
 
 

The influence of processing parameters on strut
diameter and internal porosity in Ti6Al4V cellular
structure
Salem, H.; Carter, L. N.; Attallah, M. M.; Salem, H. G.

DOI:
10.7449/2018/MST_2018_71_77

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Salem, H, Carter, LN, Attallah, MM & Salem, HG 2019, The influence of processing parameters on strut
diameter and internal porosity in Ti6Al4V cellular structure. in Materials Science and Technology 2018, MS and
T 2018. Association for Iron and Steel Technology, AISTECH, pp. 71-77, Materials Science and Technology
2018, MS and T 2018, Columbus, United States, 14/10/18. https://doi.org/10.7449/2018/MST_2018_71_77

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 27/03/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/188666654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.7449/2018/MST_2018_71_77
https://research.birmingham.ac.uk/portal/en/publications/the-influence-of-processing-parameters-on-strut-diameter-and-internal-porosity-in-ti6al4v-cellular-structure(cb58c14e-852e-4be8-b595-5e2f4a3610c8).html


1 

 

 

THE INFLUENCE OF PROCESSING PARAMETERS ON STRUT 

DIAMETER AND INTERNAL POROSITY IN Ti6Al4V CELLULAR 

STRUCTURE 

H.Salem
1
, L. N. Carter

2, M. M. Attallah
3

 and H. G. Salem
4
 

 

1Nanotechnology program, American University in Cairo 

2School of Metallurgy and Materials, University of Birmingham, UK 

3The Advanced Materials Processing Lab. (AMPLAB), IRC in Materials Processing School of Metallurgy & Materials, 

University of Birmingham, UK   

4Mechanical Engineering Department, American University in Cairo 

 

Abstract 

Ti6Al4V cellular structures were fabricated by selective laser melting using a wide range of 

processing parameters. Optical and scanning electron microscopy were employed to analyze the 

influence of laser power and scan speed on the strut diameter and the internal porosity. Strut 

diameter was found to be dependent on the input energy. It increased with increasing the input 

energy density. As for the internal porosity, at low laser power and high scan speed discontinuity 

within the struts and defects with entrapped non molten powder particles were observed. While 

at intermediate laser power and scan speed irregular defects caused by lack of diffusion were 

formed. At high laser power and low scan speed large pores were about 70μm were formed.  
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Introduction 

Porous structures possess unique properties in terms of thermal, electrical and mechanical 

properties due to their architecture and low density, which makes them desirable in many 

different applications such as filtering, automotive, aerospace and medical applications[1]. 

Ti6Al4V lattice structures are widely investigated for medical implant applications since 

Titanium and its alloys are known for their low density, high strength, corrosion resistance and 

most important of all is their  high biocompatibility[2]. Furthermore, the nature of the lattice 

structures allow the bone ingrowth within the pores which enhances the implant fixation[3]. 

 

Lattice structures are considered a type of porous structures, which are composed of inter-

connected solid struts forming a unit cell that is the building unit of a lattice structure[4]. Porous 

structures are traditionally fabricated using casting methods[5,6], foaming[7] and stack and bond 

process[7,8]. However, fabricating porous structures with complex geometries with these 

traditional processes was a difficult task. Hence, introducing the additive laser manufacturing 

(ALM) technology made it is possible to produce cellular structure with complex architecture[1]. 

Selective laser melting (SLM) is one of the additive laser manufacturing (ALM) processes. 

Starting with preparing the STL file with the required design which is cut to slices with 

predetermined thickness. Afterwards a layer of powder particles spread with defined thickness, 

the laser beam starts scanning over the powder material based on the CAD model to melt and 

rapidly solidify to create a consolidated layer. Subsequently, another layer of powder is 
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deposited over the previously solidified layer and same process takes place until the final product 

is produced[9,10].  

Despite the previously mentioned advantages of SLM processing over the conventional ones, 

using non optimized fabrication conditions in SLM results in a mismatch between the design and 

fabricated structure, in addition to internal defects that influences the porous structure 

performance[10]. Previous studies have widely investigated the influence of SLM processing 

parameters on the porosity level and morphology for bulk structures hence, process maps were 

developed for the defect formation mechanisms[11-14]. For example, Dilip et al[1].  studied the 

influence of SLM processing parameters on porosity evolution in an optimized process window 

of  (150W, 750mm/s) and (195W, 1000mm/s), which was selected to give a nearly fully dense 

part. However, for cellular structures studies focused on the influence of the processing 

parameters on the mechanical properties and the morphology of fabricated structures[10,15-18]. 

Sing et al.[19] Investigated the influence of the processing parameters for pure titanium cellular 

structure on the strut diameter and thickness of powder adhesion. As for strut diameter, decrease 

in strut diameter was observed at all studied condition when compared to designed model. 

Regarding the thickness of adhesion powders, it decreases upon increasing the laser input 

energy. Accordingly, this study aims at deriving valuable correlation between the SLM 

processing parameters and the morphology of the built cellular structure in terms of the strut size 

and the internal porosity, which are directly influencing the produced mechanical properties.  

 

Experimental Procedures 

Materials and Processing    

Gas atomized Ti6Al4V powder supplied by TLS Technik, 

Germany with a size range of the 20-50 μm was used for 

building the BCC cellular structures as show in Figure 1. A 

Concept Laser M2 Cusing SLM system of maximum laser power 

capability of 400 W, scan speed up to 4000 mm/s was used for 

fabricating the cellular structure. The fabrication process was 

performed in Argon atmosphere.  

BCC cellular structure composed of connected struts with 200 

μm diameter build in the form of cylindrical specimens were 

fabricated with dimensions of 25x30mm. In order to study the 

influence of the SLM processing parameters on the strut 

diameter and internal porosity, a set of lattice structures were 

built with constant layer thickness of 30 μm using a contour 

scanning strategy at different scan speeds and laser power that 

are listed in the next section.   

Evaluation of the Fabricated Structure     

 Before characterization, all lattice structures where cleaned in acetone for 3 minutes to ensure 

the removal of any dirt or trapped lose powder. Field emission scanning electron microscope 

(FEG-SEM) Leo Supra 55—Zeiss Inc, with accelerating voltage up to 30 KV was used for 

investigating the morphology of the lattice struts. As for the strut diameter measurements, lattice 

structures were sectioned through the x-z direction (z-represents the cylinder height) mounted, 

ground and polished. Polished samples were examined under optical microscope (Leica DM 

Figure 1. Lattice structure fabricated 

using SLM 
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IRM) for studying the internal porosity in the lattice structures. Sectioned lattice structures were 

investigated using optical microscopy, while ImageJ 40 was employed to evaluate the different 

strut diameters as a function of the SLM processing parameters.  

To determine the suitable processing parameters for producing a dense lattice structure with high 

geometrical accuracy compared to the initial CAD model, a set of structures were built with laser 

power ranging from 100W to 300W and scan speed ranging 8000 mm/s to 4000 mm/s. All the 

structures were characterized and only three conditions are presented in this manuscript. The 

selected conditions represents different levels of input energy density. The lattice structures have 

been evaluated based on two different aspects, which are the influence of input energy on the 

strut diameter and the porosity level.  

Results and Discussion 

  

Influence of Input Energy on Strut Diameter  

 Table I. Processing parameters and strut diameter   

 

 

 

 

The fabricating conditions listed in table I directly influenced the strut diameter of the fabricated 

lattice structure. As shown in Figure 2, the strut diameter increased with increasing the input 

energy. This relation is attributed to the fact that inclined struts were built partially on loose 

powder, which resulted in adhesion of free powder (partially melted powder particles) to the 

surfaces of the struts. At high input energy condition, the energy transferred to attach powder 

particles was high enough to result in full melting of the attached powders and hence became 

part of the fabricated strut[19]. SEM images at the same magnification that are presented in 

Figure 3 show evidence for the measurements made and displayed in Figure 2.  

The Aforementioned Observation agrees with the findings of Mullen et al.[20] In a study that 

evaluated the influence of laser beam energy and strut orientation on strut diameter of fabricated 

samples and it was concluded that strut diameter increase with increasing the laser energy and 

building angle of the strut. The fabrication technique of the inclined struts has a direct influence 

on the surface roughness and waviness induced to the struts “staircase effect”; this technique 

contributes in the gap between the actual and designed strut diameter[18]. 

Laser power 

(w) 

Scan speed 

(mm/s) 

Strut diameter 

(μm) 

100 4000 163 

200 2400 220 

300 800 267 

Figure 2. A diagram showing the variation of Strut diameter 

as a function of increasing linear input energy diameter 
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Influence of Input Energy on Internal Porosity  

Investigation of the sliced sections along the x-z plane of the struts as a function of the three 

selected processing parameters is shown in Figure 4. Different zones were formed as a result of 

using different processing parameters. Those zones depend on the input energy during the SLM 

process. Accordingly, correlation between the input energy at the selected SLM processing 

conditions with the developed internal porosity of the lattice can be presented as follows: 

 

 

 

 

 

 

 

 

 

 

 

Zone I: Low input energy: this zone is created as a result of combining low laser power with high 

scan speed. Such combinations resulted in the partial melting of the powder, creating an 

insufficient liquid phase[21].The relatively low associated heat input led to the discontinuity 

within the strut due to the lack of diffusion between the melt pools. In addition, lack of diffusion 

defects were also manifested by the enclosed non molten powders, as indicated by the arrow in 

Figure 4a[12]. Moreover, a balling effect could be spotted in this zone, which is one of the well-

known defects generated during SLM processes. This phenomena occurs at high speed 

conditions, due to poor wettability with the preceding layer leading to spheroidization of the 

melt-pool[22,23]. This balling effect had an adverse effect on the lattice integrity because it 

resulted in the detachment of the struts.  

Figure 3. SEM images for struts at different fabrication conditions (a) 100W &4000mm/s (b) 200W & 2400mm/s  

(c) 300W & 800mm/s 

(a) 

(a) 

Figure 4. OM micrographs for internal porosity at different conditions (a) 100W &4000mm/s (b)200W & 2400mm/s 

 (c)300W & 800mm/s 

 

(c) (b) 

(b

) 

(c) 
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Zone II: Intermediate input energy zone: this zone is the resultant of intermediate laser power 

and scan speed. Irregular defects are formed as shown in Figure 4b due to the lack of diffusion 

between melt pools[12]. Irregularity in the struts thickness could be observed due to the 

fabrication technique of the inclined struts, which induces this type of waviness to the strut[18].  

Zone III: High input energy zone: this zone was developed due to the combination of high 

 laser power and low scan speed. This zone was associated with high temperatures resulting 

in sufficient molten material that mitigated the previously formed lack of diffusion defects. 

Spherical pores were also observed as shown in Figure 4c.Those defect could be attributed to 

the evaporation of alloying elements at such high input energy gained by the powder[11]. 

 It was observed that those spherical pores are only formed at the node while the struts are 

 free from defects. This could be attributed to the several thermal cycles at the node for being 

 the intersection of four struts.  

Conclusion  

SLM processing parameters investigated in the current research shows that the input energy 

density has a significant influence on the strut diameter and porosity morphology within the 

fabricated struts. Different zones were developed based on changing the input energy. 

Additionally, it was observed that strut diameter size for Ti6Al4V lattice structure increased with 

increasing the input energy density. 
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