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We present a novel Bayesian approach to adaptively select frequency
samples to obtain a rational macromodel of device responses over a
broad frequency range while performing as few electromagnetic (EM)
simulations as possible. The method leverages a Bayesian approach
to Vector Fitting (VF) to construct a data-driven uncertainty measure.
The presented technique is demonstrated by application to a double
semi-circular patch antenna and is shown to accurately and efficiently
construct a rational macromodel over the frequency range of interest.

Introduction: Nowadays, computer aided design (CAD) simulations are
essential tools in the design phase of modern high speed circuits, due
to their increasing complexity, density and bandwidth. Since linear and
passive electromagnetic (EM) systems (such as interconnections, filters,
connectors) are mainly analyzed in the frequency domain, adaptive
frequency sampling (AFS) schemes are of paramount importance [1,
2, 3, 4]. Indeed, simulating such systems via full-wave EM simulators
is expensive, given the bandwidth needed in modern applications. AFS
schemes allow one to minimize the number of required EM simulations,
while simultaneously being able to describe the dynamic behavior of the
system considered in an accurate way [1]. A novel macromodeling-based
AFS strategy using Linear Bayesian Vector Fitting (LBVF) is proposed in
this letter. It formulates the problem of computing a rational model of the
frequency response of the system under study in a Bayesian framework.
Numerical results confirm the accuracy and efficiency of the proposed
method.

Goal statement: The goal of AFS is to construct an accurate rational
model of the frequency response of the system, while performing as few
(expensive) EM simulations as possible. Thus, the amount of information
obtained by each EM simulation must be maximized. To achieve this,
standard AFS techniques compare two or more intermediate models and
add, in an ad hoc way, a new frequency sample where they disagree
most, in order to reduce uncertainty [1, 2, 3, 4]. The novel proposed
technique, however, uses the intrinsic uncertainty of the rational models
in a Bayesian way.

Linear Bayesian Vector Fitting Framework: The use of Sanathanan-
Koerner (SK) iterations for rational macromodeling of device responses
has been well established as the VF method [5, 6]. In this framework, the
nonlinear problem of fitting a transfer function f(s) (e.g. S-parameters)
with a suitable rational model is linearized by multiplying f(s) with a
preliminary denominator σ(s):

f(s) =
p(s)

σ(s)
=

∑K
k=1

rk
s−ak

+ d∑K
k=1

r̂k
s−ak

+ d̂
, (1)

where p(s) is the numerator, and ak are a set of starting poles. The
linear system σ(s)f(s) = p(s) can now be solved in a least squares
sense for the residues r̂k and d̂ of σ(s). Then, the zeros of σ(s) can be
computed by solving a suitable eigenvalue problem [6]. Since the zeros
of σ(s) correspond to the relocated poles of f(s), this process can be
iterated to convergence by replacing the ak with these new poles. Finally,
the residues in the partial fraction representation of f(s) can easily be
estimated via another linear system.

In the proposed LBVF framework, firstly, a final set of relocated poles
is estimated using several iterations of the VF algorithm, as described
above. Then, in contrast to traditional SK iteration, samples are drawn
from the posterior distribution of r̂k and d̂, after solving the linearized
pole relocation system σ(s)f(s) = p(s) using Bayesian linear regression.
For each of these samples, the zeros of σ(s) and the posterior distribution
of the residues of f(s) are calculated using Bayesian multivariate
linear regression. Finally, a set of residues is obtained by sampling the
corresponding posterior distribution. Each set of the computed poles and
residues describes a sample from the posterior distribution of fits to the
data. We denote these samples f iLBVF(s), where i= 1, . . . , N and N is
the total number of samples, conditioned on the starting poles. As a result,
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Fig. 1: Flowchart of the proposed AFS strategy.

one LBVF model consists of a distribution of rational models, from which
samples can be drawn, while a traditional VF model is formed by a single
set of pole/residues pairs.

A prior probability distribution on the residues of σ(s) can be specified
as a multivariate normal distribution for the residues, times an inverse
Wishart distribution for the covariance, in order to yield an analytical
solution for the posterior distribution. If no prior information is present,
an (uninformative but improper) Jeffreys prior can be used. In that
case, the mean of the posterior distribution corresponds to the solution
of classical VF. Analogously, the prior for the residues of f(s) can
be specified as a matrix normal distribution times an inverse Wishart
distribution. In this letter, we adopt uninformative priors.

Furthermore, as Bayesian linear regression allows for an analytical
form of the marginal likelihood of the data, the pole relocation system
can provide a likelihood of the data, conditioned only on the converged
poles, and their number. Hence, the novel proposed Bayesian modeling
framework offers intrinsic information on the number of poles needed to
accurately describe the data. In the standard VF modeling framework,
instead, the number of poles is typically chosen ad hoc or through a
bottom-up strategy, where the number of poles is iteratively increased
until the desired accuracy is reached.

Proposed AFS strategy: Computing the standard deviation of the
aforementioned f iLBVF(s) for i= 1, . . . , N gives a measure of the intrinsic
model uncertainty, which naturally lends itself to an adaptive sampling
scheme. Since an LBVF model is still conditioned on the number of
starting poles (and their location), it is advantageous to consider several
LBVF models, with different numbers of starting poles. The importance
of each model can be weighted by its marginal likelihood, yielding a data-
driven model selection. Hence, a more informative uncertainty measure
is the weighted standard deviation of samples from multiple models,
with their marginal likelihood as weights. In addition, a small Gaussian
penalty is added to avoid choosing frequency points too close to each
other.

The proposed adaptive sampling scheme is described in Fig. 1.
An initial number of EM simulations is necessary to compute a VF
model yielding the relocated poles needed by the LBVF technique, as
described before. Hence, only four initial frequency points, uniformly
and equidistantly spread over the considered frequency range, are chosen
as initial points and LBVF models with different pole numbers are
built. Note that it is not possible to use a number of poles higher
than the number of frequency points considered. Then, a large number
(typically > 500) of samples f iLBVF(s) is drawn from each model and
the corresponding uncertainty measure is calculated. If the uncertainty
does not exceed a chosen threshold, the sampling stops and the best
model serves as a surrogate for any other frequency. It should be noted
that this threshold does not correspond to the fitting accuracy, but to a
desired upper limit of the uncertainty measure. The final model is (the
mean of) the LBVF model with the highest likelihood. Note that, when
using uninformative priors, the mean of this model corresponds to the
classical VF solution. If the threshold is surpassed, the frequency point
with the maximum uncertainty is chosen and an additional EM simulation
is performed for that frequency. The entire process is then iterated until
the threshold is no longer exceeded. Since additional frequency points are
considered, it is possible to increase the number of poles in each iteration.
In order to curb computation time only the 10 highest order models are
retained, while the others are discarded.

A pronounced advantage of the proposed scheme over classical AFS
schemes [1, 2, 3, 4] is its capacity to sample not only where models of a
different order disagree, but also where they may agree in the mean, but
show a large variance. As such, this results in a more careful stopping
criterion. The cost of the advantages is that for every sample of r̂k
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Fig. 2: Design of the semi-circular patch antenna. Two semi-circular
patches of different radii (17.5 mm and 16.5 mm, and 2 mm apart) are
indirectly excited by a microstrip line of width 4.373 mm.

Fig. 3: A step in the adaptive sampling scheme. The uncertainty does not
conform to the vertical axis, but is rescaled and shifted for clarity.

and d̂ that is drawn, an eigenvalue problem must be solved and a QR
decomposition performed to find the corresponding poles and residues,
though the computational cost involved is usually negligible with respect
to the EM-simulation cost.

Example: The proposed method is applied to the double semi-circular
patch antenna [2] shown in Fig. 2.

An example of the results obtained in one iteration of the proposed
Bayesian AFS scheme is shown Fig. 3. The black points represent the
known simulated points (where EM simulations have been performed).
A thousand samples from LBVF models with four, five and six poles
are plotted in three shades of purple, orange and red according to
the likelihood of the corresponding model. Above this plot, in green,
the uncertainty measure is shown (though shifted and rescaled to be
discernible above the rest of the figure). The green arrow underneath
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Fig. 4: marginal log-likelihood of the data for the pole relocation system
as a function of the number of poles used in each model, at the same stage
as Fig. 3.
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Fig. 5: Best fit (with 10 poles) after reaching threshold.

indicates the maximum of the uncertainty, and thus where the next
frequency point will be chosen.

Fig. 4 displays the marginal log-likelihood of the pole relocation
system at this step. This does not necessarily increase monotonically with
the number of poles, as is the case in this intermediate stage.

In this example, a threshold of −80 dB has been chosen for
the uncertainty measure. This criterion is satisfied after eleven EM
simulations and the final (mean) fit is shown in Fig. 5.

The root mean square (rms) and maximum error with respect to the
sampled frequency points are −138.3 dB and −130.9 dB, respectively.
With respect to the antenna response calculated for 10000 frequency
points in the range 2−4 GHz, the rms and maximum error are −82.1 dB
and −72.8 dB, respectively. For comparison, the ad hoc method described
in [2] reports a fitting error of less than −70 dB for the same example,
also for eleven EM simulations.

Conclusion: This letter introduces a novel adaptive frequency sampling
method, based on a Bayesian treatment of the well-established Vector
Fitting method. The method makes use of samples from the posterior
distribution of poles and residues to construct a probabilistic uncertainty
measure. For this, it automatically weighs models of different orders
by their marginal likelihood. This uncertainty measure is then used to
iteratively select, in a principled way, new frequencies where additional
EM simulations have to be performed.

The method is applied to an asymmetric double semi-circular patch
antenna, and is shown to efficiently reach an accurate fit to the simulated
data, proving its efficacy.
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