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ON DIAMOND’S L1 CRITERION FOR ASYMPTOTIC DENSITY OF

BEURLING GENERALIZED INTEGERS

GREGORY DEBRUYNE AND JASSON VINDAS

Abstract. We give a short proof of the L1 criterion for Beurling generalized integers
to have a positive asymptotic density. We actually prove the existence of density un-
der a weaker hypothesis. We also discuss related sufficient conditions for the estimate
m(x) =

∑
nk≤x

µ(nk)/nk = o(1), with µ the Beurling analog of the Möbius function.

1. Introduction

Let {pk}∞k=1 be a Beurling generalized prime number system, that is, an unbounded
sequence of real numbers p1 ≤ p2 ≤ p3 ≤ . . . subject to the only requirement p1 > 1.
Its associated set of generalized integers [1, 8] is the multiplicative semigroup generated
by the generalized primes and 1. We arrange them in a non-decreasing sequence where
multiplicities are taken into account, 1 = n0 < n1 ≤ n2 ≤ . . . . One then considers the
counting functions of the generalized integers and primes,

N(x) =
∑

nk≤x

1 and π(x) =
∑

pk≤x

1.

A central question in the theory of generalized numbers is to determine conditions,
as minimal as possible, on one of the functions N(x) or π(x) such that the other one
becomes close to its classical counterpart. Starting with the seminal work of Beurling
[1], the problem of finding requirements on N(x) that ensure the validity of the prime
number theorem π(x) ∼ x/ log x has been extensively investigated; see, for example,
[1, 8, 9, 16, 17]. In the opposite direction, Diamond proved in 1977 [7] the following
important L1 criterion for generalized integers to have a positive density. As in the
classical case, we denote

Π(x) = π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + . . . .

Theorem 1.1. Suppose that

(1.1)

∫ ∞

2

∣∣∣∣Π(x)−
x

log x

∣∣∣∣
dx

x2
< ∞.
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2 G. DEBRUYNE AND J. VINDAS

Then, there is a > 0 such that

(1.2) N(x) ∼ ax.

It can be shown (see [8, Thm. 5.10 and Lemma 5.11, pp. 47–48]) that the value of
the constant a in (1.2) is given by

log a =

∫ ∞

1

x−1

(
dΠ(x)− 1− 1/x

log x
dx

)
.

Diamond’s proof of Theorem 1.1 is rather involved. It depends upon subtle decom-
positions of the measure dΠ and then an iterative procedure. In their recent book [8, p.
76], Diamond and Zhang have asked whether there is a simpler proof of this theorem.

The goal of this article is to provide a short proof of Theorem 1.1. Our proof is of
Tauberian character. It is based on the analysis of the boundary behavior of the zeta
function

ζ(s) =

∫ ∞

1−
x−sdN(x)

via local pseudofunction boundary behavior and then an application of the distribu-
tional version of the Wiener-Ikehara theorem [4, 14]. Our method actually yields (1.2)
under a weaker hypothesis than (1.1), see Theorem 4.1 in Section 3. We mention that
Kahane has recently obtained another different proof yet of Theorem 1.1 in [11].

In Section 5, we apply our Tauberian approach to study the estimate

(1.3) m(x) =
∑

nk≤x

µ(nk)

nk

= o(1),

with µ the Beurling analog of the Möbius function. The sufficient conditions we find
here for (1.3) generalize the ensuing recent result of Kahane and Säıas [12, 13]: the L1

hypothesis (1.1) suffices for the estimate (1.3).

2. Tauberian machinery

We collect in this section some Tauberian theorems that play a role in the article.
These Tauberian theorems are in terms of local pseudofunction boundary behavior
[4, 6, 14, 16], which turns out to be an optimal assumption for many complex Tauberian
theorems, in the sense that it often leads to “if and only if” results.

We normalize Fourier transforms as ϕ̂(t) = F{ϕ; t} =
∫∞

−∞
e−itxϕ(x) dx, and in-

terpret them in the sense of tempered distributions when the integral definition does
not make sense. The standard Schwartz test function spaces of compactly supported
smooth functions (on an open subset U ⊆ R) and rapidly decreasing smooth functions
are denoted by D(U) and S(R), while D′(U) and S ′(R) stand for their topological
duals, the spaces of distributions and tempered distributions [2]. We write 〈f, ϕ〉, or
〈f(x), ϕ(x)〉 with the use of a dummy variable of evaluation, for the dual pairing be-
tween a distribution f and a test function ϕ; as usual, locally integrable functions are
regarded as distributions via 〈f(x), ϕ(x)〉 =

∫∞

−∞
f(x)ϕ(x)dx.

Denote as A(R) = F(L1(R)) the Wiener algebra, its dual PM(R) = F(L∞(R))
is the space of global pseudomeasures. We call f ∈ PM(R) a global pseudofunction
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if additionally lim|x|→∞ f̂(x) = 0, and write f ∈ PF (R). A Schwartz distribution
g ∈ D′(U) is said to be a local pseudofunction on an open set U if every point of U
has a neighborhood where g coincides with a global pseudofunction; we then write g ∈
PFloc(U). Equivalently, the latter holds if and only if lim|x|→∞ ϕ̂g(x) = 0 for every ϕ ∈
D(U). One defines similarly the local Wiener algebra Aloc(U) of continuous functions.
Note that Aloc(U) is an algebra under pointwise multiplication, while PF loc(U) has
a natural Aloc(U)-module structure. Since C∞(U) ⊂ Aloc(U), we obtain that smooth
functions are multipliers for Aloc(U) and PF loc(U). Also, L1

loc(U) ( PFloc(U), in view
of the Riemann-Lebesgue lemma.

Let G(s) be analytic on the half-plane ℜes > 1 and let U ⊂ R be open. We say that
G has local pseudofunction boundary behavior on the boundary open subset 1 + iU if
G admits a local pseudofunction as distributional boundary value on 1+ iU , that is, if
there is g ∈ PFloc(U) such that

lim
σ→1+

∫ ∞

−∞

G(σ + it)ϕ(t)dt = 〈g(t), ϕ(t)〉 , for each ϕ ∈ D(U).

If U = R, we say that G has local pseudofunction boundary behavior on ℜe s = 1. We
often write g(t) = G(1 + it) for its boundary value distribution. Likewise, one defines
boundary behavior with respect to other spaces such as Aloc or L1

loc. We emphasize
that L1

loc-boundary behavior, continuous, or analytic extension are very special cases
of local pseudofunction boundary behavior.

We will employ the following distributional version of the Wiener-Ikehara theorem,
due to Korevaar [14]. (See [4, 6] for more general results.)

Theorem 2.1. Let S be a non-decreasing function having support in [1,∞). Then,

S(x) ∼ ax

if and only if its Mellin-Stieltjes transform
∫∞

1−
x−sdS(x) converges for ℜe s > 1 and

∫ ∞

1−
x−sdS(x)− a

s− 1

admits local pseudofunction boundary behavior on the line ℜe s = 1.

The next Tauberian theorem is a recent extension of the Ingham-Fatou-Riesz the-
orem, obtained by the authors in [6]. A function τ is called slowly decreasing (with
multiplicative arguments) if for each ε > 0 there exists c > 1 such that

lim inf
x→∞

inf
η∈[1,c]

(τ(ηx)− τ(x)) ≥ −ε.

Theorem 2.2. Let τ ∈ L1
loc[1,∞) be slowly decreasing. Then,

τ(x) = a log x+ b+ o(1)

if and only if its Mellin transform
∫∞

1
x−sτ(x)dx converges for ℜe s > 1 and

∫ ∞

1

x−sτ(x)dx − a

(s− 1)2
− b

s− 1

admits local pseudofunction boundary behavior on the line ℜe s = 1.
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It is very important to determine sufficient criteria in order to conclude that an
analytic function has local pseudofunction boundary behavior. The ensuing lemma
provides such a criterion for the product of two analytic functions.

Lemma 2.3. Let G and F be analytic on the half-plane ℜe s > 1 and let U be an

open subset of R. If F has local pseudofunction boundary behavior on 1 + iU and G
has Aloc-boundary behavior on 1 + iU , then G · F has local pseudofunction boundary

behavior on 1 + iU .

Proof. Fix a relatively compact open subset V such that V ⊂ U . By definition, we can
find g ∈ L1(R) and f ∈ L∞(R) such that ĝ(t) = G(1 + it) and f̂(t) = F (1 + it) on V
and lim|x|→∞ f(x) = 0. Let g±(x) = g(x)H(±x) and f±(x) = f(x)H(±x), where H is
the Heaviside function, i.e., the characteristic function of the interval [0,∞). We define
G±(s) = L{g±; s} and F±(s) = L{f±; s}, where L stands for the Laplace transform
so that G+(s) and F+(s) are analytic on ℜe s > 0, whereas G−(s) and F−(s) are
defined and analytic on ℜe s < 0. Observe that [2] ĝ±(t) = limσ→0+ G±(±σ + it) and

f̂±(t) = limσ→0+ F±(±σ + it), where the limit is taken in S ′(R) (in the first case, the
limit actually holds uniformly for t ∈ R because g± ∈ L1(R)). Obviously, we also have

ĝ = ĝ−+ ĝ+ and f̂ = f̂−+ f̂+ on R. Consider the analytic function, defined off the line
1 + iR,

G̃(s) =

{
G(s)−G+(s− 1) if ℜe s > 1,

G−(s− 1) if ℜe s < 1.

The function G̃(s) has zero jump across the boundary set iV + 1, namely,

lim
σ→0+

G̃(1 + σ + it)− G̃(1− σ + it) = 0,

where the limit is taken in the distributional sense1. The distributional version of
the Painlevé theorem on analytic continuation (also known as the edge-of-the-wedge

theorem [15, Thm. B]) implies that G̃ has analytic continuation through 1 + iV .
Exactly the same argument gives that F̃ (s) = F−(s − 1) has analytic continuation

through 1 + iV as well and F (s) = F̃ (s) + F+(s− 1). Now,

G(s)F (s) = G̃(s)F (s) + F̃ (s)G+(s− 1) + L{g+ ∗ f+; s− 1},
in the intersection of a complex neighborhood of 1 + iV and the half-plane ℜe s > 1.
Taking boundary values on 1+ iV , we obtain that (G ·F )(1+ it) = G̃(1+ it)F (1+ it)+

F̃ (1 + it)ĝ+(t) + f̂+ ∗ g+(t) ∈ PFloc(V ), because real analytic functions are multipliers
for local pseudofunctions and lim|x|→∞(f+ ∗ g+)(x) = 0. �

3. Proof of Theorem 1.1

Our starting point is the zeta function link between the non-decreasing functions N
and Π,

(3.1) ζ(s) =

∫ ∞

1−
x−sdN(x) = exp

(∫ ∞

1

x−sdΠ(x)

)
.

1The limit actually holds uniformly for t in compact subsets of V , as follows from the next sentence.
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The hypothesis (1.1) is clearly equivalent to

(3.2)

∫ ∞

2

|Π(x)− Π0(x)|
dx

x2
< ∞,

where

(3.3) Π0(x) =

∫ x

1

1− 1/u

log u
du for x ≥ 1.

Note also that ∫ ∞

1

x−sdΠ0(x) = log

(
s

s− 1

)
for ℜe s > 1.

This guarantees the convergence of (3.1) for ℜe s > 1. Calling

(3.4) J(s) =

∫ ∞

1

x−1−s(Π(x)− Π0(x))dx , ℜe s > 1,

log a = J(1), and subtracting a/(s− 1) from (3.1), we obtain the expression

(3.5) ζ(s)− a

s− 1
=

sesJ(1) − eJ(1)

s− 1
+ s2esJ(1) · e

s(J(s)−J(1)) − 1

s(J(s)− J(1))
· J(s)− J(1)

s− 1
.

The first summand in the right side of (3.5) and the term s2esJ(1) are entire functions.
Thus, Theorem 2.1 yields (1.2) if we verify that

(3.6)

(
es(J(s)−J(1)) − 1

s(J(s)− J(1))

)
· J(s)− J(1)

s− 1

has local pseudofunction boundary behavior on ℜe s = 1. The hypothesis (3.2) gives
that J extends continuously to ℜe s = 1, but also the more important membership
relation J(1 + it) ∈ A(R). Thus, (1 + it)(J(1 + it) − J(1)) ∈ Aloc(R). Since the local
Wiener algebra is closed under (left) composition with entire functions, we conclude
that the first factor in (3.6) has Aloc-boundary behavior on ℜe s = 1. On the other
hand, the second factor of (3.6) has as boundary distribution on ℜe s = 1 the Fourier

transform of
∫ ey

1
u−2(Π(u)−Π0(u))du− J(1) = o(1), a global pseudofunction. So, the

local pseudofunction boundary behavior of (3.5) is a consequence of Lemma 2.3. This
establishes Theorem 1.1.

4. A generalization of Theorem 1.1

A small adaptation of our method from the previous section applies to show the
following generalization of Diamond’s theorem:

If the zeta function (3.1) converges for ℜe s > 1, then Aloc-boundary behavior of

(4.1) log ζ(s)− log

(
1

s− 1

)

on ℜe s = 1 still suffices for N to have a positive asymptotic density. Indeed, a key
point in Section 3 to establish (1.2) via Theorem 2.1 was the Aloc-boundary behavior
on ℜe s = 1 of the function J defined in (3.4), but the latter is in fact equivalent to
the assumption of Aloc-boundary behavior on (4.1). The function (3.5) then has local
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pseudofunction boundary behavior on ℜe s = 1 because (J(s)− J(1))/(s− 1) does, as
follows from Lemma 4.2 below.

We can actually deduce a more general result. Note that the very last argument in
the proof of Theorem 4.1 we give below could also have been used to show Theorem
1.1 in a more direct way through Lemma 4.2.

Theorem 4.1. Suppose the zeta function (3.1) converges for ℜe s > 1 and there are a

discrete set of points 0 < η < t1 < t2 < . . . and constants −1 < β1, β2, . . . such that

(a) log ζ(s)− log(1/(s− 1)) has Aloc-boundary behavior on 1 + i(−η, η),
(b) for each T > 0 there is a constant KT > 0 such that

log |ζ(σ + it)| ≤ KT +
∑

0<tn<T

βn log |σ − 1 + i(t− tn)|

for every η/2 < t < T and 1 < σ < 2.

Then, N has a positive asymptotic density.

Proof. Set G(s) = exp(log ζ(s)− log(1/(s− 1))), a = G(1), and

FT (s) = log ζ(s)−
∑

tn<T

βn(log(s− 1− itn) + log(s− 1 + itn)).

Condition (b) says that ℜe FT (s) is bounded from above on the rectangles (1, 2) ×
(η/2, T ) and (1, 2)× (−T,−η/2). Thus, since T is arbitrary,

ζ(s)− a

s− 1
= exp(FT (s))

∏

0<tn<T

((s− 1)2 + t2n)
βn − a

s− 1

has L1
loc-boundary extension to 1 + i(R \ [−η/2,−η/2]). By condition (a), G(1 + it) ∈

Aloc(−η, η) and ζ(s)− a/(s− 1) is equal to

(4.2)
G(s)−G(1)

s− 1
.

So, (1.2) follows at once by combining Theorem 2.1 with the next lemma. �

Lemma 4.2. Let G(s) be analytic for ℜe s > 1 and let U ⊂ R be open. If G has

boundary extension to 1 + iU as an element of the local Wiener algebra G(1 + it) ∈
Aloc(U) and s0 ∈ 1 + iU , then

G(s)−G(s0)

s− s0

has local pseudofunction boundary behavior on 1 + iU .

Proof. We may assume that 0 ∈ U and s0 = 1. Since (4.2) has a continuous boundary
function on 1+iU except perhaps at s = 1, it is enough to verify its local pseudofunction
boundary behavior at s = 1. As in the proof of Lemma 2.3 with the aid of the
Painlevé theorem on analytic continuation, we can find an analytic function G̃(s) in
a neighborhood of s = 1 and a function g+ ∈ L1(R) such that supp g+ ⊆ [0,∞) and
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G(1 + it) = G̃(1 + it) + ĝ+(t) for, say, t ∈ (−λ, λ). The boundary value of (4.2) on
1 + (−iλ, iλ) is the sum of the analytic function

G̃(1 + it)− G̃(1)

it

and the Fourier transform f̂(t), where f is the function f(x) = −
∫∞

x
g+(u)du for x > 0

and f(x) = 0 for x < 0, whence the assertion follows. �

We also obtain,

Corollary 4.3. Suppose there are 0 < t1 < t2 < · · · < tk, y1, y2, . . . , yk, and b1, b2, . . . , bk
such that

(4.3)

∫ ∞

2

∣∣∣∣∣Π(x)−
x

log x

(
1 +

k∑

j=1

bj cos(tj log x+ yj)

)∣∣∣∣∣
dx

x2
< ∞.

If

(4.4) bj(1 + t2j )
1/2 cos(yj + arctan tj) < 2, j = 1, . . . , k,

then N has positive asymptotic density.

Proof. Indeed, setting θj = yj + arctan tj, we obtain from (4.3) that

log ζ(s) + log(s− 1) +
k∑

j=1

bj
(1 + t2j)

1/2

2
(eiθj log(s− 1− itj) + e−iθj log(s− 1 + itj))

has Aloc-boundary behavior on ℜe s = 1. An application of Theorem 4.1 then yields
the result. �

We now discuss three examples. The first two examples show that there are instances
of generalized number systems for which the L1 condition (1.1) may fail, but the other
criteria given in this section apply to show N(x) ∼ ax. The third example shows that
the assumption −1 < β1, β2, . . . in Theorem 4.1 cannot be relaxed.

Example 4.4. Let k ≥ 2 be an integer and let ϕ be a (non-trivial) Ck function with
suppϕ ⊂ (0, 1) and such that ‖ϕ(k)‖L∞(R) ≤ 1/8. We consider the generalized number
system with absolutely continuous prime distribution function

Π(x) = Π0(x) + x
∞∑

n=3

1

n log1/k n
ϕ(k−1)((logn)1/k(log x− n)),

where Π0 is the function (3.3). Since ‖ϕ(k−1)‖L∞(R) ≤ 1/8 as well,
∣∣∣∣∣

(
x

∞∑

n=3

1

n(log n)1/k
ϕ(k−1)((logn)1/k(log x− n))

)′∣∣∣∣∣




= 0 if x ≤ e3,

≤ 1

2 log x
if x > e3,

and thus Π′(x) ≥ 0 for all x ≥ 1. Also,
∫ ∞

2

|Π(x)− Π0(x)|
dx

x2
= ‖ϕ(k−1)‖L1(R)

∞∑

n=3

1

n(log n)2/k
= ∞,



8 G. DEBRUYNE AND J. VINDAS

so that (1.1) does not hold for this example. On the other hand, setting

f(u) =
∞∑

n=3

1

n logn
ϕ((logn)1/k(u− n)),

we have that

log ζ(s)− log

(
1

s− 1

)
= log s+ s(s− 1)k−1

∫ ∞

0

e−(s−1)uf(u) du

has Aloc-boundary behavior on ℜe s = 1 because
∫ ∞

0

|f(u)| du = ‖ϕ‖L1(R)

∞∑

n=3

1

n(logn)1+1/k
< ∞.

So, Theorem 4.1 applies to show N(x) ∼ ax for some a > 0.

Example 4.5. Let

dΠ(u) =
1 + cos(log u)

log u
χ[2,∞)(u)du.

This continuous generalized number system is a modification of the one used by Beurl-
ing to show the sharpness of his PNT [1]. Note the PNT fails for Π, one has instead

(4.5) Π(x) =
x

log x

(
1 +

√
2

2
cos
(
log x− π

4

))
+O

(
x

log2 x

)
.

It is then clear that ∫ ∞

2

∣∣∣∣Π(x)−
x

log x

∣∣∣∣
dx

x2
= ∞,

but Π satisfies the hypotheses of Corollary 4.3, so that N(x) ∼ ax holds.

Example 4.6. We consider

Π(x) =
∑

2k+1/2≤x

2k+1/2

k
.

Its zeta function is 4πi/ log 2 periodic and in fact given by

log ζ(s) = −2−(s−1)/2 log(1− 2−(s−1)).

From this explicit formula one verifies that conditions (a) and (b) from Theorem 4.1
are satisfied with η = 2π/ log 2, tn = 4πn/ log 2, and βn = −1, n ∈ N+. On the other
hand, it has been proved in [3, Ex. 4.2] that N(x) has no asymptotic density due to
wobble,

lim inf
x→∞

N(x)

x
< 1.37 < 1.52 < lim sup

x→∞

N(x)

x
,

and moreover m(x) = Ω(1).
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5. The estimate m(x) = o(1)

In this section we study sufficient conditions that imply the estimate (1.3). As
is actually the case in the previous sections, it is not essential to assume that the
generalized number system is discrete; indeed, what is important is that N and Π
are non-decreasing and satisfy (3.1). The measure dM denotes the (multiplicative)
convolution inverse of dN , or equivalently, in terms of its Mellin transform,∫ ∞

1−
x−sdM(x) =

1

ζ(s)
.

The estimate (1.3) then takes the form

m(x) =

∫ x

1−

dM(t)

t
= o(1).

Theorem 5.1. Suppose that N has asymptotic density (1.2) and there are a discrete

set of points 0 < t1 < t2 < . . . and a corresponding set of constants β1, β2, · · · < 1 such

that for each T > 0 there is KT > 0 such that

(5.1) log |ζ(σ + it)| > −KT − log |σ − 1 + it|+
∑

0<tn<T

βn log |σ − 1 + i(t− tn)|

holds for every 0 < t < T and 1 < σ < 2. Then, m(x) = o(1) holds.

Proof. First observe that m(x) is slowly oscillating (in multiplicative sense),

sup
η∈[1,c]

|m(ηx)−m(x)| ≤
∫ cx

x

|dM(u)|
u

≤
∫ cx

x

dN(u)

u

=
N(cx)

cx
− N(x)

x
+

∫ cx

x

N(u)

u2
du

= o(1) + a log c, x → ∞.

Writing

IT (s) = log ζ(s)− log(1/(s− 1))−
∑

0<tn<T

βn(log(s− 1− itn) + log(s− 1 + itn)),

the condition (5.1) tells that −ℜeIT (σ+ it) is bounded from above for 1 < σ < 2 when
t stays on the interval (−T, T ). Now,

∫ ∞

1

m(x)

xs
dx =

1

(s− 1)ζ(s)
= exp(−IT (s))

∏

0<tn<T

((s− 1)2 + t2n)
−βn

has L1
loc-boundary extension to ℜe s = 1 and hence, by Theorem 2.2, m(x) = o(1). �

A somewhat simpler sufficient condition for m(x) = o(1), included in Theorem 5.1,
is stated in the next corollary.

Corollary 5.2. If N(x) ∼ ax and log ζ(s)− log(1/(s− 1)) has a continuous extension

to ℜe s = 1, then the estimate m(x) = o(1) holds.

In view of Theorem 4.1, the hypotheses of Corollary 5.2 are fulfilled if log ζ(s) −
log(1/(s− 1)) has Aloc-boundary behavior on ℜe s = 1. In particular,
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Corollary 5.3. The condition (1.1) implies the estimate m(x) = o(1).

In addition, a less restrictive set of hypotheses for m(x) = o(1) than (1.1) is provided
by (4.3) from Corollary 4.3 but with (4.4) strengthened as follows:

Corollary 5.4. If (4.3) holds with distinct tj > 0 and

(5.2) (1 + t2j )
1/2|bj cos(yj + arctan tj)| < 2, j = 1, . . . , k,

then m(x) = o(1).

Corollary 5.3 recovers a result of Kahane and Säıas. Their formulation from [12]
is slightly different, making use of the Liouville function. Define dL via its Mellin
transform as ∫ ∞

1−
x−sdL(x) =

ζ(2s)

ζ(s)
.

Using elementary convolution arguments as in classical number theory, it is not hard
to verify that m(x) = o(1) is always equivalent to

(5.3) ℓ(x) =

∫ x

1−

dL(u)

u
= o(1),

which is the relation that Kahane and Säıas established in [12, 13] under the hypothesis
(1.1). Note that for discrete generalized number systems (5.3) takes the familiar form

∞∑

k=0

λ(nk)

nk
= 0.

Finally, we point out that other sufficient conditions for m(x) = o(1) are known. The
validity of (1.3) has been proved in [3, Cor. 3.1] under a Chebyshev upper estimate
hypothesis, that is,

(5.4) lim sup
x→∞

Π(x) log x

x
< ∞,

and the condition

(5.5)

∫ ∞

1

|N(x)− ax|
x2

dx < ∞.

We end this article with some examples that compare the different sets of hypotheses
we have discussed here for m(x) = o(1). In addition to these examples, observe that
Corollary 5.2 applies to Example 4.4, but Corollary 5.3 does not because (1.1) fails for
it.

Example 5.5. In this example we provide an instance of a generalized number sys-
tem for which (1.1) holds (so that Corollary 5.3 applies to deduce m(x) = o(1)), the
Chebyshev upper estimate is satisfied, but the hypothesis (5.5) of [3, Cor. 3.1] does
not hold.

Let

dΠ(u) =
1− u−1

log u
du+

(
1− u−1

log u

)2

ω(u)du,
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where ω is non-increasing positive function on [1,∞) such that

(5.6)

∫ ∞

2

ω(x)

x log x
dx = ∞,

ω(x1/n)

ω(x)
≤ Cnα, and ω(x) = o(1),

with C, α > 0. (For example, ω(x) = 1/ log log x for x ≥ ee and ω(x) = 1 for x ∈ [1, ee]
satisfies these requirements.) Since ω is non-increasing, one readily verifies that the
PNT

Π(x) =
x

log x
+O

(
x

log2 x

)

holds. Thus, both (5.4) and (1.1) are satisfied; in particular, N(x) ∼ ax for some
a > 0, by Theorem 1.1. We have shown in [5, Ex. 1] the lower bound

∫ ∞

x

ω(u)

u log2 u
du ≪ ax−N(x)

x
,

Dividing through by x, integrating on [1,∞), exchanging the order of integration, and
using the first condition in (5.6), we obtain that

∫ ∞

1

|ax−N(x)|
x2

dx = ∞.

Example 5.6. We consider an example constructed by Kahane in [10]. Let 1 <
a1 < a2 < . . . and 0 < b1 < b2 < . . . be two sequences such that bj < aj+1 − aj ,
limj→∞ bj = ∞, and

∞∑

j=1

b2j
aj

< ∞.

Define the prime measure

dΠ(u) =
1

log u
χ[2,∞)(u)du+

∞∑

j=1

eaj log

(
1 +

bj
aj

)
δ(u− eaj )− 1

log u
χ[eaj ,eaj+bj )(u)du,

where δ(u) is the Dirac delta measure and χB is the characteristic function of a set B.
For this example, it is essentially shown in [10, pp. 631–634] that (5.5) holds for some
a > 0,

lim sup
x→∞

Π(x) log x

x
= ∞,

but Π satisfies (1.1) (so that, once again, Corollary 5.3 applies here, but [3, Cor. 3.1]
does not).

Example 5.7. For Example 4.5, the hypotheses of both Corollary 5.2 and [3, Cor.
3.1] are violated, but Corollary 5.4 still applies to conclude m(x) = o(1). We already
saw that (1.1) does not hold. Because of (4.5), one has Chebyshev lower and upper
estimates,

x

log x
≪ Π(x) ≪ x

log x
,
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but (5.5) fails. This can be proved by looking at the zeta function, which is given by

ζ(s) =
eG(s)

(s− 1)
√

1 + (s− 1)2
,

where G(s) is an entire function. Since ζ(s) is unbounded at s = 1± i and (5.5) would
force continuity at those points, we must have

∫ ∞

1

|N(x)− ax|
x2

dx = ∞.

Actually, log ζ(s) − log(1/(s− 1)) does not have a continuous extension to ℜe s = 1,
so that Corollary 5.2 does not apply to this example either.
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[13] J.-P. Kahane, É. Säıas, Fonctions complètement multiplicatives de somme nulle, Expo. Math. 35
(2017), 364–389.

[14] J. Korevaar, Distributional Wiener-Ikehara theorem and twin primes, Indag. Math. (N.S.) 16

(2005), 37–49.
[15] W. Rudin, Lectures on the edge-of-the-wedge theorem, Conference Board of the Mathematical

Sciences Regional Conference Series in Mathematics, No. 6, AMS, Providence, RI, 1971.
[16] J.-C. Schlage-Puchta, J. Vindas, The prime number theorem for Beurling’s generalized numbers.

New cases, Acta Arith. 153 (2012), 299–324.
[17] W.-B. Zhang, Extensions of Beurling’s prime number theorem, Int. J. Number Theory 11 (2015),

1589–1616.

http://arxiv.org/abs/1604.05069


ASYMPTOTIC DENSITY OF BEURLING GENERALIZED INTEGERS 13

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent Uni-

versity, Krijgslaan 281, 9000 Ghent, Belgium

E-mail address : gregory.debruyne@UGent.be

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent Uni-

versity, Krijgslaan 281, 9000 Ghent, Belgium

E-mail address : jasson.vindas@UGent.be


	1. Introduction
	2. Tauberian machinery
	3. Proof of Theorem ??
	4. A generalization of Theorem ??
	5. The estimate m(x)=o(1)
	References

