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Samenvatting

Aan het einde van de negentiende eeuw ontstond het revolutionaire concept van
het “elektrische net” met elektriciteitscentrales in Holborn Viaduct, Londen en
Pearl Street, New York. Dit model met “centrale” productielocaties was een be-
langrijke stap voorwaarts in de evolutie van kleinschalige elektriciteitsproductie
per site naar productie op industriële schaal en werd al snel het model voor het
volledige elektriciteitsnet. Sindsdien wordt elektriciteit centraal opgewekt, vaak
in steenkoolcentrales, en vandaar verdeeld naar alle gebruikers. Belangrijke tra-
ditionele principes zijn dat elektriciteit steeds in dezelfde richting stroomt, van
centrale productie-eenheden naar eindgebruikers, en dat de productie steeds het
verbruik volgt. Een elektriciteitsverbruik dat blijft stijgen en de groeiende aan-
dacht voor de bijhorende impact op ons milieu hebben er in de 21e eeuw voor
gezorgd dat de infrastructuur en beheer van het net geleidelijk evolueren tot een
zogenaamd “slim net”. In zo’n slim net wordt informatie- en communicatietech-
nologie (ICT) geı̈ntegreerd om tegemoet te komen aan het steeds stijgende we-
reldwijde verbruik op een economische, duurzame en veilige manier. Zo’n slim
net is zo ontworpen dat het de gedistribueerde opwekking door hernieuwbare ener-
giebronnen (zon, wind) toelaat en nieuwe elektriciteitsverbruikers (bv. elektrische
voertuigen) geı̈ntegreerd kunnen worden.

Het variabele productiepatroon van hernieuwbare energiebronnen brengt nieuwe
uitdagingen met zich mee aangezien deze bronnen niet zomaar aangestuurd kun-
nen worden. De productie hangt af van weerspatronen, het tijdstip van de dag
en de seizoenen. Echter, door de integratie van ICT technologie zijn eindgebrui-
kers in een slim net niet langer passieve verbruikers. Ze kunnen bijdragen aan het
evenwicht tussen productie en consumptie door flexibiliteit aan te bieden in hun
verbruik, wat gestimuleerd kan worden met behulp van variabele energietarieven
of andere financiële compensaties. Vraagsturingsalgoritmes gebruiken deze flexi-
biliteit op een gecoördineerde manier om zo de betrouwbaarheid van het net te
verzekeren. Het realiseren van praktisch toepasbare vraagsturingsalgoritmes in een
slim net is echter niet zo eenvoudig. Een dergelijk algoritme is: (i) ontworpen en
gevalideerd met behulp van accurate modellen van het echte coördinatieprobleem
en (ii) toepasbaar op een breed gamma van gelijkaardige coördinatieproblemen.
Deze thesis focust op de realisatie van praktisch toepasbare vraagsturingsalgorit-
mes met bijdragen in twee domeinen: (i) analyse, modellering en kwantificering
van flexibiliteit gebaseerd op een aantal concrete datasets en (ii) een modelvrij
vraagsturingsalgoritme dat gebruik maakt van een “reinforcement learning” aan-
pak.
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Vraagsturing is gebaseerd op flexibiliteit in het elektriciteitsverbruik. Het is
dan ook essentieel om de eigenschappen van deze flexibiliteit te analyseren en
te begrijpen. Deze thesis focust op de analyse en modellering van flexibiliteit
afkomstig van residentiële witgoedtoestellen en het opladen van elektrische voer-
tuigen. In beide gevallen wordt het tijdsaspect van de flexibiliteit (i.e., wanneer
en voor hoelang het elektriciteitsverbruik uitgesteld kan worden) bepaald door de
gebruikers. De beschikbare flexibiliteit wordt beı̈nvloed door hun voorkeuren en
gewoontes. Dit maakt het modelleren van deze flexibiliteit uitdagend vanwege de
grote verschillen tussen gebruikers onderling en de onzekerheden die samenhan-
gen met hun levensstijl.

Om inzicht te krijgen in de aanwezige flexibiliteit in het verbruik van witgoed-
toestellen hebben we ons gebaseerd op een dataset afkomstig van gebruikers die
voorzien waren van slim aanstuurbare toestellen en die een vergoeding kregen om
deze toestellen zo veel mogelijk flexibel te gebruiken. In plaats van het toestel
direct te starten konden gebruikers een bepaalde deadline instellen tegen het wan-
neer het toestel ten laatste klaar moest zijn. De flexibiliteit wordt dus bepaald door
(i) het tijdstip van instellen en (ii) de ingestelde deadline. Analyse van deze dataset
laat toe de volgende onderzoeksvragen te beantwoorden: (i) vertonen gebruikers
bepaalde gedragspatronen bij het flexibel instellen van hun slimme witgoedtoe-
stellen, en (ii) welke factoren beı̈nvloeden de ingestelde flexibiliteit? Met behulp
van clustering technieken en statistische tests concluderen we dat verschillende
gebruikers substantieel verschillend gedrag vertonen en dat de beschikbare flexi-
biliteit beı̈nvloed kan worden door factoren als dag van de week, seizoenen, etc.

Merk op dat aangezien het gebruik van slimme toestellen nog in zijn kinder-
schoenen staat, er slechts een beperkt aantal datasets beschikbaar zijn waarbij toe-
stellen echt flexibel ingesteld konden worden. Dergelijke datasets zijn vaak ook
niet publiek beschikbaar vanwege privacy of IP aspecten. Om hieraan tegemoet
te komen stellen we twee methodologieën voor om generatieve statistische model-
len af te leiden van het flexibiliteitsgedrag van een gebruiker. Op die manier kan
realistische data beschikbaar gemaakt worden voor een grotere groep van onder-
zoekers.

Vervolgens analyseren en kwantificeren we de flexibiliteit bij het opladen van
elektrische voertuigen aan de hand van een dataset afkomstig van publieke laad-
palen. Via clustering onderscheiden we drie gedragspatronen op basis van de
aankomst- en vertrektijden: (i) dichtbij huis opladen, (ii) opladen tijdens werk-
uren, (iii) parkeren om te laden. Met behulp van boxplots en vioolplots analyseren
we de karakteristieken van de laadsessies binnen elke cluster en identificeren we
de verschillen tussen de clusters op weekend- en weekdagen in elk seizoen. Ten-
slotte stellen we twee flexibiliteitsmetrieken voor om de flexibiliteitsbenutting te
kwantificeren en een algoritme om te bepalen hoeveel en over welke periode ener-
gieverbruik verschoven werd voor verschillende objectieven. We gebruiken de
metrieken en het algoritme om na te gaan welk aspect van de flexibiliteit (tijd-
stip en duur van beschikbaarheid of de hoeveelheid uitstelbare energie) het meest
nuttig is op verschillende momenten van de dag.

Het tijdsaspect van flexibiliteit heeft een cilindrisch karakter vanwege het pe-
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riodieke tijdskarakter van een dag en de lineariteit van de aangeboden flexibili-
teitsduur. Bij het analyseren en modelleren van flexibiliteit in de eerder vermelde
toepassingen hebben we probabilistische modellen gebruikt met lineaire schaal-
verdelingen voor het modelleren van de data (bv. Gaussiaanse mixture model-
len). Men kan zich de vraag stellen als probabilistische modellen die gebruik
maken van cilindrische schaalverdelingen niet meer geschikt zijn. Om die vraag
te kunnen beantwoorden stellen we een cilindrische Bayesiaanse aanpak voor om
de parameters van de mixture distributie te schatten. We gebruiken deze aanpak
om flexibiliteitsdata afkomstig van witgoedtoestellen te modelleren en vergelijken
de performantie met lineaire modellen. De vergelijking toont aan dat de lineaire
aanpak betere modellen oplevert, zeker vanuit het perspectief van kwantitatieve
statistische metrieken.

Tenslotte, als tweede bijdrage van deze thesis, focussen we op de ontwikke-
ling van modelvrije vraagsturingsalgoritmes voor het gecoördineerd opladen van
een verzameling van elektrische voertuigen. In deze modelvrije methode wordt het
coördinatieprobleem geformuleerd als een Markov beslissingsproces bestaande uit
een toestand, actie, kost/beloning en transitieprobabiliteiten. Hierbij zijn de transi-
tieprobabiliteiten onbekend door het stochastische karakter van toekomstige aan-
komsten en energienoden van de elektrische voertuigen. In het model leert een
agent wat de beste coördinatiestrategie is door te interageren met zijn omgeving.
Dit interageren houdt in dat bepaalde acties ondernomen worden in een bepaalde
toestand en de uitkomst van deze acties geobserveerd wordt (i.e. de nieuwe toe-
stand en bijhorende kost of beloning). Eén van de uitdagingen bij deze manier
van werken is om een schaalbare voorstelling te maken van de toestand en acties
rekening houdend met de invloed van het laden van de andere voertuigen in de
verzameling. We pakken deze uitdaging aan door het formuleren van een nieuw
Markov beslissingsproces met schaalbare voorstellingen van toestand en acties.
We gebruiken dan een batch-model reinforcement learning algoritme om de beste
strategie te bepalen (i.e., een mapping van toestand naar meest geschikte actie)
om groepen elektrische voertuigen van variërende grootte zo optimaal mogelijk
op te laden. We analyseren uitgebreid het effect van verschillende instellingen (bv.
grootte van de gebruikte dataset, tijdsduur van test- en trainingsets) op de prestatie
van onze methodologie. We tonen ook aan dat een coördinatiestrategie geleerd
op basis van data afkomstig van een beperkte verzameling elektrische voertuigen
bruikbaar is om het laden van een grotere groep wagens te coördineren, met slechts
een kleine verhoging van de genormaliseerde kost (in vergelijking met de kost van
de optimale alwetende oplossing).





Summary

The 19th century witnessed a revolutionary inception of the “electric grid” with
central power stations in Holborn Viaduct, London and the Pearl street, New York.
Such “central” power station design was a paramount step from small-scale, on-
site power generation to industrial-scale generation, and soon became the under-
lying model of the entire electric grid. Since then, the electric grid serves its cos-
tumers in a centralized fashion with one-way flow of electricity generated from
mostly coal-fired stations in a “supply following the demand” manner. However,
environmental concerns and the raising electricity demands of 21st century have
necessitated an overhaul in the infrastructure and operation management of the
traditional electric grid, transitioning it into the “smart grid” of the future. In the
smart grid, the power grid is integrated with information and communication tech-
nologies (ICT) to meet the continually increasing worldwide electricity demand in
an economic, sustainable, secure, and environmentally friendly manner. Particu-
larly, the smart grid is envisioned to support distributed generation from renewable
energy resources (RES) and new spectrum of energy consumers (e.g., electric ve-
hicles).

The intermittent nature of the renewable energy resources brings new chal-
lenges to the smart grid since the amount and the timing of their generation is not
controllable. However, thanks to the integration of the ICT infrastructure, smart
grid customers are no longer a passive part of the grid. They can contribute to
demand-supply balancing by offering flexibility in their electricity usage in re-
sponse to variable energy tariffs or financial incentives. Demand response (DR)
algorithms are viable solutions to exploit that customer flexibility in a coordinated
way and ensure a more reliable network performance. However, the establishment
of practical DR algorithms is one of the barriers to their widespread deployment
in the smart grid paradigm. A practical DR is: (i) designed and assessed based
on accurate models of the real-world coordination problem, and (ii) is applicable
to a broad range of coordination problems of similar characteristics with minor
modification. This thesis focuses on the realization of practical DR algorithms. It
presents contributions in two areas: (i) analysis, modeling, and quantification of
the flexibility based on real-world datasets, and (ii) proposing a model-free DR
algorithm based on the reinforcement learning (RL) approach.

Energy consumption flexibility is DR’s main asset. To realize a practical DR,
it is vital to analyze and understand such flexibility. This thesis focuses on analysis
and modeling of the flexibility stemming from residential white-good usage and
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flexibility in electric vehicle (EV) charging sessions. In both of these applications,
the timing aspect of the flexibility (i.e., time of availability and duration of the de-
lay in energy consumption) is determined by the owners. Hence, it is influenced by
their preferences and life styles. This makes the modeling of the flexibility chal-
lenging due to heterogeneity of the customers and uncertainties associated with
their lifestyle.

To sharpen the understanding and characterization of residential white-good
usage flexibility, we base our studies on a real-world dataset where customers are
equipped with smart white-goods and are given the opportunity to use these ap-
pliances flexibly. This means that instead of starting an appliance immediately,
customers set a flexibility duration (i.e., how long the appliance operation can be
delayed) when configuring the device. Hence, the flexibility is characterized by:
(i) time of configuration, and (ii) deadline (latest allowed start time of the appli-
ance). Analyzing this dataset, we answer the following questions: (i) do customers
exhibit certain behavioral patterns when using their smart white-goods flexibly?
(ii) what are the factors influencing the flexibility in smart white-good usage? Us-
ing clustering and statistical dependency tests, we conclude that not only do dif-
ferent users exhibit potentially substantially different behavior, but also that such
flexibility could be influenced differently by factors such as day-of-the-week or
seasons, etc.

Note that since the usage of smart appliances is at its infancy, there are limited
number of such real-world datasets where customers are given the opportunity to
offer their flexibility. The majority of these datasets are not publicly available due
to intellectual property issues. To facilitate data availability to broader range of
researchers for realistic design and assessment of DR algorithms, we propose two
systematic methodologies to derive generative statistical models of a customer’s
flexibility behavior in offering smart devices for DR exploitation.

Next, we consider the analysis and quantification of flexibility from a real-
world EV charging dataset collected from roadside charging stations. Using a
clustering algorithm, we identify three behavioral patterns in terms of EV arrival
and departure times: charge near home, charge near work, and park to charge
clusters. We then use box and violin plots to further analyze the characteristics
of the charging sessions within each cluster and highlight the differences among
the clusters over weekends and weekdays in each season. Finally, we propose two
flexibility measures to quantify the percentage of the flexibility utilization and an
algorithm to determine the amount and duration of the shifted energy. We use
the measures and the algorithm to inspect which aspect of flexibility (time and
duration of availability or amount of deferrable energy) is more useful at various
times of the day.

The timing aspect of the flexibility is of cylindrical nature due to the periodicity
of the time of configuration and linearity of the offered flexibility duration. When
analyzing and modeling the flexibility in the aforementioned applications, we used
probabilistic models defined on linear scales for data modeling (e.g., Gaussian
mixture models). This raises a question whether probabilistic generative models
using distributions defined on cylinder are better than the linear ones in modeling
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energy consumption flexibility. To answer this question, we propose a Bayesian
approach for estimating the parameters of a mixture distribution defined on cylin-
der. We then use the developed approach to model the flexibility data from white-
good usage and compare the performance with the linear models. The comparison
reveals that linear models are better generative models of the underlying data, at
least from the perspective of quantitative statistical measures.

Finally, as the second contribution of this thesis, we focus on developing model-
free DR algorithms for coordinating the charging demand of collection of elec-
tric vehicles. In the model-free approach, the coordination problem is formulated
as a Markov decision process (MDP), constituting the state, action, cost/reward,
and transition probabilities. Here, transition probabilities are unknown due to the
stochasticity of future EV arrivals and their energy requirements. In this paradigm,
a coordinating agent learns the best coordinating policy by interacting with the en-
vironment by taking actions in a particular state and observing the outcome (i.e.,
the next state and the immediate reward/cost). One of the challenges in this ap-
proach is to have a scalable representation of the state and action while taking
the EV couplings into account. We tackle this challenge and formulate a novel
MDP with scalable state and action representations. We then use a batch-model
RL algorithm to learn the best policy (i.e., a mapping from a state to best action)
to coordinate the charging of the EV groups of various sizes. We extensively an-
alyze the effect of the various settings (e.g., sample sizes, time spans of test and
training sets) on the performance of the proposed approach. We also show that a
policy learned from data of smaller number of EVs can be applied to coordinate
the charging of larger groups, with only a small increase in the normalized cost
(with respect to the cost of optimum all-knowing solution).





1
Introduction

“The value of an idea lies in the using of it.”

–Thomas A. Edison

Climate change and continually increasing energy demand has raised world-
wide concerns for energy sustainability and environmental preservations. Various
initiatives are put in action to tackle these concerns: the European union (EU)
2030 climate and energy framework [1] targets 40% reduction in greenhouse gas
emissions, 27% increase of renewable energy share and 27% energy efficiency
improvement by 2030; the EU road map 2050 [2] targets 80% reduction in green-
house gas emission from 1990 levels; British Colombia’s 2010 clean energy act [3]
targets 80% reduction in greenhouse gas emission from 2007 levels by 2050; the
Paris agreement 2015 [4] within the United Nations Framework Convention on
Climate Change (UNFCCC) members has set a long-term goal of keeping the in-
crease in global average temperature to well below 2 degree Celsius above pre-
industrial levels and to limit the increase to 1.5 degree Celsius; and united states
(US) Energy Independence and Security Act of 2007 [5].

Aforementioned efforts encourage, among other action plans, the use of re-
newable energy resources (RES) and the electrification of the energy use (with the
transportation industry as a notable example). As a result, electricity consumption
globally increases at a faster pace than other energy vectors [6] and this electricity
would increasingly be supplied by intermittent RES (e.g., wind and solar energy)
whose power output is uncontrollable. Therefore the supply can not be adjusted to
meet the demand when relying on RES. This leads to mismatch in time between
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the supply and demand and brings a new challenge to the power grid. However, the
conventional power grid was neither designed with the latest technologies in mind
nor to comply with the environmental concerns and electricity demands of the 21st

century. It operates in a centralized manner where the supply must follow the de-
mand. To accommodate the needs of the 21st century, the power grid should be
overhauled from a one-way grid of the past to a decentralized, interconnected and
bi-directional infrastructure of the future. This transition is realized by integrating
the power grid with information and communication technologies (ICT), moving
it towards the smart power grid (or simply, the smart grid). The integration of
the power grid with ICT makes the passive consumers of the conventional power
grid to become active and adjust their energy demand via demand side manage-
ment (DSM) solutions to facilitate the “demand following supply” scheme. This
postpones and even avoids the costly upgrades to the power grid.

The smart grid and DSM concepts are discussed in more details next.

1.1 Smart Grid

The smart grid is not a new technology but rather an integration of the conventional
power grid with ICT and computational intelligence from the generation to the
consumption points of electricity [7]. The envisioned objective of the smart grid is
to meet the continually increasing worldwide electricity demand in an economic,
sustainable, secure and environmentally friendly manner. The US department of
energy has the following functional definition for the smart grid [8]: “A Smart
Grid is self-healing, enables active participation of consumers, operates resiliently
against attack and natural disasters, accommodates all generation and storage op-
tions, enables introduction of new products, services and markets, optimizes asset
utilization, operates efficiently, and provides power quality for the digital econ-
omy”. The smart grid may be understood better in light of a comparison with
the traditional grid. Figure 1.1 summarizes the differences between the traditional
electric grid and the smart grid.

To achieve the aforementioned functionalities, the envisioned smart grid con-
sists of 3 systems [11]: (i) the smart infrastructure system, (ii) the smart manage-
ment system, and (iii) the smart protection system. These systems (explained next)
collaboratively ensure the operation of the smart grid.

The smart infrastructure system is responsible for providing a platform for
bi-directional flow of electricity to accommodate the injection of power from dis-
tributed generators, including customers who could also be producers of electricity.
To realize such platform, not only the energy transmission and distribution infras-
tructure needs to evolve but also the information extracted (via data metering) from
various parts of the grid needs to the exchanged though a reliable communication
network. Hence, the smart infrastructure system is comprised of energy, informa-
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Traditional grid 

Electromecanical
One-way communication 

Centralized power generation
Radial (Hierarchical) network

Less data involved
Few sensors

Less or no automatic monitoring
Manual Restoration
Manual check/test

Limited control
Few customer choices 

Less security and privacy concerns
Simultaneous production and consumption

Smart grid

Digital
Two-way communication

distributed power generation
Dispersed network

large volumes of data involved
Sensors throughout

Self-monitoring
Autonomous control and recovery

Remote check/test
Pervasive control

many customer choices
Prone to security and privacy issues

Use of storage systems

Figure 1.1: Comparing the traditional and the smart grid [9] [10]

tion and communication subsystems as shown in Figure 1.2.

The smart protection system provides not only smarter failure protection mech-
anisms, but also autonomous failure identification, analysis and recovery. It further
addresses cyber security issues, and preserves privacy associated with gathering
and communicating the metered data.

The smart management system uses ICT to leverage various functionalities of
the smart infrastructure via advanced management and control services. Demand-
supply balance is an integral part of the energy system operation. In the smart grid
paradigm, volatile RES and electro-mobility bring new challenges to this balance.
A smart management system ensures a supply-demand balance in the grid in the
presence of these new challenges via various actors that are responsible for supply
and/or demand side management in the grid. In the European grid, these actors
are transmission system operators (TSOs), distribution system operators (DSOs),
balance responsible parties (BRPs) and aggregators. Figure 1.2 lists the tools the
grid actors have in their disposal to perform supply and demand side management.
In addition to the listed tools and resources, a market structure that ensures an
effective cooperation of grid actors is also an essential component in the smart
management system.

The smart management subsystem (and particularly the demand side manage-
ment) is where this dissertation contributes to. The contributions are underlined in
Figure 1.2 and the relevant concepts are explained in the next section.
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Figure 1.2: The components of the smart grid (reproduced from [11] with minor
modification of the context and graphics). The underlined parts are areas which this thesis

contributes to.

1.2 Demand Side Management

This section explains the demand side management (DSM) as one of the compo-
nents of the smart management subsystem and motivates the need for DSM. It then
focuses on demand response (DR) algorithms (one of the two DSM categories) and
explains the benefits it brings to the generation, transmission, distribution and cus-
tomer’s sectors in power grid. It highlights the energy consumption flexibility as
DR’s main asset and lists the sources it stems from. Next, it presents and explains
various DR categories and finally outlines the barriers to the widespread realization
of DR algorithms in smart grid.

DSM plays a crucial rule in attainment of a fully functional smart grid with
widespread utilization of RES and support for a wide range of energy demands.
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DSM refers to planning, implementation and monitoring of activities designed to
influence energy consumption at the customer side of the meter [12] to keep a
demand-supply balance in the grid. DSM’s primary advantage is that it facilitates
a cost friendly solution to keep the demand-supply balance in the grid: it is cheaper
to intelligently influence a load rather than building a new power plant or installing
new storage devices. DSM programs are categorized based on the methodology for
securing supply-demand balance into [13]: (i) energy efficiency (EE) programs,
and (ii) demand response (DR) algorithms..

The EE programs communicate the electricity consumption information to the
consumers in order to lower their energy consumption without modifying operat-
ing practice and only by prompting adoption of new devices or system upgrades
that provide same level of service using less energy [14]. Hence, EE programs typ-
ically result in long lasting savings in energy when the end-use equipment is in op-
eration. A popular example of a cost effective EE programs is Non-intrusive load
monitoring (NILM). In the NILM paradigm, per-appliance energy consumption
is inferred from a single aggregate measurement (communicated from smart me-
ters) using machine learning techniques. Per-appliance consumption information
is then communicated to the consumers to assist them to improve their efficiency
(e.g., by identifying and replacing old, or faulty devices),

DR algorithms, by promoting the interaction and responsiveness of the cus-
tomers, aim to instantaneously change the end-user electricity demand pattern to
match the supply at a given point in time and are the focus of this dissertation.
DR is more accurately defined as [8]: “changes in electric use by demand-side re-
sources from their normal consumption patterns in response to changes in the price
of electricity, or to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is jeopardized”.

1.2.1 Demand response potential benefits

DR algorithms yield many potential benefits [15], spanning from (i) reduction of
generation margin and increasing the penetration of intermittent RES, (ii) improv-
ing service reliability and delaying/avoiding costly network reinforcement in trans-
mission and distribution grid, (iii) stabilizing energy market, and (iv) bringing fi-
nancial benefits and improved reliability for customers of the power grid. Each of
these points are explained next.

The total capacity of generation in a power grid must be larger than the system
maximum demand to guarantee supply during contingencies. This is known as the
generation margin (or reserve margin). DR can reduce the generation margin by
offering load curtailment during the increase in demand or interruption in gener-
ation [16]. Furthermore, DR promotes the increase in the intermittent RES with
uncontrollable generations by coordinating the demand to match the generation.
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The capacities of the transmission and distribution networks are often under-
utilized as a part of a preventive measure to withstand infrequent outages. DR can
help the power systems to lower the operation costs and reduce the network capaci-
ties by offering corrective actions to effectively eliminate overloads that occur, e.g.,
after outages of circuits. An example of such actions is reduction of demand in cer-
tain locations of the grid. In distribution networks, DR can further be used to man-
age network constrains and offer: reduction of network expansion investments; in-
crease in share of distributed generations; mitigate the voltage-constrained power
transfer problems and alleviate network congestions [16].

DR can also stabilize the energy market by dispersing the energy consumption
and flattening the load curves, hence reducing the overall generation cost. The
reduction in generation cost translates to lower marker prices and benefits all con-
sumers, including the ones who did not participate in DR programs. In addition,
the improved elasticity in demand due to DR limits the extent and frequency of
price spikes and eliminates the exercise of marker power by generators in whole-
sale electricity markets [8].

From the customer’s perspective, DR gives the customers more options for en-
ergy cost management and an opportunity to reduce their electricity bill, receive
payments for participation in DR and even sell their local generations to the grid.
Customers also enjoy the reliability in form of lower probability of the involuntar-
ily curtailments [8, 14].

1.2.2 Flexibility as a demand response asset

Consumer energy consumption flexibility is the prerequisite foundation of the en-
tire DR paradigm. Flexibility is characterized by the time, amount and duration of
a deviation from normal consumption pattern that a consumer is willing to incur
when participating in a DR program. Flexibility of large industrial and some of
the commercial consumers was already being exploited even before the inception
of smart grid. The integration of the ICT infrastructure not only allows residential
consumers to also participate in DR by offering their flexibility, but also fosters
participation from new commercial sectors (such as electric vehicle charging lots)
whose demands are affected by their customer’s preferences.

This section considers two sources of flexibility: (i) the residential households
which consume 37.4% [17] and 29% [18] of the electricity in US and EU respec-
tively, and (ii) electric vehicles (EV) (in both residential and commercial sectors)
which are envisioned to reach full penetration by 2050 in Europe [19].

Residential flexibility stems from various loads:

(1) Thermostatically controlled loads (TCL): This category includes the loads
that store energy in a thermal buffer (e.g., air conditioners and heaters).
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TCLs should be operated within a predefined temperature band, set by cus-
tomer comfort and safety constraints. While respecting this temperature
band, the regular operating cycle of these devices can be altered to provide
flexibility for DR exploitation.

(2) Shiftable loads (smart appliances): Devices whose operation can be de-
layed by customers. Some examples of such devices are washing machines,
dishwashers and tumble dryers. The timing and the duration of the delay
depends on customer preferences and lifestyle.

(3) Storage/batteries: Rechargeable batteries are today’s most widespread elec-
trical energy storage devices [20]. They store electrical energy in the form
of chemical energy and allow bidirectional flow of energy. Batteries can be
charged/discharged with consideration of the battery aging (typically staying
within 20% and 80% of the state-of-charge) to contribute to DR objectives.
Typical residential storage are battery packs in electric vehicles or stand
alone domestic batteries. Note that charging/discharging of the electric vehi-
cle batteries should additionally take into account the customer preferences
(in terms of set deadlines to completing the charging).

EVs are not only seen in residential sectors but also in the commercial sector
(e.g., EV charging points in shopping centers and roadside parking spots). In fact,
EVs are rapidly growing in numbers in the transportation system, driven by sus-
tainability and environmental initiatives. According to the European Environment
Agency, the use of conventionally fueled cars in urban transport will be halved by
2030 and phased out entirely in cities by 2050 [19]. EVs have brought various
challenges to the power grid but also constitute a great potential as a source of
distributed storage whose flexibility can be utilized by DR.

1.2.3 Demand response methods

Since the inception of the smart grid, DR algorithms have received considerable
attention. Various DR algorithm have been proposed for tackling demand-supply
mismatch in various use cases. This section presents DR categorizations from two
perspectives: (1) categorization in terms of the method for motivating customer’s
participation in DR, and (2) categorization in terms of the mathematical methods
used for realizing DR.

In terms of the method for motivating customer participation, DR is character-
ized into: (1) price-based DR, and (2) incentive-based DR.

In the price-based DR algorithms, the participant’s electricity demand patterns
are influenced by variable electricity price signals communicated to them. There
are three pricing schemes in this category: (i) Time-of-use (TOU) pricing: rates
with static price blocks with minor variation over time of the day, (ii) Critical peak
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Figure 1.3: DR classification based on the optimization approach

pricing (CPP): a pre-specified higher rate triggered by the utility during the peak
demand for few hours only, and (iii) Real-time pricing (RTP): dynamic rates that
vary in accordance with wholesale electricity market prices.

In the incentive-based DR algorithms, participants are compensated for giving
some level of control over their electricity consumption or being available to re-
duce their usage upon request. Incentive-based DR is typically used to mitigate
system stress (e.g., during grid congestions or for operational reliability improve-
ment). Several schemes exist in this DR category [21]: (i) Direct load control:
participants allow a degree of control by utility over specific devices (ii) Inter-
ruptible/curtailable rates: participants offer limited load shedding when needed to
ensure reliability (iii) Emergency DR programs: participants are rewarded for vol-
untary response to emergency signals (iv) Capacity market programs: participants
offer limited load shedding as substitutes for capacity increase (v) Demand bidding
programs: participants bid for curtailing at attractive prices.

Another categorization perspective separates DR algorithms based on the math-
ematical methods used for realizing them. Demand coordination in DR translates
into an optimal control problem (OCP) [22]. In terms of the optimization control
strategies, the customer scope and time-scale of the OCP, the DR algorithms are
categorized as shown in Figure 1.3. The DR algorithms can either target an in-
dividual consumer or coordinate the consumption of a group of consumers. DR
algorithms can also make coordinating decisions in real-time or for a predefined



INTRODUCTION 9

(typically day-long) horizon. In terms of the mathematical methods for finding the
optimum solution (coordination decisions), the DR algorithms are classified into
model-based and model-free approaches, which are discussed next.

1.2.3.1 Model-based DR

In initial DR studies, the demand response problem is usually cast as a model
predictive control (MPC) approach where an explicit mathematical model of the
process dynamics is used to predict the system behavior (e.g., physical characteris-
tics of the devices or consumer energy consumption behavior). An optimizer then
chooses the best decision in the sense of a cost (e.g., the customer’s electricity bill
or the energy provider’s cost) while respecting the constraints (e.g., customer pref-
erences, distributed energy resource constraints and energy market constraints).
Various optimizers are used in context of the MPC approach, including convex
optimization, stochastic optimization, particle swarm optimization, dynamic pro-
gramming, and game theory. A review of these approaches is presented in [23, 24].

In the model-based DR approaches, selecting accurate models and estimating
their parameters is crucial for the efficiency and the reliability of the resulting DR
algorithm. However, the modeling task is particularly challenging in the smart grid
paradigm due to uncertainty stemming from heterogeneity of the end user loads,
difference in user behavioral patterns and uncertainty surrounding their behavior.
Furthermore, model-based DR algorithms are difficult to transfer from one sce-
nario to the other, since the model designed for one group of users or applications
is likely to require customization/tweaking for application to different groups.

1.2.3.2 Model-free DR

Unlike model-based approaches, model-free DR is data-driven and does not re-
quire a model of system dynamics. This promotes the incorporation of the smart
grid stochasticity without the need for expert knowledge and sustains generaliz-
ability of the DR algorithms.

Reinforcement learning (RL) is a popular recent approach in the model-free
DR paradigm. In the RL-based approach, the DR problem is formulated as a
Markov decision process (MDP). A coordinating agent interacts with the environ-
ment (i.e., DR participating customers, energy providers, energy market prices,
etc.) and takes control actions while aiming to maximize the long term expected
reward (or to minimize the long term expected cost). In other words, the agent
learns an optimum policy (i.e., a mapping between states and actions that max-
imizes/minimizes the received reward/cost) by taking actions and observing the
outcomes (i.e., states) and the rewards/costs in an iterative process. The DR objec-
tive (e.g., load flattening, load balancing) is achieved by appropriately designing
the reward/cost signal.
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One of the downsides of the RL-based approach is that it is challenged when
the state space and/or action spaces of the control problem are very large or con-
tinuous [22]. In such cases, RL has to be combined with so called function-
approximation techniques (e.g., artificial neural networks or tree based methods)
allowing one to generalize over the state-action space based on the observed data
(which is typically a very sparse sample of the full state-action space).

1.2.4 Demand response barriers

Despite the promising potential benefits of DR and availability of the monitoring
and communication technologies [25], its widespread deployment in the grid has
been slow due to various barriers. There barriers can be looked into from two
(interrelated) perspectives:

(i) Barriers preventing the optimal use of DR resources: These barriers stem
from external factors (not related to the practical modeling and methodolog-
ical implementation of DR algorithm) such as lack of market and regulatory
framework, lack of social understanding of the DR technology (and how to
benefit from it) in the consumer side, and lack of widespread deployment of
the infrastructure (e.g., smart meters smart appliances).

(ii) Establishment of practical DR algorithms: The lack of experience (due to
limited availability of real-world data where consumers demonstrate flexi-
bility) and the consequent need for unrealistic assumptions when modeling
and evaluating DR algorithms hinders the implementation of practical DR
algorithms [25] [26].

This dissertation focuses on the latter.

1.3 Motivations and contributions

A practical demand response (DR) is vital in the ongoing transition into smart grid.
But what is a “practical” DR? The answer to this question is twofold:

(1) A practical DR is designed based on accurate models of the real-world prob-
lem (e.g., consumer preferences). It avoids unrealistic assumptions and is
developed and assessed with consideration of realistic characteristics of the
coordination problem.

(2) A practical DR should not be scenario specific. Instead, it should be appli-
cable to a broad range of coordination problems with similar characteristics,
requiring little or no modification.
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This thesis presents two contributions to the realization of a practical DR al-
gorithms. First, an in-depth analysis of two real-world datasets to (a) characterize
and quantize the flexibility as DR’s main asset, to improve the efficiency of DR de-
sign and assessment, and (b) development of probabilistic models of their data to
be used for synthetic data generation for simulation propose (hence, these models
are called the generative models in this thesis). Second, a model-free DR solution
that learns from real-world data and generalizes to broader range of coordination
problems. These contributions are explained in more detail next.

As established in Section 1.2.4, one of the challenges in realizing practical DR
algorithms is the lack of real-world datasets which facilitate realistic assumptions
and accurate models during the algorithm design. In fact, there is a limited amount
of real-world data available where customers are given the opportunity to offer
their energy consumption flexibility for DR exploitation. Moreover, the majority
of these datasets are not publicly available due to intellectual property concerns.
Hence, the first contribution of this thesis is:

• A realistic and insightful analysis and modeling of two real-world datasets:
LINEAR (where consumers use their smart white-good appliances flexibly),
and ElaadNL (a large scale set of EV charging transactions at roadside park-
ing spots)

– Implementation of clustering to identify behavioral patterns,

– Analysis of influential factors (e.g., seasonal changes, weekend/week-
days) on the customer energy consumption behavior and the offered
flexibility,

– Definition of measures for quantification of energy consumption flexi-
bility,

– Development of probabilistic generative models to facilitate synthetic
data generation.

As a second contribution, this thesis focuses on developing a model-free DR
algorithm using RL. As explained in Section 1.2.3.2, model-free DR algorithms do
not need accurate models of the environment and learn the optimal control policy
by interacting with the environment. The latter implies taking actions and ob-
serving the outcome (i.e., the resulting state and the cost/reward), hence fostering
practical DR solutions. However, one of the challenges of applying RL-based
approaches in real-world applications is that the majority of such applications
have high-dimensional state and action representations as well as large state-action
spaces. This challenges the learning algorithms in RL-based approaches. This the-
sis aims to tackle the aforementioned challenge for coordination of a group of EV
charging stations. The second contribution is detailed below.
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• Proposing a model-free DR solution for a collection of EV charging stations:

– Formulation of a Markov decision process (MDP) with a relatively
compact aggregate state and action space representation that is gener-
alizable to various EV collection sizes,

– Adoption of batch reinforcement learning with function approximation
to find the best EV charging policy,

– Experimental and quantitative exploration of the performance of the
proposed RL approach, using real-world data.

The next section explains the chapter specific contributions and outlines the
structure of the remaining part of this thesis.

1.4 Outline

This dissertation is composed of a number of publications that were realized within
the scope of this PhD. The selected publications provide an integral and consistent
overview of the work performed. A full list of realized publications is given in
Section 1.5. Chapters 2-4 following this introduction provide in-depth analysis of
power grid customers’ behavioral patterns using real-world datasets and construc-
tion of generative models to represent them. Chapter 5 represents a data driven
control approach to exploit flexibility available from that behavior.

Chapter 2 focuses on characterizing the flexibility stemming from residential
white-good usage. It is based on the data from the LINEAR project where cus-
tomers are provided with smart white-goods and their flexible usage of these ap-
pliances is recorded in form of time of configuration of the smart appliance and
the deadline (latest start time) set by the customer during the configuration. It con-
tributes with: (1) a new quantitative specification of flexibility, (2) two systematic
methodologies for modeling individual customer behavior, (3) evaluation of the
proposed models in terms of how accurately the data they generate corresponds
with real world customer behavior, and (4) a basic analysis of factors influencing
the flexibility behavior based on statistical tests.

Chapter 3 performs an in-depth analysis of the flexibility characteristics of EVs
based on a reasonably large real-world dataset that has records of roadside EV
charging sessions. The EV flexibility indicates to what extent the charging load
can be coordinated (i.e., to flatten the load curve or to utilize renewable energy
resources). Through clustering the arrival and departure time combinations, three
behavioral patterns are identified in the EV charging data. A systematic analysis of
the characteristics of the charging sessions in each behavioral cluster on weekdays
and weekends and across various seasons is provided. Finally, an algorithm and
two measures are proposed to investigate how flexibility (in terms of amount, time



INTRODUCTION 13

and duration of the shifted energy) is exploited and which aspect of the flexibility
(time and duration of availability or amount of deferrable energy) is more useful
at various times of the day.

A customer’s energy consumption flexibility is defined in terms of amount,
time and duration of availability. It is established in Chapters 2 and 3 that the tim-
ing of flexibility is circular in nature: configuration times of real-world observa-
tions form clusters which cross over from one day to the next (across the midnight
boundary). Chapters 2 and 3 avoid the cylindrical representation by defining a
heuristic algorithm that identifies the middle of the largest gap on the circular axis
to wrap the data around and proceed to modeling using probabilistic models de-
fined on linear scales. However, such heuristic algorithms might fail in situations
where such a reference point is challenging or impossible to find. This raises the
question whether probabilistic generative models using cylindrical distribution are
better than the linear ones for modeling energy consumption flexibility.

To answer the above-raised question, Chapter 4 proposes a Bayesian approach
based on Markov Chain Monte Carlo (MCMC) to estimate the parameters of Abe-
Ley mixture distribution. Abe-Lay distribution is a cylindrical distribution based
on the combination of Weibull and sine-skewed von-Mises. The choice of the
distribution is motivated by its various merits including compared to the other ex-
isting cylindrical distributions which are outlined as: (i) flexible shapes, (ii) cross-
correlation among linear and circular variables, (iii) well-known marginal and con-
ditional distributions and (iv) support of data skewness. The proposed approach
in Chapter 4 is then used to model the residential white-good usage flexibility and
compare it with the proposed linear models of Chapter 1 in Appendix A.

Chapter 5 has a different goal than the previous 3 chapters. Instead of data
analysis and modeling, it aims to propose a model-free DR approach for coordi-
nating the charging of a collection of EVs. It formulates the coordination problem
into a scalable and generalizable MDP with compact representation of state and
action. Batch-mode RL is used to learn the optimum policy. The performance of
the proposed reinforcement learning approach is evaluated using real-world data,
answering the following research questions: (Q1) What are appropriate durations
for training period and number of sampled trajectories from the decision trees?
(Q2) How does the RL policy perform compare to an optimal all-knowing oracle
algorithm? (Q3) How does that performance vary over time using realistic data?
and (Q4) Does a learned approach generalize to larger EV collections?

Finally, Chapter 6 concludes the thesis.

1.5 Publications

The research results obtained during this PhD research have been published in sci-
entific journals and presented at a series of international conferences. The follow-
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ing list provides a complete overview of the publications during my PhD research.

1.5.1 Publications in international journals
(listed in the Science Citation Index)1

1. Nasrin Sadeghianpourhamami, Thomas Demeester, Dries F. Benoit,
Matthias Strobbe and Chris Develder. Modeling and analysis of residen-
tial flexibility: Timing of white good usage. Applied Energy, Vol. 179, Oct.
2016, pp. 790-805.

2. Nasrin Sadeghianpourhamami, Joeri Ruyssinck, Dirk Deschrijver, Tom
Dhaene and Chris Develder. Comprehensive feature selection for appliance
classification in NILM. Energy and Buildings, Vol. 151, Sep. 2017, pp. 98-
106.

3. Nasrin Sadeghianpourhamami, Nazir Refa, Matthias Strobbe and Chris
Develder. Quantitive analysis of electric vehicle flexibility: A data-driven
approach. International Journal of Electrical Power & Energy Systems, Vol.
95, Feb. 2018, pp. 451-462.

4. Nasrin Sadeghianpourhamami, Dries F. Benoit, Dirk Deschrijver, Chris
Develder. Bayesian modeling of cylindrical data using Weibull-Sine-
Skewed-Von-Mises mixtures. Submitted to Applied Mathematical Modeling
(Under Second round of revision), 2018.

5. Nasrin Sadeghianpourhamami, Johannes Deleu and Chris Develder. Def-
inition and experimental evaluation of model-free coordination of electrical
vehicle charging with reinforcement learning. Submitted to IEEE Transac-
tions on Smart Grid, 2018.

1.5.2 Publications in international conferences
(listed in the Science Citation Index)2

1. Nasrin Sadeghianpourhamami, Matthias Strobbe and Chris Develder. Real-
world user flexibility of energy consumption: Two-stage generative model
construction. In Proc. 31st ACM/SIGAPP Symp. Applied Computing (SAC
2016), Pisa, Italy, 4-8 Apr. 2016. pp. 2148-2153.

1The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded,
the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science,
restricted to contributions listed as article, review, letter, note or proceedings paper.

2The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.
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2. Chris Develder, Nasrin Sadeghianpourhamami, Matthias Strobbe and Nazir
Refa. Quantifying flexibility in EV charging as DR potential: Analysis of
two real-world data sets. In Proc. 7th IEEE Int. Conf. Smart Grid Commu-
nications (SmartGridComm 2016), Sydney, Australia, 6-9 Nov. 2016, pp.
600-605.

3. Nasrin Sadeghianpourhamami, Dries F. Benoit, Dirk Deschrijver and Chris
Develder, Modeling real-world flexibility of residential power consumption:
Exploring the cylindrical WeiSSVM distribution. In Proc. 9th ACM Int.
Conf. Future Energy Systems (e-Energy 2018), 12-15 Jun. 2018.

4. Nasrin Sadeghianpourhamami, Johannes Deleu and Chris Develder. Achiev-
ing scalable model-free demand response in charging an electric vehicle
fleet with reinforcement learning. In Proc. 9th ACM Int. Conf. Future En-
ergy Systems (e-Energy 2018), 12-15 Jun. 2018.
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2
Modeling and Analysis of Residential

Flexibility: Timing of White Good
Usage

In this chapter, we focus on modeling and quantification of the energy consumption
flexibility stemming from residential white-good appliances. We base our studies
on a real-world dataset where customer are given the smart white-goods and have
the chance to configure their appliances flexibly (i.e., set a time they expect the
appliance operation to finish). We analyze the timing aspect of such flexibility (i.e.,
time of availability and duration of permitted delay in energy consumption), which
is influenced by consumer habits and lifestyles, to identify behavioral patterns.
In addition, since there are a limited number of datasets with flexible appliance
usage and most of them are not publicly available due to intellectual properties
issues, we construct generative probabilistic models from LINEAR dataset. These
generative models can be used to generate data needed for a practical assessment
of DR impact, while avoiding the intellectual property issues. Additionally, the
proposed models facilitate control over data generation (e.g., data size, different
mixes of types of observed behaviors).

? ? ?

N. Sadeghianpourhamami, T. Demeester, D.F. Benoit, M. Strobbe
and C. Develder.
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Abstract Challenges that smart grids aim to address include the increasing fraction
of supply by renewable energy sources, as well as plain rise of demand, e.g., by
increased electrification of transportation. Part of the solution to these challenges
lies in exploiting the opportunity to steer residential electricity consumption (e.g.,
for flattening the peak load or balancing the supply and demand in presence of the
renewable energy production). To optimally exploit this opportunity, it is crucial
to have insights on how flexible the residential demand is. Load flexibility is char-
acterized by the amount of power, time of availability and duration of deferrable
consumption. Residential flexibility however, is challenging to exploit due to the
variation in types of customer loads and differences in appliance usage habits from
one household to the other. Existing analyses of individual customer flexibility be-
havior in terms of timing are often based on inferences from surveys or customer
load patterns (e.g., as observed through smart meter data): there is a high level
of uncertainty about customer habits in offering the flexibility. Even though some
of these studies rely on real world data, only few of them have quantitative data
on actual flexible appliance usage, and none of them characterizes individual user
behavior. In this paper, we address this gap and contribute with: (1) a new quan-
titative specification of flexibility, (2) two systematic methodologies for modeling
individual customer behavior, (3) evaluation of the proposed models in terms of
how accurately the data they generate corresponds with real world customer be-
havior, and (4) a basic analysis of factors influencing the flexibility behavior based
on statistical tests. Experimental results for (2)–(4) are based on a unique dataset
from a real-life field trial.

2.1 Introduction

The rapid integration of renewable energy sources into the power grid and their
intermittent nature has created a need for flexibility in energy demand. Flexibility
is generally regarded as the amount of load that is shiftable over various time scales
and is quantized by 3 parameters [1]: (1) the amount of deferrable energy (i.e., the
amount of energy that can be delayed without jeopardizing customer convenience
or quality of the task to be fulfilled by a smart device), (2) the time of availability
(i.e., the time at which a customer offers the device flexibility for exploitation),
and (3) the deadline to exploit the offered flexibility (i.e., the maximum allowable
delay for the energy consumption). Once flexibility is known and thus adequately
characterized, it can be utilized by demand response (DR) algorithms to coordinate
the demand-supply balance in the network. Various DR algorithms have already
been proposed to exploit such flexibility: for an overview, we refer to [2] and [3].
Hence, proposing a new DR algorithm is not our focus.
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Our main objective is to characterize and model the flexibility as DR’s main
asset, to improve the efficiency of DR assessment. One of the main challenges
in the widespread deployment of DR algorithms (especially in the residential sec-
tor) is the uncertainty surrounding their impact [4, 5]. A poor understanding of
flexibility characteristics as DR’s main asset leads to inefficient DR assessment
and uncertain conclusions (i.e., accurate evaluation of DR algorithms is impossi-
ble without in-depth analysis of the flexibility parameters). The outcome of our
flexibility modeling and characterization (which is based on a unique dataset from
a real-life field trial) can foster more realistic assessment of the potential impact of
DR algorithms and pave the way to their realization in smart grid.

Flexibility of large industrial customers has already been extensively assessed
and exploited by long standing programs (e.g., [6–10]). Since the inception of
the smart grid, that industrial flexibility has increasingly been complemented by
residential flexibility. Residential customers form a promising source of flexibility
due to their widespread distribution and substantial share of electricity market and
hence are the focus of our study here.

Residential flexibility however, is challenging to characterize due to the large
variety of appliances and their diverse consumption patterns, as well as the uncer-
tainty associated with appliance usage due to different usage habits among various
households. A substantial amount of research has analyzed the flexibility potential
of residential customers from various perspectives. A brief overview is presented
in the next section.

2.1.1 State of the Art in Residential Flexibility Assessment

Methods to assess residential flexibility potential in literature can be categorized
into two main streams, according to the objective they pursue: DR-based and DR-
independent methods. The DR-based methods are often tailored to the underlying
DR scheme (i.e., price-based or incentive-based DR) and their main objective is
to model the responsiveness of customers to price signals or incentive programs.
In price-based DR schemes, an elasticity matrix models customer flexibility as
changes in aggregated demand in response to price changes [11–14]. However, an
elasticity matrix can only measure the aggregated flexibility potential and not the
appliance specific flexibility. Price-demand models based on mixed integer linear
programming (e.g., [15]) or probabilistic models (e.g., [11, 16]) are proposed to
predict the customer consumption patterns from the appliance level perspective in
response to dynamic prices. For incentive-based DR schemes, Hu et al. [17] pro-
pose a stochastic model to assess the probability distribution of residential demand
in response to certain incentives. The proposed residential responsive demand
model is formulated with consideration of the customer portfolio and household
characteristics obtained from time-of-use surveys, rather than actual measurement
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of real behavior.

One of the limitations of DR-based approaches is that any quantification and
assessment of flexibility potential is inevitably influenced by the underlying DR al-
gorithm. Additionally, the impact of the underlying DR algorithm on the flexibility
is not measurable. In other words, customers might exhibit different flexibility be-
havior when assessed with other DR-based methods. Hence, the outcome of the
analysis of a particular DR-based method cannot be employed to reliably assess
the impact of different DR algorithms. Instead, DR-independent methods (includ-
ing the modeling approaches in this paper), offer an unbiased analysis where the
customer flexibility behavior is not influenced by the specifics of any DR algo-
rithm.

In DR-independent methods, the main objective is to model customer flexi-
bility potential (independent of the underlying DR scheme) and subsequently use
the model to assess the potential impact of DR algorithms on peak load reduction
or demand-supply balancing. Some of these methods are derived merely based
on appliance energy usage patterns that are either obtained from sub-metering of
household appliances [18] or assumed by studying the characteristics of the vari-
ous appliances [19]. Analyzing the flexibility potential based on appliance energy
usage patterns provides insights about the potential amount of deferrable energy
of each appliance. However, it does not completely characterize the flexibility po-
tential because customer behavior, affecting the time of availability and deadline
to exploit the offered flexibility, is not accounted for. One of the popular means to
take into account customer appliance usage habits in the flexibility model is col-
lecting time-of-use surveys. Laicane et al. [20] performed a time-of-use survey on
a four-person household to determine its appliance usage behaviors, particularly
for washing machine and dishwasher, to quantify the flexibility potential. The
model was then used to shift appliance usage accordingly for peak load reduction.
Safdarian et al. [21] used a similar approach on 1600 Finnish households to as-
sess the benefits of demand response on the operation of distribution networks.
However, time-of-use surveys may be inaccurate in modeling the customer appli-
ance usage habits because they indicate the self-reported behavior of the customer,
which may differ from the real behavior.

Another approach taken by DR-independent methods is to obtain a time series
estimate of flexibility of residential customers based on the clustering of their load
profiles. Kouzelis et al. [22] proposed a methodology for analyzing the flexibility
potential of residential heat pumps in a probabilistic way from the aggregated load
profile of the customers. The proposed methodology compares the load profile of
the flexible customer with electrically similar non-flexible customers by means of
clustering the customer load profiles and then statistically infers the flexibility po-
tential thereof. Labeeuw et al. [23] also used clustering of customer load profiles
to derive a time series estimation of load curves and determine demand reduction
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potential of wet appliances in terms of amount of deferrable load only (without
assessing the flexibility duration). They additionally incorporated attitude mea-
surements based on questionnaires in their studies to account for customers will-
ingness to participate in DR based on survey data. Despite valuable contributions
of these approaches in terms of amount of deferrable energy and time of availabil-
ity, they do not give any assessment of the deadline to exploit the flexibility due to
limitations in their measurements.

In both of the aforementioned DR-based and DR-independent categories, mod-
eling of customer responsiveness to participate in DR algorithms is not based on
real-word scenarios where households are provided with smart appliances and re-
quired to configure their appliances flexibly. Hence, the uncertainty about lim-
itations of DR algorithms due to the differences in customers’ real-life (power
consumption) habits remains largely unresolved. To address this gap, Kobus et
al. [24] conducted a longitudinal study for one year over 77 Dutch households.
Each household was given a smart washing machine, and an energy management
system that received daily dynamic prices. The customers’ behavioral changes
with respect to a reference group was then studied for a full year to explore the po-
tential role of smart appliances in shifting real electricity demand of smart washing
machines in response to dynamic tariffs. Still, a limitation of this valuable work is
that the analysis is tailored specifically to the underlying DR scheme.

D’Hulst et al. [25] also have based their analysis on a real world scenario
where customers are provided with a platform to operate their smart devices and
offer their flexibility for DR exploitation. The probabilistic analysis of time of con-
figuration as well as the duration of provided flexibility is performed for various
appliances. Their analysis is based on the LINEAR pilot project [26] in which 15
minute based measurements were collected from 418 appliances in 186 Belgian
households. The analysis in [25] was independent of the underlying DR scheme
that harnessed the flexibility potential, hence inferring a better estimation. How-
ever, the analysis of the flexibility potential is performed on an aggregated level
and does not model individual household flexibility.

2.1.2 Motivation and Contributions

The residential flexibility potential has been extensively analyzed in terms of the
amount of shiftable energy. However, the assessment of customer appliance us-
age habits in terms of when and for how long the flexible device is available for
DR exploitation, is usually based on survey data and this may limit the analysis
accuracy. Although D’Hulst et al. [25] provide a probabilistic analysis of the time
of the configuration and deadline to exploit the flexibility, the analysis is at the
aggregated appliance level. Also, [25] is limited to analysis only: they do not offer
a generative model (that could be used, e.g., to generate data that is representative
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of reality, for simulation of DR). Such a generative model of (individual) customer
flexibility based on real world data is missing in the literature. We have addressed
this gap by modeling the residential flexibility in terms of configuration time and
deadline, for individual households and appliances.

The primary motivation to develop a generative model of customer flexibility
behavior, derived from a real dataset, is that such a model sharpens the definition
of flexibility and fosters a more realistic analysis of residential flexibility potential
by tackling not only the appliance load patterns, but also the uncertainties due to
their owner’s willingness to offer the available flexibility (for exploitation by DR
algorithms). Additionally, a parametric representation of customers allows for the
comparison and selection of relevant customers for energy efficiency programs or
DR participation, without jeopardizing their privacy. Finally, parametric models
can be utilized for synthetic data generation, hence eliminating the need for time-
of-use surveys and resulting in more realistic assessment of the DR algorithms’
efficiency in harnessing the residential flexibility for various objectives.

As a secondary objective, our modeling allows for examination of factors that
might influence the customer flexibility behavior. Identification of the underly-
ing factors influencing the customer flexibility behavior allows for more realistic
assumptions about potential flexibility. It also may help to make more accurate
predictions of customer flexibility behavior.

Our analysis is based on real-world smart appliance usage (washing machines,
dishwashers and tumble dryers) as collected in the LINEAR pilot project [26] and
offers these contributions:

1. We take a new perspective and instead of indirectly inferring flexibility from
load profiles or time-of-use surveys, we use direct measurement of flexible config-
uration times and deadlines to characterize flexibility (Section 2.2.1),

2. We propose two systematic methodologies to derive generative models for
customer flexibility behavior from data (Sections 2.2.2 and 2.2.3),

3. We test the accuracy of the proposed models in representing the real world
data using sampling and hypothesis tests (Section 2.3.3) and

4. We analyze factors influencing the flexibility behavior using reliable statis-
tical tests (Section 2.3.4).

To the best of our knowledge, we are the first to propose a generative model of
individual customer flexibility behavior towards a particular appliance. Note that
this paper is a substantial extension of our earlier work (which proposed a two-
stage model) [1], since we now present (a) a new and more general, single-stage
model for the flexibility behavior, and (b) more extensive analysis. The latter
includes assessing both the accuracy of the proposed algorithms in regenerating the
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Figure 2.1: Flexibility profiles of four selected customers for dishwasher usage (times on
x- and y-axis are time of day). Note that the observations below the diagonal line denote

deadlines on the day after the configuration time.

data (based on statistical tests), and the factors influencing the flexibility behavior
of customers. We also apply our models to customer data from washing machine
and tumble dryers in addition to dishwashers.

2.2 Methodology

In this section, we first explain the input features used to model customer flexibility
behavior. We then introduce two systematic methods to model the flexibility be-
havior of an individual residential household towards a particular smart appliance.
Note that our first model is proposed specifically for modeling customer behavior
that exhibits clear deadlines. We observed this behavior in dishwasher usage, an
appliance that has been attributed a high demand response potential [21, 27, 28].
Our second model is a more general approach, which we found to be suitable for
modeling all types of studied white goods (i.e., washing machine, tumble dryer
and dishwasher).

2.2.1 Quantitive Specification of Flexibility

Each time a customer configures a smart appliance, (s)he sets the flexibility dura-
tion, i.e., how long the start of the device’s operation can be deferred. We therefore
represent the flexibility using two parameters: (1) Configuration time, which is the
time at which the smart appliance is configured flexibly, and (2) Deadline, which
is the latest allowed start time of the appliance and is calculated by adding the
recorded flexibility duration to the time of configuration. Given that flexibility du-
ration is a non-zero value without any upper bound, the deadline parameter may
exceed the 24 h limit. The flexibility profile is defined for a given customer and
a particular appliance, and is a model for his/her usage of that appliance. Note
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that we do not parameterize flexibility by the amount of shiftable power, since this
attribute has already been analyzed extensively in the literature (e.g., [28]). The
flexibility data for each customer and each appliance is obtained from year-long
measurements in the LINEAR pilot project [26] (see further, Section 2.3). Fig-
ure 2.1 depicts flexibility profiles of four selected customers for their dishwasher.
Each point on the graph of Figure 2.1 represents a single usage, with the configu-
ration time on the x-axis and the corresponding deadline on the y-axis.

2.2.2 Model I: Two-Stage Single Variate Approach

Customer flexibility profiles for dishwashers in Figure 2.1 suggest that (unlike
washing machines and tumble dryers, as we’ll see later) dishwashers are usually
configured with a typical deadline. For example, Customer A has 3 typical dead-
lines around 5 am, 10 am and 4 pm. Configuration times are different for different
deadlines. For example, most of the configurations with deadline at around 5 am
are set in the late evening and span until a few hours after midnight, whereas
the configurations with 4 pm deadlines usually occur during daytime from 8 am
onwards. Given this typical customer behavior for dishwashers, our first model
proposes a two-stage univariate approach. In the first stage, we identify the typ-
ical deadlines of the customer by using a clustering algorithm and estimate the
probability P (deadline) proportional to the size of the cluster for the respective
deadline. For each cluster of deadlines resulting from Stage I, we then use para-
metric probability distributions to model the corresponding configuration times in
Stage II and obtain P (configuration time | deadline). The joint distribution of
deadlines and configuration times can then be obtained by P (configuration time,
deadline) = P (deadline) · P (configuration time | deadline).

2.2.2.1 Stage I: Identification of Typical Deadlines

The main objective of this stage is to use the deadline feature (y-axis in Figure 2.1)
as the input to a clustering algorithm to identify the typical deadline clusters and
parameterize their distributions. For this purpose, we adopt the G-means clustering
algorithm [29] and change its hypothesis test (i.e., the Anderson-Darling test of
normality). For completeness, the G-means algorithm and our modifications are
explained below.

A wide variety of algorithms have been proposed for clustering of load profiles
(e.g., see [30]). Some of the popular ones are K-means, expectation maximization,
fuzzy K-means, hierarchical clustering, and self-organizing maps. An overview of
these algorithms and their performance comparison is presented in [31]. G-means
is a clustering algorithm based on K-means, with the capability of dynamically
determining the number of clusters using hypothesis tests, hence eliminating the
challenging task of choosing the optimal number of components in K-means. G-
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means is an iterative approach that starts with an initial value of k, i.e., the number
of clusters (starting with k = 1 in absence of prior information). It then decides
to split each cluster into two new clusters if the data in the current cluster does
not pass the Anderson-Darling test of normality. After each iteration, the K-means
algorithm is executed on the entire data to refine the solution. The core assumption
in G-means is that the data in each cluster is normally distributed. Since deadlines
are strictly positive, we instead assumed a Gamma distribution for the data in each
cluster. Hence, we replaced the Anderson-Darling test of normality with a one-
tailed Kolmogorov-Smirnov (k-s) test at significance level of 1% . We refer to this
adaptation as Γ-means.

2.2.2.2 Stage II: Parameterizing the Distribution of Configuration Times

In this stage, we employ probability distributions to model the corresponding con-
figuration times for each deadline cluster resulting from Stage I. Qualitative ex-
ploration of tuning data revealed that the empirical distributions of configuration
times are often multi-modal, skewed, and with heavy tails. These characteristics
suggested the use of finite mixture models (FMM) as parametric models to rep-
resent the unknown distributions as a mixture of known distributions. In what
follows, we present the general definition of FMMs.

Let X be an r-dimensional random variable with probability density function
f(x), defined in the sample space X ⊂ Rr and arising from a K-component finite
mixture distribution. The probability density of X for all x ∈ X is then defined as

f(x) =

K∑
k=1

ηkfk(x), (2.1)

where fk(x) is the component-wise probability density function and ηk is the cor-
responding weight of the component. η = (η1, ..., ηK) is called the weight dis-
tribution. η takes a value in the unit simplex εK which is a subspace of (R+)

K

defined by the following constraints:

ηk ≥0, η1 + η2 + ...+ ηk = 1. (2.2)

Assuming that all the component densities arise from the same distribution
family, T (θ), the mixture density function is then written as,

f(x|ϑ) =

K∑
k=1

ηkfk(x|θk), (2.3)

where fk(x|θk) is the probability density function of the kth component indexed
by the parameter θk andϑ = (θ1, ...,θK ,η) is the parameter vector of the mixture
model.
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algorithm 1: Schnatter’s MCMC algorithm

Input : data points (X, with |X| = N ); number of components (K)
Output: Parameter vector of the mixture model (ϑ); allocation vector (S) denoting

to which component each of the observations are assigned (if xi is part
of cluster k, then Si = k).

1 Initialize S (based on the K-means algorithm) repeat M +M0 times
/* Given the allocation vector S, estimate the mixture

parameters */

2 Sample η = (η1, . . . , ηK) from the Dirichlet distribution
D(e1(S), . . . , eK(S)), where ek(S) = e0 + Nk(S), k = 1, ...,K,
and Nk(S) is the number of data points allocated to component k of the
mixture and e0 is the prior of the Dirichlet distribution

3 foreach k = 1, . . . ,K do
4 Sample the component parameter θk from the complete-data posterior

p(θk|S, x)

/* Update the allocation vector S based on the sampled

parameter vector ϑ */

5 Classification of each observation xi conditional on knowing ϑ, by sampling
Si independently for each i = 1, . . . , N from the following discrete distribu-
tion: p(Si = k|ϑ, xi) ∝ p(xi|θk) ηk

6 Disregard the first M0 draws return M draws for (ϑ,S)

To estimate the parameter vector ϑ, we employ a Bayesian approach based on
data augmentation and Markov-chain Monte Carlo (MCMC) proposed by Schnat-
ter [32]. The main difference between MCMC and the classical expectation max-
imization (EM) algorithm based on maximum likelihood (ML) estimation is that
MCMC performs integration while EM does maximization. One of the key ad-
vantages of a Bayesian approach over ML is the direct availability of confidence
regions while for EM these may be inaccurate for small data sizes because of the
reliance on asymptotic approximations. Also, the Bayesian approach allows in-
cluding prior information in the estimation procedure.

The data augmentation and the MCMC algorithm by Schnatter [32] are briefly
explained here for completeness. The main objective of the algorithm is estimating
the component parameters,ϑ, as well as the allocation vectorS = (S1, S2, . . . , SN )

denoting the allocation of each observation to its corresponding component in the
mixture (Si = k if xi belongs to cluster k). This problem is interpreted as a
missing data problem. The augmented parameter (ϑ,S) is estimated by sampling
from the complete-data posterior distribution based on the Gibbs MCMC algo-
rithm. Schnatter’s MCMC algorithm is outlined in Algorithm 1.

First, the algorithm uses the K-means clustering method to assign each obser-
vation to one of the K mixture components and initializes the allocation vector S
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accordingly (Line 1). The algorithm then runs for M +M0 iterations (Lines 1–5).
In each iteration, the component weights are sampled from a Dirichlet distribution
(Line 2) and the parameters of each component of the mixture are sampled from
the complete-data posterior, given allocation vector and the observations (Lines 3–
4). Once the samples of the weights and the component parameters are drawn, the
probability of belonging to a particular component is calculated for each observa-
tion and each observation is then allocated to a component based on the calculated
probabilities (Line 5). At the end of the algorithm, the first M0 draws are disre-
garded (Line 6) and the remaining M draws for (ϑ,S) are returned (Line 6).

The mixture parameters are identifiable at best up to an arbitrary permuta-
tion mainly because the component number of the mixture is not a meaningful
concept. This phenomenon results in the label switching problem due to the in-
variance of the mixture likelihood function under relabeling the components of a
mixture model [32]. To solve this problem, [32] has proposed to apply random
permutations of labels on the draws of their MCMC algorithm to force balanced
label switching and ensure that the sampler explores the full mixture posterior dis-
tribution.

To choose the optimum number of components, we employ marginal like-
lihood denoted as P (X|µk) where µk is the k-component FMM model. The
marginal likelihood measures the average fit of a model to the data, whereas like-
lihood based or point estimators such as Akaike information criteria (AIC) [33]
or Bayesian information criteria (BIC) [34] base their decisions on the best fit of
each competing model [35]. The use of the marginal likelihood also automatically
penalizes the complexity of the model because complex models spread their prob-
ability mass widely by predicting various possible outcomes, hence the probability
of actual data will be smaller for overly complex models.

2.2.3 Model II: Single Stage Bivariate Approach

The proposed two-stage univariate model is relatively simple since one-dimensional
data is used for modeling in each stage. Yet, it is therefore not possible to model
arbitrary interactions between configuration times and deadlines: Model I might
not be very efficient when the customer does not make clear deadline choices (i.e.,
the flexibility profile does not amount to groups of data points with a similar y-
axis value, which represents the deadline, such as Customer C in Figure 2.1 or
customer flexibility profiles for washing machine and tumble dryer in Figure 2.7
and Figure 2.8 respectively). Indeed, for such cases, the clustering in Stage I of
Model I will produce multiple clusters of deadlines, each one in parallel with the
x-axis, but this might not be the best representation of the underlying data. There-
fore, we propose a second methodology to model the customer flexibility profile
using a bivariate Gaussian mixture model (GMM).
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In this scheme, a bivariate GMM is fit to the flexibility profile of the customer:
both of the flexibility features (i.e., deadline and configuration time) form the input
to the model, and their joint probability distribution is estimated in a single step.
The same methodology based on Bayesian MCMC (explained in Section 2.2.2.2)
is employed to fit the bivariate mixture model and select the optimal number of
components.

2.3 Results and Discussion

We have applied our methodologies on the data from year-long measurements in
the LINEAR pilot project [26] for 3 types of white goods: dishwasher, washing
machine and tumble dryer. The flexibility data associated with each appliance is
obtained from smart meters. Measurements are taken every 15 min: a day is di-
vided into 96 time slots and any customer configuration within the 15 min interval
is reported at the end of the interval, implying that the resulting customer flexibil-
ity profile is discrete. To make our data continuous, we spread the measured data
over the 15 min preceding the interval end times, by adding random noise from a
uniform distribution.

For each appliance, we considered customers with at least 100 configurations
to increase the reliability of the analysis, leading to a set of 15 test customers for
dishwashers, 12 for washing machines and 8 for tumble dryers. It is noteworthy
that the proposed methodologies are implemented in MATLAB.

The results are presented in four subsections. In Sections 2.3.1 and 2.3.2, we
model the distribution of the flexibility profiles based on the test data using the
proposed methodologies and present the resulting clusters. In Section 2.3.3, we
evaluate the efficiency of the derived models in reproducing the customer flexi-
bility profile when using them to generate synthetic data. We then apply χ2 and
Fisher’s exact tests in Section 2.3.4 to examine the dependency of cluster member-
ship on day-of-the-week, weekends, holidays and seasons.

2.3.1 Model I Parameter Fitting and Analysis of Resulting Clus-
ters

Model I is suitable for flexibility profiles that have typical deadlines in their con-
figurations (i.e., the dishwasher profiles in our dataset). It is a two-stage univariate
approach in which each stage models one of the two flexibility features (i.e., the
configuration time or the deadline). Hence, Model I allows to analyze each of
these flexibility features separately, as presented in the following subsections.
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Figure 2.2: Clusters of deadlines from Stage I in the customer flexibility profiles for
dishwasher. Each cluster is shown in a different color.
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Figure 2.3: Percentage of data in each deadline cluster for dishwasher. (Note that a given
cluster index for one customer may relate to a different deadline than the same index for

another customer.)

2.3.1.1 Stage I: Analysis of Deadline Clusters

Figure 2.2 shows the output at Stage I of the model, where Γ-means clustering
is applied to deadlines (y-axis), for the test customers. The corresponding con-
figuration times (x-axis) are also shown in Figure 2.2 for further analysis and
comparison of differences among the configuration times of various clusters. An
exploratory analysis of the outcome of Stage I on test customers reveals the fol-
lowing characteristics of the customers’ flexibility profile for their dishwashers:
(i) there are typically 2 to 3 deadline clusters, early mornings (around 4-5 am),
late morning/noon (10-12 pm), and evening (around 5-6 pm), but the number of
deadline clusters varies among customers; (ii) for most customers, morning dead-
lines are more frequent and the corresponding configuration times usually lie in
the afternoon and late night. Such customers show a more deterministic behavior
compared to others: for example, Customer 1 has a substantial amount of data in
the cluster corresponding to the early morning deadline.
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Figure 2.4: Example of a customer flexible configurations for dishwasher (Customer 6)
during holidays vs. normal days over the cluster of deadlines.

Figure 2.3 shows the percentage of data in each deadline cluster of the test
customers. Note that data are not evenly distributed across the clusters: for 7 out
of 15 customers, one cluster contains more than 90% of the data (for most cus-
tomers, one cluster has more than 50% of the data). This cluster represents the
dominant habit of the customer while other clusters reflect his exceptional behav-
ior. Figure 2.4 depicts an exemplary customer whose flexible configurations are
affected by holidays. As seen from Figure 2.4, the data in the smaller cluster, rep-
resenting afternoon and evening deadlines, are usually configured during holidays,
although a substantial amount of configurations with early morning deadlines are
still present during holidays.

However, these conclusions drawn from Figure 2.4 should not be extrapolated
to all the customers, as we will show in Section 2.3.4.

2.3.1.2 Stage II: Analysis of Distribution of Configuration Times

In this stage, the parametric model is developed to represent the distribution of the
corresponding configuration times of each of the resulting clusters in the previous
stage. Looking back at Figure 2.2, we observe that for some clusters (e.g., those
with early morning deadlines) the data in the lower left corner of the figure is
related to that in the right. It is sensible to say that configurations shortly after
midnight are indeed the tail of the ones at late evening and hence they are likely to
belong to the same distribution. To account for this, we changed the reference point
from midnight to the middle of the largest gap in the configuration time of each
cluster (typically around 5-6 am). To model the configuration time distribution,
we first focused on the larger clusters (with more than 100 data points) to ensure
reliability of our conclusions and then applied the model to smaller clusters. In the
following paragraph, we explain the three steps involved in choosing and fitting a
parametric distribution to test clusters.

Step 1 (choosing the right parametric distribution): We initially fit all valid
parametric distributions to the configuration times of test clusters and compared
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Figure 2.5: Point process representation of posterior draws and PDF of the best fit for two
randomly selected customers for dishwasher.

the fit using goodness-of-fit tests (e.g., BIC, AIC, log-likelihood) as well as hy-
pothesis tests (one tailed k-s test). From this analysis, we concluded that there is
not a unique single-component parametric distribution that can represent the data
for all of the test clusters. Also, for some clusters, none of the parametric distri-
butions provides an acceptable fit. However, for those clusters that could be rep-
resented by a single-component parametric distribution, the non-central student
distribution was usually the best fit. Further, the characteristics of the empirical
distribution for the majority of the test clusters suggested the use of FMMs for
parametric modeling. Based on the initial observation that suggested the non-
central student distribution as a suitable fit, and the fact that a non-central student
distribution is approximated by a Gaussian distribution for a large enough sample,
we fit and compare the FMM from two families of distributions: Gaussian mix-
tures and student mixtures. To compare the fit of the two models, we used marginal
likelihood values.

Comparing marginal likelihood values reveals that the Gaussian mixtures are a
more suitable model to represent the data for all the test clusters. Hence Gaussian
mixtures are employed for modeling and further analysis of the distribution of
configuration times of deadline clusters.

Step 2 (choosing the number of components): To select the optimal number of
components of the mixture, we employ the log-marginal likelihood together with a
point process representation of the posterior draws to avoid overfitting. The point
process representation is a viewpoint introduced by [36] which represents every
component of the mixture in terms of its parameters. Next, we explain the overall
procedure as well as the point process representations with the aid of an example.

Table 2.1 shows the log-marginal likelihood for fitting Gaussian mixtures with
different values for k, i.e., the number of components of FMMs for test clusters.
According to Table 2.1, the largest log-marginal likelihood corresponds to k = 2
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Table 2.1: Log-marginal Likelihood, p(µk|X) (larger values are better).

Cluster k = 1 k = 2 k = 3 k = 4

I -553.95 -545.34 -595.17 -548.91
II -595.53 -554.89 -554.84 -559.87

for Cluster I and k = 3 for Cluster II. The corresponding point process representa-
tion of posterior draws for k = 2 and 3, as well as the probability density function
(PDF) of the best fit is shown in Figure 2.5. According to Figure 2.5(I), the point
process representations of posterior draws for Cluster I form well-separated clus-
ters around the parameters of the mixture components for k = 2 but increasing
the number of components indicates overfitting because well-separated clusters
corresponding to parameters of each component are no longer seen in the point
process representation plot. Hence, k = 2 is the optimum choice as suggested by
log-marginal likelihood values. However, for Cluster II, the k = 3 suggested by
Table 2.1 overfits the data according to the point process representations shown
in Figure 2.5(II). Therefore, k = 2 is selected as the optimum number of mixture
components for Cluster II. It is noteworthy that in Figure 2.5, the x-axis is changed
from time to timeslot of a day (i.e., a value between 0 and 95) to ease the compar-
ison between point process representation and PDF of the best fits. Experimenting
with test clusters suggests that when the difference in log-marginal likelihood of k
and k+1 components is smaller than 1, the smaller number of components should
be chosen to avoid overfitting.

Step 3 (determining the mixture component membership): Any data that is
represented best with FMMs, can be clustered based on the mixture component
membership and hence be analyzed to identify the potential factors influencing the
component membership. We use the maximum-a-posteriori (MAP) clustering al-
gorithm to identify, with a certain probability, the component membership of each
data point. MAP identifies the allocation vector that yields the largest posterior
probability. The optimum allocation vector is easily obtained by keeping track of
the allocation vectors and corresponding posterior probability at each iteration of
Schnatter’s algorithm (explained in Section 2.2.2.2).

Application of the outlined steps to deadline clusters of the test customers re-
veals that: (i) the majority of the clusters are best represented with a 2-component
Gaussian mixture model (and the optimum number of components never exceeds
3), and (ii) the component weights are not uniformly distributed in the majority of
the clusters, meaning that there is typically one dominant cluster.
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Figure 2.6: Bivariate Gaussian mixture fits and the resulting MAP clusters for dishwasher
(in distinct symbols and colors; contour plots indicate the fitted distributions).
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Figure 2.7: Bivariate Gaussian mixture fits and the resulting MAP clusters for washing
machine flexible usage (in distinct symbols and colors; contour plots omitted for clarity).
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Figure 2.8: Bivariate Gaussian mixture fits and the resulting MAP clusters for tumble
dryer flexible usage (in distinct colors; contour plots omitted for clarity).

2.3.2 Model II Parameter Fitting and Analysis of Resulting Clus-
ters

In this section, we fit bivariate Gaussian mixture models to our test data. Similar to
Stage 2 of Model I, we change the reference point to the middle of the largest gap
seen in the configuration times (x-axis) of the customer’s data, in order to ensure
an acceptable continuity of the distribution of configuration times over midnight.
The summary of the estimated model parameters are tabulated in the Appendix.

The results of fitting Model II to flexibility profiles for dishwashers are de-
picted in Figure 2.6 for 4 example customers. The contour plots in Figure 2.6
indicate the bivariate Gaussian mixture fits. We have also employed MAP cluster-
ing to assign each point to a single component (as explained in Subsection 2.3.1.2,
Step 3). The resulting MAP clusters are shown using distinct colors and symbols
in Figure 2.6. Unlike clusters in Model I, the clusters in Model II are not always
aligned in parallel with the x-axis (i.e., do not have similar deadlines). Two cat-
egories of clusters are observed in Model II: (i) clusters with similar deadlines
(i.e., horizontal ones), and (ii) those in which the customers configure the device
with similar flexibility duration (i.e., clusters in parallel with the x = y diagonal
line). This shows the versatility of Model II in accommodating various types of
customer behaviors (i.e., configurations with similar deadlines or similar flexibility
durations).

We also applied Model II on the customer flexibility profiles for washing ma-
chines and tumble dryers (refer to the tables in Appendix for a summary of the
model parameters). The resulting clusters are shown in Figure 2.7 and Figure 2.8
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for washing machine and tumble dryer respectively. The aforementioned cate-
gories of clusters are also observed in the flexibility profiles for washing machines
and tumble dryers. As seen from Figure 2.7 and Figure 2.8, for the majority of cus-
tomers using a washing machine or tumble dryer, their configurations with similar
deadlines (early morning) usually are in the late evening and span to few hours
after the midnight. The configurations throughout the day all have a similar flex-
ibility duration (resulting in clusters roughly parallel to the x = y diagonal). In
addition, there are clusters with similar configuration times but different deadlines
(i.e., vertical ones) for some customer flexibility profiles for washing machine and
tumble dryers (e.g., Customers 2, 3, 6, 7 and 8 in Figure 2.8 and Customers 2, 3
and 7 in Figure 2.7). Such vertical clusters are not observed in customer flexibility
profiles for dishwashers.

2.3.3 Analysis of Model Efficiency for Data Regeneration

In this section we analyze the efficiency of the models in regenerating the cus-
tomers flexibility profile. To achieve this objective, we first model a customer
using our proposed methods. Each method yields a probabilistic model of the
customer’s data. We note that in Stage I of Model I, we model the data in each
deadline cluster using a gamma distribution. Hence, we represent the overall data
as mixture of gamma distributions where the parameters of each component of the
mixture are equal to the underlying gamma distribution in each deadline cluster.
The weight of each component in the mixture is calculated by taking the ratio of
the corresponding deadline cluster size to the overall data size. We then generate
500 sample sets of the same size as the original data (from which the models are
derived). Each sample set is compared to the original data using a two tailed k-s
test to determine whether the sample and the original data come from the same
distribution. The null hypothesis is that data and sample come from the same dis-
tribution and the alternative hypothesis is that they do not. It should also be noted
that since the original k-s test is developed for one-dimensional data, we have ap-
plied the extension of the k-s test to bivariate data, as proposed by [37].

Table 2.2 shows the percentages of times the test fails to reject the null hypoth-
esis at 5% significance level. As seen from Table 2.2, for most of the customer
flexibility profiles (of all 3 categories of white goods) more than 90% of the sam-
ples generated by Model II are not rejected by the hypothesis test and hence, may
be representative samples.

For dishwashers, Model II outperforms or matches Model I in re-generating
the data, although for some customers they perform equally well. Yet, for some
customers, Model I never generates a sample that can be considered to be represen-
tative of the original data. Investigating these cases, analysis reveals that although
data in each cluster follows a Gamma distribution (due to Γ-means clustering), for
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Table 2.2: Analyses of model efficiency in regenerating the customer flexibility profiles:
percentage of times the null hypothesis is not rejected. (Note that the same customer

numbers across devices do not necessarily correspond to the same users.)

Dishwasher Washing Machine Tumble Dryer

Customer Model I Model II Customer Model II Customer Model II

1 0.0 % 90.4 % 1 100 % 1 100 %
2 83.2 % 95.2 % 2 100 % 2 100 %
3 0.2 % 99.2 % 3 100 % 3 100 %
4 7.8 % 99.2 % 4 98 % 4 91 %
5 31.4 % 89.8 % 5 100 % 5 100 %
6 0.0 % 97.2 % 6 100 % 6 100 %
7 0.0 % 61.2 % 7 100 % 7 100 %
8 0.6 % 99.8 % 8 100 % 8 100 %

9 48.0 % 95.4 % 9 100 %
10 99.6 % 99.6 % 10 100 %
11 77.2 % 100.0 % 11 100 %
12 99.2 % 99.8 % 12 100 %

13 99.6 % 99.8 %
14 98.2 % 100.0 %
15 98.2 % 99.0 %

customers with very deterministic behavior (i.e., very narrow deadline windows
in each deadline cluster), representing hard clusters of deadlines with a mixture
of Gamma distributions does not regenerate a sample representative of deadline
distributions. We conclude this from a one dimensional two tailed k-s test by con-
sidering deadline feature of customer flexibility data: the null hypothesis (i.e., data
arising from the mixture of Gamma distribution) is always rejected for customers
with very narrow spread in their deadlines.

Despite the fact that Model I often does not represent the data as successfully as
Model II, it still has the benefit of simplicity, both in constructing the model and in
interpreting it (e.g., clear identification of typical deadlines, which is characteristic
of several dishwasher flexibility profiles).

2.3.4 Dependency Analysis Using Statistical Tests

To investigate the dependency of resulting clusters of each model on potential
determining factors, including weekends, day-of-a-week, holidays and seasons, we
employ χ2 and Fisher’s exact tests. Fisher’s exact test is only employed when the
conditions of the χ2 test are not met, mainly due to small data sizes in some cells of
the contingency table. Additionally, Fisher’s exact test is only applicable for 2× 2

contingency tables: for larger tables, extensions of Fisher’s test are employed (e.g.,
Freeman-Halton’s extension [38] for 2 × 3). We define our null and alternative
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hypothesis for a ‘factor’ as follows:

• Null hypothesis: cluster membership and ‘factor’ are independent,

• Alternative hypothesis: cluster membership and ‘factor’ are dependent.

The dependency tests are conducted at the 5% significance level. In other
words, for p-values larger than 0.05, the test fails to reject the null hypothesis and
hence does not conclude a dependency among the considered ‘factor’ and clusters
under analysis. The number of columns in the contingency table corresponds to
the number of deadline clusters for each customer. The contingency tables always
consists of two rows. For example, to test the dependency of cluster membership
on weekends, the first row of the corresponding table would contain count data for
configurations on weekend days and the second row would contain the configura-
tions on all the other days of the week. Similarly, for a day-of-the-week factor, the
contingency table of each day would have count data for the particular day in one
row and the configurations of the remaining six days of the week on another row.

The outcome of the tests (for dishwashers only) for clusters in Stage I and
Stage II of Model I are summarized in Table 2.3 and Table 2.4 respectively.

Table 2.3(a) shows that weekends, holidays and seasons may influence the be-
havior of some customers in setting deadlines for their dishwasher. However, as
mentioned earlier, the aforementioned factors do not affect all customers behav-
iors similarly. Additionally, autumn seems to have a more pronounced effect on
customer deadlines than the other seasons. From Table 2.3(b), we note that 6 out
of the 15 customers (shaded rows) have a dependency of dishwasher configuration
times on at least one day of the week. While some customers remain unaffected by
day-of-the-week, some others are greatly influenced by this factor (e.g., Customer
15, for whom the null hypothesis is rejected for 4 days of the week).

Table 2.4, shows that holidays and seasons do not significantly affect the com-
ponent memberships in Stage II for the test deadline clusters from Stage I. How-
ever, weekends influence component membership for 5 out of the 10 test clusters.
Additionally, 7 out of 10 test clusters have at least one day that influences the
component membership of their data points.

We have also applied the dependency tests to the clusters of Model II to identify
factors influencing the cluster membership of a customer’s data points. The p-
values of the dependency tests on dishwashers are summarized in Table 2.5. We
constructed similar tables for customer flexibility profiles for washing machines
and tumble dryers, however, we omit them from the paper to save space: below
we summarize the main observations.

For customer flexibility profiles for dishwashers: from Table 2.5, 5 out of 15
customers’ cluster membership might be dependent on holidays, whereas more
than 50% of the customers behavior is affected by weekends, seasons and day-of-
the-week factors. Among seasons, winter least influences the cluster memberships.
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Table 2.3: P-values of dependency tests in Stage I of Model I for dishwasher usage. (Bold
values indicate a p-value less than 0.05 and shaded rows indicate customers affected by at

least one ‘factor’.)

(a) Holidays, weekends and seasons

Cus-
tomer

No. of
clusters

Test
type holiday weekend spring summer autumn winter

1 2 Fisher 2.9E-01 1.0E+00 6.2E-01 8.8E-02 5.7E-01 5.1E-01
2 2 Fisher 5.4E-01 5.3E-01 4.6E-01 3.4E-01 4.0E-01 3.8E-01
3 2 Fisher 2.1E-01 1.0E+00 5.6E-01 1.7E-01 5.8E-01 2.6E-01
4 2 Fisher 5.4E-01 1.0E+00 6.5E-01 5.5E-01 1.0E-01 2.8E-02
5 2 Fisher 1.0E+00 1.2E-01 6.2E-03 5.3E-01 3.8E-02 3.9E-01
6 2 Fisher 1.1E-02 4.4E-01 1.7E-01 7.6E-02 3.7E-02 5.9E-01
7 3 Fisher 5.2E-01 5.2E-04 7.8E-01 8.4E-02 6.4E-03 2.0E-01
8 2 χ2 8.8E-02 1.2E-04 4.3E-02 1.6E-01 9.0E-01 5.2E-01
9 2 χ2 3.9E-01 2.8E-01 6.32E-02 6.9E-01 2.5E-01 1.2E-01
10 2 χ2 2.8E-03 3.2E-01 8.5E-02 5.0E-02 4.7E-03 5.2E-01
11 2 χ2 9.5E-01 3.0E-01 1.03E-01 9.6E-01 1.4E-01 9.9E-01
12 3 χ2 3.5E-01 1.8E-02 9.8E-01 1.8E-01 3.1E-04 8.6E-02
13 3 χ2 5.1E-03 2.0E-01 2.1E-04 2.2E-02 5.0E-03 7.1E-02
14 3 χ2 3.7E-01 7.7E-02 3.1E-01 2.4E-01 2.0E-01 2.2E-01
15 5 χ2 7.7E-02 6.0E-02 9.8E-02 3.7E-01 4.9E-02 2.6E-02

(b) Day-of-the-week

Customer Sun Mon Tue Wed Thur Fri Sat

1 1.0E+00 1.0E+00 1.6E-01 1.0E+00 1.0E+00 1.0E+00 1.0E+00
2 1.0E+00 1.0E+00 1.0E+00 2.3E-01 3.1E-01 1.0E+00 1.0E+00
3 3.6E-01 1.0E+00 6.3E-01 6.0E-01 6.1E-01 9.1E-02 2.3E-01
4 1.0E+00 7.0E-01 6.7E-01 3.7E-01 4.1E-01 3.9E-01 1.0E+00
5 6.9E-01 6.9E-01 3.5E-01 1.0E+00 3.6E-01 5.6E-01 3.8E-02
6 1.0E+00 5.9E-01 1.0E+00 3.5E-01 1.0E+00 9.8E-02 2.1E-01
7 7.9E-01 2.9E-01 1.6E-01 5.0E-01 6.5E-01 1.7E-01 7.9E-05
8 8.8E-03 5.3E-01 1.1E-01 2.2E-02 5.9E-01 7.2E-01 2.2E-02
9 1.7E-01 3.4E-01 8.9E-01 1.3E-01 7.9E-02 6.4E-01 9.5E-01

10 3.6E-01 1.3E-01 8.4E-01 4.7E-01 6.1E-01 1.5E-01 8.0E-02
11 8.6E-01 9.3E-01 9.9E-01 2.8E-01 6.9E-01 8.1E-01 2.5E-01
12 6.6E-01 4.1E-01 9.0E-01 6.8E-01 8.3E-01 6.5E-02 4.8E-04
13 9.5E-01 2.7E-02 6.2E-01 8.5E-01 1.6E-02 6.2E-03 1.7E-02
14 9.1E-02 3.0E-01 3.2E-01 1.1E-01 3.1E-01 4.8E-01 5.6E-01
15 3.6E-01 3.9E-01 2.0E-01 2.7E-01 7.1E-04 7.2E-02 1.1E-01

The results of Table 2.5 also indicate that while not all customers are affected in
a similar manner, from an overall perspective, weekend, seasons and day-of-the-
week factors influence more customers than the holiday factor.

For customer flexibility profiles for washing machines: only 3 out of 12 cus-
tomers are influenced by holidays, whereas, weekends, seasons and day-of-the-
week factors affect 50% of the customers. Among seasons, winter has the highest
influence (6 out of 12) and autumn has the least (2 out of 12) influence on cluster
membership.

For customer flexibility profiles for tumble dryers: none of the 8 test customers
are affected by holiday, and only 1 customer is affected by seasons. On the other
hand, weekend and day-of-the-week factors influence more than 50% of the cus-
tomers.

The main conclusion drawn from the dependency tests above is that customers
not only exhibit different behavior in offering the flexibility of their smart device,
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Table 2.4: P-values of dependency tests in Stage II of Model I for dishwasher usage. (Bold
values indicate a p-value less than 0.05 and shaded rows indicate customers affected by at

least one ‘factor’.)

(a) Holidays, weekends and seasons

Cluster No. of
clusters

Test
type holiday weekend Spring Summer Autumn Winter

A 3 χ2 6.9E-01 3.1E-01 3.0E-01 2.5E-01 2.1E-01 3.7E-01
B 3 Fisher 2.1E-01 2.5E-03 4.6E-01 4.6E-01 2.7E-02 1.7E-01
C 3 χ2 4.9E-01 5.2E-03 1.0E+00 2.1E-01 8.4E-01 5.0E-01
D 3 χ2 4.0E-01 3.4E-02 4.5E-01 4.3E-01 1.4E-01 5.9E-01
E 2 χ2 6.8E-01 7.6E-04 2.2E-01 2.6E-01 6.0E-01 7.5E-02
F 2 χ2 4.2E-01 6.5E-01 1.2E-01 5.0E-01 5.6E-02 6.3E-01
G 2 χ2 3.7E-01 6.2E-02 9.5E-01 8.8E-01 3.4E-01 4.6E-01
H 3 Fisher 3.6E-01 4.7E-01 5.5E-01 6.4E-01 6.3E-01 4.4E-01
I 3 Fisher 1.7E-01 1.9E-01 3.9E-03 7.7E-02 1.5E-02 1.8E-01
J 3 χ2 3.4E-06 8.7E-04 7.0E-01 2.7E-02 5.5E-01 1.5E-01

(b) Day-of-the-week

Cluster Sun Mon Tue Wed Thur Fri Sat

A 9.9E-01 3.3E-01 4.4E-01 1.2E-01 3.5E-01 2.9E-02 6.9E-02
B 6.7E-03 8.1E-01 8.6E-02 4.2E-01 7.2E-01 8.3E-01 3.8E-01
C 6.8E-02 9.2E-01 1.2E-04 9.6E-01 6.9E-01 7.2E-01 5.5E-02
D 2.4E-01 3.3E-02 6.3E-01 2.4E-01 2.9E-02 1.0E+00 1.1E-01
E 7.8E-05 6.9E-01 3.5E-02 1.6E-01 2.7E-01 9.4E-01 9.4E-01
F 2.6E-01 3.0E-02 7.8E-01 4.0E-01 3.9E-01 3.8E-02 3.5E-01
G 3.1E-01 3.0E-01 2.5E-01 9.6E-01 1.6E-01 2.8E-01 1.9E-01
H 2.4E-01 6.9E-01 5.2E-01 7.8E-01 2.8E-01 6.9E-01 3.1E-01
I 1.0E-01 5.3E-01 3.1E-01 9.2E-01 1.2E-01 7.0E-01 6.5E-01
J 1.7E-04 8.8E-01 6.1E-03 2.3E-02 2.3E-01 2.9E-03 3.9E-05

but also that they are affected differently by the aforementioned factors. Hence, the
assumption that flexibility will be offered by all customers in a similar manner, is
not supported by our data. It hence seems crucial to individually model customer
behavior in order to incorporate the uncertainties due to their distinct habits, and
thus allow for a more realistic assessment of DR impact.

2.4 Conclusion

Flexibility is characterized by (1) amount of deferrable load, (2) time of availability
and (3) deadline to exploit. Existing works have extensively studied (1). However,
(2) and (3) are challenging to analyze because they depend on customer appliance
usage habits and may substantially differ among households. Hence, state-of-the-
art lacks the quantitative analysis on (2) and (3): they are inferred from either the
load patterns or time-of-use surveys which do not depict a realistic customer be-
havior (i.e., inferences are not based on real scenarios where customers configure
their smart appliances flexibly). This distorts the realistic assessment of flexibility
and hurdles their efficient exploitation.

In this paper, we took the first step to tackle this issue and aimed to sharpen the
analysis of flexibility by characterizing the individual customer flexibility profile
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Table 2.5: P-values of dependency tests for Model II for dishwasher usage. (Bold values
indicate a p-value less than 0.05 and shaded rows indicate customers affected by at least a

‘factor’.)

(a) Holidays, weekends and seasons

Cus-
tomer

No. of
clusters

Test
type holiday week-

end spring summer autumn winter

1 3 Fisher 3.8E-01 7.4E-01 5.1E-01 2.0E-01 8.3E-01 3.5E-01
2 4 χ2 6.4E-01 1.8E-01 7.9E-03 6.2E-01 2.9E-01 6.7E-01
3 5 χ2 3.8E-07 8.1E-03 3.4E-01 1.6E-01 8.6E-02 4.1E-01
4 4 χ2 1.5E-03 1.7E-03 7.0E-01 4.0E-03 1.1E-01 9.0E-02
5 4 χ2 8.9E-01 1.2E-01 4.9E-02 8.7E-01 1.6E-01 4.1E-01
6 5 χ2 8.8E-03 2.1E-01 3.8E-02 1.3E-04 7.2E-02 1.6E-01
7 4 χ2 7.0E-01 2.0E-02 1.6E-01 2.8E-02 1.7E-04 3.4E-01
8 4 χ2 1.6E-01 1.2E-05 3.7E-01 3.1E-01 3.7E-01 8.0E-01
9 5 χ2 5.1E-01 3.8E-01 2.6E-01 1.2E-01 1.7E-02 8.5E-02

10 4 χ2 8.2E-02 4.5E-01 5.5E-03 4.8E-02 1.3E-02 9.6E-02
11 4 χ2 5.5E-01 1.6E-01 7.7E-02 1.1E-01 6.5E-02 3.4E-01
12 5 χ2 5.0E-02 3.3E-03 8.0E-01 2.0E-01 8.7E-04 1.3E-01
13 5 χ2 9.1E-05 8.5E-04 4.0E-05 2.8E-03 2.5E-03 5.6E-02
14 5 χ2 6.7E-01 5.7E-03 3.5E-01 5.4E-01 1.2E-01 2.8E-01
15 4 χ2 1.2E-01 8.1E-02 8.6E-01 5.0E-01 3.0E-01 4.4E-02

(b) Day-of-the-week

Customer Sun Mon Tue Wed Thur Fri Sat

1 8.6E-01 8.5E-01 3.1E-02 8.8E-01 1.6E-02 3.6E-01 4.4E-01
2 1.0E-01 4.7E-01 6.1E-01 2.3E-01 3.6E-01 6.9E-01 2.6E-01
3 3.9E-02 8.2E-01 7.8E-01 6.0E-01 2.3E-01 2.4E-02 1.0E-01
4 8.6E-02 5.0E-02 1.4E-02 7.4E-02 6.5E-01 4.7E-04 6.7E-06
5 3.2E-01 1.9E-01 2.3E-01 3.7E-01 3.9E-02 8.9E-02 2.8E-02
6 3.9E-01 7.7E-01 3.1E-01 1.4E-01 8.0E-01 5.5E-01 2.5E-01
7 9.2E-01 3.4E-01 2.2E-01 3.4E-01 6.3E-01 9.7E-02 6.6E-03
8 6.1E-02 8.2E-01 2.7E-01 2.5E-02 7.0E-01 6.0E-02 9.2E-04
9 2.9E-01 3.2E-02 8.7E-01 6.7E-01 5.3E-01 5.7E-01 9.9E-01
10 3.5E-01 2.9E-01 9.8E-01 9.9E-01 9.5E-01 2.4E-01 1.5E-01
11 5.2E-01 5.6E-01 4.4E-01 3.6E-01 7.6E-01 8.9E-01 3.0E-01
12 4.7E-01 8.0E-01 5.8E-01 8.9E-01 1.1E-01 5.8E-01 8.3E-05
13 7.6E-05 3.5E-01 5.1E-03 6.9E-02 5.5E-02 7.0E-04 2.0E-04
14 1.7E-01 7.3E-01 3.1E-01 3.8E-01 5.4E-01 4.9E-01 1.6E-02
15 1.1E-01 8.2E-03 1.1E-01 5.3E-01 9.2E-01 3.6E-01 5.4E-01

in terms of time of configuration and deadline to exploit the offered flexibility. We
proposed a systematic approach to derive a generative statistical model of an in-
dividual customer’s flexibility behavior in offering smart devices for DR exploita-
tion, based on real-world data. Validating two proposed models with statistical
tests, we found that especially Model II (bivariate Gaussian mixture models) was
efficient in re-generating the customer flexibility profile. Finally, we evaluated
the dependency of customer behavior on various factors using statistical tests, to
conclude that not only do different users exhibit potentially substantially different
flexibility behavior, but also that such flexibility could be influenced differently by
factors such as day-of-the-week or seasons, etc. More details on the outcome of
our contributions are explained below.

Our Model I is a two-stage univariate approach that is suitable for flexibility
profiles that exhibit typical deadlines (e.g., dishwasher usages as observed in our
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real-world dataset). The first stage employs a Γ-means clustering algorithm to
identify the typical deadlines and the second stage uses a Bayesian model and em-
ploys the MCMC algorithm to obtain the distribution of the corresponding configu-
ration times for deadline clusters from Stage I. The analysis of customer flexibility
profiles for dishwasher based on Model I reveals the following: (i) the majority of
the customers tend to configure their smart dishwasher to meet a limited set of typ-
ical deadlines and the data in each cluster follows a Gamma distribution (based on
k-s hypothesis test), (ii) for most customers, the size of deadline clusters were un-
balanced with one cluster representing the dominant habit of the customer, (iii) the
distribution of configuration times in each cluster resulting from Stage I was best
modeled by a mixture of Gaussian distributions (based on marginal likelihood cri-
teria).

Model II is a more general approach that takes both flexibility features as the
input and models their joint distribution in a single step. The proposed model
fits bivariate Gaussian mixtures on the flexibility data of each customer using a
Bayesian MCMC algorithm. MAP clustering is used to assign each observation to
a single component. Three categories of MAP clusters are observed when mod-
eling the customer flexibility profiles using Model II: (i) the ones with similar
deadlines and different configuration times, (ii) the ones with similar configura-
tion times but different deadlines and (iii) the ones with similar flexibility duration.
Hence, this approach is more versatile in modeling various customer behaviors.

To validate the efficiency of Model I and Model II in regenerating the cus-
tomer behavior for synthetic data generation purposes, we proposed a systematic
approach based on a Kolmogorov-Smirnov (k-s) test. Based on our validations,
Model II was identified to be an appropriate regenerative model for all 3 types
of white goods in our analysis. The summary of Model II parameters fit to our
real-world dataset are given in the Appendix.

Finally, to study factors influencing the customer flexibility behavior, we used
χ2 and Fisher’s exact tests and examined the effect of 4 factors: holidays, week-
ends, seasons and days-of-the-week. Our dependency analysis of real-world data
suggests that customers are not similarly affected by aforementioned factors: mod-
eling flexibility merely based on device characteristics and assuming that all cus-
tomers will utilize them in the same manner does not reflect observed behavior.
This further indicates the need to model customers individually in order to incor-
porate the uncertainties influencing their flexibility behavior due to their appliance
usage habits.

2.4.1 Future Work

The configuration time in the flexibility profile has a cyclic nature, hence, it is
plausible that configurations shortly after midnight are the tails of distributions
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of the ones in the late evening. In order account for this, while still keeping the
modeling in linear space, we adopted a transformation of the x-axis as shown in
the figures throughout the paper, and changed the reference point to the middle
of the largest gap in the configuration times of the customer for both Model I and
Model II. However, it could be statistically meaningful (though more complex)
to consider distributions of flexibility on a cylinder, with configuration times on a
circle, while deadlines are on the vertical axis. Such mathematically more complex
analysis is left for future work.

Finally, the comparison of test customers suggests similarities among some
customers in terms of their flexibility behavior (e.g., similar deadline clusters). In
future research, we will use clustering to group customers with similar flexibil-
ity profiles for each appliance. Clustering of similar customers may improve the
exploitation of their flexibility by DR algorithms (e.g., by tailoring a specific DR
algorithm for a group of similar customers).

Appendix

In this appendix, we summarize the estimated parameter values of Model II for the
customer flexibility profiles for all three appliance types. We also give guidelines
for generating synthetic data based on the summarized parameters. The notations
used in the table headers are explained first:

– [Xmin, Xmax]: the minimum and maximum values of the configuration
time,

– [Ymin, Ymax]: the minimum and maximum values of the deadline,

– Ref.: the largest gap in the configuration times of the customer (The data
is shifted around this reference to ensure the continuity of the configuration
times.)

– ηk: the weight of kth component of the mixture

– µk: the normalized mean of the kth component of the mixture

– Σk: the covariance matrix of the kth component of the mixture. To com-
pactly represent the covariance matrix in the tables, we note it as

(Σ11,Σ12; Σ21,Σ22) which corresponds to
(

Σ11 Σ12

Σ21 Σ22

)
.

The following steps explain how to re-generate a customer flexibility profile:

– Step 1: sample form the K-component Gaussian mixture model based on the
given parameters and weights for each customer.
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– Step 2: the data was normalized prior to the modeling (i.e., usingXnormalized =
X−Xmin

Xmax−Xmin
for normalizing configuration times and Ynormalized =

Y−Ymin

Ymax−Ymin
for normalizing deadlines). Hence, de-normalize the gen-

erated samples accordingly.

– Step 3: shift the configuration times around the “Ref.” offset.

The aforementioned steps will regenerate a customer flexibility profile with
deadlines ranging from [0 h, 24 h] and configuration times between [0, 96] (which
represent indices of the 15 min timeslots). Note that since we had 15 min measure-
ments to obtain the flexibility information, the configuration times are between
[0, 96] in the re-generated sample and correspond to time-slot of the day. To obtain
the configuration times in terms of hour of the day, multiply the values by 1/4.
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3
Quantitive Analysis of Electric Vehicle

Flexibility: A Data-Driven Approach

In the previous chapter, we focused on modeling and analysis of the residential
white-good usage flexibility as one of the demand response resources used to se-
cure demand-supply balance in the smart grid paradigm. In this chapter we per-
form a conceptually similar analysis, but now on a substantially larger dataset of
EV charging session. Electric vehicles proliferation is following a fast pace partly
due to various environmental initiatives. The batteries of Electric vehicles have a
great potential for providing distributed energy consumption flexibility required by
demand response algorithms. Understanding and a quantification of such flexibil-
ity as a demand response asset is essential to ensure informed assumptions while
developing demand response algorithms (as we will do in Chapter 5).

? ? ?
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Abstract The electric vehicle (EV) flexibility, indicates to what extent the charg-
ing load can be coordinated (i.e., to flatten the load curve or to utilize renewable
energy resources). However, such flexibility is neither well analyzed nor effec-
tively quantified in literature. In this paper we fill this gap and offer an extensive
analysis of the flexibility characteristics of 390k EV charging sessions and pro-
pose measures to quantize their flexibility exploitation. Our contributions include:
(1) characterization of the EV charging behavior by clustering the arrival and de-
parture time combinations that leads to the identification of type of EV charging
behavior, (2) in-depth analysis of the characteristics of the charging sessions in
each behavioral cluster and investigation of the influence of weekdays and sea-
sonal changes on those characteristics including arrival, sojourn and idle times,
and (3) proposing measures and an algorithm to quantitatively analyze how much
flexibility (in terms of duration and amount) is used at various times of a day, for
two representative scenarios. Understanding the characteristics of that flexibil-
ity (e.g., amount, time and duration of availability) and when it is used (in terms
of both duration and amount) helps to develop more realistic price and incentive
schemes in DR algorithms to efficiently exploit the offered flexibility or to estimate
when to stimulate additional flexibility.

3.1 Introduction

Partly because of environmental constraints, electric vehicles (EVs) are increas-
ingly being adopted as an alternative for internal combustion engine (ICE) cars.
However, the load from EVs may increase the peak to average ratio of demand
and hence create a need for additional generation and network capacity. That extra
capacity would only be required to meet the increased peak demand and there-
fore is used very infrequently [1]. Integration of information technology into the
power grid (in the smart grid paradigm) alleviates this challenge by enabling the
exploitation of demand side flexibility to reshape the consumption to meet the
supply or network constraints (i.e., by flattening demand or by balancing against
renewable generation). Consequently, a substantial body of research has focused
on proposing demand response (DR) algorithms to coordinate EV charging and
establish their benefits (a review of various DR algorithms for charging coordina-
tion is given in [2], [3], [4], and [5]). However, one of the main limitations of such
proposed DR algorithms is their potentially unrealistic assumptions about the EV
owner behavior (e.g., time of availability of EV, sojourn times and the fraction of
the sojourn time that is not spent for charging and is named idle time). To design
an efficient and practical DR algorithm, it is necessary to accurately understand
the flexibility stemming from EVs and how to influence it (through price based
and incentive based schemes) to maximize DR benefits. However, despite various
efforts in proposing DR algorithms, EV flexibility characteristics as DR’s main



QUANTITIVE ANALYSIS OF EV FLEXIBILITY 59

asset have not been quantitatively analyzed. We believe such analysis can pave the
way to more realistic demand response schemes (price-based or incentive based
DR) in order to facilitate EV integration in the grid and therefore is the focus of
this paper.

3.1.1 Objectives and Contributions

Understanding the flexibility characteristics, the influencing factors, and the mo-
tivation for its exploitation is an inevitable part of designing a realistic DR al-
gorithm. Flexibility, despite its apparent simplicity, is neither straightforward to
analyze nor to quantify.

We pursue two objectives in this paper. Our first objective is to perform an
in depth analysis of the flexibility characteristics of EVs based on a reasonably
large real-world dataset (which to the best of our knowledge amounts to the largest
dataset reported in literature, see Section 3.2.1 for further details). Our second
objective is to quantify the flexibility exploitation and identify how the observed
flexibility is utilized for various objectives (e.g., load flattening and load balancing
against renewable (energy) sources) and whether there is any typical pattern in its
exploitation. More precisely, we aim to answer the following research questions:

1. Do EV owners have specific habits to charge their cars (e.g., taking their
cars to a charging station at particular times of the day)? To answer this
question, we characterize the EV charging behavior by clustering the arrival
and departure time combinations, as such identifying three behavioral clus-
ters in our EV charging data (Section 3.2.2).

2. Are the characteristics of the charging sessions (e.g., arrival, sojourn and
idle times) sensitive to seasonal changes or weekdays? To address this ques-
tion, we systematically analyze the characteristics of the charging sessions in
each behavioral cluster on weekdays and weekends and across various sea-
sons. We also characterize the flexibility stemming from the sojourn times
of EVs that are longer than the time required to (fully) charge their battery
(Section 3.2.3).

3. How is flexibility (in terms of amount, time and duration of the shifted en-
ergy) exploited? Which aspect of flexibility (time and duration of availabil-
ity or amount of deferrable energy) is more useful at various times of the
day? We address these questions by considering two case studies (i.e., load
flattening and load balancing scenarios) to investigate to what extent the
observed flexibility would be exploited. To do so, we propose two mea-
sures and an algorithm to quantitatively analyze when flexibility is used
in terms of the EV load volume as well as amount of time the load is de-
ferred(Section 3.3.3 and Section 3.3.4).
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3.1.2 Related Work

Estimating the EV charging load to assess its impact on the power grid has been
the primary focus of research in facilitating EVs integration to the grid. In initial
studies, before the wide-spread use of EVs, probabilistic models of driving be-
havior (with conventional ICE cars) were used to characterize a charging session.
This was done by estimating arrival and departure patterns, energy requirements
and the covered distance in between trips. For example Lampropoulos et al. [6]
derive an EV charging data profile from statistical characteristics of the driving
behavior of conventional ICE cars. Clement-Nyns et al. [7] base their analysis on
extrapolation of non-EV car usage in Belgium. Paevere et al. [8] model the spatio-
temporal impact of EV load based on a linked suite of models of future EV uptake,
their travel and charging/discharging models. Grahn et al. [9] derive EV charging
behavior from non-EV driving behavior in Sweden. Pashajavid et al. [10] derive
the demand profile of EVs from traveling and refueling information of non-EV
in Tehran, and a more recent study [11] estimates possible states of EVs, regard-
ing their demand, location and connection period, based on synthetic data which
mimics reality.

Later studies, when EV penetration had increased, relied on the availability of
EV charging datasets to use data-driven approaches to model the charging behav-
ior of EVs and assess their impact on the grid. For instance, Xydas et al. [12]
characterize the charging demand of EVs by statistically analyzing and clustering
a dataset of 22k sessions in UK. Khoo et al. [13] derive the impact of EV charg-
ing on peak load based on around 5k sessions from an Australian field trial and
establish the expected impact on the total power demand in 2032-33 for the state
of Victoria. Brady et al. [14] use a probabilistic charging module to translate the
travel patterns of EVs into the respective power demand of the vehicles. Quiròs-
Tortòs et al. [15] and Navarro-Espinosa et al. [16] use the probability distribution
of start charging time and energy demanded during a connection of charging ses-
sions in a one-year EV trial in Ireland to obtain the EV load demand and assess
their impact in the low voltage distribution grid. The aforementioned works focus
mainly on analyzing the impact of EVs on the load curve and do not provide any
quantitative analysis of the flexibility characteristic of EV charging sessions. The
objective of our analysis presented here rather is to quantify the flexibility of the
EV load, and quantitatively study user behavior.

User modeling (not focusing on flexibility) has been the subject of earlier
works to assess the influence of charging behavior of different user categories on
the load curve. For example, Franke et al. [17] examine the psychological dynam-
ics underlying charging behavior of EV users. Spoelstra [18] aims at understand-
ing the charging behavior of EV users and the factors constituting such behavior.
Khoo et al. [13] have modeled the charging sessions for households and EV fleets
during weekends and on weekdays in terms of arrival times and energy demands.
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Quiròs-Tortòs et al. [19] produce probability distribution functions (PDF) of differ-
ent charging features (e.g., start charging time) for both weekdays and week-ends
based on 68k samples from 221 residential EV users. They further discuss the
effects of the EV demand on future UK distribution networks. Similarly, Richard-
son et al. [20] produce PDF of connection times and daily energy requirements of
EV based on the charging behavior of 78 users for a duration of 1 year. Helmus
et al. [21] distinguish a priori defined different user types (residents, commuters,
taxis, etc.) and characterize them in terms of EV charging session start and end
times and the associated energy needs. Similarly, Aunedi et al. [22] characterize
the charging behavior and the demand diversity of two predefined user categories:
residential users and commercial users. Instead of defining the user categories a
priori, Xydas et al. [12] cluster the observed charging sessions into distinct types
of behavior. They derive aggregate models for three specific geographical areas,
characterized by different clusters of “typical EV charging demand profiles”. Sim-
ilar characterization of charging session timing is presented by Kara et al. [23].
Similar to [12] and [23] (but using different clustering technique), we cluster the
EV charging sessions into behavioral clusters. However, our work differs from
the aforementioned papers: instead of focusing on the impact of EVs on the load
curve, we characterize the flexibility stemming from the EVs as well as how such
flexibility is used (in terms of both amount and duration) to flatten the load or
balance against renewable energy.

Quantification of demand side flexibility and assessing its impact on alleviat-
ing the EV charging burden on the grid has been tackled before. Aunedi et al. [22]
characterized the flexibility of EV charging demand in terms of the amount of load
shifted in time from the peak consumption without compromising the ability of EV
users to make their intended journeys. Their analysis suggested that it is possible
to shift 70% to 100% of EV demand from peak hours towards the night. Kara et
al. [23] defined the flexibility matrix as the fraction of total connection time that
is not spent on charging. They presented the variation of this measure over differ-
ent months. Teng et al. [1] defined the potential flexibility of EV demand as the
amount of the shifted energy in the coordinated vs. the uncoordinated charging.
They further establish the benefits of this flexibility in reducing carbon emissions
and cost of integration of renewable energy sources (RES) through appropriate
measures. Pavić et al. [24] estimated the EV flexibility benefits for providing spin-
ning reserve services through matrices expressed as operational costs, environmen-
tal benefits and reduced wind curtailment. Salah et al. [25] used the parking data
from a car park in southern Germany, which is mainly used for shopping and work-
ing. They modeled parking duration distribution for two types of parking behavior:
shopping and workplace. They inferred the flexibility thereof by assuming an av-
erage EV charging time of 45 min at 11 kW per car. Kheserzadeh [26] inferred
the probability of availability of EVs in the parking lots for different EV owners
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including: residential, industrial and commercial customers (using the statistics
of their traveling habits and traveling loads). The impact of various EV owners
charging behavior on flattening the micro-grid load was investigated. Schuller et
al. [27] evaluate to what extent the charging of EVs can be accommodated using
RES in two sociodemographic groups: retired vs. employed people.

The listed works give valuable insights on the benefits of EV flexibility in vari-
ous aspects including load reduction, environmental benefits and RES integration.
However, they characterize the flexibility only in terms of the amount of shifted
energy and not the duration. We on the other hand provide a complete quantifi-
cation of flexibility in terms of not only the deferrable amount but also time of
availability and the deferrable duration. Furthermore, detailed analysis of how the
flexibility is used is also missing in the literature. We thus present an extensive
analysis on how flexibility is exploited (using our proposed measures) to meet two
representative objectives: peak reduction and balancing against RES.

Note that this paper is a substantial extension of our work in [28] since we
now offer a more extensive analysis of the charging session characteristics and
investigate the effect of seasonal changes and weekends on the characteristics of
the charging sessions. Additionally, in [28], we quantized flexibility as the max-
imal load that could be deferred for a specific duration at any time of the day,
independent of any DR scheme. In other words, our previous analysis showed the
flexibility potential that is available for utilization and not the flexibility that would
be utilized to meet various DR objectives. In this paper, we complement our pre-
vious flexibility potential analysis and propose measures to quantify the actually
exploited flexibility under two DR schemes: load flattening and load balancing.

3.2 Analysis of EV Charging Behavior

In this section, we address the first two research questions raised in Section 3.1.1:
Do EV owners have specific habits in terms of charging their cars? Are the char-
acteristics of the charging sessions (e.g., arrival, sojourn and idle times) sensitive
to seasonal changes and weekdays? Our analysis is based on a reasonably large
real-world dataset which is explained next.
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3.2.1 Dataset Description

The data for our analysis was collected by ElaadNL2 between 2011 to 2015 from
public charging infrastructure deployed throughout the Netherlands. The dataset
has more than 1.5M charging sessions characterized by arrival time, departure
time, charging duration, and total power consumption. The EVs in this dataset are
privately owned cars and thus comprise a mixture of various and a priori unknown
types, without further information on their driving behavior. For our analysis, we
took the subset of sessions from 22nd Dec 2014 to 21st Dec 2015 (i.e., 387,524
sessions) to ensure the observed charging behavior is not dominated by (poten-
tially distinctive) behavior of novice users, since by that date the system had been
deployed a few years already. Moreover, in this period there were not substan-
tial extensions of the charging infrastructure: the number of deployed charging
stations remained almost constant through 2015. The selected horizon effectively
covers the four seasons and hence facilitates analysis of seasonal influences.

3.2.2 Clustering of Charging Session Times

The first question we address is: are there any typical behaviors in terms of arrival
and departure times in the dataset? To answer this question, we have plotted the
data in 2D space in terms of arrival time vs. departure time as shown in Figure 3.1.
We then adopted DBSCAN [29] clustering to cluster the data in that 2D space.

DBSCAN clustering is a density based clustering algorithm and we deemed it
to be more suitable than other clustering algorithms (e.g., k-means and G-means
[30]) for two reasons: (1) unlike k-means, DBSCAN does not require to a priori
specify the number of clusters to distinguish and (2) DBSCAN is able to identify
arbitrary shaped clusters without prior assumptions about the underlying distribu-
tion of data in each cluster, as opposed to the normal distribution assumed by the
G-means clustering algorithm. One of the disadvantages of DBSCAN is its sensi-
tivity to the parameters of the algorithm (i.e., ε, which specifies how close points
should be to each other to be considered part of the same cluster; and minPts,
which specifies the minimum number of points required to form a dense region).
The values of ε and minPts are empirically obtained from the data. To exam-
ine the sensitivity of DBSCAN to these parameter values, we considered cluster-
ing the data separately for each month. We were able to identify 3 behavioral
clusters in each month using similar values of ε and minPts (i.e., ε = 0.4 and

2ElaadNL is the knowledge and innovation center in the field of charging infrastructure in The
Netherlands, providing coordination for the connections of public charging stations to the electricity
grid on behalf of 6 participating distribution system operators (DSOs). It also performs technical
tests of charging infrastructure, researches and tests smart charging possibilities of EVs, and develops
communication protocols for managing EV charging. The EV charging session data is available upon
request for non-commercial research purposes, subject to signing an agreement. For more information,
please contact Chris Develder (email: chris.develder@ugent.be)

mailto:chris.develder@ugent.be
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Figure 3.1: behavioral clusters of sessions in terms of EV arrival and departure times. Both
X- and Y -axis denote time-of-day (i.e., we report times as t mod 24 h): points below the
X=Y diagonal have departures on the day after the arrival or later. (Note that also some

sessions plotted above the diagonal actually have departures ≥ 24 h after arrival)

minPts = 90).

Figure 3.1 shows the resulting behavioral clusters for the entire dataset. We
named the clusters according to our interpretation of the observed behavior: charge
near home, charge near work and park to charge clusters. The charge near home
cluster (27.84% of the total data) has arrivals in the afternoon/evening with depar-
tures mostly in the morning of the next/subsequent days. We hypothesize these are
mostly people that live nearby the public charging station and park their car until
they leave for work in the morning. Hence, the charging usually occurs at night for
the sessions in this cluster. The charge near work cluster (9.3% of the total data),
which accounts for the smallest share of the data, is characterized by arrivals in
the morning and departures in the evening. We assume these are people who ei-
ther work near a public charging station or take their car to the station on their
way to work (e.g., as a part of their commute, near a train station) and leave their
car there while at work. Hence, this cluster has significantly smaller fraction of
arrivals in weekends compared to the other two clusters (see Table 3.1 for fraction
of weekend arrivals in each cluster). This type of behavior is absent in the datasets
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collected from residential charging (e.g., iMove [28]). The park to charge cluster
(62.86% of the total data) is the largest cluster and has arrivals/departures scattered
throughout the day with sojourns that last not much longer than the time required
to charge the battery. We hypothesize these are people that park specifically for
the sake of charging the EV battery.

The aforementioned behavioral clusters provoke questions pertaining to what
factors exactly distinguish them from each other, which we analyze next.

3.2.3 Analysis of Behavioral Clusters: Weekdays and Seasonal
Impacts

In this section, we further analyze the sessions within each of the behavioral clus-
ters in terms of their arrival time, sojourn time (i.e., how long the car is connected
at the charging station) and idle time (i.e., the time between the completion of the
charging and departure of the car). More formally, we define:

Sojourn time , δsojourn = tdepart − tarrive, (3.1)

Charging time , δcharging = tend charging − tstart charging, (3.2)

Idle time , δidle = δsojourn − δcharging. (3.3)

We also investigate the impact of weekends and seasonal changes on the afore-
mentioned properties3.

3.2.3.1 Analysis of Arrival Times

Figure 3.2 shows the violin and box plots of arrival times for the behavioral clusters
over weekends and weekdays in each season. In general, weekends and seasons
impact the shape of the distributions. Seasonal changes usually shift the arrivals
to earlier times in summer and spring for all the clusters. This is possibly due
to the earlier sunrise and people’s preference to start their days earlier in summer
and spring. Arrivals are also earlier on weekdays than in weekends. More details
about the weekend and seasonal impacts on the arrival times of the cars in each
behavioral cluster are listed below.

For sessions in the charge near work cluster, the distribution of arrival times
are unimodal and right-skewed during the weekends and multi-modal in the week-
days. Arrivals on weekdays are approximately 1 hour earlier than during weekends
in all seasons. Additionally, the interquartile range is slightly longer in weekends
compared to weekdays. The longest interquartile range is observed for spring
weekends. Across seasons, in summer and spring arrivals are earlier by around
1 hour.

3Note that ElaadNL is using flat rates and its impact was not significantly visible in the dataset.
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Figure 3.2: Violin and box plots of time of arrivals for the behavioral clusters over
weekends and weekdays in each season (Note that the reference is changed from midnight
to 3 am (2.30 am to 3.30 am is the interval with least number of arrivals) to acount for the
fact that the activities right after the midnight are continuation of the late night activities)

For sessions in the park to charge cluster, the distribution of arrival times has
a single mode and peaks around noon during the weekends, whereas on weekdays
it is multi-modal with 3 peaks (in morning, noon and evening). The arrivals in this
cluster are scattered throughout the day,resulting in the largest interquartile range
amongst the behavioral clusters. The interquartile range is approximately an hour
longer on weekdays for all seasons. Across seasons, the arrivals are typically 30
to 45 min earlier in summer and spring compared to autumn and winter.

For sessions in the charge near home cluster, the distribution of arrival times
are uni-modal and right-skewed with a heavy tail on weekdays in all seasons. Dur-
ing weekends, the distributions are also uni-modal but right-skewed in summer
and spring while left-skewed for winter and autumn. This can be explained by
people’s preferences to stay out longer during weekends to enjoy longer daylight
and warmer weather in summer and spring. The interquartile ranges are longer in
weekends in all seasons. Seasonal changes do not significantly affect the interquar-
tile ranges. Finally, arrivals are typically earlier during the weekdays of summer
and spring but similar in all seasons during the weekends.
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Figure 3.3: Violin and box plots of sojourn times for the behavioral clusters over weekends
and weekdays in each season
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3.2.3.2 Analysis of Sojourn Times

Looking at each individual behavioral cluster, we observe that a minority of ses-
sions have sojourn times of more than 24 h (see Table 3.1). We also find that for
these clusters, the sojourn time distribution is multi-modal, where the modes cor-
respond to subsequent days and are well separated. We thus partition the data into
sub-clusters based on the departure time (i.e., depending on whether it is within
the first, second, etc. period of 24 h following the arrival). Figure 3.3 shows the
violin and box plots of sojourn times for the behavioral sub-clusters over week-
ends and weekdays in each season. We only show the first 2 sub-clusters (i.e.,
sessions with departures within first and second 24 h from their arrivals) since the
later sub-clusters constitute less than 1% of the data (see Table 3.1). In general,
seasonal changes have minor effects on sojourn times in the behavioral clusters,
but weekends impact the sojourn times more significantly. Further details about
the weekend and seasonal impacts on the sojourn times in each behavioral cluster
are listed below. Note that our explanations here are based on the 1st sub-clusters
(i.e., departures within 1st 24 h) since in the second sub-clusters (i.e., departures
within second 24 h), distributions of the sojourn times have similar characteristics
as ones in the first sub-clusters. One interesting characteristic is the approximate
shift of 24 h in the average sojourn times in the second sub-clusters from the aver-
age values of the first sub-clusters (as seen from Table 3.1)

For the sessions in the charge near work cluster, the distribution of sojourn
times are right-skewed in weekends and symmetrical or left-skewed during week-
days. This implies that typically the sessions have shorter sojourn times in week-
ends (average sojourn times are 8 h 18 min and 8 h 48 min for arrivals in weekend
and weekdays respectively). Additionally, the interquartile ranges are smaller in
the weekdays, implying a more predictable sojourn time. The largest interquartile
range is in summer weekends.

Sessions in the park to charge cluster typically have smaller sojourn times
than sessions in other clusters. As shown in Figure 3.3, the distributions are left
skewed for both weekend and weekdays, with slightly larger interquartile ranges
during weekdays. This implies that sojourn times are typically shorter in week-
ends (average sojourn times are 2 h 36 min and 2 h 48 min for arrivals in weekend
and weekdays respectively). The seasonal changes do not impact the distributions
significantly in this cluster.

Sessions in the charge near home clusters have considerably larger sojourn
times than the sessions in other clusters. The distribution of the sojourn times are
symmetrical for both weekends and weekdays, with larger interquartile ranges in
weekends. Unlike the other clusters, the charge near home sessions have longer so-
journs during weekends (the average sojourn times are 13 h 6 min and 14 h 18 min
for arrivals in weekends and weekdays respectively). This is mainly because they
are night time charging sessions, and people leave home later in the morning in the



70 CHAPTER 3

Figure 3.4: Violin and box plots of Idle times for the behavioral clusters over weekends
and weekdays in each season

weekend.

3.2.3.3 Analysis of Idle Times

We have used the same sub-clustering approach to present the distribution of the
Idle times in each behavioral cluster. Additionally, to improve the readability of
the plots in Figure 3.4, we have removed sessions with short idle times (i.e., less
than 15 min). This amounts to 43.08% and 33.58% of the data in weekends and
weekdays respectively.4 Note that the majority of the removed short idle times
belong to the park to charge cluster. An overall view of Figure 3.4 suggests that
seasonal changes do not influence the distribution of idle times significantly, unlike
weekend impacts, which are more apparent. Further details about the impact of the
weekends on the distribution of the idle times are listed below.

The sessions in the charge near work cluster typically have 4 to 7 h of idle
time in the first 24 h sub-cluster and 27 to 28 h of idle time in the second 24 h sub-
cluster during the weekends. On weekdays, idle times are typically around 30 min

4However, the average values in Table 3.1 do include the short idle times in their calculation.



QUANTITIVE ANALYSIS OF EV FLEXIBILITY 71

Table 3.2: Nomenclature

Input parameters

N Total number of cars in the optimization window
H The length of the optimization window (the number of 15 min time

slots)
γnh Maximum allowable energy consumption for car n in slot h
En Total energy to be scheduled for car n
P avgn Average power consumption of car n
αn Arrival slot of car n
βn Departure slot of car n
βh Penalty for delaying the charging by h
LRGh Total energy from renewable generation in slot h

Decision variables

xnh Energy scheduled to charge car n in slot h
Lh Total energy consumed in slot h

longer than in weekends. On average (taking into account the sessions with short
idle times), this cluster has 5 h 30 min of idle time in the first 24 h sub-cluster and
29 h 48 min of idle time in the second 24 h sub-cluster.

The sessions in the park to charge cluster typically have the shortest idle times,
which suggests that the cars are usually parked with the motive of leaving as soon
as the charging completes. The distribution of idle times are right skewed even
after the removal of short idle times for the first sub-cluster over both weekends and
weekdays. In the second sub-cluster, it looks symmetrical. On average, the park
to charge sessions have 42 min of idle time in the first sub-cluster and 22 h 48 min
of idle time in the second sub-cluster.

The charge near home sessions offer longer idle times (i.e., 10 h in the first
and 36 h in the second sub-cluster) than the other clusters. The distributions of
the idle times are symmetrical in all the sub-clusters and during both weekends
and weekdays. The interquartile ranges span from 8 h to 14 h in the weekends and
from 7 h 30 min to 12 h during the weekdays in first sub-cluster.

3.3 Flexibility Quantification

Our quantitative analysis of flexibility exploitation relies on the aforementioned
EV charging data collected by ElaadNL, and renewable generation data obtained
from ELIA (Belgium’s electricity transmission system operator).5 The data ob-
tained from ELIA comprises wind and solar energy generation measurements in

5http://www.elia.be/en/about-elia

http://www.elia.be/en/about-elia
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15 min intervals for the region of Flanders in Belgium. We rescaled the renewable
energy production data to keep similar monthly wind to solar ratios as of the ones
in Netherlands.6 Additionally, we further scaled the data to ensure the total yearly
generation is similar to the total yearly demand of all the EV sessions considered
in our study. We provide an assessment of flexibility exploitation in coordinated
charging for two scenarios: (i) load flattening and (ii) load balancing against re-
newable production. As a reference, we take uncoordinated charging and refer to
it as a business as usual scenario without flexibility exploitation.

Each time slot is characterized by a 15 min interval h ∈ H = {1, 2, ...,H}
and the EVs are denoted as n ∈ N = {1, 2, ..., N}. Table 3.2 summarizes all the
model parameters and the decision variables.

3.3.1 Uncoordinated Charging: Business as Usual

In the business as usual (BAU) scenario, charging starts immediately upon arrival.
In the ElaadNL dataset, vehicles are charged according to this BAU scenario and
the charging time as well as the total energy consumption is reported for each
session. The load in each time slot (i.e., of 15 min duration) is hence calculated as
Ph = ∆t ·En/(tBAU−tarrive), where tBAU is the time of the completion of charging
in the BAU regime and ∆t is the duration (in hours) of each slot (i.e., ∆t = 0.25 h)
in our settings.

3.3.2 Coordinated Charging: Load Flattening and Load Bal-
ancing

In the coordinated charging scenario, charging decisions are optimized by an ag-
gregator to meet a predefined objective function. We formulate such a problem
as a quadratic optimization (i.e., a quadratic objective function subject to linear
constraints). To make the problem scalable and solvable in close to real-time, we
define an optimization window of length H = 96 time slots (i.e., 24 h) which
starts at the present time slot (denoted as “Now”) and moves one slot in each iter-
ation. We thus consider a receding horizon control approach, where we repeatedly
solve the optimization problem to find the decision variables covering the window
(“Now”,“Now+H”).

For load flattening, the objective function is defined as:

minimize
L,X

M

H∑
h=1

L2
h +

N∑
n=1

H∑
h=1

βhxnh (3.4)

6See http://en-tran-ce.org/ for yearly reports of renewable generations in Netherlands.

http://en-tran-ce.org/
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The first term in (3.4) is a convex quadratic cost function and reflects the total
load that needs to be minimized in the optimization window. We define a second
term in (3.4) as a secondary objective which penalizes charging at later slots. This
ensures that charging at earlier slots is preferred when permutations of charging
decisions across different slots have the same cost. Note that we multiply the first
term in (3.4) by M , a large constant7, to have the first term dominate the second
term in the objective function.

For load balancing, the objective function is defined as:

minimize
L,X

M

H∑
h=1

(Lh − LRGh )2 +

N∑
n=1

H∑
h=1

βhxnh (3.5)

The first term in (3.5) models the imbalance using a convex quadratic function.
Note that (similar to [31]) we account for negative imbalance to be as bad as posi-
tive imbalance. Similar to (3.4), the secondary objective function in (3.5) ensures
earlier charging when charging at various slots has the same cost.

Both of the objective functions are subject to the following linear constraints:

Lh =

N∑
n=1

xnh ∀h ∈ H (3.6)

En − Ea ≤
H∑
h=1

xnh ≤ En ∀n ∈ N (3.7)

0 ≤ xnh ≤ γnh ∀n ∈ N, h ∈ Hn (3.8)

xnh = 0 ∀n ∈ N, h ∈ H \Hn (3.9)

where,

Hn =

{
{αn, ..., βn} βn ≤ H
{αn, ...,H} βn > H

and

Ea =

{
P avgn · (βn −H) βn > H

0 otherwise

Constraint (3.6) ensures that the total load consumed in slot h is equal to the sum-
mation of the loads from all the cars scheduled to charge in slot h of the opti-
mization window. Constraint (3.7) ensures that the charging demand (i.e., En) is
fulfilled within the car’s sojourn time. When a car departs within the optimization
window, (3.7) becomes an equality constraint (i.e., equals En). Constraint (3.8)
limits the energy consumption in each slot to the car’s allowable consumption
level and constraint (3.9) prohibits any charging outside the sojourn time.

7see appendix for the lower bound of M
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3.3.3 Measures for Quantification of Flexibility Utilization

As outlined in Subsection 3.1.2, the demand response potential of EVs has already
been studied to some extent, but how exactly the offered flexibility is exploited in
real-world scenarios has not been well clarified in literature. In this section, we
address this gap and offer a quantitative analysis of the flexibility exploitation of
EVs using various measures. We first define the flexibility using 3 factors [32]:
(1) the amount of deferrable energy (i.e., the amount of energy that can be delayed
without jeopardizing customer convenience or quality of the task to be fulfilled),
(2) the time of availability (i.e., the time at which a customer offers the flexibility
for exploitation), and (3) the deadline/permissible duration to exploit the offered
flexibility (i.e., the maximum allowable delay for the energy consumption).

We define the following measures to adequately quantize the EV flexibility
exploitation:

1. Eflex (flexibility utilization in terms of Energy): fraction of the maximum
energy that could be consumed beyond tBAU. More formally,

Eflex =
Energy consumed beyond tBAU

Maximum possible energy consumption beyond tBAU
(3.10)

2. Tflex (flexibility utilization in terms of duration): fraction of the maximum
delay beyond tBAU. More formally,

Tflex =
tcoordinated − tBAU

tdepart − tBAU
(3.11)

where tcoordinated refers to the time of completion of charging in the coordinated
charging regime.

The combination of Eflex and Tflex values quantizes the fraction of flexibility
(in terms of time and amount) that was utilized for each charging session. For
example, when Tflex = Eflex = 1, the energy consumption is deferred as much
as possible (i.e., tcoordinated = tdepart) and the consumption beyond tBAU is at its
maximal level. Another interpretation is that 1 − Eflex is the fraction of state-
of-charge (SoC) at tBAU that has been realized in the flex scenario; for example,
if Eflex = 0.25, it means that at tBAU, we have 1 − 0.25 = 75% of the desired
SoC. Note that Eflex and Tflex definitions are only valid for charging sessions with
non-zero flexibility.

Although the aforementioned measures indicate how much of the offered flex-
ibility is effectively utilized in each charging session, they do not provide informa-
tion about the volume and the precise time shift of the deferred energy. Indeed, we
believe it is interesting to know what portion of energy use is shifted to what time
exactly. To quantitatively evaluate this, we define the shift profile of a charging
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algorithm 2: Calculate shift profile for a charging session

Input : LBAU (with size(LBAU) = S), a vector denoting energy consumption by
the EV in each slot in the BAU scenario
Lcoordinated (with Lcoordinated| = M ), a vector denoting energy
consumption in each slot in the coordinated charging scenario

Output: The shift profile (Lshift)
7 Define Lscheduled with size(Lscheduled) = M and initialize it with zeros

/* Lscheduled(s) is the energy scheduled from previous slots

to s */

8 s′ = 1 /* s′ is used for indexing to save the caclulations in

Lshift */

9 foreach s = 1, . . . , S do
10 shift = LBAU(s)−Lcoordinated(s)+Lscheduled(s) /* the amount of energy

that needs to be shifted away from s */

11 m = 1 while shift 6= 0 do
12 capacity = Lcoordinated(s + m) − Lscheduled(s + m) /* Lcoordinated(s) ≥

Lscheduled(s) since this calculation is done after the

optimization and Lcoordinated(s) is the finalized load

to be consumed in slot s. */

13 actual shift = min(shift, capacity) Lshift(s
′) = (s, actual shift, s + m)

s′ = s′+1 Lscheduled(s+m) += actual shift shift = shift−actual shift
14 m = m+ 1

15 return Lshift

session: the shift profile indicates how the energy is shifted from the BAU scenario
to obtain the load pattern in the coordinated charging regime. In other words, it
shows how much energy is shifted away from a particular slot and which slot it is
scheduled to. We now explain how we calculate this shift profile, as outlined in
Algorithm 2.

Given the LBAU and Lcoordinated vectors, respectively denoting the BAU and the
coordinated energy consumption values in each slot, Algorithm 2 returns a Lshift

list as its output. Each element of Lshift is a triple, depicting how much energy was
shifted away from a particular slot and which slot it was shifted to (e.g., if 5 kWh of
energy is shifted from slot 1 to slot 3, then the triple will have the following form:
(sfrom, Eshifted, sto) = (1, 5, 3)).8 The algorithm starts by initializing Lscheduled, a
vector that keeps track of the amount of energy scheduled in a particular slot from
the other slots (Line 7). For each slot s, starting with the first one, the amount of
energy we need to shift away from it (i.e., shift) is calculated in Line 10. Note that
to calculate the shift in each slot, we take the difference in energy consumption in

8Note that there could be several feasible shift profiles (e.g., {(1, 1, 3)} vs. {(1, 1, 2), (2, 1, 3)}) but
here we calculate the one with minimal sto − sfrom.
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Figure 3.5: (a) Load and renewable generation patterns from 5th to 11th Jan, (b) Amount
of energy that is shifted away from each slot(for arrivals from 5th to 11th Jan 2015) in load

flattening scenario and (c) Amount of energy that is shifted away from each slot (for
arrivals from 5th to 11th Jan 2015) in load balancing scenario.

the BAU and the coordinated charging scenario. Additionally, since any energy
scheduled to be consumed in a slot also contributes to the delay of the energy
consumption from that slot, we add the Lscheduled to the subtraction term. In the
while loop, the shift is allocated to the subsequent slots following s, based on their
available capacity. The amount of the allocated energy and the slot number is
saved in Lshift (Line 13) and Lscheduled is updated accordingly (Line 13).

3.3.4 Evaluation of Flexibility Exploitation

In this section, we evaluate the flexibility exploitation using the measures and the
algorithm proposed in the previous subsection. We implemented the optimization
problem using MOSEK9, in a MATLAB runtime environment.

Figure 3.5 shows how much energy (kWh) has been pushed away, and for how
long, from BAU consumption, assuming 15 min long time slots in the optimization
of the coordinated charging scenarios (i.e., load flattening and load balancing). A
week long duration is selected for demonstration in Figure 3.5. Figure 3.5a shows
the energy consumption patterns (in the BAU, load flattening and load balancing

9MOSEK is a software package for solving mathematical optimization problems, see https://www.
mosek.com/.

https://www.mosek.com/
https://www.mosek.com/
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scenarios) and the scaled renewable generation in each slot of the selected one
week long time period. As seen from the figure, the BAU energy consumption
patterns are multi-modal with distinct morning (around 9 am) and evening (around
8 pm) peaks on weekdays. During the weekends, the peak-to-average ratio is lower
than on weekdays and energy consumption patterns have a small peak around noon
and a larger peak around 6 pm.

In the load flattening scenario (i.e., Figure 3.5b), we observe the following:

1. The flexibility utilization is influenced by the BAU energy consumption pat-
terns as well as the car arrival times (note that the arrival times and the BAU
energy consumption patterns are also highly correlated.)

2. During weekdays: The load is typically shifted away from the morning peak
(around 8-10 am) towards the afternoon valley (around 12-2 pm). Since the
afternoon valley is not long away from the morning peak, the duration of the
shift is typically lower compared to the shift from the evening peak to the
midnight valley. Hence, we see more shifts of “up to 1 hour” long and less
shifting of beyond “4 hours” from the morning peak. On the other hand, the
shifts from the evening peaks are longer to fill up the night valley, which is
deeper and further away.

3. During weekends: The shifts from the evening peak to the night valleys are
longer in weekends (typically more than 8 hours from the Saturday evening
peak and more than 4 hours from the Sunday evening peak). The longer
shifts from Saturday peaks are due to the wider and deeper valley between
Saturday and Sunday peaks.

In the load balancing scenario, clearly the flexibility utilization is not only in-
fluenced by BAU energy consumption pattern and the car arrival times, but also by
the renewable generation patterns. The flexibility exploitation for load balancing
is depicted in Figure 3.5c with the following key observations:

1. Although the flexibility utilization is not as consistent as for the load flat-
tening scenario, still, longer shifts are observed in the evening peaks on
weekdays. Additionally, there are still longer shifts from the Saturday peaks
compared to the shifts from the Sunday peaks.

2. In general, longer shifts from the evening peaks are observed when there is
substantial renewable generation in the night valleys.

The observations based on Figure 3.5 give insight in the motivation for utiliza-
tion of the flexibility and, hence, how much energy is required to be shifted and
for how long. This is particularly useful for price-based or incentive-based demand
response programs aiming to influence the offered flexibility at various hours of
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Figure 3.6: Average Tflex and Eflex values for each 15 min long timeslot in a day (LB: load
balancing, LF:load flattening)

the day accordingly (using a relevant price or incentives). For example, the longer
shifts from morning peak are not as frequent as the ones from the evening peak and
hence, a lower incentive could be given for longer sojourn time of the cars arriving
before the morning peak.

In addition, it is also useful to know how much of the offered flexibility is
utilized throughout the day. To quantize the degree of flexibility utilization, we
use the Eflex and Tflex measures. Figure 3.6 shows, for a given time slot, the
average Tflex and Eflex values for the sessions with arrivals in that slot (note that
these sessions may extend until much later slots). The values are depicted for
each behavioral cluster during weekdays vs. weekends. The empty sections in the
plots indicate there were either no arrivals occurred, or the arrivals had zero idle
times at these times of day. We list our observations for the Eflex and Tflex in
the load flattening scenario, which essentially also apply qualitatively for the load
balancing case.

For Tflex: In general, Tflex close to 1 means that charging lasts almost until
the end of the sojourn. Yet, this does not mean that all charging is delayed (see
the Eflex which is reasonably low, meaning that the SoC at tBAU is pretty high).
We observe lower Tflex for arrivals at night and in the early morning (i.e., 0-6 am).
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The reason is that the sessions with arrival times in those slots are responsible for
the bulk of the load at those times, which is low compared to other slots, so there
is a lower motivation to push their charging away and make use of flexibility. Any
arrivals in the subsequent slots have their load shifted away from the peaks, hence,
the Tflex value increases and approaches 1. Tflex starts to decrease again for the
arrivals near midnight.

For Eflex: similar to Tflex, lower Eflex is observed for arrivals at night and
early morning (i.e., 0-6 am) since the bulk of the load at those times is low and
hence, there is little need for deferring the consumption. The Eflex in the late
morning (9-11 am) is lower than in the afternoon/evening. Note that the arrivals
in the late morning are usually used to fill the afternoon valley, but the amount
of energy pushed into afternoon valley from morning peaks is lower compared
to the amount of energy pushed into night valley (the night valley is deeper and
requires more load to be filled). Additionally, the arrivals in the late morning are
typically from the park to charge or the charge near work clusters: since their
sojourn does not overlap with the night valley, their load cannot be used to fill the
night valley. Another interesting observation is the bell shape of Eflex after 12 pm
in the park to charge cluster for both weekends and weekdays, which peaks around
4 pm and 6 pm respectively. Note that since the sessions in this cluster have very
small idle times, a larger portion of their energy consumption is deferred, but for
shorter duration, to flatten the load. In the charge near home cluster, we see a
rather linear increase in Eflex. The sessions in this cluster offer much longer idle
times compared to the park to charge cluster. By observing the SoC status of the
sessions in this cluster, we find that for the sessions whose sojourns overlap with
the evening peak, their charging usually stops during the peak hours and resumes
in the night valley. That is the main reason for Tflex close to one but rather small
Eflex for sessions with arrivals in the afternoon and evening.

3.4 Summary and Conclusion

Motivated by the lack of research in characterizing the flexibility stemming from
EV charging sessions, in this paper we took the first step to (1) offer an in-depth
analysis of the flexibility characteristics of a nearly 390k EV charging sessions
and (2) propose flexibility measures to quantify its exploitation in two scenarios,
load flattening and load balancing. Our contributions in this paper pave the way
to more realistic evaluation and development of DR algorithms, which aim to not
only exploit the flexibility but also to influence it more efficiently (through price-
based or incentive-based schemes).

To fulfill our first objective (i.e., analysis of flexibility characteristics), we clus-
tered the EV data in 2D space in terms of arrival and departure times using the
DBSCAN algorithm. As such, we identified three behavioral clusters: charge near
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home, charge near work, and park to charge clusters. We then used box and vi-
olin plots to further analyze the characteristics of the charging sessions within
each cluster and highlighted the differences among the clusters over weekends and
weekdays in each season. A summery of our observations is listed here:

1. The three behavioral clusters differ substantially in their arrival times, so-
journ times and the idle times. The park to charge cluster (which is the
largest in terms of number of sessions, 62.86% of all sessions) has arrivals
scattered throughout the day and the sessions in this cluster are characterized
by very short idle times (averaging 48 min). The charge near work cluster
(27.84% of all sessions) has predictable arrival times (around 6-9 am) and
their sojourn times are typically less than 9 hours (with average idle time
of 5 h 30 min), hence, their charging usually takes place throughout the day.
Finally, the sessions in charge near home cluster (9.3% of all sessions), with
arrivals typically in the evening until midnight, offer the longest idle times
among the clusters (10 h on average). The charging for these sessions usu-
ally occurs at night.

2. Weekends and weekdays as well as seasonal changes impact the arrival times
in all three clusters. In general, the arrival times are earlier in summer and
spring in all the clusters. The arrivals are also earlier on weekdays compared
to weekends. However, seasons have no substantial impact on the sojourn
and idle times. Sessions in park to charge and charge near work clusters
have shorter sojourn and idle times in the weekends whereas the sessions
in the charge near home clusters have longer sojourn and idle times in the
weekends compared to weekdays.

To fulfill our second objective (i.e., quantification of flexibility exploitation),
we proposed two flexibility measures to quantify the percentage of the flexibility
utilization and an algorithm to determine the amount and duration of the shifted
energy. A summary of our analysis using the algorithm and the measures is as
follows.

1. The flexibility exploitation is greatly influenced by the uncontrolled busi-
ness as usual (BAU) load patterns, the distribution of arrival times, and the
renewable energy generation patterns. The main motivation for exploitation
of the flexibility in both load flattening and load balancing is to fill the val-
leys of the BAU load pattern. Hence, longer shifts are observed from the
evening peaks compared to the morning peaks in the weekdays (since the
nighttime valley is larger and deeper). Similarly, longer shifts are seen from
Saturday peaks compared to Sunday peaks because the night valley between
Saturdays and Sundays is bigger.
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2. For arrivals in the afternoon until midnight, flexibility in terms of deferrable
time is almost fully exploited to ensure the charging takes place in the night-
time (which corresponds to the lower demand). Yet, this does not imply that
all the charging is delayed since the Eflex values are reasonably low, mean-
ing that the SoC at the BAU charging completion time (i.e., tBAU) is pretty
high. Across the behavioral clusters, the offered flexibility in charge near
work cluster is often used to fill the afternoon valley since these sessions are
characterized by morning arrivals and their sojourn typically does not cover
the night valley. Hence, their exploitation in terms of deferrable time and
energy is typically lower compared to the arrivals in the other clusters which
are usually in the afternoon. The sessions in the charge near home cluster
are the better candidate to fill the night valley.

We conclude that the sessions in the charge near work cluster should be tar-
geted to provide long enough flexibility to fill the afternoon valley. Any longer
idle time would not be exploited (unless it is long enough to cover the night val-
ley). The sessions in the charge near home cluster should be targeted to fill the
night valley and for arrivals after midnight in this cluster, there is less need for
longer idle times. Finally, in the park to charge cluster, it is recommended to tar-
get the arrivals in the afternoon to stimulate longer flexibility durations to fill the
afternoon valley.

Appendix
In this section we mathematically show the lower bound of constant M in multi
objective functions defined in 3.4 and 3.5. The choice of constant M impacts
the outcome of the optimization. M should be sufficiently large such that earlier
charging as the cost of larger aggregate load (in 3.4) or imbalance (in 3.5) never
happens. However, an extremely large M may cause the second terms in 3.4 and
3.5 to have no impact. Hence, it is useful to know the lower bound of M .

In 3.4, M should be sufficinetly large such that the first term is always larger
than the second term for the largest delay (i.e., βH) and maximum energy con-
sumption (i.e., xmax), hence

M

H∑
h=1

L2
h >

N∑
n=1

H∑
h=1

βHxmax (3.12)

Using 3.6,

M

H∑
h=1

(

N∑
n=1

xmax)2 >

N∑
n=1

H∑
h=1

βHxmax (3.13)
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Rearranging the above terms yields,

M >
NHβHxmax
HN2x2

max

=
βH

Nxmax
. (3.14)

In 3.5, M should be sufficiently large such that the early charging does not
occur at the cost of extra imbalance. Let us assume charging at maximum charging
rate (i.e., xmax). The cost of minimum imbalance (i.e., Mx2

max) should be larger
than the cost of maximum delay (i.e., βHxmax). Therefore,

Mx2
max > βHxmax (3.15)

M >
βH
xmax

. (3.16)
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4
Bayesian Modeling of Cylindrical Data

Using Abe-Ley Mixtures

Chapters 2 and 3 focused on analysis, characterization, and modeling of two
sources of flexibility: residential white-good appliance usage flexibility and elec-
tric vehicle charging session flexibility. In both cases, the time of the available
flexibility (time of appliance configuration and arrival time of an electric vehicle)
are of cyclic nature, while the flexibility duration (how long the consumption can
be delayed) is a linear quantity. Hence, it is natural to adopt circular distributions
to model such data. In Chapter 2 however, we used distributions on a linear scale
(Gaussian mixture models) to model the flexibility data. This leads to the follow-
ing question: can cylindrical distributions model such data better than the linear
distribution? To answer this question, we first need to select appropriate mixture
models based on a cylindrical distribution. In this chapter, we use a recently pro-
posed distribution (called WeiSSVM or Abe-Ley interchangeably) and develop a
Bayesian approach to estimate the parameters of the mixture model. The proposed
models are then used in the Appendix A to answer the above-raised question.

? ? ?

N. Sadeghianpourhamami, D. F. Benoit, D. Deschrijver, and
C. Develder.

Submitted to Applied Mathematical Modeling, Dec. 2017. (Under review, 2nd

round)
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Abstract This paper proposes a Metropolis-Hastings algorithm based on Markov
chain Monte Carlo sampling, to estimate the parameters of the Abe-Ley distri-
bution, which is a recently proposed Weibull-Sine-Skewed-von Mises mixture
model, for bivariate circular-linear data. Current literature estimates the param-
eters of these mixture models using the expectation-maximization method, but
we will show that this exhibits a few shortcomings for the considered mixture
model. First, standard expectation-maximization does not guarantee convergence
to a global optimum, because the likelihood is multi-modal, which results from the
high dimensionality of the mixture’s likelihood. Second, given that expectation-
maximization provides point estimates of the parameters only, the uncertainties of
the estimates (e.g., confidence intervals) are not directly available in these meth-
ods. Hence, extra calculations are needed to quantify such uncertainty. We propose
a Metropolis-Hastings based algorithm that avoids both shortcomings of expectation-
maximization. Indeed, Metropolis-Hastings provides an approximation to the com-
plete (posterior) distribution, given that it samples from the joint posterior of the
mixture parameters. This facilitates direct inference (e.g., about uncertainty, multi-
modality) from the estimation. In developing the algorithm, we tackle various
challenges including convergence speed, label switching and selecting the opti-
mum number of mixture components. We then (i) verify the effectiveness of the
proposed algorithm on sample datasets with known true parameters, and further
(ii) validate our methodology on an environmental dataset (a traditional applica-
tion domain of Abe-Ley mixtures where measurements are function of direction).
Finally, we (iii) demonstrate the usefulness of our approach in an application do-
main where the circular measurement is periodic in time.

4.1 Introduction

Various scientific fields consider bivariate measurements that have a linear and a
circular component. This amounts to data that can naturally be represented on a
cylinder. A main challenge in modeling such cylindrical data is accounting for
cross-correlation between the circular and linear variables. Additionally, to cap-
ture skewness and heterogeneity in the data, mixture models are required, which
aggravates the modeling difficulty.

Various parametric distributions have been proposed to jointly model bivari-
ate cylindrical data. Some early examples are models by Mardia and Sutton [1],
based on the conditional distribution of a trivariate normal distribution, as well as
Johnson and Wehrly [2], based on the principle of maximum entropy, subject to
constraints on certain moments. Further extensions of Mardia and Sutton’s mod-
els have been proposed by Kato and Shimizu’s team, based on the conditional of
a trivariate normal [3] and the conditional of a trivariate t-distribution [4]. An ex-
tension to Johnson and Wehrly’s model is defined by Wang [5], with a distribution



BAYESIAN MODELING OF CYLINDRICAL DATA 89

generated from a combination of the von Mises and transformed Kumaraswamy
distributions. A semi-parametric extension to Johnson and Wehrly’s model is in-
troduced by Fernández-Durán [6] using non-negative trigonometric sums. Finally,
non-parametric models for cylindrical data, based on kernel density estimation are
explored by Garcı́a-Portugués et al. [7] and Carnicero [8] .

Recently, Abe and Ley [9] have defined a new cylindrical distribution (now
commonly referred to as the Abe-Ley distribution) that is based on the combina-
tion of the sine-skewed von Mises [10] and the Weibull distributions. Compared
to the other aforementioned cylindrical models, the merits of Abe-Ley are high-
lighted as having (i) flexible shapes, (ii) cross-correlation among linear and circular
variables, (iii) well-known marginal and conditional distributions and (iv) support
for data skewness.

Mixtures of Abe-Ley distributions have been used successfully to model en-
vironmental data (e.g., for analyzing dynamics of waves [11] and marine currents
in the Adriatic Sea [12]) where measurements are a function of the direction (rep-
resented by an angle). One of the challenges in estimating parameters for such
mixture models is that

(L1) it is difficult to give closed-form expressions for the maximum likelihood
estimates (MLEs), which is typically addressed by resorting to numerical
methods [9].

Effectively, in current literature the parameters of Abe-Ley mixtures are estimated
using expectation-maximization (EM) based on MLE. However, these EM-based
methods for parameter estimation of Abe-Ley mixture models (e.g., [11], [12],
[13]) have the following limitations:

(L2) the EM methods are based on optimizing the log-likelihood and hence are
susceptible to converging to local maxima, and

(L3) being a point estimate, the uncertainties of the estimates (e.g., confidence
intervals or standard errors) are not directly available in EM methods.

To address limitation (L2), typically a short run strategy [14] is used to avoid
converging to a local maximum while estimating the parameters of the Abe-Ley
mixture models [11–13]: the EM algorithm then runs multiple times using differ-
ent random initialization and stops without waiting for full convergence. However,
converging to the global optimum is still not guaranteed in case of a mixture of
Abe-Ley distributions, due to the high dimensionality and the complexity of the
likelihood function.

To alleviate limitation (L3), further calculations are needed to approximate
the uncertainty of the estimation (e.g., confidence intervals). One approach is to
approximate the sampling distribution of the estimated parameters via bootstrap
methods, and use that approximated distribution to compute confidence intervals.
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Approximating the sampling distribution involves randomly sampling from the
data with replacement, to create a so-called bootstrap sample (typically of similar
size as the original data). For each bootstrap sample, the parameters of interest
(in our case, parameters of the Abe-Ley mixture) are estimated using the EM al-
gorithm. The retained EM estimate’s instances from each bootstrap sample are
then used to approximate the parameter distributions. When using bootstrapping
to approximate the sampling distribution for a mixture distribution, we note that
one also needs to tackle the label switching issue, caused by the invariance of the
likelihood of a K-component mixture model to any permutation of its component
indices (see Section 4.3.2.2 for further explanation of the label switching issue).

To circumvent aforementioned limitations of EM-based methods, we propose
a Bayesian approach based on Markov Chain Monte Carlo (MCMC) to estimate
the parameters of a Abe-Ley mixture distribution. MCMC methods perform the
integration of the posterior distribution of the parameters by sampling from it,
rather than optimizing the likelihood, thus circumventing aforementioned limita-
tions (L1) and (L2) of EM [15, 16]. Additionally, MCMC-based approaches give
joint posterior distributions of the parameters. Such distributional info captures the
multi-modality (i.e., provides information on both local and global maxima) of the
posterior distributions, and also offers insight into the uncertainty of the parameter
values (which can be estimated directly by inference from the posterior distri-
bution, without the need for additional calculations). Such Bayesian approaches
have been previously successfully applied for modeling circular data (e.g., [17]
and [18]), as well as estimating the parameters of finite mixture models for linear
variables (e.g., [19] and [20]). Yet, to the best of our knowledge, we are the first
to effectively apply a Bayesian approach to estimate the parameters of a (quite
complex) bivariate circular-linear distribution and its mixture models.

In the next Section 4.2, we describe the Abe-Ley distribution and the mixture
model. Subsequently, we discuss the following contributions:

1. We propose a Metropolis-Hastings (MH) algorithm to estimate the parame-
ters of the Abe-Ley mixture model. Given that we are dealing with a mix-
ture, we note that the MH algorithm is complicated by the need to sample
the component weights, in addition to the model parameters for each of the
components themselves (Section 4.3.1).

2. We successfully tackle the challenges of the proposed Bayesian MH ap-
proach, including (i) convergence speed, (ii) the label switching issue (due
to the invariance of the likelihood to permutations of mixture component pa-
rameters) and (iii) determining the optimal number of mixture components
(Section 4.3.2).

3. We first validate the effectiveness of our approach by showing we can suc-
cessfully estimate the model parameters for datasets sampled from an a pri-
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ori known Abe-Ley mixture distribution, i.e., with a known number of mix-
ture components and known parameter values (Section 4.4).

4. We then apply the proposed approach to two real-world datasets (one tradi-
tional application domain with measurements as function of angles, and one
new application domain where the circular measurement is periodic time).
We show that the Abe-Ley mixture models, estimated using the proposed
MH algorithm, effectively capture the heterogeneity in the data under con-
sideration (by referring to the previous analysis of those datasets in litera-
ture, see Section 4.5).

5. We illustrate the existence of multi-modality and skewness in the posterior
density of the parameters of the Abe-Ley distribution (Section 4.5), which
makes EM methods susceptible to converging to local optima. From this,
we conclude that the proposed Bayesian approach is more reliable than EM
methods in estimating the parameters of the Abe-Ley mixtures (Section 4.6).

4.2 Probabilistic Model Description

In this section, we first introduce the Abe-Ley density function and the Abe-Ley
mixture model. We then explain the sampling process from the Abe-Ley distribu-
tion as proposed in [9, §3.3], with a minor correction. (We later use the sampling
in Section 4.4 to test the effectiveness of our estimation.)

4.2.1 Probability Density Functions

The Abe-Ley distribution is a combination of the Weibull distribution and the sine-
skewed von Mises distribution. Its probability density is defined as:

f(θ, x|ζ) 7→ αβα

2π cosh(κ)
(1+λ sin(θ−µ))xα−1 exp[−(βx)α(1−tanh(κ) cos(θ−µ))],

(4.1)
with random variables (θ, x) ∈ [0, 2π) × [0,∞), and distribution parameters
ζ = (α, β, µ, κ, λ) [9]. The parameters of the Abe-Ley distribution comprise
α, β > 0, which are linear shape and scale parameters respectively, a circular lo-
cation parameter 0 ≤ µ < 2π, the parameter κ ≥ 0 that controls the circular
concentration and regulates the dependence structure, and finally−1 ≤ λ ≤ 1 that
controls the circular skewness.

The mixture of aK-component Abe-Ley distribution has the following density
function:

f(θ, x|ϑ) =

K∑
k=1

τkfk(θ, x|ζk) (4.2)
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where fk(θ, x|ζk) denotes the probability density of the kth component charac-
terized by parameter set ζk, and τk is the weight of the kth component. Thus,
τ = (τ1, τ2, ..., τK) is the weight distribution that takes a value in the unit simplex
εK which is a subspace of (R+)

K defined by the following constraints:

τk ≥0, τ1 + τ2 + ...+ τK = 1. (4.3)

Hence, ϑ = (ζ1, ..., ζK , τ ) is the parameter vector of the mixture model.

4.2.2 Random Number Generation

One of the strong assets of the Abe-Ley distribution is that it has well-known
conditional and marginal distributions, which simplifies the random number gen-
eration process. The marginal density of the circular component θ is a sine-skewed
wrapped Cauchy distribution and the conditional density f(x|θ) is defined as

f(x|θ) = α ·
[
β {1− tanh(κ) cos(θ − µ)}1/α

]α
· xα−1 · exp

[
−
{
β (1− tanh(κ) cos(θ − µ))1/αx

}α] (4.4)

Abe and Ley [9] state (4.4) to be a Weibull distribution with shape param-
eter β (1 − tanh(κ) cos(θ − µ))1/α, whereas according to the standard defini-
tion of the Weibull distribution, (4.4) has shape parameter α and scale parameter
β (1−tanh(κ) cos(θ−µ))−1/α (see [9] for mathematical details). Accounting for
this corrected terminology, randomly generating numbers following the Abe-Ley
distribution [9] can be achieved as follows:

Step 1: Generate a random variable1 Θ1 from a wrapped-Cauchy distribution with
location parameter µ and concentration tanh(κ/2).

Step 2: Generate U from a uniform distribution on [0, 1] and define

Θ =

{
Θ1 if U < (1 + λ sin(Θ1 − µ)) /2

−Θ1 if U ≥ (1 + λ sin (Θ1 − µ)) /2

to ensure Θ follows the sine-skewed wrapped Cauchy distribution.

Step 3: Generate X from a Weibull with shape parameter α and scale parameter
β(1− tanh(κ) cos(Θ− µ))−1/α.

To draw N samples from a K-component Abe-Ley mixture, we repeat the afore-
mentioned 3 steps for each mixture component k characterized by ζk, where the
expected number of samples from the kth component is τk N .

1Capital letters indicate sampled data instances (as opposed to lowercase variable notations).
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4.3 Parameter Estimation using Bayesian Inference

In this section, the proposed Metropolis-Hastings algorithm for estimating the pa-
rameters of a mixture of Abe-Ley distributions is explained and the associated
challenges are addressed.

4.3.1 Metropolis-Hastings Algorithm for Estimating Abe-Ley
Mixture Parameters

Let us assume S = {(θ1, x1), (θ2, x2), . . . , (θN , xN )} is a set of N observations
from a K-component Abe-Ley mixture distribution defined by (4.2) where ϑ =

(ζ1, . . . , ζK , τ ) is the unknown parameter vector.
Calculating the posterior density by solving analytical equations is impossible,

since it involves calculating intractable integrals. To overcome this challenge, typ-
ically Markov-Chain Monte-Carlo (MCMC) methods are used to generate sam-
ples from the posterior distribution. A well-known MCMC-based algorithm is
Metropolis-Hastings (MH).

To estimate a parameter y ∈ ζ of the target distribution (Abe-Ley in our case)
from a set of observations S, MH iteratively refines its estimate yi in iteration i,
starting from an initial value y0 for i = 0. Given yi in each iteration i, a new
draw y∗ is obtained from a predefined proposal distribution q(y∗|yi). Then, y∗ is
accepted with acceptance probability

A = min

{
1,

p(y∗|S) q(y(i)|y∗)
p(y(i)|S) q(y∗|y(i))

}
(4.5)

where p denotes the target density.
Finally, the accepted draws are returned as the output of MH algorithm. Note

that, when estimating the components of the mixture models, the MH algorithm
should also estimate the component allocations and weight distributions of each
component (τk) in addition to its parameters (ζk) .

Algorithm 3 summarizes our approach, which basically adapts the MH algo-
rithm to estimate the parameters of the K-component Abe-Ley mixture and ob-
tain the component membership of each observation. Similar to the original MH,
the input to our algorithm comprises (i) the target distributions (i.e., the Abe–
Ley mixture model defined by (4.2)), (ii) the observations S, with |S| = N , and
(iii) the prior and proposal distributions for each parameter. Table 4.1 summarizes
the choice of the priors and the proposal distributions for each parameter of the
Abe-Ley distribution. The priors are non-informative (i.e., the hyper-parameter
selection is such that the resulting priors are almost uniform across the parame-
ter domains). The choices of proposal distributions (used for sampling the new
value for parameters) are (truncated) normal distributions defined on the permitted
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Table 4.1: Choice of priors and proposal distributions at the input of Algorithm 3

Parameter Prior (hyper-parameters) Proposal∗

α Gamma(shape = 0.001, scale = 1000) Truncated normal on [0,∞)
β Gamma(shape = 0.001, scale = 1000) Truncated normal on [0,∞)
κ Gamma(shape = 0.001, scale = 1000) Truncated normal on [0,∞)
µ von Mises(mean = 0, precision = 0.001) normal mod 2π
λ Beta(shape1 = 1, shape2 = 1) (rescaled) Truncated normal on [−1, 1]
τ Dirichlet(vector of ones with length K) Not-applicable

∗ The means of the proposal distributions at each iteration are the draws in the previous iteration (or
the initial component values at the first iteration); the variances of the proposal distributions are
adjusted every 50 iterations (see Section 4.3.2.1 for details.)

domain of the parameters. The Abe-Ley density function is used for determin-
ing the component allocation in each iteration of the algorithm. The output of the
algorithm comprises draws for the parameter vector ϑ and the allocation vector
l = (l1, . . . , lN ) that indicates to which component each observation belongs.

Algorithm 3 starts by randomly initializing the component parameters on their
permitted domains to obtain ϑ0 = (ζ0

1, . . . , ζ
0
K , τ

0) and assigns each observation
(θn, xn) ∈ S to a component with probability τ 0 to obtain the initial allocation
vector l0 (Line 16). The algorithm then runs for (M0 + M) iterations, where
M0 is the number of initial samples to disregard (burn-in samples). Each iteration
consists of two parts. In the first part (Lines 18-20), the parameters ζi1, . . . , ζ

i
K

of each component of the mixture are drawn using the MH algorithm: for each
component, new parameter values are sampled from the proposal distributions de-
fined in Table 4.1 (Line 20) and are accepted with probability A defined by (4.5)
(Line 20).

In the second part of the iteration, the allocation vector l and component weight
vector τ = (τ1, . . . , τK) are sampled (Lines 21-22). To identify li (the allocation
vector in iteration i), first the probability of each observation (θn, xn) belonging
to a component k of the mixture is calculated independently using p((θn, xn)|ζik),
where ζik is the parameter vector of component k drawn at iteration i. Note that
p((θn, xn)|ζik) is an Abe-Ley distribution defined by (4.1) and not an Abe-Ley
mixture model. In other words, p((θn, xn)|ζik) denotes the probability of observa-
tion n coming from an Abe-Ley distribution with parameters ζik. The observation
is then assigned to a component k with probability p((θn, xn)|ζik). (Line 21).
Once li is identified, the number of observations allocated to each component of
the mixture is counted to calculate the parameter vector of a Dirichlet distribu-
tion. The component weight vector τ i = (τ i1, . . . , τ

i
K) is then sampled from that

Dirichlet distribution (Line 22). Finally, the first M0 draws are discarded and M
remaining draws are returned for (ϑ, l) (lines 23-23).
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algorithm 3: Metropolis-Hastings

Input : The target distribution f(θ, x|ϑ) with unknown parameter vector ϑ (de-
fined by (4.2)); data samples S with |S| = N ; priors and proposal distri-
butions for each parameter in ϑ (see Table 4.1)

Output: the draws for ϑ (i.e., ϑi); the allocation vector l = (l1, . . . , lN ) /* l

denotes to which component each of the observations are

assigned (if (θn, xn) is part of component k, then ln = k)

*/

16 Initialize ϑ0 = (ζ0
1, . . . , ζ

0
K , τ

0) and l0; /* allocate samples in S to

each component with probability τ 0 to obtain l0 */

17 foreach i = 0, . . . ,M0 +M − 1 do
/* Given li, estimate the mixture parameters */

18 foreach k = 1, . . . ,K do
19 foreach y ∈ ζk do

/* update parameters of each component in this loop

*/

20 Sample the component parameter y∗ from a proposal distribution y∗ ∼
q(y∗|y(i)) Sample u from a Uniform distribution on [0, 1] Calcu-

late the acceptance ratio as A = min{1, p(y
∗) q(y(i)|y∗)

p(y(i)) q(y∗|y(i))} y(i+1) ={
y∗ u < A

y(i+1) u ≥ A

21 Classify each observation (θn, xn) ∈ S conditional on knowing
ζi1, . . . , ζ

i
K , by sampling ln independently for each n = 1, . . . , N from:

p
(
ln = k|ζi1, . . . , ζ

i
K , (θn, xn)

)
∝ p

(
(θn, xn)|ζik

)
to obtain li

22 Sample τ i = (τ i1, . . . , τ
i
K) from the Dirichlet distribution

D(e1(li), . . . , eK(li)), where ek(li) = e0 + Nk(li), k = 1, . . . ,K,
and Nk(li) is the number of data points allocated to component k of the
mixture at iteration i and e0 is the prior of the Dirichlet distribution

23 Disregard the first M0 draws return M draws for ϑ and the allocation vector l

4.3.2 Addressing the Challenges of a Bayesian Approach

In this section, we explain how we tackle three computational aspects in our pro-
posed approach: (1) improving the convergence rate of the MH algorithm via an
adaptive Metropolis-Hastings algorithm, (2) addressing the label switching issue
(caused by invariance of the mixture likelihood to a permutation of component pa-
rameters) and (3) Bayesian model selection (for determining the optimal number
of mixture components). Note that the second and third challenges are inherent to
parameter estimation for mixture models in general, both in Bayesian approaches
as well as EM-based methods.
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4.3.2.1 Adaptive Metropolis-Hastings

A crucial factor in developing an efficient MH algorithm is the definition of the
proposal distribution, q

(
y∗|yi

)
. In most applications, a symmetric, unimodal dis-

tribution such as the Gaussian distribution is chosen. The MH algorithm requires
that the variance of the proposal distribution is preset and does not change during
the execution of the MCMC procedure. However, the choice of this variance pa-
rameter has an important impact on the efficiency of the MCMC algorithm. When
the variance of the proposal distribution is too large, the acceptance probability
(defined by (4.5)) will tend to 0. As a result, the Markov Chain will retain its
current value and only jump to new values with vanishing small probability. On
the other hand, when the variance of the proposal distribution is too small, the
acceptance probability will become close to 1. In this case, the Markov Chain
is constantly sampling new values, but these values are very close to the current
value, and it will take an excessive amount of time before the entire posterior dis-
tribution is sampled.

The variance of the proposal distribution has to be set so that both inefficient
behaviors outlined above are avoided. Standard practice [21] is to sample from the
posterior distribution for some time and then evaluate the acceptance probabili-
ties. The variances of the proposal distributions should then be adjusted in order to
achieve an acceptance probability of 0.3− 0.5. These values ensure that the algo-
rithm does not output the same value, while still making reasonably large jumps.
However, in the current mixture model, this approach is difficult to implement. As
shown in Algorithm 3, the parameters of each component of the mixture are sam-
pled in blocks. Each component has five parameters, ζ = (α, β, µ, κ, λ). In the
MH algorithm we have to set a variance for each parameter of the K components,
so 5 ·K in total. Tuning these variances is tedious and time consuming.

To overcome the aforementioned challenge, we use a modified version of
the MH algorithm proposed by Haario et al. [22] that automatically adjusts the
variance of the proposal distribution to maximize efficiency. The basic idea of
the adaptive Metropolis-Hastings algorithm is that every R iterations (e.g., R =

50), the acceptance probabilities are calculated and evaluated. Whenever the ac-
ceptance probabilities are above (below) some threshold (e.g., 0.44), the vari-
ance of the proposal distribution is increased (decreased) with an amount s =

min(0.01,
√
R/i) for the next R iterations. At that point, the acceptance proba-

bilities are re-evaluated, and the variances are adjusted again, if necessary. Note
that the adjustment amount s is a function of the current iteration i of the MCMC
chain, such that at the beginning of the chain larger adjustments are possible, while
subsequent adjustments are forced to become continuously smaller.

A detailed description of the adaptive Metropolis-Hastings algorithm and the
implications for the mathematical foundations of the algorithm can be found in
[22].
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4.3.2.2 Label Switching Issue

Note that the likelihood of the K-component mixture model in (4.2) is invariant to
any permutation of its component indices (which amounts to a total ofK! permuta-
tions). Under symmetric priors (i.e., when exchangeable priors are chosen for the
component parameters), the resulting posterior will also be invariant to K! permu-
tations in the labeling of the component parameters. In other words, the posterior
will have K! symmetric modes. As a result, labels of the components can permute
multiple times in subsequent iterations of the MCMC sampling, resulting in a la-
bel switching problem. Since in our Bayesian approach, that posterior is used (as
distribution for component parameters) for inference of the model parameters, the
label switching issue makes such inference very challenging.

Early attempts to solve the label switching issue focus on proposing identifia-
bility constraints via prior distributions to force a unique labeling (e.g., [19, 23]).
However, as shown by Stephens [24], identifying such constraints is not always
feasible, especially when systematically separating the posterior modes is not pos-
sible. Hence, two categories of relabeling methods are proposed to post-process
the MCMC samples: (1) deterministic relabeling methods that find the optimal
permutation in each iteration of the MCMC sampler by minimizing a loss func-
tion (e.g., Stephens’ algorithm [24], the pivotal reordering algorithm [25, 26], de-
fault [27] and iterative versions [28] of algorithms for equivalence class represen-
tatives, data-based algorithms [28]), and (2) probabilistic relabeling methods that
treat permutation of the parameters as missing data with associated uncertainty
and estimate its density using an EM type approach (e.g., [29]).

We refer the interested reader to [30] for an explanation and performance com-
parison of the relabeling methods in terms of CPU times as well as to what ex-
tent they agree on the component labels. We note that the data-based relabeling
algorithm [28] performs better in terms of both performance criteria (as shown
in [28, 30]), and hence use it for the relabeling of the samples from Algorithm 3.
The data-based relabeling is based on the key idea that in a converged MCMC,
while the labels of each cluster might change from one iteration to the other, the
clusters remain almost the same. Leveraging such minute difference between the
clusters of each iteration, one may keep track of the k clusters throughout each
MCMC iteration to identify cluster movements. Further details of the relabeling
algorithm are outlined in [28, Algorithm 5].

4.3.2.3 Bayesian Model Selection

In many modeling problems, the number of mixture components is not known and
needs to be identified as a part of the model selection process. Earlier attempts tried
to estimate the true number of components either by calculating the marginal like-
lihoods (e.g., [31, 32]) or by trans-dimensional MCMC samplers (e.g., reversible
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jump MCMC [33]). In recent approaches however, the view of model selection
is changed from identifying the true model to finding a useful model [34]. In the
latter case, model usefulness is seen as its predictive ability for future or unseen
data (i.e., out-of-sample prediction accuracy [35]). Vehtari et al. [36] quantify
the out-of-sample prediction accuracy as expected log pointwise predictive den-
sity (elpd). However, since future data is not available, to calculate elpd, first a
log point-wise prediction density (lpd) is calculated using the observed samples.
Here, lpd is an over-estimation of elpd for future data, which can be corrected with
a bias term [35]. The lpd measure is calculated from the posterior samples using
leave-one-out cross-validation (LOO-CV) as

lpdLOO-CV =

n∑
i=1

log

(
1

S

S∑
s=1

p
(
yi|θis)) (4.6)

where n is the number of observations, S is the number of samples from the poste-
rior, θis is a sample s from the posterior samples drawn based on all but observation
yi, and p(yi|θis) is the probability of observation yi given posterior parameter θis.

The above calculations are based on n − 1 observations. If n is large, the
overestimation is negligible, otherwise it is corrected using a bias b that denotes
the improvement of an estimation when n observations are considered.

Note that the calculations of lpdLOO-CV are computationally expensive for a
large number of observations. Hence, Vehtari et al. [36] also propose an efficient
approximation of lpdLOO-CV using Pareto-smoothed importance sampling (PSIS).
Still, the approximations by PSIS-LOO are not reliable when the estimated shape
parameter of the generalized Pareto distribution exceeds 0.7 [36]. In that case, 10-
fold cross-validation is used to estimate the elpd values as outlined in [36, Section
2.3].

For every modeling endeavor there is a trade-off between the interpretability
of a model and the predictive performance. Here we focus mainly on the latter,
hence we use elpd values to find the optimum number of mixture components.
To avoid overfitting, we use graphical inspection of the elpd measure’s evolution
for increasing the number of mixture components. We identify a knee point in that
graph as a point beyond which the increase in the number of componentsK results
in a smaller, or at least not better, elpd value compared to that for smaller K.

4.4 Validation on a Sample Dataset with Known True
Parameters

Before moving to applying our approach to real-world data, we first validate its
capability of correctly estimating the parameters from synthetic samples generated
using a known Abe-Ley mixture model. We generate such data using the random
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Figure 4.1: Sampled datasets from mixture of true (top row) and estimated (bottom row)
Abe-Ley distributions. Contour plots indicate two-dimensional kernel densities

number generation process explained in Section 4.2.2. We then run Algorithm 3
for a total of M0 + M = 100, 000 iterations, from which we disregard the M0 =

20, 000 initial draws that are considered as burn-in. Additionally, to reduce auto-
correlation between the samples, we use thinning by a factor 5, (i.e., only keeping
every 5th draw of the MCMC chain) in Algorithm 3. Hence, we finally retain
20,000 draws with a burn-in of 5,000 initial samples. The choice of 5 is based on
the auto-correlation plots of the posterior draws.2 We use trace plots to examine the
convergence and mixing performance of an MCMC chain. As a spread measure of
the posterior distribution, we use a 95% Bayesian credible interval.

The top row of Figure 4.1 shows the data sampled from a mixture of three
(dataset (a)) and four (dataset (b)) Abe-Ley distributions along with the true Abe-
Ley mixture densities in the form of contour plots. Both datasets contain 4,500
samples. The number of samples from each component of the mixture is the same
in dataset (a) but different per component in dataset (b) (see component weights
from Table 4.2).

As mentioned earlier, one of the defining advantages of the MH algorithm is
that — unlike likelihood-based estimations, which are point estimates — the MH

2Note that the auto-correlation plots are excluded from this paper to maintain a reasonable paper
length.
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Figure 4.2: Posterior densities and trace plots of the parameters for mixture of 3 Abe-Ley
(Dataset (a)). Black vertical lines mark the true parameter values and shaded areas are the

95% Bayesian credible intervals

Table 4.2: Estimated and true parameters for sampled data from mixture of Abe-Ley
distribution (The true values are shown in parenthesis)

Dataset k α β κ µ λ τ

(a)
1 0.98 (1) 0.07 (0.07) 0.93 (1) 0.03 (0) 0.00 (0) 0.33 (0.33)
2 1.96 (2) 0.21 (0.2) 2.97 (3) 3.14 (3.14) -0.98 (-1) 0.34 (0.33)
3 9.91 (10) 0.01 (0.01) 1.97 (2) 1.58 (1.57) 0.82 (0.8) 0.33 (0.33)

(b)

1 1.00 (1) 0.07 (0.07) 0.95 (1) 0.06 (0) -0.06 (0) 0.3 (0.31)
2 1.99 (2) 0.19 (0.2) 3.00 (3) 3.14 (3.14) -0.79 (-1) 0.18 (0.18)
3 10.10 (10) 0.04 (0.04) 2.01 (2) 1.58 (1.57) 0.85 (0.8) 0.24 (0.24)
4 2.97 (3) 1.02 (1) 3.00 (3) 2.09 (2.09) 0.53 (0.5) 0.27 (0.27)

algorithm outputs samples from the posterior distribution of the model parameters,
making the uncertainty of the estimates directly inferable from the posterior den-
sities, without the need for extra calculations (such as in bootstrapping). The pos-
terior densities of the parameters for a mixture of 3 Abe-Ley distributions (dataset
(a)) are shown in Figure 4.2. The accompanying trace plot for each parameter is
used to analyze the convergence and mixing performance of the MH algorithm.
As seen from the trace plots, the burn-in of 5,000 initial samples is sufficient to
disregard the unstable initial draws of the algorithm. The retained draws are from
the higher probability region of the posterior and are close to the true values of
the parameters, indicating that the chain has converged. The density plots in Fig-
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ure 4.2 are based on the 15,000 retained draws. Finally, the trace plots also confirm
that the draws among various iterations are not identical: the chain is mixing well
and effectively exploring the posterior. For some parameters however, the mixing
of the chain is not apparent: this is due to the scaling issue, caused by a large dif-
ference between the starting and the true value of the parameter. Also, very low
auto-correlation is observed among the draws, which confirms efficient exploration
of the posterior.

The shaded regions in the density plots of Figure 4.2 indicate the 95% Bayesian
credible intervals. The boundaries of the credible intervals are marked with nu-
meric values on the horizontal axis, while the black vertical lines show the true
values of the parameters. For some parameters, the true values are in the tails of
the posterior. This is only natural, since there is always a 5% chance that the true
value will be outside this credible interval, and we have 5 parameters per compo-
nent plus the component weights (in this case totaling 18).

To demonstrate the estimated predictive density for both datasets, we use the
last 4,500 MCMC draws of ϑi and for each draw, sample a data point from the
Abe-Ley mixture distribution parameterized by ϑi. The generated data points are
composed and presented in Figure 4.1. We then use a two-dimensional kernel
density estimate to obtain the estimated predictive density (shown in the form of
contour plots in Figure 4.1). As seen from Figure 4.1, the estimated and true pre-
dictive density of the Abe-Ley mixtures for both datasets are very similar. This
comparison further validates the effectiveness of the proposed approach in esti-
mating the parameters of the Abe-Ley mixture distributions.

While noting that Bayesian estimation is not a point estimate, still, to be able
to numerically compare the component-wise densities for the true and the esti-
mated parameters, we summarize the posterior distributions in point forms. To do
that, we use maximum a posteriori (MAP) estimation, which corresponds to the
mode of the empirical distribution of the posterior. An alternative summarization
would be taking the mean of the posterior distribution, but that Bayes estimate is
not suitable for multi-modal posteriors. The true and estimated parameters we thus
obtain are summarized in Table 4.2. These results indicate that our proposed algo-
rithm can effectively estimate the mixture model parameters for both datasets. For
dataset (a), we further demonstrate component-wise densities for the true and the
estimated parameters in Figure 4.3. This figure shows that the true and estimated
densities for the mixture of 3 Abe-Ley distributions are very similar.

To validate the effectiveness in model selection of elpd, approximated by PSIS-
LOO, we have calculated the elpd for a varying number of mixture components for
both datasets as shown in Figure 4.4. The location of the bend (knee) in Figure 4.4
indicates the most suitable number of components, which is the same as the num-
ber of true mixtures for both datasets.

The examples presented above demonstrate the effectiveness of our proposed
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Figure 4.3: Component-wise densities for the true and the estimated parameters for
Dataset (a)
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Figure 4.4: Determining number of mixture components using elpd measure for sample
datasets (the bend in each curve is used for selecting the best number of mixture

components).

algorithm for estimating the parameters of a mixture of Abe-Ley distributions and
of elpd as suitable model selection measure. Next, we apply our approach to model
the data for two different real-world applications.
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4.5 Modeling Real-World Datasets with a Mixture
of Abe-Ley Distributions

We now apply our methodology to fit an Abe-Ley mixture to (1) a wave dynam-
ics dataset, and (2) an EV charging dataset. The first application is a traditional
application domain of mixtures of cylindrical distributions where the circular mea-
surement is the direction (angle). The dataset in the second example on the other
hand is a new one, where the circular measurement is periodic time. For both
applications, we run Algorithm 3 for M0 + M = 100, 000 iterations and discard
a burn-in of M0 = 20, 000 draws. Further, we use thinning by a factor 5, i.e.,
we only keep every 5th draw of the MCMC chain) to reduce the auto-correlation
among subsequent draws.

4.5.1 Wave Dynamics in the Adriatic Sea

In this section, we consider a dataset of wave dynamics, which is a well-studied
application of the Abe-Ley distribution. The dataset comprises semi-hourly wave
directions and heights in the Adriatic Sea, recorded in the period 15 February
2010 to 16 March 2010 as reported by [11]. Lagona et al. [11] also approximate
this data with a mixture of Abe-Ley distributions, whose parameters depend on
the states of a latent Markov chain. However, their proposed estimation algorithm
is based on the EM method (and thus a point estimate), whereas our proposed
approximation algorithm is based on the MCMC method (thus giving a posterior
distribution for the mixture parameters). Additionally, the procedure by Lagona et
al. [11] includes a temporal dependence for the data, based on a hidden Markov
model. In this work, we focus on fitting the distribution only, while addressing
temporal dependence could be interesting as future work.

Figure 4.5 shows the elpd values for different numbers of Abe-Ley mixtures
and suggestsK = 4 as the optimum number of mixtures because the improvement
in elpd when increasing the number of mixtures from 2 to 4 is significantly larger
than for the increase from 4 to 7 and beyond. Hence, K = 4 is a knee point. Note
that in [11] the best number of states (mixtures) is deemed to be K = 3 using
the BIC measure. To represent and compare the distribution of each component
of the mixture models, we use MAP estimation to summarize the estimated pa-
rameters from our approach in a point form. The resulting mixtures are depicted
in Figure 4.7(b) and are compared with the fits from Lagona et al. [11] shown in
Figure 4.7(a).

Figure 4.7 suggests that both approaches identify similar heterogeneity in the
data. The first component of Lagona et al. models the high waves coming from
the north [11], which in our model are represented by the first and the second
components. The second component of Lagona’s model (and our third component)
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Figure 4.5: The elpd values for model selection in modeling wave dynamics. (The bend in
the curve is used for selecting the best number of mixture components.)

is associated with calm sea and finally, their third component (fourth in our model)
is associated with Sirocco episodes (caused by wind blowing southeasterly, along
the major axis of the Adriatic Sea). However, the posterior densities of the 4
mixture components depicted in Figure 4.6 confirm that the Bayesian approach is
more reliable than the EM method. The posterior densities for component 1 and
2 in Figure 4.6 are multi-modal, making the EM based approaches susceptible to
premature convergence to a local maximum.

4.5.2 Electric Vehicle Hourly Charging Requests

Our second study is motivated by the increasing use of EVs and the need to analyze
their impact on the power grid. Initial studies only presented empirical distribu-
tions of the arrival times of EVs from real-world measurements [37–40]. Here, we
take the first step to model the arrival times of EVs using a mixture of Abe-Ley
distributions. We use an EV charging session dataset (collected by ElaadNL3) that
includes the arrival times of electric vehicles at public roadside charging stations
across the Netherlands from January to March 2015.

We divide a day into hour-long slots and count the number of EV arrivals in
each slot. We also take the mean time-of-arrival of EVs in each slot to charac-

3ElaadNL is the knowledge and innovation center in the field of charging infrastructure in the
Netherlands, providing coordination for the connections of public roadside charging stations to the
electricity grid on behalf of 6 participating distribution system operators (DSOs). It also performs
technical tests of charging infrastructure, researches and tests smart charging possibilities of EVs, and
develops communication protocols for managing EV charging. The EV charging session data is avail-
able upon request for non-commercial research purposes, subject to signing an agreement. For more
information, please contact Chris Develder (email: chris.develder@ugent.be).

mailto:chris.develder@ugent.be
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Figure 4.6: Posterior densities of the parameters for best Abe-Ley mixture model for wave
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Figure 4.8: elpd values for model selection in modeling EV arrivals (the bend in the curve
is used for selecting the best number of mixture components)

terize the timing aspect of the measurement. Therefore, the resulting data points
have one linear (number of EV arrivals) and one circular (average time-of-arrival)
measurement and are best represented on a cylinder. Note that the linear mea-
surements in this dataset are of discrete nature. However, due to unavailability of
the cylindrical distributions that effectively take into account the cross-correlation
of the circular and linear measurements for discrete data, we have modeled this
dataset with an Abe-Ley distribution as the best existing candidate. To prevent
over-fitting, we add a random value generated from a uniform distribution on (0,1)
to the EV counts in each slot.

We fit the mixture of Abe-Ley distributions with a varying number of mixture
components to the EV dataset and use the elpd measure to select the best number
of mixture components, as illustrated in Figure 4.8. The bend in the elpd values
suggests K = 5 mixtures to model the EV arrival distribution. The estimated pos-
terior densities are shown in Figure 4.9, where the shaded regions indicate the 95%
Bayesian credible intervals. We also use MAP estimation to numerically summa-
rize the posteriors in point forms and show the component densities in Figure 4.10.

Next, the resulting mixtures are compared with our previous studies on this
dataset. In [39, 40], we clustered this data on a 2-dimensional surface (i.e., time-
of-arrival vs. time-of-departure) into 3 clusters: charge-near-work (characterized
by early morning arrivals, mainly on weekdays), charge-near-home (with late af-
ternoon arrivals), and park-to-charge (with arrivals throughout the day). We also
found that the EV arrivals have different empirical distributions on weekdays com-
pared to weekends: weekday arrivals have two peaks (mornings and evenings),
whereas the weekend arrivals only peak around noon.

This heterogeneity is very well captured by the mixture of the 5-component
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Figure 4.9: Posterior densities of the parameters for best Abe-Ley mixture model for EV
arrival

Abe-Ley distribution. As seen in Figure 4.10, the second component models the
morning peaks in EV arrivals, which are typically arrivals on weekdays and from
the charge-near-work cluster. The third component of the mixture comprises week-
day arrivals, from charge-near-home sessions. The fourth component models the
weekend arrivals and day-time charging during the weekdays, which are typically
park-to-charge sessions. Finally, the probability of having a very small number of
EV arrivals is modeled by the first (for very early morning arrivals) and fifth (for
arrivals around midnight) components of the mixture.

4.6 Conclusion

In this paper, a Metropolis-Hastings algorithm based on MCMC sampling was
proposed for estimating the components of Abe-Ley mixture models. A dynamic
Metropolis-Hastings algorithm was used to adjust the variance of the proposal dis-
tribution to improve both convergence and exploration of the posterior distribution
in the proposed algorithm. Two challenges associated with estimating the mixture
parameters were also tackled: the label switching issue and the selection of the
optimal number of components.

By referring to the posterior distributions of the parameters of the Abe-Ley
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Figure 4.10: Component-wise densities for the true and estimated parameters in modeling
EV arrivals

mixture, we illustrated that a Bayesian based estimation is more reliable than EM
methods for estimating these parameters, because: (1) the multi-modality of the
posteriors can be inferred directly from the output of the MH algorithm, hence,
local maxima are avoided without a need for additional calculations (which also
do not guarantee arriving at a global optimum), and (2) in EM-based estimation,
the uncertainty of the estimates is not available and further calculations are needed
to approximate them. While bootstrapping could address this, in our proposed
Bayesian approach, the uncertainty of the estimation is directly inferred from the
posteriors.

We validated the effectiveness of our proposed approach as well as the model
selection measure by estimating the parameters of actual Abe-Ley mixture mod-
els. Further, we applied our proposed approach to model the data from two dif-
ferent real-world application domains: wave dynamics and electric vehicle (EV)
arrivals. In both applications, the Abe-Ley mixtures captured the data skewness,
the correlation between the circular and linear variables and the data heterogeneity
(multi-modality). We found that the resulting mixtures were intuitively appealing
and qualitatively in accordance with previous studies of the real-world datasets.
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5
Definition and Evaluation of

Model-Free Coordination of Electrical
Vehicle Charging with Reinforcement

Learning

As established in the introductory chapter, a practical demand response should
be based on realistic models of the problem and should be able to generalize to
various scenarios of similar characteristics. In Chapters 2-4 we focused on analy-
sis of the energy consumption flexibility and developing generative models to pave
the way for such realistic and accurate models for use in demand response al-
gorithms. In this chapter, we pursue a different direction and instead, propose a
model-free demand response algorithm for coordinating the charging of a collec-
tion of electric vehicles. The proposed approach does not require accurate models
of the environment and generalizes to coordinating the charging of various number
of electric vehicles.

? ? ?

N. Sadeghianpourhamami, J. Deleu, and C. Develder.

Submitted to IEEE Transactions on Smart Grid , Sep. 2018

Abstract With the envisioned growth in deployment of electric vehicles (EVs),
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managing the joint load from EV charging stations through demand response (DR)
approaches becomes more critical. Initial DR studies mainly adopt model predic-
tive control and thus require accurate models of the control problem (e.g., a cus-
tomer behavior model), which are to a large extent uncertain for the EV scenario.
Hence, model-free approaches, especially based on reinforcement learning (RL)
are an attractive alternative. In this paper, we propose a new Markov decision
process (MDP) formulation in the RL framework, to jointly coordinate a set of
EV charging stations. State-of-the-art algorithms either focus on a single EV, or
perform the control of an aggregate of EVs in multiple steps (e.g., aggregate load
decisions in one step, then a step translating the aggregate decision to individual
connected EVs). On the contrary, we propose an RL approach to jointly control
the whole set of EVs at once. We contribute a new MDP formulation, with a scal-
able state representation that is independent of the number of EV charging stations.
Further, we use a batch reinforcement learning algorithm, i.e., an instance of fitted
Q-iteration, to learn the optimal charging policy. We analyze its performance us-
ing simulation experiments based on a real-world EV charging data. More specif-
ically, we (i) explore the various settings in training the RL policy (e.g., duration
of the period with training data), (ii) compare its performance to an oracle all–
knowing benchmark (which provides an upper bound for performance, relying on
information that is not available or at least imperfect in practice), (iii) analyze per-
formance over time, over the course of a full year to evaluate possible performance
fluctuations (e.g, across different seasons), and (iv) demonstrate the generalization
capacity of a learned control policy to larger sets of charging stations.

5.1 Introduction

Demand response (DR) algorithms aim to coordinate the energy consumption of
customers in a smart grid to ensure demand-supply balance and reliable network
performance. In initial DR studies, the demand response problem usually is cast
as a model predictive control (MPC) approach (e.g., [1, 2]), typically formulated
as an optimization problem to minimize the customer’s electricity bill or maxi-
mize the energy provider’s profit, subject to various operating constraints (e.g.,
physical characteristics of the devices, customer preferences, distributed energy
resource constraints and energy market constraints). However, the widespread de-
ployment of such model-based DR algorithms in the smart grid is limited for the
following reasons: (i) heterogeneity of the end user loads, difference in user be-
havioral patterns and uncertainty surrounding their behavior makes the modeling
task very challenging [3]; (ii) model-based DR algorithms are difficult to transfer
from one scenario to the other, since the model designed for one group of users or
applications is likely to require customization/tweaking for application to different
groups.
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Recently, reinforcement learning (RL) has emerged to facilitate model-free
control for coordinating the user flexibility in DR algorithms. In RL-based ap-
proaches, the DR problem is defined in the form of a Markov decision process
(MDP). A coordinating agent interacts with the environment (i.e., DR participating
customers, energy providers, energy market prices, etc.) and takes control actions
while aiming to maximize the long term expected reward (or minimize the long
term expected cost). In other words, the agent learns by taking actions and observ-
ing the outcomes (i.e., states) and the rewards/costs in an iterative process. The
DR objective (e.g., load flattening, load balancing) is achieved by appropriately
designing the reward/cost signal. Hence, reinforcement learning based approaches
do not need an explicit model of user flexibility behavior or the energy pricing
information a priori. This facilitates more practical and generally applicable DR
schemes compared to model-based approaches.

One of the main challenges of RL-based DR approaches is the curse of di-
mensionality due to the continuity and scale of the state and the action spaces:
this hinders the applicability of RL-based DR for large-scale problems. In this pa-
per, we focus on formulating a scalable RL-based DR algorithm to coordinate the
charging of a group of electric vehicle (EV) charging stations, which generalizes
to various group sizes and EV charging rates. In fact, current literature only offers
a limited amount of model-free solutions for jointly coordinating the charging of
multiple EV charging stations, as surveyed briefly in Section 5.2.

Such existing RL-based DR solutions are either developed for an individual
EV or need a heuristic (which does not guarantee an optimum solution) to obtain
the aggregate load of multiple EV charging stations during the learning process.
Indeed, a scalable Markov decision process (MDP) formulation that generalizes to
a collection of EV charging stations with different characteristics (e.g., charging
rates, size) does not exist in current literature. In this paper we take the first step
to fill this gap by proposing an MDP and explore its performance in simulation
experiments. Note that the model we present is a further refinement of our ini-
tially proposed state and action representation listed in [4] (which did not consider
sizable experimental results yet, and merely proposed a first MDP formulation).
More precisely, in this paper:

• We define a new MDP with compact state and action space representations,
in the sense that they do not linearly scale with the number of EV charg-
ing stations (thus EVs), they can generalize to collections of various sizes
and they can be extended to cope with heterogeneous charging rates (see
Section 5.3),

• We adopt batch reinforcement learning (fitted Q-iteration [5]) with function
approximation to find the best EV charging policy (see Section 5.4),

• We quantitatively explore the performance of the proposed reinforcement
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learning approach, through simulations using real-world data to run exper-
iments covering 10 and 50 charging stations (using the setup detailed in
Section 5.5), answering the following research questions (see Section 5.6):

(Q1) What are appropriate parameter settings1 of the input training
data?

(Q2) How does the RL policy perform compare to an optimal all-
knowing oracle algorithm?

(Q3) How does that performance vary over time (i.e., from one month
to the next) using realistic data?

(Q4) Does a learned approach generalize to different EV group sizes?

We summarize our conclusions and list open issues to be addressed in future work
in Section 5.7.

5.2 Related Work

With growing EV adoption, also the amount of available (and realistic) EV data
increased. Hence, data-driven approaches to coordinate EV charging gained at-
tention, with reinforcement learning (RL) as a notable example. For example, Shi
et al. [6] adopt an RL-based approach and phrase an MDP to learn to control the
charging and discharging of an individual EV under price uncertainty for provid-
ing vehicle-to-grid (V2G) services. Their MDP has (i) a state space based on the
hourly electricity price, state-of-charge and time left till departure), (ii) an action
space to decide between charging (either to fulfill the demand or provide frequency
regulation), delaying the charging and discharging for frequency regulation2, and
(iii) unknown state transition probabilities. The reward is defined as the energy
payment of charging and discharging or the capacity payment (for the provided
frequency regulation service). Chis et al. [7] use batch RL to learn the charging
policy of again an individual EV, to reduce the long-term electricity costs for the
EV owner. An MDP framework is used to represent this problem, where (i) the
state space consists of timing variables, minimum charging price for a current day
and price fluctuation between the current and the next day, while (ii) the action is
the amount of energy to consume in a day. Cost savings of 10%-50% are reported
for simulations using real-world pricing data. Opposed to these cost-minimizing
approaches assuming time-varying prices, as a first case study for our joint control

1The parameters of interest are (i) time span of the training data, and (ii) number of sampled trajec-
tories from the decision trees. For details see Section 5.4.2 and Section 5.5.2.

2Frequency regulation is a so-called ancillary service for the power grid, and entails actions to
keep the frequency of the alternating current grid within tight bounds, by instantaneous adjustments to
balance generation and demand.
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of a group of EV charging stations, we will focus first on a load flattening scenario
(i.e., electricity prices are assumed constant, but peaks need to be avoided).

In contrast to [6] and [7], which consider the charging of a single EV, Claessens
et al. [8] use batch RL to learn a collective charging plan for a group of EVs in the
optimization step of their previously proposed three step DR approach [9]. Their
three step DR approach constitutes an aggregation step, an optimization step, and
a real-time control step. In the aggregation step, individual EV constraints are ag-
gregated. In the optimization step, the aggregated constraints are used by the batch
RL agent to learn the collective charging policy for the EV fleet, which is trans-
lated to a sequence of actions (i.e., aggregated power consumption values for each
decision slot) to minimize energy supply costs. Finally, in the real-time control
step a priority based heuristic algorithm is used dispatch the energy corresponding
to the action determined in the optimization step from the individual EVs. Van-
dael et al. [10] also use batch RL to learn a cost-effective day-ahead consumption
plan for a group of EVs. Their formulation has two decision phases, (i) day-ahead
and (ii) intra-day. In the first decision phase, the aggregator predicts the energy
required for charging its EVs for the next day, and purchases this amount in the
day-ahead market. This first decision phase is modeled as an MDP. In the sec-
ond decision phase, the aggregator communicates with the EVs to control their
charging, based on the amount of energy purchased in the day-ahead market. The
amount of the energy to be consumed by each connected EV is calculated using a
heuristic priority-based algorithm and is communicated to the respective EV. The
local decision making process by each EV is modeled using an MDP where the
state space is represented by the charged energy of the EV, the action space is de-
fined by charging power and the reward function is based on the deviations from
the requested charging power. The fitted Q-iteration (FQI) algorithm is used to
obtain the best policy.

Note that our work is different from [8] and [10] in two aspects: (i) unlike [8]
and [10], our proposed approach does not take the control decisions in separate
steps (i.e., taking aggregate energy consumption in one step and coordinating indi-
vidual EV charging in a second step to meet the already decided energy consump-
tion) and instead it takes decisions directly and jointly for all individual EVs using
an efficient representation of an aggregate state of a group of EVs, hence (ii) our
approach does not need a heuristic algorithm, but instead learns the aggregate load
while finding an optimum policy to flatten the load curve. We now describe our
MDP model, and subsequently the batch reinforcement learning approach to train
it.
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Table 5.1: Nomenclature

s State
s′ The next state from s

∆tdepart Time left until departure
∆tcharge Time needed for charging completion
∆tflex Flexibility (time charging can be delayed)
Ns Number of connected EVs in state s
Vt Set of EVs in the system at time t
xs Aggregate demand in state s
t Timeslot

∆tslot Duration of a decision slot
Smax Maximum number of decision slots
Hmax Maximum connection time
Nmax Number of charging stations jointly being coordinated

us Action taken in state s
Us Set of possible actions from state s

xtotal
s (d) Total number of EVs on the dth upper diagonal of xs
Cdemand Cost of total power consumption
Cpenalty Penalty cost for unfinished charging

C(s,us, s′) Instantaneous cost of state transition
Btest Test set
Btrain Training set
∆t Training data time span
Cπ Normalized cost of policy π
CBAU Normalized cost of business-as-usual policy
CRL Normalized cost of the learned policy
Copt Normalized cost of optimum solution
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algorithm 4: Binning algorithm for creating the aggregate state representation.

Input : Vt = {(∆tdepart
1 ,∆tcharge

1 ), . . . , (∆tdepart
Ns

,∆tcharge
Ns

)}
Output: Aggregate state xs, matrix of size Smax × Smax

24 Initialize xs with zeros
foreach n = 1, . . . , Ns do
// count number of EVs in each (i, j) bin

25 i =
⌈

∆tdepart
n

∆tslot

⌉
j =

⌈
∆tcharge

n

∆tslot

⌉
xs(i, j)← xs(i, j) + 1

26 return xs/Nmax

5.3 Markov Decision Process
The high-level goal of the proposed EV charging approach is to minimize the long
term cost of charging a group of EVs for an aggregator in a real-time decision-
making scenario. In this paper, we focus on the scenario of load flattening (i.e.,
more advanced DR objectives are left for future work): we aim to minimize the
peak-to-average ratio of the aggregate load curve of a group of EVs. Technically,
we adopt a convex cost function that sums the squares of the total consumption
over all timeslots within the decision time horizon. We regard this problem as a
sequential decision making problem and formulate it using an MDP with unknown
transition probabilities.

5.3.1 State Space

An EV charging session is characterized by: (i) EV arrival time, (ii) time left till
departure (∆tdepart), (iii) requested energy and (iv) EV charging rate. We translate
the requested energy to time needed to complete the charging (∆tcharge), implicitly
assuming the same charging rates for all the EVs in a group. Thus, if we have Ns
electric vehicles in the system, the (remaining times of) their sessions are repre-
sented as a set

Vt = {(∆tdepart
1 ,∆tcharge

1 ), . . . , (∆tdepart
Ns

,∆tcharge
Ns

)}.

Note that we do not assume a priori knowledge of future arrivals, and hence do not
include the arrival time to characterize the (present) EVs.

Each state s is represented using two variables: timeslot (i.e., t ∈ {1, . . . , Smax})
and the aggregate demand (i.e., xs), hence s = (t, xs). Inspired by [11], aggregate
demand at each given timeslot is obtained via a binning algorithm (i.e., Algo-
rithm 4) and is represented using a 2D grid, thus a matrix, with one axis represent-
ing ∆tdepart, the other ∆tcharge. As time progresses, cars will move towards lower
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Figure 5.1: A simple example for Nmax = 2 charging stations: (a) state representation,
(b) possible action states, (c) full decision tree over the horizon of Smax = 3 slots.

∆tdepart cells, and (if charged) lower ∆tcharge and ∆tdepart.3 Given that time-of-day
is likely to influence the expected evolution of the state xs (and hence the required
response action we should take), we do include the timeslot t as explicit part of the
state.

Formally, the process to convert the set of sessions Vt (associated with EVs
connected at a given time t) to the matrix xs is given by Algorithm 4. The size
of the matrix, Smax × Smax depends on the maximal connection time Hmax, i.e.,
the longest duration of an EV being connected to a charging station: Smax ,
Hmax/∆t

slot.
Each row/column of xs represents equidistant bins with edges on {0,∆tslot, 2 ·

∆tslot, . . . , Smax · ∆tslot} and each matrix element in xs represents the number of
EVs binned into it. xs is initialized with zeros at the beginning of Algorithm 4.
Lines 24–25 count the EVs with ∆tdepart and ∆tcharge values of the corresponding

3An extension to consider the variable charging rate is possible by binning the EVs in a 3D grid
with charging rate as the third dimension.



MODEL-FREE EV CHARGING COORDINATION WITH RL 121

(i, j)-cell in the matrix. Finally, xs is normalized by Nmax (Line 26). This normal-
ization makes the state representation scale-free, i.e., independent of the absolute
group size Nmax, thus aiming to generalize the formulated MDP (and the learned
control policy) to a differently sized group of EV charging stations.

For illustrative purposes, in Figure 5.1 we sketch a simple scenario of Nmax =

2 charging stations with a horizon of Smax = 3 slots. Let us assume that at
time t = 1 we have Ns = 2 connecting cars: V1 = {(∆tdepart

1 ,∆tcharge
1 ) =

(3, 2), (∆tdepart
2 ,∆tcharge

2 ) = (2, 1)}, with no other arrivals during the control hori-
zon. Figure 5.1 illustrates the resulting state space using the binning algorithm
at the first time slot. The EVs are binned according to their ∆tdepart and ∆tcharge

to a 2D grid of size 3 × 3. The resulting matrix is normalized by Nmax (= 2 in
this example). The shaded cells in the 2D grid of Figure 5.1 indicate bins with
∆tcharge ≤ ∆tdepart. EVs in these bins have enough time to complete their charg-
ing.

Note that xs not only summarizes the aggregated demand of connecting EVs
(in terms of ∆tdepart and ∆tcharge), but also the flexibility in terms of how long
the charging can be delayed at state s (denoted as ∆tflex = ∆tdepart −∆tcharge) is
inferred from the diagonals of xs using

∆tflex(i, j) = j − i ∀i, j ∈ {1, . . . , Smax} (5.1)

Equation (5.1) indicates that EVs binned into cells on the main diagonal of xs (i.e.,
i = j) have zero flexibility while the ones binned into cells on the upper diagonals
of xs are flexible charging requests. Negative ∆tflex, corresponding to lower diag-
onals of xs (i.e., the white cells in the 2D grids of Figure 5.1), indicates EVs for
which the requested charging demand cannot be fulfilled. In our formulation, we
will ensure that EVs charging demands are never violated, using a penalty term in
our cost function (see Section 5.3.3).

Finally, the size of xs and hence the size of the state s is independent of Nmax

and is only influenced by Smax, thusHmax and ∆tslot. This ensures scalability of the
state representation to various group sizes of EV charging stations: the maximal
number of cars Nmax does not impact the state size.

5.3.2 Action Space

The action to take in state s is a decision whether (or not) to charge the connecting
EVs with same ∆tflex in the xs matrix. Such EVs are binned into the cells on
the same diagonal of xs as explained in the previous section. We indicate each
diagonal of xs as xs(d) with d = 0, . . . , Smax−1 where xs(0) is the main diagonal,
xs(d) is the upper dth diagonal, and xs(−d) is the lower dth diagonal of xs. We
denote xtotal

s (d) as the total number of EVs in the cells on the dth diagonal.
An action taken in state s is defined as a vector us of length Smax. For each

individual car, we take a discrete action, i.e., we either charge it at full power or
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not at all for the next timeslot. This results in the element d of the action vector
us being a number between 0 and 1: it amounts to charging the fraction of EVs
in the corresponding dth diagonal of xs. The set of possible actions from state s is
denoted as Us.

Figure 5.1(b) illustrates how Us is constructed at state s using a color-coded
representation of matrix xs and the corresponding vector xtotal

s . Note that we define
the action vector for charging/delaying the cars on the main and upper diagonals
of xs only (colored cells in the 2D grids representing xs in Figure 5.1). This is
a design choice to keep the action space relatively small and therefore easier to
explore. In the next section, we define our cost function such that the EV charging
is always completed before departure: no cars will end up in any of the lower
diagonals, i.e., the white cells in the 2D state grid of the figures.

5.3.3 Cost function

The goal we envision in this paper is to flatten the aggregate charging load of a
group of EVs while ensuring each EV’s charging is completed before departure.4

Hence, our cost function associated with each state transition (s,us, s′) has two
parts:

(1) Cdemand(xs,us): the cost of the total power consumption from all the con-
nected EVs for a decision slot, and

(2) Cpenalty(xs,us): the penalty for unfinished charging.

To achieve the load flattening objective, we choose theCdemand to be a quadratic
function of the total power consumption for a decision slot. The total power con-
sumption for a decision slot is proportional to the number of EVs being charged,
since we assume the same charging rate for all the EVs in a group. Hence, the first
term of the cost function at state s = (t, xs) is defined as

Cdemand(xs,us) =

(
Smax−1∑
d=0

xtotal
s (d) us(d)

)2

(5.2)

The second term of the cost function is a penalty proportional to the unfinished
charging in the next state s′ = (ts′ , xs′) due to taking action us in s = (t, xs) and
is defined as

Cpenalty(xs,us) = M
∑

n∈Vt+1

|min(0,∆tcharge
n −∆tdepart

n )| (5.3)

The summation in (5.3) counts the amount of charging request that is impossible to
complete (for EVs with ∆tdepart

n < ∆tcharge
n ) as a consequence of taking action us

4We assume only feasible requests are presented to the system, i.e., ∆tcharge ≤ ∆tdepart for each
EV.
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at state s = (t, xs). M is a constant penalty factor, which we set to be greater than
2Nmax to ensure that any EV’s charging is always completed before departing (i.e.,
one incomplete EV is costlier than charging all EVs simultaneously). Summing
(5.2) and (5.3), the total cost associated with each state transition (s,us, s′) is:

C(s,us, s′) =

(
Smax−1∑
d=0

xtotal
s (d) us(d)

)2

+M
∑

n∈Vt+1

|min(0,∆tcharge
n −∆tdepart

n )|

(5.4)
Note that in Equation (5.4) the cost is independent of the timeslot variable

of the state space (i.e., t) and depends only on the aggregate demand variable
of the state (i.e., xs). Indeed, the cost of a demand to be is set as a quadratic
function of the total consumption to achieve the load flattening objective, and is
time-independent. Still, we include the time component in the definition of the
state to ensure that our formulations can easily be extended to other objectives
(e.g., reducing the cost under the time-of-use or pricing schemes). Also, we use
the time component for the function approximator of Algorithm 5 (see further,
Section 5.5.2).

5.3.4 System Dynamics

In the MDP framework, system dynamics (via the environment) are defined using
transition probabilities P (s′|s,us). The transition probabilities from one state s to
the next s′ are unknown in the EV group charging problem due to the stochasticity
of the EV arrivals and their charging demands. Perfect knowledge of EV arrivals
and their charging demands during the control horizon would translate the problem
into a decision tree depicted in Figure 5.1(c), where the cost of taking each action
can be determined recursively using dynamic programming. However, in absence
of such knowledge, the transition probabilities need to be estimated through in-
teractions with the environment by taking actions and observing the instantaneous
cost of the resulting state transitions. The next section explains this approach.

5.3.5 Learning Objective: State-Action Value Function

Note that C(s,us, s′) is the instantaneous cost an aggregator incurs when action
us is taken at state s = (t, xs) and leads to state s′ = (t+ 1, xs′). The objective is
to find an optimum control policy π∗ : S→ U that minimizes the expected T -step
return for any state in S. The expected T -step return starting from state s = 1 and
following a policy π (i.e., us = π(s)) is defined as:

JπT (1) = E

[
T∑
s=1

C(s,us, s′)

]
(5.5)
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algorithm 5: Fitted Q-iteration using function approximation for estimating the T -step
return

Input : F = {(s,us, s′, C(s,us, s′))|s = 1, . . . , |F|}
27 Initialize Q̂0 to be zero everywhere on X× U

foreach N = 1, . . . , T do
28 foreach (s,us, s′, C(s,us, s′))) ∈ F do
29 QN (s,us)← C(s,us, s′) + min

u∈U
Q̂N−1(s′,u)

30 Use function approximator to obtain Q̂N from Treg =
{

((s,us), QN,s)|s =

1, . . . , |F|
}

31 return Q̂T

The policy π is commonly characterized using a state-action value function (or
Q-function):

Qπ(s,us) = E [C(s,us, s′) + JπT (s′)] (5.6)

where Qπ(s,us) is cumulative return starting from state s, taking action us, and
following policy π afterwards. The optimal Qπ(s,us), denoted as Q∗(s,us), cor-
responds to:

Q∗(s,us) = min
π
Qπ(s,us) (5.7)

The Q∗(s,us) satisfies the Bellman equation:

Q∗(s,us) = min
u∈U

E [C(s,us, s′) +Q∗(s′,u)] (5.8)

However, solving (5.8) requires the knowledge of the transition probabilities
— defining how the system moves from one state s to the next s′ — which are
unknown in our setting. Hence, a learning algorithm should be used to obtain ap-
proximation Q̂∗(s,u). This can then be used to take control action us, following:

us ∈ argmin
u∈Us

Q̂∗(s,u) (5.9)

5.4 Batch Reinforcement Learning
We adopt batch mode RL algorithms to approximate Q̂∗(s,u) from past experi-
ence instead of online interactions with the environment. In the batch mode RL
approach, data collection is decoupled from the optimization. In other words, we
use the historical EV data (i.e., arrival/departures and energy demands) and a ran-
dom policy to collect the experiences (i.e., the state transitions and the associate
costs) in form of (s,us, s′, C(s,us, s′)) tuples. We use Fitted Q-iteration to ap-
proximate Q̂∗(s,u) from the collected tuples, detailed next.
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5.4.1 Fitted Q-iteration

Fitted Q-iteration (FQI) is a batch mode RL algorithm, listed in Algorithm 5. As
input, FQI takes a set of past experiences,F , in the form of tuples (s,us, s′, C(s,us,
s′)) where C(s,us, s′) is the immediate cost of a transition and in our case is cal-
culated using Eq. (5.4). The tuples are used to iteratively estimate the optimum
action value function.

The state-action value function Q is initialized with zeros on the state-action
space (Line 27) hence, Q1 = C(s,us, s′) in the first iteration. In subsequent
iterations, QN is calculated for each tuple in F using the latest approximation
of action-value function (QN−1) from the previous iteration (Line 4) to form a
labeled dataset Treg. This dataset is then used for regression, i.e., by function
approximation we estimate QN for all possible state-action pairs (Line 30).

We will adopt a fully connected artificial neural network (ANN) as our function
approximation. Further details on the ANN architecture used in our experiments
are given in Section 5.5.2.2.

5.4.2 The size of state-action space

The input to FQI (i.e., set F) is constructed from past interactions with the envi-
ronment (i.e., randomly or deterministically taking actions from the action space
of state s = (t, xs) and recording the tuple (s,us, s′, C(s,us, s′)). The number of
all possible actions from a given state s is given by

|Us| =
Smax∏
d=1

(
xtotal
s (d) + 1

)
(5.10)

since for each flexibility ∆tflex = d we can choose to charge between [0, xtotal
s (d)]

cars.
The goal of the RL algorithm (hence the goal of the FQI) is to estimate the T -

step return for every possible action from every possible state in the environment.
Estimating the T -step return starting from a state s leads to exploring a tree with
an exponentially growing number of branches at the next steps. Hence, while the
state and action representations are independent of the group size (Nmax), the state-
action space still grows exponentially with a growth rate given in Eq. (5.10). Let us
consider a charging lot of capacityNmax = 50 and control horizon with Smax = 10.
In a state where all EV charging stations are occupied (Ns = Nmax = 50), there
are at least 51 possible actions from that state, corresponding to a scenario where
all the EVs have similar flexibility, hence located on the same diagonal of the
state matrix (i.e., xtotal

s ) = [50, 0, 0, 0, 0, 0, 0, 0, 0, 0]. For a state with xtotal
s ) =

[5, 5, 5, 5, 5, 5, 5, 5, 5, 5], there will be |Us| = (6)10 possible actions from that
state only. This indicates that it is not feasible to include the entire state-action
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space in set F as the input to the FQI and only a subset of the state-action space
is provided. We will therefore randomly sample trajectories from the decision tree
with a branching factor of |Us|. This leads to the research question Q1 (which is
answered in Section 5.6.1): How many sample trajectories from the state-action
space are sufficient to learn an optimum policy for charging a real-world group of
EVs with various group sizes?

5.5 Experiment setup

In this section, we outline the implementation details of the proposed RL-based
DR approach.

5.5.1 Data Preparation

We base our analysis on real-world EV charging session transactions collected by
ElaadNL since 2011 from 2500+ public charging stations deployed across Nether-
lands, as described and analyzed in [12]. For each of the over 2M charging sessions
(still growing), a transaction records the charging station ID, arrival time, depar-
ture time, requested energy and charging rate during the session. The EVs in this
dataset are privately owned cars and thus comprise a mixture of different and a
priori unknown car types.

To represent the EV transactions in ElaadNL as state transitions (s,us, s′,
C(s,us, s′)), we first need to choose a reasonable size for the state and the action
representations. We set the maximum connection duration to Hmax = 24 h, since
more than 98% of the EV transactions in the ElaadNL dataset cover sessions of
less than 24 hours [12].

We further set the duration of a decision timeslot, i.e., the time granularity of
control actions (i.e., ∆tslot = 2 h), resulting in Smax = Hmax/∆t

slot = 12. Hence,
a state s is represented by a scalar variable t and a matrix xs of size Smax×Smax =

12 × 12. The corresponding action us taken from state s is a vector of length 12

(with 1 decision for each of the upper diagonals, one per flexibility window ∆tflex).
The motivation of choosing ∆tslot = 2 h is to limit the branching factor |Us| (which
depends on Smax in Eq. (5.10)) at each state, thus yielding a reasonable the state-
action space size and allowing model training (specifically, the min operation in
Line 4 of Algorithm 5) in a reasonable amount of time given our computation
resources.5

Furthermore, we make the ElaadNL dataset episodic by assuming that all the
EVs leave the charging stations before the end of a day, thus yielding an empty

5We use an Intel Xeon E5645 processor, 2.4 GHz, 290 GB RAM.
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car park in between two consecutive days.6 We define such an episodic ‘day’ to
start at 7 am and end 24 h later (the day after at 7 am). The empty system state in
between two episodes is always reached after Smax +1 timeslots and is represented
with aggregate demand matrix xs of all zeros. This ensures that while each day has
a different starting state (depending on the arrivals in the first control slot and their
energy demand), traversing the decision tree always leads to a unique terminal state
(see Figure 5.1(c) for an exemplary decision tree). This is motivated by Riedmiller
[13], who shows that, when learning with FQI and adopting a neural network as
function approximator, having a terminal goal state stabilizes the learning process.
It ensures that all trajectories end up in a state where no further action/transition is
possible and hence is characterized by an action-value of zero.

To create a group of Nmax EV charging stations, we select the busiest Nmax

charging stations (based on the number of recorded transactions in each station).
For the analysis in this paper, we use two different subsets, one with the top-10,
the other with the top-50 most busiest stations.

5.5.2 Algorithm Settings

Since Smax = 12 in our settings, fitted Q-iteration (FQI) needs to estimate the
12-step return and we thus have 12 iterations in Algorithm 5 .

5.5.2.1 Creating set F

To create set F , we begin from the starting state of a day characterized by (t1, x1)

and randomly choose an action from the set of possible actions in each state
and observe the next state and the associated state transition cost until the ter-
minal state7 is reached (i.e., (tT , xT )). The state transitions in each trajectory
are recorded in the form of a tuple (s,us, s′, C(s,us, s′)) in set F . For our ex-
periments, we randomly sample more than a single trajectory from each day to
analyze the effect of the number of sampled trajectories on the performance of the
proposed approach. The notion of a sample in the following thus refers to a full
trajectory from initial to terminal state of a day.

5.5.2.2 Neural network architecture

We use an artificial neural network (ANN) that consists of an input layer, 2 hidden
layers with ReLU activation function and an output layer. There are 128 and 64
neurons in the first and second hidden layers respectively. Since the ANN is used
for regression, the output layer has a single neuron and a linear activation function.

6The charging demands of EVs are adjusted to ensure the requested charging can be fulfilled within
24 hours.

7Recall that we consider an episodic setting, i.e., case where the system empties (definitely after
Smax timeslots).
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Each state-action pair is fed to the input layer in form of a vector of length S2
max +

Smax + 1, by reshaping the state (t, st) and concatenating it with the action vector
us (of size Smax = 12). Recall that the state representation has a scalar time
variable t and an aggregate demand matrix xs of size Smax × Smax, thus reshaped
to a vector of size S2

max + 1. In our settings each state s thus is represented as a
vector of length 145 and each action us as a vector of length 12. Inspired by Mnih
et al. [14], we also found that using Huber loss [15] instead of mean-squared-error
stabilizes the learning in our algorithm.

5.5.3 Performance Evaluation Measure

To evaluate the performance of the proposed approach, we take ElaadNL trans-
actions of 2015 and select the last 3 months as the test set, i.e., Btest = {ei|i =

274, . . . , 365} containing |Btest| = 92 days.
We consider training sets of varying lengths (to determine the impact of train-

ing set size, see research question Q1), with ∆t ∈ {1, 3, 5, 7, 9} months. For a
given ∆t (i.e., training data time span), we randomly pick 5 contiguous periods
within the range of Jan. 1, 2015 until Sep. 30, 2015 (except for the case ∆t = 9

months, since that covers the whole training data range). We define the training set
for time span ∆t and run j as Btrain

∆t,j = {ei|i = estart
∆t,j , . . . , e

start
∆t,j + ∆t− 1}, where

estart
∆t,j is the randomly selected starting date of the training set.

To evaluate the performance of the learned policy, we define the metric of
normalized cost relative to the cost of the optimum policy. For each ∆t and j we
define it as

Cπ(∆tj) =
1

|Btest|
∑
e∈Btest

Ceπ(∆tj)

Ceopt
, (5.11)

where π(∆tj) is a policy learned from the training data time span of ∆t at run j.
Further, Ceπ(∆tj) is the cost of day e under policy π(∆tj) and Ceopt is the cost of
day e using optimization (obtained from formulating the load flattening problem
as a quadratic optimization problem). A cost of a day e under policy π is calcu-
lated by summing the instantaneous cost (defined by Eq. (5.4)) of state transitions
encountered when taking action according to the policy being evaluated (using
Eq. (5.9)).

Clearly, if a learned policy achieves the optimum policy, then Cπ(∆tj) = 1.
Further, we compare the performance of the learned policy not only with the opti-
mum policy but also with the business-as-usual (BAU) policy where the charging
of an EV starts immediately upon arrival. In the next section, we present our anal-
ysis using the normalized cost of BAU, optimum and learned policies denoted as
CBAU, Copt and CRL respectively.
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5.6 Experimental results
In this section, we present experiments answering the aforementioned research
questions Q1–Q4. More specifically, we first evaluate the performance of the RL-
based approach in coordinating the charging demand of Nmax = 10 and 50 charg-
ing stations as a function of training data time span and number of randomly sam-
pled trajectories per day (Q1), comparing it to an uncontrolled business-as-usual
scenario but also to the optimum strategy (Q2). We then investigate how well the
method works across various seasons, i.e., whether performance varies strongly
throughout the whole year (Q3). Finally, we check the scalability by training an
agent on a group of Nmax = 10 EV charging stations and testing it on upscaled
group sizes Nmax (Q4).

5.6.1 Learning the Charging Coordination (Q1–Q2)

To answer Q1 (i.e., what are appropriate training data time span and number of
sampled trajectories from the decision trees?), we study how the performance of
the proposed RL approach varies in function of (i) the time span covered by the
training data (i.e., ∆t), and (ii) the number of sample trajectories per day of train-
ing data. Figure 5.2 compares the normalized cost of a learned policy with that
of a BAU and optimum policy for varying ∆t and number of samples per training
day, for the case of Nmax = 10 and 50 charging stations respectively.

Influence of the time span covered by the training data: Figure 5.2(b) shows
that increasing ∆t from 1 month to 3 months and beyond reduces the normalized
cost of the learned policy for both 10 and 50 charging stations. Additionally, the
performance gain when increasing ∆t from 1 to 3 months is bigger than for in-
creasing ∆t beyond 3 months. This suggests that the RL approach needs at least 3
months of training data to reach maximal performance (in case of ElaadNL).

Influence of the number of sample trajectories per day of training data: Fig-
ure 5.2(a) shows that when ∆t ≥ 3 months, increasing the number of samples
does not result in significant reduction in normalized cost of the learned policy
(i.e., CRL) for both 10 and 50 charging stations.

The above analysis suggests that a training data time span of at least 3 months
is needed to have a comparable performance over various number of samples per
day and that when training data time span is at least 3 month long, smaller number
of samples (of the order of 5K trajectories) can still achieve a comparable perfor-
mance (with respect to training with larger samples per day). This answers Q1.



130 CHAPTER 5

1 
m

on
th

3 
m

on
th

s
5 

m
on

th
s

7 
m

on
th

s
9 

m
on

th
s

5K
10

K
15

K
20

K
5K

10
K

15
K

20
K

5K
10

K
15

K
20

K
5K

10
K

15
K

20
K

5K
10

K
15

K
20

K

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Normalized cost (10 EVs)

 (
a)

1 
m

on
th

3 
m

on
th

s
5 

m
on

th
s

7 
m

on
th

s
9 

m
on

th
s

10
K

30
K

50
K1

0K
30

K
50

K1
0K

30
K

50
K1

0K
30

K
50

K1
0K

30
K

50
K

1.
0

1.
1

1.
2

1.
3

1.
4

N
um

be
r 

of
 s

am
pl

es
 p

er
 e

pi
so

de

Normalized cost (50 EVs)

50
00

10
00

0
15

00
0

20
00

0

1
3

5
7

9
1

3
5

7
9

1
3

5
7

9
1

3
5

7
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

C
R

L

C
B

A
U

C
op

t

 (
b)

10
00

0
30

00
0

50
00

0

1
3

5
7

9
1

3
5

7
9

1
3

5
7

9

1.
0

1.
1

1.
2

1.
3

1.
4

Tr
ai

ni
ng

 d
at

a 
tim

e 
sp

an
 (

m
on

th
s)

Fi
gu

re
5.

2:
N

or
m

al
iz

ed
co

st
s

of
le

ar
ne

d
po

lic
y

(C
R

L
),

B
A

U
po

lic
y

(C
B

A
U

)a
nd

op
tim

um
so

lu
tio

n
(C

op
t)

fo
rc

oo
rd

in
at

in
g

th
e

ch
ar

gi
ng

of
10

(t
op

ro
w

)
an

d
50

(b
ot

to
m

ro
w

)E
V

ch
ar

gi
ng

st
at

io
ns

,(
a)

no
rm

al
iz

ed
co

st
s

as
a

fu
nc

tio
n

of
nu

m
be

ro
fs

am
pl

es
pe

rd
ay

fo
rv

ar
io

us
∆
ts

,a
nd

(b
)n

or
m

al
iz

ed
co

st
s

as
a

fu
nc

tio
n

of
∆
t

fo
rv

ar
io

us
nu

m
be

rs
of

sa
m

pl
e

tr
aj

ec
to

ri
es

pe
rt

ra
in

in
g

da
y.



MODEL-FREE EV CHARGING COORDINATION WITH RL 131

Next, we answer Q2 (i.e., how does the RL policy perform compare to an
optimal all-knowing oracle algorithm?) by referring to the best performance mea-
sures in Figure 5.2, for coordinating 10 and 50 EV charging stations. We observe
that the best performance is achieved when ∆t = 9 months for both scenarios.
The relative improvement in terms of reduction of normalized cost, compared to
a business-as-usual uncontrolled charging scenario, CBAU, amounts to 39% and
30.4% for 10 and 50 charging stations respectively. Note that CRL is still 13%
and 15.6% more expensive than the optimal policy cost Copt (the optimal policy
would achieve 52% reduction in cost with respect to CBAU) for 10 and 50 charging
stations respectively. Still, it is important to realize that to find the optimal policy,
we assume perfect knowledge of future EV charging sessions, including arrival
and departure times and the energy requirements. Clearly, having such complete
knowledge of the future is not feasible in a real-world scenario: the proposed RL
approach, which does not require such knowledge, thus is a more practical solu-
tion.

Finally, comparing the variance of the different runs (shaded regions in Fig-
ure 5.2 for 10 vs. 50 EV charging stations reveals that there is an increase in the
variance between simulation runs when the group size is increased. Note that the
same training horizons are used for both groups for a given ∆t and simulation run.
After observing the distributions of EV arrivals, EV departures and energy require-
ments, we conclude that high variability between the runs in Figure 5.2 does not
stem from differences in the distributions among the various charging stations. We
rather hypothesize that this increased performance variance among runs is caused
by the fact that the state-action space for coordinating the charging of 50 cars is
considerably bigger than the one of 10 cars, given Eq. (5.10). The performance of
the fitted Q-iteration is indeed greatly influenced by the training set F at the input
of the algorithm. With random sampling, there is no guarantee that most crucial
parts of the state-action space (e.g., best and worst trajectories) will be included in
the training set F . With larger trees, such a possibility is even more limited. Re-
exploration of the state-action space with a trained agent and retraining is one way
to improve the performance. Efficient exploration of large state-action spaces is
one of the active research domains in reinforcement learning and many algorithms
are proposed to tackle the exploration problem (e.g., [16] and [17]). A summary
of the exploration algorithms is presented in [18]. Such tackling of efficient explo-
ration of the state-action space is left for future research.8

8As indicated previously, we limit this paper’s focus to proposing the (scalable/generalizable) MDP
formulation and experimentally exploring the resulting RL-based EV charging performance using re-
alistic EV data.
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5.6.2 Variance of performance over time (Q3)

In the analyses presented in Figure 5.2, the days in the last quarter of 2015 from the
ElaadNL dataset were used to construct the test set. Now, we investigate whether
changing the test set influences the performance of the learned policy, as to answer
the question how performance of our RL approach would vary over time through-
out the year. More specifically, we use each month of 2015 as a separate test set,
using the preceding months as training data. We also vary the training data time
span from 1 to 5 preceding months. Figure 5.3 shows the normalized costs for
coordinating Ns = 10 charging stations. This is complemented in Figure 5.3 with
the relative cost improvement compared to the business-as-usual scenario, CBAU.

Figure 5.3 shows that CBAU varies across the test months: for some months
(e.g., May and Aug), the difference CBAU − Copt is larger than for others. This
indicates that the charging sessions in these test months have higher flexibility,
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Figure 5.5: The effect of scaling up the group size on a normalized cost of a policy learned
from 10 EV charging stations

which is exploited by the optimum solution. For such months with higher CBAU −
Copt, our proposed RL approach also achieves a higher reduction in normalized
cost compared to CBAU, as seen in Figure 5.4. Still, the achieved CRL is more
expensive than Copt compared to the months who offer less flexibility. We found
that the days in which the optimal charging pattern requires the exploitation of
larger charging delays are more challenging to learn by RL approach, in the sense
that RL has greater difficulty in approaching the optimum (i.e., obtaining higher
CRL). One reason is the scarcity of such days in the training set, which results in
imbalanced training data. Another reason is the random sampling of the large state
action space, which does not guarantee inclusion of the scarce (but crucial) parts
of the state-action space in the training set that is fed to the FQI algorithm.

We further investigate the effect of increasing the training data time span from
1 preceding month to 5 preceding months for each test set. We find that for major-
ity of the months, this results in improvement with respect to CBAU as depicted in
Figure 5.4.

The analysis in this section reveals the following answer to Q3 (i.e., How does
the performance vary over time using realistic data?): the RL algorithm perfor-
mance depends on the available flexibility, with greater flexibility (expectedly)
leading to larger cost reductions compared to the BAU uncontrolled charging, but
greater difficulty in approaching the optimum performance.

5.6.3 Generalization to Larger Scales (Q4)

While model-free approaches based on RL eliminate the need for accurate knowl-
edge of the future EV session characteristics (as opposed to optimization based
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Figure 5.6: The effect of scaling up Nmax on a normalized cost of a policy learned from
Nmax = 10 EV charging stations for different of number of sampled trajectories (ranging

from 5K to 20K).

approaches), they still require a reasonably long training time to be able to effi-
ciently coordinate the EV charging sessions. The runtime for the largest training
set size (covering 9 months, with 5K sample trajectories per day) is approximately
3 hours for 10 EV charging stations, while that of 50 charging stations is approxi-
mately 48 hours.9

Since our proposed formulations are independent of the number of EV charg-
ing stations (Nmax), it is interesting to investigate how a policy learned based on
training with a small number of EV charging stations performs when applied to
coordinate a larger group of stations. To do this, we use the policy learned from
data of 10 EV charging stations with ∆t = 9 months. We use the EV sessions
in the last quarter of 2015 as our test set. To investigate the effect of the increase
in the number of EV charging stations without changing other system character-
istics, we duplicate the EV charging sessions by a factor scale to create a test set
of larger Nmax.This still changes the optimum solution as illustrated with a sim-
ple example in Figure 5.5 where the length of the control horizon is Smax = 4

slots. In Scenario I of Figure 5.5, at time t = 1 we have 2 connecting cars:
V = {(∆tdepart

1 ,∆tcharge
1 ) = (1, 4), (∆tdepart

2 ,∆tcharge
2 ) = (1, 4)} and no other ar-

rivals during the control horizon. The best action is to charge 50% of the cars at
t = 1 and 2 to flatten the load curve. In Scenario II of Figure 5.5, set V is du-
plicated once and the best action now is to charge 25% of the cars in each of the
control timeslots.

The normalized costs (i.e., relative to the optimum Copt) of the learned policy
for scaled-up group sizes are shown in Figure 5.6 for various scales and number

9Running on an Intel Xeon E5645 processor, 2.4 GHz, 290 GB RAM.
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of samples per day in the training set. The scale of 1 corresponds to the original
test set without any duplication. The largest jumps in normalized costs CRL are
observed when the group size is doubled (i.e., scale factor 2×). Further increases
in Nmax (i.e., more than 2×), only lead to marginal increase in normalized cost
for any number of sample trajectories per day (ranging from 5K to 20K). These
analyses further confirm that our proposed MDP formulations are generalizable to
various group sizes and that a policy learned from a smaller group of EV charging
stations can be used to coordinate the charging of a larger group, at least provided
that the distribution of EV arrivals, departures and energy demands are similar.

5.7 Conclusion
In this paper, we took the first step to propose a reinforcement learning based
approach for jointly controlling a charging demand of a group of EV charging
stations. We formulated an MDP with scalable representation of an aggregated
state of the group which effectively takes into account the individual EV charging
characteristics (i.e., arrival time, charging and connection duration). The proposed
formulations are also independent of the number of charging stations and charging
rates, hence, they generalize to varying number of charging stations. We used a
real-world EV charging dataset to experimentally evaluate the performance of the
proposed approach compared to an uncontrolled business-as-usual (BAU) policy,
as well as an optimum solution that has a perfect knowledge of the EV charging
session characteristics (in terms of arrival and departure times). The summary
of our analyses (in form of answer to 4 research questions) and the conclusions
thereof, for a realistic 1-year long dataset (from ElaadNL) [12], are as follows:

(1) While the representation of the state and action are independent of the group
size (i.e., number of charging stations), the resulting state-action space is still
relatively large. Hence, feeding the entire state-action space to the learning
algorithm (i.e., FQI) is not feasible. This raised the question Q1: What are
appropriate training data time span and number of sampled trajectories from
the decision trees? We investigated the effect of the training data time span
and the number of sample trajectories per day on the performance of the
learned policy and concluded that when the training data time span is longer
than 3 months, a smaller number of samples (order of 5K) from each of the
training days achieve similar performance as the larger number of sampled
trajectories from those training days.

(2) We investigated how the RL policy performs compared to an optimal all-
knowing oracle algorithm (i.e., Q2). We show that our proposed approach
learns a policy which can reduce the normalized cost of coordinating charg-
ing across 10 and 50 EV charging stations by 39% and 30.4% respectively
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from the normalized cost of the uncontrolled BAU charging policy. The
achieved reduction in performance by our approach does not require future
knowledge about EV charging sessions and it is only 13% (for Nmax =10
charging stations) and 15.6% (for Nmax =50 charging stations) more expen-
sive than the optimum solution cost with has a perfect knowledge of future
EV charging demand.

(3) We then analyzed how the performance of our proposed RL approach varies
over time using realistic data (i.e., Q3) by checking whether the learned pol-
icy performs similarly when various months of the year are used as test set
while the agent is trained on the preceding months. The results indicate that
the flexibility — hence reduction in the normalized cost — varies across
various months. In particular, the months with larger flexibility have larger
reduction in cost by the learned policy with respect to the normalized cost
of the BAU policy. Still, the cost gap between the learned policy and the
optimal one is larger for those higher flexibility months. This is due to the
scarcity of the days with larger flexibility in the training set as well as the
random sampling of the state-action space, which does not guarantee inclu-
sion of the rare but crucial parts of the state-action space in the training set
that is fed to the FQI algorithm.

(4) Finally, we trained an agent using an experience from 10 EV charging sta-
tions and applied the learned policy to control a higher number of charging
stations (up to a factor of 10× more arrivals) to check whether the learned
approach generalizes to different group sizes (question Q4). These analyses
further confirmed that our proposed MDP formulations are generalizable to
groups of varying sizes and that a policy learned from a small number of EV
charging stations may be used to coordinate the charging of a larger group,
at least provided that the distribution of EV arrivals, departures and energy
demands are similar.

In our future research, we will study four possible improvements to the pre-
sented approach:

(1) We used random exploration of state-action space to collect the experience
(in form of tuples) as an input to our learning algorithm. We will investigate
whether incorporating an efficient exploration strategies to perform a more
informed sampling of the state-action space improves the performance?

(2) We used a fully connected neural network for function approximation in the
FQI algorithm. Since we represent our aggregate demand in a state using a
matrix, it is relevant to investigate whether using convolutional neural net-
works (similar to the function approximation adopted in [11]) will further
improve the performance.
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(3) We represented the aggregate demand in each state using a 2D grid with one
axis being ∆tdepart, the other ∆tcharge. This approach efficiently represents
the aggregate demand while retaining the individual EV charging character-
istic. However, the discretization during the binning process introduces an
approximation error in the cost function. The error can be minimized by
increasing the time-granularity (i.e., using shorter ∆tdepart and ∆tcharge) in
the aggregate demand representation of a state. However, increasing time-
granularity results in a larger state space, affecting the scalability and the
learning speed of the proposed approach. Hence, as a next step, we will
analyze how this approximation error may influence the optimization result
at the aggregation level. We will also investigate the possibility of identi-
fying an optimum time-granularity that results in an acceptable approxima-
tion error at the aggregated level without jeopardizing the scalability and the
learning speed of the proposed approach.

(4) The learning algorithm in our proposed approach is based on the value it-
eration approach where the state-action value is estimated for various state-
action pairs and an optimum policy is deduced form the estimated action-
values. We will investigate whether learning the policy directly using policy
iteration methods improves the performance.
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6
Conclusion

“When you have exhausted all the possibilities, remember this: you haven’t”

–Thomas Edison

6.1 Summary

This thesis focused on paving the way for realization of practical demand response
(DR) algorithms via two types of contributions: (i) analysis, characterization,
quantification and modeling of the flexibility stemming from residential white–
good usage and roadside EV charging based on real-world data, and (ii) proposal
of a model-free approach based on RL to learn the best coordination policy for
charging the collection of EVs from a real-world dataset.

Flexibility is the main asset for DR. Hence, a clear understanding of the flex-
ibility stemming from various applications is crucial to design a practical DR al-
gorithm and realistically assess its impact. As a part of its first contribution, this
thesis provided insights on the flexibility characteristics from white-good usage
and EV charging sessions and answered the following research questions.

For the flexibility stemming from residential white-good usage (characterized
and modeled in Chapter 2) :

(1) Do customers have specific behavioral patterns in using their smart appli-
ances flexibly? Does this behavior vary among different households? Three
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behavioral patterns were observed when clustering the customer flexibil-
ity profiles: (i) similar deadlines and different configuration times (a domi-
nant behavioral pattern in smart dishwasher usage), (ii) similar configuration
times but different deadlines, and (iii) similar flexibility duration.. Not all of
these patterns necessarily exist across all customers and smart appliances:
customer behavioral patterns are different form one appliance to the other
and also across the different households. This further suggests that assuming
a unique behavioral patterns across appliances in different households when
designing and assessing DR algorithms is not realistic. Hence, to achieve
a practical DR algorithm, the behavioral variations among the participants
should be taken into account.

(2) Do customers’ usage habits, hence the offered flexibility, change over time
(e.g., during weekends, holidays, and change of seasons?) To answer this
question, we statistically tested the effect of 4 factors on the behavior of
observed customers for smart appliances: holidays, weekends, seasons and
days-of-the-week. The dependency analysis of real-world data suggests that
customers are not similarly affected by aforementioned factors. For exam-
ple, the weekends influence the behavior of at least 50% of the customers
with a smart dishwasher. Seasons and day-of-the-week factors influence the
behavioral patterns of more than 50% of the customers in using their smart
washing machines.

For the flexibility stemming from EV charging sessions (analyzed and quan-
tized in Chapter 3):

(1) Do EV owners have specific habits to charge their cars (e.g., taking their
cars to a charging station at particular times of the day)? To answer this
question, we clustered the EV data in a 2D space in terms of arrival and de-
parture times. As such, we identified three behavioral clusters: charge near
home, charge near work, and park to charge clusters. The three behavioral
clusters differ substantially in their arrival times, sojourn times and the idle
times as illustrated in Chapter 3.

(2) Are the characteristics of the charging sessions (e.g., arrival, sojourn and
idle times) sensitive to seasonal changes or weekdays? Weekends and week-
days as well as seasonal changes impact the arrival times in all three clus-
ters. In general, the arrival times are earlier in summer and spring in all the
clusters. The arrivals are also earlier on weekdays compared to weekends.
However, seasons have no substantial impact on the sojourn and idle times.
Sessions in park to charge and charge near work clusters have shorter so-
journ and idle times in the weekends whereas the sessions in the charge near
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home clusters have longer sojourn and idle times in the weekends compared
to weekdays.

(3) How is flexibility (in terms of amount, time and duration of the shifted en-
ergy) exploited? Which aspect of flexibility (time and duration of availability
or amount of deferrable energy) is more useful at various times of the day?
The flexibility exploitation is greatly influenced by the uncontrolled busi-
ness as usual (BAU) load patterns, the distribution of arrival times, and the
renewable energy generation patterns. The main motivation for exploita-
tion of the flexibility in both load flattening and load balancing is to fill the
valleys of the BAU load pattern. Hence, longer shifts are observed from
the evening peaks compared to the morning peaks in the weekdays (since
the nighttime valley is larger and deeper). Similarly, longer shifts are seen
from Saturday peaks compared to Sunday peaks because the night valley
between Saturdays and Sundays is bigger. For arrivals in the afternoon until
midnight, flexibility in terms of deferrable time is almost fully exploited to
ensure the charging takes place in the nighttime (which corresponds to the
lower demand). Yet, this does not imply that all the charging is delayed,
meaning that the state of charge of the battery at the BAU charging com-
pletion time is pretty high. Across the behavioral clusters, the offered flex-
ibility in charge near work cluster is often used to fill the afternoon valley
since these sessions are characterized by morning arrivals and their sojourn
typically does not cover the night valley. Hence, their exploitation in terms
of deferrable time and energy is typically lower compared to the arrivals in
the other clusters which are usually in the afternoon. The sessions in the
charge near home cluster are better candidates to fill the night valley.

The aforementioned analysis using real-world datasets and answering vari-
ous questions pertaining the customers behavioral patters fosters more realistic
assumptions for the design and implementation of DR algorithms. In addition to
the provided insights on the flexibility characteristics, availability of the real-world
datasets to broader spectrum of researchers also promotes a realistic design and as-
sessment of the DR algorithms. However, the deployment of the smart appliances
in the residential sector is still at its infancy, hence, the flexible appliance usage
data is typically only available from pilot projects and testbeds. The majority of
these datasets are not public due to intellectual property issues. It is also very ex-
pensive to collect such data. This hinders the widespread development of practical
and realistic DR algorithms. To alleviate this issue, this dissertation proposed (in
Chapter 2) two systematic methods based on a real-world data to model the flex-
ibility behavior of an individual residential household towards a particular smart
appliance. These models can be used for generating the flexible white-good appli-
ance usage data.
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The first method (denoted as Model I in Chapter 2) is a two-stage approach.
In the first stage, we identify the typical deadlines of the customer by using a
clustering algorithm and estimate the probability P (deadline) proportional to the
size of the cluster for the respective deadline. For each cluster of deadlines re-
sulting from Stage I, we then use parametric probability distributions (GMMs in
particular) to model the corresponding configuration times in Stage II and ob-
tain P (configuration time | deadline). The joint distribution of deadlines and
configuration times can then be obtained by P (configuration time, deadline) =

P (deadline) · P (configuration time | deadline). In the second method (denoted as
Model II in Chapter 2), a bivariate GMM is fit to the flexibility profile of the cus-
tomer: both of the flexibility features (i.e., deadline and configuration time) form
the input to the model, and their joint probability distribution is estimated in a sin-
gle step. The Bayesian MCMC is employed to fit the bivariate mixture model and
select the optimal number of components. To validate the efficiency of Model I
and Model II in regenerating the customer behavior for synthetic data generation
purposes, we proposed a systematic approach based on a Kolmogorov-Smirnov
(k-s) test. Based on our validations, Model II was identified to be an appropriate
regenerative model for all 3 types of white goods in our analysis.

The timing aspect of the flexibility is of cylindrical nature (i.e., time of avail-
ability is a circular measure while the duration of shift in energy is a linear quan-
tity). This raises a question whether probabilistic generative models using cylindri-
cal distributions are better then the linear ones for modeling energy consumption
flexibility.

To answer the above-raised question, Chapter 4 proposes a Bayesian approach
based on MCMC to estimate the parameters of Abe-Ley mixture distribution. Abe-
Ley distribution is a cylindrical distribution based on the combination of Weibull
and sine-skewed von-Mises. The choice of the distribution is motivated by its
various merits compared to the other existing cylindrical distributions which are
outlined as: (i) flexible shapes, (ii) cross-correlation among linear and circular
variables, (iii) well-known marginal and conditional distributions and (iv) support
of data skewness. The proposed approach in Chapter 4 is then used to model the
residential white-good usage flexibility and compare it with the proposed linear
models of Chapter 1 in Appendix A. In terms of the predictive accuracy, the linear
models however are still found to be better models than the cylindrical ones.

The second contribution of this thesis (Chapter 5) is the development of a
model-free DR algorithm for for jointly coordinating a charging demand of a group
of EV charging stations. We formulated an MDP with scalable representation of
an aggregated state of the group which effectively takes into account the individual
EV charging characteristics (i.e., arrival time, charging and connection duration).
The proposed formulations are also independent of the number of charging stations
and charging rates, hence, they generalize to varying number of charging stations.
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We adopt batch reinforcement learning (fitted Q-iteration) with function approxi-
mation to find the best EV charging policy. While the representation of the state
and action are independent of the group size (i.e., number of charging stations),
the resulting state-action space is still relatively large. Hence, feeding the entire
state-action space to the learning algorithm (i.e., FQI) is not feasible. This raised
the following question:

(1) What are appropriate training data time span and number of sampled tra-
jectories from the decision trees? To answer this question, we investigated
the effect of the training data time span and the number of sample trajec-
tories per day on the performance of the learned policy and concluded that
when the training data time span is longer than 3 months, a smaller number
of samples (order of 5K) from training days achieve similar performance as
the larger number of sampled trajectories from those training days.

Furthermore, we used a real-world EV charging dataset to experimentally eval-
uate the performance of the proposed approach compared to an uncontrolled business-
as-usual (BAU) policy, as well as an optimum solution that has a perfect knowledge
of the EV charging session characteristics (in terms of arrival and departure times).
The following questions where raised and answered.

(2) How does the RL policy perform compare to an optimal all-knowing ora-
cle algorithm? We show that our proposed approach learns a policy which
can reduce the normalized cost of coordinating charging across 10 and 50
EV charging stations by 39% and 30.4% respectively from the normalized
cost of the uncontrolled BAU charging policy. The achieved reduction in
performance by our approach does not require future knowledge about EV
charging sessions and it only 13% (for 10 charging stations) and 15.6% (for
50 charging stations) more expensive than the optimum solution cost which
has a perfect knowledge of future EV charging demand.

(3) How does that performance vary over time using realistic data? We an-
swer this question by checking whether the learned policy performs simi-
larly when various months of the year are used as test set while the agent
is trained on the preceding months. The results indicate that the flexibility,
hence reduction in the normalized cost varies across various months. In par-
ticular, the months with larger flexibility have larger reduction in cost by the
learned policy with respect to normalized cost of BAU policy.

(4) Does a learned approach generalize to different EV group sizes? To answer
this question, we trained an agent using an experience from 10 EV charg-
ing stations and applied the learned policy to control a higher number of
charging stations (up to a factor of 10× more arrivals). The analyses further
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confirmed that our proposed MDP formulations are generalizable to groups
of varying sizes and that a policy learned from a small number of EV charg-
ing stations may be used to coordinate the charging of a larger group, at least
provided that the distribution of EV arrivals, departures and energy demands
are similar.

In summary, DR algorithms have received very substantial attention as a viable
and cost effective solution of guaranteeing supply-demand balance in the smart
grid. However, widespread deployment of DR algorithms in the grid has been slow
due to various barriers. This thesis focused on the paving a way to establishing
practical DR algorithms (which is one of the DR barriers). The work presented in
this thesis comprises (i) analysis and characterization of energy consumption flex-
ibility, (ii) development of generative probabilistic models to facilitate availability
of realistic data to broader range of researchers, and (iii) proposal of a model-free
DR algorithm for the coordination of the charging of EV groups of various sizes.

6.2 Future Work

Development of practical DR algorithms is the key to progress towards realizing
the full potential of the smart grid. With advances in deep reinforcement learning,
model-free DR solutions are proliferating in the recent literature. As established in
this thesis, model-free approaches do not require accurate models of the coordina-
tion problem, hence are a promising approach in realizing practical DR algorithms.
Specifically, in the residential sector, as shown in Chapter 2, the uncertainty asso-
ciated with consumer lifestyle makes the modeling task a challenging one.

The model-free DR algorithms are data-driven, hence, the need for real-world
energy consumption data is more critical than ever. This thesis presented genera-
tive probabilistic models based on the real-world flexible energy usage by residen-
tial costumers. Such modeling could also be applied to model customer behavior
towards other flexibility sources (e.g., TCLs).

Furthermore, the majority of the existing model-free DR algorithms can co-
ordinate only a very small number of flexible devices due to the scalability issues
when formulating the joint coordination problem as an MDP. The large state-action
spaces associated with many of the real-world coordination problems further chal-
lenge the exploration of the environment for the learning agent. Some of the
promising directions to foster model-free DR solutions for large-scale coordina-
tion problems include: (i) the use of function approximation (e.g., deep neural
networks) to generalize the learning from the explored states to unexplored states,
(ii) development of efficient exploration strategies, (iii) the use of policy iteration
algorithms to learn the best policy directly instead of approximating the action–
value function. Note that in context of the reinforcement learning, various algo-
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Figure 6.1: Blockchain based architecture for decentralized management of energy grids
(from [1])

rithms are already available to tackle the aforementioned challenges. However,
they need to be effectively adopted for the coordination problems in smart grid
paradigm. The use of multi-agent reinforcement leaning is also a promising di-
rection for DR since it is a decentralized approach where the learning agent only
needs local information to learn the best coordination policy (although, a global
reward/cost still needs to be communicated with each agent).

Another promising (and very recent) direction for DR algorithms is the use
of smart contracts within the blockchain technology. Blockchain technology has
received a great deal of attention in the energy sector because it flourishes a new
peer-to-peer market for trading not only the locally produced energy but also the
demand flexibility. Introduction of such peer-to-peer trading brings many changes
to the traditional DR schemes. For example, it eliminates the need for a cen-
tral entity (e.g., distribution grid operator) to promote DR participation. Pop et
al. [1] demonstrate the use of decentralized blockchain mechanisms for delivering
transparent, secure, reliable, and timely energy flexibility. Their envisioned decen-
tralized management of smart grid is depicted in Figure 6.1. One of the challenges
the blockchain based DR algorithms need to address is the scalability issue due to
well-known “consensus problem” [2] in the blockchains which limits the number
of transactions per second.
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A
Modeling Real-World Flexibility of

Residential Power Consumption:
Exploring the Cylindrical WeiSSVM

Distribution

In this appendix, we compare the generative models developed in Chapter 1 (using
Gaussian mixture models on linear scale) for modeling the flexible white-goods
usage with the generative models developed using Abe-Ley mixtures in Chapter
4. Note that Abe-Ley mixtures and WeiSSVM mixtures are two names used in
the literature to refer to the same distribution. In this literature, we denote the
distributions developed and estimated in Chapter 4 as WeiSSVM mixture models
(WMM).
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N. Sadeghianpourhamami, D. F. Benoit, D. Deschrijver, and C.
Develder.

Published in Proceedings of 9th ACM International Conference on Future
Energy Systems (e-Energy 2018), Jun. 2018.

Abstract A user’s power consumption flexibility is defined in terms of amount,
time and duration of availability. The timing of flexibility is circular in nature.
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Therefore, it is natural to adopt circular distributions to model this data. This paper
investigates the key research question whether that leads to better generative mod-
els than using conventional linear distributions. In particular, it fits Gaussian mix-
ture models and a very flexible recent cylindrical (WeiSSVM) distribution mixture
to real-world field trial data. Using a predictive accuracy performance measure,
it is found that the latter does not provide substantially better fits. Shortcomings
of both models are pointed out and it is concluded that research for appropriate
statistical models for the observed data is still open.

A.1 Introduction

User energy consumption flexibility is typically characterized by the amount and
the duration of the deferrable energy at various times of the days. The timing
aspect of the flexibility is greatly influenced by user lifestyle and energy consump-
tion habits. Hence, to derive generative models of user flexibility, its timing aspect
is quantified using configuration time and deadline [1]. The configuration time
indicates when the users configure their smart appliances flexibly and the deadline
is the latest possible start time of the appliance. The configuration time is of cyclic
nature while the deadline is a linear quantity. Hence, flexibility measurements can
naturally be regarded as bivariate cylindrical data.

Initial studies modeling the energy consumption flexibility avoid the cylindri-
cal representation by defining a heuristic algorithm that identifies the middle of
the largest gap on the circular axis to wrap the data around and proceed to mod-
eling using probabilistic models defined on linear scales (e.g., [1] [2]). However,
such heuristic algorithms might fail in situations where such a reference point is
challenging or impossible to find. On the other hand, most of the existing cylin-
drical distributions are limited in terms of flexibility in modeling cross-correlation
between the cylindrical and linear variables as well as modeling skewness and het-
erogeneity in the data (which requires mixture models). Recently, Abe and Ley
proposed a cylindrical distribution (named WeiSSVM) which is tractable, flexible,
has well-known conditional and marginal distributions and models the skewness
and cross-correlation between the cylindrical and linear variables [3].

This paper investigates how well WeiSSVM mixtures can model the energy
consumption flexibility compared to using distributions defined on the linear scale.
The analysis is based on data from year-long measurements in the LINEAR pilot
project [4], where [1] previously modeled the user behavior towards smart wet-
appliances with Gaussian mixture models (GMM).



EXPLORING THE CYLINDRICAL WEISSVM FOR MODELING RESIDENTIAL

FLEXIBILITY 151

A.2 Modeling User Energy Consumption Flexibility
with WeiSSVM Mixtures

A.2.0.1 PDF of WeiSSVM Mixtures

The WeiSSVM distribution is a combination of a Weibull distribution and the sine-
skewed Von-Mises distribution. Its probability density is defined as [3]:

f(θ, x|ζ) 7→ αβα

2π cosh(κ)
· (1 + λ sin(θ − µ)) · xα−1·

exp[−(βx)α(1− tanh(κ) cos(θ − µ)],

with random variables (θ, x) ∈ [0, 2π) × [0,∞), and distribution parameters
ζ = (α, β, µ, κ, λ). The parameter vector of the WeiSSVM distribution comprises
α, β > 0, which are linear shape and scale parameters respectively, 0 ≤ µ < 2π

is a circular location parameter, κ ≥ 0 controls the circular concentration, and
−1 ≤ λ ≤ 1 controls the circular skewness. The mixture of a K-component
WeiSSVM distribution has the following density function:

f(θ, x|ϑ) =

K∑
k=1

ηkfk(θ, x|ζk)

where fk(θ, x|ζk) is the probability density of the kth component indexed by pa-
rameter set ζk; ηk is the weight of the kth component, thus η = (η1, η2, ..., ηK) is
the weight distribution constrained by:

ηk ≥ 0, η1 + η2 + ...+ ηK = 1.

Hence, ϑ = (ζ1, ..., ζK ,η) is the parameter vector of the mixture model.

A.2.0.2 Model Parameter Estimation

Note that the likelihood of the WMMs is a high dimensional function. Hence,
Bayesian methods are more reliable than point-estimates (e.g., expectation maxi-
mization) in estimating the parameters of the WMMs since they output the entire
posterior distribution. The Metropolis-Hastings algorithm [5] is used to estimate
the parameters of the WMMs for the user flexibility.

A.2.0.3 Measures for Model Comparison

One of the use cases of generative models of the energy usage flexibility is to gen-
erate data samples (e.g., to simulate scenarios for assessing DR impact). Hence, it
is natural to compare the generative models in terms of their out-of-sample predic-
tive accuracy. For comparing the models, we use log point-wise prediction density
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Table A.1: elppd of GMM and WMM fits for dishwashers.

User WMM GMM User WMM GMM

1 -73.0(3) -45.1(3) 9 -496.9(5) -469.8(5)
2 -173.0(2) -158.0(2) 10 -579.0(4) -556.1(4)
3 -247.8(5) -229.3(4) 11 -486.7(4) -464.7(4)
4 -341.3(5) -314.7(4) 12 -807.6(3) -786.3(5)
5 -198.0(5) -157.5(5) 13 -1054.3(6) -1011.7(5)
6 -245.6(4) -219.3(4) 14 -450.8 (4) -413.7(4)
7 -401.5(5) -411.5(4) 15 -1031.9(5) -1015.6(5)
8 -488.6(4) -456.6(4)

(elppd), calculated from the posterior samples, as a popular method of quantizing
the out-of-sample predictive accuracy of a model [6]. When modeling data using
mixture models, one also needs to identify the optimal number of mixtures. This
value is determined by finding a knee point in the plot of the elppd measure vs. the
number of mixtures.

A.3 Analysis and Model Comparison

This section presents the results of fitting WMMs as a generative model of the
energy usage flexibility for the households that participated in the aforementioned
LINEAR pilot project [4]. This data (comprising 15 dishwashers, 12 washing ma-
chines and 8 tumble dryers) was previously modeled using GMMs [1]. The models
are compared next. In terms of the resulting clusters: GMMs typically identify ei-
ther clusters in parallel with the x-axis or clusters along a diagonal as seen from
the example users depicted in the bottom row of Figure A.1. The former indi-
cates configurations with similar deadline while the latter maps to configurations
with similar flexibility duration. WMMs also identify clusters in parallel with the
x-axis. As opposed to GMMs, WMMs find clusters in parallel with the y-axis, in-
dicating similar configuration time but varying deadlines and hence different flex-
ibility duration. Also, due to the inherent nature of the distributions, each GMM
component is symmetrical, but WMMs have skewed distributions with increasing
concentration along the linear axis.

To compare the predictive accuracy, we calculated the elppd values for the
users of all three appliances and summarized the values for dishwashers in Ta-
ble A.1. The numbers between parentheses are the optimum number of mixtures.
The bold values in Table A.1 indicate a better generative model. As seen from
Table A.1, WMMs perform comparable or worse than the GMMs for the majority
of users of dishwashers. Similar results are obtained for users of washing ma-
chines and tumble dryers. This is due to inherent characteristics of the WMMs
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Figure A.1: Comparison of distribution shapes of the mixture components and identified
clusters with WMMs (top row) and GMMs (bottom row) for selected users of dishwashers.
Note that data on bottom row is wrapped around a new x-axis reference, while for the data

on top row, the x-axis is circular (i.e., 00:00 and 24:00 are the same points)
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and GMMs. WMMs are more suitable in modeling datasets in which the circular
concentration increases along the linear axis, while the measurements in LINEAR
show that users do not exhibit such trait. Instead, the areas of high densities indi-
cating a consistent daily behavior is seen in configuration patterns of the users for
all three appliances. This characteristic is well modeled with GMMs.

A.4 Conclusion
An analysis of the LINEAR dataset shows that GMMs are preferred over WMMs,
because they compute better generative models. Despite having better predic-
tive accuracy than WMMs, GMMs still suffer from the following limitations:
1. GMMs are defined for linear scale and are not suitable for modeling scenar-
ios where an adequate reference on the circular axis is impossible or challenging
to find, 2. GMMs are defined on both negative and positive values, but the flexibil-
ity characteristics are positive quantities. Hence, GMMs are prone to generating
meaningless samples.

Hence, defining a suitable distribution for modeling user energy consumption
behavior cylindrically is still an open research issue. Given that (compared to real-
life trials) simulating scenarios for testing DR algorithms’ impacts is highly cost
effective, it is also a highly relevant issue.
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