




Multimodale datafusie voor tijdsruimtelijke analyse van het brandgedrag

Multimodal Data Fusion for Spatio-Temporal Fire Behavior Analysis

Florian Vandecasteele

Promotoren: prof. dr. S. Verstockt, prof. dr. ir. B. Merci
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019



ISBN 978-94-6355-193-9
NUR 984
Wettelijk depot: D/2019/10.500/1



Examination board

prof. dr. Steven Verstockt - promoter
Faculty of Engineering and Architecture
Department of Electronics and Information Systems
Ghent University-imec

prof. dr. ir. Bart Merci - promoter
Faculty of Engineering and Architecture
Department of flow, heat and combustion mechanics
Ghent University

prof. dr. ir. Filip De Turck - chair
Faculty of Engineering and Architecture
Department of Information Technology
Ghent University

prof. dr. ir. Sofie Van Hoecke - secretary
Faculty of Engineering and Architecture
Department of Electronics and Information Systems
Ghent University-imec

prof. dr. Nico Van De Weghe
Faculty of Sciences
Department of Geography
Ghent University

dr. Jaap De Vries
VP Innovation, Science and Technology
FM Global

dr. ir. Steven Puttemans
Technologiecluster Elektrotechniek (ESAT)
KU Leuven

ir. Xavier Deckers
Senior Project Manager
Fire Engineered Solutions Ghent



ii



Acknowledgments

When a man becomes a fireman his greatest act of bravery has been
accomplished. What he does after that is all in the line of work.

Edward F. Crocker

The choice to fulfill this thesis is closely linked to my personal interests and back-
ground. As a child I was already passionated about firefighting and this passion
has only increased. When professor Verstockt and professor Merci asked me four
years ago to join the former Multimedialab to work on the Prediction of turbulent
Reactive Flows (PRETREF) project I never doubted. I am very thankful to have
them as promoters for my research; their knowledge on computer vision and fire
behavior is tremendous. Furthermore, they were well listening to all my needs,
were very open to give feedback and finally they stayed always calm when diffi-
cult decisions needed to be made. Secondly, I am grateful to everyone that gave
me valuable feedback and advice along the way, ranging from my direct colleagues
up to all the people I met on conferences and seminars. Subsequently, I am very
thankful to everyone that contributed to the real-fire experiments in the Craeybeck-
tunnel, Campus POV and the VIPA/ WfrGhent facilities.

I am really admiring my current and former office colleagues in Ghent (i.e., Aza,
Olivier, Baptist, Frederic, Jasper, Mi-Jung, Krishna, Tamir, Sander, Dieter, Kenzo,
Samnang and Jelle), the colleagues in Kortrijk (i.e., Sofie, Johan, Benjamin and
Jan), the people of the fire safety and engineering group, the people of the PRET-
REF project and all those that are not listed. Subsequently, I am also thankful to
everyone responsible for the enjoyable lunch sessions (i.e., Glenn, Johan, Ruben,
Vasileios, Niels, Tom, Kristof and Laura).

Furthermore, I would like to acknowledge my parents and parents in law that en-
couraged me to always look forward and that gave me the opportunity to study
without any concerns. Finally, I would like to thank my tower of strength, Tine
Dujardin. Without you I would not be the person that I am right now.

Ghent, October 2018
Florian Vandecasteele





Table of Contents

Examination board i

Acknowledgments iii

Nederlandstalige samenvatting xxiii

English summary xxvii

1 Introduction 1-1
1.1 Situating the importance of this research . . . . . . . . . . . . . . 1-1
1.2 Spatial information: BIM and GIS . . . . . . . . . . . . . . . . . 1-4
1.3 Probabilistic room configuration understanding . . . . . . . . . . 1-5
1.4 Spatio-temporal fire characteristics . . . . . . . . . . . . . . . . . 1-6
1.5 Fireground understanding and data visualization . . . . . . . . . . 1-7
1.6 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

1.8.1 International journal publications . . . . . . . . . . . . . 1-10
1.8.2 National and international conference publications . . . . 1-11

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

2 Spatial information 2-1
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1.1 BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.1.2 Level of development . . . . . . . . . . . . . . . . . . . . 2-8
2.1.3 GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

2.2 Spatial information in a fire science context . . . . . . . . . . . . 2-10
2.2.1 Fire science context . . . . . . . . . . . . . . . . . . . . . 2-11

2.2.1.1 Building information for fire safety design . . . 2-11
2.2.1.2 Building models for fire investigation . . . . . . 2-12
2.2.1.3 Building information for evacuation planning . 2-14

2.2.2 Spatial information combined with real-time sensing . . . 2-15
2.2.3 Commercial applications . . . . . . . . . . . . . . . . . . 2-17
2.2.4 Future applications of building information models . . . . 2-17

2.3 BIM enrichment and validation . . . . . . . . . . . . . . . . . . . 2-18
2.3.1 Point-cloud based BIM enrichment . . . . . . . . . . . . 2-19



vi

2.3.2 Image and BIM alignment . . . . . . . . . . . . . . . . . 2-19
2.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 2-23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

3 A probabilistic method for room configuration understanding 3-1
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.2 Visual scene understanding . . . . . . . . . . . . . . . . . . . . . 3-5

3.2.1 CNN models . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3.2.2 Visual scene type detection . . . . . . . . . . . . . . . . . 3-7
3.2.3 Visual object localization . . . . . . . . . . . . . . . . . . 3-8

3.3 Thermal object detection . . . . . . . . . . . . . . . . . . . . . . 3-12
3.3.1 Thermal and visual aligned dataset creation . . . . . . . . 3-13
3.3.2 Multi-label convolutional network . . . . . . . . . . . . . 3-14
3.3.3 Evaluation and discussion . . . . . . . . . . . . . . . . . 3-15

3.4 Real time optimization . . . . . . . . . . . . . . . . . . . . . . . 3-17
3.4.1 Background modeling and movement detection . . . . . . 3-18
3.4.2 Object tracking . . . . . . . . . . . . . . . . . . . . . . . 3-22
3.4.3 CNN model optimization . . . . . . . . . . . . . . . . . . 3-24

3.5 Probabilistic scene understanding . . . . . . . . . . . . . . . . . . 3-25
3.5.1 Contextual scene exploitation . . . . . . . . . . . . . . . 3-26
3.5.2 Scene location validation . . . . . . . . . . . . . . . . . . 3-29

3.6 Object metadata for fire understanding . . . . . . . . . . . . . . . 3-30
3.6.1 3D object recognition . . . . . . . . . . . . . . . . . . . . 3-30
3.6.2 Material type recognition . . . . . . . . . . . . . . . . . . 3-31
3.6.3 Person detection . . . . . . . . . . . . . . . . . . . . . . 3-31

3.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 3-32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

4 Spatio-temporal fire characteristics 4-1
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.2 General fireGIS architecture . . . . . . . . . . . . . . . . . . . . 4-3
4.3 Real fire experiments - fireGIS datasets . . . . . . . . . . . . . . 4-5

4.3.1 Multi-compartment fire test . . . . . . . . . . . . . . . . 4-5
4.3.2 Tunnel fire experiments . . . . . . . . . . . . . . . . . . . 4-7

4.4 Video smoke analysis . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4.4.1 Low-cost video smoke analyzer . . . . . . . . . . . . . . 4-9
4.4.2 Evaluation of the smoke analyzer . . . . . . . . . . . . . 4-11

4.5 Intra and inter variance of the temporal analysis . . . . . . . . . . 4-14
4.6 Video flame analysis . . . . . . . . . . . . . . . . . . . . . . . . 4-16

4.6.1 Flame height algorithm . . . . . . . . . . . . . . . . . . . 4-17
4.6.2 Video puffing and flickering frequency . . . . . . . . . . . 4-19

4.7 Smoke map generation . . . . . . . . . . . . . . . . . . . . . . . 4-19
4.8 Spatio-temporal fire risk analysis . . . . . . . . . . . . . . . . . . 4-21

4.8.1 Spatio-temporal visibility analysis . . . . . . . . . . . . . 4-21
4.8.2 Spatio-temporal temperature mapping . . . . . . . . . . . 4-23



vii

4.9 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 4-25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26

5 Fireground understanding and data visualization 5-1
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.2 Visible and cognitive disability . . . . . . . . . . . . . . . . . . . 5-3

5.2.1 First responders information needs: related work . . . . . 5-4
5.2.2 Subjective criteria and discussion . . . . . . . . . . . . . 5-5
5.2.3 Guidelines for usability testing . . . . . . . . . . . . . . . 5-8

5.3 Video summarization . . . . . . . . . . . . . . . . . . . . . . . . 5-9
5.3.1 Shot detection . . . . . . . . . . . . . . . . . . . . . . . 5-10
5.3.2 No-reference keyframe quality analysis . . . . . . . . . . 5-11
5.3.3 Similarity clustering . . . . . . . . . . . . . . . . . . . . 5-12

5.4 Video and frame retrieval . . . . . . . . . . . . . . . . . . . . . . 5-13
5.4.1 Importance scoring . . . . . . . . . . . . . . . . . . . . . 5-13
5.4.2 Semantic based querying . . . . . . . . . . . . . . . . . . 5-15

5.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . 5-17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18

6 Conclusions and future work 6-1
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

6.2.1 The future of BIM for fire safety science . . . . . . . . . . 6-3
6.2.2 The future of video fire analysis . . . . . . . . . . . . . . 6-5

6.3 Emerging technologies and trends . . . . . . . . . . . . . . . . . 6-6
6.3.1 Drones for incident management . . . . . . . . . . . . . . 6-6
6.3.2 Handheld thermal imagers . . . . . . . . . . . . . . . . . 6-7

6.4 Achievements and collaborations . . . . . . . . . . . . . . . . . . 6-8
6.5 Answer to the research question . . . . . . . . . . . . . . . . . . 6-9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10

A Introduction to fire behavior A-1
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

A.1.1 Heat transfer in fires . . . . . . . . . . . . . . . . . . . . A-1
A.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . A-2

A.2 Fire growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
A.2.1 Flame spread . . . . . . . . . . . . . . . . . . . . . . . . A-5

A.3 Enclosure fire dynamics . . . . . . . . . . . . . . . . . . . . . . . A-5
A.3.1 Fuel versus ventilation controlled fire . . . . . . . . . . . A-6
A.3.2 Heat transfer in enclosure fires . . . . . . . . . . . . . . . A-7

A.4 Fire modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
A.4.1 Introduction to zone modeling . . . . . . . . . . . . . . . A-9
A.4.2 Introduction to CFD fire modeling . . . . . . . . . . . . . A-9

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10



viii

B Computer vision and machine learning basics B-1
B.1 Computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

B.1.1 Pixel representation . . . . . . . . . . . . . . . . . . . . . B-2
B.1.2 Pixel-wise and geometric transformations . . . . . . . . . B-3
B.1.3 Image smoothing or blurring . . . . . . . . . . . . . . . . B-4
B.1.4 Morphological operations . . . . . . . . . . . . . . . . . B-4
B.1.5 Structural analysis and shape description . . . . . . . . . B-5

B.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . B-7
B.2.1 Traditional approach . . . . . . . . . . . . . . . . . . . . B-7
B.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . B-8

B.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . B-10
B.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . B-10
B.3.2 CNN architecture . . . . . . . . . . . . . . . . . . . . . . B-10
B.3.3 Training procedure . . . . . . . . . . . . . . . . . . . . . B-11
B.3.4 Overfitting and underfitting . . . . . . . . . . . . . . . . . B-13
B.3.5 Transfer learning . . . . . . . . . . . . . . . . . . . . . . B-13

B.4 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-14
B.4.1 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . B-14
B.4.2 Plurality rule voting system . . . . . . . . . . . . . . . . B-15
B.4.3 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15
B.4.4 Adaptive boosting . . . . . . . . . . . . . . . . . . . . . B-15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15



List of Figures

1.1 The government facilitates the BIM data storage and from the BIM
file, fire and evacuation models are calculated. The BIM data and
the fire models are sent to a central system where there is addi-
tional input and feedback of the current smoke and fire behavior
(from inside sensors). In addition, visual and thermal camera data
is sent and processed by the central system. The camera and sensor
input confirms or improves the latest BIM model in the system and
the central system adapts the fire simulations. Finally, the com-
mander in charge receives a structured overview of the building
information, fire simulations and inside sensor values. . . . . . . . 1-4

2.1 Combining BIM and GIS information for building information
management (source: https://www.ilf.com). . . . . . . . . . . . . 2-3

2.2 Generic circular BIM process (source: http://njhcadservices.co.uk) 2-4

2.3 BIM snippet of the iGent tower in Ghent: EXPRESS code (top),
RDF graph (middle) and OWL format (bottom). . . . . . . . . . . 2-6

2.4 Level of Development based on a chair, the red labels are the at-
tributes present for that particular class. (source:www.practicalBIM.net) 2-9

2.5 Conversion from point-cloud data to BIM model West Sussex Hos-
pital (source: scan2bim.info). . . . . . . . . . . . . . . . . . . . . 2-14

2.6 Moses project: tactical tablet visualization of the indoor position
of the firefighters and their remaining oxygen level (source tech-
forfuture.nl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

2.7 Scene classification, object detection (upper left) and room layout
estimation (down right) are used to estimate the position of the
camera in the BIM model (right). . . . . . . . . . . . . . . . . . . 2-20

2.8 Room layout estimation, where blue and yellow colors correspond
to the most probable outline region in the image. . . . . . . . . . 2-22

3.1 Fire/non-fire classification (top left), object localization: couch
and flame (right) and fire region segmentation (bottom left). (source:
EXOVA-VIPA study) . . . . . . . . . . . . . . . . . . . . . . . . 3-3



x

3.2 Indoor-fire recognition framework: the input is a fixed or handheld
camera, the processing consists of the scene and object detection
on the camera stream, the object tracking and the generation of
textual messages of the scene status or a visualization in the BIM
file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

3.3 Transfer learning process where you first train the model on a large
auxiliary dataset and then finetune the model on a specific target
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

3.4 First and second scene classification results (certainty probability
between 0 and 1) (source: LSUN-dataset) . . . . . . . . . . . . . 3-8

3.5 Object localization consists of two steps: object detection and ob-
ject recognition. (source original images: IKEA-Ghent) . . . . . . 3-10

3.6 Mean average precision versus GPU processing time for different
networks and object detection models. (source: Huang et al.) . . . 3-11

3.7 Subjective evaluation of the object detection framework in the Vi-
sual, Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

3.8 Standard convolution operation on a 3-channel image (left) and
depth wise separable convolution operation on a 3-channel image
(right), (source: eli.thegreenplace.net) . . . . . . . . . . . . . . . 3-25

3.9 Scene graph visualization: ”The chair is besides the table in the
kitchen and the cup that contains milk is standing on the table.” . . 3-26

3.10 Object co-occurrence according to the SUN RGB-D dataset . . . . 3-27
3.11 Scene occurrence, normalized by the scene tag (top), normalized

by the object tag (bottom). . . . . . . . . . . . . . . . . . . . . . 3-28
3.12 Amount of detected objects (with 25 percentage certainty) in func-

tion of the scene type accuracy on the LSUN dataset. . . . . . . . 3-29

4.1 General fireGIS architecture for spatio-temporal fire risk analysis. 4-3
4.2 Sensor and environment input provided by the Agency for Roads

and Traffic (AWV) and the Flemish Tunnel and Control Center
(VTC) - Road map with sensor locations (left) and links to sen-
sor data streams and additional positioning/orientation information
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.3 An overview of the multi-compartment set-up in association with
WFRGent and VIPA (left), smoke visibility risk results mapped on
the floor plan of the set-up (right). . . . . . . . . . . . . . . . . . 4-5

4.4 FireGIS experiments at Craeybeckxtunnel (tunnel between Antwerp
and Brussels, Belgium). . . . . . . . . . . . . . . . . . . . . . . . 4-8

4.5 Subjective comparison of CFD temperature field (left) and Craey-
beckxtunnel video measurements (right). (source CFD calcula-
tions FESG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

4.6 Flowchart of the low-cost video smoke analyzing algorithm. . . . 4-10
4.7 Indicative smoke risk levels (left), their corresponding visibility

level (middle) and the impact on the evacuation according to Jeon
et al. [20] (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10



xi

4.8 CSV files with detected smoke risk levels. For each timestamp T,
the coordinates of the cameras and corresponding risk levels L are
stored in comma- separated objects. . . . . . . . . . . . . . . . . 4-11

4.9 Combined video images for subjective evaluation of Craeybeckx-
tunnel experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

4.10 Comparison between the output of the proposed smoke analyzer
algorithm (shown left) and the visual results of real fire experi-
ments (shown right). . . . . . . . . . . . . . . . . . . . . . . . . 4-12

4.11 Comparison between the estimated smoke layer height from the
thermocouple trees (shown in blue) and the camera based visibility
estimations (shown in orange). Corresponding images for certain
moments in time (label 1-4) are shown in the picture right. . . . . 4-13

4.12 Smoke visibility levels of 3 correct neighboring sensors and one
broken/faulty sensor (due to the interference with the smoke ex-
traction system). . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

4.13 Heatmap representation with the corrected values (left) and with
one broken sensor (right). . . . . . . . . . . . . . . . . . . . . . . 4-15

4.14 Algorithms interaction of video and OSID fire detection sensors [30].4-16
4.15 Temporal slicing for couch fire experiment performed in Exova,

left the schematic overview of the slices, upper right the horizontal
slice, down right the vertical slice. . . . . . . . . . . . . . . . . . 4-18

4.16 Schematic overview of the video flame analysis, temporal slice
(left), SLIC segmented region (middle) and merged clusters and
corresponding height profile (right). . . . . . . . . . . . . . . . . 4-18

4.17 Fast Fourier analysis on the flame height curve. Notify the clear
peak (significant frequency) around 2Hz (puffing frequency). . . . 4-20

4.18 FireGIS heatmaps showing temporal evolution of smoke risk level
(i.e., low visibility) in the Craeybeckxtunnel experiment. . . . . . 4-21

4.19 FireGIS heatmaps showing the temporal evolution of the smoke
risk level in the multi-compartment experiments. The left, mid-
dle and right images show the temporal evolution at T=200s and
T=500s for the second, third and fifth test (described in Section
4.3), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21

4.20 Temporal evolution of edge counts in the middle of the tunnel.
First there is a good visibility (high amount of edge pixels), af-
ter 5000 frames there is a strong reduction (i.e., a quarter of the
edge pixels) and after 12 000 frames there is a clarification of the
visibility (amount of pixels). . . . . . . . . . . . . . . . . . . . . 4-22

4.21 Combined video images for subjective evaluation of Craeybeckx-
tunnel experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

4.22 Temporal evolution of the temperature close to the fire, in a set-up
without a sprinkler system. The horizontal axis shows the time
and the vertical axis shows the height of the thermocouple mea-
surement. The colors represent the temperature (blue is cold, red
is hot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23



xii

4.23 Traditional way of representing temporal evolution of thermocou-
ple values for the set-up without a sprinkler system. The tempera-
ture (on the vertical axes) changes over the time (horizontal axis). 4-23

4.24 Temporal evolution of the temperature close to the fire, in a set-up
with a sprinkler system. The horizontal axis shows the time and the
vertical axis shows the height of the thermocouple measurement.
The colors represent the temperature (blue is cold, red is hot). The
red line indicates the activation time of the sprinkler system (240s
after fire ignition). . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

4.25 Traditional way of representing temporal evolution of thermocou-
ple values for the set-up with a sprinkler system. Each line rep-
resents a thermocouple on a certain height (see color labels). The
temperature (on the vertical axes) changes over the time (horizon-
tal axis). The red line indicates the ignition time of the sprinkler
system (240s after fire ignition). . . . . . . . . . . . . . . . . . . 4-24

5.1 Simple visualization with live camera-stream and clear indication
of dangerous values. . . . . . . . . . . . . . . . . . . . . . . . . 5-7

5.2 Visualization with two live camera-streams and graphs for temper-
ature and oxygen level values. . . . . . . . . . . . . . . . . . . . 5-8

5.3 Video summarization pipeline (left) and frame retrieval mecha-
nisms (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13

5.4 Hierarchical, ontology driven interaction and visualization for keyframe
tag filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

5.5 Schematic overview of the video footage analysis framework, first
the footage linking, secondly the keyframe generation, thirdly the
content understanding tool and finally the exportability and re-
trieval tool for video investigation . . . . . . . . . . . . . . . . . 5-17

6.1 Fire incident management interactions and realizations. . . . . . . 6-3

A.1 Fire triangle representation (source: Elite Fire Protection Ltd). . . A-2
A.2 Peak Heat Release Rate for different materials in disperse and mas-

sive form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
A.3 αt2−curve with different fire growth rates and indicative materials A-4
A.4 Evolution in time of the indicative HRR in an enclosure within fuel

controlled conditions. . . . . . . . . . . . . . . . . . . . . . . . . A-6
A.5 Evolution in time of the indicative HRR for fuel and ventilation

controlled situations (source cfbt-us.com). . . . . . . . . . . . . . A-7
A.6 Simplified heat transfer in enclosures fires, couch fire during the

VIPA-BVO experiment (source VIPA-study). . . . . . . . . . . . A-7
A.7 Couch fire simulation: Left: the simplified zone model with only

the cold and hot layer; right: the CFD model with detailed temper-
ature profiles (source: M10 fire consultancy). . . . . . . . . . . . A-8



xiii

B.1 Image color space visualization, upper left the original RGB im-
age, right the Y and H value, at the bottom respective the UV and
the SV representation. . . . . . . . . . . . . . . . . . . . . . . . . B-3

B.2 An overview of the transformation methods: scaling, rotation, crop-
ping, affine transformation. . . . . . . . . . . . . . . . . . . . . . B-4

B.3 A structuring element is applied on the original image (left), the
erosion operation (middle) makes the object becoming smaller and
small objects disappear, the dilation operation (right) increases the
object size and small objects are merged. . . . . . . . . . . . . . . B-5

B.4 Basic CNN architecture for a classification task. . . . . . . . . . . B-11
B.5 The impact of the learning rate on the loss function . . . . . . . . B-12





List of Tables

3.1 Enclosure object dataset statistics: number of samples for each
object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

3.2 Mean average precision (average over multiple Intersection over
Union (IoU), where the minimal overlap region is 50%) on the test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

3.3 Performance metrics of evaluated motion algorithms . . . . . . . 3-18
3.4 Processed frames per second for the evaluated motion algorithms . 3-18
3.5 A list of the best-performing algorithms evaluated based on a pre-

cision and recall measures, as well as an evaluation on the basis of
computational efficiency . . . . . . . . . . . . . . . . . . . . . . 3-21

3.6 Person detection results, evaluated on the INRIA and TUD-Motionpairs
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32

5.1 Desired information needs during fire incidents evaluated in LA. . 5-4
5.2 Desired information needs during fire incidents evaluated in Bel-

gium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6





List of Acronyms

A
AEC Architecture, Engineering and Construction
AI Artificial Intelligence

B
BCF BIM Collaboration Format
BE-SAHF Building Environment - Smoke Air Heat Flames
BIM Building Information Modeling

C
CAD Computer Aided Design
CCTV Closed Circuit Television
CFAST Consolidated Model of Fire and Smoke Transport
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
CO Carbon Oxide
COCO Common Objects In Context
CSV Comma-Separated Values

F
FDS Fire Dynamics Simulator
FFT Fast Fourier Transform
fov field of view
FPS Frames Per Second
fpa focal plane array



xviii

G
GIS Geographic Information System
GML Geography Markup Language
GPU Graphics Processing Unit

H
HMD Head Mounted Display
HOG Histogram Of Gradients
HRR Heat Release Rate
HSV Hue, Saturation and Value
HVAC Heat, Ventilation and Air Conditioning

I
ICT Information and Communication Technology
IDM Information Delivery Manual
IFC Industry Foundation Class
IFD International Framework for Dictionaries
IoT Internet of Things

J
JSON JavaScript Object Notation

L
LOD Level Of Detail
LOI Level Of Information

M
mAP mean Average Precision
Moses Mobile sensing for fire safety
MSE Mean Squared Error
MVD Model View Definition



xix

N
NLP Natural Language Processing
NFPA National Fire Protection Association
NIST National Institute of Standards and Technology

O
OGC Open Geospatial Consortium
OSM OpenStreetMap
OWL Web Ontology Language

P
PhD Doctor of Philosophy
POV Provinciaal Opleidingscentrum voor Veiligheidsdien-

sten
PRETREF Prediction Of Turbulent Reactive Flows
PSAP Product Specific Adoption Potential
PTZ Pan, Tilt and Zoom

R
RDF Resource Description Framework
ReLU Rectified Linear Unit
RGB Red Green Blue
RGB-D Red Green Blue - Depth
ROI Regions Of Interest
RPN Region Proposal Network

S
SAD Sum of Absolute Differences
SHC Smoke and Heat Control
SLIC Simple Linear Iterative Clustering
SSD Sum of Squared Differences
SSD Single Shot Detector
SUS System Usability Scale



xx

SVM Support Vector Machine
SURF Speeded Up Robust Features

T
tf-idf Term Frequency - Inverse Document Frequency

U
URI Uniform Resource Identifier
UV Ultra-Violet

V
VFD Video Fire Detection
VGG Visual Geometry Group
VIPA Vlaams Infrastructuurfonds voor Persoonsgebonden

Aangelegenheden

W
WIFI Wireless Fidelity
W3C World Wide Web Consortium

X
XML Extensible Markup Language







Nederlandstalige samenvatting
–Summary in Dutch–

Ondanks de toename aan preventiemaatregelen in alle landen van de wereld heeft
een brand nog steeds een enorme impact op mensen, hun eigendom en het milieu.
Volgens de ’Fire Safe Europe community’1 worden er elke dag 5000 brandinci-
denten gemeld in Europa en in 90 procent van de gevallen gaat het om een gebouw
of industriebrand. Geen enkele brand is echter dezelfde. Zowel subjectieve ge-
tuigenissen van de brandweer als objectieve resultaten van repetitieve testen onder
dezelfde brandcondities staven deze hypothese. Voor standaard brandsituaties (zo-
als een brand in een kleine ruimte) is de variatie nog vrij beperkt en voldoen de
bestaande procedures die uitgewerkt zijn op basis van het te verwachten brandver-
loop. Voor complexere branden (in onder andere ondergrondse parkings, industrie-
gebouwen en atria) werken de standaardmethodes niet en kan het zelfs gevaarlijk
zijn deze blindelings te volgen. Om toch een snelle en efficiënte interventie uit te
voeren is extra informatie omtrent de omgeving, het gebouw en de brand noodza-
kelijk in het beslissingsproces.

De combinatie van geografische informatie, sensordata en gebouwinformatie wordt
tot op heden weinig gebruikt bij interventies. Nochtans merken we een grote toe-
name in video data (i.e, in 2006 werden er 10 miljoen camera’s verkocht terwijl
er voorspeld wordt door IHS Markit 2 dat er 130 miljoen toestellen zullen ver-
kocht worden in 2018). Alsook is er een toename in GIS/map data en gebouw-
modellen. Momenteel is er echter geen centraal noch decentraal beheersysteem
waardoor deze data en modellen moeilijk toegankelijk zijn. Op dit moment be-
staan er verder ook weinig tot geen systemen (op basis van video en/of andere
sensordata) die een benadering kunnen geven van de huidige fase in het brandver-
loop of over de huidige structurele toestand van het brandende gebouw. Indien
een brandweerploeg aankomt, moet de officier beslissingen nemen met beperkte
informatie en onder sterke tijdsdruk (waardoor hij/zij niet over de mogelijkheid
beschikt om verschillende sensor- en videostromen te analyseren). De locatie van
de brand, het aantal slachtoffers en hun positie, alsook de structuur en de lay-out
van het gebouw zijn echter onbekende factoren die wel de beslissingen omtrent de
brandbestrijdingsstrategie kunnen beı̈nvloeden.

1https://firesafeeurope.eu/european-fire-safety-strategy-needed
2https://technology.ihs.com/598815
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In deze thesis stellen we een methodologie voor die een antwoord biedt aan bo-
venstaand probleem. Het voorgestelde fireGIS raamwerk combineert geografische
data en gebouwmodellen met sensordata zowel tijdens als na een incident. Met
deze tool kan men een tijdruimtelijke analyse doen van het brandverloop om de
ploegen tijdens de interventie bij te sturen. Tevens kan deze toepassing gebruikt
worden om brandexperimenten objectief te evalueren. In het raamwerk worden de
videobeelden (zowel thermische als visuele) geanalyseerd om de hoogte en dikte
van de rooklaag en de locatie en dimensies van de vlammen te bepalen, alsook
de zichtbaarheid in te schatten. Daarnaast zorgt een objectherkenningsmodule er-
voor dat men een schatting kan maken van de totale brandlast en brandcurve in
de ruimte. Door de object- en videodata te combineren en te visualiseren in de
bestaande BIM gebouwmodellen heeft men een duidelijk overzicht van het brand-
verloop en wordt het situationeel bewustzijn verhoogd. Verder stelt deze thesis
een methodologie voor om BIM en videobeelden te aligneren op elkaar met be-
hulp van plaatsherkenning en semantische informatie. Op basis van deze mapping
is het ook mogelijk om het BIM model te verifiëren aan de configuratie van de
ruimte. Als voorbeeld: een ruimte kan in de loop van de tijd van bureaufunctie
veranderen naar een opslagruimte, wat een andere brandlast symboliseert, maar zo
kan ook het veranderen van een deuropening een groot effect hebben op het venti-
latieprofiel en het finale brandverloop.

De bruikbaarheid van het voorgestelde raamwerk werd getest tijdens verschillende
grootschalige brandexperimenten. In een eerste set van proeven werd het algoritme
gebruikt om de doelmatigheid te evalueren van alternatieve brandveiligheidsmaat-
regelen in nieuwe zorgconcepten (grote gemeenschappelijke ruimtes). De software
werd een tweede maal geëvalueerd tijdens reële brandproeven in de Craeybeckx-
tunnel. Deze proeven werden uitgevoerd in opdracht van het Agentschap Wegen en
Verkeer van de Vlaamse overheid en hadden als doel het bestuderen van het effect
van de ventilatie op de rookbeweging met behulp van de video datastromen. De
grote meerwaarde van het voorgestelde raamwerk is de snelle en intuı̈tieve voor-
stelling van tijdruimtelijke sensor- en videodata. Hierdoor dient men niet meer
manueel de grote set van videofragmenten te analyseren.

Om het voorgestelde raamwerk verder af te stemmen op de noden van de gebrui-
kers werd een enquête gelanceerd binnen de Belgische brandweergemeenschap.
Naast het gebruik van sensorwaarden was er een sterke vraag naar een tool die
snel en eenvoudig de hoogtepunten uit een sequentie kan bepalen. Deze thesis
stelt hiervoor een methodologie voor die keyframes selecteert, gelijkaardige beel-
den verwijdert en snelle semantisch zoekmechanismen combineert (bijvoorbeeld:
toon alle beelden waarbij er nog mensen geëvacueerd worden).
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Door de combinatie van data-science, video-en sensoranalyse, GIS/BIM, en brand-
onderzoek, heeft deze thesis een sterk multidisciplinair karakter en de resultaten
ervan kunnen worden aangewend zowel op academisch als professioneel vlak.
De volgende groepen kunnen gebruik maken van onze onderzoeksresultaten:

• De brandweer gebruikt de tijdruimtelijke sensordata, statische en dynami-
sche videodata om interventies aan te sturen. De voorgestelde thermische
objectdetectietool in combinatie met de BIM-data resulteert in een hulpmid-
del om de effectieve brandlast in een gebouw in te schatten. Zo wordt het in
de toekomst mogelijk om de slagkracht en de nodige hoeveelheid koelend
vermogen objectief te berekenen.

• De onderzoekers gebruiken de sensor en BIM data als input voor de brand-
modellen en CFD (computational fluid dynamics) modelleringen . Met be-
hulp van onze analysetools wordt het mogelijk om accuratere, interactieve
brandvoorspellingen te maken.

• De architectuur- en studiebureaus gebruiken de sensordata in combinatie
met de BIM data voor preplanning en evacuatieanalyse. Door de visuele
camerabeelden te gaan verifiëren aan het bestaande BIM model wordt het
gebouwmodel aangepast aan de laatste versie.

• De brandbeveiligingfirma’s zullen in de toekomst meer dan enkel brand-
detectie of rookdetectie vanuit een punt voorzien in een gebouw. De sensor-
en videodata tools zullen samen gebruikt worden om meer inzicht te krijgen
in de situatie en dit zowel in de periode tijdens als na het incident.

• De overheidsinstanties gebruiken het fireGIS raamwerk om een objectieve
evaluatie te verkrijgen van reële brandexperimenten (zoals de studie uitge-
voerd in de Craeybecktunnel en de VIPA studie naar brandbestrijdingmaat-
regelen voor ouderenvoorzieningen).





English summary

Despite the increase in prevention measures in all countries around the world, fires
still have a big impact on people, their property and the environment. According
to the ’Fire Safe Europe community’3 5000 fire incidents are reported every day in
Europe and in 90 percent of the cases these are building fires. The variety in fire
development in these building fires is huge, i.e., each fire is different. Both sub-
jective testimonies from the fire brigade and objective results from repetitive tests
under the same fire conditions support this hypothesis. For standard fire situations
(such as a fire in a small space), the variations are small and the existing procedures
that have been worked out based on the expected fire development, work properly.
For more complex fires (e.g., underground car parks, industrial buildings, atria)
the standard methods do not work and it can even be dangerous to follow them
blindly. Still, to ensure a fast and efficient intervention extra information about the
environment, the building and its condition are necessary in the decision-making
process.

Until now the combination of geographical information, sensor data and build-
ing information is only marginally used during a fire incident. However we notify
a huge increase in video data (i.e, in 2006 10 million cameras were sold while it is
predicted by IHS Markit 4 that 130 million devices will be sold in 2018). Further-
more, there is also an increase in the generation of GIS / map data and building
models. At present, however, there is no centralized or decentralized management
system, making the models difficult to access. Only a limited number of systems
are able to give an indication of the current phase in the fire process or to give an
indication of the current condition of the burning building. If a fire service crew
arrives at the scene, the officer must make decisions under time pressure and with
limited information. Due to the limited time, the officer does not have the ability
to analyze all the different sensor and video streams. The location of the fire, the
number of victims and their position as well as the structure and the layout of the
building are unknown factors that, if known, can influence the firefighting strategy.

3https://firesafeeurope.eu/european-fire-safety-strategy-needed
4https://technology.ihs.com/598815
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The proposed fireGIS framework combines geographic data and building models
with sensor data. With this tool, a spatio-temporal analysis can be made of the
fire process to adjust the teams during the intervention. This application can also
be used to objectively evaluate fire experiments. In the framework the video im-
ages (both thermal and visual) are analyzed to determine the height and thickness
of the smoke layer, to determine the location and the dimensions of the flames
and to estimate the visibility. In addition, an object recognition module ensures
that an estimate can be made of the total fire load in the room. By combining the
object and video information and visualizing it in the existing BIM building mod-
els, decision makers have a clear overview of the fire progress and the situational
awareness is increased. Furthermore, this thesis proposes a methodology to align
BIM and video images using place recognition and semantic information. Based
on this mapping, it is also possible to verify the BIM model with the configuration
of the room. As an example: in the course of time, a room can change from desk
function to a storage, which symbolizes a different fire load, but also changing a
door opening can have a big effect on the ventilation profile and the final fire be-
havior.

The feasibility of the proposed framework was tested during several large-scale
fire experiments. In the first set of tests, the algorithm was used to evaluate the
effectiveness of alternative fire safety measures in new elderly care concepts (large
common areas). The software was evaluated a second time during real fire tests
in the Craeybeckx tunnel. These tests were carried out on behalf of the Agency
for Roads and Traffic from the Flemish government and the goal was to study the
effect of the ventilation system on the smoke movement with the help of video
data streams. The added value of the proposed framework is its fast and intuitive
representation of spatio-temporal sensor and video streams. Furthermore our plat-
form avoids the manual analysis of large set of video clips.

A survey was launched within the Belgian fire service community to further align
the proposed framework with the user-needs. In addition to the use of sensor
values, there was a strong demand for a tool that would quickly and easily deter-
mine the highlights from a videosequence. In that context, this thesis proposes a
methodology that selects keyframes, that removes similar frames and elaborates
fast semantic search mechanisms (as an example, show all images where people
are still evacuated).
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Due to the combination of data-science, video and sensor analysis, GIS / BIM, and
fire research, this thesis has a strong multidisciplinary character and its results can
be used both in an academic and professional context. The following target groups
can benefit from our research results:

• The fire brigades use the spatio-temporal sensor, static and dynamic video
data to manage interventions. The proposed thermal object detection tool
in combination with the BIM data provide a tool to assess the effective fire
load in a building. This way, it will be possible in the future to calculate the
necessary amount of cooling capacity.

• The researchers use the sensor and BIM data as input for the fire models
and CFD (computational Fluid Dynamics) calculations. Using our analysis
tools it is possible to make more accurate, interactive fire predictions.

• The architecture and engineering study offices combine the sensor data
to use the BIM actively for pre-planning and evacuation analysis. Through
the verification of the visual camera images, the building model is adapted
to the latest version.

• The fire protection firms will, in the future, provide more than just point
detection in a building. The sensor and video data tools will be used together
to gain more insights into the situation and this both in the period during and
after the incident.

• The government agencies use our tool to obtain an objective evaluation of
real fire experiments (such as the study conducted in the Craeybeckx tunnel
and the VIPA study).





1
Introduction

This chapter situates the importance of research on spatio-temporal fire charac-
teristics estimation in enclosure fires. Secondly, this chapter provides an overview
of the main research questions that are tackled in this PhD thesis. Thirdly, an
overview of the national and international publications is given.

1.1 Situating the importance of this research
Fires have a tremendous impact on people, their property and the environment in
all the countries around the world. According to the Fire Safe Europe Commu-
nity1 5000 fire incidents are reported each day in Europe. 90 Percent of these fires
in the EU happen in buildings. Furthermore, the cost of fires is 126 billion euro
each year and 4000 people are killed by a fire or its consequences every year. To
tackle and reduce the impact and to increase the safety, fire and rescue services
have created different firefighting strategies adapted to the stage of the fire devel-
opment. In the design phase of the building, different fire development scenarios
are taken into account and fire prevention services, architects, engineers and local
authorities will work together to define evacuation routes, compartmentalization
blocks, suppression and detection systems.

1https://firesafeeurope.eu
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Since 2014 it is legally obliged for companies in Belgium to constitute an emer-
gency plan. This should help the fire brigade and the workers to respond as quickly
as possible during an incident. Different parts should be included in the file, such
as a risk analysis, an evacuation procedure, the fire suppression and detection
mechanisms and a clear plan of the building. Currently there is no standardiza-
tion on the icons, colors or figures in an emergency file and each fire department
can declare their own rules, the BIM standards could help to make a uniform sys-
tem. Furthermore, when the building is finished, it is up to the users and the plant
owner to update the initial information in case of changes. An automated system
that takes videostreams into account could help detect construction modifications
or room configuration changes (e.g., an office contained initially only chairs and
tables and all of a sudden the room is a storage for boxes).

In recent buildings there are alarms panels indicating the activated detection and
suppression regions. Still, this does not give information on the burning item or the
detailed fire source location. The commanding officers will rely on their own ex-
perience, standard operation procedures and intuition to make decisions. Besides
the smoke detection devices, in recent buildings there is an increased use of video
footages, mainly for security and intrusion detection. The large number of video-
cameras could be exploited for fire incident management, for example, to give the
status of the evacuation routes, to identify the amount of people inside the build-
ing, to estimate the smoke density or to define the fire fuel packages. Nevertheless,
due to the extensive volume of data there is a need for an efficient mechanism to
overview and process the large collections of sensor values and video footages.

Besides the visualization, the large set of sensor values can be exploited in a fore-
casting framework. Different initiatives are described in literature. Firegrid [1]
proposed an integrated emergency response system where live sensor values (tem-
perature or CO) are used to infer the incident conditions and to update the pre-
dictive models. Furthermore, a knowledge-based reasoning scheme is used on top
of the predicted models to support the decision making process of an emergency
responder. Beji et al. [2] created a two-zone fire forecasting system where the loss
of physics was compensated by assimilating observed data (estimated HRR from
detected flame dimensions) in the zone model. The inverse fire model problem
is an optimization problem where you want to find the model invariants (the fire
growth and the heat loss factor) that match the best with the observed values of the
sensors. Jahn et al. [3] used the smoke detector and sprinkler activation time for
the estimation of the fire characteristics (i.e., fire growth rate, fire origin location)
by applying inverse Computational Fluid Dynamics (CFD) modeling.
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Each of these methods are highly valuable for fire forecasting, but they still require
manual detailed information of the potential fuel load, the building geometry and
the ventilation openings. Although the forecasting models are potentially helpful
to assist the decision process, there are four major reasons why the models are not
yet incorporated in the standard fire fighting strategies:

1. Zone models, which are capable of estimating the fire properties faster than
the advancement of the real-time incident, lack accuracy and reliability.

2. CFD models, which can include the detailed physics, are too slow (i.e., in
the order of hours) to generate and they require manual validation and veri-
fication.

3. Accurate fire models require a detailed input of fuel packages, room config-
uration, fire progression, etc., and this data is currently not available.

4. Fire commanders are not always used to work with detailed simulation out-
puts. Due to the increased complexity and the possible overload of data this
can even lead to wrong decisions.

In general there is a need for a system that clearly indicates the current phase in the
fire process. A combination of geographic data and building models with sensor
data both during and after an incident is considered by the fire fighting community
to be the most suitable. Figure 1.1 shows the workflow of how we envision future
fire fighting operations. The government facilitates the BIM data storage and from
the BIM file, fire and evacuation models are calculated. The BIM data and the fire
models are sent to a central system where there is additional input and feedback of
the current smoke and fire behavior (from inside sensors). In addition, visual and
thermal camera data is sent and processed by the central system. The camera and
sensor input confirms or improves the latest BIM model in the system and the cen-
tral system adapts the fire simulations. Finally, the commander in charge receives a
structured overview of the building information, fire simulations and inside sensor
values.

Different building blocks to realize a certain set-up were investigated in this PhD.
Furthermore, the proposed model matches clearly with the Research road-map for
smart fire fighting [4] proposed by NIST where they want to ”use the immense
quantity of available data, the computational power to compute and communicate
that data, the knowledge base and algorithms to most effectively process the data,
convert it into significant knowledge/beneficial decision tools, and effectively com-
municate the information to those who need it - on the fire ground and elsewhere”.
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Figure 1.1 The government facilitates the BIM data storage and from the BIM file,
fire and evacuation models are calculated. The BIM data and the fire models are
sent to a central system where there is additional input and feedback of the current
smoke and fire behavior (from inside sensors). In addition, visual and thermal
camera data is sent and processed by the central system. The camera and sensor
input confirms or improves the latest BIM model in the system and the central
system adapts the fire simulations. Finally, the commander in charge receives a
structured overview of the building information, fire simulations and inside sensor
values.

Video summarization

User-evaluations

Highlight selection Fire characteristics

Real experiments

Multi-modal/ multi-sensor

Scene understanding

Thermal and visual 
object detection

Spatial information

Link BIM and images

1.2 Spatial information: BIM and GIS

An important aspect in the proposed future fire incident management system is
the use of GIS and BIM data. Geographic Information System (GIS) is a mecha-
nism that captures, stores, analyzes and visualizes spatial, geographic information
where the data is represented as real objects and geo-referenced to a global coor-
dinate system. More specifically for fire fighters the GIS can, for example, display
a toxic smoke plume or it can give valuable information about the water hydrants.
Building Information Models (BIM) focus mainly on the indoor environment and
configuration with high level of detail and with a rich set of spatial features and
attributes referenced to a local coordinate system. GIS is commonly used for in-
tegrating, visualizing and analyzing information of a building while incorporating
the context (i.e., environment, demography), while Building information models
(BIM) and 3D/ CAD models are becoming more and more mainstream during the
design and manufacturing phase of new buildings or during the renovation of an-
cient buildings. A 3D model with a connection to all the data and information
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about the complete building cycle allows the architecture, engineering and con-
struction firms to handle the increased complexity of construction projects. Still
there is a huge discrepancy between the original drawing, the latest design and the
final ’as built’ construction. Especially if we want to use the added value of BIM
for fire forecasting or to assist firefighters during operation, verification is neces-
sary between the BIM file and the real states. An open working space, for example,
could be transformed into different separate rooms, or an originally empty room
could be filled with boxes. To detect the actual room state we propose in Chapter
3 a deep learning based room configuration understanding mechanism.

1.3 Probabilistic room configuration understanding
With the recent advancements in deep learning object detection, image recogni-
tion and scene understanding are becoming mainstream. Over the past years there
has been a significant gain in performance which allows real-time machine learn-
ing applications to be commercially used. (e.g., robotics, autonomous driving,
surveillance and industrial monitoring). Despite the significant progress made in
computer vision, machines are still not capable of achieving the same room under-
standing performance as a individual. Humans are trained to interpret the layout of
a room (e.g., the position of the wall, ceiling and floor) and this even with a signif-
icant amount of clutter. People use the recognition and localization of objects in a
particular scene to deduce the intention of a space (e.g., kitchen, living room) and
a similar approach, incorporating contextual information, could help the existing
deep learning and computer vision frameworks.

Previous computer vision research of IDLAB focused mainly on the flame and
smoke detection [5, 6] with surveillance cameras and Passive Infrared based mo-
tion sensors. By analyzing the video and signals that the sensors generate it was
shown that they could be used for the detection. However, with the increased use
of CCTV (e.g., a report from the BSIA reported in 2014 that there are between
4 million and 5.9 million CCTV surveillance cameras in the UK) and handheld
cameras, more detailed information about the scene and the specific smoke and
fire properties is also available.
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1.4 Spatio-temporal fire characteristics

An overview of the spatio-temporal changes of several fire indicators (smoke, vis-
ibility, fire dimensions) assists the commander to make appropriate tactical deci-
sions. Currently, the firefighters are trained to manually identify certain fire indi-
cators. This requires knowledge and understanding of fire dynamics, ’reading’ and
anticipating on rapid changing fire behavior indicators, skills in firefighting strate-
gies and tactics. The BE-SAHF (Building, Environment, Smoke, Air Track, Heat,
and Flame) organizing scheme, introduced by Grimwood et al. [7] is a well-known
mechanism to assist in determining the stage of enclosure fire development2, the
location of the fire and suspected fire progress.

• The building and the construction in general will give an indication of the
fire development. The building type will also indicate occupancy rate (e.g.,
an occupied school versus a domestic residence). Furthermore, the construc-
tion materials used in the building, the double-glazing and the insulation
materials can hinder rapid fire growth due to the limited air supply or can,
on the other hand lead to a rapid fire progress.

• The environment mainly focuses on the land topography, wind, humidity
and extreme temperatures. A strong wind for example can accelerate the fire
growth or can even induce a wind-driven-fire. Extremely low temperatures
can decrease the buoyancy rate (i.e., upward force of the smoke) and the
smoke can even form an inversion layer.

• The smoke features (i.e., the location, the volume, the thickness, the color,
the buoyancy rate) will change the action plan as to how to fight the fire.
Light, almost white, smoke can be due to the pyrolysis (highly combustible
gases are formed of heated materials) or can be due to the presence of water
vapor. In contrast, dark smoke can indicate a high amount of carbon released
as soot in the smoke. Subsequently, the thickness and the spreading rate will
affect the self-evacuation of victims.

• The air track can be visualized by the smoke pattern and it gives more in-
formation about the inlet and outlet openings. The air track indicators are
velocity, turbulence, direction, and movement of the hot gas layer. If the
air track is bi-directional (i.e., air in two opposite directions, fresh air going
inside the building, hot smoke gases coming outside) at a certain opening,
this may be the only adequate opening in the compartment.

2For more details and background of fire and enclosure dynamics we refer to Appendix A.3 at the
end of this thesis.
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• The heat will determine if it is still feasible to send firefighters inside.
Subsequently, a sudden heat increase can be an indicator of an impending
flashover or back draft.

• The final facet are the flames that are often the most visible indicator and
described by a specific shape, movement, location and color. In a compart-
ment fire for instance the flames will be yellow when the air supply is good,
but when the air inlet and eventually the oxygen concentration is reduced,
the flames will appear more red.

The interpretation of the fire characteristics and the usage of the BE-SAHF tool is
currently depending on the knowledge and experience of the firefighters. A more
objective, automated mechanism should be less error prone and could improve the
spatio-temporal analysis. Finally, the automated calculation of fire characteristics
could facilitate the updating of fire forecasting models as proposed in Section 1.1.

1.5 Fireground understanding and data visualization
In order to optimize the scene recognition and the fire characteristic analysis and
to reduce the computational cost of subsequent video processing tasks, it is impor-
tant to reduce the amount of video data by filtering out redundant and unnecessary
frames, while preserving only those frames, distinctive and essential to capture
the entire video content. Furthermore, providing the end-user, the fire comman-
der, with a limited list of representative keyframes improves their exploration and
search process.

Furthermore, visualizing too many sensor and data outputs to a first responder
can cause overload difficulties. Due to an increased stress level it is possible to
end up in a tunnel vision where the attention level is strongly narrowed. This can
eventually lead to dangerous, deadly situations and a clear situational awareness
strategy is necessary. Endsley et al. [8] defined situational awareness as the per-
ception of the elements in the environment within a volume of time and space,
the comprehension of their meaning and the projection of their status in the near
future. There are several quantitative and qualitative selection criteria to select
the correct and most valuable sensor output for fireground understanding. Within
Chapter 5, questionnaires and automated visual outliers detection mechanisms are
proposed to assist the decision process.
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Finally, as stated by Hamins et al. [9] an improved fire ground understanding and
in general a ’Smarter fire fighting’ will possibly lead to following motivations:

• To save lives and minimize injuries to building occupants and community
members due to fire.

• To improve fire fighter occupational health and safety.

• To enhance the operational efficiency of the fire service and the effectiveness
of fire protection.

• To minimize property loss from fire.

• To minimize business interruption and loss of mission continuity due to fire.

1.6 Research questions
The previous sections described the lack of existing systems that combine spatial
information from a BIM or GIS system, although it is already been illustrated
that there is an added value for fire analysis and forecasting. Furthermore, there
is a need for a mechanism that can give more insight information on the room
configuration and the corresponding fire characteristics. Based on the problem
statement we formulate the central question of this dissertation:

Can we develop a system to accurately detect, analyze and visual-
ize spatio-temporal fire characteristics in enclosure fires and can
we use the extracted information for fire behavior analysis and
forecasting within a BIM framework?

To facilitate answering this question, we break it down into smaller parts. Each
chapter of this dissertation will focus on one of these parts. The first part of the
research question is the linking with a BIM framework, described in Chapter 2.
Research on building models for fire modeling are in their early phase. BIM for fire
investigation can be decently used for fire safety design, or for post-fire analysis.
Despite, the possibility of interactions, the building model is currently mostly used
for visualization purposes making it a static source of information. Previous work
has already investigated the possibilities to link BIM and low-cost point sensors
for fireground understanding, but these approaches did not take into account the
benefits of video analysis (large field of view compared to point sensors, robust-
ness against dust and humidity, indoor scene analysis) and recent developments in
semantics and feature learning research.
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The second part of the central research question, i.e., in enclosure fires discussed
in Chapter 3, requires a good knowledge of the room configuration, the scene type
and subsequently an understanding of enclosure fire dynamics. Besides the object
recognition, additional semantic information of the scene classification module
can be used to further improve the localization accuracy. This enclosure fire task
is different from previous research that combines satellite images for wildland fire
forecasting.

The third aspect is the accurate detection, analysis and visualization of spatio-
temporal fire characteristics which is considered in Chapter 4. A literature study
revealed that the majority of sensor based fire analysis research is limited to trig-
gering a fire alarm without further spatial or temporal analysis. Furthermore, for
large scale fire experiments there is a need for automated processing of the large
datasets. Several cameras are often monitoring the same scene (e.g., monitoring a
tunnel) and the analysis is carried out manually without decent anomaly detection.
In order to improve this, for instance, if one sensor is broken an alarm should be
triggered and the inter correlated sensors (i.e., between the sensor groups, analysis
of sensors in the neighborhood) and intra correlated sensors (i.e., inside the sensor
group, analysis of the sensor over time) should be taken into account.

The fourth aspect of using the extracted information for fire behavior analysis
and forecasting explained in Chapter 5 links the two facets. Firstly, the analysis
links to the decision making and the situational awareness. Secondly, the forecast-
ing assumes that the retrieved information can be incorporated into existing fire
forecasting CFD or zone models.

1.7 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the global
framework of building information models and the usability in a fire safety science
context and fire incident management. Subsequently an overview is given on the
combination of real-time sensing data and building information models. Finally
we present some future research challenges for BIM enrichment.

Chapter 3 explores transfer learning techniques for visual and thermal object lo-
calization. Furthermore scene type classification (e.g., kitchen, bedroom) is used
as input for probabilistic room configuration estimation. Finally, object tracking
and 3D object understanding are discussed thoroughly.

Chapter 4 examines the spatio-temporal fire characteristics with the fireGIS frame-
work and low-cost sensors. Firstly, an introduction is given into smoke reading and
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basic fireground understanding. Secondly, the real fire experiments are discussed
more thoroughly. Subsequently, the smoke video analysis algorithm is discussed
and the firemap generation algorithm is explained.

Chapter 5 proposes the fireground understanding and the data visualization. Firstly,
the questionnaire that was launched in the Belgian firefighter community asking
for the specific data needs and constraints, is explained. Secondly the video sum-
marization framework for situational aware video retrieval is clarified. Thirdly,
the fire characteristics visualization is discussed and finally, the visualization plat-
forms and mechanisms are discussed more thoroughly.

Finally, chapter 6 lists the general conclusions of this thesis and points out fu-
ture work for video fire analysis and BIM based forecasting.

Additional to the main chapters, two appendices are included in the thesis. Ap-
pendix A provides an overview of basic fire behavior and heat transfer concepts.
Subsequently, appendix B provides an overview of basic machine learning and
computer vision aspects. Both appendices can be consulted if the reader is not
familiar with these techniques.

1.8 Publications

The research results obtained during this PhD research were published in scientific
journals, presented at international conferences and shared in different articles in
the fire safety science community. The following list provides an overview of the
publications achieved during this PhD research.

1.8.1 International journal publications

Vandecasteele Florian, Bart Merci, and Steven Verstockt. ”Fireground location
understanding by semantic linking of visual objects and building information mod-
els.” Fire Safety Journal, 91:10261034, 2017.

Vandecasteele Florian, Karel Vandenbroucke, Dimitri Schuurman, and Steven
Verstockt. ”Spott : on-the-spot e-commerce for television using deep learning-
based video analysis techniques”. ACM Transactions On Multimedia Computing
Communications And Applications (TOMM), 13.3: 16-38, 2017.

Vandecasteele Florian, Bart Merci, and Steven Verstockt. ”Reasoning on multi-
sensor geographic smoke spread data for fire development and risk analysis.” Fire
Safety Journal, 86: 6574, 2016
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1.8.2 National and international conference publications

Vandecasteele Florian, Bart Merci, Azarakhsh Jalalvand, and Steven Verstockt.
”Object localization in handheld thermal images for fireground understanding.” In
Thermosense: Thermal Infrared Applications XXXIX vol. 10214. International
Society for Optics and Photonics SPIE, 05, 2017.

Mario M Valero, Steven Verstockt, Oriol Rios, Elsa Pastor,Vandecasteele Florian,
and Eulalia Planas. ”Flame filtering and perimeter localization of wildfires using
aerial thermal imagery.” In Thermosense: Thermal Infrared Applications XXXIX
vol. 10214. International Society for Optics and Photonics SPIE, 04, 2016.

Vandecasteele Florian, S. Verkaemer,Wouter Gevaert, and Steven Verstockt. ”Spatio-
temporal data collection and visualization during firefighting incidents.” Research
and advanced Technology in Fire Safety, 12, 2017.

Roeland TJampens, Francisco Hernandez, Vandecasteele, Florian, and Steven
Verstockt. ”Automatic detection, tracking and counting of birds in marine video
content.” Image Processing Theory Tools and Applications (IPTA), 1-6, 2016.

Vandecasteele Florian, Bart Merci, and Steven Verstockt. ”Smoke behaviour
analysis with multi-view smoke spread data.” Interflam 2016. Interscience com-
munications, 399408, 2016.

Vandecasteele Florian, Jeroen Vervaeke, Baptist Vandersmissen, Michel De Wachter,
and Steven Verstockt. ”Spatio-temporal wardrobe generation of actors clothing in
video content.” International Conference on Human-Computer Interaction. Springer,
448459, 2016.

Vandecasteele Florian, Bart Merci, and Steven Verstockt. ”Firegis : tijdruimtelijke
videoanalyse van de brandverspreiding.” Fireforum Magazine, 5457, 2016.

Vandecasteele Florian, Esmee Vanbeselaere, Lore Vandemaele, Jelle Saldien and
Steven Verstockt. ”Librarinth interactive game to explore the library of the future.”
In 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
9499, 2016.

Vandecasteele Florian, Tarek Beji, Bart Merci, and Steven Verstockt. ”Geo-
graphic reasoning on multi-modal fire spread data.” 2nd European Symposium
on Fire Safety Science, 6368, 2015
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2
Spatial information

This chapter focuses on the added value of Geographic Information Systems (GIS)
and Building Information Models (BIM) in a fire safety science context. Initially,
an introduction is given into the GIS and BIM basics and concepts, the Level Of
Detail (LOD) and the Level Of Information (LOI). Furthermore, an overview is
given on the current frameworks that combine geometric and topological informa-
tion in a fire science context, as this is not available in literature. Additionally,
modifications are proposed to the current architectures to increase the usability
for regulators, designers and fire officers. Finally, more detailed information is
given on how we can facilitate the image and BIM alignment from a conceptual
computer vision perspective.

2.1 Introduction

Undoubtedly smart cities are on the rise all over Europe and beyond [1]. A smart
city is a region or city that uses different sensors in a collective network to con-
nect citizens and the complete city infrastructure. The smart city projects being
undertaken around the world all start from mapping existing building, utilities and
transport infrastructure. Certain spatial information (included in BIM and GIS
data) supports the decision making and facilitates the visualization and the inter-
pretation of sensor data. CCTV camera positions and orientation, for example, can
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be registered in a BIM to easily find cameras with overlapping field of view or to
find the nearby cameras. GIS mainly describes the current general environment
state (i.e., pollution, traffic flow, energy consumption or gas and drinking water
pipes) whereas BIM focuses on the detailed design and construction information
of the building site. Figure 2.1 gives an overview of the data attributes specific for
both models. GIS-attributes contain geographical and topographical information,
ranging from the land, the region, up to the land-usage and the Points-Of-Interests.
BIM is in the figure represented as the building with its components and their
functionality. Furthermore detailed information is given about the metrics and the
attributes.

Although the building models are a rich source of information it is important to
remark that the majority of older buildings and sites lack a decent GIS or BIM
model. Still early research results of Xue et al. [2] and Appolonia et al. [3] show
that it is feasible to generate a simple BIM model from images and video footages.
For more recent buildings, however, it becomes more and more standard to use
BIM and GIS. An important side-note is that statistical results on the usage of
BIM in the AEC community show that in 2011 only 13 percent of the population
was aware of the term BIM whereas in 2018, 74 percent of the architects in the UK
are currently using the framework (according to the NBS national BIM report [4]).
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Figure 2.1 Combining BIM and GIS information for building information man-
agement (source: https://www.ilf.com).

2.1.1 BIM

The definition of BIM has changed over the past decades. Initially, Charles East-
man defined it as a digital representation of the building process to facilitate the
exchange and the interoperability of information. Lu et al. [5] added the need
of a digital carrier. Eastman et al. [6] modified the definition of BIM, it should
be more than the standard geometry. According to Eastman, the file should con-
tain spatial relationships, geographic information, quantities and properties of the
building components. Finally, Smith et al. [7] summarized BIM as a shared knowl-
edge resource for information about a facility forming a reliable basis for decisions
during its life-cycle (defined as existing from earliest conception to demolition).
Figure 2.2 gives an overview of the circular BIM process, starting in the earliest
concept and design phase, up to the construction and the building phase and finally
the operation and maintenance point.
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Figure 2.2 Generic circular BIM process (source: http://njhcadservices.co.uk)

BIM represents the building as models made of collections of building components
such as walls, windows, doors and their relationship and properties. This is more
than the standard geometry information that is stored in a classic 3D-CAD pack-
age (e.g., AutoCAD1, SketchUp2 or Blender3). Initially BIM was only intended
to support the architectural, engineering and construction (AEC industries), but
currently there are numerous applications in different fields (e.g. facility manage-
ment, fire safety engineering, climate control). Furthermore, due to the interna-
tional standards it is now possible to share and store information of other software
vendors and to transform the BIM data into semantically4 understandable data for-
mats, such as EXPRESS, RDF, XML and OWL. Figure 2.3 gives an example of
the different semantic outputs of a BIM snippet.

• EXPRESS [9] is an ISO defined data modeling language where the specifi-
cations are described in a strict scheme for a set of information requirements.
Furthermore the format is plain text, which makes the language human read-
able.

1www.autodesk.be
2https://www.sketchup.com/
3https://www.blender.org/
4The semantic web is an extension of the current web in which information is given in well-defined

meaning, better enabling computers and people to work in co-operation. [8]
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• Resource Description Framework (RDF) [10] is a standard data interchange
model in the world wide web consortium (w3c). The structured knowledge
is often represented by triples, consisting of a subject, a predicate and an
object. The relationships are indicated by an arrow and can eventually form
a labeled graph. This can be compared with the structure of a sentence: the
verb makes the connection between the subject and the object. For instance,
the following statement: ”The building has a front door” describes the rela-
tionship between ”the building” (subject), ”has” (predicate) and ”front door”
(object). Furthermore, in RDF, each triple element is uniquely identified by
an Uniform Resource Identifier (URI). This allows unambiguous referenc-
ing and increases the interoperability.

• Extensible Markup Language (XML) is originally built to emphasize sim-
plicity, generality, expandability and usability across different applications.
This is done by storing the data in a plain text format without predefined
tags. The main focus of the language is the presentation of the data, not
the interpretation. A tag can contain detailed attributes and descriptions of
the surrounded text, but compared to the RDF model it is not obligatory to
connect a meaning to the tags.

<? xml v e r s i o n =1.0>
<house>
<b u i l d i n g e l e m e n t> Column < / b u i l d i n g e l e m e n t>
<b u i l d i n g e l e m e n t> Beam < / b u i l d i n g e l e m e n t>
< / house>

• Web Ontology Language (OWL) [11] is built to develop ontologies (i.e.,
definitions and classification of concepts and entities and their relationship).
The framework extends the capabilities of the RDF by adding more vocabu-
lary for describing properties and classes (i.e., relationships between classes,
equality, restrictions).

The main advantage of the OWL language is that topological relations between
instances of these classes and some constraints on the usage of these classes and
properties could be added to the code. Furthermore, intelligence can be added
and new insights and correlations can be inferred from the data, without explitcit
modelling.
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Figure 2.3 BIM snippet of the iGent tower in Ghent: EXPRESS code (top), RDF
graph (middle) and OWL format (bottom).
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In order to share and store the building information of other software vendors and
to manage the BIM data, there is a clear need for a standard. The major standards in
the open-source BIM community are defined by the BuildingSMART5 community
and are listed as follows:

• Information Delivery Manual (IDM): describes the building process and
provides detailed specifications of the information that a user with a spe-
cific role would need to provide.

• Industry Foundation Class (IFC): sharing the information between software
vendors and users with a large set of predefined classes. The underlying web
technology allows building data to be easily linked to material, sensor and
GIS data.

• BIM Collaboration Format (BCF): is an open standard XML schema to op-
timize the workflow between different software packages.

• International Framework for Dictionaries (IFD): ensures the mapping be-
tween different construction databases.

• Model View Definition (MVD): translates the process into technical require-
ments.

IFC ensures the fluent exchange of alphanumeric information attached to spaces,
building elements and other components, between different platforms. The ex-
change of data, which is referred as the exchangeability, can be seen from two
points, namely from the software side and from the building model. To ensure
the exchange-ability of BIM elements in the IFC standard, the properties of each
element are described in standardized Property sets (ifcPropertySet), similar to the
URIs as described before.

5https://www.buildingsmart.org/
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2.1.2 Level of development

Besides the standardization in property assets it is important to unambiguously
describe the Level of Development (LOD) of the design. Currently, the definition
of LOD is still discussed in the European Union. Mostly, the LOD comprises the
graphic representation and the level of information. Within the BIM file a high
level of information can refer to a file with specific factory sheets and maintenance
instructions. In order to have a unified definition we currently refer to the LOD
described by the Dutch national BIM platform [12]. Figure 2.4 gives an overview
of the different detail levels:

• LOD 0: Simple spatial objects (i.e., spaces and volumes) with global dimen-
sions and relations. Furthermore the function of the specific rooms can be
described.

• LOD 100: Location and orientation, height, and volume of each level with
its respective utility function.

• LOD 200: Material objects are modeled as generic building elements with
global dimensions and properties.

• LOD 300: Spatial objects have exact dimensions and orientation; material
objects are exact in quantity, dimension, shape, location and orientation.

• LOD 400: Material objects are highly accurate and precisely modeled. Fur-
thermore details are given about the manufacturing and the construction of
the objects on site.

• LOD 500: Objects are maximally detailed and all the information about
shape, location, quantities and orientation is given.

In order to increase the usability of BIM data it is important to have a standardized
information flow and a stimulated usage. The ’BIM loket’ of the Netherlands [13]
provides a central information point for BIM standards and it showcases BIM best
practices. Such kind of initiatives are important to stimulate the effective and ef-
ficient use of the existing standards. A similar initiative should be launched in
Belgium or Europe, as there is currently no data available. Furthermore, by in-
creasing the usage of the BIM framework more and more construction and facility
management applications will become available.
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Figure 2.4 Level of Development based on a chair, the red labels are the attributes
present for that particular class. (source:www.practicalBIM.net)

2.1.3 GIS

Geographical Information Systems (GIS) are commonly used for the storage, ex-
traction, modification, integration, visualization and analysis of spatial informa-
tion. In literature following definitions are given:

• It serves for capturing, storing, analysis, and visualization of data that de-
scribe a part of the Earths surface, the technical and administrative enti-
ties, as well as findings of geoscience, economics, and ecological applica-
tions [14].

• It is an information system with a database of observables of spatially dis-
tributed objects, activities, or events, which can be described by points, lines,
or surfaces [15].



2-10 SPATIAL INFORMATION

Geopunt6, for example, is a GIS platform with governmental Flemish web-services,
which stores all the geographic government information (i.e., altitude, historical
maps, living and society details). The web platform allows the stakeholders to
achieve a very high level of integration due to the easy access to various data
sources - it is even possible to upload your own datasets and analyze them on all
kinds of map types. More specifically for fire fighters the GIS can, for example,
display the calculated geographic spreading of a toxic smoke plume or it can give
valuable information about position and condition of the water hydrants.

The combination of BIM and GIS has a high potential. GIS allows a decent vi-
sualization and modeling of the BIM project, whereas the BIM extends the GIS
information with detailed building information. Furthermore, the end users have
a better understanding of the impacts on the environment before, during and after
the construction. GIS interacts with every stage of planning and development of
a Smart City and facilitates an enormous spatially referenced database. For ex-
ample, GIS can improve/ adapt the utilization of existing infrastructure capacity
to improve the life quality or GIS can help to visualize spatial economic, environ-
mental and social effects.

Currently there is no clear mapping between existing BIM and GIS frameworks.
The datasets differ with respect to their semantics, geometry and level of detail.
The indoor spatial information, for example, is standardized by the Open Geospa-
tial Consortium (OGC) community in the indoorGML and cityGML application
scheme whereas BIM is standardized on the IFC scheme. Due to the overlap in the
features modeled in both domains as well as their differing strengths and weak-
nesses, it is widely acknowledged that the integration of data from both domains
is beneficial and a crucial step forward for future 3D city modeling.

2.2 Spatial information in a fire science context

Geometric and topological information, such as the slope, the surface and the wind
are commonly used to estimate wildfire growth. In enclosure fires, however, only
limited spatial (meta) data of the building or room and its objects is used to prevent,
forecast or tackle a fire. Still, in literature several initiatives explore the usability of
building models and geographic data for analyzing fire science in enclosure areas
and the following subsections a literature review will be given.

6https://www.geopunt.be/
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2.2.1 Fire science context

Fire science is the study of all aspects related to fire, from fire behavior, fire safety
design, fire forecasting, evacuation modeling, fire strategy and tactics up to fire
investigation. Spatial information is a rich source of information to indicate the
temporal state of the different factors that influence the development of the fire in
a compartment (i.e., a confined space). A non-limiting list of these factors is given
below:

• Properties of the fuel package (e.g., the type, amount, position, spacing and
surface area),

• The geometry of the enclosure,

• The size, orientation and the location of the openings,

• The material properties of the enclosure boundaries,

• The room temperature and the temporal temperature change,

• The natural or mechanical wind speed, orientation and volume.

In Section 2.1.2 we explained the LOD. Starting from LOD300 there is detailed
spatial information (BIM) of the objects (fuel packages), the room configuration
and the generic building elements. This is perfectly in line with the list of fac-
tors that influence the fire development. In literature [16–18] different authors
proposed ideas and solutions to combine BIM data for fire development analysis.

2.2.1.1 Building information for fire safety design

Decent incident management starts with a good preparation of the fire safety de-
sign (and this already in the early design process). This is extensively discussed
in literature. Zou et al. [16] gave an overview of the recent trends and possibili-
ties for risk management during the building process (i.e., the safety management
of the construction personnel). The main takeaway from this literature review is
the use of the risk mitigation model. The model states that the risks should be
identified and mitigated as early as possible in the design or planning phase of the
building. However, this is not always possible due to time constraints, a lack of
multi-disciplinary knowledge or due to ineffective communication. Furthermore,
Zou et al. discussed the use of BIM for automated rule compliance checking. Fire
safety requirements could be evaluated based on prescriptive rules (i.e., govern-
mental rules and laws) or via a performance based design, where the BIM infor-
mation is used as input for the simulation models. Finally, the conclusion of Zou et
al. is that the BIM-based risk management is just emerging and there is currently
no ’complete solution’ available.
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Jelenewicz et al. [18] discussed the use of BIM technology for general fire pro-
tection. The conflict checking of sprinkler system piping and equipments, the life
safety drawings and information retrieval (e.g., egress paths, occupant load, wall
rating) and the design of fire detection and suppression systems are discussed as
possible use cases, but at the time of writing they are not integrated in the existing
BIM packages. Finally, in their work some suggestions and features are proposed
to integrate fire protection in BIM (i.e., automated sprinkler design, automated
door configuration and selection, CFD and evacuation linking).

Wang et al. [19] present a solution to automate the evacuation route planning in
two stages. Firstly, in the planning and design phase, the available safe egress
time (CASET) and the required safe egress time (RSET) are calculated in a par-
ticular area. The algorithm will check if a particular route is acceptable according
to the escape distance rules (specific for each region or country). Secondly, in the
operating phase, a BIM 3D representation is made to help the users remember haz-
ardous areas. Furthermore, safety equipment (e.g., fire extinguisher, fire hydrant)
is marked in the web-based 3D model and for each equipment detailed information
(i.e., brand, manufacturer, manuals, conditions) is stored and is easily accessible.

Zhang et al. [20] integrated semantic Natural Language Processing (NLP) for
fully-automated building design checking. Evaluating the local or regional reg-
ulation codes is an important issue in fire safety design. In the work of Zhang,
the BIM information is transformed into logic facts and the semantic reasoner is
finally used to verify them against the textual codes. The main advantage of this
approach is that the fire safety rules could be checked automatically without man-
ual intervention. A major limitation, however, is that no specific validation is done
for fire safety rules, which is our suggestion for their future work. Finally, it is
important to remark that a decent fire safety design starts with a representative fire
model and the building models could assist in this decision making process of the
design fire (i.e., the fire load and the fire growth curve could be derived from the
materials).

2.2.1.2 Building models for fire investigation

BIM can be used for performance based fire safety design (as mentioned in the pre-
vious section), or for post-fire analysis. Up till now, however, the building model
is only used for visualization purposes. Wu et al. [21] proposed a system for data
interchange between BIM and CFAST (Consolidated Model of Fire and Smoke
Transport) [22]. After the simulation, simulation results are brought back into the
BIM module for visualization. The most interesting block in their approach is
the extraction of room configurations and compartment openings from building
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models. Furthermore, the forecasting with a fast zone-model and the visualiza-
tion techniques are useful in our context. The disadvantage of their architecture,
however, is that there is no verification of the current room configuration and they
do not provide updates of the actual state of the building. The building model
could be outdated and this could result in inaccurate simulation results. Further-
more, the fire source and location are not included in their work either. As such,
their module is only useful for prevention purposes. By incorporating the actual,
real-time sensing data, the system could be used for situational aware evacuation
guiding and localization during a real fire. Lin et al. [23] on the other hand, used
a 3D BIM-model for fire cause investigation and visualization. Their work only
focused on presenting different kinds of data for fire disaster analysis and no com-
bination/interaction is made between the sensor data and the building model. As
such, the added value of this work is limited in our context.

Besides the data visualization it is necessary to have up-to-date building informa-
tion for the fire modeling and the fire investigation. Franz et al. [24] used the point
cloud information of a Google Tango mobile device to generate semi-automated
geometric BIM models for post-fire investigation. Still point-cloud and complete
3D model generation are costly and an alternative could be that an existing building
model in combination with real-time (visual or thermal) images are used to create
the updated model (Figure 2.5 gives an artistic overview of the point-cloud scan
to BIM process). The updating of an existing BIM model is one aspect we have
studied in this thesis. For the thermal image analysis there is a link to the work of
Lu et al. [25]. He showed that it is possible to get image-based localization with
thermal images in reduced visibility settings. In Chapter 3 a profound explanation
will be given on the object recognition and classification task for images based
location understanding.

Wills et al. [26] map sensor data in a three-dimensional BIM for critical fire safety
decision making. The most inspirational part of their methodology is the visualiza-
tion of sensor data of real-fires in a 3D building model and the use of the sensing
data for inverse fire model validation. The disadvantage of this approach, however,
is that again there is no verification of the actual state of the building model and
there is currently no possibility to integrate dynamic handheld sensors (e.g., sensor
output of firefighters who are wearing temperature and pressure sensors).

Within the building model, different parameters are available to assist the fire in-
vestigation. Spearpoint et al. [27] examined the use and the interchangeability
of IFC2x2 properties as a source of input data for zone modeling, ranging from
building spaces and compartments, over fire suppression and detection systems to
material properties (i.e., fire resistance, heat capacity or thermal conductivity). It is
important to mention that these values could be used for fire investigation, but also
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Figure 2.5 Conversion from point-cloud data to BIM model West Sussex Hospital
(source: scan2bim.info).

for incident management or evacuation planning. Currently, the IFC4 [28] is the
new standard and, compared to the older standard,more consistency, connectivity
between elements and incorporation of GIS elements are ensured.

2.2.1.3 Building information for evacuation planning

Besides the use of BIM for fire analysis and forecasting there is also ongoing re-
search on the use of BIM to support evacuation planning. Wang et al. [19], for
example, used the 3D geometric BIM data and visualization results to support
evacuation assessments and escape route planning. Currently, the objects in the
building (e.g, furniture and fire safety equipment) are manually registered. With
the computer vision based object recognition modules in our framework, an auto-
mated understanding and registration of the objects are made.

Chen et al. [29] used the BIM information to create an evacuation network graph.
The indoor geometry is retrieved from the BIM model and a ’road’ network graph
is created with weights on its edges (for more detailed information and background
about graph theory we refer to the work of West and Douglas et al. [30]). Sec-
ondly a routing algorithm is looking for the shortest path running the Dijkstra
algorithm [31].

Zlatanova et al. [32] developed a similar system to Chen et al. for 3D model
based emergency evacuation. The output of both systems could be used for evacu-
ation guiding and routing decisions for rescue operations. The limitation of these
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systems is that there is no possibility to integrate sensing data during a fire. Con-
gestion, hazardous regions due to smoke or fire could be highly valuable to adapt
the evacuation or searching preferences.

Finally, Teo et al. [33] used the geospatial data from BIM and GIS for route plan-
ning in emergency evacuations, considering both the city and building scale. The
automated generation of a semantic indoor network from the BIM/IFC files could
be used for route planning (as proposed in the paper), but the semantic informa-
tion can also be used for location estimation by applying a coarse-to-fine search
approach (see Chapter 3 for more details).

2.2.2 Spatial information combined with real-time sensing

As indicated in the introduction it is important to have a decent visualization of
the real-time sensor data. Wang et al. [34] proposed a conceptual web information
service to combine the 3D model and the live sensing data. Their main idea is to
use the interface for energy management, but the same mechanism can be used
to visualize the sensor data of the temperature [35], the humidity [36] or the CO
level during a fire incident. Furthermore, the increased use of Internet of Things
(IoT) devices will automate the practical use of real aggregated data. IBM Watson
IoT [37] and Honeywell7, for example, show the combination of real sensors data
to reduce energy costs. Subsequently, Kumer et al. [38] worked together with IBM
on a proof-of-concept at Heatrow airport to test the feasibility of integrating data
across the BIM asset to reduce the cost of unplanned maintenances.

Recently, more and more embedded or smart phone attachable sensors appear:

• Optical: single or dual spectral sensors (visual/ thermal), laser.

• Motion tracking: GPS, accelerometer, gyroscope, magnetometer.

• Environment analysis: humidity, UV, ambient light, temperature, pressure
sensors.

• Sound and voice processing: multiple microphones (front-back).

The cost of these devices is decreasing and the amount of consumer applications
is increasing. The majority of these systems, however, are still in an exploratory
phase and are mostly not commercially available. Some research tracks explore the
possibilities of these devices in case of a fire for real-time sensing, and the road
map of NIST [39] gives some examples for further research on this topic. One ex-
ample is the Moses (Mobile sensing for fire safety)8 research project. This project

7https://www.honeywellprocess.com/en-US/pages/default.aspx
8http://techforfuture.nl/onderzoek/afgerond/mobile-sensing-safety-moses/
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focuses on real-time situation awareness for fire fighters. The localization is esti-
mated with foot mounted inertial sensors and a GPS sensor. This is further mapped
on a 2D map of the building. The disadvantage of this approach once again is that
the map needs to be up-to-date and that there is no feedback of the actual state of
the building. Besides the indoor information it is valuable to have more detailed

Figure 2.6 Moses project: tactical tablet visualization of the indoor position of the
firefighters and their remaining oxygen level (source techforfuture.nl).

information of the condition of the firefighters. In that respect the Moses project
uses probability calculations for the evaluation of personal and health sensing in-
formation, such as the heart rate and the breathing speed. Similarly, the heat stress
risk could be calculated with wearable sensors and the core temperature [40]. A
final interesting aspect of the Moses project is the tactical visualization of the data
on a tablet (see Figure 2.6). The commander-in-chief gets an overview of the lo-
cation of the firefighters on a 2D map. Future research could incorporate actual
visibility estimations in the platform.

Another example of the use of real-time sensing is the work of Feese et al. [41].
They used smartphone data to monitor firefighter performance for post-fire analy-
sis. The project focused on the monitoring of firefighters health during missions,
monitoring of the environment of firefighters for toxic gases and high tempera-
tures, and providing navigational support. Furthermore, the SmartRescue app from
Radianti et al. [42] used smartphone sensors along with a Bayesian network clas-
sifier to assess the fire situation and to predict the further development, as well
as to support an indoor positioning system. Within their application, the indoor
localization is estimated by the strength of the WIFI signal. The limitation of
this approach is that the system heavily relies on the WIFI signal which could be
unavailable in case of a fire.
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2.2.3 Commercial applications

Besides the conceptual and theoretical approaches different commercial packages
are available that combine fire forecasting and simulation frameworks with BIM
information. Pyrosim [43] is a graphical user interface for the FDS simulator [44]
that helps to create and manage details of a complex fire. The building geometry
and object assets are directly obtained from the BIM file. It is important that the
BIM file is as detailed as possible. Small deviations in material types (i.e., heat
insulation and condition properties) or object properties will directly affect the fire
and smoke simulation results. The FDS fire simulator is then run based on the
building input parameters, the selected fire source and the estimated fire growth.
Finally, the visualization of the fire simulation results (i.e., the temperature, carbon
monoxide concentration and the visibility loss) is done in the BIM model. Cype9

is a commercial drawing package with several ’fire science’ related packages. The
’CYPEFIRE design’ part imports an existing BIM project and checks the accor-
dance of the design with the prescriptive codes, such as the compartmentaliza-
tion, evacuation distances and protection installations. ’CYPEFIRE sprinkler’ is a
tool to design the hydraulic fire protection network in an existing BIM drawing.
Furthermore, the ’CYPECAD MEP’ packages allows dynamic simulations of the
evolution of fires in a designed building using the FDS and SmokeView tool. The
fire load, the ventilation openings, the building elements, the sprinkler or detection
mechanisms and the expected fire scenario are graphically selected and derived
from the BIM file. Finally, the simulation results are brought back and visualized
in the BIM package.

2.2.4 Future applications of building information models

Besides the usability for evacuation and fire analysis, the information retrieved by
the BIM module could also give information to assess further development of the
fire. For instance, the main material used for construction (wood, concrete, steel)
will result in a different fire behavior and this could be deducted trough the BIM
module. The dimensions of the different rooms could be used to calculate the nec-
essary water capacity to extinguish the fire. The level of insulation could indicate if
there is a higher risk of pyrolysis and flashover (see Appendix 1 for more details).
The level of prevention services (compartmentalization (i.e., divide a structure in
separated blocks to limit the fire and smoke spreading), sprinkler system (i.e., an
active fire protection mechanism that automatically discharges water in case of a
fire), mechanical smoke extraction systems (i.e., smoke outlets and vents to create
a way to evacuate smoke and heat to open air)) can also be indicated in the module
and facilitate the commander to make the appropriate decisions. Currently there

9http://www.cype.com/en/
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is no module available that facilitates the communication/visualization of this in-
formation. Future research will perform user-based evaluations to see the best and
easiest way to perform this task.

Another point to address in future research tracks is the spatial data reduction.
Currently, the building models have a large amount of data and correlations, which
complicates transfer and interpretation. It is not clear if the complete data inter-
change is always necessary. It could be possible to create a scalable BIM model,
which can deliver the specific BIM data that is needed by the application. The ID-
Lab group already has expertise in related challenges, such as hyperspectral data,
genome and light-field compression [45]. Furthermore, the proposed techniques
of IDLab allow data streaming and random access, and outperform the state of art
compression results [46].

2.3 BIM enrichment and validation
As indicated earlier in this text, there are many existing buildings with incomplete
or fragmented BIM data, which poses different challenges and problems for us-
ing the BIM in decision making processes. Especially in the firefighting case it is
necessary to have up-to-date information of the building layout (see the BE-SAHF
mnemonic used by the firefighters where the B stands for building (see Chapter 1)).
More concrete, the inside structure, the indoor objects and the materials are influ-
encing the strategic intervention decisions on the fire scene (e.g, a small change
in the room configuration affects the fire progress10 or a room with wooden walls
will have another fire growth than a room with gypsum walls). In order to tackle
these issues, we propose to enrich and validate the BIM data with information that
we can extract from visual images.

To combine BIM data with image information, we first need to align both modal-
ities. The second step is to generate additional semantic information, such as de-
tecting the room type, object configuration and materials of which the objects and
walls are made. To handle the alignment, a discussion is given in this section
on the usage of point-cloud data for BIM enrichment. Secondly, in this section
we explain the alignment problem and in Chapter 3, we give an overview of the
mechanisms necessary to generate enriched semantic data.

10see Appendix 1.3
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2.3.1 Point-cloud based BIM enrichment

Patraucean et al. [47] provided a general overview of the as-built modeling pro-
cess, mainly focusing on the generation of a detailed 3D model from a point-cloud
file. Their goal is to create a semantically rich 3D model, composed of objects
identified by geometry, relations and attributes. The first technique to create a
detailed point-cloud model is to move (i.e., translate, rotate) the camera or laser
scanner around in the building. In the literature this mechanism is referred to as
Structure from Motion (SfM). A second technique is light detection and ranging
(lidar) where a laser beam travels towards the area being scanned and back. By
measuring the angles, the phase difference and the distances, accuracies from mil-
limeters to centimeter could be achieved. Unfortunately, due to the complexity and
the irregularity of shapes it is currently not possible to generate near-real time or
real-time BIM models with this technique and the generation process still requires
manual feedback, which makes the process unfeasible during an incident. The
semi-automated BIM generation framework, however, is valuable to index ’older’
buildings without a 3D plan or buildings with an outdated BIM file in advance.
In the next subsection, we assume that a BIM file exist of a specific space or fa-
cility and we use the BIM file to estimate the position. Once the location in the
building model is known, it is possible to update the model with fire-related sen-
sor data (such as the visibility level and the smoke height) for visualization or for
evacuation purposes. Furthermore, there could be an indication of the object that
is burning and the fire properties of that object could be derived from the building
model.

2.3.2 Image and BIM alignment

A first step in the BIM enrichment procedure is to align the current position (of
the image-sensor) in the existing BIM model. Several commercial and academic
frameworks are available to estimate the indoor location by means of a combina-
tion of a global positioning systems (GPS), an inertial measurement unit (IMU), a
Doppler radar, a magnetometer, a compass, a pedometer or via wifi-fingerprinting.
Kopsida et al. [48], for example, presented a markerless solution for the user-BIM
alignment based on the Kinect Fusion for automated progress monitoring. This
solution used the Kinect v2 sensor that acquires RGB-D data (i.e., the RGB color
and depth image data) and the Kinect Fusion algorithm to reconstruct the existing
scene and to estimate the pose. Li et al. [49] deployed an ad-hoc sensor network
to visualize the indoor position in the BIM file, but no feedback was given on the
exact orientation.
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In this section two hypothetic mechanisms are proposed for image based location
retrieval in the BIM file. The first mechanism is only suitable if the main indoor
objects are described. In the second system we assume that the object location
failed to estimate the correct location. In the current set-up, the existing sample
project of the Revit package (i.e., A building information modeling software from
Autodesk) is used as our information model and the data is transformed into a tex-
tual industry foundation class XML (ifcXML) file (see Figure 2.7 for the floorplan
on the right side).

Figure 2.7 Scene classification, object detection (upper left) and room layout es-
timation (down right) are used to estimate the position of the camera in the BIM
model (right).

Room layout estimation

Scene object detection

Location retrieval

Object based location retrieval

In order to extract the relevant Industry Foundation Class (IFC)-based spatial in-
formation, a first filtering is performed on the following elements in the ifc-file:

• IfcBuilding represents the building and is the main root of all the following
and related elements.

• IfcSpace corresponds to a particular indoor partition (volume) constrained
by walls. Furthermore, for each space the location, the direction and the
polyline (a connected sequence of line segments created as a single object)
coordinates are described. Additionally it is possible to define the purpose of
the space. If the purpose is not described, but the indoor objects are tagged,
it is still possible to derive the function of the room.

• IfcDoor defines inter-space relations and includes information of the loca-
tion and the direction of the opening.
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• IfcWindow is the description of a vertical and horizontal opening and in-
cludes information of the location, the material and the direction of the
opening.

• IfcFurnishingElement is a generalization of all furniture related objects.
The inherited values are the material type, the object class, the aggregation
and the exact placement. The major known classes are semantically de-
scribed by the buildingsmart alliance in the IFC4 standard [28] as follows:

– CHAIR: Furniture for seating a single person.

– TABLE: Furniture with a countertop for multiple people.

– DESK: Furniture with a countertop and optional drawers for a single
person.

– BED: Furniture for sleeping.

– FILECABINET: Furniture with sliding drawers for storing files.

– SHELF: Furniture for storing books or other items.

– SOFA: Furniture for seating multiple people.

From the image (see Figure 2.7 left) the scene and object levels are extracted
with computer vision techniques (more technical details and optimization tech-
niques are described in Chapter 3). With the scene labels and their corresponding
probability (parlor: 0.44, living: 0.17, lobby: 0.10, waiting room: 0.06) an ini-
tial search is performed on the BIM-based XML-file and, taking into account the
spatio-temporal history of the localization, the room with the highest matching
score is selected. Secondly, the objects (the classes that match with the IfcFur-
nishingElement description) are detected in the image (chair, sofa) and with these
objects we perform a confirmation of the previous step and a rough estimate of the
position of the imaging sensor in the room can be made.

Room layout location retrieval

In case the location is not sufficient a perspective alignment will facilitate the lo-
cation retrieval in the BIM file. Firstly, the room layout detection mechanism will
estimate the outline (i.e., the wall and floor corners) in the image. Secondly, the
vanishing points are estimated in the image and in the particular BIM space. Fi-
nally, a RANSAC matching is performed on both vanishing points to find the best
location based on the theory of Asadi et al. [50].

Room layout estimation focuses on estimating the 3D cuboid that defines the room,
i.e., inferring the location and position of the walls and the ceiling. Existing so-
lutions for layout estimation mostly rely on hand-crafted features and vanishing
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lines and they often fail in highly cluttered rooms. More interesting are the ap-
proaches of Ren et al. [51] and Delay et al. [52]. Ren et al., on the one hand,
propose a coarse-to-fine strategy for indoor layout estimation. For a monocular
input indoor image, a coarse layout estimation is generated with a multi-task fully
convolutional neural network (MFCN). An example of this technique is shown in
Figure 2.8, where the blue-green lines correspond to the most probable coarse lay-
out estimation. In the second step, occluded lines and missing lines are filled and
possible layout choices are ranked according to a predefined score function in the
second stage. Delay et al., on the other hand, use a fully convolutional neural net-
work (FCNN) in conjunction with a novel optimization framework for generating
layout estimations.

Figure 2.8 Room layout estimation, where blue and yellow colors correspond to
the most probable outline region in the image.

Livingroom: 0,58 ,parlor: 0,40 kitchen: 0,60 ,kitchenette: 0,39 hotel room: 0,85 ,bedroom: 0,10

Under perspective projection, parallel lines in 3D-space (e.g., wall lines) inter-
sect in the image plane at vanishing points. From the layout estimation and the
edges in the 2D image, the vanishing points are derived. Therefore, Rothers [53]
algorithm is used to rank the edges and to determine the vanishing points. Further-
more, a similar procedure is performed in the BIM 3D image where for specific
camera views a transformation is performed from a 3D image to a 2D view on
it. As discussed in [50] it is important to transform the BIM coordinates to im-
age coordinates taking the image camera parameters into account. Finally, the
RANSAC iterating mechanism is used to find the best match in the BIM file using
the vanishing points and the room layout.
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2.4 Conclusions and future work
This chapter presented the basics of spatial information, more specifically the BIM
and GIS framework. The first novelty of this research is the investigation and the
exploration of spatial information specific for fire safety design, evacuation and
fire investigation. The second novelty of this chapter is the semantic matching
of computer vision techniques and BIM data to facilitate localization and situa-
tional awareness problems in fire emergency situations. It is important to remark
that building models need to be up-to-date, complete and rich in detail. Currently,
however, the building models are only used during construction and are mostly not
updated afterwards, limiting their practical applicability. However, we expect that
this will change in the upcoming years since more and more researchers start to
explore the link with BIM in a wide range of application domains. The following
chapter, focusing on probabilistic room understanding, can assist in the decision
process and will help further automate the real-time configuration and layout de-
tection in a building.

The results of the research presented in this chapter have led to new research
initiatives and collaborations between IDLab, the geography department group
of Ghent University and the department of flow, heat and combustion mechan-
ics. Researchers of the geography department are developing an adaptive system
for route instructions according to the perceived level of complexity at a decision
point. The intricacy is derived from a space syntax mapped on the BIM visibility
graph. Finally, the work presented in this chapter has inspired Chen et al. [54] to
create a BIM-based real-time visualization and warning system for fire rescue ser-
vices and Beata et al. [55] to develop a monitoring and visualization mechanism
for post-ignition fire state analysis.
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Beers, Robert Voûte, Bart De Lathouwer, Matty Lakerveld, H Djurrema, and
G Spaling. Slimme 3D indoormodellen ter ondersteuning van crisismanage-
ment in grote openbare gebouwen. 2015.

[33] Tee-Ann Teo and Kuan-Hsun Cho. BIM-oriented indoor network model for
indoor and outdoor combined route planning. Advanced Engineering Infor-
matics, 30(3):268–282, 2016.

[34] Hongxia Wang, A Gluhak, and H Tafazolli. Integration of BIM and live
sensing information to monitor building energy performance. In CIB W78
International Conference, Beijing, 2013.

[35] Jianli Chen, Tanyel Bulbul, John E Taylor, and Guney Olgun. A case study
of embedding real-time infrastructure sensor data to BIM. In Construction
Research Congress 2014: Construction in a Global Network, pages 269–278,
2014.

[36] Muhammad Arslan, Zainab Riaz, Adnan Khalid Kiani, and Salman Azhar.
Real-time environmental monitoring, visualization and notification system
for construction H&S management. Journal of Information Technology in
Construction (ITcon), 19(4):72–91, 2014.



CHAPTER 2 2-27

[37] Rob High. The era of cognitive systems: An inside look at IBM Watson and
how it works. IBM Corporation, Redbooks, 2012.

[38] Bimal Kumar, Hubo Cai, and Makarand Hastak. An Assessment of Benefits
of Using BIM on an Infrastructure Project. In International Conference on
Sustainable Infrastructure 2017, pages 88–95, 2017.

[39] Hernandez Paul. Research Roadmap Traces the Path to’Smart’Fire Fighting.
2015.

[40] Mitra Baratchi, Lennart Teunissen, Peter Ebben, Wouter Teeuw, Jan
Laarhuis, and Maarten van Steen. Towards decisive garments for heat stress
risk detection. In Proceedings of the 2016 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing: Adjunct, pages 1095–1100.
ACM, 2016.

[41] Sebastian Feese, Bert Arnrich, Gerhard Troster, Michael Burtscher, Bertolt
Meyer, and Klaus Jonas. CoenoFire: monitoring performance indicators
of firefighters in real-world missions using smartphones. In Proceedings of
the 2013 ACM international joint conference on Pervasive and ubiquitous
computing, pages 83–92. ACM, 2013.

[42] Jaziar Radianti, Mehdi Ben Lazreg, and Ole-Christoffer Granmo. Fire
simulation-based adaptation of SmartRescue App for serious game: Design,
setup and user experience. Engineering Applications of Artificial Intelli-
gence, 46:312–325, 2015.

[43] ThunderHead Eng. PyroSim User Manual. The RJA Group Inc, Chicago,
USA, 2011.

[44] Kevin B McGrattan, Randall J McDermott, Craig G Weinschenk, and
Glenn P Forney. Fire dynamics simulator, technical reference guide. Techni-
cal report, 2013.

[45] A. J. Diaz-Honrubia, Johan De Praeter, J. L. Martinez, P. Cuenca, and Glenn
Van Wallendael. Reducing the complexity of a multiview H.264/AVC and
HEVC hybrid architecture. JOURNAL OF SIGNAL PROCESSING SYS-
TEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 90(2):249–
258, 2018.

[46] Tom Paridaens, Glenn Van Wallendael, Wesley De Neve, and Peter Lam-
bert. AFRESh : an adaptive framework for compression of reads and as-
sembled sequences with random access functionality. BIOINFORMATICS,
33(10):1464–1472, 2017.



2-28 SPATIAL INFORMATION
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3
A probabilistic method for room

configuration understanding

The previous chapter focused on the necessity of room and object information for
fire behavior analysis. Within this chapter, our methodology for the indoor room
configuration understanding process is explained. First, an introduction is given
into computer vision principles, scene detection and visual object recognition.
Subsequently, transfer learning is applied on a thermal image object dataset. Ob-
ject detection in the thermal domain is a prerequisite to have a stable mechanism
in case of reduced visibility in the visual domain due to smoke in the fireground.
Next, because of the high computational cost of the object detection, methods for
object tracking are proposed. Once an object is detected, we use the tracking to
follow it in the subsequent frames. In order to further improve the accuracy of the
room configuration understanding, this chapter also proposes a method to com-
bine scene type classification and object detection. Finally some guidelines for
detailed object understanding for fire forecasting are discussed.
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3.1 Introduction
The definition of computer vision has changed over the years from ”The construc-
tion of explicit, meaningful descriptions of physical objects from images”, Ballard
et al. [1] up to ”Make useful decisions about real physical objects and scenes
based on sensed images”, Mahendran et al. [2]. The major change in definition is
due to the inclined complexity in visual recognition tasks (e.g., face recognition,
self-driving cars). Older studies heavily focused on feature engineering where fea-
tures are generated based on statistical analysis, previous knowledge and feature
performance evaluation. This requires expensive human labor and mostly relies on
expert knowledge. Furthermore, the semantic gap between hand-crafted features
and ’learned’ features increases. A more recent trend is to use feature learning
techniques where different positive and negative samples are shown to the system
and, based on these examples, the parameters of the network are changed accord-
ingly. The learned features are often more black box compared to the hand-crafted
features (e.g., color or shape parameters). Still recent papers show that it is feasi-
ble to understand the deeper image representations [2].

A feature is described in literature as a piece of information necessary to solve
a computer vision task (e.g., an edge, a specific pattern or a descriptive color).
To uniquely describe an image, features should be repeatable and accurate. More
specifically the following conditions should be met:

• Invariant to translation, rotation and scale changes, i.e., the selected feature
should be similar in case the camera is tilted, rotated or zoomed.

• Robust for covariant transformation, more specifically, the feature should
be identical in case the viewpoint changes.

• Robust to lightning variations, noise, blur and quantization. The feature
should, for example, remain stable all outdoor or indoor lightning condi-
tions. The feature should also remain stable if the image is compressed (up
to a certain level).

• Robust to occlusions, i.e., the feature should remain useful in case the object
is only partly visible due to another object.

• Robust to inter-category variation. The feature should, for example, be sta-
ble to recognize a chair with different colors, different linings or patterns.
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Besides the definition, the core applications of computer vision have also changed
over time. Initially, the main focus was on color and shape analysis, but currently,
the key components are classification, localization and segmentation.

• Image classification: The general problem is to predict the category or label
of an unseen image (e.g., image with fire or image without fire).

• Object localization: This task is bipartite and combines object detection
(where is the object located in the image) and object recognition (which
semantic class the object belongs to). The visualization can be, for example,
a bounding box around the flames and a bounding box around the burning
object.

• Image segmentation: This process indicates for each pixel in the image the
semantic class. The result is a classification on fire pixel level instead of
image level.

Figure 3.1 gives a conceptual overview of the components: classification, localiza-
tion and segmentation in a fire context.

Figure 3.1 Fire/non-fire classification (top left), object localization: couch and
flame (right) and fire region segmentation (bottom left). (source: EXOVA-VIPA
study)
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Global framework

In order to understand which object is burning, in which room the camera is located
or to recognize the objects in the room, we propose the indoor-fire recognition
framework shown in Figure 3.2. The input of the system is:

• A closed-circuit television (CCTV) camera, where motion detection notifies
in which particular frame there are changes compared to the previous state.

• A monocular view of a hand-held thermal camera, where local motion de-
tection is not useful due to the presence of global camera motion.

The scene detection and the object detection on the camera stream are combined to
retrieve the burning object or the objects inside the particular room. Furthermore,
surrounding object annotations will facilitate the interpretation of the fire behav-
ior. By tracking the objects in time, we reduce the computational cost of the object
detection block. However, it is important to note that new object detection mech-
anisms run at amazing speed on limited hardware. This could mean in the future
that the tracking block could be neglected. Subsequently, if the burning object is
known it can be linked to a building model of the specific location (see previous
chapter). The smoke and fire sensor analysis is not taken into account here since it
will be intensively discussed in the next chapter. Finally, the output of our system
could be (for instance) the following text message: The couch is burning in the
left corner of the bedroom” or ”The fire is located in the bottom right of the couch
and the visibility is good. The output of the systems can also be a visualization or
update of the indoor BIM information. In order to achieve this final goal we focus
on the following building blocks:

• A motion detection module,

• An object detection and recognition block,

• A scene classification block for location estimation verification,

• An object tracking framework,

• A smoke-fire location analysis block, which will be explained more thor-
oughly in next chapter.

The outline of this chapter is as follows: Section 3.2 will discuss the scene un-
derstanding and the object detection process in the visual domain. Subsequently,
Section 3.3 will describe the object localization in the thermal domain. In the
current set-up the motion estimation and object tracking are used as optimization
tools to create a scalable system with multiple camera inputs. This will be further
explored in Section 3.4 in combination with the network optimization. Further-
more, in Section 3.5 scene type classification and object detection are combined to
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Figure 3.2 Indoor-fire recognition framework: the input is a fixed or handheld
camera, the processing consists of the scene and object detection on the camera
stream, the object tracking and the generation of textual messages of the scene
status or a visualization in the BIM file.
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improve the probabilistic room configuration. Finally, 3D object recognition and
material type detection are described to increase the object understanding process.

3.2 Visual scene understanding

Being able to classify the scene type (e.g., kitchen, living, salesroom) in the field
of view of the camera will facilitate the location estimation and understanding.
Due to differences in object types, shapes and texture features that construct the
scene, this is still a challenging task. Recent deep learning based approaches [3],
however, seem to be able to perform the classification with high accuracy. By
embedding this semantic information of the scene in the room layout estimation,
better estimations can be made in the localization process. As such, when the
scene type can be detected, it is included in this process.

3.2.1 CNN models

Before going into detail in the classification optimization task a short overview
is given of the state-of-the-art convolutional models. Some of the most popular
architectures, that are used in many application domains, are VGG/ InceptionNet
and Resnet. For more clarification of the terms and mathematical explanations, we
refer to Appendix 1.
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1. VGG - The VGG16 and the VGG19 network architecture were introduced
by Simonyan et al. [3]. These network are characterized by their simplicity,
using only 3x3 convolutional layers stacked on top of each other in increas-
ing depth. Reducing volume size is handled by max pooling (i.e., a sample-
based discretization process. It filters the less important features, passing the
most important to the following convolutional layer.). Two fully-connected
layers, each with 4,096 nodes are then followed by a softmax classifier. The
16 and 19 stands for the number of weight layers in the network. There are
two major drawbacks of the VGGNet, that makes deploying VGG a heavy
task:

• It is extremely slow to train compared to smaller networks. The VGG-
16 network takes 128.62ms for one step on a GTX 1080 GPUU device
with 8GB of memory compared to the Alexnet that only takes 14.56ms
on the same set-up [4].

• The network architecture weights themselves are quite large (in terms
of disk/bandwidth). Due to its depth and number of fully-connected
nodes, VGG is over 533MB for VGG16 and 574MB for VGG19.
However, recent microSD cards of a size of 16GB are not uncommon
anymore.

VGG is used in many deep learning image classification problems. How-
ever, smaller network architectures are often more desirable, but require
more optimization.

2. ResNet - Unlike traditional sequential network architectures such as AlexNet
[5], OverFeat [6], and VGG [3], residual networks, such as ResNet [7], rely
on micro-architecture modules to construct the network. The core idea of
the micro residual module is the identity shortcut connection that skips one
or more layers.

First introduced by He et al. in 2015 [7], the ResNet architecture has be-
come a seminal work, demonstrating that extremely deep networks can be
trained using standard stochastic gradient descent (and a reasonable initial-
ization function) through the use of residual modules. In 2016 He et al.
updated their implementation by using identify mappings and this increased
the general accuracy. Even though ResNet is much deeper than VGG16 and
VGG19, the model size is actually substantially smaller (e.g., 102MB for
ResNet50).
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3. Inception - The Inception micro-architecture was first introduced by Szegedy
et al. [8] in 2014. The goal of the inception module is to act as a multi-level
feature extractor by computing 1x1, 3x3, and 5x5 convolutions within the
same module of the network. The output of these filters are then stacked
along the channel dimension before they are fed into the next layer in the
network. Originally, this architecture was called GoogLeNet, but subse-
quent versions have simply been called Inception vN where N refers to the
version number put out by Google. The weights for Inception V3 are smaller
compared to the VGG and ResNet, summarized in 96MB.

In summary, each of the three architectures are suitable to be easily fine-tuned
on new tasks and a trade-off should be made between accuracy and performance.
Still, fine tuning for classification, localization or segmentation requires real-world
annotated data (e.g., indoor fire scene datasets), which are currently not common
available. Future work should in that context create a system where all the video
incident videos can be collected and annotated. Therefore changes to the privacy
law should be made as it is currently not allowed to stream and capture incident
videos without permission of the building owner.

3.2.2 Visual scene type detection

Over the last decade, several literature studies have already shown impressive re-
sults regarding the classification of indoor and outdoor scenes [9], and more recent
studies have added the ability to predict more detailed attributes, such as the scene
type, e.g., kitchen, living room, or bedroom. Zhou et al. [10] constructed a new
scene-centric database named Places, containing over 7 million labeled pictures
of scenes distributed over 365 classes. Currently, the state-of-the-art systems for
scene classification are based on CNNs, mostly trained using a transfer learning
approach on the Imagenet models see (as shown in Figure 3.3)1. Transfer learn-
ing is a machine learning technique where you ’transfer’ the knowledge of the
solution from a related task, that has already been illustrated to work, to a new
task. Frequently, people pretrain the convolutional network on a large existing
dataset (e.g., MNIST, CIFAR, Imagenet or COCO) and then use the network as a
fixed feature extractor or use it for initialization before finetuning the final system.

For the scene classification task the current highest top-5 accuracies (i.e., is the
accuracy over all predictions given that the correct class is in the Top-5 highest
probabilities of the model) achieved on this Places dataset are 84,91 percent, using
the VGG deep CNN [11] and 85,08 percent with the RESNET architecture [7].
Figure 3.4 shows the output of this scene classification approach on indoor scene
images.

1See Appendix B.3.5
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Figure 3.3 Transfer learning process where you first train the model on a large
auxiliary dataset and then finetune the model on a specific target dataset.
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Figure 3.4 First and second scene classification results (certainty probability be-
tween 0 and 1) (source: LSUN-dataset)
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3.2.3 Visual object localization

In general, object localization consists of two steps: object detection and object
recognition (see Figure 3.5). The aim of object detection is to find out where an
object is located in the image, whereas object recognition identifies the semantic
class (e.g., couch, chair, table) to which an object belongs. Even though it is a very
hot topic in the field of computer vision, there are still some challenges to fully
automate the recognition pipeline. The main problem is the large variety of object
appearances due to changes in illumination, occlusion, clutter, object pose, view-
point and non-rigid deformations. A common approach to tackle this issue in the
visual domain is to employ CNN architectures [12, 13]. Girshick et al. [14] stated
that supervised pre-training on a large auxiliary dataset such as ImageNet [5], fol-
lowed by domain-specific fine-tuning on a small dataset is an effective paradigm
for learning high-capacity CNNs when the available data is scarce. Lu et al. [15]
on the other hand showed that transfer learning largely enhances the localization
accuracy in the dark environments. Huang et al. [16] gave an overview of the
accuracy of the state-of-the-art object detectors (i.e., the single shot detector, the
Faster-RCNN architecture and the recurrent fully convolutional network) and their
performance.
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The following paragraph will give more details on the state-of-art object detectors
according to Huang et al. Faster-RCNN: Faster-RCNN consists of two modules:

• Region Proposal Network (RPN): gives a set of rectangles based on a deep
convolution layer. Basically the RPN slides a small window (3x3) on the fea-
ture map, that classifies what is contained inside the window as foreground
or background, and also gives the bounding box location of the detected
foreground. For every sliding window center it creates a fixed amount of
anchor boxes, and classifies these boxes as object or non-object.

• Fast-RCNN Regions Of Interest (ROI) pooling layer: classifies each pro-
posal (from previous step), and refines the proposal location based on the
regression loss.

Single Shot Detector (SSD): single shot detector is a first attempt to perform
object detection in embedded and regular hardware devices. Instead of having a
region proposal framework there is a set of pre-defined boxes to look for objects.
At prediction time, the network generates scores for the presence of each object
category in each default box and produces adjustments to the box to better match
the object shape. Additionally, the network combines predictions from multiple
feature maps with different resolutions to naturally handle objects of various sizes.

A similar architecture is the YOLO framework [12] where object locations and
classes are estimated from one single network. Still the localization errors of the
first YOLO version are higher compared to the SSD mechanism. The most recent
version YOLOv3 on the other hand replaces the softmax function with indepen-
dent logistic classifiers to calculate the likeliness of the input in order to belong to
a specific label. This makes the object classes not mutually exclusive.

Region Based Fully-Convolution Neural Network (R-FCN): Residual connec-
tions allow shortcuts in the model and have allowed to train even deeper neural
networks, which have led to even better performance. This has also led to signifi-
cant simplifications of the Inception blocks. The main difference with the Faster-
RCNN architecture is that the region-based detector is fully convolutional with
almost all computation shared on the entire image.

Performance

In the past (before 2017), most paper tried to increase the accuracy without taking
into account the real-time usability and the possibility to integrate the architecture
into a low-cost set-up. However, recently there is a huge increase in the usage of
deeplearning in real-time applications. Subsection 3.4.3 will go more into detail
in the possible real-time optimizations. Only a small set of papers commented on
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Figure 3.5 Object localization consists of two steps: object detection and object
recognition. (source original images: IKEA-Ghent)
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the speed/accuracy trade-off, which depend on different factors (i.e., which feature
extractor is used, what is the input image size and how many objects are there on
a frame). Based on the results of the paper of Huang et al [16] the following
selection criteria are discussed:

• Use the Single Shot Detector (SSD) for best speed performance [17].

• Use the R-FCN and the Faster RCNN for the best balance between speed
and accuracy [18].

• Use the Faster RCNN if accuracy is the most important factor. If the number
of object proposals is restricted to 50 objects in the Faster RCNN model it is
even possible to get similar calculation times as the R-FCN network, without
heavily reducing the accuracy. [19].

Figure 3.6 gives a graphical overview of the performance of the Faster RCNN,
the R-FCN and the SSD detector framework and their processing time on a GPU
device. The detection performance (i.e., 7 frames per second for the Faster RCNN
framework on a GPU server) is acceptable for one video, but it is untenable for real
deployments at global scale. To put the computational hardware price of a GPU
server in context, it would cost over 5 billion USD for hardware alone to analyze
all the existing CCTV systems in the UK in real time [20]. To make the detection
more feasible we will discuss two optimization methods (i.e., motion detection and
object tracking) in Section 3.4.



A PROBABILISTIC METHOD FOR ROOM CONFIGURATION UNDERSTANDING 3-11

Figure 3.6 Mean average precision versus GPU processing time for different net-
works and object detection models. (source: Huang et al.)

In our framework we want a balance between accuracy and speed. Therefore the
loss optimization of the Faster-RCNN network is explained more thoroughly. The
Faster-RCNN combines a loss function (see Equation 3.1), the penalty for bad pre-
dictions, for two tasks: the localization error and the classification error:
Loss=Lossclassification + Losslocalization. The p stands for the probability of
the box i being an object, * is the ground truth label, t are the coordinates of the
box i and N are normalization constants.

Loss(pi, ti) =
1

Ncls

∑
Losscls(pi, pi∗) +

λ

Nbox

∑
pi ∗ .Lsmooth1 (ti − ti∗)

(3.1)
Although the classification loss is a multi-class loss function (as it needs to predict
several class labels), it can be easily transformed into a binary classification loss
where you indicate if the class is a particular object class (see equation 3.2) or not.
The reason to use the log function is that it heavily penalises classifiers that are
confident about an incorrect classification.

Losscls(pi, pi∗) = −pi ∗ .logpi − (1 − pi∗).log(1 − pi) (3.2)

In the visual domain the object detection mechanisms are shown to work, but the
study on the application of certain techniques on thermal images is limited. Still
recent papers (2018) show the feasibility of object detection in the thermal do-
main [21, 22]. Finally, infrared object recognition can be vital and beneficial in
circumstances with reduced visibility (i.e., due to the smoke in case of a fire).
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3.3 Thermal object detection
Despite the broad application of handheld thermal imaging cameras in firefighting,
its usage is mostly limited to subjective interpretation by the person carrying the
device. As remedies to overcome this limitation, object localization and classi-
fication mechanisms could assist the fireground understanding and help with the
automated localization, characterization and spatio-temporal (spreading) analysis
of the fire. An automated understanding of thermal images can transform the con-
ventional knowledge-based firefighting into sensor-driven based firefighting. In
this chapter, transfer learning (See Appendix B for more technical details) is ap-
plied to multi-labeling convolution neural network architectures for object local-
ization and recognition in monocular visual, infrared images. Thermal imaging
(wavelength around 10 micron) is a particular part of the infrared imaging field
(infrared has wavelengths of 0.7 up to 300 micron). Thermal cameras measure the
absolute temperature of the object and the cameras are able to work in complete
darkness.

Automatic image recognition is a hot research topic in the field of visual data
analysis, but there is less study on the application of such techniques on infrared
images. Some examples of applying CNN architectures on infrared images are the
work of Wu et al. [23, 24] who focused on the detection of humans in dark envi-
ronments. Janssens et al. [25] that used infrared images to perform fault detection
in bearings and Gundogdu et al. [26] who detected suspicious objects in dark mar-
itime scenes.

Thermal images are useful modalities for investigating low-visibility or dark envi-
ronments, e.g., during a fire when there is limited visibility due to smoke. In build-
ings, for example, that contain many different objects made of different materials
(e.g., wood, plastic, steel), a thermal image can be used to analyze the amount
of heat radiated by each material. For many objects, these radiation profiles are
unique, making it possible to recognize objects independent of the luminance. For
this reason, the focus of this section is on the recognition of building interior ob-
jects by means of handheld thermal images, i.e., a research topic that has limited
been addressed so far [27].
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3.3.1 Thermal and visual aligned dataset creation

The major drawback of a supervised learning algorithm is the need for labeled
training data. There are two major options: you can use publically available
datasets or you can create your own dataset. The open-source datasets have mostly
a higher annotation accuracy, but the annotations are not always detailed or spe-
cific enough for a new classification or recognition task. Some well-known public
datasets are:

• Common Objects In Context (COCO) [28]: large-scale object detection,
segmentation, and captioning dataset.

• ImageNet [5]: single image annotation organized by the semantic hierarchy
of WordNet.

• Cityscap dataset [29]: stereo video sequences recorded in street scenes from
50 different cities, with high quality pixel-level annotations.

In order to create your own datasets with highly specific annotations, you can anno-
tate the data yourself, which is a slow process, but the quality is more guaranteed.
On the other hand you can use the wisdom of the crowd (i.e., ask several people
online, ’in the crowd’ to annotate the dataset). Although the quality often suffers,
the processing speed increases significantly. Furthermore, there are quality mea-
surements, (such as, multiple person annotation checks) to improve the general
quality. There are different online platforms available that offer image annotation
tasks online, such as: Crowdflower [30] that allows the upload of video resources,
images and text files; Amazon Mechanical Turk2 and Google image labeler3.

In order to evaluate the proposed infrared object detection methodology, a dataset
is constructed with thermal and visual images [31]. To the best of our knowledge,
it is the first indoor scene dataset that combines different spectra of indoor objects.
Vidas et al. [32] introduced a related dataset with aligned RGB-D and thermal im-
ages from building interiors, but no bounding box annotations were provided, mak-
ing the dataset useless for object detection verification. Furthermore, the dataset
focuses too hard on office scenes making it not useful to annotate them manually.

The images of our dataset are captured with a Flir One4 thermal camera device.
The main advantage of this camera is that thermal and visual images are aligned.
This enables us to easily transfer the annotations in the visual domain to the ther-
mal domain without any further calibration, outlining or rectifying. This is a major

2https://www.mturk.com/mturk
3https://crowdsource.google.com/imagelabeler
4http://www.flir.eu/flirone/ios-android/
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advantage compared to the previous visual-thermal datasets, in which a check-
board with high contrast in thermal wavelengths was used [33] to calibrate both
cameras. It is important to mention that the samples of the current dataset have
been collected in standard indoor, non-heated circumstances. As part of future
work, we will investigate the impact of the heating during a fire on the object lo-
calization performance. In this regard, several real fire footages will be collected
and annotated. Furthermore, novel multispectral devices [34] will also be evalu-
ated in the fire investigation context.

The visual domain samples of our dataset were annotated with a bounding box
and semantic class label with the well-known LabelMe toolkit [35]. The annota-
tions are then copied to the thermal images. Table 3.1 lists the amount of samples
per class. Finally, it is important to remark that the thermal images are taken with
a low-cost handheld device and there could be some artifacts in the images due to
clutter or motion instability.

Table 3.1 Enclosure object dataset statistics: number of samples for each object.

Object name Number of samples Object name Number of samples
Closet 247 Window 57
TV or Screen 29 Person 8
Lamp 227 Table 141
Bed 30 Chair 173
Couch 141 Potted plant 56

3.3.2 Multi-label convolutional network

The neural network that we use is based on the Faster-RCNN architecture in-
troduced in Section 3.2.3. This architecture initiated the automated region pro-
posal technique for object detection which is different compared to conventional
methods that utilize selective search [36] or low-level features such as superpix-
els [37]. First, we adapted the final Fast-CNN layer to the ten classes in our dataset.
Then, the weights of the VGG16 (Visual Geometry Group) [38] pre-trained on the
COCO-dataset [28] are used to initiate the architecture. In the next step, the learn-
ing rate was reduced and early stopping (i.e., a technique to avoid overfitting by
limiting the amount of epochs one epoch is one pass of the full training set to train).
was used to avoid overfitting (i.e., occurs when the model learns the details and the
noise in the training data while having a negative impact on the performance of the
model on new data) on the new indoor object dataset. Beside the small learning
rate, it is also possible to use a decaying learning rate [39] every few epochs (i.e.,
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every couple of epochs reduce the learning rate), but this did not lead to any ma-
jor changes/improvements. Finally, the joint approximate training (simultaneously
optimize the detection and classification task) was used to jointly train the Region
Proposal Network (RPN) module [13] and the Fast-RCNN network. The main
advantage of this approach is that the network automatically learns the underlying
representation of the data without manual intervention.

3.3.3 Evaluation and discussion

The fine-tuned network has been evaluated with cross validation on 80% of the
dataset while the remaining part (20 %) of the dataset was considered as the test
set. The mean Average Precision (mAP) evaluation metric, with values between 0
and 1 (higher is better), is commonly used for the evaluation of object localization.
While the average corresponds to the area under the precision-recall curve for a
class, the mean of these average individual-class-precision gives the mean Aver-
age Precision. To summarize, the mAP score is calculated by taking the mean AP
over all IoU thresholds. In addition, a qualitative evaluation of the object detection
is performed on the training and test sets. Some examples are shown in Figure 3.7.
From these examples we observe that there are more objects detected in the vi-
sual images. Also, the certainty of the predicted objects in the visual spectrum is
higher compared to the thermal images. Nevertheless, the fact that many objects
are correctly detected in the thermal image supports the feasibility of our proposed
methodology for thermal object detection.

In order to improve the recognition performance, histogram stretching and gamma
correction are used as pre-processing steps to make the images more clear and to
increase the contrast. In the case of the thermal images, the mean average pre-
cision increased by 22% relatively compared to the original images (without pre-
processing). Table 3.2 depicts the mean average precision for the object detection
module on the test set. In this table, we also compare the output of the pre-trained
weights of the COCO dataset. According to the results, the fine-tuned system sig-
nificantly improves the traditional COCO system. This confirms the statement of
Girshick et al. [14] that ”the fine-tuned network outperformed the randomly ini-
tialized pretrained network”. The results for the thermal images are lower than
the visual images, but this was already indicated by the subjective evaluation. Fur-
thermore, there are some objects that radiate the same amount of heat in standard
environments which makes the object localization task more difficult. This issue
can possibly be solved by using hyperspectral cameras.
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Figure 3.7 Subjective evaluation of the object detection framework in the Visual,
Thermal
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Table 3.2 Mean average precision (average over multiple Intersection over Union
(IoU), where the minimal overlap region is 50%) on the test dataset

Object name mAP COCO visual mAP fine-tuned visual mAP thermal
Bed 0.171 0.418 0.143
Chair 0.102 0.348 0.027
Closet 0.006 0.237 0.024
Couch 0.330 0.381 0.108
Lamp Not in the dataset 0.171 0.059
Person 0.035 0.500 0.500
Potted plant 0.000 0.089 0.001
Table 0.000 0.281 0.023
Tv or screen 0.250 0.129 0.018
Window Not in the dataset 0.141 0.056
Average 0.112 0.269 0.096

Given that the current dataset is rather small, we propose to further extend the
dataset with additional samples from indoor fire scenes. More data samples will
most likely increase the final precision of the system. Our main goal, however,
was to show the possibilities of our proposed approach.

3.4 Real time optimization

The proposed object detection framework is able to process 7 frames per second
(from one camera) on a standard GPU device. Optimization mechanisms will be
necessary to make a feasible real time system that analyses several static CCTV
cameras or a handheld camera without GPU power. The following list gives some
suggestions for performance optimization:

• Motion detection (i.e., indicate the frames that have changes in time) via
background modeling: the scene and object detection is only run in case
there is movement in the field-of-view.

• Object tracking: once the object is detected, you track or follow the object
in the camera until the object disappears in the field-of-view.

• Optimized mobile networks, such as mobilenet to reduce the memory con-
sumption of the neural network in an embedded device.

• Contextual and temporal exploitation (see Section 3.5): given that a chair
was detected in a frame, the probability to detect a table in a following frame
is higher.
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Table 3.3 Performance metrics of evaluated motion algorithms
Methods recall Specificity FPR FNR Precision F-measure
GMM 0.6226 0.9687 0.0313 0.3775 0.4986 0.4760
KDE 0.6866 0.9195 0.0806 0.3134 0.3764 0.4075
CodeBook 0.3855 0.9888 0.0112 0.6145 0.6119 0.4105
AGMM 0.5603 0.9719 0.0274 0.4397 0.6342 0.5389
SACON 0.3822 0.9449 0.0551 0.66178 0.4626 0.2396
Vibe 0.4651 0.9868 0.0131 0.5349 0.653 0.4718
PBAS 0.5079 0.992 0.008 0.4921 0.709 0.5505

Table 3.4 Processed frames per second for the evaluated motion algorithms
Size GMM KDE CodeBook AGMM SACON Vibe PBAS
320 x 320 47.9 51.1 53.1 61.8 22.2 61.8 20.7
540 x 360 21.1 35.1 19.6 53.3 7.8 52.5 14.6
720 x 480 14.7 9.5 15.2 29.2 4.2 31.5 8.1

3.4.1 Background modeling and movement detection

In order to extract the background, and eventually detect the motion, the video
scene should be accurately splitted in foreground (motion) and background (static).
We compare different algorithms using a set of standard accuracy metrics and in-
vestigate their computational requirements on a publicly available dataset.

The test procedure for the motion estimation is based on the results of the work
of Xu et al. [40]. Xu compared eight different algorithms (GMM, KDE, Code-
Book, AGMM, SACON, SOBS, Vibe, PBAS) on the Change Detection Bench-
mark (CDB) [41]. In Table 3.3 and Table 3.4, a general overview of the perfor-
mances and computational properties of all algorithms is given. They conclude
that AGMM, SOBS, Vibe, and PBAS give the most promising results. However,
they noticed that sophisticated methods do not always produce more precise re-
sults.

In [42] a comprehensive review is given of the performance of all algorithms
present in the BGSLibrary [43]. This library provides an easy-to-use C++ frame-
work based on opencv [44] to perform foreground-background separation in videos.
The algorithms are evaluated on the Background Models Challenge (BMC) dataset.
This dataset is composed of 20 synthetic videos and 9 real videos. Their main con-
clusion is the high computational cost of their five best methods.
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We conducted our own experiments on a subset of the Change Detection Bench-
mark, namely the subcategories Baseline (containing four videos) and Intermittent
Object Motion (containing six videos) to enable a proper evaluation based on a
combination of accuracy and speed. We focus on a number of default algorithms
present in the well-known library opencv as well as some other more recently de-
veloped methods.

Change detection benchmark

This dataset contains 11 video categories (Baseline, Dynamic Background, Cam-
era Jitter, Intermittent Object Motion, Shadow, Thermal, Bad Weather, Low fram-
erate, Night Videos, PTZ, Turbulence) with 4 to 6 videos sequences in each cate-
gory. As stated above, we only make use of the category Baseline and Intermittent
Object Motion. The motivation behind this is the fact that our video data (in-
door video scene data) is mostly similar to these two categories, while the other
categories show much less resemblance to it and would possibly confuse our re-
sults. Still the other results could be valuable for the evaluation of handheld video
footages (i.e., handheld videos can contain camera jitter, low framerate, turbulence
and dynamic backgrounds). Finally, the ground truth images contain 5 labels (i.e.,
0: static, 50: hard shadow, 85: outside region of interest, 170: unknown motion,
255: motion).

Methods

We include a number of existing algorithms in our comparative analysis. The
extensive description of these methods can be found in their corresponding pa-
pers. Furthermore, we also tested the majority of algorithms available in the bgsli-
brary [45].

MEDIAN BACKGROUND MODEL [46] The background is modeled based on the
median values of a buffer with a predefined length. The reactivity of the method
to changing backgrounds is depending on the length of this buffer. In order to re-
duce the computational resources the adaptivity of the background model can be
lowered by reducing the buffer size.

ADAPTIVE MEDIAN BACKGROUND MODEL [47] The background model is
a running median of the image sequence produced by the following method: each
pixel in the reference image is incremented by one if the corresponding pixel in
the current image is greater in value or decreased by one if the current image pixel
is less in value.
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MIXTURES OF GAUSSIANS [48] The background model models each pixel as a
mixture of Gaussians and uses an on-line approximation to update the model. In
this technique, it is assumed that the intensity values of every pixel in the video
can be modeled using a Gaussian mixture model. The pixels that do not match to
these distributions are predicted as foreground pixels.

GMG [49] This algorithm combines statistical background image estimation and
per-pixel Bayesian segmentation. It uses the first few frames for background mod-
elling. It employs a probabilistic foreground segmentation algorithm that identifies
possible foreground objects using Bayesian inference. The estimates are adaptive
and newer observations are more heavily weighted than old observations to ac-
commodate variable illumination. Several morphological filtering operations like
closing and opening are done to remove unwanted noise.

Evaluation and results

For each algorithm the average over all videos of the following measures is com-
puted: accuracy, precision, recall, F1 measure and average processing time per
frame. This is done by comparing the predicted foreground with the given ground
truth for each frame at pixellevel. As can be noted in Table 3.5, the best perform-
ing methods on the basis of the F1 score have a low accompanying FPS rate. As
mentioned in the literature there is a trade-off between accuracy and speed. Medi-
anBackgroundModel, Vibe and AdaptiveSelectiveBackground are among the best
performing algorithms, while also performing at a relatively high FPS rate.

In order to improve the performance of the system and to increase the accuracy
of the locations with motion an additional post-processing is performed. This step
consists of contour detection, bounding box area calculation and a non-maximum
suppression. Contour detection is a technique to find the boundaries (represented
as a rectangle) of continuous points in the frame (e.g., points having same color or
intensity). Area checking is used to avoid detected blobs or bounding boxes larger
or smaller than a preset value. Depending on the camera position this parameter
should be evaluated and changed for a particular context (i.e., the detection area
will be smaller for person detection in a shopping mall versus person detection in
a small hallway). Furthermore, from the scene detection step it is even possible to
estimate the maximal or minimal detection area. Currently, the maximum area of
a bounding box is set to 25% of the screen area. Non-maximum suppression is a
common technique in computer vision to combine/merge highly related detection
windows that belong to the same object. High scoring detections are maintained
whereas close-by less confident neighbors are removed since they are likely to
cover the same object. Refinement and evaluation is needed for each particular pa-
rameter of the motion estimation for each specific context. Finally it is important
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Table 3.5 A list of the best-performing algorithms evaluated based on a precision
and recall measures, as well as an evaluation on the basis of computational effi-
ciency
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to remark that the usability of the motion detection step to reduce the computa-
tional object and scene detection cost depends on the use case. In case the camera
is used in a region with high motion, the motion detection is neglected (e.g., during
opening hours in shopping mall it is maybe not afforded to run the motion detec-
tion step as every region will be classified as motion and every frame will be sent
to the object and scene recognition module). On the other hand by continuously
running the motion detection algorithm it is possible to have an overview of the
regions that have changed over time and only that regions should be investigated
and verified with the existing building model (see previous chapter).

3.4.2 Object tracking

The object detection should have a decent performance on the whole video (e.g.,
the couch should be recognized as a couch even if there are people sitting on the
couch). To increase the false negatives due to occlusion or low detection probabil-
ities a tracking mechanism is included in the software. When we are tracking an
object that was detected in the previous frame, we know a lot about the appearance
of the object and we don’t have to detect the object again in the next frame. We
also know the location in the previous frame and the direction and speed of its
motion (e.g. for a person). So in the next frame, we can use all this information
to predict the location of the object in the next frame and do a local search around
the expected location of the object to accurately locate the object.

It is common for tracking algorithms to accumulate errors and the predicted bound-
ing box often slowly drifts away from the real object it is tracking. Due to the
unpredictability and the non-common followed paths in fire behavior content this
ratio is currently rather high. To improve the performance of this tracklet (i.e., the
trajectory of the center of the object predictions in previous frames) it is possible
to retrain the Kalman-filter settings according to the specific use case.

A Kalman filter is an optimal estimator and infers parameters of interest from
indirect, inaccurate and uncertain observations. It is recursive so that new mea-
surements can be processed as they arrive. Firstly there is some prior knowledge,
on which the prediction is based. Secondly, the prediction is updated and refined
with new measurements. Thirdly, the output is produced and this result is also used
as prior knowledge for the next timestamp. More information and mathematical
details can be found in the work of Durrant et al. [50]

Within the opensource software opencv there are 6 tracking mechanisms included:
Boosting, MIL, KCF, TLD, MedianFlow an GoTurn. Still none of them is cur-
rently able to perform multi object tracking (e.g., tracking multiple persons on a
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security camera). They all need some kind of initialization and a parameter when
the tracking is lost. In order to solve the multi-object tracking problem the Hun-
garian method of Kuhn et al. [51] is used in our work.

The Hungarian method (or Munkres assignment algorithm) [51] is an optimization
algorithm that solves the assignment problem. The assignment problem consist of
a number of existing tracklets and a number of new detections. Any detection
can belong to any tracklet, incurring some cost that may vary depending on the
tracklet-detection assignment (e.g., closeness or smoothness of the tracklet curve).
Furthermore, it is required to link all detections by assigning exactly one tracklet
to each detection and exactly one detection to each tracklet in such a way that the
total cost of the assignment is minimized.

Simple Online Real-Time (SORT) tracking

The paper of Bewley et al. [52] reports that the detection quality has a significant
impact on tracking performance when comparing different detection mechanisms.
Methods which achieve the best accuracy tends to be the slowest. SORT combines
the two desirable properties: speed and accuracy without the typical drawbacks. A
Kalman filter and a Hungarian [51] method are used to handle the motion predic-
tion and data association components of the tracking problem respectively. When
a detection is associated to a target the detected bounding box is used to update
the target state where the velocity components are solved optimally via a Kalman
filter framework.

The task of object tracking is to create an unique ID when an object enters the
image and destroy the ID when the object leaves the image. The new tracker un-
dergoes a probationary period where the target needs to be associated with the
detections to accumulate enough evidence to prevent tracking of false positives.
Tracks are terminated if they are not used for a specific amount of frames (T-lost).
It is better to use a low value of T-lost and create new trackers then having many
unnecessary tracks. Furthermore, new tracks are created by any detection with an
overlap less than a predefined value. The major change in our framework is the
increased value of T-lost. Initially in the paper it was set to 1, but this requires
a new identity for objects reappearing. A new identity would also require a new
verification of the bounding box (new object detection on the frame each second).

Recently an improved version of the SORT method was proposed by Wojke et
al. [53]. By incorporating information through a pre-trained association metric the
algorithm is able to track through longer periods of occlusion. This effectively
reduces the number of identity switches. Due to the descriptor generation with
the residual convolutional neural network the processing speed is reduced to ap-
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proximately 20 Hz where roughly half of the time spent was on feature generation.
More research is necessary to optimize this algorithm for a real-time environment.

The proposed mechanisms for motion detection and object tracking are useful for
our static (i.e., fixed position and field-of-view) CCTV security cameras, but not
for handheld cameras due to the high motion. The next subsection will describe
a CNN model solution for real-time object detections in embedded or handheld
devices (as the tracking and the motion mechanism does not work in handheld
cameras due to the global motion). The combination of faster recognition mod-
els and motion detection mechanisms (e.g., indicate the rooms with configuration
changes) will also be used in static cameras to have a scalable system on all exist-
ing security cameras.

3.4.3 CNN model optimization

In the beginning of this chapter we described several CNN architectures suitable
for classification and object detection tasks. The accuracy of certain algorithms
is high, but the networks are not suitable for mobile and embedded vision ap-
plications. The MobileNet architecture [54] proposed by Google allows to deploy
detection tasks on low power computing resources, for example a smartphone. The
main novelty of the MobileNet model is the depth wise separable convolution filter.
The standard convolutional filters are split into a depth wise (each RGB channel is
kept separate) and a point wise filter (a 1x1 convolution across channels), drasti-
cally reducing the parameters and eventually the computation and model size, see
Figure 3.8.

The feasibility of the scene detection on the smartphone was tested by retrain-
ing the scene detection model of Section 3.2.2. Subsequently, the retrained model
was able to predict scenes in real-time on the camera sensor. The scene detection
mechanism was retrained on a selection of the Places dataset where the following
classes were selected (living room, kitchen, bedroom, dining room, office, bath
room and child room). The final accuracy after hyperparameter optimization was
90,6 percent on the trainings dataset, 72,5 percent on the validation and 72,8 per-
cent on the test set. This is lower compared to the initial results of the Resnet and
VGG model, but the actual classification speed is much higher. The Mobilenet on
an Iphone 7 can process 118 frames per second, which is more than 30FPS similar
to a standard video fragment, whereas the VGG network only processed 3 up to 4
images per second (for an input image of 224x224).
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Figure 3.8 Standard convolution operation on a 3-channel image (left) and depth
wise separable convolution operation on a 3-channel image (right), (source:
eli.thegreenplace.net)

3.5 Probabilistic scene understanding
Besides the performance optimization, which was discussed in the previous sec-
tion, it is important to improve the accuracy of the scene and object detections
(e.g., a sleeping room was quite often confused with a living room). This is firstly
possible by exploiting the context (i.e., the probability to predict a bed, given that
the room is a sleeping room is much higher compared to a kitchen and vice versa).
Secondly, in case the amount of objects in a particular scene, in the field-of-view of
the camera, are too small (e.g., a close-up shot), the accuracy of the scene predic-
tions results will be lower and they are then neglected. Finally, it is possible to cre-
ate a scene graph (see Figure 3.9) to describe the correlations between the objects
(e.g., a cup is standing on the table). Johnson et al. defined a scene graph [55], as
a structured representation of an image, where nodes in a scene graph correspond
to object bounding boxes (e.g., table, cup) with their object categories and edges
correspond to their pairwise relationships between objects (e.g., is standing on).
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Figure 3.9 Scene graph visualization: ”The chair is besides the table in the kitchen
and the cup that contains milk is standing on the table.”
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3.5.1 Contextual scene exploitation

Intuitively, individual predictions of objects and relationships can benefit from
their surrounding context. In our work we optimized the scene classification re-
sults by exploiting the object detections. First we learned the object co-occurrence
from the ObjectNet3D dataset [56]. Some preprocessing was necessary to remove
the objects that appear only once in the dataset. Furthermore the classes floor,
ceiling and wall were removed from the object dataset as they are not descriptive
for a specific room type. Secondly, the object-scene occurrence was derived from
the SUN RGB-D dataset [57] (annotated with the scene tag and the objects). The
visualization of the major classes of the object-co-occurrence is shown in Figure
3.10 and the scene and object occurrence is given in Figure 3.11.
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Figure 3.10 Object co-occurrence according to the SUN RGB-D dataset

The usability of the contextual process is twofold. Firstly the results of the scene
detection are improved (in case there is high uncertainty) by exploiting the prob-
ability of the detected objects (scene occurrence). The 5 major scene detection
classes are refined by taking the normalized score of the product of the particular
scene and the sum of the weighted object scores.

Secondly, the object-co-occurrence will assist the thermal object detection by in-
dicating the objects that are related to the detected classes. For example if a chair
is detected, there is a 60 percent chance that there will be a table in the same
scene. This can then be incorporated in the fire load calculation. Although there
are still errors possible, these mechanisms allows us to estimate more in detail the
fire complexity. Finally, the co-occurrence is currently derived from several ob-
ject and scene datasets, but the weights could be learned from labeled data. The
loss function would be the correctness of the scene label given a particular set of
objects.
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Figure 3.11 Scene occurrence, normalized by the scene tag (top), normalized by
the object tag (bottom).
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3.5.2 Scene location validation

The place recognition is working perfectly for frames with a lot of objects in the
camera. Still, for close-up shots the place detection algorithm fails to give decent
prediction results. It is hard to quantify the particular amount of objects necessary
to have a specific scene classification result. An evaluation was done on the NYU
scene [58] by investigating the impact of the zoom level of several ground truth
labeled scenes and the amount of particular objects that were detected with at least
50 percent certainty. As can be seen in Figure 3.12 there is a strong correlation
between the amount of detected objects and the certainty of the scene labels. If the
amount of detected objects is too low (i.e., less then 2 objects with 25 percentage
certainty detected), the scene detection result is neglected and the following frames
(that are zoomed out) should be used for scene detection. Instead of the camera
sensor, other information sources (i.e., ventilation conditions [59] or lightning set-
up [60]) could be used to determine or verify the room type.

Figure 3.12 Amount of detected objects (with 25 percentage certainty) in function
of the scene type accuracy on the LSUN dataset.
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3.6 Object metadata for fire understanding
The last section in this chapter will discuss the required object metadata for fire un-
derstanding. Besides the object and the scene labels we need (at least) information
of the 3D-cuboid of the object (i.e., the orientation, the volume and the position)
and the material where the object is made of. In this section we propose a method-
ology to incorporate this information in our framework. The implementation of
this final step, however, is outside the scope of this thesis. Finally, some details
are given on person detection as cameras are highly valuable to give information
about the presence of persons in the building.

3.6.1 3D object recognition

3D object detection is fundamental for detailed scene understanding (in case the
object dimensions and details are not available in the building model). Over the
past years many steps are taken in the 3D machine learning field which is an in-
terdisciplinary field that fuses computer vision, computer graphics and machine
learning. Initially, the focus was mainly on multi-sensor approaches (more specif-
ically on stereo-vision), but since last year more and more data driven approaches
are proposed where the 3D boxes or the pose-estimation are derived from large
datasets (for example the LSUN July 2018 challenge5, were 13000 indoor 3D
scenes were annotated). Mousavian et al. and Izadinia et al. [61, 62] proposed
a technique for estimating the 3D object detection and pose from a single image.
Luo et al. [63] combined the depth and the RGB image to make decent 3D detec-
tions. In general the problem can be described as a 6 degrees of freedom problem
(pose, position and dimensions of the object). Two main optimization solutions are
discussed in literature. Firstly, the detection results of Section 3.2.3 can be passed
as input to a pose estimation network. Secondly, the network can jointly perform
viewpoint estimation and 2D detection with a combined loss function. Finally, we
suggest to incorporate the work of Mousavian et al. for 3D object recognition in
our global scene understanding framework as it is possible to estimate the pose
and the dimensions from a single image (e.g., a standard security camera). It is
important to remark that the 3D recognition module should only be run (due the
computational cost) in case the motion and 2D object detection module recognize
changes in the scene configuration.

5http://rgbd.cs.princeton.edu/challenge.html
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3.6.2 Material type recognition

Besides the object type and the 3D cuboid, it is necessary to have an indication
of the material type before you can incorporate it in a fireforecasting system. A
chair made of plastics will have another fire curve than a hard wooden chair. In
literature several datasets are available: the Flickr Material Database [64] consists
of color photographs of surfaces belonging to one of ten common material cate-
gories: fabric, foliage, glass, leather, metal, paper, plastic, stone, water, and wood.
The FOD dataset [65] is a more challenging set with plastic, metal and stone ele-
ments in challenging and deformed conditions. Wieschollek et al. [66], Kalliatakis
et al. [67], and Bell et al. [68] indicated that deep neural networks are suitable for
the visual material type classification task with the available amount of labeled
data. Furthermore, Cho et al. [27] created recently (2018) an automatic material
recognition task with good performances (above 89 % mean accuracy from 15
indoor and 17 outdoor materials). The images were retrieved using a low-cost mo-
bile thermal camera integrated into a smartphone to capture thermal textures and
the images were collected within various temperatures. This allows to detect the
material type even in darkness or in a smoke, non-visible surrounding. With the
increased availability of thermal cameras there is a huge opportunity for increased
data collection in various challenging conditions. Finally the material recognition
step can be used to update or enrich the BIM model with more detailed material
information (e.g., the chair is made for 80 % of plywood and 20 percent of alu-
minum).

3.6.3 Person detection

Person (i.e., victim or evacuated people) detection are popular topics in computer
vision and different visual and multispectral benchmarks have been proposed in
literature [69]. The object detection mechanisms proposed in this chapter are, be-
sides detecting furniture, able to perform person detection. Another alternative is
to use engineered features or to train a simple CNN network that acts as a binary
classifier, more specific, is the bounding box a person yes or no (the box is the
region where there is motion detected in the scene).

Following paragraph will shortly evaluate the performance and the accuracy of
the feature engineered and feature learned based classifiers. The classifier was
trained on the INRIA training set [70], validated on the INRIA training set and
tested on the TUD-Motionpairs Pedestrian dataset [71]. Four models/techniques
were evaluated. Firstly the standard HOG and SVM combination. Secondly the
HOG feature extractor with an additional neural network consisting of two layers
for classification. Thirdly, the convolutional neural network consisting of 6 convo-
lutional layers and two fully connected layers.
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Table 3.6 Person detection results, evaluated on the INRIA and TUD-Motionpairs
dataset.

Training error Validation error Test error FPS
HOG + SVM 0.0033 0.0648 0.0902 107
HOG + 2-layer NN 0.0213 0.0486 0.0928 314
CNN 0.0147 0.0299 0.0817 280
Pre-trained CNN 0.0055 0.0027 0.0352 95

Fourthly, the fine-tuned VGG- network on the ImageNet dataset. From Table 3.6 it
can be clearly seen that the accuracy of the fine-tuned CNN network is the highest.
Still by comparing the accuracy gain versus the processing rate the CNN layer is
chosen in the architecture.

Video based solutions are usually applied in public spaces but are not acceptable
in private spaces such as Smart Homes for obvious privacy reasons. Furthermore,
they are not robust to occlusion and do not offer any way of recovering from un-
detected events. An alternative for person detection and privacy ensuring is to use
radar technology as proposed by Zhao et al. [72] or to use reasoning on other home
sensors: Renoux et al [73] and Marroquin et al. [74].

3.7 Conclusions and future work

In this chapter, we proposed a framework for automated fireground understand-
ing from images. Furthermore, we investigated the application of multi-labeling
CNN’s on object and scene detection in visual and infrared images. Moreover
the real-time optimization of the scene understanding framework was improved
by using motion detection, object tracking and model optimization. The usability
of the proposed framework is twofold. Firstly, the scene and object understand-
ing could facilitate firefighting robots as they need to understand the surrounding
before taking actions. Secondly, indoor scene understanding can optimize or con-
firm the current inside information available in the building information model.
Future work will focus on the optimization of the object detection, with more re-
cent techniques and scene detection in challenging conditions. On the one hand
an automated collection of infrared images from real fires could facilitate the data
collection process. On the other hand Yun et al. [75] showed that it is possible to
generate thermal information from a visual body camera with conditional genera-
tive adversarial networks. Subsequently, 3D object and scene recognition should
be further investigated with adapted CNN networks. Finally, future work will need
to incorporate the scene and object detections in building information models and
fire forecasting frameworks.
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4
Spatio-temporal fire characteristics

This chapter presents the general architecture of a multi-sensor geographic infor-
mation system that allows the effective use of sensor data and geographic infor-
mation in fire incident management and fire development analysis. The proposed
platform allows the generation of real-time heatmaps that show the space-time dis-
tribution of fire/smoke risk levels across an area of concern based on multi-view
sensing. Such levels can assist the decision makers in taking actions and aim at
facilitating quick fire emergency response. Results of several real fire experiments
in a large-scale road tunnel and in a multi-compartment set-up show the feasibility
of the approach. Subsequently in this chapter, more details are given on the smoke
visibility estimation algorithm and the flame height derivation from video footages.
Furthermore, by temporal analysis of the within- and between-variance of the sen-
sor estimations, an indication on the accuracy/certainty of the measurements at
each moment in time can be given. In this way, problems that arise in one sensor
can be compensated by the other surrounding sensors. Finally, in this chapter a
discussion on the firemap generation is given. User experience studies have shown
that the platform improves the current visualization of fire characteristics.
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4.1 Introduction
The real utilization of spatial-information, such as road/building maps and real-
time traffic data, and its combination with geotagged fire incident data is still lim-
ited in the analysis of fire emergency situations [1]. Geographic reasoning on fire
events from heterogeneous multi-sensor observations, i.e., the main focus of this
chapter, will help the fire crew in their decision-making process [2, 3]. Our fast
on-site collaborative data collection and dynamic incident map creation on which
space-time visual analysis can be performed, will facilitate future fire operations.

The location, the size and the thickness of smoke can change the strategic and
tactical plan at the fire scene as indicated in Chapter 1. As such, reading smoke
is essential for early warning and prediction of the fire behavior [4–6]. By ob-
serving the spreading characteristics and the thickness of smoke, firefighters can
have a better understanding of the conditions that they will face. The proposed fire
geographic information system, ’fireGIS’ facilitates the smoke reading and auto-
matically measures the fire and smoke characteristics and visualizes them on a
spatio-temporal map of the environment. One use case of the spatio-temporal map
is the evaluation of real fire experiments, e.g., to compare the impact of sprinklers
and smoke evacuation systems.

FireGIS builds further on the multi-modal/multi-sensor fire detection work that
has been performed during the past years [7–9]. The main focus of preceding
approaches was the fast detection and localization of the fire and smoke sources.
This work extends previous work with the spatio-temporal mapping of the sensor
or video data into real-time heatmaps that show the space-time distribution of fire
risk levels. There are three major steps involved in the fireGIS process:

• The collection of low-cost (i.e., computationally efficient) multi-sensor data
for the fire risk assessment,

• The fire maps creation,

• The spatio-temporal fire risk analysis.

Section 4.2 will discuss each of these steps in more detail and illustrate their appli-
cation by means of several real fire experiments that are described in Section 4.3.
In these experiments, different cameras were used to monitor the visibility-based
smoke features. The visibility measurement is explained in more detail in Section
4.4. Temporal analysis of the within- and between-variance of the sensors’ visi-
bility estimations are used to give an indication on the accuracy/certainty of the
measurements at each moment in time. In this way, problems that arise in one
sensor can be compensated by the other surrounding sensors. This is further ex-
plained in Section 4.5. Subsequently, in Section 4.6 more details will be given on
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the video flame analysis. Furthermore, Section 4.7 presents the fire map genera-
tion and Section 4.8 discusses the evaluation and verification of the platform. This
is done by a subjective analysis of the visibility level in the videos and an objective
comparison to the temperature profiles of a set of thermocouple trees.

4.2 General fireGIS architecture

Figure 4.1 General fireGIS architecture for spatio-temporal fire risk analysis.

The general architecture of the fireGIS platform is shown in Figure 4.1. In order
to start up the fireGIS analysis, the platform needs to get meta data input about
the sensors and the environment that needs to be monitored. For each of the avail-
able sensors, a link to the sensor data stream and the location information, i.e.,
position, orientation and field of view (FOV), needs to be registered in the fireGIS
platform. In our tunnel experiments, for example, this information was provided
by the Agency for Roads and Traffic (AWV) and the Flemish Tunnel and Control
Center (VTC). In Figure 4.2, an overview is given about the data as provided by
both agencies.

It is important to remark that, in its current form, the data cannot be imported
directly into the fireGIS architecture and some pre-processing is necessary. In the
future, with the increased use of sensor standardization mechanisms, for example
by following the SNN ontology [10] for sensor and observation properties, the data
will be incorporated in a more efficient way. Furthermore, the data should be avail-
able in the BIM file of the particular building. Finally, the user needs to choose on
which GIS or mapping service, e.g., Google Maps or OpenStreetMap (OSM), the
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spatio-temporal fireGIS detection results, i.e., the output of our platform, need to
be shown. It is also possible to map the information onto an existing floor plan of
the environment, as shown in Figure 4.3.

In the next step, i.e., after all meta data information is provided, the low-cost smoke
analyzing algorithm will start inspecting the visual data streams. This process is
further described in Section 4.4. In this thesis, we mainly discuss the use of video
data but the generic character of the framework also allows other sensor types to
be included. In Section 4.7, for example, we describe the incorporation of tem-
perature data/profiles derived from a set of thermocouple trees. Subsequently, the
sensor detection results are projected to a 2D or 3D map of the environment using
the location information of the sensors, as shown in Figure 4.2. In order to give an
indication of the fire risk, different color codes ranging from green to red are used,
corresponding to the detected smoke/visibility at each monitored point/region. For
the presented fire experiments, mapping is done to a 2D representation of the en-
vironment.

Finally, by analyzing the generated fire risk maps over time, a spatio-temporal
analysis can be performed on the fire spreading. This can be very useful real-time
information for fire incident management, but can also be used for post fire analy-
sis. It is important to remark that it is not the intention of this Chapter to propose a
new fire or smoke detection algorithm. The fireGIS platform is more like a system
methodology in which the fire/smoke detection mechanism is a black box inde-
pendent of the used sensor type, i.e., the detection itself can easily be replaced and
extended with other state-of-the-art detectors available in literature [11–13].

Figure 4.2 Sensor and environment input provided by the Agency for Roads and
Traffic (AWV) and the Flemish Tunnel and Control Center (VTC) - Road map
with sensor locations (left) and links to sensor data streams and additional posi-
tioning/orientation information (right).
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4.3 Real fire experiments - fireGIS datasets
Before going more into detail on the video smoke analyzer and the spatio-temporal
fire risk analysis, this section provides additional information about our real fire
experiments. Other examples of certain experiments exist, such as the structural
behavior tests of Tisova [14], the Dalmarnock tests [15] in high-rise compartment
fires and the multi-compartment Rabot test [16]. However, such experiments are
limited in number due to the high costs involved. Numerical simulations, on the
other hand, are relatively cheap, but they suffer from computational complexity
and the level of detail depends on the time and space discretization. Overall we
need to use each opportunity of real fire experiments to further optimize the simu-
lations and use them to get more knowledge in fire behavior.

4.3.1 Multi-compartment fire test

Figure 4.3 An overview of the multi-compartment set-up in association with
WFRGent and VIPA (left), smoke visibility risk results mapped on the floor plan
of the set-up (right).

A first real large-scale test for evaluation of the platform has been performed in
association with WFRGent and VIPA in September 2015. The outcome of these
tests was used to investigate the impact of different fire suppression techniques
in a multi-compartment set-up, specifically for elderly homes. Previously, elderly
homes often had a topology where different, separate rooms are connected to a
hallway that is used for circulation and evacuation purposes. Furthermore, com-
mon spaces (i.e., living, kitchen) were separated from each other and the spaces
were only accessible trough the common hallway. Recently, the design of elderly
homes is undergoing a fast evolution. Common spaces become more and more
part of the circulation and the evacuation routes and open spaces are becoming
mainstream. Despite the increased usage, there are no specific prescriptive rules
available for this type of environment and a profound study was needed. The study
consisted of a ’sofa fire’ experiment, which was performed five times with different
conditions:
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First experiment: Test without suppression system

Second experiment: Test with fire and smoke resistant doors

Third experiment: Test with a sprinkler installation

Fourth experiment: Test with a smoke extraction system

Fifth experiment: Test with a combination of sprinkler and smoke extraction

A smoke extraction system, typically referred to as SHC (Smoke and Heat Control
system), has the goal to extract the heat and the smoke from a fire. The first reason
to install this system is to ensure safe evacuation of the people inside the burning
building. Secondly SHC is used to avoid smoke spreading. Finally the mechanism
will assist the firefighters during their intervention by providing sufficient visibility
to locate the fire source.

A sprinkler installation is a combination of water pipes and sprinkler bulbs. These
glass bulbs contain a liquid and break when reaching a specific critical tempera-
ture, and the water will be released. The sprinkler system will possibly extinguish
the fire, but will mainly limit the fire growth and reduce the temperature of the hot
smoke layer.

A watermist system, which is a system with water under pressure that creates
very small droplets. The size of the microdroplets depends of the water pressure
on the system. This system works at low, medium and high pressure. The higher
the pressure, the smaller the water drips and the greater the cooling surface of the
drops. For comparison, a normal water drop from a sprinkler system has a diame-
ter of 1 mm. This system seems highly valuable, but it was not taken into account
in the fire experiments. The reason to not include the watermist system is that it
needs a high pressure connection whereas a standard sprinkler system only needs
a low pressure connection. Secondly, watermist systems are a not common fire
protection system in Belgium.

For each fire experiment, our fireGIS analyzer generates an overview of the smoke
propagation and the smoke thickness. Based on the total amount of smoke in the
different scenarios, visualized by the analyzer, it is possible to make objective de-
cisions for new building recommendations. Besides the visual monitoring there
were also thermocouple tree measurements of the temperature on several heights
and places. With the analysis of Tilley et al. [17] it is possible to determine the
height of the neutral plane based on the second derivative of the temperature pro-
file. In general the platform facilitates, in this case, the spatio-temporal under-
standing of different measures on smoke height, smoke visibility and temperature.
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The thermocouple measurements were not performed by our group and therefore
they will not be heavily discussed in the thesis. However, some details are given:
the temperatures were measured by thermocouples type K, they were able to de-
tect temperatures between 0 and 1000 C. The measurements (14 for each tree)
were performed on the following heights, in the fire room: 0,2 m - 0,4m - 0,6 m -
0,8 m - 1,0 m - 1,2 m - 1,4 m - 1,6 m - 1,8 m - 2,0 m - 2,1 m - 2,2 m - 2,3 m en 2,4 m.

Besides the 4 thermocouple trees in the fire room there were also thermocouples
placed in:

• The non-fire rooms on 1,9m and 2,4m (to measure the smoke leakage and
heating through a fire resistant door)

• At the end of the evacuation routes: above the door and at 2,4m

• Above the fire load (the red couch) at 1,9m and 2,4m

General conclusions related to the VIPA elderly experiments

The VIPA studies are organised in collaboration with Gent University, VIPA,
Wfrghent. As we were not the head organizers of these tests we were not involved
in the design phase of the real fire experiments, however some general conclusions
are given below.

First, a compartment is filled very rapidly with smoke. Secondly, there is a pressure
built- up in the closed compartments, resulting in the spread of smoke to adjacent
compartments separated by fire-resistant doors. Furthermore, the pressure built-up
affects the smoke extraction systems negatively. This can be solved by increasing
the opening of the room, or by using an automated fire extinguishing mechanism.
Thirdly, the smoke passage in a room separated from the combustion chamber by
means of two consecutive fire-resistant doors was significantly smaller compared
to the one with one door. Finally, a combination of both systems (i.e., smoke ex-
traction and an automated fire extinguishing) was proven to be the best solution
for restricting the spread of smoke in the compartment. Therefore, the position of
the automatic extinguishing was chosen in such a way that it was not influenced
by the airflow obtained by the disruption system.

4.3.2 Tunnel fire experiments

The second large-scale fire tests were performed in the Craeybecktunnel. The
Craeybeckxtunnel is a tunnel between Brussels and Antwerp (N 51.1005, E 4.2406)
in Belgium. In order to investigate the impact of the ventilation system on the
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Figure 4.4 FireGIS experiments at Craeybeckxtunnel (tunnel between Antwerp
and Brussels, Belgium).

propagation of the smoke, real pool fire tests were performed by the end of 2014
(Figure 4.4). Besides the monitoring of the visibility metrics and the fire spread-
ing, the recorded video images can also be used for validation of CFD simulations
(Figure 4.5), which were performed prior to the tests. It is also important to re-
mark that the ventilation system in the tunnel is transversal to the drive direction.
This is not common and gives the opportunity to analyze smoke movement in such
circumstances.

Figure 4.5 Subjective comparison of CFD temperature field (left) and Craeybeck-
xtunnel video measurements (right). (source CFD calculations FESG)

Prior to the tests, decisions were made related to the fire power. On the one hand,
the fire power needed to be limited to avoid severe damage to the tunnel. On
the other hand, the power of the fire (see Appendix 1) needs to be realistic to
get validable smoke dynamics. In our tests, 20 minute pool fires of 3 MW were
generated, which is slightly less then a modern car fire (which is between 4 and 6
MW [18]). In the final test, we also performed a real car fire, with similar results
as the pool fires. Different measurements were performed related to temperature,
air flow and smoke/visibility. In this Chapter, however, we only focus on the latter
sensor type, since only the video sensors were able to monitor the entire tunnel for
space-time fire risk analysis. Further explanation of the visibility measurement in
fire circumstances is given in the next section.
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4.4 Video smoke analysis

Video based fire analysis with cameras has been discussed several times in lit-
erature over the past years [19]. Different features, such as color, pixel disorder,
wavelet analysis are combined with simple linear classifiers or with more advanced
deep learning mechanisms. However, the focus in literature was mainly on the de-
tection of the smoke. The propagation of the smoke, the height of the smoke
layer or the visibility for example, were investigated less. Furthermore, there is a
strong correlation between the visibility, the evacuation movement speed and the
surviving chances [20]. To further investigate the visibility we evaluated several
video-based visibility metrics in our real fire experiments and developed a quanti-
tative measure that can be used in fire incident management to adapt the tactics of
the fire brigades.

The most common features to measure the visibility in images are based on anal-
ysis and classification of the brightness, saturation, and contrast pixel values [21].
Additionally, the visibility can also be measured by analyzing the number/strength
of visible edges in the image. If these edges are geo-referenced, i.e., labeled with
the real location information, it is also possible to say how far it is possible to see.
Narvekar et al. [22], for example, use this methodology to measure the sharpness
of an image. If the number of edges in a particular image block is higher than a
pre-defined threshold value, the block is labeled ”high visibility”. In our work,
the opposite approach could be used to detect a decrease in visibility, i.e., smoke
increase. In order to use each of these techniques some video-based training of the
environment is needed, as explained by Hassanpour et al. [23].

4.4.1 Low-cost video smoke analyzer

A flowchart of our low-cost algorithm for video smoke analysis is shown in Fig-
ure 4.6. The algorithm starts by converting the video to HSV color space [24] and
by filtering out the value (V) component. In this way, a change in lightning or a
change in colors will not affect the algorithm [19]. Next, the Canny edge detec-
tor [25] is used to detect the prominent edges in V. This edge detector uses Gaus-
sian filtering and hysteresis tracking to smoothen the image, remove the noise, and
to suppress the weakly connected edges (See Appendix B.1.5 for more technical
details). Subsequently, we count the remaining bright pixels in the upper part of
the image. This value gives a quantitative measure for the visibility in that region,
i.e., an indication of the smoke level. We only focus on the upper part of the im-
ages, since moving objects (like people and cars) in the lower part of the image
can disturb the algorithm. Furthermore, smoke will rise, thus the upper part will
contain most of the smoke. Finally, we normalize the edge counts (using edge
characteristics of the video training phase) and we calculate the smoke risk level L
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ranging from 1 to 5, i.e., high visibility and no-visibility respectively (see Figure
4.7). As the smoke risk level is a ratio there is no unit.

Figure 4.6 Flowchart of the low-cost video smoke analyzing algorithm.

•(HS)V CONVERSION

•CANNY EDGE DETECTION

•EDGE COUNTING (IN UPPER LAYER)

•NORMALIZE EDGE COUNTS

•SMOKE RISK LEVEL 

SINGLE SENSOR
SMOKE/FIRE DETECTION

Figure 4.7 Indicative smoke risk levels (left), their corresponding visibility level
(middle) and the impact on the evacuation according to Jeon et al. [20] (right).

Smoke risk level Visibility Influence on the evacuation

1 High visibility Unaffected

2 Moderate visibility Slightly affected

3 Reduced visibility Moderate affected

4 Strongly reduced visibility Severely affected

5 No-visibility Disorientation
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It is important to remark that all these operations have a low computational cost
(i.e., the time complexity to calculate the edges on a m x n image is equal to O(mn
log mn) according to the Big-O complexity analysis [26]), making it possible to
process the video frames in real-time on a standard processor. After the visibility
estimation, the resulting smoke risk levels are stored in a comma-separated val-
ues (CSV) file, as shown in Figure 4.8. For each sensor that is used in the fire
experiments, we generate a comma-separated object containing the position (lat-
itude/longitude coordinates from the sensor meta data) and the smoke risk level
L at time-stamp T. Based on this CSV file, fire maps can be generated. Besides
the CSV output it is also possible to transform the data to the standard geojson for-
mat [27], making it easy to reuse the data in a GIS application. The geojson format
is a specification describing the encoding of a variety of geographic data structures.
GeoJSON supports the following geometry types: Point, Lines, Polygon and their
combinations.

Figure 4.8 CSV files with detected smoke risk levels. For each timestamp T, the
coordinates of the cameras and corresponding risk levels L are stored in comma-
separated objects.

4.4.2 Evaluation of the smoke analyzer

First of all, an evaluation of the estimated visibility levels of the proposed compu-
tational low-cost video smoke analyzing algorithm is done by qualitative analysis
of the video fragments of the real fire experiments (see Figure 4.9). Temporal anal-
ysis on the results of the output of the algorithm for our real tunnel fire experiments
shows that changes in visibility are properly detected. Figure 4.10 indicates that a
decrease and a clearing of Test 2 is correctly estimated. In Test 1 we encountered
a continuous decrease in visibility, which also corresponds to the output of our
algorithm.
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Figure 4.9 Combined video images for subjective evaluation of Craeybeckxtunnel
experiments.

Figure 4.10 Comparison between the output of the proposed smoke analyzer al-
gorithm (shown left) and the visual results of real fire experiments (shown right).

A second evaluation, shown in Figure 4.11, compares the estimated smoke layer
height from the thermocouple trees (shown in blue) and the visibility estimations
generated by the algorithm (shown in orange). If the height of the smoke interface
layer is lower than the vertical position of the camera there is a certainty that there
must be a strong reduction in the visibility.

We estimated the height of the smoke layer with thermocouple trees (i.e., a stacked
array of thermocouples to measure the temperature at different heights) in the en-
closure set-up with two methodologies of He et al. [28]. The first method, the crit-
ical temperature method, investigates the temperature profile and the point where
the temperature rise, relative to its initial temperature exceeds a given threshold is
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taken as the smoke layer. The second method investigates the relative rise in the
temperature profile. The height where the temperature rise exceeds N percent of
the maximum temperature is taken as the smoke layer height. For label 4 in Fig-
ure 4.11, for example, the averaged thermocouple based estimation of the smoke
height is 0.6 m. This is lower than the position of the camera, which was placed
on 0.8 m. The result of the camera based visibility estimation also corresponds
to the subjective evaluation of the image at the time corresponding with label 4
(shown right). From the smoke layer estimation height and the reduced visibility
we can confirm the statement: If the height of the smoke interface layer is lower
than the vertical position of the camera there is a certainty that there must be a
strong reduction in the visibility.

Figure 4.11 Comparison between the estimated smoke layer height from the ther-
mocouple trees (shown in blue) and the camera based visibility estimations (shown
in orange). Corresponding images for certain moments in time (label 1-4) are
shown in the picture right.

1 2

43

Cost and performance analysis

A performance comparison between thermocouple trees and visual sensors re-
veals that a camera solution will fail already in case the sensor is located beneath
the smoke layer. However, thermocouples are point measurements and not om-
nipresent in exisiting buildings.

On the algorithm side, the computational cost of the smoke layer estimation al-
gorithm is O(n) as it just needs to find the minimum value. The total cost of the
visibility algorithm given an input image with dimensions mxn is O (mn log mn).
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4.5 Intra and inter variance of the temporal analysis

In order to generate visibility levels more accurately, i.e., smoke risk estimations,
we propose to combine the detection results of each of the single-view sensors
and analyze them together in a multi-sensor analysis set-up. Previous research
has illustrated that a multi-sensor data fusion approach improved the single sen-
sor decision process for fault detection [29, 30]. Since we have multiple sensors
monitoring the scene from different viewpoints, problems that arise in one sensor
can be compensated by the other surrounding sensors. Further explanation is done
for the camera and smoke analyzing system, but the approach can also be used for
other types of sensors.

Based on the estimated smoke risk level L of all the camera views, we propose
a multi-view extension of the single-view algorithm based on the within- and
between-variance of the visibility estimations. By analyzing the differences be-
tween the L values, an indication on the accuracy of the measurements at each
moment T in time can be given. For example, if the variance σw(L, vi) (Eq. 4.1)
of LT values over time is high in one of the camera views vi, it is less safe to
trust the measurements of this view compared to a camera view vj in which the
within-variance of L is smaller. Furthermore, it is also important to check the
between-variance σb(L) (Eq. 4.2) of neighboring camera views, since this can give
an indication regarding the certainty of the measurements. When large differences
are observed, i.e., σb(L) is high, this can be an indication that it is not safe any-
more to trust the cameras and it is better to rely on other types of sensors. In
contrast, when neighboring sensor estimations closely follow each other, this indi-
cates that their estimations can be trusted with high(er) probability. Similar metrics
have been proposed and evaluated in the multi-compartment full-scale ’Rabot’ fire
tests [9] [8].

σw(L, vi) =
1

N

N∑
T=1

(LT (vi) − L1..N (vi))
2 (4.1)

σb(L) =
1

N

M∑
j=1

(L(vj) − L(v1..M )2 (4.2)

Using the above mentioned within- and between-variance, the estimated accuracy
of each sensor type can be monitored and the most reliable sensors can be selected
at each moment in time. The impact of the proposed system can be seen in Fig-
ure 4.12, which shows an example with 3 ’correct’ sensors and one sensor giving
wrong visibility levels (due to the interference of the video signal with the vibra-
tions generated by the smoke extraction system). It is important to remark that the
calculation of the nearby sensor will only work in case the video sensors share a
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common field of view. If the sensor is placed behind a smoke resistant door, the
standard variation will be high, but this is not due to a failed camera. The proposed
algorithm (error calculation for neighbor sensors) indicates this error correctly, i.e.,
the standard variation with the wrong sensor was 0.01389 whereas the value with-
out the broken sensor was very low (0.000261). The impact of the broken sensor
can also be seen in the heatmap (see Figure 4.13). With the faulty sensor included,
the red zone (no-visibility) is smaller compared to the correct representation.

Figure 4.12 Smoke visibility levels of 3 correct neighboring sensors and one bro-
ken/faulty sensor (due to the interference with the smoke extraction system).

Figure 4.13 Heatmap representation with the corrected values (left) and with one
broken sensor (right).

Some other methods exist to analyze the smoke variance [30], for example, Gon-
zales et al. investigated the gain achieved by combining volume sensors, like the
Xtralis OSID beam sensors (an Open-area Smoke Imaging Detection beam sensor
consists of a transmitter and receiver of infrared and UV light. The strength of
both signals is compared to calculate the smoke presence or absence.) [31], and
Video Fire Detection (VFD) technologies. By using sensors that do not depend on
illumination and/or are immune to steam and dust, the VFD detection problems
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can be addressed directly. This multi-sensor/multi-modal approach leads to im-
proved smoke alarm verification, smoke localization validation and smoke layer
depth measurement. A representation of the multi-sensor combination and the al-
gorithms interactions can be seen in Figure. 4.14. By integrating the output from
OSID with the information from VFD, both detection systems share information
(i.e., give feedback to each other). Due to the generic architecture of fireGIS, sim-
ilar sensor combinations can easily be integrated in the proposed architecture. An
example of this incorporation has already been given by the assimilation of ther-
mocouple trees. The selection of the specific redundancy is depending on the use
case. In case of the tunnel experiments, the inter variance could easily indicate if
one sensor failed, but in case of the VIPA study more redundancy should be built
in as one camera per room is not reliable enough. Subsequently, there should be
redundancy in the sensors (i.e., different types of sensors measuring the same val-
ues), but also redundancy in the connection (e.g., Wifi, wired, Bluetooth LE) and
finally an additional layer with anomaly detection that can indicate wrong sensor
values or problems in the system.

Figure 4.14 Algorithms interaction of video and OSID fire detection sensors [30].

4.6 Video flame analysis
Besides the analysis of the smoke visibility, the smoke spreading and the smoke in-
terface layer, the flame height is a valuable source of information to understand the
fire behavior. The mean flame height is theoretically described by Heskestad [32]
as the level where the combustion reactions are essentially complete. Further-
more, flame dimensions can give valuable information about the Heat Release
Rate (HRR) of a fire, as proposed by Beji et al. [9]. To eventually measure the
height there are different techniques and algorithms proposed in literature.

• A standard method to get the flame height is to analyze the temperature
profile measured central in the fire (by robust thermocouples). The charac-
teristic mean temperature rise of 500 - 600 degrees is taken in the center of
the flame.
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• Ukleja et al. [33] described the flame height as the position where the flame
presence probability is higher than 50 percent over time.

• Verstockt et al. [34] proposed a spatio-temporal analysis of the flame height,
by first applying automatic thresholding on the bright (flame) pixels and sub-
sequently applying a low-cost hand crafted flame feature analysis (bounding
box disorder and Otsu thresholding).

• More recently CNN architectures (as introduced in Chapter 3 and explained
more thoroughly in Appendix 2) are exploited to detect the flame region
from a video input [35]. Furthermore, segmentation networks, such as Squeezenet,
achieve fine grained results on input images for fire region segmentation and
eventually fire shape analysis [36].

4.6.1 Flame height algorithm

To perform a spatio-temporal flame dimension analysis of real fire experiments we
propose a novel algorithm that combines temporal slicing and SLIC segmentation.
The usability of the proposed algorithm has been evaluated during the experimen-
tal study of corner fires, performed by Zeinali et al. [37] and Beji et al. [38]

Temporal slicing

Temporal slicing is a common technique in video summarization [39] and motion
estimation [40]. Figure 4.15 gives a graphical representation and visualization
of the slicing methodology on a couch fire video footage performed by Exova1.
The video sequence is a 3D volume with x and y the image dimensions and time
as temporal dimension. The slice is a temporal collection of strips (x,t) or (y,t), a
strip is a row (vertical slice) or column (horizontal slice) from the image frame that
are combined to one image. On that one particular image we can easily interpret
and examine the temporal evolution (i.e., the change in width or height of the flame
front) of that row or column.

Superpixels SLIC

To segment the fire region and to estimate the fire dimensions (from the temporal
slice images) we used the Simple Linear Iterative Clustering (SLIC) segmentation
algorithm [41]. Initially K (i.e., on average 200 clusters over the complete image)
regularly spaced cluster centers are selected. Secondly, each pixel is associated to
the nearest cluster center according to the proximity and the color similarity in the
CIELAB color space. Thirdly, the pixels are iteratively associated to a cluster and
the cluster centers are recomputed up to convergence.

1https://www.exova.com/
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Figure 4.15 Temporal slicing for couch fire experiment performed in Exova, left
the schematic overview of the slices, upper right the horizontal slice, down right
the vertical slice.
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Figure 4.16 Schematic overview of the video flame analysis, temporal slice (left),
SLIC segmented region (middle) and merged clusters and corresponding height
profile (right).
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Figure 4.16 gives a schematic overview of the proposed flame analysis tool. Firstly
the temporal slicing mechanism is used to extract a temporal overview of the flame
interaction at a certain position. Currently the slice position is selected manually
and the algorithm is optimized for fixed cameras. Changing the viewpoint, the
lightning conditions or occluding the camera would affect the temporal slice re-
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sult. However, with global motion detection it should be possible to determine
the new position of the slice for non-fixed cameras. Furthermore, in case of a
viewpoint-change a fire detection algorithm could be used to detect the largest fire
front. Secondly, the SLIC superpixel mechanisms segments fire pixels in similar
regions (color and intensity). Thirdly the clusters are transformed to a region ad-
jacency graph [42] where each node in the graph represents a cluster with a set of
pixels. The weight between two adjacent regions represents how similar or dis-
similar the clusters are. Subsequently, the clusters are merged until only highly
similar region pairs remain. Furthermore, the fire height (i.e., the horizontal pixel
coordinates of the brightest or selected cluster) is determined and a mapping be-
tween the pixel distance and the real world coordinate distance is implemented.
Finally, by plotting for each time slice (row in the image) the height of the fire, the
final height profile is created.

4.6.2 Video puffing and flickering frequency

Besides the flame height, the flickering frequency is a quantitative measure to de-
scribe the flame. A typical flame will have a non-constant flame height due to vor-
tex shedding and air entrainment. For typical enclosure elements (e.g., furniture
fires) the pulsation frequencies are between 0.4 and 10 Hz [43]. Furthermore, the
frequency and the height depend on the ’fuel-air’ ratio, the temperature, the flame
diameter and the room configuration, as stated by Bhaduri et al. [43]. A frequently
used calculation method is the algorithm of Zukoski et al. [44] where the puffing
or flickering frequency (f in Hz) of a flame (free burning pool plume) is described
by the normalized pool diameter (D in m) and the gravitational acceleration (g =
9.81 m/s2):

f = (0.5 ± 0.04).(
g

D
)0.5 (4.3)

In our video flame analysis tool the puffing frequency is empirically estimated
by applying a Fast Fourier analysis on the flame height estimations given by the
flame height algorithm as proposed in Section 4.6.1. According to the Nyquist
theorem:(”A sufficient sample rate is at least two times the highest expected fre-
quency.”) the sampling rate is adapted to the expected frequency (e.g., between 0.4
and 10 Hz). Figure 4.17 indicates the puffing frequency of 2Hz in the corner fire
experiments of Zeinnali et al. [37].

4.7 Smoke map generation
We developed an innovative distributed system that combines regular cameras with
geographic information web mapping technology. In order to generate a 2D smoke
map of the smoke risk levels at time-stamp T, we developed a dynamic JavaScript-
based web page. The web page makes use of the Leaflet.heat and leaflet.js heatmap
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Figure 4.17 Fast Fourier analysis on the flame height curve. Notify the clear peak
(significant frequency) around 2Hz (puffing frequency).

plugin, which is a simple and fast solution for heatmap generation. This plugin2

constructs a heatmap layer on top of a map or an image, given an array of lati-
tude/longitude points and intensity, i.e., the corresponding smoke risk level. Fig-
ure 4.18 shows an example of two temporal smoke maps generated for one of the
Craeybeckxtunnel tests using the heatmap functionality. At t=80s after ignition
(shown left), only the small central part of the tunnel has low visibility (red color),
while the other parts of the tunnel are still smoke-free (blue zones). 10 seconds
later, smoke starts spreading towards both sides of the tunnel (as shown in the
map on the right), indicating low visibility over the entire tunnel. This kind of
spatial and temporal information can be very useful for fire incident management,
such as evacuation planning. Similary, Figure 4.19 shows a selection of smoke
maps generated for the second, third and fifth multi-compartment test (see Sec-
tion 4.3) at different moments in time (T=200s and T=500s). With these heatmaps
it is easier to compare different set-ups and their corresponding visibility. This
straightforward comparison will assist decision makers in defining new rules for
fire prevention. Without these maps, a manual, subjective evaluation of different
videostreams should be done in combination with CFD numerical experiments.
Such manual verifications would require a lot of manual labour and would be more
error-prone. Small changes in the visibility would remain unnoticed and getting
an overview of several viewpoints would also be very difficult.

2http://leafletjs.com.
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Figure 4.18 FireGIS heatmaps showing temporal evolution of smoke risk level
(i.e., low visibility) in the Craeybeckxtunnel experiment.

Figure 4.19 FireGIS heatmaps showing the temporal evolution of the smoke risk
level in the multi-compartment experiments. The left, middle and right images
show the temporal evolution at T=200s and T=500s for the second, third and fifth
test (described in Section 4.3), respectively.

4.8 Spatio-temporal fire risk analysis

4.8.1 Spatio-temporal visibility analysis

By analyzing the smoke maps (shown in Figure 4.18 and 4.19) over time, it is pos-
sible to perform a space-time analysis of the smoke spreading and to get an idea
about the direction, speed and thickness of the smoke at each point in time. This
can facilitate the smoke reading and decision making, as discussed in the intro-
duction (see Chapter 1) of this thesis. Using the CSV smoke risk data, the fireGIS
platform can also plot temporal graphs of the smoke risk level (edge counts) for a
specific sensor region. This facilitates the understanding of the temporal changes
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of the visibility for a certain test and a certain sensor. Figure 4.20 illustrates this
process. The plot visualizes a drop followed by a clearing of the visibility for the
sensor in the middle of the tunnel experiment. Similar trends/evolutions can also

Figure 4.20 Temporal evolution of edge counts in the middle of the tunnel. First
there is a good visibility (high amount of edge pixels), after 5000 frames there is a
strong reduction (i.e., a quarter of the edge pixels) and after 12 000 frames there is
a clarification of the visibility (amount of pixels).

be detected by subjectively analyzing the combined, i.e., stitched, video images in
Figure 4.21. However, objective results, as those shown on the temporal smoke
risk graph (Figure 4.20), are easier and faster to interpret compared to video im-
ages. The video streams can obviously help in the evaluation of post-fire analysis
tasks. When smoke deposition on the lens, or dirt or other particles on the camera,

Figure 4.21 Combined video images for subjective evaluation of Craeybeckxtun-
nel experiments.

Frame 3000 Frame 9000 Frame 15000

the values of the smoke risk data will be distorted. The visibility for instance will
be much lower when there is fog on the lens. This can be solved in two ways. The
first method is to incorporate another sensor (such as a beam sensor which is less
sensitive to fog) and take the normative value between both type of sensors [45].
The second method is to use lenses with self-cleaning films such as proposed by
Thompson [46].
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4.8.2 Spatio-temporal temperature mapping

In addition to the video smoke risk levels, the fireGIS platform also gives the
possibility to generate spatio-temporal temperature graphs for each sensor region
based on the available thermocouple trees. Figures 4.22 and 4.24 show the tem-
poral evolution of the temperature for two different tests performed in the multi-
compartment set-up. Compared to the traditional representation of the values of
the corresponding thermocouple trees (shown in Figures 4.23 and 4.25) this type
of visualization is easier to get a better understanding of temperature changes over
time and to analyze the height changes. Preliminary user experience evaluations
with members of the fire brigade and the governmental agency have shown that
this new type of visualization could give more insight into different set-ups and
that this facilitates faster understanding of real fire tests. In the next chapter, we
will discuss the subjective evaluation tests to get improved selection and visualiza-
tion criteria.

Figure 4.22 Temporal evolution of the temperature close to the fire, in a set-up
without a sprinkler system. The horizontal axis shows the time and the vertical
axis shows the height of the thermocouple measurement. The colors represent the
temperature (blue is cold, red is hot).

Height

Time 

Figure 4.23 Traditional way of representing temporal evolution of thermocouple
values for the set-up without a sprinkler system. The temperature (on the vertical
axes) changes over the time (horizontal axis).
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Figure 4.24 Temporal evolution of the temperature close to the fire, in a set-up with
a sprinkler system. The horizontal axis shows the time and the vertical axis shows
the height of the thermocouple measurement. The colors represent the temperature
(blue is cold, red is hot). The red line indicates the activation time of the sprinkler
system (240s after fire ignition).

Height

Time 

Figure 4.25 Traditional way of representing temporal evolution of thermocouple
values for the set-up with a sprinkler system. Each line represents a thermocou-
ple on a certain height (see color labels). The temperature (on the vertical axes)
changes over the time (horizontal axis). The red line indicates the ignition time of
the sprinkler system (240s after fire ignition).
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4.9 Conclusions and future work
This chapter presented the generic architecture of the fireGIS framework, which al-
lows the generation of real-time heatmaps that show the space-time distribution of
fire risk levels and fire behaviour characteristics. In order to show the feasibility of
the proposed platform, real-fire experiments have been performed in a large-scale
road tunnel and in a multi-compartment set-up. Video sensors and thermocouples
have been used as input to feed the fireGIS system, and the visibility-based video
fire analyzing results are mapped to spatio-temporal heatmaps. Those maps can
assist decision makers in taking actions and can facilitate quick fire emergency re-
sponse. Finally, user evaluations have already shown that the platform is easy to
understand and that it improves the current visualization of different fire charac-
teristics (see Figure 4.23).
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5
Fireground understanding and data

visualization

This chapter reports on the added value of combining different types of sensor data
and geographic information for fire incident management. A survey was launched
within the Belgian fire community to explore the necessity and the use of new types
of sensor data during a fire incident. Furthermore, an evaluation of different vi-
sualization set-ups was done using mock-up screens to gain further insights in
fire data reporting. This evaluation revealed that people are visually-oriented and
that video footages and images are of great value to gain insights in a particular
problem. However, due to the limited available time (i.e., fast decisions need to
be taken) and the large amount of cameras it is not feasible to analyze all video
footages sequentially. To solve this problem we propose a video summarization
mechanism and a video highlight selection tool.
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5.1 Introduction

During the first minutes of an intervention, the incident officer needs to take fast
and appropriate decisions with very limited information. However, the scene lay-
out, the structure of the building, the fire dimensions and position, the hazardous
materials present, and the status and the position of victims, are factors that affect
the initial strategy and tactics. In previous chapters, mechanisms have been pro-
posed for scene understanding, fire characteristic estimation and building analysis,
but to have a fast overview of the situation, incident management tools are neces-
sary.

Currently, there are two main communication tools for fire incident management:
a broadcast channel for voice communication and a second textual channel for sta-
tus updating. However, from a psychological perspective it is evaluated that our
brain is better at processing visuals than text [1]. Our brain can process an image
60 000 times faster than a piece of text. On average, when a person sees a partic-
ular image for the first time, it takes 113 milliseconds to process the information.
In that sense it is advisable to stress the development of image related tools to fa-
cilitate the incident officers instead of improving the existing auditive or textual
communication tools that have problems with reliability (e.g., connection-loss in
concrete buildings) and interoperability.

To generate the needed visual information we can exploit the increased perfor-
mance and quality of fixed security cameras and handheld devices such as smart-
phones and tablets. It is important, however, that the video footage is captured
in the most appropriate way for visualization to a fire incident manager. For this
reason, guidelines should be given for handheld camera handling during an inter-
vention (see Section 6.3). Subsequently, the sensor input of the fixed and handheld
cameras can be streamed to the incident commander to have an overview of the
incident scene. However, in Section 5.2 we will show that it is not possible for a
person to analyze all the video streams in a sequential manner due to the cogni-
tive disability. There is a need for a video summarization mechanism that filters
out the redundant and unnecessary frames, while preserving the distinctive frames.

Besides the visual camera information there are other sensor types (e.g., tempera-
ture indications, CO levels) with valuable information for the incident commander.
Visualizing too many sensors will lead to enacted sensemaking where an individual
will select unconsciously some parts of the data to make their decision. Especially
in critical or stress situations this can lead to overshooting or undershooting of the
situation. To solve these issues the fire fighting community should get aware of
the opportunities of web dashboards to quickly and easily create reports and data
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visualizations [2]. The core idea of dynamic dashboards is to efficiently display
data in such a way that it can enhance user insight into the data. An example is
the fire probability calculation and visualization for residential regions by Netage1.
Similarly, the Moses project2 explored a dashboard system for seamless localiza-
tion, employability and health status monitoring (e.g., heart rate, air consumption)
of firefighters. In Section 5.2.2 an investigation is done into the sensor/dashboard
needs for fire incident management.

5.2 Visible and cognitive disability
Biologically, human beings have psychological restrictions in terms of observing
and processing information. Furthermore, an individual can only process a limited
amount of simultaneous stimuli. Ungerer et al. [3] stated that a person can only
process a fraction of the information in a conscious way. According to his theory,
each second 3 up to 5 visual and 3 auditive or tactile inputs can be processed si-
multaneously. Schaub et al. [4] on the other hand denoted that a human is only
capable of processing 7 concurrent signals.

The head of operations and firefighters in general have to work in difficult, of-
ten unknown contexts, where there is an increased stress level. Subsequently, due
to the increased level of stress there is a higher chance of reduced cognitive ability.
Despite the dynamic and difficult character, decisions need to be made without
detailed investigation or analysis. In general the fire scene is a complex situation
due to the following factors:

• A comprehensive list of ’unknown’ variables (e.g., number of people present,
evacuation necessity, fire behavior, fire expansion and building contents;

• Variables that affect each other (e.g., ventilation openings will change the
fire growth);

• Variables that change in time and space without being transparent or pre-
dictable.

Due to the risk of reduced cognitive ability and the psychological restrictions there
is a need for a smart, adaptive visualization application. The time first-responders
spend on gathering static and volatile situational information from affected peo-
ple as well as from responsible persons at the emergency site can be reduced if
they have access to the needed information. The following subsections will dis-
cuss the related work for fire incident visualization, the subjective criteria for data
importance and some guidelines for usability testing.

1https://netage.nl/
2http://techforfuture.nl/onderzoek/afgerond/mobile-sensing-safety-moses/
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5.2.1 First responders information needs: related work

Nunavath et al. [5] identified the information needs for first responders from a liter-
ature review, fire drills and interviews. Prioritizing of information items is needed
for different stages of building fire emergency response operations and to ensure
a maximum of 7 concurrent decision signals. The most commonly mentioned in-
formation item in the work of Nunavath et al. is the building related information,
which includes important information about the building layout plans, hazardous
material location, resources location, floors, and rooms. Furthermore, the other
most commonly mentioned information item was fire related information such as
color, location and condition of the fire. The generation of these features in our
framework has already been introduced in Chapter 3 and 4 respectively.

Li et al. [6] investigated the information sources used in current practice (year
2013) and those desired to be used in the future. Furthermore, Li et al. considered
the information items needed by first responders and the availability of techno-
logical solutions to obtain them in the United Stated. The desired information
resources that were reported in these tests are listed in Table 5.1. Furthermore, Li
et al. mention that there are three timings where data should be delivered: before
arrival, when arriving at the emergency scene and during the attack and the mit-
igation. In an automatic framework these three states should also be considered
and evaluated. In order to obtain more recent and related variables for Belgium, a
questionnaire was launched. The results are discussed in Section 5.2.2.

Table 5.1 Desired information needs during fire incidents evaluated in LA.

Information sources % of total response
Emergency pre-plans 94.5
Fire system 85.2
Responder reports and communications 80.5
Building 3D models 80.3
Human memory and experience 79.9
On-site observations and descriptions 76.6
Positioning and navigation equipment 76.6
HVAC system 58.6
Elevator system 50.8
Security and access system 35.2
Occupancy schedules 32.8
Power system 31.3
Lighting system 26.6
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Hamins et al. [7] created the smart-firefighting roadmap and their main suggestions
are listed below.

• Use of sensors on the fire ground to know the staffs location and to assist in
situational awareness;

• Increased collection and utilization of data before the incident to aid in ef-
fective use of personnel and equipment;

• Enhance interoperability between data systems;

• Develop intelligent systems to assist with decision making.

Although, the roadmap gives some directions for further research, currently only
limited implementations are available. This chapter proposes some technologi-
cal blocks to start with ’smart-firefighting’. Finally, emergency responders have
different roles to perform, different tasks to handle, and different modes to com-
municate, which lead to an insufficient view of the complete emergency situation
at the emergency site. In that respect Nunavath et al. [8] presented a conceptual
domain model. The model consisted of four components: event component, ac-
tor component, objective component and building component. Each component
contains several information resources and all components capture the complete
building fire emergency response. However, as stated in Section 5.2 it is not fea-
sible for a person to process and analyze all sensor components sequentially and
filtering and summarization mechanisms will be necessary.

5.2.2 Subjective criteria and discussion

Video and sensor data are not processed and interpreted the same way by every-
one, as indicated in Section 5.2. In that sense it is important to know the user’s
needs and wishes. Many times the ’importance scoring’ is done by the IT design-
ers or developers and this makes the application or dashboard not useful. Within
the Belgian fire community, a survey was launched by HOWEST3 and IDLAB4 to
explore the necessity and the use of new types of sensor data during a fire incident.
This survey can be seen as an updated version of to the work of Li et al. [6]. Fur-
thermore, an evaluation of different visualization set-ups was done with mock-up
screens to gain further insights in fire data reporting.

The questionnaire was sent to all Flemish fire fighting communities and input was
asked from all hierarchical levels (i.e., strategic, tactical and operational). Further-
more, we targeted a balance in the ratio of volunteer and professional firefighters
that filled in the inquiry. 21 different questions were asked and the first question

3https://www.howest.be/nl
4http://idlab.technology/
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Table 5.2 Desired information needs during fire incidents evaluated in Belgium.

Information % of total response
Thermal camera 95.9
Explosion warning 65.8
CCTV 65.8
Localisation 53.4
Surrounding temperature 47.9
Percentage CH4 30.1
Toxicity of the smoke 28.8
Chemical species 28.8
Ionizing substances 27.4
Percentage O2 21.9
Percentage CO 23.3

was: ”What kind of data should be available during an incident?”. From the survey
results (see Table 5.2), it was remarked that the thermal imaging device is the most
informative device used by firefighters, followed by the explosion warning device
and the visual camera. In the questionnaire is was pointed out that the more infor-
mation available during an incident, the higher the fire crew score their situational
awareness. However, as stated earlier in this section, there is a maximum of 7 si-
multaneous inputs that can be used. The most important features are the location
of the fire source, the amount and the position of the victims and firefighters, and
the structure and lay-out of the building. All of them can be retrieved from thermal
or visual cameras, as stated in previous chapters. Subsequently, in the question-
naire, some questions were related to the priority of the data. The camera footages,
the thermal camera footages and the surrounding temperature were pointed out as
prior. It is important to remark that this should be re-evaluated within a couple of
years as most of the other sensor and data values are currently not available during
an intervention and the decision makers are not trained to use certain variables.
Furthermore, the questionnaires indicated that they allow a maximum set-up time
(i.e., delay to connect to all devices) for the video streaming of 1 minute.

As important as the collection of the information is the visualization of the sensor
data. The survey revealed that 78 percent prefers to use a rugged tablet, 20 percent
selects a laptop whereas only 2 percent would use a smartphone device. Further-
more, depending on the incident type, different real-time data graphs need to be
shown to facilitate the fire ground understanding. Furthermore, the respondents
indicated that there should be a coupling with the existing data sources, such as
the hydrant network or the statical intervention plans (i.e., a plan, only for large
facilities, that contains contact details, the global outline of the building and the
locations of dangerous goods).
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To understand the end-user needs, their interaction and their interpretation, it is
illustrated in literature that it is better to use an iterative design (i.e., where you
continuously interact with the end-user). Several mock-up-screens are evaluated
in the questionnaire and the most selected option was a visualization without tabs
and with clear indications of excessive or abnormal values. Furthermore, the par-
ticipants indicated the visualization of the most prominent videostream of the fire
scene as an added value. Figure 5.1 and Figure 5.2 gives the two most selected
visualizations.

Figure 5.1 Simple visualization with live camera-stream and clear indication of
dangerous values.

Mock-up displays are used to get initial feedback, but more usability testing will
be necessary to have a stable, interactive and user-friendly system. In that respect,
the following subsection will give more guidelines for the testing procedure.
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Figure 5.2 Visualization with two live camera-streams and graphs for temperature
and oxygen level values.

5.2.3 Guidelines for usability testing

Technological excellence is not the only factor that drives market success of an
application. Innovations should also tap into the end-users’ unfulfilled needs. This
subsection will indicate the evaluation mechanisms necessary to evaluate the user-
driven fire incident dashboard that will combine the building blocks proposed in
this thesis. Since the late 1990s, more and more attention has gone to measuring
and understanding how users experience ICT products, applications and services.
One of the drivers in this respect is that user experience (UX) has been linked to
market success or failure of new and existing products, applications and services.

To investigate the end-user experiences, a multi-method, qualitative and quanti-
tative mix of end-user research methods, customer-led idea generation and co-
creation, should be set up [9]. One of the characteristics of a certain Living Lab
methodology is that it gathers insights from the potential customer in a real-life
context. Subsequently, the captured feedback is more reliable. This was shown by
us in the SPOTT application [10].

After the application is developed and thoroughly tested on usability in a closed-
prototype setting, the application should be tested in an open field environment.
Furthermore a survey should be launched to focus on the usability of the fire in-
cident management application measured by means of the System Usability Scale
(SUS) [11]. The following paragraph gives some suggestions on how to interpret
the SUS results. When a median SUS score is higher than 68/100, the usability is
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good. In the survey the potential for usage (i.e., adoption potential for current non-
users) and potential for repeated usage (for current users) should be measured by
means of the Product Specific Adoption Potential (PSAP) methodology proposed
by De Marez et al. [12]. With the PSAP methodology, respondents are assigned
to Rogers’ innovation profiles (i.e., innovators, early adopters, early majority, late
majority and laggards) [13] based on their answers to 3 statements (5-point Likert-
scales: (1) definitely use and (5) definitely not use). The first statement measures
the degree to which the participant would use the application. The second, optimal,
statement measures the degree to which the participant would use the application
with specific features. The third, sub-optimal, statement measures the degree to
which the participant would use the application without the specific features.

5.3 Video summarization

As indicated in the questionnaire, decision makers want to have access to visual
and thermal video streams. As it is not possible to analyze the complete history of
a CCTV camera and it is not possible to investigate more then 7 cameras simul-
taneously, there is a need for video summarization. Video summarization can be
classified into two types, namely static video summarization and dynamic video
summarization. Static summarization results in a set of keyframes that best con-
veys the overall idea of the video. In most cases, keyframes are representative
frames that could identify either the beginning or end of a scene transition in a
video sequence. The number of resulting keyframes can vary as per the setting.
Contrary, dynamic summarization collects small chosen fragments of the original
video and arranges these fragments to obtain a new version of the video (i.e., log-
ical story units).

Depending on the use case (e.g., fire incident, hazard materials incident) and the
commanders function (e.g., evaluating the evacuation, investigating the structural
damage or making strategic decisions for the intervention crews) different static
or dynamic fragments will be indicated as important. Furthermore, personalized
interaction will be necessary to learn the visualization needs based on the incident
type, the operational function and the geographical location. The main focus of
the following sections is on the static summary generation as it is not feasible to
analyze several logical story units sequentially in a fast manner.

In order to visualize the relevant keyframes in a dashboard system and to decrease
the computational cost of subsequent video processing tasks it is important to re-
duce the amount of video data by filtering out redundant and unnecessary frames,
while preserving only those frames, distinctive and essential, to capture the entire
video content. Furthermore, presenting the end-user with a limited list of represen-
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tative keyframes instead of dynamic video fragments, improves their exploration,
understanding and search process (see Section 5.2). Therefore the main focus of
the following sections is on the static summary generation. The automated summa-
rization of video content into representative keyframes, however, is a challenging
problem due to the rapid change in lightning, viewpoint, and scene. In order to
cope with these issues, we present a novel solution to extract, cluster, and filter
meaningful keyframes. This summarization process consists of three major steps:

• The video summarization converts the video into a set of representative
keyframes. All the keyframes represent one single video shot. These shots
are detected using a grid-based histogram detection method and within each
shot no-reference keyframe quality analysis is used to select the best frame
within the shot.

• The number of keyframes is reduced by clustering visually similar frames,
while preserving as much as possible of the entire content.

• A limited set of representative keyframes is given to the object and scene
retrieval algorithm (see Chapter 3).

Much research has been done in the area of video summarization (i.e., keyframe
retrieval). Ajmal et al. [14] give an overview of the different techniques and clas-
sification methods that are commonly discussed in literature, i.e., feature classi-
fication [15], clustering [16], shot selection [17] and trajectory analysis [18]. In
the following subsection the grid-based histogram shot detection approach is pro-
posed.

5.3.1 Shot detection

Compared to the state-of-the-art temporal shot segmentation algorithms, such as
pixel/edge/motion differences based methods [19, 20], feature-based detection [21],
spatio-temporal video slicing [22] and global histogram analysis [23–25], the pro-
posed local histogram analysis on a 5-by-5 grid copes better with fast camera
movements, zoom gestures, and similar scene discrimination (i.e., problems that
arise in handheld video analysis). Object evaluation, based on manually generated
ground truth data consisting of 400 video shots on different kinds of video con-
tent, results in a recall of 99% and a precision of 89.9% for our computationally
efficient and fully automated process.
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The proposed algorithm consists of 4 major steps:

• A conversion to gray scale frames.

• A rasterization (splitting) of each frame in a 5-by-5 grid and a calculation of
the histogram for each cell in the grid.

• A correlation based temporal analysis of each histogram.

• A calculation of the amount of changed cells. If this is larger than an exper-
imentally defined threshold the transition is seen as a shot.

The histogram based shot detection has an outstanding performance on detecting
hard and gradual shots, which makes it suitable to process all kinds of video con-
tent (i.e., handheld and CCTV data streams). The only limitation is that it does not
handle similar scenes very well, but this is solved in Section 5.3.3. In order to cope
with gradual shots, like blends and fades, we also count the amount of frames that
have been passed since the last detected transition. If that amount is too low and
a new transition is found, we consider it to be the same transition. This way we
successfully manage to detect both gradual- and abrupt scene transitions.

5.3.2 No-reference keyframe quality analysis

Currently, multiple image quality metrics are available [26]. However, most of
them need a reference image or they are not suitable for real-time quality mea-
surement. In our methodology, based on the detected shot boundaries, the frame
with the highest quality within each shot is chosen as a representative keyframe.
Subsequently, the quality is estimated using a weighted set of three no-reference
quality metrics that are suitable for real-time images. Furthermore, the proposed
no-reference exposure, contrast and sharpness metrics are evaluated on a variety of
video footages. Evaluation results show that a combination of the computationally
efficient metrics are sufficient in selecting the best quality frame(s) within each
shot.

The no-reference exposure metric (Equation 5.1) results in a value ranging from
0 to 1. A value of zero means that the image is badly exposed, and the closer the
value is going to 1 the more it is correctly exposed.

exposure =
x̄− 127

127
, (5.1)

where x̄ represents the average value of the histogram of the frame.
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The contrast (Equation 5.2) on the other hand is based on the normalized spread of
the histogram of the frame. This results in a value of 0 for images without contrast
and 1 for keyframes with a maximal amount of contrast.

contrast =
1

128

√√√√ N∑
i=1

(xi − µ)2 and µ =
1

N

N∑
i=1

xi, (5.2)

where N represents the total amount of pixels in the frame and xi represents the
i-th pixel value of the frame.

Finally the sharpness (Equation 5.3) results in a value between -1 and 1, and is
based on the fact that neutral lightning results in a histogram with all values cen-
tered around the middle of the keyframe histogram.

sharpness =
1

2 ∗ 2552 ∗Width ∗Height

Width∑
i=1

Height∑
j=1

[(
δG(i, j)

δi
)2+(

δG(i, j)

δj
)2],

(5.3)
where G(i, j) represents the pixel value of the frame.

5.3.3 Similarity clustering

In general, a video scene consists of many shots that are visually similar. Sub-
sequently, an entire video sequence can contain several temporally distant yet vi-
sually similar frames that are taken in the same scene setting. On the one hand,
removing these redundant and unnecessary frames improves the summarization
visualization on a small screen or on a tablet. On the other hand, clustering the
similar keyframes will decrease the time for object tagging and scene understand-
ing (see Chapter 3), i.e., an automatic annotation can be performed on all object
representations within the same cluster.

The clustering process is done in three steps. First, we perform a global feature
extraction with CNN based learned features. Subsequently, we do a feature reduc-
tion by using the principal component analysis (PCA) technique. Finally, we use
k-means clustering with the L2-distance (see equation 5.4) of the reduced features
of the keyframe. √√√√i=1∑

n

(V ect1i − V ect2i)2 (5.4)

The learning-based features are generated by using a modified version of the Alexnet
architecture [27] in which we removed the last three fully connected layers. The
output after the last pooling layer is taken as the keyframe feature, as proposed
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by Zagoruyko et al. [28]. This ensures a higher level of image understanding and
generalization and avoids high visual similarity scores just based on global color
or texture information. Furthermore, it is important to remark that if the amount
of clusters is too high, redundant keyframes will appear. On the other hand, if the
amount of clusters is too low, outliers (i.e., very unique keyframes or single scene
shots) will not be shown.

5.4 Video and frame retrieval

The set of keyframes (from different camera viewpoints and camera sources) could
still be too versatile and to improve the fast exploration two additional mechanisms
are proposed: (I) an automated importance scoring based on the scene content and
(II) a semantic web-based querying tool. Furthermore, the tags that are generated
from the scene understanding process (see Chapter 3, e.g., indoor, outdoor, per-
son, closet, smoke, fire) are used as input for both mechanisms. Figure 5.3 gives
a schematic overview of all the video summarization (see previous section) and
retrieval blocks.

Figure 5.3 Video summarization pipeline (left) and frame retrieval mechanisms
(right)
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5.4.1 Importance scoring

Based on the tags, as proposed in Chapter 3, we have information regarding the
location, objects and people in every keyframe. The content of the scene is im-
portant because it includes useful information that attracts the viewer (e.g., the
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decision maker). Rationally, the objects and locations that are shown for a longer
period of time in the handheld video have a higher chance to be of importance.
It is important to remark that further user-driven evaluations will be necessary to
prove this statement. Furthermore, since there are tags pertaining to all the frames
it is necessary to alter them and to preserve only the most informative words that
define the main semantic components. This is done as follows. First the tags are
preprocessed by tokenization and part-of-speech tagging. After the extraction, the
saliency score for each subset s is calculated according to the words they contain.
We use Term Frequency - Inverse Document Frequency (tf-idf) [29] to weight each
word (tag) w as

tfidf(w, i) =
(k1 + 1)ni,w

k1[(1 − k2) + k2
Li

AL
] + ni,w

· log N
nw

(5.5)

where ni,w is the number of occurrences of word w in a set of keyframes i, Li is
the number of words in the set of keyframes i, AL is the average number of words
per set of keyframes in the video sequence, k1 and k2 are tuning parameters, N is
the total number of segments in the video sequence, and nw is the number of seg-
ments that contain word w. The tuning parameter k1 determines the sensitivity of
the first term (k1+1)ni,w

k1[(1−k2)+k2
Li
AL ]+ni,w

to changes in the value of the term frequency

ni,w. If k1 = 0, this term reduces to the counting function which is 1 if word w
occurs in segment and 0 otherwise. If k1 is large, this term becomes nearly linear
in ni, w. Because not all the segments have same words, normalization is needed.
k2 is used to control the normalization degree. If k2 = 0, there is no normalization.
Following Blei et al [29], The tuning parameters are set as k1 = 2 and k2 = 0.75,
but further user-driven sensitivity analysis will be necessary.

With the saliency scores for each individual word, the saliency score for a com-
plete video sequence is calculated as the sum of the scores for the words it contains
as in Equation 5.6.

T (i) =
∑
wεi

tfidf(w, i) (5.6)

In combination with the similarity score (e.g., two visualized keyframes should be
sufficiently dissimilar), the importance scoring is used to automatically present a
couple of keyframes to the decision makers. Still, user evaluations and annota-
tions could help improve and validate the automated video selection. Besides the
automated selection of the keyframes, we propose a semantic querying system that
allows to manually find the most related frames.
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5.4.2 Semantic based querying

The web-based tool that could be used to explore the enriched (i.e., the annotated)
keyframes is a metadata filtering and clustering service. The querying mechanism
can be activated in three different ways:

• A textual input where the user can type the tag that he wants. In case the
input is not in the list of predefined tags, the tag with the closest distance
(i.e., the highest similarity) according to Wordnet [30] is selected.

• A drop-down list with predefined tags, where the user can select the neces-
sary tags (i.e., show all the keyframes annotated with kitchen and fire).

• An interactive, hierarchical ontology visualization (see Figure 5.4) where
the user can select and easily search for the best matching tags. Further-
more, if a tag on a higher semantic level in the hierarchy is selected, all the
underlaying and related tags are selected (e.g., if the tag opening is selected,
the tags door and window are likewise selected).

Figure 5.4 Hierarchical, ontology driven interaction and visualization for
keyframe tag filtering.

An ontology is a representation, formal naming, and definition of the categories,
properties, and the relations between the concepts, data, and entities over one or
more domains

The semantic similarity is currently calculated based on the ontology of Zhang
et al., but new ontologies can easily be integrated. Zhang et al. [31] proposed
a street scene ontology for qualitative understanding of outdoor scenes. This is
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valuable for large multi-disciplinary fire incidents as it contains building elements
(e.g., floor, window, wall, column), but also construction, land and terrain ele-
ments. Some alternative ontologies that can be used are, for example, the work of
Kadar et al. [32] who created a database of 100 scene categories (e.g., classroom,
bathroom, bedroom, alley) derived from human vision. This ontology could be
valuable in indoor fire fighting scenarios. Jaoa et al. [33] created an ontology on
how scene situations progress in time. The FIRE ontology5 was created in order
to represent the set of concepts about the fire occurring in natural vegetation, its
characteristics, causes and effects. Similar concepts and effects are found in indoor
fire situations. Poveda et al. [34] created an ontology for designing and validating
emergency plans and the sensor, users and furniture connections are highly valu-
able for our framework.

As indicated earlier in this section, the video summarization and retrieval build-
ing blocks require further user-driven evaluations. This, in combination with the
new emerging technologies on technological or fire research, gives a great oppor-
tunity for more sensor and data-driven fire management.

Finally, the global work-flow is as follows: video footages from multidisciplinary
incidents are taken as input for our evaluation. Figure 5.5 gives a schematic
overview. First the video footages are selected (currently, this is a manual task,
but the integration of online IP-cameras should be easily possible). Secondly, the
keyframe extraction, similarity removal and no-reference analysis is used to select
the most representable keyframes. Thirdly, the semantic tag understanding process
is elaborated to automatically generate tags for each frame. Fourthly, the explo-
ration and the retrieval of specific frames and situations is facilitated to get a fast
overview of the current state of the incident.

5https://bioportal.bioontology.org/ontologies/FIRE
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Figure 5.5 Schematic overview of the video footage analysis framework, first the
footage linking, secondly the keyframe generation, thirdly the content understand-
ing tool and finally the exportability and retrieval tool for video investigation
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5.5 Conclusions and future work
This chapter presented the user-needs and data restrictions specific for fire incident
management. The insights were gained through the analysis of a questionnaire
launched in the firefighting community of Belgium. This evaluation revealed that
people are visually-oriented and that video footages are great to gain insights into
a problem. Still, people can only process 7 image inputs simultaneous and for that
reason, the video summarization framework, consisting of shot detection, frame
quality and similarity analysis was proposed. Subsequently, in order to facilitate
the video search process, the video and frame retrieval mechanism was clarified
and semantic tag based querying on an existing ontology map was initiated. It is
important to remark that the proposed techniques are equally suitable for commer-
cial (e.g., soap series, cooking-shows) video summarization. Future work should
investigate scalable and dynamic dashboards for multi-sensor input [35]. These
dashboards should help with the automated indication of sensor and data needs
during a fire incident.
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6
Conclusions and future work

In this dissertation we proposed the combination of state-of-the-art computer vi-
sion techniques and BIM for facilitating the localization and situational awareness
problem in a fire context. The different building blocks that have been investigated,
together with their interactions and their results, are shown in Figure 6.1. In the
following sections, we list our contributions on each of these topics and we point
out directions for future work. Subsequently, achievements and collaborations due
to the research initiatives are explained in Section 6.4. Finally, an answer is given
to the main research question initiated in Chapter 1.

6.1 Contributions

Investigation and exploration of spatial information (BIM and GIS) for fire safety
design, evacuation and fire investigation was our first contribution. To the best of
our knowledge it is the first approach that combines outdoor and indoor spatial
information for fire science. The second novelty of Chapter 2 was the semantic
matching of computer vision techniques and BIM data to facilitate localization
and situational awareness problems in fire emergency situations. It is important to
remark that building models need to be up-to-date, complete and rich in detail in
case they are used for decision-making purposes. Currently, however, the building
models are only used during construction and are mostly not updated afterwards,
limiting their practical applicability.
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In recent buildings there are alarms panels indicating the activated detection and
suppression zones in case of a fire. However, this does not give information on
the burning item or the detailed fire source location. Besides the smoke detection
devices, there is an increased use of video footages, mainly for security and in-
trusion detection. The large number of videocameras should be exploited for fire
incident management, for example, to give the status of the evacuation routes, to
identify the amount of people inside the building, to estimate the smoke density or
to define the fire fuel packages. In Chapter 3 a framework was proposed for au-
tomated fireground understanding from thermal and visual images and to increase
the information flow. Subsequently, it was shown that a multi-labeling CNN is
able to detect object and scene characteristics in a challenging environment. Fur-
thermore, as it is necessary to build a system that can process the videostreams in
real-time an optimization of the scene understanding framework was proposed by
using motion detection, object tracking and model optimization. Finally, the con-
textual scene exploitation mechanism (i.e., the combination of object and scene
detection probabilities) improved the visual and thermal scene understanding.

In Chapter 4 we initiated the generic architecture of the fireGIS framework, which
allows the generation of real-time heatmaps that show the space-time distribution
of fire risk levels and fire behavior characteristics. Furthermore, new tools were
proposed for smoke visibility and flame height estimation. In order to show the
feasibility of the proposed platform, real-fire experiments have been performed
in a large-scale road tunnel and in a multi-compartment set-up. Subsequently, to
ensure reliable sensor values at each spatial location in time a within- and between-
variance analysis was suggested to improve the final accuracy. The proposed
fireGIS framework extends the multi-modal/multi-sensor fire detection work that
has been performed during the past years at IDLAB and Ghent University.

In the final chapter a clear explanation was given on the visible and cognitive
disability in stress situations. People are visually-oriented and video footages and
images are of great value to gain insights in a particular problem. Due to the fast
decision making it is not feasible to analyze all video footages simultaneously. To
solve this problem a video summarization mechanism and tools for highlight se-
lection were proposed in Chapter 5. The novel video summarization framework
combines shot detection, no-reference keyframe quality and similarity analysis.
These mechanisms are suggested for fire incident video summarization, but they
are equally suitable for commercial (e.g., soapseries, cooking-shows) video sum-
marization. Finally, the subjective criteria and guidelines for usability testing are
retrieved from a questionnaire launched in the Belgian firefighting community.
User-driven evaluations are illustrated to increase the uptake of an application or
device.
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Figure 6.1 Fire incident management interactions and realizations.
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6.2 Future work
Future work directly in the line of this dissertation is evaluating the performance
of the different algorithms and frameworks in more challenging and real fire en-
vironments. Furthermore, an automated collection of infrared images from real
fires could increase the performance of the proposed scene and object detection
mechanisms. This multidisciplinary research is a first step to make more reliable
fire predictions. Still there are many opportunities to improve the multi-sensor fire
behavior analysis. In that sense this dissertation can be seen as a road-map with
building blocks for a more sensor-driven fire science.

6.2.1 The future of BIM for fire safety science

Due to the rising urban density, the aging infrastructure and the reduced budgets
there is a need for a tool to enhance the current building lifecycle (i.e., planning,
design, building and operation). BIM and GIS deliver such a tool to facilitate the
data during the cycle. Since 2016, all centrally-procured construction projects are
obliged to use BIM in the UK. In Spain, Germany and France there is an emphasis
to use BIM for commercial and infrastructure projects by 20201.

1http://cupastone.com/bim-countries-world/
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In general BIM is a relatively new technology and the potential benefits are not
always that clear as the main focus is currently cost savings in the design and de-
velopment phase. The BIM data can, for example, be used to schedule the most
efficient maintenance or usage of a space. In this thesis it was already stated that
the spatial data can help to reduce the human and economic loss due to a fire (see
Chapter 2).

To make the usage of BIM data during a fire feasible there is need for an official
government mandate on the storage and management of BIM data in Belgium. In
that context a topic that has not yet been addressed in the thesis is the security
objectives of the building model, which consists of three parts:

• Integrity: the first thing to consider is how to recover from failure or er-
ror conditions during the design phase. Several people with different back-
grounds will work on the BIM model and interoperation problems can occur
(e.g., the building owner changed the latest design and the fire modelers used
an older version of the BIM file to calculate the expected fire evolution).
Related to the fire science context it is also possible that malicious people
’infect’ or modify the BIM model making the model useless during critical
incident management. This repeats the need for indoor verification and val-
idation mechanisms on a temporal basis (e.g., each year). Such a check-up
could (for instance) be combined with the yearly assessment of the smoke
detectors and the fire extinguish equipment.

• Confidentiality: control and authorization of the access rights to specific
information or data. For the BIM usage in a fire safety science context it is
quite clear that a terrorist or criminal should not have the same access rights
compared to a building owner or a fire officer. A role-based access control
allowing monitoring or accessing a specific part of the BIM and a specific
level-of-detail is necessary. Finally, the access should be limited in time and
not granted for the full lifecycle of the building.

• Availability: the building model should be unified accessible on a central
(cloud-based) platform. Local, modified versions should be avoided. As,
there is a higher chance that a fire or incident will occur in an older building
than a more recent one, the compatibility of the software packages should be
as high as possible. Furthermore, the software industry is evolving quickly
and considerations should be made on how the BIM and fire science related
data are stored and modified across the lifecycle (i.e., 50 years and more,
from the earliest design up to demolition).
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Based on the previous security objectives we suggest that there should be a cen-
tralized mechanism in the government that controls and facilitates the BIM files.
Currently the files are stored in a decentralized manner making them not accessi-
ble during an incident. However, we expect that this will change in the upcoming
years since more and more researchers start to explore the BIM-data and this in
a wide range of application domains (e.g., augmented and virtual reality, IoT and
open-data).

As stated in the Introduction, fire models require a detailed input of fuel pack-
ages, room configuration and ventilation conditions. Furthermore, accurate CFD
calculations are slow (days up to weeks for one model) and require manual val-
idation and verification. In that sense we suggest a future research track that in-
vestigates the feasibility of running fire models in advance for several ventilation
and fuel conditions in the BIM file. In case of a fire, the best fire model is then
estimated via an inversed modeling approach as proposed by Jahn et al. [1] and
Rein et al. [2]. Still, the scalability of predicting fire spreading in real time will
require more research and industry initiatives. One particular research question,
for example, is how to access all direct (e.g., smoke detector) or indirect (e.g.,
presence detectors, HVAC temperature sensor) relevant sensors during a fire inci-
dent. Another research question is what level of simulation is required to facilitate
a decent incident management.

6.2.2 The future of video fire analysis

Over the last years the cost of visual and infrared consumer devices has heavily de-
creased. This has led to an increase of commercially available video surveillance
applications in a broad range of application domains (e.g., intruder detection and
fire detection). Besides the fixed and PTZ (Pan, Tilt and Zoom) cameras, which
are already available in many building environments, there are dynamically de-
ployable cameras (i.e., a drone or a smartphone) that can give live feedback of the
fire scene. Currently, the fire brigades are in an exploratory phase of the usage of
certain dynamically deployable devices and more user-driven studies will be nec-
essary. The guidelines proposed in Chapter 5 in this thesis can be used as a starting
point.

More wireless devices, increased resolution, reduced camera size in combination
with deep learning trends will define video analysis in the future. Furthermore, the
performance of the analytics algorithms will only increase in uncontrolled situa-
tions. For example, only a couple of years ago face detection was only possible in
controlled indoor settings. Now it is possible to estimate emotions and expressions
of a face with a regular smartphone camera.
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Future work on video fire analysis should investigate the material type recogni-
tion with standard visual and hyperspectral cameras. Objects are made of different
materials and linings and different fire behavior can be expected. Each object
has another reflectance and transmission influenced by thermal radiation received
from other materials. Therefore, future work should explore the combination of
different low-cost sensors (e.g., depth, visual and thermal) to improve the material
recognition. In a similar way, the estimation of 3D indoor object characteristics,
will only become easier in the following years due to the possibilities of deep
learning (e.g., single sensor depth estimation, auto-encoders for 3D shape recog-
nition) as stated in Chapter 3.

Wang et al. [3] stated that CNN models are even capable of identifying the HRR
of a fire from a single video footage. However, as the fire growth is dependent on
the maximal fuel package, the inlet and outlet ventilation conditions, the surround-
ings and the compartment configuration, more video footages in combination with
building information models will be necessary to calculate the HRR. Multi-sensor
inputs in combination with BIM data seem here the most appropriate direction
as proposed in Chapter 2. Soon, video analytics will be able to perform person
recognition, crowd analysis (e.g., detecting the amount of people and their behav-
ior) and anomaly detection on global scale. Maybe in the future, even before a fire
incident will occur the video analysis will notify suspicious behavior and faster
interventions could reduce the economic and material damage.

6.3 Emerging technologies and trends

In this section we want to address some upcoming trends and technologies that are
valuable for fire incident management. Drones, automated robots and handheld
thermal cameras are emerging in different fields.

6.3.1 Drones for incident management

In the final part of the survey (see Section 5.2.2) we investigated the current usage
of drones, also referred to as unmanned aircraft systems, for firefighting incidents.
It is important to remark that, due to the limited flight time and the non-resistance
to high temperatures, there are currently no systems available for indoor fire inci-
dent exploration. Still, due to their speed and outdoor reach it is already possible
to assist in risk assessment, mapping, planning and reducing the exposure to dan-
ger of firefighters. Future research is necessary to create protected drones and to
ensure a stable communication on the incident site, but preliminary results show
the added value that drones can provide in fire incident management.
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6.3.2 Handheld thermal imagers

The image quality of handheld thermal cameras is increasing while the price is
decreasing. As a result, more and more fire brigades actively use these devices.
Nevertheless, there are currently limited practice guides to use these imaging de-
vices. Amon et al. [4] investigated the problems to use a thermal imaging device in
a firefighting context, but with limited focus on the correct handling of the device.
In order to fully integrate our proposed object detection mechanism for fireground
understanding, more research on this topic is needed. Meanwhile, some practical
advices for proper use are given based on our current expertise:

• Point the camera forward to get a complete overview of the room; usually
during a fire incident the camera is only pointed upwards,

• Avoid the presence of persons (i.e., other firefighters) in the field-of-view to
ensure a maximal detection and recognition of objects,

• Avoid the pointing on reflective surfaces, such as mirrors or metal doors, to
avoid false positives for the object detection,

• Move the camera slowly to prevent the image from freezing and to avoid/limit
the creation of artifacts,

• While moving into a building, occasionally look behind you to make sure the
path you have taken is clear, and keep track of any smoke or fire changing
conditions,

• It is important to know that a thermal camera cannot look through furniture
or underneath debris. Flames or furniture objects cannot be detected if they
are not in the field-of-view.

Besides the research on the application of thermal imaging devices in a firefighting
context there is ongoing research to make the handling of a thermal device easier.
Scott Sight built an in-mask thermal sensor2 and VIZIR3 offers a hands-free op-
eration mask. There are some differences between both systems. For instance,
the Scott Sight has no external camera and a thermal viewer in the corner, while
the VIZIR has its augmented reality images in the center. Further research will be
necessary to achieve full fireground understanding from these devices.

2http://www.scottsafetynation.com
3http://www.darix.ch/
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In addition to the active monitoring of the fire fighters’ performance it is impor-
tant to get a clear view on their environment. In spite of the active use of thermal
devices, however, there is currently no system available to perform automated fire
location understanding. In this thesis we described some technological innovations
that could help create an automated overview of the environment during interven-
tion. Each of these technologies will contribute in transforming the firefighting
into a more sensing and data-driven discipline.

Finally, another recent trend in the firefighting community is the use of robots,
mostly for urban search. Still most of these robots are in an exploratory, research
phase and require manual manipulation of the device. The TRADR project [5],
for example, showed a robot-assisted response to explore the disaster scene. The
SAFFIR project created a prototype robot to walk across uneven floors, use ther-
mal imaging to identify overheated equipment or fire, and even hold a hose to
extinguish a small fire.

6.4 Achievements and collaborations

The work initiated in this thesis will enable the semantic intelligence research unit
of IDLAB to further extend activities in multimodal data processing, video anal-
ysis, computer vision, GEO-ICT, spatio-temporal enrichment and data mining/-
analysis. Subsequently, the methodologies and tools proposed in this thesis will
improve the spatio-temporal (meta) data quality and querying process.

Due to the insights gained in this thesis several new research initiatives were ini-
tiated. The scene and object understanding building blocks of Chapter 3 inspired
the UGESCO4 Belspo project. The goal of the project is to develop geo-temporal
(meta)data extraction and enrichment tools to extend and link the existing digital
archive collection items and facilitate spatio-temporal collection mapping for in-
teractive querying.

The spatial information analysis of Chapter 2 and 4 contributes to the SmartGLAZ
imec-ICON project. Spatio-temporal environmental information (e.g., landmarks,
hot spots and weather data) will be used to create environment-aware, continu-
ously self-configuring projection in a Head Mounted Display (HMD).

The work of video summarization (see Chapter 5) and object-scene relations (see
Chapter 3) are contributions to the SPOTT IWT research project5. The goal is to
enrich video content and to facilitate the keyframe retrieval.

4http://ugesco.be/
5https://www.imec-int.com/nl/istart-portfolio/spott



CONCLUSION 6-9

Finally, due to the initiatives that were taken during this research a new course
will be organized in the Master Fire Safety Science in the University of Ghent
from next academic year. The aim of the course is to provide students insights
into the different building blocks of sensor and data-driven management of fire
incidents.

6.5 Answer to the research question
In order to end this dissertation we reformulate the central question initiated in
Chapter 1 and answer the different aspects:

Can we develop a system to accurately detect, analyze and visual-
ize spatio-temporal fire characteristics in enclosure fires and can
we use the extracted information for fire behavior analysis and
forecasting within a BIM framework?

The first part of the research question was the linking with a BIM framework.
The literature review and suggestions in Chapter 2 of this thesis showed the feasi-
bility of the integration of BIM data for fire investigation. As indicated earlier it is
important to remark that building models need to be up-to-date, complete and rich
in detail.

The second part of the central research question, i.e., in enclosure fires, required
a good knowledge of the room configuration, the scene type and subsequently an
understanding of enclosure fire dynamics. In Chapter 3 we have shown that it is
possible to estimate in real-time the scene type and the indoor object configura-
tion. Besides the object knowledge, additional semantic information of the scene
classification module could be used to further improve the localization accuracy.
Finally, the feasibility of our system was illustrated in a large-scale road tunnel
and in a multi-compartment set-up.

The third aspect was the accurate detection, analysis and visualization of spatio-
temporal fire characteristics. In Chapter 4 we proposed the generic architecture
of the fireGIS framework, which allowed the generation of real-time heatmaps that
show the space-time distribution of fire risk levels and fire behavior characteristics.

The fourth aspect of using the extracted information for fire behavior analy-
sis and forecasting links to two facets. Firstly, the analysis links to the decision
making and the situational awareness. In Chapter 5 user requirements and guide-
lines for fire incident management were proposed. Furthermore, the video summa-
rization tools help to improve the situational awareness. Secondly, the forecasting
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assumes that the retrieved information can be incorporated into existing fire fore-
casting CFD or zone models. However, the problem for sensor based fire forecast-
ing in real-life use-cases has not been solved yet. This work gives a major base for
the extraction of smoke, building and fire characteristics and future work should
focus on improving the incorporation of the sensor values in existing forecasting
applications.

This thesis shows the technology readiness of each of the proposed building blocks.
It should be seen as a starting point to make the fire fighting more sensor and
data-driven. Furthermore, it is important to remark that several of the proposed
building blocks are not limited to fire science and they can be easily adapted to
other applications, e.g., multi-model object recognition in shopping content, com-
mercial video summarization and querying or adaptive indoor routing. In general
the results in the thesis have a broad scientific importance and the usability of our
contributions will only increase in the coming years.
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A
Introduction to fire behavior

Abstract This appendix provides an overview of basic fire behavior concepts and
physics, to give some background and to guide the reader through this dissertation.
Subsequently an introduction is given into enclosure fires and finally a preface is
given into CFD and zone modeling for fire forecasting concept. Major parts of this
chapter are inspired by the work of Merci et Beji. [1].

A.1 Introduction

The first question: ”What is a fire?” should be answered before going more in
detail into enclosure dynamics. A fire needs 3 elements (see Figure A.1): oxygen,
fuel and a heat source. A candle flame clearly illustrates these three fire triangle
values, (i.e., the fuel is the wax, the oxidizer is the oxygen in the air and the heat is
initially brought by the ignition and sustained by the flame). Furthermore, a fire is
characterized by heat and smoke. The smoke is mainly described by the visibility
and the toxicity and the heat is defined by a temperature and a flux.

A.1.1 Heat transfer in fires

Heat transfer is key in the context of fire and has been widely discussed in different
textbooks (e.g., Drysdale [2] and Merci et Beji. [1]). The heat supplied to the fuel
can transform the fuel from solid, up to liquid and gaseous phase. This is done by
thee different mechanisms: conduction, convection and radiation.
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Figure A.1 Fire triangle representation (source: Elite Fire Protection Ltd).

• Conduction: is the transfer of heat within the material itself, the heat trans-
fer occurs from a region of higher temperature to a region with a lower
temperature. Specific for fire spreading, two examples can be given where
conduction plays a role: the walls are heating up and the heat is transmitted
to the adjacent walls and spaces; insulation: wood and gypsum specific, are
poor conductors and they transmit the heat very slowly.

• Convection: transfer of heat by the physical movement of fluids (air or an-
other carrier) in contact with a surface. When the air is heated, it expands
and the air becomes lighter than the surrounding air and it rises. When a
fire is burning large amounts of hot gases and smoke, one of the most im-
portant factors affecting life safety, are produced. These will travel through
the building and often ignite more combustible materials causing the fire to
spread.

• Radiation: the emission of energy in rays or waves without any mass trans-
fer. The heat from the rays can be absorbed by combustible materials which
can cause them to heat up and to ignite. For indoor fire spreading the radia-
tion plays an important role when the thick, hot smoke layer is formed and
spreads across the room. The hot layer will radiate the underlying objects
and can induce the roll-over and flash-over.

A.1.2 Definitions

Pyrolysis: refers to the degradation of solid material and is an irreversible en-
dothermic process. In contrast to evaporation it changes the chemical composition
of the material.

Neutral layer: The interaction plane between the cold layer and the hot smoke
layer is in literature called the neutral plane or layer. This is not always clearly
visible in reality due the turbulence of the fire and the smoke.
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Heat of combustion: Drysdale [2] defined the heat of combustion as the total
amount of energy released when a unit quantity of a fuel at 298 Kelvin and at at-
mospheric conditions is completely oxidized. This value will indicate the behavior
of the material/fuel in case of a fire.

∆hc,eff =
˙q(t)

−ṁ
(A.1)

∆hc,eff = effective heat of combustion [MJ / kg]
˙q(t) = heat release rate in time [kW]

ṁ = mass loss rate of specimen [g . s-1]

The Heat Release Rate (HRR): is the rate of heat generation by a fire and it
is a critical parameter to characterize the fire. Furthermore, the parameter can be
used to evaluate the fire growth of an enclosure fire and for fire assessment, haz-
ard analysis or computational fluid dynamics. From the previous formula A.1, the
heat release rate can be determined. Secondly, the heat release rate can be deter-
mined accordance with the ISO 5660 (second edition) international standard doc-
ument, by measuring the oxygen consumption and the flow rate of the combustion
products in a cone calorimeter. In Figure A.2 there is a comparison for the peak
heat release rate for different piloted and radiated ignited (35kW/m2) calorimeter
fires in accordance to the ISO 5660 test, the tests are performed in WarringtonFire
Ghent. The disperse material forms have a higher heat release rate compared to the
massive form. This is due to the amount of oxygen that can be mixed with the fuel
for burning (fuel bed area). Due to the ideal mixing environment, the burning is
going faster, whereas massive materials have a more constant and longer burning
when sustainable flaming.

A.2 Fire growth

The growth of a fire (i.e., slow, medium, fast, ultra-fast) is indicated by the slope
of the heat release rate (expressed in [kW]) as function of time. In literature [3]
this is often represented by an αt2−curve.

Figure A.3 gives an overview of typical fire growth rates and corresponding in-
dicative material types. As can be seen, a methanol pool fire will have an ultra-fast
growth rate, compared to a solid wood cabin, which has a slow growth rate. The
growth is mainly dependent on the room-configuration and content. Obviously,
the flame spread rate affects the fire growth.
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Figure A.2 Peak Heat Release Rate for different materials in disperse and massive
form
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A.2.1 Flame spread

Flame spreading is in literature referred as a succession of ignitions that increas-
ingly enlarge the affected area. Many factors affect the flame spread rate:

• The surface orientation and direction of propagation (e.g., vertical upward
flame spread is very fast, due to strong radiative and convective heat trans-
fer).

• The material thermal inertia (e.g., fire on light materials spread fast).

• Surface geometry (e.g., the flame spreading is faster in a corner fire com-
pared to a similar sized fire in the middle of the wall)

• Environmental effects (e.g., increased fire spreading in a forest due imposed
air movement).

To measure the flame height and eventually the fire spreading there are different
methods proposed in literature. More detailed explanation of our proposed tech-
niques and experiments is given in Chapter 4, but in literature two major mecha-
nisms are mentioned.

• Based on the surface temperature, measured with thermocouples1, the major
flame front is indicated by a temperature above 300 ◦C [4].

• Based on a visual or thermal camera based flame detector algorithm [5, 6].

A.3 Enclosure fire dynamics
When a fire occurs in an enclosed space, additional heat transfer and physics ele-
ments need to be considered [7]. First there is the ignition phase, secondly there is
the growing phase, where several evolutions of the fire are possible. The fire can
fade out or the fire can grow rapidly (due the positive feedback loop: the heat from
the flames induces more pyrolysis of virgin material; more pyrolysis, flammable
gases are released and larger flames appear. Subsequently, there is more heat-
transfer to the non-burning objects and more pyrolysis). Thirdly, flash-over can
occur (i.e., a rapid spread from the area of localized burning to all combustible
surfaces within the room) and the fire becomes a fully-developed fire. Finally, the
fire comes in a decay phase due to lack of fuel or oxygen. It is important to remark
that the evolution in time and temperature is situation dependent. Furthermore, a
sudden opening or breakage of a window can change the air supply rate and this
can induce a ventilation-induced flashover.

1A thermocouple is an electrical device made of two dissimilar conductors. Due to the thermo-
electric effect and the Seebeck effect (e.g., conversion of heat into electricity at the junction), different
voltages can be measured at different temperatures.
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Figure A.4 Evolution in time of the indicative HRR in an enclosure within fuel
controlled conditions.
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Figure A.4 shows the evolution in time of the indicative HRR in an enclosure with
fuel controlled conditions. The flash-over state is from a fire safety science point-
of-view a tipping point. The design for the pre-flashover state focuses on the safety
of humans and the reaction to fire, whereas in the post-flashover state the emphasis
is on the design of structural stability (and safety of fire fighters): fire resistance.

A.3.1 Fuel versus ventilation controlled fire

In the growth phase the fire can be ’fuel controlled’ or ’ventilation controlled’. In
the fuel controlled case the fire can die if the heat provided by the flames is less
than the energy required for further pyrolysis of virgin material, or the burning
object is completely burned. If we look at the simplest combustion reaction of
methane, in the fuel controlled case, there is more oxygen available than necessary.
CH4 + 4O2− > CO2 + 2H2O + 2O2 For the ventilation-controlled case the
fire can die if there is a lack of oxygen. Figure A.5 indicates the fuel controlled
conditions of a compartment fire during the growth and the decaying phase.
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Figure A.5 Evolution in time of the indicative HRR for fuel and ventilation con-
trolled situations (source cfbt-us.com).
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Figure A.6 Simplified heat transfer in enclosures fires, couch fire during the VIPA-
BVO experiment (source VIPA-study).
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A.3.2 Heat transfer in enclosure fires

Besides the oxygen consumption, the fire stages and the heat release curves, it is
also important to look at the heat transfer, which is not straightforward in enclose
fires. Figure A.6 gives a simplified version of the different heat transfer interac-
tions in an enclosure fire. The flame releases some heat by radiation to the smoke
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and to the surroundings. Subsequently, due the buoyancy (i.e., upward force), the
heat is mainly transferred by convection into the smoke plume. Furthermore, due
the radiation on the fuel surface, the pyrolysis process creates combustible gases.
Another part of the heat on the fuel surface disappears by conduction and is re-
sponsible for the heating up of the solid material.

As indicated in Figure A.6 there is in the beginning a build-up of a smoke layer.
This is possible due the bounding surface (i.e, ceiling, walls, floor). Furthermore,
the layer heats up the walls by convection and radiation and the walls transport the
heat internally by conduction. Finally, in later stages of the fire development, there
is radiative feedback from the hot walls, ceiling and smoke layer, enhancing the
pyrolysis and the rapid fire progress.

A.4 Fire modeling

To understand the fire dynamics and ultimately to build fire-safe buildings, scien-
tist and designers frequently use fire modeling tools. Based on the space geometry,
the fuel package dimensions and the fuel properties an estimation of the fire repre-
sentation is made. The modeling tools can, based on their complexity, be divided
into three groups: algebraic models, zone-models and CFD models, where the lat-
ter one is the more sophisticated version. Within this thesis it is not the intention to
optimize the existing methods and for more physical details reference is made to
different textbooks [1, 8, 9]. Still to have a basic understanding a small introduc-
tion for each method is given. Finally, it is important to remark that all the models
require expertise in defining the correct input data and assessing the feasibility of
the calculated results.

Figure A.7 Couch fire simulation: Left: the simplified zone model with only
the cold and hot layer; right: the CFD model with detailed temperature profiles
(source: M10 fire consultancy).
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A.4.1 Introduction to zone modeling

Zone models assume that the volume or room can be divided into zones with ho-
mogeneous temperature and species composition. In the enclosure fire case, there
is the ideal hot layer with combustible products at the ceiling of the compartment
and the cold layer with fresh air. The temperature and the height of each layer can
change in time. This is a very strong simplification and the models can only be
used in simple configurations (i.e., complex non rectangular geometry, stratifica-
tion of hot gases). The computation time is only a matter of seconds and allows
fire modelers to obtain fast results for different variables and configurations during
the design phase.

A.4.2 Introduction to CFD fire modeling

Computational Fluid Dynamics (CFD) is a tool to simulate, in this thesis fire-
driven, flow through numerical solutions of the Navier-Stokes equations [10]. The
solution is based on finite differences or finite volumes to discretize the partial
differential equations, expressing the conservation of mass, momentum and en-
ergy. Compared to the zone-model, where there are two volumes, in CFD there
are millions of volumes. The higher the number of volumes, the more accurate
the final resolution. Contrarily, the computational calculation time and complexity
increases (reducing the cell size by factor 2 will increase the computation time by
factor 16). The major benefit compared to zone models is the capability of model-
ing smoke and heat movement in complex geometries in multi-compartments (i.e.,
atria and tunnels). Furthermore, due to the possibility to modify the room config-
uration, boundary conditions, addition of sprinklers and smoke detectors, the CFD
models are often used to assess the influence of different parameters in the design
phase of a building. Finally, there are many CFD packages available, but specific
for fire behavior FDS2 Firefoam3 are most frequently used.

2https://pages.nist.gov/fds-smv/
3https://github.com/fireFoam-dev
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[6] A Enis Çetin, Kosmas Dimitropoulos, Benedict Gouverneur, Nikos Gram-
malidis, Osman Günay, Y Hakan Habibolu, B Uur Töreyin, and Steven Ver-
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B
Computer vision and machine learning

basics

Abstract This appendix provides an overview of basic computer vision and ma-
chine learning concepts and theories, to guide you trough this dissertation if you
are not familiar with these techniques. The following sections are limited to the
techniques used in this thesis. This appendix should therefore not be seen as a
complete overview of machine learning and computer vision.

B.1 Computer vision
Before going more into detail in machine learning and deeplearning it is important
to have some basic understanding of the most general image processing proce-
dures. Furthermore this know-how can be used for preprocessing, image filtering
and data augmentation. All of them are very important techniques to achieve high
detection/recognition accuracy in real world applications, where noise, lightning
changes, occlusions and reflections can occur in the video or images. Such images
contain a discrete number of pixels and image processing takes place on that pixel
level. Some examples of frequently used image processing are contrast enhance-
ment, edge detection, noise removal and geometric transformations.
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B.1.1 Pixel representation

1. An image consist of a grid of pixels;

2. Every pixel has a coordinate (which describes the location in the grid, more
specific the row and the column). Furthermore the pixel contains color and
lighting information, this is represented by a set of numbers and the amount
defines the depth of the image. A 24-bit image, for example, allows to store
three 0-255 numbers for each pixel, for example, raw RGB values.

The RGB values represent a specific color space or model of an image. A color
model is an abstract mathematical model that describes the way that colors will be
represented as tuples of numbers. The RGB model, for example, will represent a
color in a combination of primary color spectra (e.g., R = 700nm, G = 546,1 nm,
B = 435,8 nm).

Two other color models that are used in this thesis (see Chapter 4) are the Hue,
Saturation and Value (HSV) model and the YUV model. HSV gives an approxi-
mation of the human perception of light. Compared to the RGB-space, where the
values are defined between 0 and 1 or 0 and 255, in the HSV-space the H is a value
between 0 and 360, the S and V values are between 0 and 1. Figure B.1 gives
an example of a car fire image where the upper left image is the original RGB
representation and the other images are the transformed H, S and V values. Fur-
thermore, Formula B.1 give the transformation from the RGB to the HSV space.

H =



(
0 + G−B

MAX−MIN

)
∗ 60 if R = MAX

(
2 + B−R

MAX−MIN

)
∗ 60 if G = MAX

(
4 + R−G

MAX−MIN

)
∗ 60 if B = MAX

S =
MAX −MIN

MAX

V = MAX

(B.1)

The YUV spectrum, where Y stands for luminance (brightness) and the UV for the
chrominance values, is also used in Chapter 4. The transformation from the RGB
image to YUV is given in Formula B.2.

Y = 0, 299.R+ 0, 597.G+ 0, 114.B

U = B − Y

V = R− Y

(B.2)



COMPUTER VISION AND MACHINE LEARNING BASICS B-3

Figure B.1 Image color space visualization, upper left the original RGB image,
right the Y and H value, at the bottom respective the UV and the SV representation.

(a) YUV-space (b) HSV-space

B.1.2 Pixel-wise and geometric transformations

There are five main geometric transformations that can be performed on an image:
scaling, translation, rotation, cropping and affine transformation. The operations
do not change the image content, but deform the pixel grid and map it to the new
destination image, see Formula B.3. These transformations are also the ones that
are used in Chapter 3 to expand the scene and object dataset.

dst(x, y, z) = src(fx(x, y, z), fy(x, y, z), fz(x, y, z)) (B.3)

Scaling is the resizing of the image with different interpolation methods (e.g.,
nearest-neighbor, bilinear, bicubic) along the coordinate directions. Translation
is the shifting of the objects location in the x, y or z direction. Rotation provides
scaled rotation with adjustable center of rotation and adjustable angles. Cropping
is the selection of a region of interest from an image. Affine transformation is
a basic transformation where all the parallel lines in the original image remain
parallel in the output image. It does not always preserve the distance between the
points in the original and destination image. However, it preserves the ratios of
the distances between the points. Figure B.2 gives an overview of the different
transformation mechanisms.
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Figure B.2 An overview of the transformation methods: scaling, rotation, crop-
ping, affine transformation.

Original Scaling Rotation Cropping Affine transformation

B.1.3 Image smoothing or blurring

Image blurring is achieved by convolving the image with a low-pass filter kernel
and it is useful for removing noise. It actually removes high frequency content.
OpenCV1, a well-known image processing software package provides mainly four
types of blurring techniques. Averaging is the most general blur technique, Gaus-
sian filtering is highly effective in removing gaussian noise from the image, Me-
dian filtering is highly effective against salt-and-pepper noise (sparsely occurring
white and black pixels) in the images and bilateral filtering is highly effective in
noise removal while preserving sharp edges. The latter technique (i.e., the bilat-
eral filter) was chosen as a pre-processing step in the smoke visibility estimation
algorithm proposed in this thesis.

B.1.4 Morphological operations

Morphological operations apply a structuring element to an input image in order
to improve object representations in the image. The applications of the operation
are:

• Noise removal;

• Isolation of individual elements and joining disparate elements;

• Finding of intensity bumps or holes.

The most basic morphological operations are erosion and dilation. Figure B.3
gives a simplified visualization of applying a structural element. The image ero-
sion idea is based on soil erosion, it erodes away the boundaries of the foreground
object. Erosion removes white noise (i.e., signal power is independently dis-
tributed over time), but also shrinks our object, so we dilate it to regain the object
area. In Chapter 3 of this thesis the morphological operations are used for joining
disparate motion zones in the video sequence.

1https://opencv.org/
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Figure B.3 A structuring element is applied on the original image (left), the ero-
sion operation (middle) makes the object becoming smaller and small objects dis-
appear, the dilation operation (right) increases the object size and small objects are
merged.

B.1.5 Structural analysis and shape description

In the previous subsection, we discussed the use of a structuring element for noise
removal. Similar filters can be used to extract useful information from an image,
the features. Edge detection, the detection of sudden changes and discontinuities
in the intensity function, for example is a simple technique to extract shape infor-
mation from an image . Furthermore, the edges can be used to recognize the object
or to identify the viewpoint and geometry of an image (see the visibility algorithm
in Chapter 4). Subsequently, the features can also be used as input for the machine
learning approach, which will be discussed in the following section.

The sudden change in discontinuity in the intensity profile can be visualized by
the extrema of the derivative of that function. Furthermore the edge strength can
be calculated by the gradient magnitude. It is important to remark that noise is
highly affecting the filter response. Noise are pixels that have a very different
intensity compared to their neighbors. The solution is to smooth the image be-
fore applying the convolution to find the derivative. Finally, this leads to different
criteria to build an optimal edge detector .

• Good detection: minimize the false positives (noise classified as edge) and
reduce the false negatives (missed real edges).

• Good localization: the detected edges should be very close to the real edges.

• Single response: only one detected point for each real edge point.
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The method that best matches the previous criteria is the canny edge detector [1].
This frequently used edge detection algorithm consist of the following five steps:

• General image noise removal by applying a Gaussian filter,

• Gradient intensity retrieval: First, by applying a Sobel operator (e.g., a pre-
defined 3x3 convolution mask) the 2D spatial gradient of the image is re-
trieved. Secondly, the direction and the magnitude of each edge is deter-
mined. Thirdly, the edge directions are reduced to four major directions
(i.e., horizontal, vertical and the two diagonals).

• Non-maximum suppression to reduce the forged response to the edge detec-
tion and to merge all the weak detections that belong to the same edge.

• Content dependent double thresholding to remove false edge pixels due to
noise and color variation.

• Edge tracking by hysteresis analysis (e.g., to connect short edge parts).

The edges are a basic feature descriptor that can be used as input in the ma-
chine learning approach (see Section B.2). It is important to remark that a descrip-
tor should be: invariant with respect to the pose, scale, illumination of the object;
highly distinctive in a large image dataset. In literature different methods are pro-
posed (e.g., HOG: Histogram Of Gradients, SURF: Speeded Up Robust Features,
Fast corner detector).
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B.2 Machine learning

The meaning of the term was already explained by Arthur Samuel in 1959 as:
Field of study that gives computers the ability to learn without being explicitly
programmed. The term resembles different techniques that identify patterns in
observed data and build models that explain and predict new values. The different
mechanisms are listed as follows:

• Association: a rule based method for discovering interesting relations (e.g.,
is there a link between people having a lower income and fire occurrence).

• Supervised learning: a methodology that infers a function or a model from
labeled training data.

– Classification; the output variable of the predictor is a category, a dis-
crete value (e.g., fire and no-fire situation).

– Regression: the output variable of the predictor is a real, continuous
value (e.g., 80 percent visibility).

• Unsupervised learning: find insights in unlabeled information (e.g., cluster
domestic house fires based on the average income)

• Reinforcement learning: solves the difficult problem of correlating immedi-
ate actions with the delayed returns they produce (e.g., learning an automatic
fire extinguish robot by rewarding fire hits).

Besides the different models and mechanisms there is always a similar workflow
that should be followed to ensure a stable system. Furthermore, the evaluation of a
particular approach should be tackled decently. Within the following subsections
we go more into detail in the workflow and the existing evaluation tools.

B.2.1 Traditional approach

The traditional workflow consist of four major building blocks (i.e., firstly, the
problem and data analysis, secondly the feature extraction or feature learning,
thirdly the model selection and fourthly the model training and evaluation). It is
important to remark the workflow should be repeated in a cycle manner to ensure
a decent model that performs well during deployment.

• Problem and data analysis: this process involves a clear understanding of
the data input and the expected output, the data resources. The first step is
also to look into data cleaning (ensuring homogeneity) and to make the data
manageable and accessible.
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• Feature extraction: this can be done with ’hand crafted’ features (e.g., shape
representation, colors, edges) or with a pretrained network that looks for
small representative patches.2

• Model selection and selecting the correct training approach. There are dif-
ferent models available, such as a Random Forest, a Support Vector Machine
(SVM) or (Convolutional) Neural Network and each of them has its hyper-
parameters that need to be optimized.

• Model training and evaluation: After training an initial model there is a con-
tinuous loop where we go back to the original data and problem. The per-
formance of the model is evaluated via cross validation (e.g., a data splitting
method to get a reliable estimate of the model performance by only looking
to the training data) or via a separate test set. Depending on the task the
evaluation and the selection of the best model can be done by looking to, for
instance, the accuracy, recall, precision or the Mean Squared Error (MSE).

B.2.2 Evaluation

Evaluation of a machine learning model is necessary to gain insights in the per-
formance of the selected or trained model. Furthermore, the performance should
be similar to the results that will be achieved during deployment. In the following
sections we will shortly discuss the different types of evaluation metrics available
in literature.

Bias versus variance

The bias error is the difference between the model predictions and the correct,
real value. Whereas the variance is the error taken as the variability of the model
predictions at a given point. There is a clear relationship between bias and the
variance, if the bias is reduced the variance will increase whereas when the bias is
increased the variance will decrease. This mechanism is in literature often called
the Bias-Variance trade-off. Selecting a balance between the bias and variance
error will lead to a system that minimizes overfitting and underfitting.

Accuracy, precision and recall

For the classification task (see Chapter 3 for a realistic example) there are different
mechanisms available. The most frequently used evaluation metric is the accuracy.
Still it is important to look into the cost of a misclassification for minor class sam-
ples (e.g., predicting no fire occurrence in case there is a real fire). Subsequently,

2Feature engineering refers to handcrafted features whereas feature learning refers to a system
where it is automatically learns the representations directly from the data.
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the combination of accuracy, precision, recall and F1-score will give more general
insights in the misclassified samples.

The accuracy is the ratio between the correct predictions and the total number
of predictions. The accuracy is a good indicator if the amount of samples in each
class is equal (specific for classification)

Accuracy =
TruePositive+ FalseNegative

TotalNumberOfSamples
(B.4)

The precision is the ratio between the number of correct positive results and the
total amount of positive results predicted by the model.

Precision =
TruePositive

TruePositive+ FalsePositive
(B.5)

The recall is the ratio between the correct positive results and all the samples that
should be classified as positive.

Recall =
TruePositive

TruePositive+ FalseNegative
(B.6)

F1-score gives the balance between the precision and the recall and is a measure
to know how precise and robust the classifier is.

F1 = 2 ∗ 1
1

Precision + 1
Recall

(B.7)

Cross-validation

Splitting the data into a training, validation and test set is necessary to optimize
and evaluate the model properly. The training set is a sample of the data used
to fit a particular model, the evaluation set provides an unbiased evaluation of the
model fit while tuning the model hyperparameters and the test set allows to give an
unbiased evaluation of the final model. Finally, it is important to have a balanced
set of samples in each class. To create particular balanced sets you can use the
cross-validation technique.

Cross-validation is a data splitting and model evaluation technique where you train
the model on a subset of the input data and evaluate it on the complementary sub-
set of the data. Subsequently, this mechanism gives insights in the generalization
of the model and the overfitting behavior. K-fold cross-validation for instance is
a frequently used technique where you split the data into k subsets, use k-1 sub-
sets for training and based on the fold that was not used for training you perform
the evaluation. Subsequently, you repeat this process k times and to measure the
overall performance of the model you take the average of all the fold metrics.
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Overfitting

Overfitting occurs when a model performs quite well on the training and evaluation
datasources, but has failed to generalize on the test data. In Section B.3.4 we will
go deeper into the overfitting handling for Convolutional neural networks.

B.3 Convolutional neural networks
There are different machine learning models available, but the focus of this thesis
lays on the visual and thermal image recognition. Based on previous studies CNN
architectures are surpassing, SVM approaches for the recognition task. Therefore
we only explain the basics of the CNN architecture. The workflow is similar to
a standard neural network, which were inspired by the biological neural systems,
were you learn the weights and the biases. Distinctive, the input for the CNN
architecture is a 3D volume (width, height, depth (i.e., the color channels)). For
more technical and mathematical details of the neural network architecture we
refer to the following books [2, 3].

B.3.1 Definitions

Before going into detail, different terms that are frequently used within a CNN
model are explained. Stride is the number of pixels the filter kernel shifts over
the input matrix on each learning step. Padding is the method of adding zeros
(zero-padding) to fit the kernel perfectly with the input image. Another padding
method is the removal of the borders where the kernel does not fit (valid-padding).
Rectified linear unit or ReLU ensures that the output is positive also if the input
is smaller or equal to zero. This results in faster training results for large networks.
Softmax function results in a categorical probability distribution where the output
is between 0 and 1, and the total sum of outputs is equal to 1.

B.3.2 CNN architecture

A simple CNN architecture consists of a minimal sequence of specific layers (con-
volutional, pooling and fully connected layers). Every layer transforms the volume
of one filter response (activation) to another through a differentiable function. Fig-
ure B.4 gives a schematic overview of the combination of firstly the input image,
secondly the convolutional and pooling layers, thirdly two fully connected lay-
ers and finally the classification output (the class label and the probability of the
model).
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A convolutional layer is the major building block of the CNN architecture. The
filter is slided over the image spatially and computes the dot product of the filter
and the original pixel or response (mathematical convolution).

A pooling layer is a layer that reduces the spatial size of the features. Further-
more, the layer reduces the amount of parameters and operates on each feature
map. The most common form is a max pooling layer with a filter size of 2x2 and
a stride of 2.

A fully connected layer is similar to a regular neural network where the neurons
are connected to the entire input volume.

Figure B.4 Basic CNN architecture for a classification task.
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B.3.3 Training procedure

The learning procedure of a convolutional neural network can be summarized as
follows:

1. The weights of the filters (i.e., the layers) are initialized, this can be done
randomly, via a specific distribution or according to the weights of a pre-
trained network.

2. During the forward pass you input a training image and pass it though the
whole network.

3. The output (the classification of the forwarded image) is compared to the
expected value (the label) and the loss (i.e., the error between the expected
and the real value) is calculated.

4. In the backward pass the error is propagated backwards through the CNN
architecture and the impact of each weight on the loss is calculated (the
derivation).
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5. The weights are updated to reduce the loss.

6. The forward pass, the loss calculation, the backward pass and the weight
updating are repeated for a fixed amount of iterations.

Learning rate and the effect on the loss function

The learning rate is one of the most important hyperparameters of the CNN model
and based on the selected rate the loss function will be different. The rate controls
how much we adjust the weighs of the filter with respect to the loss gradient.
Figure B.5 visualizes the effect of different learning rates. If the learning rate is
too high, the loss function will grow exponentially and divergence can be met. If
the learning rate is too low the loss function will decrease very slow and possibly
no convergence will be reached. Finally if the learning rate is appropriate the loss
will decrease properly.

Figure B.5 The impact of the learning rate on the loss function
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Low learning rate

Weights and features

Besides the standard evaluation metrics as proposed in SectionB.2.2 it is interest-
ing to look in the visualization of the filter outputs (the weights). The low-level
features (color, blobs, edges) are represented in the first filter activations whereas
the high level features (object parts) are visualized in the higher activation maps.
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B.3.4 Overfitting and underfitting

The model is underfitting if the accuracy or the precision is higher on the valida-
tion set compared to the training set. Furthermore, the model will perform bad for
the expected task.

To handle overfitting in CNN networks different mechanisms are proposed in liter-
ature. Most of the mechanisms will have a decent impact on the evaluation metrics
and hyperparameter tuning will be necessary. A non limiting list of mechanisms is
given below:

• Extend the dataset with more samples, this is in most cases not possible.

• Data augmentation or data creation from the original training dataset (e.g.,
flip, rotate, scale, zoom the images) to enlarge the original trainingset.

• Add regularization parameters:

– Dropout: randomly discard a random set of activation functions during
the training phase.

– L1/ L2 regularization: changing the objective function that is mini-
mized by adding a penalty for large weights.

• Reduce the architecture complexity: according to Ocam’s Razor principle:
select the solution or methodology with the fewest assumptions, the simplest
method.

B.3.5 Transfer learning

The major downside of CNN’s is that they require a sufficient dataset size. Trans-
fer learning is therefore an ideal technique where you ’transfer’ the knowledge of
the solution from a related task that has already been proven to work. Frequently,
people pretrain the convolutional network on a large existing dataset (e.g., MNIST,
CIFAR, Imagenet or COCO) and then use the network as a fixed feature extractor
or use it for initialization.

The decision parameter to select a particular method is based on the size of the
new dataset and on the similarity to the images of the pretrained network [4].

• Convnet as a fixed feature extractor From a pretrained convolutional net-
work remove the last fully connected layer and use the remaining network as
a fixed feature extractor. Subsequently, a linear classifier (i.e., a linear SVM
or a small neural network) is trained on the extracted feature to perform the
final classification. This method is affordable for small datasets with similar
images to the original set where the model was trained on.
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• Finetuning a convnet with a small learning rate Replace the last layer and
fine-tune the weights of the filters with a small learning rate to avoid fun-
damental changes in the original trained model. This method is favorable
in case the new dataset is large and similar to the original dataset. Subse-
quently, it is also possible to replace several layers and to train a linear clas-
sifier on activations (filter responses) earlier in the network (more generic
features). This is useful if the new dataset is rather small, but different from
the original dataset.

B.4 Ensemble
In the previous sections we focused mainly on single models, however, comb-
ing different models (creating ensembles) can give improved results. Ensemble
techniques [5] combine different models to make one final prediction, which is
hopefully more reliant than any individual prediction. Ensemble techniques can
be compared to the real life situation in which you ask various expert opinions
(e.g., combine the output of object and scene detection as proposed in Chapter 3)
to base your ultimate decision on. In literature different methods are proposed to
combine the output of a particular model (i.e., stacking, bagging, boosting, plural-
ity voting).

B.4.1 Stacking

In this approach, the newly created model sees the individual predictions as fea-
tures, and makes a final prediction. To avoid stimulating overfitting, stacking mod-
els have to be trained on individual predictions which were not included during the
training of the individual models. Therefore, you can use the predictions on the
80-90 % and use the 90-100 % data interval to train/evaluate the stacking mod-
els. The main advantage of the stacking method is in the computational efficiency,
and flexibility. By simply combining the individual predictions in one new feature
matrix, only the ensemble need to be trained to make an ultimate prediction. More-
over, the use of output predictions allows to add new predictions at later stages and
does not require the long computational times of consecutively training models.
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B.4.2 Plurality rule voting system

Plurality voting is a transparent method to combine different models to do a final
prediction: simply select the class label that received the most votes. Often called
majority voting, which is a special case of plurality voting for two class labels.
Traditional plurality voting is appropriate as long as all classifiers are performing
equally well. However in case the performance of the models is quite different it
seems more appropriate to use the weighted variant of plurality voting: select the
class label that has the largest number of weighted votes.

B.4.3 Bagging

Another technique that can be used for ensemble creation is the Bootstrap aggre-
gating Bagging technique in combination with Decision tree classifiers. In this
case the model-trees are trained in parallel on bootstrap samples from the initial
training set. The main goal of this approach is to decrease the variance and not the
bias.

B.4.4 Adaptive boosting

This sequential ensemble technique tries to add new models that perform well
where the previous models lack. The main goal is to decrease the bias, still the
model is sensitive to noisy data and outliers.
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