

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

syn-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7diazabicvclo[3.3.1]nonan-9-ol

Konstantin V. Kudryavtsev,^{a,b}* Sergey Z. Vatsadze,^a Vera S. Semashko^a and Andrei V. Churakov^c

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, ^bInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation, and ^cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prospekt 31, Moscow 119991, Russian Federation

Correspondence e-mail: kudr@org.chem.msu.ru

Received 2 July 2012; accepted 3 July 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 13.7.

In the title compound, C₁₆H₂₃ClN₂O, both six-membered rings adopt chair conformations, thus allowing the formation of an intramolecular $N-H \cdots N$ hydrogen bond. In the crystal, adjacent molecules are combined into chains running along the ac diagonal via O-H···N hydrogen bonds.

Related literature

For general background to chemistry affording syn-3,7diazabicyclo[3.3.1]nonan-9-ols, see: Vatsadze et al. (2006). 3,5,6,7-Tetrasubstituted 3,6-diazabicyclo[3.2.1]octanes, their biological activity as enzyme inhibitors and their X-ray structures have been reported by: Kudryavtsev (2010); Kudryavtsev & Churakov (2012).

Experimental

Crystal data

C ₁₆ H ₂₃ ClN ₂ O	$V = 1548.16 (14) \text{ Å}^3$
$M_r = 294.81$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.9739 (4) Å	$\mu = 0.25 \text{ mm}^{-1}$
b = 16.8120 (9) Å	$T = 120 { m K}$
c = 12.1103 (6) Å	$0.25 \times 0.20 \times 0.20$ mm
$\beta = 107.520 \ (1)^{\circ}$	

Data collection

Bruker SMART 1K diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.941, T_{\max} = 0.953$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	273 parameters
$wR(F^2) = 0.107$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
3747 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots N1$	0.870 (19)	2.287 (19)	2.8327 (18)	120.8 (16)
$O1-H1\cdots N2^{i}$	0.87 (2)	1.86 (2)	2.7242 (17)	172 (2)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11-03-00630_a, 11-03-91375-ST a and 11-03-12101-ofi-m-2011) and RAS Programme OXHM 9 'Medicinal Chemistry'. The authors thank Professor J. A. K. Howard (Durham University) for access to X-ray facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2075).

References

Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kudryavtsev, K. V. (2010). Russ. J. Org. Chem. 46, 372-379.

Kudryavtsev, K. V. & Churakov, A. V. (2012). Acta Cryst. E68, 01718.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vatsadze, S. Z., Tyurin, V. S., Zatsman, A. I., Manaenkova, M. A., Semashko, V. S., Krut'ko, D. P., Zyk, N. V., Churakov, A. V. & Kuz'mina, L. G. (2006). Russ. J. Org. Chem. 42, 1225-1233.

organic compounds

10450 measured reflections

 $R_{\rm int} = 0.034$

3747 independent reflections

2976 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2012). E68, o2373 [https://doi.org/10.1107/S1600536812030310]

syn-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol

Konstantin V. Kudryavtsev, Sergey Z. Vatsadze, Vera S. Semashko and Andrei V. Churakov

S1. Comment

In the title compound, both six-membered cycles adopt chair conformation (Fig. 1). The latter allows the formation of intramolecular N—H···N hydrogen bond. The hydroxyl group at the 9th position of the heterocyclic scaffold is situated closer to the tertiary N-atom. In crystal, the adjacent molecules are combined in chains running along *ac*-diagonal *via* O —H···N hydrogen bonds (Fig. 2).

syn-3,7-Diazabicyclo[3.3.1]nonan-9-ols are of interest as a structural motif for enzymes inhibitors. Inhibition of thrombin by substituted 3,6-diazabicyclo[3.2.1]octanes is reported (Kudryavtsev (2010)).

S2. Experimental

The solution of 2.23 g (6.9 mmol) of *anti*-5-(4-chlorobenzyl)-3-formyl- 1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol (Vatsadze *et al.*(2006)) in conc. HCl (molar ratio *ca* 1:120) was refluxed for 21 h. The cooled solution was neutralized with NaOH to the pH 9–10. The precipitate formed was filtered off, washed with water to neutral pH of mother liquor, then once with ether, recrystallized from EtOH. *syn*-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol. Yield 1.50 g (74%), colourless crystals, sublimated at 473 K. ¹H NMR (dmso-d₆): δ 0.63 (s, 6H, 2CH₃); 2.26–2.41 (m, 6H, H-6a, H-8a, H-4 e, H-4a, H-2 e, H-2a); 2.72 (d, 2H, H-6 e, H-8 e, *J* 13.3); 2.98 (d, 1H, H-9, *J* 4.5); 3.27 (s, 2H, CH₂Ar); 4.74 (d, 1H, OH, *J* 5.0); 7.28, 7.38 (both d, both 2H, CH(3,5)(Ar), CH(2,6)(Ar), *J* 8.3). ¹H NMR (dmso-d₆ + CF₃COOH): δ 0.77 (s, 6H, 2CH₃); 2.36 (d, 2H, H-2a, H-4a, *J* 10.6); 2.48 (d, 2H, H-2 e, H-4 e, *J* 12.4); 2.86 (d, 2H, H-6a, H-8a, *J* 11.9); 3.21 (d, 2H, H-6 e, H-8 e, *J* 12.6); 3.24 (s, 1H, H-9); 3.43 (s, 2H, CH₂Ar); 7.34–7.43 (m, 4H, H(Ar)). ¹³C NMR (dmso-d₆ + CF₃COOH): δ 20.3 (2CH₃); 35.4 (C-1, C-5); 53.7 (C-6, C-8); 56.5 (C-2, C-4); 61.2 (CH₂Ar); 73.4 (C-9); 117.4, 128.7, 131.7, 136.0 (C(Ph)). Anal. Calcd. for C₁₆H₂₃ClN₂O: C, 65.20; H, 7.81; N, 9.51. Found: C, 65.52; H, 7.98; N, 9.35.

S3. Refinement

All hydrogen atoms were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. Intramolecular hydrogen bond is drawn as dashed line.

Figure 2

Hydrogen bonded chains spreads along ac-diagonal. Hydrogen bonds are drawn as dashed lines.

syn-3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol

Crystal data

$C_{16}H_{23}CIN_2O$	F(000) = 632
$M_r = 294.81$	$D_{\rm x} = 1.265 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4857 reflections
a = 7.9739 (4) Å	$\theta = 2.7 - 30.0^{\circ}$
b = 16.8120(9) Å	$\mu = 0.25 \text{ mm}^{-1}$
c = 12.1103 (6) Å	T = 120 K
$\beta = 107.520 (1)^{\circ}$	Prism, colourless
V = 1548.16 (14) Å ³	$0.25 \times 0.20 \times 0.20$ mm
Z=4	
Data collection	
Bruker SMART 1K [or APEXII?]	10450 measured reflections
diffractometer	3747 independent reflections
Radiation source: fine-focus sealed tube	2976 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 9$
(SADABS; Bruker, 2008)	$k = -22 \rightarrow 14$
$T_{\min} = 0.941, T_{\max} = 0.953$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.107$	All H-atom parameters refined
S = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0513P)^2 + 0.4862P]$
3747 reflections	where $P = (F_o^2 + 2F_c^2)/3$
273 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
0 restraints	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.97589 (5)	1.10266 (3)	0.39054 (4)	0.03592 (14)
01	-0.15380 (14)	0.82506 (6)	-0.00656 (9)	0.0220 (2)
N1	0.16827 (16)	0.92965 (7)	0.19544 (10)	0.0176 (3)
N2	0.22587 (17)	0.78671 (8)	0.32531 (11)	0.0211 (3)
C1	-0.01659 (19)	0.92287 (8)	0.19298 (13)	0.0180 (3)
C2	0.20407 (19)	0.88120 (9)	0.10373 (13)	0.0176 (3)
C3	0.0379 (2)	0.79594 (9)	0.31288 (13)	0.0216 (3)
C4	0.2528 (2)	0.75254 (9)	0.22011 (13)	0.0204 (3)
C5	-0.07319 (18)	0.83646 (8)	0.20054 (12)	0.0173 (3)
C6	0.14948 (19)	0.79358 (8)	0.10650 (12)	0.0168 (3)
C7	-0.2661 (2)	0.83514 (11)	0.19815 (17)	0.0265 (3)
C8	0.1851 (2)	0.74991 (10)	0.00522 (14)	0.0244 (3)
C9	-0.04692 (19)	0.79066 (8)	0.09780 (12)	0.0173 (3)
C11	0.2140 (2)	1.01297 (9)	0.18344 (15)	0.0224 (3)
C12	0.4088 (2)	1.02924 (8)	0.23069 (14)	0.0212 (3)
C13	0.4991 (2)	1.01062 (12)	0.34495 (15)	0.0332 (4)
C14	0.6739 (2)	1.03189 (12)	0.39435 (16)	0.0350 (4)
C15	0.7590 (2)	1.07151 (9)	0.32730 (15)	0.0249 (3)
C16	0.6764 (2)	1.08801 (10)	0.21243 (16)	0.0284 (4)
C17	0.5000(2)	1.06683 (10)	0.16459 (15)	0.0267 (4)
H1	-0.185 (3)	0.7863 (13)	-0.056 (2)	0.047 (6)*
H2	0.275 (2)	0.8334 (12)	0.3320 (17)	0.029 (5)*
Н9	-0.082 (2)	0.7325 (11)	0.1019 (15)	0.024 (5)*
H11	-0.029 (2)	0.9525 (9)	0.2591 (14)	0.014 (4)*
H12	-0.097 (2)	0.9484 (10)	0.1210 (15)	0.022 (4)*

supporting information

H21	0.328 (2)	0.8846 (10)	0.1130 (14)	0.017 (4)*
H22	0.144 (2)	0.9043 (10)	0.0278 (15)	0.018 (4)*
H31	-0.013 (2)	0.7404 (11)	0.3163 (16)	0.027 (5)*
H32	0.032 (2)	0.8250 (10)	0.3794 (16)	0.021 (4)*
H41	0.219 (2)	0.6942 (10)	0.2163 (14)	0.017 (4)*
H42	0.382 (2)	0.7540 (10)	0.2280 (14)	0.018 (4)*
H13	0.438 (3)	0.9822 (12)	0.3919 (18)	0.041 (6)*
H14	0.737 (3)	1.0203 (13)	0.4736 (19)	0.043 (6)*
H16	0.736 (3)	1.1168 (14)	0.168 (2)	0.054 (7)*
H17	0.438 (3)	1.0795 (12)	0.0842 (19)	0.043 (6)*
H71	-0.343 (3)	0.8633 (12)	0.1288 (18)	0.040 (6)*
H72	-0.309 (3)	0.7796 (13)	0.1971 (19)	0.046 (6)*
H73	-0.279 (3)	0.8637 (13)	0.2655 (19)	0.046 (6)*
H81	0.309 (3)	0.7521 (12)	0.0095 (17)	0.036 (5)*
H82	0.116 (2)	0.7740 (11)	-0.0672 (17)	0.029 (5)*
H83	0.151 (2)	0.6936 (12)	0.0048 (15)	0.027 (5)*
H111	0.153 (2)	1.0450 (11)	0.2285 (16)	0.029 (5)*
H112	0.172 (2)	1.0293 (11)	0.1034 (17)	0.032 (5)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0236 (2)	0.0411 (3)	0.0449 (3)	-0.01249 (17)	0.01322 (18)	-0.0198 (2)
O1	0.0232 (6)	0.0192 (5)	0.0174 (5)	0.0022 (4)	-0.0034 (4)	-0.0017 (4)
N1	0.0177 (6)	0.0145 (6)	0.0201 (6)	-0.0009 (4)	0.0047 (5)	-0.0012 (5)
N2	0.0240 (7)	0.0205 (6)	0.0159 (6)	-0.0001 (5)	0.0017 (5)	0.0010 (5)
C1	0.0180 (7)	0.0165 (7)	0.0196 (7)	0.0016 (5)	0.0059 (6)	-0.0023 (6)
C2	0.0162 (7)	0.0189 (7)	0.0177 (7)	0.0014 (5)	0.0051 (6)	0.0010 (5)
C3	0.0262 (8)	0.0226 (8)	0.0167 (7)	-0.0007 (6)	0.0074 (6)	0.0013 (6)
C4	0.0203 (7)	0.0194 (7)	0.0191 (7)	0.0041 (6)	0.0026 (6)	0.0026 (6)
C5	0.0162 (7)	0.0168 (7)	0.0184 (7)	-0.0009(5)	0.0046 (6)	-0.0012 (5)
C6	0.0192 (7)	0.0157 (7)	0.0152 (7)	0.0023 (5)	0.0045 (6)	0.0001 (5)
C7	0.0201 (8)	0.0281 (9)	0.0335 (9)	-0.0020 (6)	0.0115 (7)	-0.0024 (7)
C8	0.0279 (9)	0.0247 (8)	0.0215 (8)	0.0045 (6)	0.0086 (7)	-0.0019 (6)
C9	0.0185 (7)	0.0146 (7)	0.0159 (7)	0.0008 (5)	0.0007 (5)	0.0003 (5)
C11	0.0230 (8)	0.0158 (7)	0.0267 (8)	-0.0008 (6)	0.0048 (6)	0.0015 (6)
C12	0.0239 (8)	0.0152 (7)	0.0253 (8)	-0.0020 (6)	0.0084 (6)	-0.0038 (6)
C13	0.0274 (9)	0.0496 (11)	0.0237 (9)	-0.0135 (8)	0.0093 (7)	-0.0002 (8)
C14	0.0277 (9)	0.0543 (12)	0.0217 (9)	-0.0116 (8)	0.0053 (7)	-0.0041 (8)
C15	0.0203 (7)	0.0236 (8)	0.0329 (9)	-0.0061 (6)	0.0108 (7)	-0.0114 (7)
C16	0.0287 (9)	0.0229 (8)	0.0379 (9)	-0.0015 (6)	0.0166 (8)	0.0046 (7)
C17	0.0271 (8)	0.0238 (8)	0.0294 (9)	0.0018 (6)	0.0087 (7)	0.0064 (7)

Geometric parameters (Å, °)

Cl1—C15	1.7476 (16)	C6—C8	1.528 (2)
O1—C9	1.4175 (17)	С6—С9	1.538 (2)
O1—H1	0.87 (2)	С7—Н71	1.00 (2)

N1—C11	1.4656 (19)	С7—Н72	0.99 (2)
N1—C1	1.4698 (19)	С7—Н73	0.98 (2)
N1—C2	1.4729 (19)	C8—H81	0.97 (2)
N2—C3	1.469 (2)	C8—H82	0.971 (19)
N2—C4	1.471 (2)	С8—Н83	0.984 (19)
N2—H2	0.870 (19)	С9—Н9	1.021 (18)
C1—C5	1.532 (2)	C11—C12	1.510 (2)
C1—H11	0.972 (16)	С11—Н111	0.993 (19)
C1—H12	1.010(18)	C11—H112	0.97(2)
$C^2 - C^6$	1 539 (2)	C12-C17	1.386(2)
C2H21	0.962(17)	C12 - C13	1.300(2) 1.300(2)
$C_2 = H_2^2$	0.902(17)	$C_{12} = C_{13}$	1.390(2) 1.388(2)
$C_2 = 1122$	1.541(2)	C13 H12	1.388(2)
$C_3 = U_2$	1.341(2) 1.026(10)	C14 $C15$	0.38(2)
C2_H22	1.020(19)	C14 - C13	1.377(2)
C3—H32	0.955(18)	C14—H14	0.96(2)
C4-C6	1.5581 (19)		1.376 (3)
C4—H41	1.014 (17)		1.397 (2)
C4—H42	1.005 (17)	С16—Н16	0.95 (2)
C5—C7	1.530 (2)	С17—Н17	0.97 (2)
C5—C9	1.530 (2)		
С9—01—Н1	106.2 (15)	С5—С7—Н71	111.5 (12)
C11—N1—C1	110.47 (11)	С5—С7—Н72	110.7 (12)
C11—N1—C2	110.08 (12)	H71—C7—H72	108.4 (17)
C1—N1—C2	111.27 (11)	С5—С7—Н73	109.4 (12)
C3—N2—C4	111.30 (12)	H71—C7—H73	106.2 (17)
C3—N2—H2	109.3 (13)	H72—C7—H73	110.6 (18)
C4—N2—H2	104.8 (13)	С6—С8—Н81	111.8 (12)
N1-C1-C5	112.58 (11)	C6—C8—H82	109.5 (11)
N1-C1-H11	106.9 (9)	H81 - C8 - H82	108.6 (16)
C5-C1-H11	109 4 (9)	C6-C8-H83	110.5(11)
N1-C1-H12	1110(10)	H81 - C8 - H83	108.0(16)
$C_5 - C_1 - H_{12}$	109.4(10)	H82-C8-H83	108.5(15)
H11 C1 H12	107.4(10) 107.3(13)	01 0 05	100.9(13)
$\frac{111}{2}$	107.3(13) 112 11 (12)	01 - 0 - 05	109.08(11) 111.00(12)
N1 = C2 = C0	113.11(12) 107.7(10)	$C_{5} = C_{0} = C_{6}$	111.39(12) 108.20(11)
$N_1 = C_2 = H_2 I$	107.7(10) 110.0(10)	C_{3} C_{9} C_{0} H_{0}	100.29(11) 100.6(10)
$C_0 - C_2 - H_2 I$	110.0(10) 100.7(10)	01—C9—H9	109.0(10)
N1 - C2 - H22	109.7(10)	C_{3}	109.6(10)
C_{0} H22	109.8 (10)	C6-C9-H9	108.2 (10)
H21—C2—H22	106.2 (14)	NI—CII—CI2	113.18 (12)
N2-C3-C5	115.77 (12)	NI-CII-HIII	106.7 (11)
N2—C3—H31	107.9 (10)	С12—С11—Н111	108.2 (11)
С5—С3—Н31	107.9 (10)	N1—C11—H112	110.5 (11)
N2-C3-H32	106.1 (11)	C12—C11—H112	109.6 (11)
C5—C3—H32	110.9 (10)	H111—C11—H112	108.5 (15)
H31—C3—H32	108.0 (15)	C17—C12—C13	118.22 (15)
N2C4C6	114.89 (12)	C17—C12—C11	121.53 (15)
N2-C4-H41	108.1 (9)	C13—C12—C11	120.16 (14)

C6—C4—H41	109.2 (9)	C14—C13—C12	121.57 (16)
N2—C4—H42	108.7 (10)	С14—С13—Н13	119.2 (12)
C6—C4—H42	109.4 (10)	С12—С13—Н13	119.2 (12)
H41—C4—H42	106.2 (13)	C15—C14—C13	118.67 (17)
C7—C5—C9	111.12 (12)	C15—C14—H14	118.9 (13)
C7—C5—C1	108.97 (12)	C13—C14—H14	122.4 (13)
C9—C5—C1	108.28 (12)	C16—C15—C14	121.53 (16)
C7—C5—C3	108.52 (13)	C16—C15—Cl1	119.45 (13)
C9—C5—C3	108.21 (12)	C14—C15—Cl1	119.01 (14)
C1—C5—C3	111.76 (12)	C15—C16—C17	118.92 (16)
C8—C6—C4	108.87 (12)	C15—C16—H16	120.4 (15)
C8—C6—C9	111.18 (12)	С17—С16—Н16	120.5 (14)
C4—C6—C9	107.90 (12)	C12—C17—C16	121.00 (16)
C8—C6—C2	108.67 (12)	С12—С17—Н17	118.8 (13)
C4—C6—C2	111.71 (12)	С16—С17—Н17	120.2 (13)
C9—C6—C2	108.54 (11)		
C11—N1—C1—C5	177.79 (12)	C3—C5—C9—C6	-60.28 (14)
C2—N1—C1—C5	55.20 (16)	C8—C6—C9—O1	-58.82 (15)
C11—N1—C2—C6	-176.75 (12)	C4—C6—C9—O1	-178.14 (11)
C1—N1—C2—C6	-53.93 (15)	C2-C6-C9-O1	60.65 (15)
C4—N2—C3—C5	-48.59 (17)	C8—C6—C9—C5	-179.14 (12)
C3—N2—C4—C6	49.63 (17)	C4—C6—C9—C5	61.55 (14)
N1—C1—C5—C7	179.66 (13)	C2—C6—C9—C5	-59.66 (14)
N1—C1—C5—C9	-59.36 (15)	C1—N1—C11—C12	157.40 (13)
N1—C1—C5—C3	59.73 (16)	C2-N1-C11-C12	-79.32 (16)
N2—C3—C5—C7	175.66 (13)	N1-C11-C12-C17	127.48 (16)
N2—C3—C5—C9	54.98 (16)	N1-C11-C12-C13	-56.2 (2)
N2—C3—C5—C1	-64.15 (16)	C17—C12—C13—C14	2.9 (3)
N2-C4-C6-C8	-177.88 (13)	C11—C12—C13—C14	-173.55 (17)
N2-C4-C6-C9	-57.11 (16)	C12—C13—C14—C15	-0.8 (3)
N2-C4-C6-C2	62.10 (17)	C13—C14—C15—C16	-2.1 (3)
N1—C2—C6—C8	177.65 (12)	C13—C14—C15—Cl1	177.03 (15)
N1-C2-C6-C4	-62.22 (16)	C14—C15—C16—C17	2.7 (3)
N1—C2—C6—C9	56.62 (15)	Cl1—C15—C16—C17	-176.40 (13)
C7—C5—C9—O1	58.55 (16)	C13—C12—C17—C16	-2.2 (2)
C1—C5—C9—O1	-61.09 (15)	C11—C12—C17—C16	174.16 (15)
C3—C5—C9—O1	177.60 (12)	C15—C16—C17—C12	-0.5 (3)
C7—C5—C9—C6	-179.33 (12)	C5—C9—O1—H1	-147.5 (15)
C1—C5—C9—C6	61.02 (14)	C6—C9—O1—H1	92.6 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2…N1 O1—H1…N2 ⁱ	0.870 (19)	2.287 (19)	2.8327 (18)	120.8 (16)

Symmetry code: (i) x-1/2, -y+3/2, z-1/2.