © Azzopardi et al. Open Access article distributed under the terms of CC BY.

Introduction
Treatment of neonatal encephalopathy with moderate 
hypothermia is now standard care in several countries.1 
Cooling to 33–34°C after birth asphyxia increases survival 
without impairments in childhood by about 15%, but 
roughly 25% of treated infants with moderate or severe 
encephalopathy die and 20% of survivors develop 
sensorimotor and cognitive impairments.

Additional therapies might further improve outcomes 
in these infants. Several neuroprotectants are eff ective in 
experimental studies; the challenge is to fi nd the most 

promising candidate treatment to take forward to clinical 
trials. In a comparative review of potential neuro-
protectants,2 inhaled xenon was rated highly but, because 
of the need for specialist equipment and training, there 
were concerns about cost and ease of administration.

Xenon is a monoatomic gas that rapidly crosses the 
blood–brain barrier. It is an approved inhalational 
anaesthetic at a minimum alveolar concentration of 
60–70% in adults and is not associated with adverse 
cardiovascular eff ects, or anaesthetic-associated neurotoxic 
eff ects.3 Broad interest in xenon as a potential 
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neuroprotectant is based on strong experimental evidence, 
but the drug is diffi  cult to use in clinical practice. Xenon 
might provide neuroprotection after asphyxia by diff erent 
mechanisms. It is an inhibitor of NMDA glutamate 
receptors and so could reduce neuronal injury caused by 
excessive glutamate concentrations and lessen seizures, 
and it reduces apoptosis by activation of anti-apoptotic 
factors.4–6 Xenon reduced cerebral injury in models of 
hypoxic ischaemic injury in diff erent animal species and 
the neuroprotective eff ect was stronger when xenon was 
used in combination with cooling.7 The combination of 
20% xenon with cooling to 35°C provided synergistic 
neuroprotection in both in-vitro and in-vivo models, with 
improvement in function for 30 days, but neither 
intervention alone was eff ective.8

In adults with stroke, many neuroprotectants that were 
eff ective in preclinical studies were not associated with 
any benefi ts in large randomised trials.9 In view of the 
neuroprotective eff ect of cooling after birth asphyxia, a 
study of about 750 infants would be needed to detect a 
further 10% improvement in neurological outcomes with 
additional or modifi ed therapy.10 The substantial fi nancial 
and opportunity costs associated with large pragmatic 
clinical trials that yield negative results can be avoided 
by fi rst assessing candidate treatments in small 
proof-of-concept trials, in which qualifi ed biomarkers and 
surrogate endpoints are used to test effi  cacy in the clinical 
context. Treatments that show promise at this stage are 
candidates for large defi nitive trials with clinical endpoints.

In neonates after hypoxic ischaemic injury, the ratio of 
cerebral lactate to N-acetyl aspartate (assessed with 
magnetic resonance spectroscopy [MRS]) and fractional 
anisotropy (FA), a measure of tissue integrity in white 
matter tracts measured by diff usion tensor MRI, have 
been used in work in animals to assess potential 

neuroprotectants and can be used to predict subsequent 
neurological outcomes after birth asphyxia, including in 
infants treated with moderate hypothermia.11–14

To assess whether the combination of cooling with 
inhaled xenon—administered at a concentration and 
within a timeframe suitable for general clinical 
application—could further improve neurological out-
comes after birth asphyxia and neonatal encepha lopathy, 
we compared the eff ects of combined therapy with 
cooling alone on the lactate to N-acetyl aspartate ratio in 
the thalamus and FA in white matter tracts within 15 days 
of birth.

Methods
Study design and participants
Total Body hypothermia plus Xenon (TOBY-Xe) was a 
proof-of-concept, pragmatic, open-label, parallel-group 
randomised controlled trial at four UK neonatal 
intensive-care units in London (University College 
Hospital, St Thomas’ Hospital, Queen Charlotte and 
Chelsea Hospital) and Liverpool (Liverpool Women’s 
Hospital). The National Perinatal Epidemiology Unit 
(University of Oxford, Oxford, UK), was the coordinating 
centre for the trial, and managed the study.

Infants were eligible if their gestational age was 
36–43 weeks and they had at least one of the following: 
Apgar score of 5 or less 10 min after birth; continued 
need for resuscitation, including endotracheal or mask 
ventilation, 10 min after birth; or acidosis (defi ned as 
pH <7 or base defi cit >15 mmol/L, or both, in umbilical 
cord blood or any blood sample) within 1 h of birth. 
Furthermore, eligible infants showed signs of moderate 
to severe encephalopathy, consisting of altered state of 
consciousness (reduced or absent response to stimu-
lation), hypotonia or severe hypotonia, and abnormal 

Research in context

Evidence before this study
We searched PubMed with the terms “xenon neuroprotection” 
and “xenon hypothermia” for all articles published in English 
until July 23, 2015. Our search returned several preclinical 
studies, in which the neuroprotective eff ects of xenon after 
asphyxia were shown; these eff ects were enhanced when xenon 
was used in combination with hypothermia. Investigators of 
clinical studies had reported the feasibility of treatment with 
xenon in combination with hypothermia for neuroprotection in 
neonates after birth asphyxia and in adults after cardiac arrest, 
but we found no reports of neuroprotective eff ects associated 
with this therapy.

Added value of this study
Our trial is the fi rst randomised clinical study of the 
neuroprotective eff ects of xenon in combination with 
hypothermia after birth asphyxia. The treatment regimen that 
we used is generally applicable in high-resource settings, and 

we assessed it with qualifi ed cerebral magnetic resonance 
endpoints. Our proof-of-concept study showed that, in the 
complex situation of neonatal care, delayed intervention with 
xenon beyond 6 h after birth does not have additional 
neuroprotective eff ects compared with induction of 
hypothermia alone after birth asphyxia.

Implications of all available evidence
Strong experimental evidence supports the use of xenon as a 
neuroprotectant, but treatment with 30% xenon for 24 h 
begun more than 6 h after birth combined with early 
hypothermia is unlikely to improve clinical outcomes compared 
with hypothermia alone after birth asphyxia. Qualifi ed 
magnetic resonance biomarkers off er the potential to speed up 
the assessment of promising neuroprotective treatments 
before a large pragmatic trial, would substantially reduce 
opportunity costs, and could lead to redirection of future 
research. 

For the trial protocol see http://
www.npeu.ox.ac.uk/toby-xe
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primitive refl exes (weak or absent suck or Moro 
response), and had moderately or severely abnormal 
background activity for at least 30 min or seizures as 
shown by amplitude-integrated EEG (aEEG).15

We excluded infants if cooling was started after age 6 h 
or if they were older than 12 h at randomisation. We also 
excluded infants with an oxygen requirement of greater 
than 60%, those who needed nitric oxide inhalation or 
ventilation with a high-frequency oscillator, those who 
needed extracorporeal membrane oxygen, and those with 
major congenital abnormalities.

Infants were recruited and assessed on admission by 
study personnel and cared for in participating centres. 
Infants born at hospitals that refer patients to the 
participating neonatal intensive-care units were also 
eligible for inclusion.  Transport teams provided written 
information about the study for the parents of infants 
from referring hospitals, and study personnel assessed 
the infants on admission to the participating centre.

The trial was approved by the UK National Research 
Ethics Service (approval number 10/H0707/33). Parents 
provided written informed consent; if neither parent 
was available, consent was fi rst obtained by telephone 
and then written consent was obtained at the earliest 
opportunity. Consent was reaffi  rmed within 24 h of 
receiving written consent.

Randomisation and masking
Eligible infants were randomly assigned (1:1) to cooling 
plus inhaled xenon or cooling only. Assignment to a 
treatment group was overseen by the National Perinatal 
Epidemiology Unit, and was done through a secure 
web-based system with a computer-generated random-
isation sequence, with telephone back-up. Minimisation 
was used to ensure balance of treatment assignment 
among infants with moderate or severe grades of 
abnormality on aEEG and within each participating 
centre. Masking of investigators and parents to allocation 
was not practical because of the need for a special 
ventilator to administer xenon, and thus the trial was open 
label. However, investigators who assessed the primary 
outcome measures—ie, NT who assessed MRI data and 
AB who assessed MRS data—were masked to treatment 
allocation.

Procedures
We used servo-controlled equipment to cool all infants to a 
target rectal temperature of 33·5°C for 72 h starting within 
6 h of birth. If cooling equipment was not available at the 
referring hospital, passive cooling was commenced and 
active cooling was started by the transport team and 
continued during transport to the treatment centre. Infants 
in the inhaled xenon group also received 30% xenon 
(Lenoxe, Air Liquide, Paris, France) through an uncuff ed 
endotracheal tube connected to a recirculating device 
developed for the trial (SLE, Croydon, UK).16 The system 
provided automated control of xenon, air, and oxygen 

mixture and continuous monitoring of xenon, oxygen, and 
carbon dioxide concentrations in inhaled gas. Xenon was 
commenced immediately after randomisation and 
continued for 24 h. After xenon administration ended, the 
infant was ventilated with a standard ventilator according 
to the unit’s practice.

All MRS and MRI studies were done with 3·0 Tesla 
systems (Philips Healthcare, Best, Netherlands) at each 
centre. The trial research physicist (GF) undertook 
rigorous standardisation and a quality-control pro-
gramme with phantoms and repeated scanning. 

97 ineligible
 47 had normal or normalising amplitude-

 integrated EEG
 17 did not meet eligibility criteria
 14 required greater than 60% oxygen, nitric 
 oxide inhalation, or oscillatory ventilation
 7 unspecified
 5 clinically severe cases necessitating 
 redirection of care
 2 cardiac abnormalities
 1 referred for extracoporeal membrane 
 oxygenation
 1 ex-utero infant, parents at birth hospital*
 1 atypical history and no hypoxic ischaemic

encephalopathy
 1 intraventricular haemorrhage

1 postnatal collpase

31 excluded
 14 referral not accepted (no cots or 
 insufficient staff)
 12 consent not given
 2 transfers not possible
 2 mothers not present†
 1 staff did not refer to the trial criteria

5 excluded from analysis
 3 scans not done in patients 
 who died before discharge
 2 scans not done in patients 
 alive at discharge

9 excluded from analysis
 6 scans not done in patients 
 who died before discharge
 3 scans not done in patients 
 alive at discharge

37 included in analysis of 
 primary outcomes
 34 alive at discharge
 3 dead at discharge

41 included in analysis of 
 primary outcomes
 33 alive at discharge 
 8 dead at discharge

220 infants screened for eligibility

123 eligible for inclusion

92 randomly assigned

46 assigned to cooling only 46 assigned to cooling 
 plus xenon

Figure: Trial profi le
*Could not give consent. †When parents were unmarried, only the mother of the infant could provide consent.
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Comparability test objects were transported from site to 
site during the project. An adult volunteer was imaged at 
each site periodically to provide direct comparison data.

Images were obtained according to a standard protocol 
that included T1-weighted and T2-weighted diff usion 
tensor MRI with 32 non-collinear directions, MRS from 
a single voxel on the left thalamus, and motion tolerant 
T1 and T2 structural scans. We used a study-specifi c 
SmartExam card (Philips Healthcare) to aid the 
planning of the various sequences (appendix). Total 
examination time for the study protocol was around 1 h. 
The SENSE 8 channel head coil (Philips Healthcare) 
was used for all infants.

Outcomes
The primary outcomes were reduction  in lactate to 
N-acetyl aspartate ratio in the thalamus on MRS or 
preserved FA in the posterior limb of the internal capsule 
on diff usion tensor MRI, as assessed by tract-based 
spatial statistics, an automated observer-independent 
method of aligning FA images from several patients to 

allow group-wise comparisons of diff usion tensor 
imaging data free from partial volume eff ects.17,18

Secondary outcomes assessed before discharge from 
hospital were maximum Thompson hypoxic ischaemic 
encephalopathy score (range 0–22, with higher scores 
corresponding to worse encephalopathy);19 neurological 
examination at discharge from treatment centre (which 
were done by experienced nominated physicians at each 
treatment centre);20 occurrence of seizures; intracranial 
haemorrhage; persistent hypo tension; pulmonary 
haemorrhage; pulmonary hyper tension; prolonged blood 
coagulation time (activated partial thromboplastin time 
>41 s or inter national normalised ratio >3); thrombo-
cytopenia (platelet count <150 × 10⁹ per L); major venous 
thrombosis; cardiac arrhythmia (heart rate <80 beats per 
min); culture-proven late-onset sepsis; necrotising 
enterocolitis; pneumonia; pulmonary air leak; anuria or 
urine output of less than 0·5 mL/kg/h for 24 h; age at 
which full oral feeding was achieved; and duration of 
hospital stay. We also measured the grade of abnormalities 
on visual analysis of MRI (scored 0–11, with higher scores 
corresponding to worse abnormalities).21 We did not 
compare aEEG results between groups after random isation 
as initially planned, because during the study we noted that 
xenon treatment suppressed the reading, hindering a 
comparative analysis.6

Non-serious adverse events and reactions were reported 
on the data collection forms, but adverse events commonly 
associated with neonatal encephalopathy were not 
recorded. Serious adverse events that we monitored were 
deaths, hypertension (mean blood pressure >85 mmHg), 
hypotension (mean blood pressure <25 mmHg), cardiac 
arrhythmia (severe bradycardia [heart rate <60 beats per 
min] or ventricular arrhythmia), and inability to achieve 
adequate ventilation despite appropriate adjustment of 
ventilator settings.

Statistical analysis
The National Perinatal Epidemiology Unit had data 
entry and management functions, provided an 
OpenClinica clinical database system, and did most of 
the analyses (it was masked to treatment allocation). 
Sample size was estimated primarily for detection of 
diff erences in the geometric mean lactate to N-acetyl 
aspartate ratio between groups because this value was 
greater than the number needed to detect a diff erence in 
FA. Based on assumptions from previous data, and 
allowing for a mortality rate of 20% before 15 days, a 
study of 138 infants would have 80% power to detect a 
geometric mean ratio of lactate to N-acetyl aspartate of 
0·6, with a coeffi  cient of variation of 1·2.14 A geometric 
mean ratio of 1 suggests no diff erence in mean values 
between the two groups, whereas a ratio of less than 1 
favours the intervention group.

For changes in FA detected with tract-based spatial 
statistics, power was estimated by computational 
modelling and previous data, which suggested that with 

Cooling only (n=46) Cooling plus xenon 
(n=46)

Treatment hospital (n)

University College London 15 15

St Thomas’ 17 17

Queen Charlotte and Chelsea 14 13

Liverpool Women’s 0 1

Birth in treatment centre 15 (33%) 16 (35%)

Male sex 21 (46%) 26 (57%)

Birthweight (g), mean (SD) 3213 (448) 3392 (685)

Gestation at delivery (weeks), mean (SD) 39·8 (1·3) 39·8 (1·7)

Apgar at 10 min, median (IQR) 5 (4 to 7) 5 (3 to 6)

Median cord or fi rst blood pH (IQR) 6·9 (6·7 to 7·0) 6·9 (6·8 to 7·1)

Mean cord or fi rst blood pH (SD) 6·9 (0·2) 6·9 (0·2)

Base excess (mmol/L), median (IQR) –19·7 (–23·7 to –14·0) –17·7 (–22 to –13·5)

Thompson hypoxic ischaemic encephalopathy score* at 
trial entry

0–10 2 (4%) 5 (11%)

11–14 30 (65%) 21 (46%)

15–22 14 (30%) 20 (43%)

Median (IQR) 14 (12 to 15) 14 (12 to 16)

Abnormality on amplitude-integrated EEG

Moderate 7 (15%) 6 (13%)

Severe 39 (85%) 40 (87%)

Age cooling commenced, n/N (%)

<4 h 41/44 (93%) 41/44 (93%)

4–6 h 3/44 (7%) 3/44 (7%)

Median (IQR) 0·3 (0·0 to 0·8) 0·2 (0·0 to 1·5)

Head circumference at admission to neonatal unit (cm), 
mean (SD)

34·4 (1·5) 34·5 (1·8)

Data are n (%), unless otherwise indicated. *Score ranges from 0 to 22, with higher scores corresponding to more 
severe encephalopathy. 

Table 1: Baseline clinical characteristics in the intention-to-treat population

See Online for appendix
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80% power and a two-sided 5% signifi cance level, a 10% 
change in FA would be detected in a study of 60 infants 
(higher FA shows less tissue damage).11,22 Analysis of 
changes in FA induced by neuroprotective hypothermia 
showed that a substantial clinical eff ect was associated 
with changes of 10–20%.11,14

All infants for whom magnetic resonance data were 
available were analysed in the groups that they were 
randomly allocated to, irrespective of allocation or 
protocol deviation. Diff usion tensor MRI and MRS 
analyses were done masked to treatment allocation (data 
were anonymised and allocation group was not included). 
We could not adjust for the minimisation factors used 
during randomisation because of small numbers.

We used linear regression to analyse diff erences 
between the intervention and control groups in mean 
thalamic ln(lactate/N-acetyl aspartate). The diff erence 
between the natural logarithm of two ratios is equivalent 
to the ratio of geometric means—ie, the geometric mean 
ratio. A ln(x + 1) transformation was used because of the 
presence of zero values for the lactate to N-acetyl 
aspartate ratio in the data. We used Randomise 
(a program for non-parametric permutation inference 
for neuroimaging data; v2.9) to analyse data for FA, 
controlling for postmenstrual age, with the two-sample 
t test with nuisance variable options.23

We did two sets of analysis for the two primary 
outcomes: the fi rst included all infants who had MRI, 
and the second excluded those who subsequently died 
before discharge to account for a possible diff erential rate 
of scanning among these cases. We prespecifi ed a 
subgroup analysis of lactate to N-acetyl aspartate by 
severity of abnormality of aEEG at randomisation. We 
also explored the eff ect of the time from birth to start of 
xenon therapy on the lactate to N-acetyl aspartate ratio 
and on FA, and the relation between these measures and 
neurological fi ndings at discharge. A p value of 0·05 
(two-sided 5% signifi cance level) was deemed signifi cant 
for the primary outcomes, and a p value of 0·01 (two-
sided 1% signifi cance level) was deemed signifi cant for 
the exploratory analyses of secondary outcomes. We used 
Stata/SE (version 13.1) for all analyses.

A data monitoring committee oversaw the study, and the 
members of the committee had no involvement in the 
day-to-day running of the trial. Decisions and recom-
mendations made by the data monitoring committee were 
communicated to the trial steering committee in writing. 
The data monitoring committee met four times between 
September, 2010, and December, 2013, and received reports 
of analyses of safety data after incremental enrolments of 
around 25 infants. A study statistician, who attended the 
open part of the meeting only, provided the reports. 
Although the charter allowed interim assessment of 
effi  cacy, no interim analyses of effi  cacy were done: they 
were not requested by the data monitoring committee 
because the study did not include the pre-specifi ed sample 
size. The committee decided to look only at safety outcomes.

This trial is registered with ClinicalTrials.gov, number 
NCT00934700, and with ISRCTN, as ISRCTN08886155.

Role of the funding source
The funder of the study had no role in study design; data 
collection, analysis, or interpretation; or writing of the 
report. The study statisticians (OO and LL) had full access 
to all the data in the study, and provided data to the 
corresponding author after data analysis was completed. 
Summary data were provided to all the authors. The 
corresponding author had fi nal responsibility for the 
decision to submit for publication.

Results
The study was done from Jan 31, 2012, to Sept 30, 2014. 
We screened 220 infants for eligibility, 92 of whom were 
enrolled up to completion of the enrolment period 
(fi gure 1). Failure to recruit the target sample size of 138 
was primarily due to the closing of recruitment at the 
Liverpool participating centre after one infant had been 
enrolled because of incompatible confi guration of 
scanner magnet gradient coils. 46 infants were randomly 
assigned to the cooling only group, and 46 to the xenon 
group (fi gure 1). Baseline clinical characteristics of the 
infants who were assigned to the two groups were 
broadly similar (table 1).

All infants allocated to the cooling plus xenon group 
received xenon. Ventilation with xenon commenced a 
median of 10·0 h (IQR 8·2–11·2, range 4·0–12·6) after 

Cooling only Cooling plus 
xenon

Geometric mean 
ratio (95% CI)

Mean diff erence 
(95%CI)

Infants with MRI scans

Lactate to N-acetyl 
aspartate ratio

1·09 (0·90 to 1·32) ..

n 37 41

Arithmetic mean (SD) 0·47 (0·94) 0·68 (1·12)

Coeffi  cient of variation* 2·19 1·68

Geometric mean 0·34 0·47

Fractional anisotropy .. –0·01 (–0·03 to 0·02)

n 35 38

Mean (SD) 0·41 (0·01) 0·40 (0·01)

Infants with MRI scans surviving to discharge

Lactate to N-acetyl 
aspartate ratio

0·98 (0·85 to 1·12) ..

n 34 33

Arithmetic mean (SD) 0·32 (0·42) 0·34 [0·77]

Coeffi  cient of variation* 1·41 1·30

Geometric mean 0·28 0·25

Fractional anisotropy .. –0·01 (–0·01 to 0·01)

n 33 30

Mean (SD) 0·40 (0·05) 0·40 (0·05)

Geometric mean ratios were calculated after log (x + 1) transformation. Fractional anisotropy data were extracted from 
a mask of the posterior limb of the internal capsule via tract-based spatial statistics. *Coeffi  cient of 
variation=√(exp(var)–1), where var is the variance on the log scale.

Table 2: Analysis of primary outcomes
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birth and continued for a median of 24 h (IQR 24–24). 
The mean concentration of inhaled xenon was 32·2% 
(SD 6·9). Ventilation with xenon was started within 6 h 
of birth in seven (15%) of 46 infants and after 12 h in fi ve 
(11%) infants (range 12·1–12·6 h), and was discontinued 
in two (4%) infants before 24 h because of increasing 
oxygen requirements due to persistent pulmonary 
hypertension. Median xenon leakage was 12 mL/min 
(IQR 10–15).

Cerebral magnetic resonance scans were done in 
37 (80%) of 46 infants a mean of 5·8 days (SD 2·0) after 
birth in the cooling group and 41 (89%) of 46 infants at 
6·0 days (2·1) after birth in the cooling plus xenon 
group. Lactate to N-acetyl aspartate ratio in the thalamus 
and FA values in the posterior limb of the internal 
capsule were similar in the two groups. The thalamic 
geometric mean ratio of lactate to N-acetyl aspartate was 
1·09 (95% CI 0·90 to 1·32) and mean diff erence in FA 
was –0·01 (–0·03 to 0·02); exclusion of deaths from the 
analysis did not signifi cantly aff ect results (table 2).

Two adverse events were reported during the study, 
both in the cooling plus xenon group. Subcutaneous fat 
necrosis, which is associated with cooling therapy, was 
noted in one, and transient desaturation during the 
MRI (done after cessation of cooling and xenon) in 
another. No serious adverse events occurred, but nine 
(20%) infants in the cooling group and 11 (24%) in the 
cooling plus xenon group died (relative risk 1·22, 
99% CI 0·44–3·41). Neither event rates of adverse 
outcomes and other clinical measures examined before 
discharge from hospital (table 3) nor the distribution 
of MRI scores between groups (table 4) diff ered 
signifi cantly.

Lactate to N-acetyl aspartate ratio results did not diff er 
signifi cantly according to severity of abnormality of the 
aEEG at randomisation (geometric mean ratio 1·02 
[95% CI 0·97–1·09] in the moderately abnormal aEEG 
group vs 1·09 [0·87–1·36] in the severely abnormal aEEG 
group; pinteraction=0·80). No signifi cant relations were noted 
between time from birth to start of xenon therapy and the 

Cooling only 
(n=46)

Cooling plus 
xenon (n=46)

Relative risk (99% CI)

Death before discharge 9 (20%) 11 (24%) 1·22 (0·44 to 3·41)

Maximum Thompson hypoxic ischaemic encephalopathy score in fi rst week of life

0–10 0 (0%) 1 (2%) 1·22 (0·82 to 1·82)

11–14 19 (41%) 12 (26%)

15–22 27 (59%) 33 (72%)

Median (IQR) 16 (13 to 19) 15 (14 to 18)

Neurological assessment at discharge* 0·66 (0·17 to 2·51)

Normal or mildly abnormal 29 (78%) 30 (86%)

Moderately abnormal 7 (19%) 3 (9%)

Very abnormal 1 (3%) 2 (6%)

Persistent hypotension 29 (63%) 31 (67%) 1·06 (0·72 to 1·58)

Cardiac arrhythmia (heart rate <80 beats per min) 4 (9%) 2 (4%) 0·50 (0·06 to 4·36)

Thrombocytopenia (platelet count <150 × 10⁹ per L) 20 (43%) 18 (39%) 0·90 (0·55 to 1·47)

Prolonged blood coagulation time (activated partial thromboplastin time >41 s or 
international normalised ratio >3)

32 (70%) 36 (78%) 1·13 (0·82 to 1·55)

Major venous thrombosis 1 (2%) 0 (0%) ..

Anuria or urine output <0·5 mL/kg/h for >24 h, n/N (%) 3/20 (15%) 6/23 (26%) 2·00 (0·38 to 10·5)

Culture-proven late-onset sepsis 0 (0%) 2 (4%) ..

Necrotising enterocolitis 0 (0%) 0 (0%) ..

Pneumonia 1 (2%) 1 (2%) 1·00 (0·03 to 36·71)

Pulmonary air leak 0 (0%) 3 (7%) ..

Pulmonary haemorrhage 3 (7%) 1 (2%) 0·33 (0·02 to 6·21)

Persistent pulmonary hypertension 3 (7%) 3 (7%) 1·00 (0·13 to 7·64)

Intracranial haemorrhage 3 (7%) 4 (9%) 1·33 (0·20 to 8·85)

Seizures 36 (78%) 36 (78%) 1·00 (0·75 to 1·33)

 Median age (IQR) full oral feeding achieved (days)† 9 (7 to 11) 9 (7 to 12) ..

Did not achieve full oral feeding by discharge† 6 (17%) 4 (12%) 0·73 (0·16 to 3·40)

Median hospital stay (IQR) to discharge* (days) 14 (10 to 17) 12 (9 to 22) –1 (–5 to 4)‡

Data are n (%) unless otherwise specifi ed. Hypotension was defi ned as a mean blood pressure of less than 40 mmHg. Seizures included both clinical and subclinical events, 
and were identifi ed by amplitude-integrated EEG. *Calculated only in infants alive at discharge. †Data available for 36 infants in the cooling group and 33 in the xenon group. 
Median (IQR) based only on those who achieved full oral feeding by discharge. ‡These data are median diff erence (95% CI).

Table 3: Analysis of secondary outcomes
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magnetic resonance measures (Spearman’s correlation 
–0·14 for FA and –0·05 for the lactate to N-acetyl 
aspartate ratio). When we compared infants with normal 
or mildly abnormal results on neurological examination 
at discharge and those with moderately or severely 
abnormal results, the diff erence in means was 0·52 
(95% CI 0·46–0·60; p<0·0001) for the lactate to N-acetyl 
aspartate ratio and 0·03 (0·01–0·06; p=0·02) for FA in 
the posterior limb of the internal capsule.

Discussion
Our results showed that when xenon was used in a real-
world context—ie, when it is given only at specialist 
centres and not during transport in a population of 
referred infants—qualifi ed biomarkers of brain damage 
were not signifi cantly aff ected and there was no treatment 
benefi t. The use of magnetic resonance biomarkers to 
assess potential treatments rapidly and at low cost might 
be applicable to other neuroprotective therapies.

We planned to enrol 138 infants to acquire primary 
outcome data for 111 infants, but only had data for 78 infants 
for the lactate to N-acetyl aspartate ratio and for 73 infants 
for the FA analyses. The study was powered primarily for 
lactate to N-acetyl aspartate ratio, but we used data from 
a previous study of successful neuroprotection with 
hypothermia to predict a 10–20% increase in FA because of 
treatment, for which a study size of 60 infants would be 
suffi  cient to detect a clinically signifi cant diff erence of 
10%.11,14 This estimate was supported by the results of an 
in-silico modelling study22 in which the eff ect of changing 
FA values on a tract-based spatial statistics study was 
simulated and the number of voxels showing a signifi cant 
diff erence by FA change was estimated; the results showed 
that a study size of 60 infants would be suffi  cient to detect 
clinically important diff erences in FA between the study 
groups. Thus, our study was adequately powered to detect 
changes in FA.22 The model was validated with infant data, 
showing that the model predicts real-world data accurately. 
Our trial is underpowered for the lactate to N-acetyl 
aspartate ratio, but provides a reliable estimate of lack of 
biological eff ect through tract-based spatial statistics, and 
that all outcome measures are concordant is relevant.

The duration of the enrolment period was 32 months, 
2 months longer than was planned in the protocol, and 
we did not seek to extend that period largely because the 
sample size needed to detect a signifi cant change in FA 
had been reached, and our goal was a rapid analysis of 
the suitability of the intervention for a large pragmatic 
trial. Although the study size was smaller than initially 
planned, judging by our results there is only a remote 
possibility that outcomes would materially change if we 
had enrolled the planned number.

We initially planned to include three participating 
centres in the trial, but later sought a fourth centre to 
ensure that recruitment would be to target. However, 
during the quality-assurance check done after the fi rst 
baby was recruited at the fourth centre, the MRI scanner 

gradient set-up was shown to diff er from that of the other 
scanners resulting in a potential discrepancy of 10% in 
the data. We therefore closed recruitment at that centre, 
which reduced the number of infants who could be 
recruited. This issue shows the complexity of establishing 
magnetic resonance biomarkers across several sites.

Follow-up of the study cohort is ongoing according to 
our clinical practice and because of the novelty of the 
intervention. Xenon’s lack of effi  cacy despite promising 
experimental studies in animals can be explained in 
several ways. The timing, dose, and duration of 
treatment with inhaled xenon might have been 
suboptimum. Our regimen was based on clinical and 
safety factors: higher doses had not previously been 
given for such prolonged periods and could not 
be delivered to infants with substantial oxygen 
requirements, and earlier intervention would not be 
feasible for most infants born outside treatment centres. 
In a feasibility study in newborn infants given up to 
50% xenon for 3–18 h, xenon was begun a median of 
11 h (range 5–18) after birth;24,25 earlier treatment might 

Cooling only 
(n=39)

Cooling plus 
xenon (n=44)

Relative risk (99% CI) Mean diff erence in 
scores (99% CI)

Posterior limb of internal capsule

Score 0 18 21 0·07 (–0·44 to 0·57)

Score 1 11 8 0·97 (0·57 to 1·65) 0·07 (–0·44 to 0·57)

Score 2 10 15 0·97 (0·57 to 1·65) 0·07 (–0·44 to 0·57)

Basal ganglia and thalamus

Score 0 6 14 –0·05 (–0·71 to 0·60)

Score 1 9 3 –0·05 (–0·71 to 0·60)

Score 2 16 13 1·00 (0·64 to 1·56) –0·05 (–0·71 to 0·60)

Score 3 8 14 1·00 (0·64 to 1·56) –0·05 (–0·71 to 0·60)

White matter

Score 0 16 14 0·33 (–0·35 to 1·00)

Score 1 7 8 0·33 (–0·35 to 1·00)

Score 2 11 10 1·22 (0·65 to 2·29) 0·33 (–0·35 to 1·00)

Score 3 5 12 1·22 (0·65 to 2·29) 0·33 (–0·35 to 1·00)

Cortex

Score 0 29 30 0·33 (–0·33 to 0·99)

Score 1 4 2 0·33 (–0·33 to 0·99)

Score 2 3 2 1·77 (0·56 to 5·64) 0·33 (–0·33 to 0·99)

Score 3 3 10 1·77 (0·56 to 5·64) 0·33 (–0·33 to 0·99)

Data are n. Relative risk is calculated for the moderate and severe changes groups combined, so only one relative risk 
and 99% CI is listed for each brain site. For the posterior limb of the internal capsule scores, 0=normal, 1=equivocal 
(reduced or asymmetrical signal intensity), and 2=loss (reversed or abnormal signal intensity bilaterally on 
T1-weighted or T2-weighted sequences, or both). For basal ganglia and thalamic scores, 0=normal, 1=mild (focal 
abnormal signal intensity), 2=moderate (multifocal abnormal signal intensity), and 3=severe (widespread abnormal 
signal intensity). For white matter scores, 0=normal, 1=mild (exaggerated long T1 and long T2 in periventricular white 
matter only), 2=moderate (long T1 and long T2 extending out to subcortical white matter or focal punctate lesions or 
focal area of infarction, or any combination thereof), and 3=severe (widespread abnormalities including overt 
infarction, haemorrhage, and long T1 and long T2). Cortical involvement was scored as the presence of abnormal signal 
intensity, usually decreased T1 or cortical highlighting (ie, increased signal intensity in the cortex). For cortical scores, 
0=normal, 1=mild (one or two sites involved), 2=moderate (three sites involved), and 3=severe (more than three sites 
involved). The sites included the central sulcus, interhemispheric fi ssure, and the insula. All the scans were assessed and 
graded by NT, who was masked to intervention. 

Table 4: Visual analysis of MRI by score (secondary outcome)
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be possible if xenon can be delivered during transport to 
a specialist centre, but even then substantial delays are 
probable.

We also based the treatment regimen on experimental 
studies,7,8 the results of which suggested both that the 
therapeutic window for neural rescue was extended with 
cooling and that the combination of cooling with xenon 
has synergistic or at least additive neuroprotective effi  cacy 
and thus subanaesthetic doses could be eff ective. In 
addition to neuroprotective eff ects through inhibition of 
NMDA receptors, which have an important role in the 
early phase of reperfusion injury, xenon reduces apoptotic 
cell death, which occurs in the later phase of reperfusion 
injury. Thus, the hypothesis that delayed treatment with 
xenon in combination with early hypothermia might have 
neuroprotective eff ects is plausible. However, the eff ects 
of delayed treatment with xenon are variable in work in 
animals and no studies have been done of hypothermia 
augmented with xenon starting 6 h after insult.26,27 We did 
not fi nd a relation between timing of xenon inhalation in 
the time range used in this study and the magnetic 
resonance biomarkers. Since only seven (15%) of 
46 infants in the xenon group received xenon by 6 h, we 
cannot exclude the possibility that starting xenon within 
6 h of birth might be benefi cial.

Experimental studies of cooling for neuroprotection 
suggest that treatment for 72 h is needed when initiation 
is delayed.28 Early clinical studies of MRS in neonates 
also showed that the secondary reperfusion phase of 
injury after asphyxia lasts about 72 h, so our 24 h 
treatment might have been too short.29 Further evidence 
that the optimum duration of treatment could be longer 
than 24 h was provided by our previously reported 
fi nding of a transient recurrence of seizures after 
discontinuation of xenon.6 However, much shorter 
treatment durations are neuroprotective in experimental 
studies, although in all cases the delay to treatment was 
much less than 12 h.

Perhaps participants in our study were too severely 
asphyxiated and thus had little prospect of benefi t from any 
intervention after birth. We used inclusion criteria modifi ed 
from those used in cooling trials, which necessitated the 
presence of the entire main neurological criteria for 
selection of participants, and that could account for the 
high rate of severe abnormalities in the aEEG and the high 
median score for hypoxic ischaemic encephalopathy at trial 
entry. However, mortality in our cohort was similar to that 
in previous trials of cooling (although in our trial, death 
was recorded only until discharge from hospital). The 
similar death rate to that in the cooling trials despite 
evidence of worse encephalopathy in our cohort might 
suggest that early use of routine hypothermia led to better 
outomes in this trial than in those in which consent had to 
be obtained before initiation of cooling.

Another possible explanation of our negative results is 
that the chosen biomarkers are insuffi  ciently sensitive. 
However, a raised lactate to N-acetyl aspartate ratio was 

the best predictor of subsequent neurodevelopmental 
outcome in a meta-analysis13 and is a sensitive indicator 
of subtle eff ects after birth asphyxia.13,30 Furthermore, 
changes in FA have been used to identify treatment 
eff ects in small groups of infants with asphyxia; these 
changes correlated closely with subsequent outcome.11,14 
The signifi cant association in our study between these 
markers and early neurological assessment provides 
further support for use of these biomarkers. The similar 
rates of abnormalities in both groups on visual 
assessment of the MRIs were also consistent with the 
main fi ndings of the study.

Magnetic resonance biomarkers have great potential 
for use in the early development of neuroprotectants 
before undertaking large trials with clinical outcomes. A 
major challenge is validation of the markers across 
several magnetic resonance scanners to enable multisite 
studies. Using a standardised magnetic resonance 
scanning protocol, we acquired primary outcome data 
from 85% of participants, showing that cerebral magnetic 
resonance biomarkers such as lactate to N-acetyl 
aspartate ratio and FA are useful for rapid, preliminary 
assessment of potential neuroprotectants and planning 
of larger defi nitive trials.
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