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Theoretical and experimental research studies have shown that ecosystems governed by non-
transitive competition networks tend to maintain high levels of biodiversity. The theoretical body
of work, however, has mainly focused on competition networks in which the outcomes of compe-
tition events are predetermined and hence deterministic, and where all species are identical up to
their competitive relationships, an assumption that may limit the applicability of theoretical results
to real-life situations. In this paper, we aim to probe the robustness of the link between biodiversity
and non-transitive competition by introducing a three-dimensional winning probability parameter
space, making the outcomes of competition events in a three-species in silico ecosystem uncertain.
While two degenerate points in this parameter space have been the subject of previous studies, we
investigate the remaining settings, which equip the species with distinct competitive abilities. We
find that the impact of this modification depends on the spatial dimension of the system. When the
system is well mixed, it collapses to monoculture, as is also the case in the non-transitive determin-
istic setting. In one dimension, chaotic patterns emerge, which tend to maintain biodiversity, and
a power law relates the time that species manage to coexist to the degree of uncertainty regard-
ing competition event outcomes. In two dimensions, the formation of spiral wave patterns ensures
that biodiversity is maintained for moderate degrees of uncertainty, while considerable deviations
from the non-transitive deterministic setting have strong negative effects on species coexistence.
It can hence be concluded that non-transitive competition can still produce coexistence when the
assumption of deterministic competition is abandoned. When the system collapses to monoculture,
one observes a “survival of the strongest” law, as the species that has the highest probability of
defeating its competitors has the best odds to become the sole survivor. Published by AIP Publishing.
https://doi.org/10.1063/1.5046795

One of the main enigmas in ecology concerns biodiver-
sity is: How do species manage to coexist? The intricate
structures found in ecological interaction networks, i.e.,
graphs summarizing competitive, mutualistic, predatory,
or parasitic relationships among species, have been pin-
pointed as a possible answer to the biodiversity conun-
drum, as they allow for the coexistence of a large variety
of species. In particular, the merits of cyclic competition
as a mechanism supporting coexistence have been studied
extensively from a theoretical and experimental point of
view. Species constituting a community governed by such
a cyclic competition network compete with each other
much like rock, paper, and scissors do in the popular
children’s game. Theoretical research has shown that this
behavior results in the formation of spatial patterns, which
allows all species to coexist. These findings, however, are
based on the assumption that the outcome of a competi-
tion event is predetermined and hence deterministic, as
such neglecting intraspecific variability and the fact that
a competitive advantage depends on fluctuating environ-
mental conditions, while at the same time mandating that
all species are identical up to their competitive relation-
ships. In this paper, by means of individual-based models
and mean-field equations, we study whether cyclic compe-
tition can still result in coexistence when this idealization is
abandoned. It was found that results depend on the spatial
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dimension of the system, and the degree of uncertainty
regarding the competition event outcomes. When the sys-
tem is well mixed, two out of three species go extinct. In
one spatial dimension, the time that species manage to
coexist is related to the degree of uncertainty by a power
law, partly due to the formation of chaotic spatial pat-
terns. In two spatial dimensions, up to moderate degrees of
uncertainty, the species organise themselves in spiral wave
patterns allowing for coexistence, while higher degrees of
uncertainty produce a monoculture. Hence, in general,
cyclic competition can still maintain biodiversity, as long
as the degree of uncertainty regarding the competition
event outcomes is not too high. In the case that the dynam-
ics produce a monoculture, a “survival of the strongest”
law can be discerned, as the species that has the highest
probability of defeating its competitors has the best odds
to become the sole survivor.

I. INTRODUCTION

Gause’s competitive exclusion principle states that when
several species compete for one limiting resource, only the
fittest one among them survives.1,2 However, natural ecosys-
tems support more species than the principle predicts, as is
strikingly illustrated by the paradox of the plankton.3,4 In
order to elucidate this biodiversity enigma, chaotic popula-
tion dynamics,5,6 co-evolution,7 spatial heterogeneity,8 and
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the structure of ecological interaction networks9,10 have been
considered, amongst others.

A subset of biodiversity research on ecological inter-
action networks focuses on transitivity in tournament
graphs which summarize competitive interactions among
species,11–34 hereafter referred to as competition networks.
When three species are involved, there exist two such non-
isomorphic competition networks. On the one hand, in the
non-transitive competition network, displayed in Fig. 1(a), the
interactions between species are organized in a cyclic man-
ner, in the sense that A dominates B, while B dominates C,
and C in its turn dominates A. Theoretical studies on in silico
ecosystems show that such a non-transitive competition net-
work, combined with the dispersal of species through space,
results in long-term conservation of biodiversity through the
formation of spatial patterns.16–18,35–38 On the other hand, in
the transitive competition network, displayed in Fig. 1(c),
the species dominance relationships are organized in a hier-
archical manner, which results in monoculture through the
extinction of all but the most dominant species.

Theoretical research in the area of non-transitive com-
petition has been complemented by the discovery of such
competition networks in a variety of real-world ecosys-
tems. Examples include coral reef invertebrates, side-blotched
lizards in California, and lemmings in Greenland.39–41 More-
over, in vitro experiments have been conducted in which
colicin-producing, -sensitive and -resistant E. coli strains
compete in a non-transitive manner, the results of which seem
to indicate that coexistence is maintained through the spatial
segregation of the strains.37,42 However, more thorough stud-
ies are needed in order to conclude whether non-transitive
competition actually plays a role in real-life biodiversity
maintenance.43

The competition networks in Figs. 1(a) and 1(c) are
deterministic in the sense that a competition event involv-
ing species A and B is always won by species A, and so
forth. At least two problems can be identified with this con-
ceptualization. First, in nature, the outcome of competition
events is dependent on fluctuating environmental conditions.
Hunting success of lions, for instance, depends on wind direc-
tion, moon brightness, and grass height,44 while fluctuations
in light intensity in the ocean influence competition in phyto-
plankton communities.45 Secondly, there is intraspecific vari-
ability, so that the competitive abilities of individuals belong-
ing to the same species can differ. Both these arguments imply
that, in reality, competitive dominance is less pronounced than
the deterministic competition networks propose,27–29,46–48 to

FIG. 1. An ecosystem consisting of species A, B, and C governed by a
non-transitive deterministic (a), a non-deterministic (b), and a transitive
deterministic (c) competition network.

the extent that it may not occur in reality. Moreover, the
determinism entails that each cyclic permutation of the ver-
tices A, B, and C is an automorphism of the non-transitive
deterministic competition network. While endowing an
in silico ecosystem with such symmetry could be considered
as unnatural and artificial, it has been shown to be the crucial
ingredient for species to coexist in a well-mixed setting.15

In order to make the deterministic competition networks
more realistic, we introduce winning probabilities PAB, PBC,
PCA ∈ [0, 1], expressing that the outcomes of competition
events are uncertain. Their interpretation is as follows: when
an individual of species A competes with an individual of
species B, A dominates B with probability PAB, or is domi-
nated by B with probability PBA ≡ 1 − PAB, and so forth. The
resulting non-deterministic competition network is displayed
in Fig. 1(b).

Variation of the winning probabilities can take the
competition network from the non-transitive determin-
istic setting which has been the subject of previous
studies13–15,17–20,23,26,28,31–34 [Fig. 1(a)], when PAB = PBC =
PCA = 1 or PAB = PBC = PCA = 0, to the transitive deter-
ministic setting [e.g., Fig. 1(c)], when either one or two
of the winning probabilities equal zero while the other(s)
equal(s) one. The non-deterministic settings in between
those extremes can be subdivided in weakly stochas-
tic transitive competition networks, for which it holds
that

(
Pij ≥ 1/2 ∧ Pjk ≥ 1/2

) ⇒ Pki ≤ 1/2, for any (i, j, k) ∈
{A,B,C}3, and not weakly stochastic transitive competition
networks.49

Unequal winning probabilities can endow the species
with distinct competitive abilities, as such breaking the sym-
metry associated with the non-transitive deterministic com-
petition network. When PAB �= PBC, the rate at which A
outcompetes B differs from the rate at which B outcompetes
C. Investigating coexistence under such unequal competition
rates is of particular interest, as it was shown recently that
in the E. coli system mentioned previously,37 the colicin-
producing strain outcompetes the sensitive strain at a rela-
tively high rate compared to the rates related to competition
events involving the resistant strain.50

In this paper, we show how the population dynam-
ics emerging from non-transitive competition among three
species is affected by the introduction of winning probabil-
ities. In Sec. II, we introduce the individual-based model
used to describe the dynamics of an ecosystem governed by
this competition network, while in Secs. III–V, we study the
dynamics of this model in a well-mixed setting, and in one
and two spatial dimensions. Real-life counterparts of these
habitats are laboratory flasks with mixing equipment, quasi-
one-dimensional channels,51 and Petri dishes,37 respectively.
In Sec. VI, we summarize our findings in terms of their effects
on coexistence.

II. AN INDIVIDUAL-BASED MODEL

The biological processes driving population dynamics,
such as competition, reproduction, and diffusion, are gener-
ally considered to be of a stochastic nature, and to depend on
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the spatial distribution of species.52 For these reasons, pop-
ulation dynamics are often modelled using individual-based
models (IBMs). These interacting particle systems, in which
time, space, and state are discrete, treat space explicitly.53

Their dynamics are determined by game-theoretical rules that
dictate the outcomes of the interactions among individuals,
and are thus emergent.

Usually, three such rules are defined to represent compe-
tition, reproduction, and exchange events, in order to make
in silico ecosystems mimic their real-life counterparts.19,20,54

This set of rules constitutes the May–Leonard model.15 In
the context of non-deterministic competition, the competition
rules are given by

AB
PABσ−−−→ A
, AB

(1−PAB)σ−−−−−→ 
B,

BC
PBCσ−−−→ B
, BC

(1−PBC)σ−−−−−→ 
C, (1)

CA
PCAσ−−−→ C
, CA

(1−PCA)σ−−−−−→ 
A.

One thus observes that when two individuals belonging to
species A and B engage in a competition event, the outcome
is either the death of individual B with probability PAB or
the death of individual A with probability 1 − PAB, as pre-
scribed by the competition network in Fig. 1(b). The space
that was occupied by the killed individual becomes empty
(
). A positive reaction rate constant, σ , is associated with
the competition rules, whose meaning will become clear upon
introducing the algorithm that evolves the IBM.

The rules encoding reproduction events are given by

X
 μ−→ XX, (2)

with X ∈ {A,B,C}, and μ > 0 a reaction rate constant asso-
ciated with reproduction, while the rules encoding exchange
events are

YZ
ε−→ ZY, (3)

with Y,Z ∈ {A,B,C, 
}, and ε > 0 the corresponding reaction
rate constant.

With everything in place, we now outline the algorithm
that incorporates the game-theoretical rules and builds them
into an IBM. For this purpose, we consider a d-dimensional
space subject to periodic boundary conditions, and divide it
into Nd identical hypercubes, hereafter referred to as cells.
As an initial condition, every cell is randomly assigned either
an individual of a certain species (A, B, or C) or is left
empty, each of these four scenarios occurring with proba-
bility 1/4, unless stated otherwise. During one step of the
algorithm, a randomly selected cell interacts with another
randomly selected cell in its von Neumann neighbourhood.
A random number determines the interaction that occurs: a
reproduction event, with probability μ, a competition event,
with probability σ , or an exchange event, with probability ε.
Note that this requires μ + σ + ε ≤ 1 when setting the reac-
tion rate constants. If the contents of both selected cells allow
for it, the chosen event takes place, and the state of the sys-
tem is updated accordingly. In either case, time is advanced
by one unit. In order to comply with the literature, we define
a generation as Nd units of time, such that a generation is the
time necessary for each cell, on average, to be involved in

two interaction events. Note that during a competition event,
in a system governed by a non-deterministic competition net-
work, an additional random number is drawn and compared
to the appropriate winning probability to determine the victor
of the event.

In the subsequent sections, we study the dynamics of
this IBM in a well-mixed setting, and in one and two spatial
dimensions, in terms of the coexistence time, i.e., the number
of generations until one of the species goes extinct, and the
sole survivor, i.e., the species still present in the system after
the other two have gone extinct. To understand how the non-
deterministic competition network changes the dynamics of
the in silico ecosystem, we will study the dynamics for vary-
ing winning probabilities, while the other system parameters
are kept constant.

III. THE WELL-MIXED SYSTEM

In a perfectly well-mixed setting, all individuals in the
system can interact with one another. The IBM described in
Sec. II remains valid, but the neighbourhood of a cell now
constitutes the whole system, such that space becomes irrel-
evant. We define the system to consist out of N cells, and,
hence, a generation to consist out of N simulation steps.

A. Dynamics in the limit N → ∞
In order to study this system, we approximate the dynam-

ics of the IBM by a set of ordinary differential equations
(ODEs) through a van Kampen expansion, a procedure that
becomes exact in the limit N → ∞.55 This results in the
following system of ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = a(1 − ρ) − k a [PCAc + (1 − PAB)b] ≡ f1,

ḃ = b(1 − ρ) − k b [PABa + (1 − PBC)c] ≡ f2,

ċ = c(1 − ρ) − k c [PBCb + (1 − PCA)a] ≡ f3.

(4)

Here, a, b, and c represent the densities of species A, B, and C,
respectively, ρ ≡ a + b + c and k ≡ σ/μ. Since we wish to
consider the setting where both competition and reproduction
play a role, we choose k > 0. In biological systems, nega-
tive population densities are not allowed, so we restrict to
(a, b, c) ∈ R

3
+ ≡ {(a, b, c) ∈ R

3 | a, b, c ≥ 0}. Note that solu-
tions with initial conditions in R

3
+ do not leave R

3
+. We now

study the dynamics of this system for PAB, PBC, PCA ∈ ]0, 1[.
System (4) belongs to the class of competitive

Lotka–Volterra equations involving three species, which has
been investigated in Ref. 56. We now apply the results
from Ref. 56 to our system governed by non-deterministic
competition.

The origin, x∗
1 = (0, 0, 0), is an unstable fixed point for

all considered parameter values. The boundary of the basin
of repulsion of the origin in R

3
+ is called the carrying sim-

plex. It has been shown in Ref. 57 that all fixed points and
other limit sets of System (4), except the origin, lie on this
carrying simplex. Supported by these findings, the analysis of
the dynamics of System (4) can be restricted to the dynam-
ics on the carrying simplex. Moreover, it has been shown that
no limit cycles are present in System (4), under the parameter
range considered in this paper.58
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The carrying simplex can contain up to seven fixed
points. Three of them correspond to the survival of one species

x∗
2 = (1, 0, 0),

x∗
3 = (0, 1, 0),

x∗
4 = (0, 0, 1),

while another three indicate the survival of two species

x∗
5 =

(
1 − PAB

1 + PAB(1 − PAB)
,

PAB

1 + PAB(1 − PAB)
, 0

)
,

x∗
6 =

(
PCA

1 + PCA(1 − PCA)
, 0,

1 − PCA

1 + PCA(1 − PCA)

)
,

x∗
7 =

(
0,

1 − PBC

1 + PBC(1 − PBC)
,

PBC

1 + PBC(1 − PBC)

)
,

and, finally, there is one fixed point representing the coexis-
tence of three species

x∗
8 = 1

α

(
a∗

8, b∗
8, c∗

8

)
,

where

α = P2
AB + P2

BC + (PCA − 2)2 + PBC(3PCA − 4)

+ PAB(3PCA + 3PBC − 4),

a∗
8 = P2

BC + PBC(PCA + PAB − 2) − PAB + 1,

b∗
8 = P2

CA + PCA(PBC + PAB − 2) − PBC + 1,

c∗
8 = P2

AB + PAB(PCA + PBC − 2) − PCA + 1.

Fixed points x∗
2, x∗

3, and x∗
4 are asymptotically stable for all

parameter values considered. In order to classify the stabil-
ity of the other fixed points, we distinguish between settings
for which the following three conditions are not satisfied, and
settings for which they are:

PCA < − (PBC − 1)(PAB + PBC − 1)

PBC

∧ PAB > 1 − PBC, (5a)

PAB < 2 − 2
√

1 − PBC − PBC

∧ PCA >
1

2

(
2 − PAB − PBC

−
√

P2
AB + 2PAB(PBC − 2) + P2

BC

)

∧ PCA <
1

2

(
2 − PAB − PBC

+
√

P2
AB + 2PAB(PBC − 2) + P2

BC

)
, (5b)

PCA > 1 − PAB (PAB + PBC − 1)

PAB − 1

∧ PAB < 1 − PBC. (5c)

If none of inequalities (5a)–(5c) are satisfied, as is the case
in 75% of the winning probability parameter space, then
x∗

8 ∈ R
3
+, while x∗

5, x∗
6, and x∗

7 have both an unstable and a
stable eigendirection in the carrying simplex. The qualitative

FIG. 2. Qualitative illustration of the dynamics of System (4) on the carrying
simplex, if x∗

8 ∈ R
3
+ (a) or x∗

8 /∈ R
3
+ (b). When a fixed point attracts on the

simplex, it is displayed as (•), and, when it repels, as (◦). Fixed points act-
ing as saddle nodes on the simplex can be found at the intersection of their
unstable and stable manifolds.

dynamics on the simplex in this case are displayed in Fig. 2(a),
where x∗

8 can be both an unstable spiral or an unstable node.
When one or more of inequalities (5a)–(5c) are satisfied, it
holds that x∗

8 /∈ R
3
+, while either x∗

5, x∗
6, or x∗

7 has two unsta-
ble eigendirections in the carrying simplex, as displayed in
Fig. 2(b).

In the case of non-transitive deterministic competition,
thus either PAB = PBC = PCA = 1 or PAB = PBC = PCA = 0,
one finds only four fixed points on the carrying simplex,
namely, x∗

2, x∗
3, x∗

4, and x∗
8. Although the coexistence fixed

point is unstable, the equations allow for coexistence of the
three species due to a heteroclinic orbit connecting x∗

2, x∗
3,

and x∗
4. Trajectories approach this heteroclinic orbit asymp-

totically, and thus never reach it, such that species A, B, and
C alternately dominate the ecosystem as time goes by Ref. 15.

The analysis carried out in this section shows that
the introduction of winning probabilities makes coexistence
impossible when the system is well mixed and the system
size N → +∞. Trajectories end up at either x∗

2, x∗
3, or x∗

4,
depending on the initial condition, so that only one species
survives.

B. Dynamics for finite N

When N is finite, coexistence suffers the same fate, as
the IBM also evolves to one of the three states where only
one species survives, even when non-transitive deterministic
competition is considered.15 To illustrate how winning proba-
bilities influence the duration of this transient to monoculture,
the well-mixed IBM was evolved for PAB, PBC, and PCA rang-
ing from zero to one in increments of 0.05, with μ = σ = 1/2
and N = 1000, and the initial number of individuals A, B, and
C present in the system equal to 300 per species. For each
parameter combination, the number of generations until the
first species extinction was calculated and averaged over 100
experiments, and the resulting average coexistence time is dis-
played in Fig. 3, for PCA = 1. Although the figure hence only
shows the results obtained for a two-dimensional slice through
the three-dimensional parameter space considered, Fig. 3 is
representative for what happens in the entire parameter space,
as the results for PCA �= 1 only quantitatively differ from the
results obtained for PCA = 1. Conclusions about the impact
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FIG. 3. Average coexistence times 〈t〉 for the well-mixed IBM, for PAB

and PBC ranging from zero to one in increments of 0.05, with PCA = 1,
μ = σ = 1/2, and N = 1000. Initially, 300 individuals of species A, B, and
C were present, and each experiment was repeated 100 times. For the same
parameter settings, System (4) was solved, and the number of generations
until the evolved trajectory arrives within a distance of 10−3 units of one of
the coordinate axes a, b, or c is displayed by red contours.

of the winning probabilities on the dynamics of the system
drawn from Fig. 3 hence also remain valid when PCA �= 1.

Figure 3 shows that, although one can state that, in gen-
eral, deviations from non-transitive deterministic competition
tend to shorten coexistence times, the effect is rather weak, as
is to be expected for a system that rapidly collapses to mono-
culture regardless of its parameters. Coexistence times are
larger when the competition network is not weakly stochas-
tic transitive, i.e., when PAB, PBC ≥ 1/2, but it is not possible
to make strong statements about expected coexistence times
based on the property of weakly stochastic transitivity.

To illustrate the connection between the dynamics of Sys-
tem (4) and the IBM, System (4) was solved for PAB and PBC

ranging from zero to one, PCA = 1, μ = σ = 1/2, and a(0) =
b(0) = c(0) = 3/10. The number of generations required for
the trajectories to arrive within a distance of 10−3 units of one
of the coordinate axes a, b, or c is displayed in Fig. 3 using red
contours. This quantity scales well with the coexistence times
retrieved with the IBM.

C. Survival of the strongest

Due to the finite size of the IBM, each experiment will
eventually result in the survival of a single species. The sur-
vival frequency for each species, computed on the basis of 100
IBM experiments for each combination of PAB and PBC while
PCA = 1, is displayed in Fig. 4. As species A is always out-
competed by species C (PCA = 1), while itself outcompeting

FIG. 4. Competition outcomes for the well-mixed IBM, for PAB and PBC

ranging from zero to one in increments of 0.05, with PCA = 1, μ = σ = 1/2,
and N = 1000. Initially, 300 individuals of species A, B, and C were present,
and each experiment was repeated 100 times. The sole surviving species for
each IBM simulation is displayed by blending the colours red for species
A, yellow for species B, and blue for species C according to their survival
frequency among 100 experiments. For the same parameter settings, the
parameter space is subdivided in areas where the system ends up in either
x∗

2, x∗
3, or x∗

4 according to System (4).

species B with winning probability PAB, species A has dif-
ficulty persisting for PAB significantly smaller than PCA = 1.
As such, for most of the parameter settings considered, species
B and C are the only candidates for survival. Winning prob-
ability PBC determines which of those will prevail, where
species C’s chances increase with increasing PAB, as species
A can then help C with killing B. Only for PAB, PBC � 0.8,
when the winning probabilities are close to those of the
non-transitive deterministic competition network, does the
outcome of the experiments become less predictable. Here,
the intricate dynamics of the IBM, combined with stochastic
effects due to its finite size, make that each species has an
equitable survival probability. We can discern an approximate
“survival of the strongest” law, where the species with the
highest probability of winning competition events involving
the other two species has the highest probability for sur-
vival, although this statement becomes less accurate when the
winning probabilities approach the non-transitive determin-
istic setting. The “survival of the weakest” law, as proposed
in Ref. 30, however, would seem to contradict this find-
ing. Yet, in Ref. 30, instead of the May–Leonard model, the
Lotka–Volterra model is used. This model consists out of
exchange events, as given by Reaction (3), and events that
combine competition and reproduction, given by

AB
kA−→ AA,

BC
kB−→ BB,

CA
kC−→ CC,
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which imply three essential differences between the
Lotka–Volterra model and the May–Leonard model stud-
ied in this paper. First, in the Lotka–Volterra model, the
number of individuals is conserved, as competition results
in the replacement of an individual by one from another
species. Second, the competition is deterministic, as A always
beats B, while B never beats A. Third, in the May–Leonard
model, competition events between species happen with
equal reaction rate constants, PABσ + (1 − PAB)σ = PBCσ +
(1 − PBC)σ = PCAσ + (1 − PCA)σ = σ , while in the Lotka–
Volterra model, it may be that kA �= kB �= kC.

It was found that if, for instance, kA < min (kB, kC),
species A has the best chances of becoming the sole
survivor,30 a result that was coined “survival of the weak-
est,” as it seems to indicate that the species that has the lowest
reaction rate constant associated with attacking and killing its
competitor, is the most probable survivor. This result can be
understood by noticing that when kA is low, species B is rarely
attacked and hence maintains a large population, which in turn
attacks species C in large numbers, hence reducing the popu-
lation size of species A’s attacker. It is clear that this train of
thought depends crucially on the lack of aggressiveness, i.e.,
eagerness to engage in a competition event, encoded in kA.
As one could understand strength (or weakness) to mean the
probability of winning (or losing) a head-to-head encounter
with a competitor, the phrase “survival of the weakest” may
be a bit confusing, and may more accurately be renamed
“survival of the least aggressive.”

Indeed, our results show that when all species are
equally aggressive, i.e., equally likely to engage in a com-
petition event (expressed by PABσ + (1 − PAB)σ = PBCσ +
(1 − PBC)σ = PCAσ + (1 − PCA)σ = σ ), then the strongest
species, being the one that has the highest probability of
winning a head-to-head encounter with a competitor, often
becomes the sole survivor, as such reinstating the intuitive
“survival of the strongest” expression.

For PAB and PBC ranging from zero to one, PCA = 1,
μ = σ = 1/2, and a(0) = b(0) = c(0) = 3/10, it was deter-
mined which of the fixed points of System (4) attracts the
solution. In Fig. 4, the black curves subdivide the parameter
space into areas where the system ends up in either x∗

2, x∗
3, or

x∗
4. One can conclude that System (4) approximates the out-

comes of the IBM experiments well, except for PAB, PBC �
0.8. Under these circumstances, the dynamics become intri-
cate, while finite size effects become important, hence making
the outcome of the IBM experiments sensitive to fluctuations.

IV. THE ONE-DIMENSIONAL SYSTEM

We now turn our attention to the dynamics of the IBM
in one space dimension. Although one may expect that, due
to the finite size of the system, coexistence will be a tran-
sient feature in this setting, the consideration of space and
the localization of the interactions may slow down the evo-
lution toward monoculture due to the formation of spatial
patterns.35,52,59 We can therefore anticipate that the winning
probabilities will influence the length of this transient by
modifying the emerging patterns.

A. Tunnelling events

Figure 1(a) displays an example of an evolution starting
from a random initial condition, as produced by the algorithm
described in Sec. II. First, coarsening dynamics rapidly seg-
regate the system into three domains, each dominated by a
single species.21,22 The boundaries of these domains approxi-
mately perform a biased random walk, with an average speed
proportional to the winning probabilities deciding the out-
come of competition events among individuals occupying
neighbouring domains. This can be understood by realis-
ing that the probability of a domain occupied by species A
expanding by one cell at the cost of its neighbouring domain
occupied by species B shrinking by one cell, is proportional
to the probability of A killing its neighbour B at the boundary
(∼ PAB), and subsequently reproducing in the resulting empty
cell.

Due to the finite size of the system, one of the domains
must eventually give way to the other two. Since it holds that
PAB − PCA < PBC − PAB < PCA − PBC for the system dis-
played in Fig. 5(a), we may expect that the domain occupied
by species A will disappear first, as species C invades it at
a speed proportional to PCA = 1, while the domain occupied

FIG. 5. Spatiotemporal evolution of the one-dimensional IBM, starting from
a random initial condition, with PAB = 0.95, PBC = 0.97, PCA = 1, μ = σ =
1/5, ε = 3/5, and N = 600, for 34 × 103 generations. Cells occupied by
species A, B, or C are coloured red, yellow, or blue, respectively, while empty
cells are black (a). A magnification for (N , t) ∈ [80, 220] × [13 × 103, 15 ×
103] (b). The solution of System (6) for the same parameter settings, and
(x, t) ∈ [0, 1] × [0, 22 × 103] (c).
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FIG. 6. Relative frequency of coexistence times in the one-dimensional IBM,
with PAB = 0.95, PBC = 0.97, PCA = 1, μ = σ = 1/5, ε = 3/5, and N =
600. Initially, the system consisted of three equally sized domains, occu-
pied by species A, B, and C, respectively. The experiment was repeated 5000
times.

by species A expands by displacing B at a speed only pro-
portional to PAB = 0.95. Often, this disappearance of the
domain results in extinction of species A. However, for ε > 0,
chance can revive the system in the sense that, as displayed in
Fig. 5(c), an individual of species B can diffuse through the
narrow domain occupied by species A, without being killed.
After such a tunnelling event,23 the individual reaches the
domain occupied by species C, where it competes and repro-
duces, creating a new domain, and hence initiating a new
round of biased random walks. After about 32 × 103 gener-
ations, this new domain occupied by species A is consumed
by the other domains once again. This time, again by chance,
there are no tunnelling events, and coexistence is lost.

To quantify to what extent tunnelling events can pro-
long coexistence after a first round of random walks, the
one-dimensional IBM was evolved 5000 times, with PAB =
0.95, PBC = 0.97, PCA = 1, μ = σ = 1/5, ε = 3/5, and N =
600. Initially, the system was divided into three contigu-
ous domains, each consisting of 200 cells, and occupied by
species A, B, and C, respectively. In about 59% of the exper-
iments, tunnelling events occurred. Figure 6 displays two
histograms of the time until the first extinction, one for exper-
iments in which no tunnelling events occurred, and one for
those in which they did occur. The histograms demonstrate
the positive effect that tunnelling events have on coexis-
tence time. While tunnelling events shift the histogram to
longer coexistence times, they also lead to a more pronounced
tail, where IBM evolutions such as the one displayed in
Fig. 5(a) can be retrieved. On average, coexistence persists
for about 6505 generations without tunnelling events, com-
pared to 8563 generations with tunnelling events, a significant
prolongation (Mann-Whitney U test, p = 2.2 × 10−16). Other
studies indicate that tunnelling events can prolong coexis-
tence even more when considering high values for ε,24 a
quasi-one-dimensional space,25 or when each cell may be
occupied by more than one individual.23 However, to the best
of our knowledge, such patterns have not yet been observed

in real-life experiments, so it remains uncertain whether such
tunnelling events actually occur.

B. The continuum limit

Upon taking the continuum limit (N → ∞) and neglect-
ing spatial correlations, the dynamics of the IBM can be
approximated by a system of partial differential equations
(PDEs):18

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ȧ = ε

μdN2/d
�a + f1,

ḃ = ε

μdN2/d
�b + f2,

ċ = ε

μdN2/d
�c + f3,

(6)

where d is the spatial dimension of the system, � is the
Laplacian, and f1, f2, and f3 are as defined in System (4).

Solutions of System (6) produce a rich variety of spa-
tial patterns, due to the ceaseless occurrence of tunnelling
events. Depending on the winning probabilities, the sys-
tem can produce anything ranging from regular Sierpinski-
triangle-like patterns to irregular spatiotemporal chaos. As
an illustration, Fig. 5(b) displays a numerical solution of
System (6), obtained using the Exponential Time Differenc-
ing fourth-order Runge-Kutta method,60 for (x, t) ∈ [0, 1] ×
[0, 22 × 103], with PAB = 0.95, PBC = 0.97, PCA = 1, μ =
σ = 1/5, ε = 3/5, and N = 600. For these settings, Sys-
tem (6) is able to maintain coexistence for t → +∞, in
contrast to the corresponding IBM evolved for the same
parameter settings [Fig. 5(a)]. Due to the stochastic nature
of the IBM, tunnelling events happen only with a certain
probability, while they are guaranteed to occur according to
the corresponding PDEs. Consequently, as coexistence times
in the one-dimensional IBM depend critically on tunnelling
events, and hence on stochasticity, System (6) is not as good
an approximation for the dynamics of the one-dimensional
IBM, as System (4) is for the well-mixed IBM.

C. Coexistence time

The one-dimensional IBM was evolved 50 times for PAB,
PBC, and PCA ranging from zero to one in increments of
0.05, with μ = σ = 1/5, ε = 3/5, and N = 600. Initially,
the system was again divided into three equal-sized contigu-
ous domains, each occupied by a single species. The average
coexistence times are displayed in Fig. 7(a), for PCA = 1.
As the boundaries of each domain approximately perform a
biased random walk with an average speed proportional to
the winning probabilities, coexistence times are the largest for
the non-transitive deterministic competition network, where
PAB = PBC = PCA = 1, since all boundaries then move at
an equal average speed. Deviations from this non-transitive
deterministic setting result in strongly reduced coexistence
times, as the boundaries are then biased to walk into each
other. Again, in general, one can expect coexistence times to
be larger when the competition network is not weakly stochas-
tic transitive, i.e., when PAB, PBC ≥ 1/2, but it is not possible
to make strong statements about expected coexistence times
based on the property of weakly stochastic transitivity.
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FIG. 7. Average coexistence time 〈t〉 in the one-dimensional IBM for PAB

and PBC ranging from zero to one in increments of 0.05, with PCA = 1, μ =
σ = 1/5, ε = 3/5, and N = 600. Initially, the system was divided into three
equal-sized domains, each occupied by a single species. Each experiment was
repeated 50 times (a). For PBC = PCA = 1, the average coexistence time is
related to PCA − PAB by a power law (b).

This sensitive dependence of the coexistence times on the
winning probabilities is underlined by Fig. 7(b), where the
coexistence times displayed in Fig. 7(a) for PBC = PCA = 1
and 0 ≤ PAB < 1 are plotted versus PCA − PAB = 1 − PAB.
Since for these parameter settings, it holds that PAB − PCA =
PAB − 1 < PCA − PBC = 0 < PBC − PAB = 1 − PAB, the
domain occupied by species A is expected to shrink the
fastest, at a speed proportional to PCA − PAB. As tunnelling
events have a rather modest impact on the coexistence times
under the considered parameter settings, one may expect that
the extinction times are inversely proportional to the time it
takes for one domain to be destroyed, and hence to PCA −
PAB. As shown in Fig. 7(b), one indeed finds that for the IBM,
〈t〉 ∼ (PCA − PAB)−1, illustrating how the introduction of the
winning probabilities can cut coexistence short.

The competition outcomes of the experiments described
in the previous paragraphs are displayed in Fig. 8. Above the

FIG. 8. Competition outcomes in the one-dimensional IBM for PAB and PBC

ranging from zero to one in increments of 0.05, with PCA = 1, μ = σ = 1/5,
ε = 3/5, and N = 600. Initially, the system was divided in three equal-
sized domains, each occupied by a single species, and each experiment was
repeated 50 times. The sole surviving species for each IBM simulation is
displayed by blending red for species A, yellow for species B, and blue for
species C according to their survival frequency among the 50 experiments.

white line, it holds that PAB − PCA = PAB − 1 < PBC − PAB

and PAB − PCA = PAB − 1 < PCA − PBC = 1 − PBC, such
that, in general, the domain occupied by species A disap-
pears first. If this disappearance is not followed by tunnelling
events, whether species B or C becomes the sole survivor
depends on PBC. Below the white line, it holds that PAB −
PCA = PAB − 1 > PBC − PAB and PCA − PBC = 1 − PBC >

PBC − PAB, hence the domain occupied by species B gener-
ally disappears first, after which species C becomes the sole
survivor, since competition events between species A and C
are decided by PCA = 1. For PAB � 0.6 and PBC � 0.8, tun-
nelling events offer species A a small chance to become the
sole survivor, although at first sight such winning probabili-
ties do not seem to favor it. We conclude that, in general, the
species that has the highest probability of winning competi-
tion events against the other two species, has the best chances
for survival, a result that again agrees with the “survival of the
strongest” law.

V. THE TWO-DIMENSIONAL SYSTEM

In the two-dimensional IBM, when the non-transitive
deterministic competition network is considered, coexistence
is known to be long-lived due to the formation of spiral
waves19 [Fig. 9(b)]. As displayed in Fig. 10, slight deviations
from this non-transitive deterministic setting do not seem
to profoundly impact coexistence, whereas larger deviations
decrease the coexistence time by several orders of magnitude.
This observation is confirmed by Fig. 9(a), which shows that,
when PCA = 1, coexistence times start to increase strongly
for PAB � 0.6 up to PAB ≈ 0.9, where a plateau is reached.
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FIG. 9. Average coexistence time 〈t〉 in the two-dimensional IBM for PAB ranging from zero to one in increments of 0.05, with PBC = PCA = 1, μ = σ = 1/5,
N = 50 ( ), N = 75 ( ), N = 100 ( ), N = 125 ( ), or N = 150 ( ), and scaling ε such that the diffusion coefficient ε/μdN is the same for all
experiments and grid sizes. Each experiment was repeated 20 times, and the initial conditions were random, as discussed in Sec. II. The inset is a reproduction
of the curve for N = 150 ( ), combined with the coexistence times for the same experiments, but with an initial condition involving spiral waves ( )
(a). Examples of spatial configurations, where cells occupied by species A are coloured red, by species B are coloured yellow, and by species C are coloured
blue, while empty cells are coloured black (b). The species densities a, b, and c for examples of IBM evolutions, where PAB = 1 (upper panel), PAB = 0.9
(middle panel), and PAB = 0.8 (lower panel) (c). The two-time autocorrelation function C(t0, t1) = 〈δsA(t0)δsA(t1)〉 − 〈δsA(t0)〉〈δsA(t1)〉, as derived from 500
IBM simulations, starting from identical initial conditions (d).

Again, in general, coexistence times are larger when the com-
petition network is not weakly stochastic transitive, i.e., when
PAB, PBC ≥ 1/2, but these competition networks can also
produce short coexistence times.

As displayed in Fig. 9(b), the system can still produce
spiral wave patterns even when the competition network is
not deterministic, a result that complements the findings in
Ref. 26, where slightly asymmetric reproduction rate con-
stants were considered. Although species evenness, a quantity
that measures how far relative species abundances are from
being equal, can be reduced due to the winning probabilities,
as suggested in Fig. 9(b) and confirmed by Fig. 9(c), this does
not necessarily impact the coexistence time: Fig. 9(b) shows
that, although species B is the most abundant, implying low
species evenness, spiral waves are still being formed, which
leads to long coexistence times. This result underlines that
spatial segregation, rather than species evenness, is the main
determinant of coexistence.

To study the spiral wave dynamics for varying win-
ning probabilities, we introduce the two-time autocorrela-
tion function C(t0, t1) = 〈δsA(t0)δsA(t1)〉 − 〈δsA(t0)〉〈δsA(t1)〉,
where 〈. . . 〉 denotes the average over 500 IBM simulations,
and s denotes the state of the cell in the upper-left corner of
the grid, such that the Kronecker delta δsA(t) becomes one
when this cell is occupied by species A at time t, and zero
otherwise. Interestingly, two-time autocorrelations are less
pronounced in the non-deterministic setting [Fig. 9(d)], due to
the spiral waves breaking up. When PAB = PBC = PCA = 1,
the non-transitive deterministic setting, the system tends to
lock into a repeating spiral wave pattern, only slightly altered

by the stochastic nature of the system and the drift of the
spiral wave cores. This periodic behavior of the spatiotem-
poral patterns is reflected in the oscillatory auto-correlation
function displayed in the upper panel of Fig. 9(d). When
PBC = PCA = 1, and PAB = 0.9 or PAB = 0.8, spiral waves
are short-lived. Soon after their formation, they break up and
are replaced by new spiral waves with the same frequency
and wavelength, but a different spatial configuration. The
corresponding two-time autocorrelation hence quickly damp-
ens, although, for instance, for PAB = 0.9, the continuous
destruction and production of spiral waves can still result in
long-lived coexistence.

When PBC = PCA = 1 and PAB � 0.9, extinction times
do not depend on the winning probabilities, since under such
parameter settings the formation of spatial patterns guarantees
coexistence, and thus extinction events are the result of rare
fluctuations. Hence, the coexistence time is a function of the
system size, N2, as this quantity determines the frequency of
these fatal fluctuations.

As illustrated in the inset of Fig. 9(a), when PBC = PCA =
1 and 0.9 � PAB � 0.6, the initial conditions are important.
When the IBM evolves from spatially structured initial con-
ditions, as obtained by a continuation of the spatial config-
urations evolved under slightly different parameter settings,
average coexistence times are orders of magnitude longer than
when starting from random initial conditions. In the latter
case, spiral wave patterns do not develop easily, and when
they fail to do so, coexistence is rapidly lost. When PAB � 0.9,
however, most random initial conditions give rise to spa-
tial structures. These findings are in contrast to those in one
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FIG. 10. Average coexistence time 〈t〉 in the two-dimensional IBM for PAB

and PBC ranging from zero to one in increments of 0.05, with PCA = 1, μ =
σ = 1/5, ε = 3/5, and N = 1002. Each experiment was repeated 20 times.

dimension (Sec. IV), where a coarsening dynamics implies
spatial structure in the form of domains, irrespective of the
initial conditions.

We may conclude that in two dimensions, more so than
in one dimension and in the well-mixed case, coexistence

FIG. 11. Competition outcomes in the two-dimensional IBM for PAB and PBC

ranging from zero to one in increments of 0.05, with PCA = 1, μ = σ = 1/5,
ε = 3/5, and N = 1002. The sole surviving species for each IBM simulation
is displayed by blending red for species A, yellow for species B, and blue for
species C according to their survival frequency among 20 experiments.

seems to be robust, in the sense that small deviations from
the non-transitive deterministic competition network have lit-
tle impact on the coexistence time. However, larger deviations
cut coexistence short.

The competition outcomes of the two-dimensional IBM
experiments described in the previous paragraphs are dis-
played in Fig. 11. We can infer that competition outcomes
for PCA = 1 and PAB, PBC � 0.6 are uncertain. This is not
due to sensitive dependence on initial conditions, but to the
intricate spiral wave dynamics and the rare fluctuations that
lead to extinctions, phenomena that also produce long coex-
istence times for these parameter ranges, as displayed in
Fig. 10. When PCA = 1 and PAB, PBC � 0.6, species A goes
extinct first, after which PBC and the species abundances
when A goes extinct decide whether species B or C becomes
the sole survivor. We can thus again discern the “survival
of the strongest” law, which is obscured when the winning
probabilities approach the non-transitive deterministic setting.

VI. DISCUSSION AND CONCLUSIONS

Of the research on the biodiversity enigma, one strand
has concentrated on ecological interaction networks and their
intricate structure, often studying the role that competition
plays in determining the presence, absence, and abundances
of species in these networks. As understanding the interac-
tion of two species requires simpler experiments and the-
ory than those needed to address the dynamics for many
species,61 much of the competition research has focused on
pairwise mechanisms, although some phenomena which are
suspected as being key to maintaining coexistence in natural
species-rich ecosystems only emerge in networks consisting
of three or more competitors.62 An example is non-transitive
competition, of which theoretical research11–34 has shown
that it is able to maintain the coexistence of three or more
species, while each pair cannot coexist in isolation. How-
ever, empirical support for this mechanism of coexistence
is not extensive,63 and hence ecologists lack a clear under-
standing of the prevalence and significance of non-transitive
competition in ecosystems in nature.

The lack of empirical evidence concerning coexistence
mechanisms in ecological interaction networks is unsurpris-
ing, as meaningful experiments require the quantification of
the competitive ability of all species involved, and the infer-
ence of the full set of interaction coefficients in the network,
two important barriers to progress on this front. Although
ecologists have nonetheless devoted much time and effort
to measuring interactions between species in some natural
ecosystems, involving grasslands,64 insects,65,66 shellfish,67

and microbial communities,68,69 the lack of an established
methodology for measuring competitive interactions implies
that a plethora of dissimilar experimental approaches has led
to contradicting conclusions.

Modelling can help to bridge the gap between current
empirical techniques and the goal of prediction of long-
term competitive outcomes, identifying which experimental
degrees of freedom are expected to have an important impact
on experimental results. For example, theoretical models
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have been used to investigate if and how competitive out-
comes are affected by dispersal,19 network structure,17 spatial
heterogeneity,35 the presence of more than three species,70,71

and many other important factors. However, one simplify-
ing assumption that may restrict the real-life applicability of
these theoretical results is that, in the non-transitive determin-
istic competition network, the outcomes of competition events
are modelled as certain and predetermined, which makes the
species identical up to their competitive relationships, and
introduces an unnatural symmetry in the competition net-
work. When trying to understand if and how non-transitive
competition may impact biodiversity in real-life ecosystems,
it is important to check whether coexistence times are still
prolonged when this unnatural assumption regarding the sym-
metry of the competitive relations is relaxed.

We have addressed this issue in this work, where we have
made the outcomes of competition events non-deterministic
by introducing winning probabilities, and subsequently inves-
tigated whether species manage to coexist when the outcomes
of competition events are uncertain.

We find that the results are dependent on the spatial
dimension of the system. In a well-mixed non-deterministic
setting, species do not coexist, which is unsurprising since
there was already no coexistence in the non-transitive deter-
ministic setting. In a one-dimensional non-deterministic sys-
tem, coexistence times decay as a power law as the winning
probabilities shift the system away from the non-transitive
deterministic setting. Chaotic patterns prolonging coexis-
tence emerge, but whether these occur in real-life population
dynamics remains unknown. In two dimensions, biodiversity
prevails for small deviations from the non-transitive deter-
ministic setting, due to the formation of spiral wave patterns.
Although species evenness is impacted by the winning prob-
abilities, the formation of spiral wave patterns leads to long
coexistence times, underlining the importance of spatial seg-
regation regardless of species evenness. Larger deviations
from the non-transitive deterministic setting cut coexistence
short, as no long-lived spatial patterns are able to form.

In conclusion, our work shows that non-transitive compe-
tition can still produce long coexistence times when the deter-
ministic assumption is relaxed. As such, theoretical results
obtained using the deterministic assumption may still hold in
a more realistic setting. Also, ecosystems for which empir-
ical studies measured competitive abilities that constitute a
non-transitive non-deterministic competition network may be
valid candidates for experimental research on the relation
between non-transitivity and biodiversity, despite the compe-
tition network being non-deterministic. Exploratory studies,
using synthetic organisms, that relate non-transitive competi-
tion to spatial segregation and pattern formation have already
been conducted.37,42

In all spatial dimensions, a “survival of the strongest”
law can be discerned: the species that has the highest prob-
ability of defeating its competitors has the best odds to
become the sole survivor. Although this result seems to con-
tradict the “survival of the weakest” law proposed in Ref. 30,
we argue that this is due to the interpretation of the reac-
tion rate constants associated with competition events in the
Lotka–Volterra model used in Ref. 30, where it might be less

confusing to name the species with the lowest reaction rate
constant “the least aggressive,” rather than “the weakest.”

In Ref. 30 it is claimed that, since evolution would not
head in a direction where a species becomes “weaker” such
that it can outcompete its adversaries, non-transitive com-
petition, as modelled through Lotka–Volterra dynamics, is
evolutionarily stable. In our framework, the evolutionary sta-
bility of the ecosystem is less clear, due to the sensitive
dependence of coexistence times on the winning probabili-
ties. When all winning probabilities are approximately equal,
coexistence times are long, and a weaker species may have the
time to catch-up with its competitors through evolution. How-
ever, when winning probabilities become less symmetric, and
one of the species thus is significantly stronger, coexistence
times are short compared to evolutionary time scales, such
that coexistence should be lost. Hence, in contrast to previous
work, our model predicts that non-transitive competition does
not necessarily imply an evolutionarily stable ecosystem, but
rather that evolution could cause two species to go extinct,
with the stronger species surviving.
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