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Abstract

Over the last few decades, much focus has been given to investigating the reversible rheological behavior of thixotropic materials, but the
description of the rheology of materials undergoing an irreversible process is still challenging. In this work, the time-dependent rheological
behavior of a cement slurry is investigated. Different rheometric experiments are performed to evaluate the structure breakdown under shear,
cement gelation, and curing process. A recently proposed thixotropic elasto-viscoplastic model [de Souza Mendes, Soft Matter 7, 2471–2483
(2011)] is modified to account for irreversible effects, which can be either of a chemical or physical nature, making the current model capable
of describing reversible and irreversible processes with a single structure parameter. The parameters of the model are estimated from constant
shear rate tests and from the flow curve of the fresh cement slurry. The model predictions are compared to step-down and step-up in stress
experiments, and the results show that the model successfully describes experimental data obtained. Interesting phenomena are observed and
discussed, including (i) thixotropic behavior during the dormant period, (ii) shear banding, (iii) irreversible changes in cement slurry rheology
after the hydration reactions accelerate, and (iv) the existence of a characteristic time for the transition from a thixotropic-yield-stress material
to a solid during curing. The predictive capability of the new model includes bifurcation, shear banding, stress overshoots, effects of chemical
reactions, and irreversible shear degradation. It is argued that the ideas employed in the present work can be used to incorporate irreversible
effects into other thixotropic models, giving rise to the possibility of describing the transient rheological behavior of complex materials in an
unprecedented fashion. © 2019 The Society of Rheology. https://doi.org/10.1122/1.5054879

I. INTRODUCTION

Cement can be considered the most important material for
the construction industry [1–4]. Typical applications include
the use of cement in the preparation of mortars, which act
as a binder between building blocks, and in the preparation
of concretes, which are usually reinforced by iron to provide
structural integrity to buildings and constructions [5–7].
Cement is also used to seal fractured rocks [8,9], to consoli-
date different kinds of soil [10,11], to solidify and stabilize
hazardous or radioactive wastes [12,13], and in casting and
well cementing processes [14–17].

In all these scenarios, the knowledge of time-dependent
rheological properties of cement slurries is fundamental,
because of the necessity of predicting the flow behavior
during the timeframe in which the cement slurry can be pro-
cessed. This knowledge can be even more important in well
cementing, because both the success and safety of each oper-
ation can rely on proper design of cement slurry rheology
[16,18,19]. Therefore, since the pioneering work from
Tattersall [20,21], much effort has been devoted to better

understanding and predicting of the time-dependent rheologi-
cal behavior of cement slurries [6,7,22–36].

Previous works have shown that, after mixing the dry
cement powder with water, there is a period of time in which
the hydration reactions occur at a very low rate, giving the
impression that the chemical composition is not changing
with time [7,17,37,38]. During this period, known as the
dormant period, the cement-water mixture is a suspension
that usually behaves as a thixotropic-yield-stress material,
with no noticeable irreversible changes in rheology resulting
from hydration [28,39]. After the dormant period, however,
the curing process evolves, during which time the hydration
reactions accelerate and the cement slurry rheology changes
irreversibly until the cement becomes solid [17,37,38]. In
terms of viscosity, the time-dependent behavior of a fresh
cement slurry under continuous shear can be represented by
the curve shown in Fig. 1.

This complex time-dependent rheological behavior, which
depends on (i) the cement-water ratio, (ii) chemical composi-
tion and admixtures, and (iii) particle shape and size distribu-
tion [22,23,40], is very challenging to describe in terms of
mathematical modeling. Lapasin et al. [23] used the model-
ing approach discussed by Cheng and Evans [41] to describe
the transient rheological behavior of cement pastes. This
approach consists of using two main equations to describe
the rheology of thixotropic materials: (i) one equation
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relating the stress to the shear rate, in which the viscosity is
assumed to be a function of both the shear rate and a struc-
ture parameter λ and (ii) another equation describing the evo-
lution of λ, which is composed by thixotropic buildup and
breakdown terms and assumes that the rate at which the
structure of the material changes is a function of both λ and
the shear rate.

By neglecting the thixotropic buildup term on the evolu-
tion equation for λ, Lapasin et al. [23] obtained three differ-
ent forms for a transient model to describe the rheological
behavior of cement pates. They [23] adjusted the parameters
of the model to experimental data obtained for different fresh
Portland cement pastes.

Papo [24,25] extended the investigation performed by
Lapasin et al. [23] to other cement pastes and also adjusted
the parameters of the transient model to rheometric experi-
ments. In addition, he [25] pointed out that the Herschel–
Bulkley model is the most suitable equation to describe the
equilibrium flow properties of fresh cement pastes.

Roussel [27,28] performed an in-depth analysis of the rhe-
ological models available and provided an improved descrip-
tion of the observed thixotropic behavior during the dormant
period. Moreover, he [28] modified a simple thixotropic
model described by Coussot et al. [42] and also adjusted the
four parameters of the model to rheometric experiments.

It is important to note that the model described by
Roussel [28] is also based on the approach discussed by
Cheng and Evans [41]. However, unlike previous works,
both the thixotropic buildup and breakdown terms are con-
sidered in the evolution equation for λ, which leads to a
better predictive capability.

Since these works from Roussel [27,28], the understand-
ing of the thixotropy phenomenon in soft materials has
been improved significantly, thanks to the contributions of
many authors [43–66]. The available constitutive models
evolved from simple thixotropic yield-stress models [28,42]

to more robust thixotropic elasto-viscoplastic models
[49,50,52,54,61,66]. During this period, it became clear from
the work by de Souza Mendes and Thompson [51] that the
thixotropic models built from Bingham or Herschel–Bulkley
stress equations present unphysical predictions in certain
circumstances, such as the start-up flow of structured materi-
als at rest. Therefore, de Souza Mendes and Thompson [51]
recommended the use of thixotropic models built from the
Maxwell’s viscoelastic stress equation, which can include a
Herschel–Bulkley type equation only to describe the flow
properties of the material at equilibrium.

Even though much progress has been made, the aforemen-
tioned transient constitutive models are originally designed to
describe the ideal reversible phenomenon of thixotropy.
However, several time-dependent materials undergo irrevers-
ible processes that can be of a chemical and/or physical
nature, including thermoset polymers, photo-curable inks,
and cement slurries, which are materials subjected to chemi-
cal reactions [6,7,67–72], and gelled waxy oils, which are
materials that experience an irreversible shear degradation of
the microstructure under flow [73–76].

The task of modeling the transient rheological behavior of
complex materials undergoing irreversible processes is still
challenging. With regard to cement slurries, the irreversibility
is usually introduced in constitutive models by assuming that
the yield stress increases exponentially as the hydration reac-
tions evolve. This assumption is based on attempts to measure
the evolution of the static yield stress and is widely used in the
oil industry to predict transient pressure profiles in cement
columns during the construction of oil wells [16,18,77,78].
However, as pointed out by Nishikawa and Wojtanowicz [79],
in some circumstances, the pressure profiles observed in the
field cannot be predicted by using this approach. One possible
reason for this limitation is the assumption that the yield stress
increases exponentially when the hydration reactions accelerate
[79,80]. This is so because this assumption is usually associ-
ated with the hypothesis that a family of Herschel–Bulkley
type equations, parameterized only by the yield stress, can be
used to describe the hypothetical equilibrium rheological
behavior that would be achieved if the hydration reactions
could be stopped at every instant of time.

Another approach used to include irreversibility into con-
stitutive models is the one discussed by Wallevik [29,30].
In a very nice work, Wallevik [29,30] modified the coagula-
tion theory proposed by Hattori and Izumi [81] to build a
rheological model for cement systems based on a microstruc-
tural approach. It is important to note, however, that to be
able to describe the observed transient macroscopic behavior,
Wallevik [29,30] had to include several additional empirical
or phenomenological assumptions in the model, which can
compromise the predictive capability of the model for
different flow conditions. Besides that, as discussed by
Wallevik [29,30], this model was not designed to predict
the transient rheological behavior of cement systems at
more advanced stages of hydration. Thus, more investiga-
tion is required not only to be able to accurately predict the
time-dependent rheological behavior of hydrating cement
slurries, but also the behavior of materials undergoing irre-
versible processes in general.

FIG. 1. Graphical representation of a typical viscosity evolution of a par-
tially structured fresh cement slurry submitted to a constant shear stress
higher than the static yield stress σy. The viscosity decreases because of a
breakdown of the structure until a quasisteady equilibrium is reached. Then,
the hydration reactions accelerate and the viscosity goes to infinity as time
evolves.
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In this work, we present a transient constitutive model
based on a single structure parameter, that takes into account
elasticity, viscoplasticity, thixotropy, and irreversibility. The
model and assumptions employed are considered in Sec. II,
together with a discussion on how these ideas can be used to
incorporate irreversible effects into other thixotropic models.
Then, the materials and methods used in this research are
described in Sec. III, and the rheometric results are compared
to model predictions in Sec. IV. At last, some concluding
remarks are highlighted in Sec. V.

II. IRREVERSIBLE TIME-DEPENDENT
CONSTITUTIVE MODEL

The model presented in this section can be classified as a
structural kinetics model [47]. As such, it is composed of
one equation describing the evolution of the structure of the
material and another equation relating the shear stress σ with
the shear rate _γ. As usual, one of the main assumptions of
the model is that the instantaneous structuring level of the
microstructure can be described by a single scalar parameter
λ, the structure parameter. However, compared to previous
models, the current model possesses unique features that lead
to an improved predictive capability as described below.

A. The structure parameter λ

It is well established that a transient non-Newtonian flow
behavior at the macroscopic level is observed as a result of a
complex structure at the mesoscale [82]. In most structural
kinetics models, this complex structure is described in a sim-
plified way by the single scalar parameter λ, which changes
as the structuring level of the material changes [47].

As discussed by Mewis and Wagner [47], the structure
parameter λ is sometimes interpreted as the instantaneous
relative number of reversible links or bonds between the

structural components of the material [41,83–85]. Therefore,
most models of this kind consider that λ ranges from 0 to 1,
with 0 corresponding to a completely unstructured state, in
which none of the structural components are reversibly
linked or bonded, and 1 corresponding to a fully structured
state, in which all structural components are properly linked
or bonded.

In the present model, the structure parameter λ describes
the instantaneous structuring level of the material’s structure
considering both reversible and irreversible effects at the
same time. In this way, λ carries all physical information on
the material’s structure, including not only information on
the relative number of reversible links or bonds but also
on (i) the strength of the links or bonds between the structural
components, and on (ii) the relative number of links or bonds
that are irreversibly built up or broken down.

It is assumed that λ can be decomposed into reversible
and irreversible contributions, as follows:

λ ¼ λrev þ λirrev: (1)

For instance, to illustrate the reversible and irreversible
contributions to λ, a schematic representation of the structure
of a soft material undergoing solidification under shear is
shown in Fig. 2. In this figure, it is possible to see three dif-
ferent regions, namely, I, II, and III, and three schematic
drawings of the structure of the material in different time
scales, one drawing for a specific time in each region. In the
schematic drawings, the blue circles represent the structural
components of the material’s structure, the black dashed
lines represent reversible links or bonds between the struc-
tural components, and the red lines represent irreversible
links or bonds. In region I, the material is partially structured
and the chemical reactions leading to solidification are
progressing in a very low rate. For the specific time t1 in
region I, the structure parameter λ assumes the value λ1.

FIG. 2. Schematics of the structure of a soft material undergoing solidification under shear. The blue circles represent structural components, the black dashed
lines describe reversible links or bonds between the structural components, and the red lines stand for irreversible links or bonds resulting from solidification
reactions. In region I, the material is partially structured, the chemical reactions progress in a very low rate, and the structure parameter assumes a value λ1 at
the time t1. In region II, the chemical reactions are still progressing in a very low rate, but some reversible and irreversible links or bonds are broken down
because of shear, so the structure parameter decreases to a value λ2 at the time t2. In region III, the chemical reactions accelerate and many irreversible links or
bonds are formed. At the time t3, the structure parameter assumes a value λ3, which is higher than λ1 as the strength of the irreversible links or bonds are higher
than the strength of the reversible links or bonds.
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In region II, the chemical reactions are still progressing in a
very low rate, but the structure of the material experiences
significant shear degradation because of the stress applied.
It is possible to see in region II that some reversible and irre-
versible links or bonds are being broken down, leading to a
decrease in both λrev and λirrev, and consequently in λ. So, at
the time t2 in region II, λ assumes the value λ2, which is
lower than λ1. In region III, the chemical reactions accelerate
and the number of irreversible links or bonds between
the structural components increases significantly. So, in this
region, λirrev and, consequently, λ increase. By comparing
the drawings representing the structure of the material at the
times t1 and t3, it can be observed that the number of links
or bonds between the structural components is the same.
However, at t1 in region I, there are seven reversible links
or bonds between the structural components and only two
irreversible links or bonds, while at t3 in region III, there
are two reversible links or bonds and seven irreversible
links or bonds. As the strength of the irreversible links or
bonds resulting from chemical reactions is higher than the
strength of the reversible links or bonds, then λ3 is higher
than λ1. At the end of the chemical reactions, as the
material becomes a solid, no structural components are
available to form reversible links or bonds. Therefore, at
this time, λrev becomes zero and λ ¼ λirrev ¼ λ final, where
λ final represents the structure of the material at the final
equilibrium state.

In this way, from an instant of time ti to a time t j, λ will
increase if the number of reversible or irreversible links or
bonds increases or if the strength of the links or bonds
increases. Conversely, λ will decrease from ti to t j if the
number of reversible or irreversible links or bonds decreases
or if the strength of the links or bonds decreases.

Thus, in the present model, λ ranges from 0 to λmax,
where λmax is a positive finite number, which can (i) be equal
to 1, e.g., when the material does not experience any irrevers-
ible process, (ii) assume values higher than 1, e.g., when the
material is becoming solid as a result of chemical reactions,
or (iii) assume values lower than 1, e.g., when the material is
experiencing irreversible shear degradation. It is interesting
to note that for cement systems, Banfill [7] realized that if the
effects of hydration on rheological properties were properly
considered in structural kinetics models, then λ should
increase to values higher than 1. The present model satisfies
this requirement.

B. The evolution of the material’s structure

To describe the evolution of the material’s structure, it is
necessary to take the derivative of Eq. (1) with respect to
time. Then,

dλ

dt
¼ _λrev þ _λirrev, (2)

where the upper dots represent the time derivative of the
variables.

Now, if irreversible progress functions ζ i are defined to
describe the evolution of the irreversible processes that the
material is experiencing, then the term _λirrev in Eq. (2) can be

written as

_λirrev ¼
XN
i¼1

(� 1) jλi _ζ i, (3)

where N stands for the total number of irreversible processes
that the material is experiencing, j assumes the value of
either an even integer in the case of an irreversible buildup
process or an odd integer in the case of an irreversible break-
down process, λi represents the total contribution of the
irreversible process i to λ final, and _ζ i functions are the deriva-
tives of the ζ i functions. For simplicity and without loss of
generality, it is assumed that ζ i are positive monotonically
increasing functions, so that the positive or negative sign
in Eq. (3) is used for any buildup or breakdown term,
respectively.

For instance, if a material is subjected to two irreversible
processes, one of buildup nature and the other one of break-
down nature, then N ¼ 2 and Eq. (3) becomes

_λirrev ¼ λ1 _ζ1(t)|fflfflffl{zfflfflffl}
Irreversible buildup

� λ2 _ζ2(t)|fflfflffl{zfflfflffl}
Irreversible breakdown

: (4)

It is worth mentioning that, in the cement literature
[7,20,21,29,30], the term “structural breakdown” is some-
times used exclusively to refer to the irreversible shear degra-
dation of the microstructure. To avoid confusion, as the
breakdown of the microstructure can also be thixotropic, the
term “irreversible breakdown” is used in this work to desig-
nate any breakdown of the structure that is not reversible.

With respect to the cement slurries investigated, it appears
reasonable to neglect any irreversible breakdown term in
Eq. (3), as significant irreversible shear degradation is not
expected. This is so because, during mixing, the slurries
were subjected to much higher shear rates than during mea-
surements. In that regard, Mewis and Wagner [47] empha-
sized that by imposing very high shear rates during mixing, a
further increase in the degree of dispersion during measure-
ments can be prevented, which can improve the reversibility
of the material. Banfill [7] also indicated that no additional
irreversible breakdown of the structure is usually observed in
the case of concrete because of the high shear rates imposed
during mixing.

Thus, by considering that cement hydration is the only
irreversible process that the cement slurries are subjected to,
substituting _λirrev ¼ λ1 _ζ1(t) into Eq. (2), and integrating
Eq. (2), it is easy to show that λ1 ¼ λ final. In this case, _λirrev
reduces to

_λirrev ¼ λ final
_ζ(t), (5)

where _ζ(t) is equal to _ζ1(t). It is important to note that
λ1 ¼ λ final is a result from the integration of Eq. (2) as λrev
is zero at the end of cement hydration.

In Eq. (2), the term _λrev can be decomposed into thixotro-
pic buildup and breakdown terms, as discussed in the litera-
ture [41,47]. The thixotropic buildup term is assumed to be a
function of the difference between the maximum and present
value of λrev, while the thixotropic breakdown term is
assumed to depend on the shear stress and on the present
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value of λrev. In this way, a suitable form for _λrev is

_λrev ¼ 1
teq

�
λmax
rev � λrev

�a

� Fλbrev

� �
, (6)

where teq is the characteristic time for thixotropic equilib-
rium, λmax

rev is the maximum value that the reversible part of
the structure parameter could assume, λrev is the present
value of the reversible part of the structure parameter, F is a
function that depends on the shear stress, and a and b are
positive finite parameters.

From Eqs. (1) and (5), it is clear that λrev is equal to
[λ� λ finalζ(t)]. In addition, λmax

rev can be written as [1� ζ(t)].
It is interesting to note for the present application that λmax

rev
decreases as a function of time until it becomes zero at the
end of the chemical reactions. This is so because the number
of structural components that are prone to form reversible
links or bonds decreases as the chemical reactions evolve.
Moreover, as the chemical reactions progress at very low
rates during the dormant period, when the thixotropic behav-
ior is more pronounced, it appears reasonable to assume that
ζ(t) � 0 for the cement slurries during this period. Thus, if
the cement slurry structure reaches a quasisteady equilibrium
during the dormant period, then dλ

dt ¼ 0, and λ � λeq, where
λeq represents the structure of the material at thixotropic
equilibrium. In this way, from Eqs. (2), (5), and (6),
F � (1� λeq)a=λbeq. Therefore, _λrev becomes

_λrev ¼ 1
teq

��
1� λ� (1� λ final)ζ(t)

�a

� 1� λeq
� 	a� λ� λ finalζ(t)

λeq

�b

: (7)

Now, if Eqs. (5) and (7) are inserted into Eq. (2), then the
final form for the equation describing the evolution of the
structure of the cement slurries investigated is obtained:

dλ

dt
¼ 1

teq

��
1� λ� (1� λ final)ζ(t)

�a

� 1� λeq
� 	a� λ� λ finalζ(t)

λeq

�b

þ λ final

_ζ(t): (8)

For instance, considering teq ¼ 10, λeq ¼ 0:25, λ final ¼
3:125, a ¼ 1, b ¼ 1, ζ(t) as a sigmoid-type function with a
characteristic time treac ¼ 1000, and λ(t ¼ 0) ¼ 1, it is possible
to obtain a solution for Eq. (8), as illustrated in Fig. 3. It can
be observed in this figure that, with the assumptions described
in this section, the expected behavior for λ is obtained. For
the case shown in Fig. 3, at the time t ¼ 0, there is an ideal
fully structured thixotropic material, as λ(t ¼ 0) ¼ 1 and
ζ(t ¼ 0) ¼ 0. Then, just after that, the chemical reactions
begin at very low rates, so ζ(t) remains approximately zero,
and the material behaves as a thixotropic material experienc-
ing a reversible breakdown of the microstructure resulting
from shear. When the characteristic time for thixotropy, teq,
is reached, then the thixotropic equilibrium is approximately
achieved and the structuring level of the microstructure
remains stable until the characteristic time for the chemical
reactions, treac, is approached. At this time, the irreversible
effects on the material’s structure are important, so λ

increases up to λ final, which is achieved at the end of the
chemical reactions.

If all irreversible processes that a material could be sub-
jected to are neglected, then all the irreversible progress func-
tions ζ1(t), ζ2(t),…, ζ i(t) are going to be zero. In this case,
an ideal thixotropic behavior must be predicted by the
model. Indeed, if ζ(t) ¼ 0, Eq. (8) reduces to

dλthixo
dt

¼ 1
teq

�
1� λthixo

�a

� 1� λeq
� 	a� λthixo

λeq

�b
" #

, (9)

where λthixo represents λ of an ideal thixotropic material. It is
important noting that λrev and λthixo are different quantities.
On the one hand, λrev is the reversible part of λ and provides
a description of the thixotropy of a given material, which can
also be subjected to an irreversible process. On the other
hand, λthixo can be understood as a description of the struc-
ture that the same given material would have if the material
were not experiencing any irreversible process. In this way,
λ ¼ λrev ¼ λthixo if and only if the material does not experi-
ence any irreversible process during the observed time
period.

C. The irreversible progress functions ζ i

The irreversible progress functions ζ i depend on time and
describe the evolution of the irreversible processes to which
a given material is subjected. These functions provide values
between 0 and 1, with 0 indicating that a certain irreversible
process has not begun and 1 indicating that the process is fin-
ished. The subindex i is used to indicate the number of irre-
versible process that the material is experiencing.

Different types of mathematical equations can be used as
irreversible progress functions depending on the nature of the
irreversible process. For example, it would be possible to
use a kinetic equation describing the progress of a chemical
reaction or an equation capturing the cumulative shear-induced
effects over time. For cement systems, the irreversible progress
function describing hydration represents the degree of

FIG. 3. The evolution of the structure parameter λ. The curve represents the
output of Eq. (8), considering λ(t ¼ 0) ¼ 1, teq ¼ 10, λeq ¼ 0:25,
λ final ¼ 3:125, a ¼ b ¼ 1, and ζ(t) as a sigmoid-type function with a charac-
teristic time treac ¼ 1000.
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hydration discussed by De Schutter and Taerwe [86,87]. A
simple algebraic equation that can be used as irreversible
progress functions is the following sigmoid-type equation:

ζ i(t) ¼ 1� 1

1þ t
tirrev

� �l
� �(1�m)

l

, (10)

where tirrev is the characteristic time of the irreversible
process i, l is a positive parameter, and m is a parameter
ranging from 0 to 1. It is important to note that ζ i is written
here as a function of time only, but ζ i can also be a function
of other quantities affecting the progress of the irreversible
process i. For example, if the level of shear stress affects the
progress of a chemical reaction, then ζ i can also be a function
of the shear stress σ and/or a function of λeq, as λeq is related
to the shear applied to the material.

With regard to the cement slurries investigated, the only
relevant irreversible process considered is the solidification
caused by the hydration reactions. As the flow can affect the
reactions rate, it appears reasonable to assume that the evolu-
tion of the hydration reactions depends not only on time, but
also on the shear applied to the slurries. To include shear
effects on ζ, a first attempt is to substitute the parameters
l and m in Eq. (10) by functions of λeq. Based on rheometric
experiments shown in Sec. IV, to achieve a better fit of the
experimental data, we replaced the parameter l in Eq. (10)
with l=λeq and m with mλeq. Therefore, for the cement slur-
ries investigated, ζ becomes

ζ(t, λeq) ¼ 1� 1

1þ t
treac

� �l=λeq
� �(1�mλeq )λeq

l

, (11)

where treac is the characteristic time for the hydration
reactions.

The evolution of ζ and the effects of the parameters l and
m on ζ can be observed in Fig. 4. In this figure, it is evident
that treac is the characteristic time for the hydration reactions.

In addition, it is possible to observe that l is a parameter that
affects ζ mainly before the characteristic time treac is reached,
while m is a parameter that only affects the ζ curve after treac.
From a practical perspective, the parameter l is associated
with the early-age hydration, while the parameter m is related
to the curing stage. It is important to note that λeq ¼ 0:25 for
all curves presented in Fig. 4, and that more significant
effects of the parameters l and m on ζ is obtained for higher
values of λeq.

In the present model, two distinct characteristic times
exist, one for thixotropy, teq, and another for the hydration
reactions, treac. As treac � teq for the cement slurries investi-
gated, a structure buildup observed at a time t � treac should
be related to thixotropy and not to hydration. In the literature,
sometimes there is no clear distinction between thixotropic
buildup and irreversible buildup resulting from hydration, as
both phenomena result in an increase in viscosity as a func-
tion of time. Therefore, Banfill [7] suggested to modify the
thixotropic buildup term to incorporate the effects of early
age kinetics of hydration. It is important to note that this is
not the approach used in the present model, as the equation
describing the evolution of the material’s structure includes
specific terms for irreversible buildup and breakdown pro-
cesses. This gives the present model unique features, such as
the possibility of properly describing the transient rheological
behavior of cement systems during the entire spectrum of
hydration.

D. The viscosity function η, its purely viscous part
ηv, and the structural viscosity ηs(λ)

The viscosity function is defined as

η ;
σ
_γ
: (12)

As shown by de Souza Mendes [49,50], the viscosity
function can be written as a product of two functions, one
containing the elastic contribution and the other being the
purely viscous part of the viscosity

η ¼ Eηv, (13)

where E represents the elastic contribution to the viscosity
and ηv the purely viscous part of the viscosity.

The purely viscous part of the viscosity can, in turn, be
decomposed into two terms: one that is structure dependent
and describes the purely viscous response of the microstructure
and the other representing the viscosity of the completely
unstructured state, when λ ¼ 0 [50]. In this way,

ηv ¼ ηv(λ) ¼ ηs(λ)þ η1, (14)

where ηs(λ) is the structural viscosity and η1 is the viscosity
of the completely unstructured state.

Now, a suitable equation is needed to describe how ηv
varies with λ, so that it is possible to translate any change in
the structuring level of the microstructure into the macro-
scopic viscous response of the material. Considering the
assumptions discussed in Secs. II A–II C and the range in
which λ varies, a suitable equation for that purpose needs to
(i) recover an ideal thixotropic response when the material

FIG. 4. Irreversible progress function ζ. The curves represent the output of
Eq. (11) for different values of l and m and considering λeq ¼ 0:25 for all
cases.
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does not experience any irreversible process, (ii) provide an
infinite value for ηv when the material is fully structured and
not subjected to an irreversible process, as it is assumed that
the material has a true yield stress, (iii) predict ηv ¼ η1 for a
completely unstructured state, where λ ¼ 0 and ηs(λ) ¼ 0,
and (iv) provide values for ηv considering irreversible effects
when the material is subjected to irreversible processes.

One possible relation between ηv and λ is

ηv(λ) ¼ η1
1

1� λthixo

� �α λ final � λthixo
λ final � λ

� �ϵ

, (15)

where α and ϵ are positive finite parameters.
It is interesting to note that Eq. (15) grants the desired

behavior of the model. If the material does not experience
any irreversible process, then λ ¼ λrev ¼ λthixo. In this case,
the term in the second parenthesis on the right hand side of
Eq. (15) becomes equal to 1, and an ideal thixotropic
response is predicted. In addition, if λthixo, given by Eq. (9),
is equal to 1, then ηv ! 1, as is expected for a fully struc-
tured yield-stress material not subjected to an irreversible
process. Moreover, for a completely unstructured state, where
λ ¼ λthixo ¼ 0, Eq. (15) predicts ηv ¼ η1, as expected.
Besides that, for a material undergoing solidification resulting
from chemical reactions, λ becomes higher than λthixo as the
chemical reactions evolve. In this case, the term in the
second parenthesis on the right hand side of Eq. (15)
becomes higher than 1, correcting the thixotropic ηv values
to real values, which include irreversible effects. In the limit
where λ ¼ λ final in Eq. (15), ηv ! 1 as expected, once the
material becomes solid.

Figure 5 illustrates ηv predictions from the model. This
figure was plotted for the same parameters used in Fig. 3 and
considering that ζ was determined from Eq. (11) with l ¼ 2
and m ¼ 0:5. By comparing Figs. 3 and 5, it can be observed
that at the time t ¼ 0, λ ¼ 1 and the material is fully struc-
tured with infinite viscosity. Then, immediately after that, a

reversible breakdown of the microstructure is observed and
ηv achieves a quasisteady equilibrium value approximately at
the characteristic time for thixotropic equilibrium teq. When
the effects of the chemical reactions become important, ηv
increases and goes to infinity as the material becomes solid.

E. The structural shear modulus Gs(λ)

As discussed by de Souza Mendes [49,50], a physically
reasonable function for thixotropic materials to translate any
change in the structuring level of the microstructure into the
macroscopic shear modulus should ensure that (i) Gs should
be smallest when an ideal thixotropic material is fully struc-
tured, i.e., λthixo ¼ 1 and (ii) Gs should increase monotoni-
cally as λthixo decreases to allow the elastic response to
become less important as the structure of the material breaks
down. In the limit of a completely unstructured material,
when λthixo ¼ 0, Gs should be infinite to suppress the elastic
response altogether, thus ensuring a purely viscous behavior
[49]. Therefore, de Souza Mendes [49] suggested the follow-
ing form for the structural shear modulus Gs(λ):

Gs(λ) ¼ G0
1

λthixo

� �κ

, (16)

where G0 is the structural shear modulus of the fully struc-
tured thixotropic material and κ is a positive finite parameter.

For materials subjected to irreversible processes, in
addition to those requirements, a suitable equation for Gs

should also (i) recover this ideal thixotropic response when
the material does not experience any irreversible process and
(ii) be able to take into account irreversible effects. To satisfy
these additional requirements, a term is included multiplying
Eq. (16) in an analogous way to Eq. (15). Therefore, Gs

becomes

Gs(λ) ¼ G0
1

λthixo

� �κ λ

λthixo

� �ξ

, (17)

where ξ is a finite parameter.
It is interesting to note that for an ideal thixotropic mate-

rial, λ ¼ λrev ¼ λthixo, and Eq. (17) reduces to Eq. (16), as
expected. In addition, for a material undergoing solidification
resulting from chemical reactions, λ . λthixo, and Gs given
by Eq. (17) is going to be higher than the Gs values obtained
for a thixotropic material with Eq. (16). In this particular
case, it is assumed that ξ is positive and that the shear
modulus of the solid obtained at the end of the chemical
reactions is higher than the shear modulus of the fully struc-
tured thixotropic material.

To illustrate the Gs behavior as a function of time, Fig. 6
is plotted for the same parameters used in Fig. 5. It is possi-
ble to observe in Fig. 6 that at t ¼ 0, there is a fully struc-
tured material with a shear modulus equal to G0. Then, a
thixotropic equilibrium with a higher Gs value is achieved
approximately at teq. After the effects of the chemical reac-
tions become important, Gs increases to even higher values
until Gfinal is reached, where Gfinal represents the shear
modulus of the material at the end of the chemical reactions.

FIG. 5. The purely viscous part of the viscosity as a function of time. The
curve represents the output of Eq. (15), considering that (i) η1 ¼ 0:2 Pa.s,
α ¼ 2, ϵ ¼ 24, λ final ¼ 3:125, (ii) λ and λthixo are given by Eqs. (8) and (9)
with the same parameters employed to plot Fig. 3, and (iii) ζ is given by Eq.
(11) with treac ¼ 1000, l ¼ 2, and m ¼ 0:5.
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F. Equilibrium values of λ and the flow curve

The material is said to be at equilibrium if, under a cons-
tant applied shear stress or shear rate, the structuring level of
the microstructure and, consequently, the rheological proper-
ties are not changing with time during a sufficiently long
period of time to ensure steady state. Therefore, while at
equilibrium, dλdt ¼ 0.

The present model allows multiple quasisteady equilib-
rium stages, as a given material can be subjected to multiple
transient irreversible processes having significantly different
characteristic times. In this case, while the characteristic time
for an irreversible process is not approached, the effects of
this process on the rheological properties of the material can
be negligible and a quasisteady equilibrium can be achieved
during a certain period of time. For example, the cement slur-
ries investigated behave as thixotropic yield-stress materials
during the dormant period, when the effects of the hydration
reactions are negligible, but become solid after a sufficiently
long period of time. Therefore, for these cement slurries, two
equilibrium stages are possible (i) the thixotropic equilibrium
during the dormant period, which corresponds to a quasis-
teady equilibrium stage and (ii) the final equilibrium after the
end of the hydration reactions, which corresponds to a true
equilibrium stage.

At a true thixotropic equilibrium, λthixo ¼ λeq and
η ¼ ηv(λeq) ¼ ηeq, where ηeq represents the equilibrium values
of the viscosity given by a flow curve. For the cement slurries
investigated, it is possible to assume that λ � λthixo ¼ λeq if a
quasisteady equilibrium is reached during the dormant period.
Then, from Eq. (15), it is evident that

λeq ¼ 1� η1
ηeq

� �1=α

: (18)

Equation (18) shows that λeq is calculated based on equi-
librium values of the viscosity, ηeq, which, in turn, is a func-
tion of the equilibrium values of shear rate _γeq. The
following Herschel–Bulkley type equation discussed by de

Souza Mendes [50] is used to describe ηeq( _γeq):

ηeq( _γeq) ¼
σy � σyd

_γeq
e� _γeq= _γyd þ σyd

_γeq
þ K _γn�1

eq þ η1, (19)

where σy is the static yield stress, σyd is the dynamic yield
stress, _γyd is the characteristic shear rate that marks the transi-
tion from the static to the dynamic yield stress, K is the con-
sistency index, and n is the power law index.

It is important to note that for a general flow, _γeq is
obtained by calculating the value of ηeq corresponding to the
present value of the shear stress σ, as discussed by de Souza
Mendes and Thompson [52]. Therefore, in this case, _γeq is
the equilibrium shear rate that would be attained if the shear
stress σ were imposed to the material until an equilibrium
was achieved [52].

At the final equilibrium stage, λ ¼ λ final, λthixo ¼ λeq, and
Gs(λ final) ¼ Gfinal. Therefore, from Eq. (17)

λ final ¼ (λeq)
1þκ=ξ Gfinal

G0

� �1=ξ

: (20)

Thus, the equilibrium values of λ for the cement slurries,
namely, λeq and λ final, can be obtained by (i) measuring the
flow curve of the slurry during the dormant period, (ii) mea-
suring the shear moduli of the fully structured slurry and of
the final solid cement, and (iii) adjusting the parameters α, κ,
and ξ to transient data.

G. The constitutive equation

The constitutive equation chosen to compose the model
is the one derived with basis on a modified Jeffreys (or
Oldroyd-B) mechanical analog previously discussed by de
Souza Mendes [50] and shown in Fig. 7. In this analog, ηs
and Gs are assumed to be functions of the structure parameter
λ; γe is the elastic shear strain of the microstructure when it
is submitted to the shear stress σ; γv is the viscous shear
strain; and γ is the total shear strain.

This analog provides the following equation relating the
shear rate _γ to the shear stress σ:

_γ þ θ2€γ ¼ θ2
η1

σ

θ1
þ _σ

� �
, (21)

where θ1 and θ2 are the relaxation and retardation times,
respectively. The deduction of Eq. (21) and a complete dis-
cussion about the main features of this equation can be found
elsewhere [50,52].

FIG. 6. The structural shear modulus as a function of time. The curve repre-
sents the output of Eq. (17), considering that (i) G0 ¼ 2000 Pa, κ ¼ ξ ¼ 1,
(ii) λ and λthixo are given by Eqs. (8) and (9) with the same parameters
employed to plot Fig. 3, and that (iii) ζ is given by Eq. (11) with
treac ¼ 1000, l ¼ 2, and m ¼ 0:5.

FIG. 7. The modified Jeffreys (or Oldroyd-B) mechanical analog described
by de Souza Mendes [50]. Reproduced with permission from P. R. de Souza
Mendes, Soft Matter 7, 2471–2483 (2011). Copyright 2011, Royal Society
of Chemistry.
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H. The relaxation and retardation times

As discussed by de Souza Mendes [50], the relaxation
time θ1 and the retardation time θ2 in Eq. (21) can be written
in the following form:

θ1(λ) ¼ 1� η1
ηv(λ)

� �
ηv(λ)
Gs(λ)

, (22)

θ2(λ) ¼ 1� η1
ηv(λ)

� �
η1

Gs(λ)
: (23)

Considering the same parameters used to plot Figs. 3, 5,
and 6, with G0 ¼ 2000, Gfinal ¼ 1� 105, and η1 ¼ 0:2, it is
possible to plot θ1 and θ2 as a function of time, as illustrated
in Fig. 8. The local maximum near treac for θ2 is a result of
the different slopes between ηv and Gs.

It is interesting to note in Fig. 8 that in the limit
where t ! 0, there is a fully structured thixotropic yield-stress
material, so ηv ! 1, θ1 � ηv(λ)

Gs(λ)
¼ ηv(λ)

G0
! 1, and θ2 � η1

Gs(λ)
¼

η1
G0

¼ 1� 10�4. In a similar fashion, when t ! 1, there is a
solid material with ηv ! 1, θ1 � ηv(λ)

Gs(λ)
¼ ηv(λ)

Gfinal
! 1, and

θ2 � η1
Gs(λ)

¼ η1
Gfinal

¼ 2� 10�6. Therefore, in both limits where
t ! 0 or t ! 1, the term σ

ηv
is relatively very small and

Eq. (21) approaches the equation describing a Kelvin–
Voight viscoelastic solid, which is independent of the struc-
tural viscosity ηs.

I. Summary of the model and numerical solution

In summary, Eqs. (8), (9), (11), (15), and (17)–(23)
compose the irreversible time-dependent model proposed in
this paper. These equations are gathered below

dλ

dt
¼ 1

teq

��
1� λ� (1� λ final)ζ(t)

�a

� 1� λeq
� 	a� λ� λ finalζ(t)

λeq

�b

þ λ final

_ζ(t), (24)

dλthixo
dt

¼ 1
teq

�
1� λthixo

�a

� 1� λeq
� 	a� λthixo

λeq

�b
" #

, (25)

ζ(t, λeq) ¼ 1� 1

1þ t
treac

� �l=λeq
� �(1�mλeq )λeq

l

, (26)

ηv(λ) ¼ η1
1

1� λthixo

� �α λ final � λthixo
λ final � λ

� �ϵ

, (27)

Gs(λ) ¼ G0
1

λthixo

� �κ λ

λthixo

� �ξ

, (28)

λeq ¼ 1� η1
ηeq

� �1=α

, (29)

ηeq( _γeq) ¼
σy � σyd

_γeq
e� _γeq= _γyd þ σyd

_γeq
þ K _γn�1

eq þ η1, (30)

λ final ¼ (λeq)
1þκ=ξ Gfinal

G0

� �1=ξ

, (31)

_γ þ θ2€γ ¼ θ2
η1

σ

θ1
þ _σ

� �
, (32)

θ1(λ) ¼ 1� η1
ηv(λ)

� �
ηv(λ)
Gs(λ)

, (33)

θ2(λ) ¼ 1� η1
ηv(λ)

� �
η1

Gs(λ)
: (34)

The parameters of this complete version of the model are
teq, a, b, treac, l, m, α, ϵ, G0, Gfinal, κ, ξ, σy, σyd , _γyd, K, n,
and η1. For the purpose of a fair comparison with thixotropic
models available in the literature, a simplified version of this
model can be obtained by considering a ¼ b ¼ α ¼ ϵ ¼
κ ¼ ξ ¼ 1, and σy ¼ σyd , which also eliminate _γyd from
Eq. (19). In this case, the number of parameters reduces
to 10; namely, teq, treac, l, m, G0, Gfinal, σy, K, n, and η1.
As several recently proposed thixotropic models with similar
level of generality present 7 or 8 parameters, it becomes
evident that with additional 2 or 3 parameters it is possible to
incorporate irreversible effects into the predictive capabilities
of thixotropic models. It is important to note, however, that
the use of the complete version of the model does not neces-
sarily require the execution of a larger number of experi-
ments to evaluate the additional parameters of the model.
Therefore, for the same number of experiments, an improved
predictive capability can be obtained only by increasing the
computational time to determine the optimum set of the
larger number of parameters.

For a given set of parameters, the solution of the model
requires integration of Eqs. (8), (9), and (21). As these differ-
ential equations are usually stiff, their numerical integration

FIG. 8. The relaxation and retardation times θ1 and θ2, respectively, as a
function of time. The curves represent the output of Eqs. (22) and (23), con-
sidering that η1 ¼ 0:2 Pa s and that ηv(λ) and Gs(λ) are given by Eqs. (15)
and (17) with the same parameters employed to plot Figs. 5 and 6,
respectively.
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was performed by using an implementation of the Radau-2A
method of order 5. More detailed information about this
method can be found elsewhere [88].

J. Level of generality

The ideas described above couple a single structure
parameter to both thixotropic behavior and irreversible pro-
cesses. As discussed, this approach can be employed to
incorporate irreversibility into other thixotropic models based
on different stress equations and help improve their predictive
capabilities. Therefore, the present model represented by Eqs.
(8), (9), (11), (15), and (17)–(23) can be understood as a par-
ticular case of a more general framework that can be used to
formulate specific models to describe the transient rheologi-
cal behavior of materials undergoing irreversible processes.
In this current application, the present model describes both
the dormant and curing stages of the rheology of a cement
slurry, a material undergoing solidification in homogeneous
shear conditions.

As discussed by de Souza Mendes [50], a tridimensional
frame-indifferent model for complex flows can be obtained by
replacing (i) the shear stress σ in Eq. (21) by the extra-stress
tensor τ ; σ þ p1, where σ is the total stress tensor and 1
is the unit tensor; (ii) the shear rate _γ in Eq. (21) by the
rate-of-deformation tensor _γ ; ∇νþ ∇νT , where ν is
the velocity vector field; (iii) the time derivative in Eq. (21) by
the upper-convected time derivative, for example, and (iv) the
time derivative in Eqs. (8) and (9) by the material derivative.

III. MATERIALS AND METHODS

A slurry containing 60% w/w Class G cement was used
in the present work. The slurry formulation was carefully
designed to ensure an excellent level of stability from the
dormant period to the end of hydration, when the cement is a
solid. Additives provided by Halliburton Energy Services
Inc. and calcium chloride, were used in the formulation
to (i) increase the viscosity level, (ii) eliminate air bubbles
and settling of solid particles, (iii) avoid water loss, and (iv)
control the progress of the hydration reactions. More detailed
information about the cement slurry formulation can be
found elsewhere [89]. A new cement slurry was mixed
before every rheological test, but all samples were prepared
with ultrapure deionized water as well as cement powder and
additives from the same manufacturing batches. The slurry
samples were mixed following the American Petroleum
Institute standard procedure API RP 10B-2. Immediately
after mixing, a sample was taken from the mixer and properly
placed into the rheometer geometry for a period of 5 min.
Then, the sample was kept static at 25 �C for 10 min for
thermal equilibration through a Peltier device. The rheomet-
ric tests were performed at this temperature, immediately
after this thermal equilibration step, which marked time
t ¼ 0 s. Two rheometers from TA instruments were used for
the tests, an ARES-G2 and a DHR-2. Cross-hatched parallel
plates of 50mm diameter were selected to avoid apparent wall
slip during measurements at low shear rates [90–93], while
smooth parallel plates of 50 mm diameter were employed to
perform tests at shear rates of 100 s�1 or higher, a range in

which apparent wall slip is not observed in rheometric mea-
surements [91,93]. The gap between the parallel plates was
fixed at 2 mm. A solvent trap geometry cover was used to
prevent evaporation effects during the tests. Each test was
repeated at least three times. All the results were corrected for
nonhomogeneity following the guidelines described elsewhere
[82,94,95]. The parameters of the model were adjusted using a
least-square fit procedure.

IV. RESULTS AND DISCUSSION

The aim of this section is to evaluate the predictive
capability of the model by comparing experimental results
to numerical solutions of Eqs. (8), (9), (11), (15), and
(17)–(23). To this end, first it is shown that reproducible
experimental results can be obtained by following the
methods described in Sec. III. Then, the parameters of
the model are estimated from constant shear rate tests and
from the flow curve of the fresh cement slurry. Afterward,
the model predictions are compared to step-down and step-up
in stress experiments.

A. Reproducibility of experimental data

The reproducibility of the experimental data can be
evaluated by comparing different runs of the same kind
of test. This is an important step to ensure that the
methods employed during the sample preparation are ade-
quate. Therefore, three runs of two different constant
shear rate experiments, one at 10 s�1 and the other one at
100 s�1, are shown in Fig. 9. Each experiment consists of
imposing a constant shear rate to the sample at the time
t ¼ 0 s and evaluating how the shear stress and viscosity
evolve as a function of time. It can be observed in Fig. 9
that an excellent level of reproducibility of the results is
achieved. Therefore, unless specified otherwise, reliable
experimental data could be used to adjust the parameters
of the model.

FIG. 9. Reproducibility of experimental data for different constant shear
rates _γ. Each test was performed with a new fresh cement slurry sample.
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B. Parameters estimation

To estimate the parameters of the model for the cement
investigated, several constant shear rate tests were performed
at different levels of shear rate by using the strain-controlled
ARES-G2 rheometer. The DHR-2 stress-controlled rheome-
ter was used in the strain-controlled mode only to perform
tests at sufficiently high shear rates and for the purpose
of comparison.

With the experimental data available, the first step was
to estimate the parameters of the flow curve as previously
discussed by de Souza Mendes [49,50] and described in
Sec. IV B 1. The other parameters of the irreversible time-
dependent model proposed could be then estimated as
described in Sec. IV B 2.

1. Flow curve parameters

A flow curve was built for the fresh cement slurry from
thixotropic equilibrium data taken from the constant shear
rate tests, following the same procedure used in other works
[93,96–98]. Therefore, every point in the flow curve of the
cement slurry represents a quasisteady state achieved before
the effects of the hydration reactions become relevant.
The flow curve parameters could be then estimated by fitting
Eq. (19) to all experimental data points shown in Fig. 10.
By following this procedure, the parameters of Eq. (19) are
estimated as σy ¼ 57:1 Pa, σyd ¼ 21:1 Pa, _γyd ¼ 0:0753 s�1,
K ¼ 0:81 Pa sn, n ¼ 0:49, and η1 ¼ 0:202 Pa s, and the fea-
tures of this equation become evident.

It is important to note, however, that the data points in the
yellow region of Fig. 10 pertain to the negative slope of
the flow curve, a region in which shear banding is expected.
In this region, the flow into the rheometer geometry becomes
unstable and two distinct bands at different shear rates can
appear inside the geometry [99–103]. In this case, these data
points are not reliable, because they were calculated based on
the hypotheses used in the rheometry theory, which are vio-
lated in the case of shear banding. Therefore, the static yield

stress σy and the characteristic shear rate _γyd evaluated as
57:1 Pa and 0:0753 s�1, respectively, represent gap averaged
values and cannot be considered accurate material properties.
A better assessment of the rheological properties in this
region is only possible by investigating the flow inside the
rheometer geometry, which is beyond the scope of this work.

With regard to this shear banding region, the predictions
of thixotropic models strongly depend on the assumption
employed in the thixotropic breakdown term of Eqs. (8)
and (9). Some models assume that this term is a function of
the shear rate [44,45,104,105] and other models assume
that the thixotropic breakdown term is a function of the
shear stress [49,50,52]. Alternatively, Dimitriou and
McKinley [54] recently proposed that this term should be a
function of the plastic shear rate, which, in turn, is a func-
tion of the effective shear stress. This approach is further
discussed by Geri et al. [61].

As discussed by de Souza Mendes [49,50], when the
thixotropic breakdown term is assumed to be a function of
the shear rate, a nonphysical response is obtained for the
startup flow of a fully-structured material initially at rest.
Therefore, it appears more adequate to assume that the thixo-
tropic breakdown term is a function of the shear stress
[49,50]. Based on this assumption, de Souza Mendes and
Thompson [52] have shown that their thixotropic model pre-
dicts that the flow is unstable in the yellow regions of Fig. 10
and that the equilibrium is unattainable in this region. As this
assumption is also used in this work, the irreversible time-
dependent model described in this paper predicts the shear-
banding phenomenon in the same way.

2. Other parameters of the irreversible time-dependent
constitutive model

After estimating the parameters of the flow curve, the
other parameters of the model, found in Eqs. (8), (9), (11),
(15), (17), (18), and (20), were obtained from the constant
shear rate tests. The only exception was the shear modulus of
the final equilibrium state Gfinal, which was not measured,
but estimated as 1 GPa, a value in the range of typical shear
moduli obtained for oil well cements [106]. In this regard, it
is important to point out that a sensitivity test was performed
for the parameter Gfinal, and no significant changes in the
results could be observed by modifying the estimated value
of Gfinal, as the final equilibrium state is far away from the
data points obtained with the rheometer. If needed, it would
be possible to get a better estimate for the parameter Gfinal by
performing, for example, certain mechanical tests with solid
cement samples [106–108].

In this way, the parameters of the model affecting the
beginning of the constant shear rate curves were estimated as
a ¼ 1, b ¼ 16, teq ¼ 80 s, α ¼ 0:45, G0 ¼ 2200 Pa, and
κ ¼ 1, while the parameters affecting the curves after the
hydration reactions become important were estimated as
treac ¼ 15 000 s, l ¼ 2:4, m ¼ 0:6, ϵ ¼ 24, and ξ ¼ 1. It is
important to point out that, with this single set of parameters,
the model can describe the transient rheological behavior of
the cement slurry from the dormant period to the curing
stage, as illustrated in Fig. 11. In particular, it is possible to

FIG. 10. The flow curve of the fresh cement slurry. Equation (19) is fitted
to the quasisteady experimental data obtained. The yellow shaded area repre-
sents a region in which shear banding is expected. This region is defined
based on a critical shear rate inferred from the experimental data point above
which a single yield-stress behavior is experimentally observed.
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note that the model is able to predict the sharp increase in
viscosity experimentally observed during curing that is also
previously reported in the literature [33,34,109–111]. It is
worth mentioning that the parameters affecting the constant
shear rate curves were estimated assuming that λðt ¼ 0Þ ¼ 1.
This seems to be a reasonable assumption considering the
amount of time the sample is rested before starting the
measurements.

In Fig. 11, the yellow region is defined by the limiting _γ
of the shear banding region discussed in Fig. 10. The data
points in the yellow region of Fig. 11 were used in the fitting
to illustrate that the model can predict overshoots in time-
dependent viscosity curves.

C. Model predictions

After estimating the parameters of the model for the
cement investigated, numerical solutions were obtained for
step up and step down in stress tests to compare the model
predictions to rheometric data obtained with the DHR-2 rhe-
ometer. First, the step up in stress tests were performed,
which consisted of imposing a constant shear stress below
σyd to a sample for 30 min, and, at this time, suddenly
increasing the shear stress to another constant value above
σyd. The strain response of each sample was recorded as a
function of time. A value of 10 Pa as the shear stress below
σyd and different levels of shear stress above σyd were
selected. The experimental results obtained are plotted
together with the model predictions in Fig. 12.

In this figure, it is possible to observe only two experi-
mental curves, one corresponding to the final shear stress of
75 Pa and another one corresponding to the final shear stress
of 100 Pa. The tests in which the imposed final shear stress
was below the static yield stress σy were not reproducible
because of shear banding effects observed in this range.
Therefore, only the prediction of the model for an imposed

final shear stress equal to the estimated σy is plotted in this
range, and the corresponding shear banding region is identi-
fied in green.

For the two tests in which the imposed final shear stress
was above the static yield stress, it can be observed that the
model could accurately predict the experimental data.
Immediately after the shear stress is suddenly increased, the
strain increases sharply. At approximately 4000 to 5000 s, it
appears that a quasisteady slope is achieved in the strain
curves, which corresponds to an equilibrium, where a cons-
tant shear rate is obtained for an imposed constant shear
stress. After this time period, the effects of the hydration
reactions begin to become important, so the viscosity increases

FIG. 11. Constant shear rate tests at different levels of _γ. The parameters affecting the transient response of the model are fitted to experimental data. The
yellow region in this plot is defined by the limiting _γ of the shear banding region in Fig. 10. The photograph (a) illustrates a fresh cement slurry sample placed
on the rheometer after being mixed and before the beginning of a test, while the photograph (b) illustrates the thick suspension obtained after the hydration reac-
tions accelerate.

FIG. 12. Step up in shear stress tests. The shear stress applied to the sample
is abruptly changed from 10 Pa to a higher value at 30 min. The model pre-
dictions considering the parameters estimated in Sec. IV B are compared to
experiments. The green region in the plot represents the shear banding
region predicted by the model.
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irreversibly and the slope of the strain curves decreases until it
becomes zero. Therefore, the strain stops increasing with time
as the cement becomes solid.

After that, the step down in stress tests were performed,
which consisted of imposing a shear stress of 100 Pa to the
samples, and at two different times, suddenly decreasing the
shear stress to 10 Pa. The experimental results and the model
predictions are plotted in Fig. 13.

It can be observed in this figure that the model also
accurately predicts the experimental data obtained with the
set of parameters estimated in Sec. IV B. The strain increases
at a constant slope, indicating that a quasisteady equilibrium
is achieved, in which a constant shear rate is obtained for
an imposed constant shear stress of 100 Pa. At the times in
which the shear stress is suddenly decreased to a value below
the dynamic yield stress, 120 s or 1800 s, the strain reaches a
constant value, indicating that the flow has stopped. For the
test in which the decrease in shear stress occurred at 120 s, it
can be observed that the unstructured material is still flowing
after the shear stress is suddenly decreased, which represents
a thixotropic effect. After the microstructure builds up, the
strain becomes constant, indicating that the flow has stopped.

V. CONCLUSIONS

A number of relevant materials undergo irreversible
processes of either a chemical or a physical nature and
present a complex transient rheological behavior, which
cannot be properly described by existing constitutive models.
One important example is cement, which is a material that
behaves as a thixotropic yield-stress material in a fresh state
but becomes solid after the progress of hydration reactions.
In this paper, a transient constitutive model that takes into
account irreversible effects is presented. The model is based
on a single scalar structure parameter and composed of one
differential equation describing the evolution of the materi-
al’s structure, one equation relating the shear rate to the shear

stress, and one equation describing the progress of the irre-
versible process. The predictive capability of the new model
includes bifurcation, shear banding, stress overshoots, effects
of chemical reactions, and irreversible shear degradation.
The parameters of the model were adjusted to rheometric
tests, and a good agreement was observed between model
predictions and experimental data. It was highlighted that the
ideas employed in the present model can be used to improve
the predictive capability of existing thixotropic models,
which give rise to the possibility of describing the transient
rheological behavior of complex materials in an unprece-
dented fashion.
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