
Analyse en optimalisatie van discrete-tijd-wachtlijnmodellen
met generalized-processor-sharing

Analysis and Optimization of Discrete-Time Generalized Processor Sharing Queues

Jasper Vanlerberghe

Promotoren: prof. dr. ir. J. Walraevens, prof. dr. ir. H. Bruneel
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter: prof. dr. ir. J. Walraevens

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019

ISBN 978-94-6355-162-5
NUR 919, 986
Wettelijk depot: D/2018/10.500/80

Examencommissie:
Voorzitter: prof. dr. ir. Filip De Turck
Promotoren: prof. dr. ir. Joris Walraevens

prof. dr. ir. Herwig Bruneel
prof. dr. ir. Onno Boxma
prof. dr. ir. Tuan Phung-Duc
prof. dr. Hennie De Schepper
prof. dr. ing. Dieter Fiems
prof. dr. ir. Stijn De Vuyst
dr. Tom Maertens

Dankwoord

De laatsten zullen de eersten zijn. Eindelijk ben ik aan het laatste —
en meest uitgestelde — hoofdstuk van dit boek begonnen, wat grappig
genoeg het eerste is dat jullie zullen lezen. Het is een dankwoord,
want hoewel ik als enige auteur van dit boek genoteerd sta, was het
er zonder de expliciete en impliciete hulp van velen simpelweg nooit
gekomen.

Na een e-mail van professor Herwig Bruneel had ik 25 januari
2012, een woensdagnamiddag, met hem afgesproken. We zouden het
in het algemeen hebben over de modaliteiten van een doctoraat. Ik
wist immers op dat moment nog niet hoe het onderzoek voor een
thesis mij zou bevallen, laat staan of ik een eventueel doctoraat dan
wel in de wachtlijntheorie wilde doen. Anderhalf uur later stapte ik
terug buiten en wist ik niet goed wat er allemaal gebeurd was. We
hadden het inderdaad kort over die modaliteiten van een doctoraat
gehad maar waren het grootste gedeelte van de tijd afgedwaald. On-
der de indruk van het aangename gesprek, had ik er meteen spijt van
dat ik nooit in zijn theorieles aanwezig was geweest. Herwig, ik weet
niet of ik je dat ooit verteld heb, maar bij deze ’sorry’1. De rest is
geschiedenis. Mijn eerste woord van dank gaat dan ook uit naar mijn
promotor Herwig. Zonder jou was ik nooit bij SMACS/TELIN te-
recht gekomen. Ik wens je bovendien graag uitdrukkelijk te bedanken
voor de ontspannen sfeer die je vorm hebt gegeven in de vakgroep en
het feit dat ik me op het einde van de maand nooit zorgen hoefde te
maken of ik wel betaald zou worden.

Van bij mijn begin bij SMACS nam professor Joris Walraevens mij
op sleeptouw. Alle resultaten in dit boek bouwen voort op zijn werk
en de ideeën zijn ontsproten tijdens vruchtbare discussies met hem.
Hij heeft me alle kneepjes van het vak geleerd en hij heeft bladen
vol teksten tijdig nagelezen, niet in het minst de laatste weken voor
het indienen van dit boek. Joris, ik bewonder vooral je opendeuren-
beleid en je toegankelijkheid. Zelden maakte ik vooraf een afspraak,
maar de talloze keren dat ik je deur platliep (of eerst nog de deur

1Ter mijner verdediging: Wachtlijntheorie overlapte met een keuzevak waar
we met amper 5 studenten zaten.

i

ii DANKWOORD

van het labo), stoorde ik zelden. Waar je ook mee bezig was, het
kon altijd wel wachten. Bij een tegenslag of een non-resultaat wer-
den meermaals de geruststellende, gevleugelde woorden “Ook dat is
onderzoek.”gesproken. Ze zullen me altijd bijblijven en ik heb ze on-
dertussen al meermaals zelf gereciteerd. Joris, ik kon me geen betere
promotor en mentor wensen.

Aansluitend bedank ik graag de TELIN collega’s die het leven
hier op de vakgroep kleur hebben gegeven. Bij uitstek de mensen
waarmee ik het io io ee-bureau door de jaren heen gedeeld heb: Bart,
Julie, Kurt, Lennert, Huynh, Adriaan, Hannah. Ik kom graag nog
eens meehelpen als er personeel te kort is in Santa’s workshop of de
tuinkers water moet krijgen in iemands afwezigheid.

Verder bedank ik nog graag Patrick en Sylvia, temmers van het
administratieve monster en altijd goed voor een praatje en een woord
van steun.

En last but not least onze systeembeheerders Philippe en Davy.
In mijn zes jaar op de vakgroep kan ik de technische pannes op één
houtzagershand tellen. Ik ken genoeg voorbeelden waar dat anders is.
Ik heb alvast medelijden met alle systeembeheerders op mijn toekom-
stig carrièrepad, want ze zullen afgemeten worden aan de standaard
die jullie hebben gezet. Ook de vele middagen waarbij we het 13u
journaal van commentaar en kwinkslagen voorzagen, heb ik altijd
leuk gevonden.

Mijn ouders en mijn familie mogen in dit dankwoord uiteraard
niet ontbreken. Mama, papa, jullie hebben me altijd alle kansen
gegeven en gezorgd dat ik niks tekort kwam. Jullie onvoorwaardelijke
steun en hulp in alles wat ik doe, is van onschatbare waarde. Zonder
jullie stimulatie om altijd mijn best te doen en niet te snel tevreden
te zijn, was ik hier nooit geraakt.

Ook mijn grootouders, die altijd zeer nabij aanwezig waren, heb-
ben me mee gevormd als mens. Germaine, Esther en Paul — mij
beter bekend als dichte meme en verre meme en pepe; ver want ze
woonden immers 2,5 km verder terwijl dicht slechts 1 deur verder was
— het is jammer dat jullie dit moment niet meer kunnen meemaken.
Dichte pepe, Jerome, godfather van het Vanlerberghe geslacht, ik heb
veel van je geleerd en ik hoop dat ik nog lang bij je kan komen binnen-
vallen voor een praatje. Om op jouw leeftijd nog zo kwik van geest
en best goed te been te zijn, teken ik direct. Dat ik daarvoor mijn
haar moet verliezen, neem ik er zonder meer bij. Pepe, nu moet ik
echt niet meer naar school en die zomervakantie waar je vanuit ging
dat ik ze altijd had, heb ik nu zeker niet meer.

Mijn broers Jeroen en Ruben, we verschillen wel eens van mening
en in combinatie met de koppigheid die ons als Vanlerberghes ty-

DANKWOORD iii

peert, is dat niet altijd een succesverhaal. Ik weet echter dat jullie er
altijd voor me zullen zijn, en ik hoop dat jullie weten dat je hetzelfde
kunt verwachten van mij. Enig kind zijn was voor niemand van ons
iets geweest, denk ik. Het feit dat ik nu goed kan discussiëren en
argumenteren heb ik ongetwijfeld ook aan jullie te danken.

Dan heb ik nog mijn vrienden waarvan ik 95% tegen het lijf ben
gelopen in chiroverband. De Chiro, ik heb er veel van gekregen en
geleerd. Dat probeer ik intussen al jaren ook allemaal terug te geven;
ik blijf er echter ook veel van terugkrijgen. When does it ever stop?
Vroeg of laat kruipt het onder je vel en wordt het een stuk van je-
zelf. In het bijzonder aan het organiseren van Aspitrant/Aspibivak,
het bouwen van touwenparcours en van spectaculaire constructies op
startdagen en Krinkels heb ik enkel goede herinneringen. Ook de
vele gezellige voorbereidingsweekends in het bos met de Tochtenbi-
vakploeg zorgden altijd voor de nodige ontspanning. Ik hoop van
harte dat we blijven projecten en excuses verzinnen om regelmatig
bijeen te komen, al hebben we in feite geen excuses nodig.

Tenslotte wil ik nog een aantal vrienden extra bedanken. Joke, het
heeft even geduurd voor we elkaar gevonden hadden op verschillende
evenementen, maar ik ben heel blij dat ik je uiteindelijk toch leerde
kennen. Wij komen alvast een tikkeltje dichter wonen dan kunnen
we wat vaker bij elkaar binnenvallen.

Hannes en Simon, ik ben blij dat we na onze engagementen in
de chiro elkaar ook hebben gevonden in een gezamelijke passie, voor
klimmen, engineering en trash-talk. Een gemeenschappelijk moment
prikken is een heuse uitdaging geworden. Het resultaat is dat we al
eens sneller een hele tijd zeveren, ik bedoel bijpraten, dan echt toe
te komen aan het expliciete doel van de afspraak. Echter die berg
beklimmen het komende jaar: we maken er werk van!

Als laatste Jesca, ik denk dat je uit eerste hand kunt getuigen
dat het afwerken van een doctoraat niet echt een feestje is. Het
samenleven met iemand die dat aan het doen is, evenmin. Ik weet
hoe moeilijk ik kan zijn als ik wat onder stress sta. Bedankt dat je het
ook altijd in die context hebt kunnen plaatsen en me hebt geholpen
door andere dagelijkse beslommeringen uit handen te nemen.

Aan jullie allen, ik had de laatste maanden niet altijd even veel
tijd voor jullie, mijn excuses. Maar tijd voor een feestje, nu. Een
feestje voor jullie evenzeer als het er eentje voor mij is.

Gent, oktober 2018
Jasper

iv DANKWOORD

Elk van de hoofdstukken start met een uitspraak of spreuk die ik al meermaals
mocht aanhoren van mijn helden. Bij deze laat ik jullie graag mee genieten van
hun wijsheden die me mee gevormd hebben.

Table of Contents

Dankwoord i

Nederlandstalige samenvatting ix

Summary in English xiii

1 Introduction 1
1.1 Queues and Queueing theory 1

1.1.1 Arrival process 2
1.1.2 Waiting area 3
1.1.3 Scheduler . 4
1.1.4 Servers and Service process 4
1.1.5 Continuous time vs Discrete time 5
1.1.6 Performance measures 6
1.1.7 System stability and Steady state 6
1.1.8 Model specification vs analysis 7

1.2 Generalized Processor Sharing 7
1.3 Discrete-time implementation of Generalized processor

sharing . 9
1.4 Definitions . 11
1.5 Simulations used in this dissertation 12
1.6 A common arrival process 16
1.7 State-of-the-art and related scheduling disciplines . . . 18
1.8 Outline of this dissertation 20

I Achievable Region and Optimization 23

2 Two Classes 25
2.1 Achievable Region . 25
2.2 Optimization . 35

2.2.1 General Framework 36
2.2.2 Convex Combination of Increasing Functions . 41

v

vi TABLE OF CONTENTS

2.2.3 Framework for Convex Combination of General
Functions . 54

2.2.4 Achieving the optimum 60
2.3 Extension to general work-conserving parameterized

schedulers . 63
2.3.1 Framework . 63
2.3.2 Some illustrative examples 65

2.4 Summary . 72

3 Three Classes 75
3.1 Extending discrete-time GPS to three classes 75
3.2 Achievable Region . 78

3.2.1 The influence of β1 in H-GPS 83
3.2.2 Comparison of the interior boundary for two

H-GPS systems 89
3.2.3 Proof of Theorem 3.1 95

3.3 Optimization . 99
3.4 Extending to more than three classes 103

II Analysis 107

4 Two Classes 109
4.1 Introduction . 109
4.2 Power series approximation of the joint probability

generating function . 110
4.3 Padé approximants . 115
4.4 Using the approximants for optimization 119

4.4.1 Influence of the arrival process 120
4.4.2 Influence of the cost function 125

4.5 The major challenge with the power series approximation128

5 Three Classes 133
5.1 Introduction . 133
5.2 GPS with an extra low-priority class 134
5.3 Power series approximation for H-GPS centered around

β1 = 0 . 136
5.3.1 Introducing the power series 136
5.3.2 The implicitly defined functions Y1 and Y2 . . . 142
5.3.3 Seeing the patterns 145
5.3.4 Numerical examples 147

5.4 Influence of high-priority customers on a GPS queue . 151
5.4.1 The power series approximation 152

TABLE OF CONTENTS vii

5.4.2 Approximations of performance measures . . . 154
5.4.3 Numerical examples 155

5.5 Power series approximation for H-GPS centered around
β1 = 1 . 159

5.6 Summary of power series for H-GPS 160
5.7 Numerical examples 163

6 Direct calculation of mean 169
6.1 Analysis mean unfinished work 170
6.2 Analysis of stationary unfinished work probabilities . . 174
6.3 Summary of the algorithm and numerical complexity . 184
6.4 Numerical continuation of the power series 186

7 Conclusions 191

viii TABLE OF CONTENTS

Nederlandstalige samenvatting

Wachten leren we van jongs af aan, maar het blijft even irritant. We
kennen wachten vooral van de fysieke wachtlijnen in de supermarkt,
aan de bankautomaat en op de autostrade. Er zijn echter ook min-
der zichtbare wachtlijnen. Ook een bufferende video, een verhakkeld
telefoongesprek en een traag ladende website zijn meestal te wijten
aan datapakketjes die ergens in een wachtlijn op een server staan.
Aangezien we allemaal niet graag wachten is het voor veel bedrijven
interessant om dat wachten te vermijden of toch ten minste de wacht-
tijd zoveel mogelijk te beperken. Het is immers over het algemeen
niet verstandig om het geduld van de klant op de proef te stellen.
Anderzijds kan het wachten ook voor economisch verlies zorgen, als
bijvoorbeeld machinewisselstukken ontbreken of je dure werknemers
ergens in een file staan.

De wachtlijntheorie heeft net als doel om deze wachtlijnen wis-
kundig te modelleren. De resulterende modellen worden vervolgens
uitgebreid bestudeerd. Het resultaat van deze studie verschaft meer
inzicht om met kennis van zaken de meest efficiënte ingrepen te doen
om het wachten in de bovenstaande voorbeelden te beperken. Die
efficiëntie wordt niet enkel bepaald door de beperking van de wacht-
tijd, maar ook de te investeren kost en eventuele andere beperkingen.
De wachtlijntheorie situeert zich op die manier binnen de doorsnede
van de toegepaste wiskunde en het operationeel onderzoek.

In dit proefschrift focussen we specifiek op wachtlijnsystemen waar-
bij verschillende types of klassen entiteiten gebruik willen maken van
dezelfde service. De entiteiten worden opgedeeld onder deze types of
klassen omdat ze een verschillende prestatie verlangen van het sys-
teem. Tegenwoordig wordt op dezelfde telefoonlijn of kabel een heel
diverse set aan services aangeboden: vaste telefonie, internet, digitale
tv en business services. Dat je e-mails iets later verstuurd worden of
de synchronisatie van je bestanden naar de cloud iets langer duurt
kan je gemakkelijker aanvaarden (als je het zelfs al merkt), dan dat je
televisiebeeld hapert of je telefooncommunicatie spaak loopt door ver-
tragingen en onderbrekingen. Veel bedrijven betalen extra voor een
business service, daartegenover staat een gegarandeerde minimum-

ix

x NEDERLANDSTALIGE SAMENVATTING

kwaliteit van het netwerk. Het is voor de provider dus belangrijk om
op een zo kosten-efficiënt mogelijke manier de verschillende kwalitei-
ten voor deze aangeboden services op hetzelfde netwerk te kunnen
realiseren.

Om dit te bewerkstelligen, zal het netwerk de pakketjes van de
verschillende services anders gaan behandelen en dus meer of minder
voorrang geven. Deze gedifferentieerde service wordt verkregen door
het implementeren van een scheduler in de knopen van en toegangen
tot het netwerk. Deze scheduler bepaalt in welke volgorde de ver-
schillende pakketjes behandeld worden. De eenvoudigste scheduler
in dat verband werkt met strikte prioriteiten. Alle types pakketten
worden geordend in een hiërarchie; het type dat het hoogst staat in
de hiërarchie heeft de hoogste prioriteit. De scheduler behandelt de
aanwezige pakketten dan steeds volgens de plaats van hun type in de
hiërarchie.

Het grote voordeel van een prioriteits-scheduler is zijn eenvoud.
Het nadeel is echter dat het mechanisme weinig flexibel is: ofwel heeft
type A strikt voorrang op type B ofwel omgekeerd, eigenlijk willen we
dikwijls iets tussenin. Die strikte vorm van prioriteit kan er ook voor
zorgen dat de types pakketten met laagste prioriteit helemaal geen
service meer krijgen, wanneer er veel verkeer is met hogere prioriteit.
Ook dat is zelden gewenst en zorgt voor een slechte service.

Een flexibeler scheduling mechanisme is het zogenaamde Genera-
lized Processor Sharing (GPS). Bij GPS krijgt elk type een gewicht
toegekend, de beschikbare capaciteit van de server / het netwerk
wordt dan proportioneel tot dat gewicht verdeeld over de aanwe-
zige types pakketten. Dit mechanisme geeft de netwerkbeheerder
een flexibelere manier om het verkeer van de verschillende services
op een verschillende manier te behandelen in het netwerk om zo een
gepaste kwaliteit voor de desbetreffende service aan te bieden.

In dit proefschrift bestuderen we specifiek een discrete-tijd, pro-
babilistische implementatie van deze GPS scheduler. In de imple-
mentatie voor twee types pakketten krijgt type 1, in plaats van een
gewicht, een probabiliteit β toegewezen. Als er in de wachtlijn van
elk type minstens één pakket aanwezig is, dan wordt met kans β het
oudste pakket van type 1 bediend en met kans 1− β het oudste pak-
ket van type 2. Als er slechts één type pakketten aanwezig is, wordt
uiteraard dat type bediend. Merk op dat door een passende keuze
van de gewichten of probabiliteiten in een GPS-scheduler men een
zuivere prioriteits-scheduler bekomt.

Over prioriteitsmodellen is al veel onderzoek gebeurd en gepubli-
ceerd. De studie van GPS-modellen staat er echter om bekend om
vele malen complexer te zijn dan die van prioriteitsmodellen. Hier-

NEDERLANDSTALIGE SAMENVATTING xi

over zijn significant minder analytische resultaten te vinden in de
wetenschappelijke literatuur. Dit proefschrift vult deze resultaten
aan met nieuwe inzichten.

In het eerste hoofdstuk presenteren we een algemeen beeld van
de wachtlijntheorie en hoe de bijdrage van dit proefschrift daarin
past. We introduceren er uitgebreid de discrete-tijd implementatie
van GPS, het onderwerp van dit proefschrift, en de verhouding met
de gëıdealiseerde continue-tijd versie. Als laatste definiëren we er de
belangrijkste begrippen en symbolen die gebruikt worden in de rest
van de tekst.

De rest van het proefschrift is opgedeeld in twee delen. Deel
I behandelt de optimalisatie en de haalbare prestaties van GPS-
wachtlijnen. In hoofdstuk 2 bekijken we eerst de mogelijke prestaties
van een systeem met twee klassen. We bewijzen er twee cruciale
eigenschappen die we later in dat hoofdstuk gebruiken om enkele be-
langrijke stellingen over de optimalisatie van het systeem te bewijzen.
We bestuderen de optimalisatie van algemene kostfuncties die gedefi-
nieerd zijn in termen van van de gemiddelde resterende werkhoeveel-
heid van de twee types. Voor kostfuncties die een gewogen som van
functies gj (j = 1, 2) van de gemiddelde resterende werkhoeveelheden
van de twee klassen zijn, bewijzen we dat een GPS-scheduler enkel op-
timaal is als de gj stijgende convexe functies zijn en niet als ze lineair
of concaaf stijgend zijn. In die gevallen is strikte prioriteit optimaal.
We eindigen dat hoofdstuk met een uitbreiding van de belangrijkste
stellingen naar een meer algemene setting, los van GPS-scheduling.
In hoofdstuk 3 bekijken we de uitbreiding van het systeem met twee
klassen naar drie klassen. We tonen aan dat een hiërarchische versie
met drie klassen verschillende voordelen heeft en hetzelfde prestatie-
bereik als de niet-hiërarchische versie. We sluiten af met een algo-
ritme om efficiënt de configuratie van de GPS-scheduler te bepalen
voor een gewenste prestatie en een bespreking over de uitbreiding
naar meer dan drie klassen.

In deel II behandelen we de analyse van GPS-wachtlijnen. In
hoofdstuk 4, starten we met de samenvatting van een benaderingsal-
goritme uit de literatuur voor het systeem met twee klassen. Dit
algoritme levert een methode om iteratief hogere coëfficiënten in de
oneindige machtreeks van de gemiddelde resterende werkhoeveelheid
te berekenen. In de praktijk is het echter computationeel onmoge-
lijk om veel coëfficiënten te berekenen. Dat is de grootste beper-
king van die methode. We bekijken hoe we toch het meeste uit
deze benadering kunnen halen en bekijken de prestatie ervan in een
optimalisatie-setting. In hoofdstuk 5 breiden we dit benaderingsal-
goritme uit naar de hiërarchische GPS-versie voor drie klassen en

xii NEDERLANDSTALIGE SAMENVATTING

bekijken ook specifiek het geval waarbij het systeem één hoge priori-
teitsklasse heeft en de overige capaciteit via GPS verdeeld wordt over
de overige twee klassen. Ten slotte, bekijken we in hoofdstuk 6 een
alternatieve methode om diezelfde machtreeks te bekomen, zodat we
wel veel coëfficiënten kunnen berekenen. Deze methode is hier uit-
gewerkt voor twee klassen en een eenvoudiger aankomstproces dan
in de rest van dit proefschrift, maar het zet belangrijke stappen om
de uitdagingen uit hoofdstukken 4 en 5 te overwinnen. We eindigen
het proefschrift met een bespreking van de belangrijkste resultaten
in hoofdstuk 7.

Summary in English

Even though we learn to wait while we are still in diapers, it stays
equally irritating. Waiting is most known from physical queues in the
supermarket, the ATM machine or the highway. There are, however,
also less visible queues. A buffering video, a disrupted phone call
and a slowly loading website are usually also caused by data packets
queueing up somewhere in the network. As nobody likes to wait, it is
interesting for many companies to eliminate this waiting or at least to
try and minimize the delay as much as possible. After all, in general,
it is not wise to challenge the patience of the customer. On the other
hand, queueing can also mean economical loss if, for instance, spare
parts for machines are missing or expensive employees are stuck in a
traffic jam.

Queueing theory has the goal to mathematically model these
queues. Subsequently, these models are extensively studied. The
result of this study provides insight to make efficient adaptations in
an informed way to limit the queueing in the previously mentioned
examples. This efficiency does not only refer to the limitation of the
delay but also to the investment cost and possible other restrictions.
That way queueing theory is on the intersection of applied mathe-
matics and operations research.

In this dissertation, we specifically focus on queueing systems
whereby several types or classes of entities require service from the
same server. The entities are categorized in these types or classes
because they desire a different quality of service from the system.
Nowadays, the twisted pair or coax cable to our home offers a wide
range of services: telephone, internet, digital television and business
services. We more easily accept that our e-mail is sent a little later or
the synchronization of our files is a little slower (if we even notice it
at all), than a television image full of artefacts or a disrupted phone
converstaion. Many companies pay extra for a business service that
guarantees a minimum quality of the network. In that regard it is
important for the provider to have a cost-efficient way to implement
service differentiation for this range of offered services on the same
network.

xiii

xiv SUMMARY IN ENGLISH

To effectuate this, the network will treat the packets of different
services differently and thus give them more or less priority. This
service differentiation is achieved by implementing a scheduler at the
nodes and access points of the network. This scheduler determines
the order in which the packets are handled. The simplest scheduler
in that regard is a strict priority scheduler. In that case, all classes
are ordered in a hierarchy; the class that is on the highest level in
the hierarchy has the highest priority. The scheduler then treats the
backlogged packets in the order of their class in the hierarchy.

The greatest advantage of a priority scheduler is its simplicity.
The disadvantage, however, is that the mechanism has little flexibil-
ity: either class A has strict priority over class B or vice versa; while
often we desire something in between. This strict form of priority can
also cause starvation of the lower priority classes when an abundance
of higher priority traffic is present. This behavior is also seldomly
desired, and is regarded as bad service.

A more flexible scheduling mechanism is so-called Generalized
Processor Sharing (GPS). In GPS each class is assigned a weight
and the available capacity of the server / network is proportionally
divided amongst the backlogged classes. This mechanism equips the
provider with a more flexible way of treating the packets of the var-
ious classes differently in the network and thus offering a different
quality of service for the various services.

In this dissertation, we study a discrete-time, probabilistic im-
plementation of this GPS scheduler. In the implementation for two
classes of packets, class 1 is assigned a probability β instead of a
weight. If packets of both classes are backlogged, the oldest packet
of class 1 is served with probability β whereas with probability 1− β
the oldest packet of class 2 is served. If only packets of one class are
backlogged, that class is served. Note that by an appropriate choice
of the weights or probabilities the GPS scheduler becomes a strict
priority scheduler.

There has already been much research on priority queueing mod-
els. The study of GPS models, however, is known to be notoriously
more complex. On these models there are significantly less analytical
results available in the scientific literature. This dissertation comple-
ments these results with new insights.

In the first chapter, we present a general overview of the queueing
theory field and where this dissertation fits in. We introduce in full
the discrete-time implementation of GPS that is the subject of this
dissertation and the relation to the idealized continuous-time version.
Lastly, we define the most important concepts and symbols that are
used in the rest of the text.

SUMMARY IN ENGLISH xv

The remainder of the dissertation is divided in two parts. Part I
treats the optimization and achievable performance of GPS queues.
In chapter 2 we first study the achievable performance of a system
with two classes. We establish two important properties of the sys-
tem that we will use later in the chapter to prove some theorems
about the optimization of the system. We study the optimization
of general cost functions that are a function of the mean unfinished
work of the two classes. For cost functions that are a weighted sum
of functions gj (j = 1, 2) of the mean unfinished work in both classes,
we prove that the GPS scheduler is only optimal if the gj functions
are increasing convex functions and not when the gj functions are
linearly or concave increasing. In those last cases, strict priority is
optimal. We end the chapter with the extension of the applicabil-
ity of the most important theorems to a more general setting, apart
from GPS scheduling. In chapter 3, we look at the extension of the
two class system to three classes. We show that a hierarchical ver-
sion has several advantages and has the same achievable performance
range as the non-hierarchical version. We end with the presentation
of an algorithm to efficiently determine the configuration of the GPS-
scheduler to achieve a desired performance and discuss the extension
of the system to more than three classes.

In part II, we treat the analysis of GPS queues. In chapter 4,
we start with a summary of an approximation algorithm for the two-
class system, that we retrieved from the literature. This algorithm
provides a method to iteratively calculate higher-order coefficients
of the infinite power series of the mean unfinished work. In pratice,
however, it is computationally impossible to calculate a large amount
of coefficients. That is the major limitation of the method. We look
at how we can still get the most out of this method and look at
the performance thereof in an optimization setting. In chapter 5, we
extend the approximation algorithm to the hierarchical GPS version
with three classes and also specifically study the special case with
one high-priority class and whereby the remaining capacity is divided
using GPS amongst the other two classes. Lastly, in chapter 6, we
present an alternative method to calculate the same power series, that
makes it possible to calculate many more coefficients. That method
has been developed for two classes and a simpler arrival process than
in the rest of this dissertation, but it contains important steps to
overcome the challenges from chapters 4 and 5. In chapter 7, we end
the dissertation with a discussion of the most important results.

xvi SUMMARY IN ENGLISH

“Je moet niet denken dat de gebraden
kippen in je mond gaan vliegen.”

— Willy Vanlerberghe

1
Introduction

1.1 Queues and Queueing theory

Queues are everywhere. Some are very visible and annoying — es-
pecially when you are in (the wrong) one. The classical example is
lines at the supermarket’s cash registers. Others are less visible —
but equally annoying — such as the buffering of a Youtube video or
a disrupted phone conversation.

Queueing theory is a mathematical discipline studying systems in
which certain entities require a certain service that takes some time
to execute. This real-life situation is formalized and simplified in such
a way to end up with a mathematical model of the queueing system.
Firstly, the arrival process describes the way in which the entities re-
quiring service, arrive at the system, e.g. the arrival rate. Secondly,
we have some waiting and scheduling rules. The waiting rules de-
scribe for instance how much waiting room is available (if any) and
what happens when entities arrive when no room is available. The
scheduling rules describe in what order entities are handed over to
the service area. The system can choose to categorize the entities
based on the kind of service they require, and enqueue them each in
a separate queue. Next, we specify the service area that can typically
have one or multiple servers which are delivering the service to the
entities. Lastly, we have the service process that describes the speed
at which the entities are served. Roughly speaking, these inputs de-

1

2 CHAPTER 1. INTRODUCTION

Waiting Area
Service Area

Arrival process

Queueing system

?

Waiting rules Scheduling rules

Server(s)

Service

process

Queue(s) Scheduler

Figure 1.1: Mathematical model of a queueing system

scribe the mathematical model. We have summarized these elements
in Figure 1.1 and we elaborate on each of them in the subsequent
subsections. 1

1.1.1 Arrival process

The arrival process describes how the identities arrive to the queue-
ing system. Depending on the applications, these arriving entities are
often called customers, jobs or packets. This is also the case in the re-
mainder of this dissertation. The description of these arrivals can for
instance be a specification of the interarrival time between customers.
The interarrival time can be either (1) deterministic, i.e., following
a predetermined pattern for instance always the same length, or (2)
stochastic, i.e., the length of the interarrival time is dictated by a
stochastic process. In many cases the interarrival times of a stochas-
tic process are specified to be independent and identically distributed
(i.i.d.). This basically means that the interarrival time between ar-
rival i and arrival i+1 is independent of all previous interarrival times
and the probability distribution of its length is identical to that of
all other interarrival times. This independence makes things much
simpler, as for the generation of arrivals to the system no information
about the previous arrivals needs to be kept. More complicated (not

1In this very general description, we have totally ignored the subdiscipline
in queueing theory that studies networks of the latter described models. These
queueing networks are no subject of this dissertation and thus for conciseness we
omit further elaboration.

CHAPTER 1. INTRODUCTION 3

i.i.d.) stochastic processes are used in queueing theory as well, but
are not of interest for this dissertation.

Further details of the arrival process can be the arrival of the cus-
tomers in batches [38, 39]. The size of these batches can again be
either deterministic or stochastic. Another possible specification of
the arrival process is the distinction between several types or classes
of customers. The distinction between these customers is made for
use inside the queueing system. For instance, they require a differ-
ent kind of server, have a different service requirement (e.g. longer
service) or are handled differently by the scheduler.

1.1.2 Waiting area

The description of the waiting area of the queueing system specifies
what happens with the customers after their arrival. In the simplest
case there is no real waiting area, i.e. a customer that arrives to the
system does not get service and is lost. This is called a pure loss
system.

In fact, one of the first ever studied queueing systems was a pure loss system.
At the start of the twentieth century, the Danish mathematician Agner Krarup
Erlang was working at the Copenhagen Telephone Company. In those days,
telephone calls were switched manually by operators at an exchange using jack
plugs. While working at the telephone company, he tried to solve the classic
problem of determining how many lines were needed between two exchanges to
provide an acceptable service. After all when all lines are in use, no more calls
can be relayed between the two exchanges, thus blocking the call. This problem
sparked the start of queueing theory, when Erlang presented among others the
famous Erlang-B formula [56]. This formula expresses the probability of blocking
an incoming call because all lines are in use. In this Erlang B model there are n
servers, which model the number of lines between the two exchanges. The arrival
process models the incoming calls for which one of these lines/servers are needed.
There is no waiting area or queue. When a call arrives it either gets one of the
available lines, or when no lines are available the call is blocked and the revenue
of the customer is lost.

In other cases, customers are defined to arrive in a queue, whereby
the queue has a maximum number of customers it can hold. Cus-
tomers arriving when the queue is full are lost [51]. From a theoretical
perspective, queues which can hold an infinite number of customers
are also interesting as they can be easier to study. This is also the
case in this dissertation. Lastly, the waiting area can also have mul-
tiple queues which are used to backlog customers of a certain class
or type.

4 CHAPTER 1. INTRODUCTION

1.1.3 Scheduler

The scheduling rules are imposed by a — not always explicit — sched-
uler. The simplest and most well-known scheduling rule is First Come
First Served (FCFS). One can either have global FCFS, whereby the
next packet chosen to be served is the oldest packet in the waiting
area; and in case there is only one queue also the oldest packet in that
queue [104]. On the other hand, when the waiting area has several
queues for several types of packets, it is also possible for the scheduler
to first choose a queue and to then take a packet from that queue on
a FCFS basis. In that case the packet chosen is not necessarily the
oldest packet in the waiting area.

In case the model has several classes of packets that are back-
logged in their own queue, the queueing system can employ a prior-
ity scheduler. In this model a priority hierarchy between the different
types of packets is specified. The scheduler, subsequently, schedules
the packets according to their class priority order [141,144]. This pri-
ority scheduler is very strict, a possible variation to make the schedul-
ing more flexible, is a model whereby packets from a certain class can
jump to a higher class queue under certain conditions [102]. In this
dissertation, the main focus is the study of a certain type of sched-
uler, that is related to the aforementioned priority scheduler that also
aims at providing more flexibility. We postpone the full specification
of this scheduler to the next section after this general introduction
on queueing theory.

Some other types of models have been studied whereby customers
in the queue are served in batches, which is for instance applicable
for guided tours in a museum that only start when enough people
are present [37]. In another type of model with several types of cus-
tomers the scheduler waits for one customer of each type to be in the
queue before scheduling each of them simultaneously for service. This
kind of model is for instance used when studying factories, whereby
products can only be assembled if all parts are available [46].

1.1.4 Servers and Service process

As a last element of Figure 1.1, we discuss the servers and the service
process. A queueing system can have one or more servers. Lastly,
we have the service process, this is a specification of how long it
takes the server to serve a certain customer. This service time can
again be either (1) deterministic or (2) stochastic. A different service
process can be specified for different classes of jobs (some classes of
jobs require more time than others) or for different servers (some

CHAPTER 1. INTRODUCTION 5

servers are better or faster than others).
Once again many variations are possible and have been studied.

One can introduce server vacations or working vacations whereby one
or more of the servers are disabled or work at a lower rate [64, 84].
There are models whereby some of the servers can only handle a spe-
cific class of customers and the rest of the servers can do all types
of work [68, 122]. These models are used to study applications with
some task-specific machines/people and other general purpose ma-
chines/people. Another variation that has been studied for applica-
tions with real-world computer servers, is a model whereby unem-
ployed servers speed up the service of other servers.

1.1.5 Continuous time vs Discrete time

We study the evolution of the queueing system in time. For the
mathematical analysis of this queueing system, we can look at time as
either continuous or discrete. Continuous time is time like we know
it in real life; at any given instant a customer can arrive or leave
the queueing system. In this case, the time variable is continuous
and can thus take any value on the positive real axis. Likewise,
the interarrival time between two customers or the service time of a
customer are continuous random variables and thus real-valued.

In case the queueing system is defined as a discrete time sys-
tem, time is considered to be slotted. This means time is divided in
equal length parts, called slots. Subsequently, the system is studied
on these slot boundaries. It is only on these slot boundaries that
changes in the system happen, for instance the arrival/departure of
customers or the service start for a certain customer. This mathe-
matical representation of time stems from digital (computer) systems
where all events are synchronized. These systems have an internal
clock that generates the slot boundaries; only at these boundaries
the state of the machine changes. The clock speed, e.g. 3GHz, of a
computer processor indicates that it has 3 billion slots in one second.
As a result of slotted time, we number the slots and time thus be-
comes a discrete value, meaning it can only take on certain values,
namely the set of integer numbers. Furthermore, we usually do not
describe the interarrival time between customers but the number of
customers arriving in a slot. The service time of a customer is now a
certain number of slots. The arrival process and service process are
thus described using discrete random variables.

Continuous and discrete-time systems are studied using different
mathematical techniques, although there are similarities. From an
application point of view, modeling an application and studying it

6 CHAPTER 1. INTRODUCTION

in discrete time vs continuous time should of course lead to similar
results.

1.1.6 Performance measures

In the previous subsections, we have addressed the inputs of the
model. In this subsection, we discuss the possible outputs of the study
of the model. These outputs are in general some performance mea-
sures about the behavior of the system. On the one hand, there are
system specific performance measures, that say something about the
state of the system. For instance, we have the number of customers
in (each of) the queue(s), i.e., the queue content, or the complete
system. As each customer requires a certain amount of service time
(possibly different from customer to customer cf.: stochastic service
times), likeso we can also quantify the unfinished work in the queue(s)
or the system. This unfinished work expresses the amount of service
time necessary to empty the system, given that no more customers
arrive. On the other hand, there are customer-specific performance
measures, like the queueing time or waiting time of the customer.
When you add the service time of a customer to its waiting time, you
get its system time or delay time.

1.1.7 System stability and Steady state

The performance measures discussed in the previous subsection are
random variables as they depend on the inputs (arrivals and service
time) that are also random variables. For each point in time or each
packet (depending on the performance measure) the random variable
is different. For instance in a single-server discrete-time system that
started with 10 customers requiring a single slot of service, the prob-
ability of having an empty queue is 0 for the first 10 slots but then
increases in the later slots2. This is of course non-practical as differ-
ent performance measures for every epoch / customer make it hard
to make statements about the performance of the system in general.

However, when the rate at which work enters the system (load) is
smaller than the rate/capacity at which work can leave the system,
the system will typically evolve to an equilibrium. This is not the
kind of equilibrium whereby the amount of work in the system is
constant, but rather the probability distribution of the amount of
work in the system is constant in time. This equilibrium is called the
steady state of the system and the system is said to be stable. The

2 Provided that the system is not in overload, i.e. the stability condition is
met (see further in this paragraph).

CHAPTER 1. INTRODUCTION 7

condition whereby the offered load is smaller than the capacity of the
system is called the stability condition.

1.1.8 Model specification vs analysis

In the previous subsections, we addressed the problem setting of
queueing theory in general3. Specifically, we introduced some key
parts, variables and conditions for the specification of the queueing
model. This queueing model can be as complicated as the author of
the model wants and is only limited by her/his imagination.

The specification of the model, however, is only a starting point.
Deriving interesting results, i.e. the analysis, is a different matter.
The analysis of the model is usually the difficult part and where
the researcher spends most of his time on. For this analysis several
methods have been developed. Interestingly, seemingly small changes
to the model, can render the old method unusable and the problem
(temporarily?) insolvable.

In the remainder of this chapter, we introduce the model studied
in this dissertation. Or at least we introduce the general setting, as
small variations exist between the models in the different chapters.
Furthermore, we explain the goal of the analysis and describe the
structure of the rest of the text.

1.2 Generalized Processor Sharing

This dissertation focuses on the analysis of the performance and op-
timization of a certain class of scheduling disciplines. In this section,
we take a look at the motivation for these kinds of scheduling disci-
plines and their history. In the next section, we rigorously define the
discipline that is the subject of this dissertation.

The most widely known scheduling discipline is global FCFS. All
customers are treated equally and are served in the order of their ar-
rival. The policy is well known for its fairness. However, there are ap-
plications and situations, where we do want to tamper with the equal
treatment of customers. For instance at an emergency room, it feels
natural to discard FCFS to postpone the treatment of a broken an-
kle for a newly arriving car crash victim with a polytrauma. Another
example comes from communication network providers. These com-
mercial companies often offer premium packages to business users, to
provide them with higher quality service. In these cases their net-

3 albeit not aimed at providing a full overview or definition of the field.

8 CHAPTER 1. INTRODUCTION

works have to be able to deliver this premium service and differentiate
the handling of packets at the nodes in the network.

A straightforward solution is to classify all incoming customers
(or packets) in a number of service classes each having their own
queue. Additionally a priority ordering is made amongst the classes.
The server subsequently serves the oldest customer (i.e.: with earli-
est arrival time) of the queue holding the customers with the high-
est priority present in the system. This policy, known as (strict)
priority queueing, solves the issues of the previous examples. Pri-
ority queueing, however, suffers of possible starvation of some of the
classes [75,103,141]. For instance, assume the nodes in a communica-
tion network give priority to the traffic from business users. If these
business users generate enough traffic to occupy the entire outgoing
bandwidth of the node, the traffic from regular users would never be
sent. The service of these users is completely degraded by the misbe-
havior of higher-class users. This starvation problem can also occur
to a smaller degree with global FCFS in the nodes of the communica-
tion network. If a certain user or users inject large amounts of traffic
some other users can temporarily be starved of service by the net-
work. This starvation problem is unacceptable for service providers
(because it is unacceptable for its users). A solution to the prob-
lem is to have some sort of rate admission control [67]. This shapes
the ingress of traffic of a user to the network at its access point to
not destabilize the service of the network. However, this flow con-
trol is not always possible and could possibly be circumvented by
mischievous users hacking the software of their access point.

The drastic difference in quality of service offered to the classes in
the queueing system causes the problem of starvation. Additionally,
this kind of drastic difference might a priori not be what is desired.
An alternative is Generalized Processor Sharing or GPS. GPS is an
idealized scheduling discipline specified by Parekh and Gallager in
their seminal papers [109, 110]. In GPS the customers arrive and
are classified in classes or flows, each with their own queue. Every
class is assigned a certain weight, whereby the weight of class i, i.e.
φi, is a positive real number. Time is continuous and if all queues
are backlogged queue i is served at a rate of φi∑

j φj
r, whereby r is

the maximum rate at which the processor can process work. As
such, the different queues are served at a rate proportional to their
weight. In case not all queues are backlogged, the freed up capacity is
redistributed amongst the non-empty queues proportionally to their
weights.

GPS avoids the problem of classes with high or bursty traffic

CHAPTER 1. INTRODUCTION 9

blocking others and guarantees a minimum share of the bandwidth
to each customer class. Simultaneously, it provides a means to differ-
entiate service amongst customer classes in a flexible and continuous
way. However, GPS is mainly a theoretical model, as it is an idealiza-
tion. For most real-world systems it is impossible for a single server
to serve more than one (class of) customer(s) simultaneously. Gener-
ally the work for different customers needs to be interleaved in time.
As such, one customer would be served up until its quotum is used up
after which service is switched to a next customer. By interleaving
the work with quota approaching zero, in the limit GPS is achieved.
This is of course not useful in practice and one wonders if real-world
implementations aiming at approximating GPS yield different results
performance-wise.

In the next section, we specify a discrete-time implementation
of GPS that is no longer an idealization. This implementation is a
candidate for real-world applications. In the subsequent chapters, we
study the performance and optimization of this discrete-time GPS in
detail.

What is exactly Generalized about this Processor Sharing?
Generalized Processor Sharing is a generalization of (Uniform) Processor Sharing
[89]. Processor Sharing in turn was developed as a model for time-sharing on
computer processors. The processor of a computer — or nowadays better a single
core of a processor — has several processes waiting for service. For a fixed time
quotum a process is given service after which a context switch is done, and the
next process receives service. By letting the quotum size approach zero, in the
limit, Processor Sharing is achieved. As such each process receives an equal time
share of the processor. If in the definition of GPS one chooses all φi equal and
defines every process to be a different class, it is effectively Processor Sharing.
In that way GPS is a generalization of Processor Sharing providing a greater
flexibility to fine-tune the service differentiation.

1.3 Discrete-time implementation of Gen-
eralized processor sharing

After the previous introductory sections, we now present the specific
scheduling studied in this dissertation. As mentioned before, it is a
discrete-time implementation of Generalized Processor Sharing. We
start by looking at a system that has only two4 different customer
classes. In Chapter 3, we study the extension to three classes and
more.

4Clearly if the system has only one customer class, no service differentiation
and thus scheduling between classes is needed.

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Figure of model for two customer classes

The arriving customers are classified in two separate classes, that
are each backlogged in their own queue. These queues are assumed
to have infinite storage capacity. The specification of the arriving
process defines the arrival rate of each of the classes and the cor-
relation between both. In this dissertation5 we assume a general
two-dimensional arrival process that is independent and identically
distributed from slot to slot (cf. subsection 1.1.1). Furthermore, we
assume every customer requires a single slot of service.

When both queues are backlogged, the server serves a customer
of class 1 with probability (w.p.) β and a customer of class 2 with
probability 1 − β (β ∈ [0, 1]). When only one of both queues is
backlogged and the other is empty, the non-empty queue is served.
As a result, the scheduling is so-called work conserving, which means
whenever work is present in the system the server is never idle. This
is summarized in Figure 1.2.

Special cases When β = 1 this GPS scheduling equals a strict
priority system with high priority for class 1 and low priority for
class 2. When β = 0 it is the other way around: high priority for
class 2 and low priority for class 1.

Symmetry This scheduler is symmetric in β. The system in Fig-
ure 1.2 provides an identical performance to class 1 as Figure 1.3
and dito for class 2. With a sufficiently symmetric arrival process,
which is the case for arrivals that are i.i.d. from slot to slot, results
for parameter β = β∗ can be used to obtain results for β = 1−β∗ by
enqueueing class-1 (class-2) customers in queue 2 (queue 1).

The analysis of GPS queueing systems, however, is much harder
than that of priority queues. For priority queues a wide range of
systems have been analyzed in the literature [51, 102, 141, 147]. For
GPS queues the results are mostly limited to upper or lower bounds

5Except in Chapter 6 where a more restrictive arrival process is used.

CHAPTER 1. INTRODUCTION 11

Figure 1.3: Figure of symmetric model

on the performance, or the presented methods require a significant
numerical effort [41,69,110,154]. In this dissertation we complement
the already available results. In Part I, we focus on the optimiza-
tion of GPS queueing systems. In Part II, we study the analysis
of the system and present some approximations for the performance
measures.

1.4 Definitions

We study the system in discrete time, which means time is divided
in slots and studied at slot boundaries. Slots are numbered using the
natural numbers, starting from 1. We define the random variable aj,k
as the number of arrivals of class j in slot k and ak = (a1,k, a2,k, . . .),
whereby the size of the vector depends on the number of classes in
the system6. The number of arrivals of class j in a random slot is
written as aj . Furthermore, we denote the arrival rate of class j by
λj , i.e. the mean number of class j packets that arrive per slot, and
λT =

∑
j λj as the total arrival rate. For convenience, we also define

αj =
λj

λT
as the fraction of type-j arrivals in the overall traffic mix.

The random variable wj,k denotes the unfinished work of class j
present in the system at the beginning of slot k, i.e.: the number
of slots needed by the server to finish all the work of class j when
class j is given strict priority. Analogously as for the arrivals, we
note wk = (w1,k, w2,k, . . .). We denote the probability of event A
occurring by Pr[A], equivalently Pr[wj,k = l] denotes the probability
that the unfinished work of type j at the beginning of slot k equals
l slots. As introduced in Section 1.1.7, if the stability condition is
fulfilled the system will evolve to a steady state. In this regard we, for
instance, note wj as the unfinished work of class j at the beginning
of a random slot in steady-state regime. Analogously, we use uj
to denote the number of customers of class j in the queue at the

6For these definitions we consider a general number of classes, as we will extend
the GPS-model from Section 1.3 to more classes in Chapter 3.

12 CHAPTER 1. INTRODUCTION

beginning of a random slot7 and dj for the delay of a random class-j
customer, both in steady state. Furthermore, we write the mean of a
random variable with a bar on top or by enclosing it inside the square
brackets of E[·]. For instance the mean unfinished work of class j at
the beginning of a slot is w̄j = E[wj] =

∑∞
l=0 lPr[wj = l]. Lastly,

wT denotes the total unfinished work at the start of a random slot in
steady state.

In this dissertation, we frequently use probability generating func-
tions (pgf) of the stochastic variables defined above. We denote them
with capital letters and use the formal variable z. For instance,
A1(z) = E[za1] is the pgf of the number of arrivals of class 1 in a
slot and A(z1, z2) = E[za11 za22] the joint pgf of the number of arrivals
of class 1 and 2 in a slot. From the pgf we can easily calculate the
mean of the random variable, for instance, λ1 = A′1(1).

With these definitions of symbols, we can formalize the two-class
discrete-time GPS system from the previous section by writing down
the system equations.

• if wk = 0

wk+1 = ak (1.1)

• if wi,k > 0; w3−i,k = 0 with i = {1, 2}

wi,k+1 = wi,k − 1 + ai,k

w3−i,k+1 = a3−i,k

• if wj,k > 0 for all j = {1, 2}

wk+1 = wk − (1, 0) + ak w.p. β

wk+1 = wk − (0, 1) + ak w.p. 1− β

1.5 Simulations used in this dissertation

A simulation of a queueing system is in fact a solution method. In a
simulation the queueing system is replicated in a computer program

7 In Section 1.3, we made the assumption that every customer requires a
single slot of service. In that case the unfinished work of class j indeed equals
the queue content of queue j, which makes this definition superfluous. However,
some results in this dissertation extend to certain cases with customers requiring
a stochastic number of slots of service, as we will discuss at the appropriate time.
In those cases the queue content no longer equals the unfinished work, which is
why we already define it here.

CHAPTER 1. INTRODUCTION 13

as if it were real. This means that in each slot arrivals are generated
according to the specified arrival process and customers are served
as specified by the system. At each slot the relevant performance
characteristics are recorded, for instance the unfinished work, and at
the end the mean performance characteristics can be calculated from
the record.

The problem with simulations is that it is a costly operation, it
takes the computer a significant time to come up with the answer.
And this answer is only valid for the specified input configuration.
This means that the simulation needs to be repeated for a different
β or a different arrival process or configuration thereof. In this dis-
sertation, the main focus is to look for analytic ways of calculating
or approximating the performance characteristics, so it is less com-
putationally intensive to change one of the inputs. This also makes
it possible to do sensitivity analysis on these inputs and as such opti-
mize the system. However, to establish the validity of our calculations
or approximations, we compare them with simulation results.

Providing accurate simulation results in itself is not a given, the
simulation result depends on many factors. The first one is the tran-
sient period. We want to know the performance characteristics in
steady state, however we cannot start a simulation directly in steady
state regime, nor is it simple to determine from which point onward
the system is in steady state. For simplicity we thus include the tran-
sient period (from the start of the simulation to steady state regime)
in the calculation of the performance characteristics which introduces
a bias in the result. To lessen the bias of the inclusion of the tran-
sient period in the result, we can do a longer simulation, i.e., simulate
a larger number of slots. This length of the simulation is a second
factor that influences the result.

To test the bias introduced by the transient period we ran simu-
lations over increasingly longer periods. For each simulation length,
we ran 10 simulations starting from a different starting point. The
starting point was determined by drawing two random variables from
a uniform distribution of integers in [0, 20], these were subsequently
used as the queue contents at the start of the simulation. In Fig-
ure 1.4, we display the mean of w̄1 over these 10 simulations versus
the simulation length; the errorbars indicate the standard deviation.
Starting from a different initial state (queue content at slot 0), re-
sults in a different transient period before reaching steady state. We
can see that by increasing the number of simulated slots the vari-
ance introduced by these different transient periods decreases. This
is because the relative length of the transient period compared to the
entire simulation decreases.

14 CHAPTER 1. INTRODUCTION

 4

 4.5

 5

 5.5

 6

104 106 108 1010

Figure 1.4: Mean of w̄1 with errorbars displaying the standard de-
viation over 10 simulations with different starting points versus the
number of simulated slots.

A last factor is the choice of random sequences. In each slot of
the simulation a draw from the probability distribution of the arrival
process has to be done to generate the number of arrivals in that
slot. In a computer this is done using the Monte-Carlo method which
converts draws from a uniform pseudo-random sequence generated by
the computer to draws from the required (not necessarily uniform)
distribution. These pseudo-random sequences look random but are
in fact deterministic. They require a seed as a starting point: if the
same seed is used the subsequent draws from the sequence are exactly
the same. This means that by choosing a different initializing seed,
the pseudo-random sequence and the resulting arrivals are different.
As such the choice of the underlying random sequence for the arrivals
introduces variance in the simulation result.

The same problem arises for the probability to decide which queue
to serve. As such the simulation again uses a pseudo-random sequence
of numbers (albeit a different one) to have the simulated server make
its decisions. The choice of this decision sequence also introduces
variance into the result.

To test the variance introduced by the choice of the pseudo-
random sequences, we ran several tests. In a first test we chose
10 different arrival sequences, whilst keeping the decision sequence
identical and starting from an empty system at the start of the sim-
ulation. We repeated this for several simulation lengths. On the left
of Figure 1.5, we display the mean over the 10 simulations for w̄1 and

CHAPTER 1. INTRODUCTION 15

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

104 106 108 1010

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

104 106 108 1010

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

104 106 108 1010

Figure 1.5: Mean of w̄1 with errorbars displaying the standard devi-
ation over 10 simulations versus the number of simulated slots. On
the left only the arrival sequence is varied, in the middle only the
decision sequence, on the right both arrival and decision sequences
are varied.

the errorbars indicate the standard deviation. Analogously we var-
ied the decision sequence for identical arrival sequence and starting
state. These results are shown in the middle of Figure 1.5. Lastly, we
varied both the decision and arrival sequences simultaneously whilst
still using an empty starting state. These results can be found on the
right of Figure 1.5.

From Figure 1.5, we conclude that the more slots are simulated the
less the choice of the particular sequences matters. For 107 slots the
standard deviation is only 0.5% of the mean, this further decreases
to 0.1% for 108 and 0.04% for 109 simulated slots. In the remainder
of this dissertation, we start all simulations from an empty system
and only do one single simulation over at least 108 slots8. As shown,
this simulation length is long enough to provide sufficiently unbiased
and variance-free results.

Even though the variance of the simulations is low, it is still
present. If we simulate a GPS system with a particular arrival pro-
cess for 101 β values evenly distributed in the interval [0, 1], we get
non-smooth graphs. This can be seen in the left graph of Figure 1.6,
where we draw w̄1(β) resulting from simulations over 108 and 109

slots. We show only a subset for β ∈ [0, 0.5] to be able to provide
enough detail. This non-smoothness is the aforementioned variance
aggravated by the interplay between the small difference in β value
and the different arrival and decision trajectory. This interplay is

8We either use 108 slots or 109.

16 CHAPTER 1. INTRODUCTION

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 0 0.1 0.2 0.3 0.4 0.5

1e8 slots
1e9 slots

 4.2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 0 0.1 0.2 0.3 0.4 0.5

1e8 slots
1e9 slots

Figure 1.6: Mean unfinished work of type 1 as a function of β. On
the right without CRN on the left with CRN.

another source of variance. Together these variances hide the true
effect of the change of β and can show improper artefacts like local
extrema9.

To solve this problem we use a technique known as common ran-
dom numbers (CRN) or correlated sampling [8, 124]. This means
that we use identical arrival and decision sequences for all simulated
β values. This isolates the influence of this β parameter which is the
subject of the search, and strips any variance between simulations
from the specific choice of random sequences. Using CRN introduces
bias in the result because of this specific choice. However, by choos-
ing a long trajectory for the simulation we have already shown that
this bias is sufficiently small.

1.6 A common arrival process

In this dissertation we have frequently used a multinomial distribu-
tion, which is a generalization of the binomial distribution to accom-
modate categories of successes, or, in our case, customer types. In
that regard the M -dimensional multinomial distribution is also called
a M -dimensional binomial distribution. A M -dimensional multino-
mial distribution is characterized by the following joint pgf

A(z1, . . . , zM) =

1 +
M∑
j=1

λj
N

(zj − 1)

N

,

9We prove in Section 2.1 that the result should be monotone and thus should
not contain local extrema.

CHAPTER 1. INTRODUCTION 17

Figure 1.7: N ×N output queueing switch

wherein N is a parameter representing the maximum total number of
arrivals per slot and λj , as usual, the arrival rate of class j arrivals.
Lastly, M denotes the number of classes the arrivals are categorized
in. For M = 1 and N = 1 this distribution simplifies to a Bernoulli
distribution and for M = 1 and N > 1 it simplifies to a binomial
distribution.

The multinomial process is the input process to one of the output
queues of an N ×N output queueing switch as shown in Figure 1.7.
The numbers of arrivals to the inlets are assumed to be i.i.d. and
generated by a Bernoulli process with arrival rate λT . An arrival is
of type j with probability

λj

λT
. Furthermore, the routing from inlets

to outputs is uniform and independent, which makes the input to
each of the N queues stochastically identical. The numbers of class-j
arrivals to an output during a slot are mutually correlated. If n class-
i arrivals enter the output queue in a slot, the maximum number of
arrivals of any other class is limited to N − n as only one arrival per
inlet is possible.

We use this type of distribution frequently to test our results
(i.e., compare calculations with simulations) and demonstrate the
application of the presented theory. This however by no means limits
the applicability of the methods to this kind of arrival process.

For the simulations of the previous section, specifically Figures 1.4-1.6, we used a
two-dimensional multinomial arrival process with parameters: N = 16, λ1 = 0.72
and λ2 = 0.18. Additionally, for Figures 1.4 and 1.5 we used β = 0.5.

18 CHAPTER 1. INTRODUCTION

1.7 State-of-the-art and related schedul-
ing disciplines

Generalized Processor Sharing is a well-studied topic in the literature.
In this section, we discuss the most important GPS studies related
to this dissertation and some related scheduling disciplines. We start
by referring the reader to the survey of Aalto et al. that discusses
scheduler evolutions beyond (egalitarian) processor sharing [1].

In the original GPS paper [110], Parekh and Gallager prove worst-
case delay and backlog bounds when the traffic is leaky-bucket con-
strained (which could for instance be imposed by a call admission con-
trol system). Analysis of GPS with exponentially bounded burstiness
traffic has been carried out in [150,154]. Other work on call admission
schemes for GPS is done in [48,49,115,153].

A lot of GPS studies have been devoted to calculating the asymp-
totic tail behavior of the workload of a class [9, 20, 26, 27, 50, 97, 105,
151, 152]. This is for instance also the case in the PhD thesis of Mi-
randa van Uitert [131] where the tail asymptotics are considered for
heavy-tailed flows or a mixture of both heavy and light-tailed flows.
Based on asymptotic results, the optimization of the GPS weights has
been studied in [55, 93, 99–101]. For the optimization of multiclass,
single-server queueing systems, conservation laws and achievable re-
gion methods are also widely used [11,17–19,60]. In this dissertation,
we mainly focus on the mean performance measures and arrival pro-
cesses without heavy tails. As a result, the conservations laws and
achievable region methods in this work are of a different nature.

It has been shown that a two-class GPS system is equivalent to a
coupled processor model, which can thus be solved analytically as a
boundary value problem [41]. For the discrete-time implementation
of this dissertation this has also been shown in the appendix of [145].
The extension to three classes, however, makes the numerical anal-
ysis very intricate [40]. We comment further on the challenges with
this boundary value technique at the start of Part II on analysis of
discrete-time GPS queues (See Section 4.1).

One can view our discrete-time probabilistic version of GPS as a
practical implementation that solves the infinite divisibility assump-
tion of continuous-time GPS. In the literature, other implementa-
tions have been studied, such as Weighted Fair Queueing (WFQ) also
known as Packet-by-packet Generalized Processor Sharing (PGPS),
Weighted Round Robin (WRR) and Discriminatory Round Robin
(DRR). In Weighted Fair Queueing at each arrival instant, the sched-
uler calculates the virtual finish time of that customer in an equivalent

CHAPTER 1. INTRODUCTION 19

GPS system. At each departure the scheduler chooses the customer
with the earliest virtual finish time as the next customer for ser-
vice. In Weighted Round Robin the queues are visited in a round
robin fashion; in proportion to their weight some queues are allowed
to serve more than one customer. Lastly, Deficit Round Robin was
used to solve the problem that classes with longer customer service
times obtain a higher bandwidth relative to their weight in WRR. To
this end a deficit counter was introduced and each time the queue is
visited this counter is increased with that class its timeshare. Only
when the service time of the next customer in that queue is smaller
than the deficit counter, it gets served and the deficit counter is re-
duced with that service time. For single slot service times as mostly
assumed in this dissertation, the distinction between WRR and DRR
degenerates. Depending on the point of view, these scheduling mech-
anisms can be viewed as practical implementations of the ideal GPS
or, the other way around, GPS can be used to study and approximate
the performance of these schedulers. The exact analysis of these sys-
tems is typically harder. For more information, we refer the reader
to [9, 14,34,83,86,119,121].

Related to GPS is Discriminatory Processor Sharing (DPS). In
DPS, like in GPS, customers are enqueued in class-specific queues
and class i is assigned a certain weight φi. Unlike in GPS, where only
the head-of-line customers of each queue are simultaneously served,
in DPS, all customers are simultaneously served and a customer of
class i is served at a fraction φi∑

j φjuj
of the total outgoing band-

width. In DPS, the bandwidth assigned to a class is thus depending
on the queue contents of all classes. Clearly, DPS is also an idealized
scheduling discipline that can be used as an approximation to practi-
cal schedulers. We refer the reader to the survey of Altman et al. [5]
and some specific studies [12,59,129].

Lastly, we briefly mention that our discrete-time implementation
of GPS could also be viewed as a discrete-time polling model with
random server routing and 1-limited service. For a survey on polling
models, we refer the reader to [28, 125, 140]. In continuous-time,
a model with random server routing is for instance analyzed in [6]
for a closed network. In [29], Boxma studies the optimization of
the parameters for the random server routing to build an optimal
static routing table for which the spacing between classes in the table
is determined using [78]. Boxma and Weststrate [30] determine a
pseudo-conservation law for a polling system with Markovian routing
of the server. Kleinrock and Levy [90] calculated the mean response
time of a random customer in a fully symmetric, discrete-time polling

20 CHAPTER 1. INTRODUCTION

model with random server routing, switchover periods and 1-limited
service. With fully symmetric, we mean symmetric in the arrival
process, the switchover periods and the routing probabilities. This
requirement in our case translates to a symmetric arrival process
A(z1, z2) = A(z2, z1) and β = 0.5. In the dissertation of van der Mei
[127], polling systems with Bernoulli and Markovian server routing
are studied. The author therefor uses a power series expansion in the
total load offered to the system and uses that to optimize a linear cost
function of the mean waiting times via the server routing parameters.

1.8 Outline of this dissertation

In this section, we present the structure of this dissertation. We also
take advantage of this moment to reference our publications that also
present the research from the corresponding chapter.

This dissertation is composed of two parts. In the first part, we
study the achievable performance and the consequences for the opti-
mization of the discrete-time implementation of Generalized Proces-
sor Sharing. In chapter 2, we study the two-class version we presented
here. We start by proving that the achievable performance region is
bounded by the two strict priority boundary cases. Furthermore, we
show that the mean unfinished work of the classes is continuous and
monotone as a function of β [146]. Using these important properties,
we study the optimization of general objective functions, and some
more specific ones [133,138]. For instance, we prove that if the objec-
tive function is a weighted combination of functions gj of the mean
unfinished work of the classes, that pure GPS is only optimal if the
gj are convex increasing. If the gj are concave or linearly increasing,
strict priority is always optimal. We end the chapter by proving that
the applicability of the most important theorems extends to alterna-
tive scheduling mechanisms, other than GPS [134].

In chapter 3, we study the extension from our two-class model to a
three-class model. We propose to use a hierarchical version, that has
advantageous properties for the optimization and prove that it has the
same achievable performance region as the non-hierarchical version
[137]. We also present an algorithm that calculates the configuration
of the scheduler to obtain a desired performance. The chapter is
concluded by discussing the extension to more than three classes.

In the second part, we focus on the analysis of the system. In
chapter 4, we start by summarizing a power series expansion of the
joint pgf of the unfinished work for the two-class system. This power
series is no work of the author of this dissertation but is found in the

CHAPTER 1. INTRODUCTION 21

literature. Our contribution here is to study the challenges inherent
to the expansion that limit the number of calculable coefficients in
the power series. We propose some techniques to get the most out
of the approximation and evaluate the result by applying it to an
optimization problem [135].

In chapter 5, we extend the power series expansion to the three-
class hierarchical version from chapter 3. We also study a special
case where there is one high-priority class and the remainder of the
capacity is shared using GPS amongst the other two classes [136].

In chapter 6, we take a step back to find a method that makes
it possible to calculate more coefficients in the power series of the
mean unfinished work. We do that by directly calculating the means
from the system equations. This eliminates the problems that are
associated with the detour via the pgf. The method is developed for
the two-class system serving a simpler arrival process, than in the
rest of the dissertation. This simplifies the analysis somewhat, but
does not simplify the inherent difficulties from the GPS system.

In chapter 7, we summarize the most important conclusions of
this dissertation.

22 CHAPTER 1. INTRODUCTION

Part I

Achievable Region and
Optimization

23

“Wat gij niet wilt dat u geschiedt, doe
dat ook een ander niet.“

— Esther Roelens

2
Two Classes

2.1 Achievable Region

In this chapter, we study the optimization of the two-class model
described in Section 1.3. In this section, we start by proving which
performances are achievable and unachievable. The achievable region
of this model has a great influence on the optimization thereof, which
is investigated in the next section. Lastly, in the last section of this
chapter, we show that these results can be generalized to a wider
class of models, not limited to GPS.

To recap, we study the two-class, discrete-time GPS model from
Section 1.3. The arrivals are generated by a general arrival process
that is independent from slot to slot. Each arrival requires a single
slot of service. Furthermore, we assume that the stability condition
λT < 1 is met, so that the system reaches a steady state in the
long term. The analysis of these kinds of GPS queueing models is
notoriously hard, which is why we look for other means of obtaining
important properties of the performance measures to subsequently
use in optimization.

Studying the performance of the system, we focus on the mean
unfinished work of the individual classes in the system. As each
customer requires a single slot of service, the mean unfinished work
equals the mean queue length. It is clear that w̄1 and w̄2 are functions
of β, the scheduling parameter, i.e., w̄1 = w̄1(β) and w̄2 = w̄2(β).

25

26 CHAPTER 2. TWO CLASSES

With β = 0, we have already shown (using the definition of the
model) that class-1 customers have the lowest priority in the system.
Consequently, w̄1(0) = w̄1,max as it is impossible with β ∈ [0, 1] and
keeping the system work-conserving to keep more class-1 work in the
system, than only serving it when no other work is present, which is
the case when β = 0. Conversely, β = 1 gives w̄1(1) = w̄1,min, as this
represents strict priority for class-1 customers. Intuitively one feels
that w̄1(β) decreases when β increases. The aim of this section is
to prove that w̄1(β) is a strictly decreasing and continuous function.
This means that for every value w̄∗1 in the interval [w̄1,min, w̄1,max]
there exist a unique β∗ such that w̄∗1 = w̄1(β∗).

Before we formulate the theorem, we first define regenerative pro-
cesses and regeneration cycles as it is required in the theorem. A
process is regenerative when the process can be split into indepen-
dent and identically distributed regeneration cycles [7]. As we assume
that λT < 1 (stability condition), the probability that the system is
empty and the server idle is non-zero. It is easily seen that the busy
cyles, i.e. the cyles where the server is non-idle or busy, are such re-
generation cycles of the system1. At the start of each busy cycle the
system starts anew indepedently from the past and governed by the
same probability law.

Theorem 2.1. The function w̄2(β) (w̄1(β)) is a strictly increasing
(decreasing) function on the interval [0, 1], if Pr[w1(β) > 0, w2(β) >
0] > 0. Furthermore, both functions are continuous on the same
interval if E[T 2] is finite, with T the length of a random regeneration
cycle.

For the proof of Theorem 2.1, we require some lemmas that we
will handle first. We postpone the presentation of the proof and
the explanation of the extra assumptions. In that proof, we couple
two systems in such a way that for equal β their sample paths are
equal from slot to slot. To this end all input processes are coupled,
i.e. arrivals in each slot are identical in both systems. To couple
the decision making processes of the schedulers, we formalize this
process first. Each slot the scheduler generates a decision variable,
the decision variable in slot k is denoted by rk and is drawn from
a uniform distribution on [0, 1]. In case there is contention between
both classes, i.e. customers of both classes are present, the scheduler
serves class 1 when rk ∈ [0, β] and class 2 when rk ∈]β, 1]. As such,
class 1 (class 2) is served with probability β (1 − β) conform to the
specification of the policy.

1 It is possible to identify other regeneration cycles. The splitting in regener-
ation cycles is not unique.

CHAPTER 2. TWO CLASSES 27

Perturbation analysis
The method we use here is known as perturbation analysis. In perturbation
analysis, a single sample path is analyzed. The generation of a perturbation by
changing a single system parameter (for instance changing the weight parameter
from β to β+∆β) propagates a series of perturbations on the sample path. These
perturbations of the sample path result in changes of the system performance,
which is the topic of the study. In essence the perturbation analysis is a sensitivity
analysis of a parameter on the system performance.

In this section the perturbation analysis is used to show that the increase
of the weight parameter (β) leads to a bounded increase of the mean unfinished
work of class 2. Which enables us to prove monotonicity and continuity of the
mean unfinished work. These results in turn aid to prove more complex results on
the optimization of the system in the following sections. In Part II, we will anew
turn to perturbation analysis for deriving approximations for the performance
characteristics. We will come back to the specific techniques used there at the
appropriate time. For a general description of perturbation techniques we refer
to [149].

For the proof of Theorem 2.1, we couple two systems with a differ-
ent weight parameter and study the influence thereof. In particular,
we couple a β- and a β+ ∆β-system, with 0 ≤ β < β+ ∆β ≤ 1. The
following two lemmas compare the sample paths of these systems.

Lemma 2.1. The total amount of unfinished work in the two sys-
tems, coupled as explained above, are equal in every slot.

Proof. The number of arrivals is identical in both of the coupled
systems. As both systems are work-conserving, they have to serve
a customer whenever work is present at the beginning of the slot.
Consequently, both systems serve customers (albeit possibly from a
different class) and idle in the same slots. As a result, in every slot
both systems have the same amount of unfinished work.

In Lemma 2.1, we basically prove that the total unfinished work
is independent of β, i.e. independent of the order in which customers
are served. In symbols, we write w1,k(β) + w2,k(β) = wT,k, whereby
we have explicitly denoted dependence of β where appropriate and
wT,k denotes the total unfinished work in the system at the beginning
of slot k.

To easily study the difference between the two systems, we de-
fine ∆wj,k(β) , wj,k(β + ∆β)−wj,k(β) and ∆w̄j(β) , E[∆wj,k(β)].
In the following lemma, we uncover in what situations differences be-
tween the β- and β+∆β-system change by comparing all possibilities
from slot k to the next. In this lemma, we use the operator (·)+ de-
fined as max(·, 0). Furthermore, we only concentrate on w2,k as w1,k

can be calculated from wT,k per Lemma 2.1.

28 CHAPTER 2. TWO CLASSES

Lemma 2.2. The following inequalities hold for all k:

(i) ∆w2,k(β) ≥ 0,

(ii) (∆w2,k(β)− 1)+ ≤ ∆w2,k+1(β) ≤ ∆w2,k(β) + 1, if rk ∈]β, β +
∆β], and

(iii) (∆w2,k(β)− 1)+ ≤ ∆w2,k+1(β) ≤ ∆w2,k(β), if rk /∈]β, β+ ∆β].

Proof. We first prove (ii) and (iii) conditionally on ∆w2,k(β) ≥ 0.
Later, we will prove (i), which also means that this condition is always
met.

We start with the situation where ∆w2,k(β) = 0. If rk /∈]β, β +
∆β], the same decision is taken for both systems in slot k, leading to
∆w2,k+1(β) = 0. If rk ∈]β, β + ∆β], we distinguish four cases:

1. w1,k = 0, w2,k = 0,

2. w1,k = 0, w2,k > 0,

3. w1,k > 0, w2,k = 0,

4. w1,k > 0, w2,k > 0.

In the first three cases, the same (or no) work unit is served in slot k
in both systems, yielding ∆w2,k+1(β) = ∆w2,k(β). In case 4, a work
unit of class 2 is served in the β-system, while a work unit of class 1 is
served in the β+ ∆β-system, leading to ∆w2,k+1(β) = ∆w2,k(β) + 1.
It is thus clear that (ii) and (iii) hold if ∆w2,k(β) = 0.

Let us next turn to the case ∆w2,k(β) > 0. Evidently, w2,k(β +
∆β) and w1,k(β) are then strictly positive (∆w1,k(β) = −∆w2,k(β),
cf. Lemma 2.1). The situation in this slot can be one of ten:

1. w1,k(β + ∆β) = w2,k(β) = 0,

2. w1,k(β + ∆β) = 0, w2,k(β) > 0, rk ≤ β,

3. w1,k(β + ∆β) = 0, w2,k(β) > 0, β < rk ≤ β + ∆β,

4. w1,k(β + ∆β) = 0, w2,k(β) > 0, β + ∆β < rk,

5. w1,k(β + ∆β) > 0, w2,k(β) = 0, rk ≤ β,

6. w1,k(β + ∆β) > 0, w2,k(β) = 0, β < rk ≤ β + ∆β,

7. w1,k(β + ∆β) > 0, w2,k(β) = 0, β + ∆β < rk,

8. w1,k(β + ∆β) > 0, w2,k(β) > 0, rk ≤ β,

CHAPTER 2. TWO CLASSES 29

9. w1,k(β + ∆β) > 0, w2,k(β) > 0, β < rk ≤ β + ∆β,

10. w1,k(β + ∆β) > 0, w2,k(β) > 0, β + ∆β < rk.

According to the scheduling rules, the following services take place
in slot k:

• in cases 5-6 and 8, a class-1 customer service in both systems,

• in cases 3-4 and 10, a class-2 customer service in both systems,

• in cases 1-2 and 7, a class-1 customer service in the β-system
and a class-2 customer service in the β + ∆β-system, and,

• in case 9, a class-2 customer service in the β-system and a class-
1 customer service in the β + ∆β-system.

Propositions (ii) and (iii) follow immediately: ∆w2,k(β)−1 ≤ ∆w2,k+1

(β) ≤ ∆w2,k(β) in all cases except case 9. In the latter case, β <
rk ≤ β + ∆β and ∆w2,k+1(β) = ∆w2,k(β) + 1.

Finally, we prove (i) by induction on k. It follows from the first
part of this proof that ∆w2,k+1(β) ≥ (∆w2,k(β)− 1)+ and therefore
∆w2,k+1(β) ≥ 0. The inductive proof is concluded by the coupling
assumption on the initial unfinished work, i.e., by ∆w2,1(β) = 0.

With these lemmas we are ready to formulate the proof of Theo-
rem 2.1. In the first part of the proof, we establish a lower bound on
∆w̄2(β), thus proving strict monotonicity of w̄2(β). The main step
in this part of the proof uses the system dynamics from Lemma 2.2.
In the second part, we establish an upper bound on ∆w̄2(β) to prove
continuity. This part uses Lemma 2.2 but also requires the introduc-
tion of the extra assumptions on the distribution of the length of the
regeneration cycle.

Proof of Theorem 2.1. We focus on the effect of a positive displace-

ment ∆β on ∆w̄2(β) and prove that 0 < lim∆β→0
∆w̄2(β)

∆β <∞ (under

the conditions stated in the theorem). The same reasoning holds for
a negative displacement −∆β. We can then conclude that w̄2(β) is
a continuous, strict monotonic function on the interval [0, 1].

We pick a random slot and denote it by slot J . We will cal-
culate lower (to prove strict monotonicity) and upper (for continu-
ity) bounds on the expected difference between the class-2 unfinished
work at the beginning of that slot in both coupled β- and β + ∆β-
systems.

We start with the lower bound. We can write

∆w̄2(β) ≥ E[∆w2,J(β)1w1,I(β)>0,w2,I(β)>0],

30 CHAPTER 2. TWO CLASSES

with slot I the slot preceding slot J . From the proof of Lemma 2.2, it
follows that under the condition in the previous equation, the differ-
ence in ∆w2(β) increases with 1 from slot I to slot J if the decision
variable rI is in]β, β + ∆β] and stays the same if rI is not in this
interval, i.e.,

∆w̄2(β) ≥E[(∆w2,I(β) + 1)1w1,I(β)>0,w2,I(β)>0]∆β

+ E[∆w2,I(β)1w1,I(β)>0,w2,I(β)>0](1−∆β).

By using (i) of Lemma 2.2 and the fact that slot I is a random slot,
we can further write

∆w̄2(β) ≥ Pr[w1(β) > 0, w2(β) > 0]∆β.

Under the assumption of the theorem, Pr[w1(β) > 0, w2(β) > 0] > 0,
independently of ∆β, and, therefore ∆w̄2(β) is strictly positive and,
consequently, w̄2(β) strictly increasing.

We now establish an upper bound to prove continuity. Since the
difference is 0 at the beginning of the regeneration cycle slot J is part
of, it will be of interest to characterize the age of the on-going regen-
eration cycle. Therefore, introduce T̃ as the length of the elapsed
part of the on-going regeneration cycle at the beginning of slot J
and r̃(β,∆β) as the number of times the decision variable was in
]β, β+∆β] during this elapsed part. Lemma 2.2, part (ii) then states
that in each of the slots the decision variable is in]β, β + ∆β] the
difference in the unfinished work of class 2 can at most increase with
1. From part (iii) of that lemma, it follows that in the other slots a
further increase is not possible. The difference in unfinished work of
class-2 can therefore be at maximum r̃(β,∆β) and we have

∆w̄2(β) ≤ E[r̃(β,∆β)]. (2.1)

We further bound the right-hand side. Due to the law of total prob-
ability, we can write

E[r̃(β,∆β)] =

∞∑
k=0

E[r̃(β,∆β)|T̃ = k] Pr[T̃ = k].

Since I is a randomly chosen slot, the inspection paradox yields

E[r̃(β,∆β)] =

∞∑
k=0

E[r̃(β,∆β)|T̃ = k]

∞∑
l=k+1

Pr[T = l]

E[T]
, (2.2)

with T the length of a random regeneration cycle. Since the server al-
location variables are independent and uniformly distributed in [0, 1],

CHAPTER 2. TWO CLASSES 31

they are in the interval]β, β+∆β] with probability ∆β, and r̃(β,∆β)
has a binomial distribution with parameters T̃ and ∆β. We obtain

E[r̃(β,∆β)|T̃ = k] =

k∑
l=0

(
k

l

)
∆βl · (1−∆β)k−l · l

= k ·∆β (2.3)

Substitution of (2.3) in (2.2) leads to

E[r̃(β,∆β)] =

∞∑
k=0

k ·∆β
∞∑

l=k+1

Pr[T = l]

E[T]

=
∆β

E[T]

∞∑
l=1

Pr[T = l]

(
l−1∑
k=0

k

)

=
∆β

E[T]

∞∑
l=1

Pr[T = l]
(l − 1)l

2

≤ E[T 2]

2E[T]
∆β.

Using this in (2.1), we find that, for each ∆β,

∆w̄2(β) ≤ E[T 2]

2E[T]
∆β.

Taking the limit ∆β → 0 leads to the theorem.

Infinite second moment of regeneration cycle length

We see that to prove continuity the extra requirement of a finite
second moment for the length of the regeneration cycle arises. As a
corollary, if this condition is not fulfilled it is possible for the mean
unfinished work of a class to be discontinuous for a certain value of
β. In fact, based on the proof it is possible to construct such an
example. We present one here.

Assume an arrival process that is arranged in such a way that
in the first slot of a regeneration cycle there is always the arrival of
exactly one class-1 customer and at least one class-2 customer. In
the remaining slots of the regeneration cycle, there are only class-2
arrivals in such a way that the total number of class-2 arrivals in
the elapsed part of the regeneration cycle is always larger than the
length of the elapsed part. Then in case β = 0, we have strict priority
for class 2 and the class-1 customer that arrives at the start of the

32 CHAPTER 2. TWO CLASSES

regeneration cycle will always be the last customer to get served.
Introducing our perturbation, we look at β = ∆β. From the proof of
Theorem 2.1, we have that (2.1), for this specific case, changes to

∆w̄2(0) = E[r̂(0,∆β)],

whereby r̂(0,∆β) is defined to be 0 if none of the decision variables
lies in]0,∆β] during T̃ and 1 if there is at least one. Indeed, if
r̂(0,∆β) = 0 then ∆w2,J(β) = 0, there will be no difference, the class-
1 customer is in both systems still waiting. However, if r̂(0,∆β) = 1
then ∆w2,J(β) = 1, the class-1 customer is already served in the 0 +

∆β-system. Alternatively, we can define r̂(0,∆β) , min(r̃(0,∆β), 1).
We can then continue the analysis in a similar way as in the proof.

E[r̂(0,∆β)] =

∞∑
k=0

E[r̂(0,∆β)|T̃ = k] Pr[T̃ = k]

=

∞∑
k=0

E[r̂(0,∆β)|T̃ = k]

∞∑
l=k+1

Pr[T = l]

E[T]

From the definition of r̂(0,∆β), we can see that E[r̂(0,∆β)|T̃ = k]
equals the probability that at least one decision variable in the k
preceding slots of the busy cycle is in]0, β + ∆β]. Equivalently, this
is 1 minus the probability that no decision variable is in that interval.
We thus find: E[r̂(0,∆β)|T̃ = k] = 1− (1−∆β)k. We use this in our
previous equations and develop the expressions further:

∆w̄2(0) =

∞∑
k=0

(
1− (1−∆β)k

) ∞∑
l=k+1

Pr[T = l]

E[T]

=
1

E[T]

∞∑
l=1

Pr[T = l]

l−1∑
k=0

(
1− (1−∆β)k

)
=

1

E[T]

∞∑
l=1

Pr[T = l]
(
l − 1− (1−∆β)l

∆β

)
= 1− 1

E[T]∆β

∞∑
l=1

Pr[T = l]
(

1− (1−∆β)l
)

= 1− 1

E[T]∆β
+

1

E[T]∆β

∞∑
l=1

Pr[T = l](1−∆β)l

=
E[T]∆β − 1 + T ∗(1−∆β)

E[T]∆β
,

CHAPTER 2. TWO CLASSES 33

whereby we have used that Pr[T = 0] = 0 and defined T ∗(z) as the
probability generating function of the regeneration cycle length, i.e.,
T ∗(z) = E[zT] =

∑∞
l=1 z

l Pr[T = l].

We then calculate the limit:

lim
∆β→0

∆w̄2(0)

∆β
= lim

∆β→0

E[T]∆β − 1 + T ∗(1−∆β)

E[T]∆β2

H
=
0
0

lim
∆β→0

E[T] +D(T ∗)(1−∆β)

2E[T]∆β

H
=
0
0

lim
∆β→0

D2(T ∗)(1−∆β)

2E[T]

=
E[T 2]− E[T]

2E[T]

In these calculations, we have used l’Hopital’s rule and the moment
generating property of the probability generating function, in partic-
ular, T ∗(1) = 1,D(T ∗)(1) = E[T] and D2(T ∗)(1) = E[T 2] − E[T].
We find that if E[T 2] the second moment of the regeneration cycle
length is infinite, the limit does not exist and w̄(β) is discontinuous in
β = 0. This shows the necessity of the conditions on the probability
distribution of the regeneration cycle length in Theorem 2.1.

Extension

The results from this section, are valid for a wider class of models.
In particular, they are also valid if interruptions of the server are
possible (meaning the server can either be serving customers in a slot
or be offline). Moreover, they are also valid for customers that require
longer service times when they are served in a preemptive manner.
This means that at every slot boundary the service of a customer
can be paused to start/continue serving a customer of another class.
Afterwards the service of the paused customer is simply resumed from
where it stopped. This extended result is described in [146].

Summary

The two most important results from this section to remember for the
remainder of this dissertation are delineating the achievable region of
two-class discrete-time GPS. The first one is a corollary of Lemma 2.1.

Corollary 2.1. The function w̄1(β)+w̄2(β) is independent of β, i.e.,
equals w̄T .

34 CHAPTER 2. TWO CLASSES

(a) (b)

Figure 2.1: Achievable region for two-classes GPS

w̄T is the mean of the total unfinished work in the system and is
a constant that can be calculated from single-class systems [32]. The
second one is Theorem 2.1 describing the continuity and increasing,
respectively decreasing, behavior of w̄2(β) and w̄1(β) with respect
to β. As a result w̄2(0) = w̄2,min (w̄1(1) = w̄1,min) the smallest
possible value for w̄2 (w̄1) and w̄2(1) = w̄2,max (w̄1(0) = w̄1,max)
the largest possible value for w̄2 (w̄1). These cases of β = 0 or
β = 1 correspond to strict priority for one of the classes. The values
w̄1,min, w̄1,max, w̄2,min, w̄2,max can easily be calculated using results
from [143]. As a result from continuity, we can reformulate Bolzano’s
theorem also known as the intermediate value theorem for this model
in the following corollary:

Corollary 2.2. For every w̄∗2 ∈ [w̄2(0), w̄2(1)] there exists a unique
β∗ ∈ [0, 1] so that w̄2(β∗) = w̄∗2. Equivalently for class 1: for every
w̄∗1 ∈ [w̄1(1), w̄1(0)] there exists a β∗ ∈ [0, 1] so that w̄1(β∗) = w̄∗1.

In Figure 2.1a, we have drawn the achievable region as described
by Corollary 2.1 and 2.2. As can be seen it is a straight line, and
only the performance vectors w̄ = (w̄1, w̄2) on this line are achiev-
able with the system under study. The achievable region is thus one-
dimensional and if we consider w̄1 (= w̄T − w̄2) as a dependent vari-
able, we get the alternative description of the achievable region from
Figure 2.1b. We have chosen w̄2 as the independent variable, as it
increases with β which is easier to reason with in the rest of this chap-
ter. We denote the set of achievable performance vectors by Ω ⊂ R2.
Furthermore, we define Ω1 = [w̄1(1), w̄1(0)] and Ω2 = [w̄2(0), w̄2(1)].

CHAPTER 2. TWO CLASSES 35

2.2 Optimization

In this section, we focus on the optimization of the two-class GPS
model. A first task for optimization is to determine what you want
to optimize. The optimization objective is formalized in a so-called
objective function, which is a function of performance metrics of the
system under optimization. Often this function is also called a cost
function, in this setting the function expresses penalties associated
with the performance metrics. The goal of optimization is then to
minimize the cost function. In its generality an objective function
does not always have to be minimized as it could also represent the
utility of the performance metrics. In that case one would want to find
the maximum. It is clear that in the terminology of a cost function
one always aims at minimizing the cost.

The objective functions studied in this section are functions of the
mean unfinished work of both classes. It is important to note that
by wrapping the mean unfinished work of a class by an appropriate
function, one can easily switch to an objective function in terms of
another performance metric. For single slot service times as used in
this dissertation the mean unfinished work of a queue equals the mean
queue content. By applying Little’s law, we can further transform to
mean customer delay:

d̄j(β) =
w̄j(β)

λj
.

Various results from this dissertation easily extend to geometrically
distributed service times with parameter µj for class j, combined
with a preemptive service discipline2. In that case, we transform to
the mean queue content ūj(β) as follows

ūj(β) = µjw̄j(β).

The mean delay than becomes

d̄j(β) =
µjw̄j(β)

λj
.

So say, we want an objective function that is a function of the mean

customer delay of both classes, i.e., f
(
d̄1(β), d̄2(β)

)
. In that case,

we can easily transform it to a function of the mean unfinished work:

2 In a preemptive service discipline the service of a customer can be interrupted
(or pre-empted) at each slot boundary. The service of that customer is resumed
from where it was interrupted later on.

36 CHAPTER 2. TWO CLASSES

f
(
h1(w̄1(β)), h2(w̄2(β))

)
with hj(x) =

µjx

λj
. For simplicity, we there-

fore limit ourselves to studying objective functions in the mean unfin-
ished work of both classes. Additionally, using the mean unfinished
work enables us to use the important theorems from the previous
section, whereas these theorems are not necessarily fulfilled for the
other performance measures.

During the selection of an objective function it is good for the
network operator to have some notion on the influence of her/his
choices on the optimum. In a first step, the operator chooses the
relevant performance characteristics and the type of relation of each
performance characteristic in the objective function. When equal
increments for high or low values should have an equal influence on
the objective function, a linear relation can be used. The behavior
of other types of relations can easily be derived from a plot of the
corresponding function. Other examples are a squared relation or a
logistic one. This choice of relation is closely related to the relation
between Quality of Service (QoS) and Quality of Experience (QoE)
[63,130] and the choice of utility functions [96,106]. A second question
for the operator is how to weigh the performance of both classes. An
answer to this question is less clear and in most cases more arbitrarily
chosen.

In the first subsection, we look at a framework to study the op-
timum of general objective functions. In subsection 2.2.2, we study
a subclass of objective functions, namely a weighted sum of increas-
ing functions of the mean unfinished work of both classes. For this
subclass, we analytically prove in what cases a minimum that occurs
for different β than β = 0 or β = 1 exists. Subsequently in 2.2.3, we
extend the subclass of objective functions from the preceding subsec-
tion and apply the framework from 2.2.1. This enables us to perform
a sensitivity analysis on the weights used in the objective function,
enabling an operator to assess the impact on the optimum and be-
havior of the objective function. Lastly in subsection 2.2.4, we apply
the knowledge of the preceding subsections to form an efficient pro-
cedure to find a value for β that achieves the desired extremum of
the objective function.

2.2.1 General Framework

For the optimization of single-variable (in this case β) functions var-
ious standard mathematical techniques have been developed. How-
ever, these are useless as we do not have expressions for the relation
between the performance metrics used in the objective function and

CHAPTER 2. TWO CLASSES 37

the optimization parameter β. Say, we have an objective function
that is a generic function of the mean unfinished work in both queues,
i.e., f(w̄1(β), w̄2(β)). From the optimization point of view, this is
a function in terms of β: F (β) , f(w̄1(β), w̄2(β)). The standard
technique of finding the critical points3 and subsequently going from
there, is unusable here. This is because we do not have analytical
solutions for w̄j(β). The analysis of GPS queueing systems is hard,
even for the simplest arrival process, except for β = 0 or β = 1 which
are strict priority cases. In Part II, we obtain some approximations
for these solutions that can aid in optimization. Nevertheless, in this
part of the dissertation we ignore these approximations and develop
some exact analytical results regarding optimization.

The main observation is that the objective function f(w̄1(β),
w̄2(β)), can also be expressed in terms of a single variable, other
than β. In particular, Corollary 2.1 states that w̄1(β) = w̄T − w̄2(β),
implying that f(w̄1(β), w̄2(β)) can be expressed in terms of w̄2(β)
only. With a slight abuse of notation, we define this form as f∗(w̄2).
It is obvious that F = f∗◦w̄2. With missing expressions for w̄2(β) the
study of F requires estimations/approximations for this performance
measure. However, since we know the image (Ω2 = [w̄2(0), w̄2(1)])
and behavior (continuous and strictly increasing) of w̄2(β), we can
already study f(w̄1(β), w̄2(β)) in terms of w̄2(β) instead of β, with
domain Ω2 instead of [0, 1] (i.e., studying f∗(w̄2)).

Consequently, we can observe the number of extrema and inflec-
tion points and determine the values of f(w̄1(β), w̄2(β)) in these
points without running simulations or relying on possibly inaccu-
rate approximate expressions. Obviously, we do not know the β-
values corresponding to these points (except when they coincide with
the endpoints). To determine these β-values, we still need estima-
tions/approximations. However, some important preliminary conclu-
sions can be drawn from the behavior of f∗(w̄2). For instance, the
minimum could be in one of the endpoints β = 0 or β = 1. In
that case, strict priority is optimal and we do not have to simulate.
Another possible conclusion is that the difference in the objective
function between the minimum and one of the endpoints is too small
to justify a time-consuming quest for the β-value corresponding to
the minimum. Summarized, from the analysis of f∗(w̄2), an interval
in Ω2 with an acceptable value for the objective function can be se-
lected. The optimization problem then reduces to finding a value of
β for which the continuous and monotonic function w̄2(β) reaches a

3Critical points are the points with F ′(β) = 0; these are the only candidates
to be an extremum.

38 CHAPTER 2. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

β

(a) f1(w̄1(β), w̄2(β))

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

w
—
 2

(b) f∗1 (w̄2)

Figure 2.2: Comparison between the objective function
f1(w̄1(β), w̄2(β)) and f∗1 (w̄2)

value in the selected interval (stopping criterion). We demonstrate
these findings by means of some illustrative examples.

Some Illustrative Examples

For the examples, we generated the number of class-1 and class-2
arrivals by a two-dimensional binomial distribution as introduced in
Section 1.6. Adopting some concrete values for the parameters of the
arrival process, the priority results of [143] can be used to calculate
w̄j(0) and w̄j(1) (j = 1, 2). For N = 16, λT = 0.9, and α = 0.8, for
example, we find that

w̄1(0) = 4.50, w̄2(0) = 0.20,

w̄1(1) = 1.59, w̄2(1) = 3.11. (2.4)

Then w̄T = w̄1(·) + w̄2(·) = 4.70 and the intervals Ω1 and Ω2 are
given by [1.59, 4.5] and [0.2, 3.11], respectively.

As objective function for our first example, we use two logistic
functions:

f1(w̄1(β), w̄2(β)) ,
1

1 + e−2w̄1(β)+8
+

1

1 + e−2w̄2(β)+3
. (2.5)

Applying the framework and using the values of (2.4) then yields
f1(w̄1(β), w̄2(β)) in terms of w̄2(β) only, i.e.,

f∗1 (w̄2) =
1

1 + e2w̄2−1.4
+

1

1 + e−2w̄2+3
. (2.6)

This function is plotted in Figure 2.2b. In Figure 2.2a, f1(w̄1(β),
w̄2(β)) is plotted as a function of β; this figure results from simulation
(see Section 1.5), as it is notoriously complex to find analytical results

CHAPTER 2. TWO CLASSES 39

for w̄2(β). We see from the figures that both graphs have equal
characteristics. Both graphs, for instance, have the same number of
minima (i.e., one). Also, the ranges of both graphs are the same. So,
f∗1 (w̄2) helps identifying the minimum value of the objective function
and determining how much this value differs from the values in the
endpoints. As opposed to f1(w̄1(β), w̄2(β)), however, we can plot
f∗1 (w̄2) right away.

Nevertheless, we cannot conclude from the behavior of f∗1 (w̄2) at
what β-value this minimum occurs (say βmin). We only know that
w̄2(βmin) = 1.1 at F = 0.62. So for instance if we are satisfied
with the objective function within 2% of its minimum (i.e. F smaller
than 0.6324), we then argue that we need w̄2 to be in the interval
[0.9, 1.3]. This subsequently is the stopping criterion for a simula-
tion or approximation procedure on the function w̄2(β). As can be
seen from Figure 2.2a, the procedure should result in a βopt value in
the interval [0.71, 0.77], as to have a value for the objective function
within 2% of the minimum.

From Figure 2.2b, we would assume to start the, in case of simu-
lations, time-consuming quest for βmin at β = 0, as the minimum is
more to the left of the graph. However, from Figure 2.2a, we observe
that βmin is closer to 1. The information contained in Figure 2.2b
can nonetheless be used to optimize the quest for βmin as it provides
a means to assess which points of the curve you are probing. For
instance, it is clear from Figure 2.2b that there will be only one local
minimum (in terms of the objective function). Hence, we can use
optimization procedures that are known to get stuck in local minima
while searching the global minimum (see Section 2.2.4). In fact, these
procedures, can be accelerated even further, as we know the actual
minimum value of the objective function. Therefore, we know, while
simulating, how far we are off and we can use this to our advantage.
In Section 2.2.4, we describe and compare some procedures to find
βmin.

As a second example, we examine the objective function

f2(w̄1(β), w̄2(β)) , (0.5w̄1(β))2 + (1.3w̄2(β))2. (2.7)

Applying the framework and using the values in (2.4) then leads to

f∗2 (w̄2) = (2.35− 0.5w̄2)2 + (1.3w̄2)2. (2.8)

Plots for this second example are found in Figure 2.3. Function
f∗2 (w̄2) provides us with the value of the objective function in its
minimum (see Figure 2.3b). The difference between the value of the
objective function at β = 0 (5.13) and the minimum value (4.81)

40 CHAPTER 2. TWO CLASSES

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1

β

(a) f2(w̄1(β), w̄2(β))

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 1 1.5 2 2.5 3

w
—
 2

(b) f∗2 (w̄2)

Figure 2.3: Comparison between the objective function
f2(w̄1(β), w̄2(β)) and f∗2 (w̄2)

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

β

(a) f3(w̄1(β), w̄2(β))

 0

 1

 2

 3

 4

 5

 0.5 1 1.5 2 2.5 3

w
—
 2

(b) f∗3 (w̄2)

Figure 2.4: Comparison between the objective function
f3(w̄1(β), w̄2(β)) and f∗3 (w̄2)

is perhaps not worth the effort to search for βmin (the difference is
6.6%). Figure 2.3b can thus be used in advance to decide whether
significant gain can be won by searching βmin compared to using the
priority cases β = 0 or β = 1.

If, on the other hand, we make the same reasoning as in the pre-
vious example, thus allowing at most 2% deviation of the minimum,
we need the objective function F to be smaller than 4.90 and conse-
quently w̄2 in [0.38, 0.83]. An accompanying simulation/approximation
method should then result in a βopt-value in the interval [0.44, 0.69].

The reasoning used here can be applied for an arbitrarily com-
plex objective function in w̄j(β). Indeed, every objective function
minimization problem can be translated to a problem of finding the
corresponding β for a certain performance vector (with or without
some error margin). This effectively simplifies procedures; we will
come back to this in Section 2.2.4.

CHAPTER 2. TWO CLASSES 41

Finally, we consider the objective function

f3(w̄1(β), w̄2(β)) , max(w̄1(β), w̄2(β)). (2.9)

With the parameter values from (2.4) and the framework, this pro-
duces

f∗3 (w̄2) = max(4.7− w̄2, w̄2). (2.10)

Figure 2.4 shows the plots of these functions. The left figure results
from simulation; the right figure can readily be plotted for w̄2 ∈
Ω2. Figure 2.4 nicely shows the correspondence between plotting
f3(w̄1(β), w̄2(β)) as a function of w̄2 and plotting f3(w̄1(β), w̄2(β))
as a function of β. Due to the increasing and decreasing character of
w̄2(β) and w̄1(β), the max-function plots the first part of w̄1(β) fol-
lowed by the last part of w̄2(β), respectively. The transition between
the two parts is the point where w̄1(β) = w̄2(β). This point matches
the minimum of f3(w̄1(β), w̄2(β)). Note that for other values of the
arrival process parameters, either only w̄1(β) or only w̄2(β) may be
depicted; this happens when, despite the increasing or decreasing
character of both performance characteristics, one of the two is al-
ways greater than the other.

Note: Critical for this method is the availability of the values for
w̄j(0) and w̄j(1) (j = 1, 2). However, it does not matter how these
values are obtained. For strict priority systems, many analytical re-
sults are available; this is, for instance, the case for the arrival and
service processes we have used in the examples above (see [143]). For
more complex arrival and/or service processes, this is not necessarily
the case. To still use the framework, we can, for example, simulate
the system for β = 0 and β = 1 as a start.

2.2.2 Convex Combination of Increasing Functions

Now, we take a step back and concentrate on the minimization of a
specific class of objective functions. We derive some a priori results
that are consequences of the GPS system dynamics and the choice of
the objective function. To derive these results, the framework of the
previous section is not required. In concreto, we study a convex com-
bination of strictly increasing and sufficiently differentiable functions
gj of the mean unfinished work in both queues, i.e.,

F (β, γ) , γg1

(
w̄1(β)

)
+ (1− γ)g2

(
w̄2(β)

)
, (2.11)

with 0 ≤ γ ≤ 1. The parameter γ expresses the relative importance
that is given to w̄1(β): the higher γ, the more important w̄1(β).

42 CHAPTER 2. TWO CLASSES

When γ = 0, the objective function only takes into account w̄2(β);
when γ = 1, only w̄1(β) plays a role. In these cases, it is obvious
that the strict priority scheduling discipline (β = 0 and β = 1, re-
spectively) minimizes F (β, γ), because of Theorem 2.1 and because
of the assumption that g1 and g2 are increasing functions. Function
gj (j = 1, 2) expresses how increments in the mean unfinished work in
queue j are penalized. For convex functions, for instance, increments
of high values are more penalized than increments of low values. For
concave functions, it is the other way around.

We first prove an important lemma.

Lemma 2.3. Assume g′j(x) > 0, ∀x ∈ Ωj (gj(x) is strictly increasing

in the relevant domain). Then ∂F (β,γ)
∂β > (<,=) 0 if and only if γ <

(>,=) φ(β) with

φ(β) ,
g′2(w̄2(β))

g′2(w̄2(β)) + g′1(w̄1(β))
. (2.12)

Furthermore, φ(β) ∈]0, 1[.

Proof. By taking the partial derivative of F (β, γ) with respect to β
and using Corollary 2.1, we obtain

∂F (β, γ)

∂β
=
(
g′2(w̄2(β))− γ[g′1(w̄1(β)) + g′2(w̄2(β))]

)
w̄′2(β).

Then the lemma follows from the assumption that the functions gj
are strictly increasing functions and from Theorem 2.1 which states
that w̄′2(β) > 0.

Lemma 2.3 is important, as it separates, for given β, the inter-
val γ = [0, 1] in three parts, [0, φ(β)[, the point φ(β), and]φ(β), 1],
where the objective function F (β, γ) increases, is constant and de-
creases, respectively. In particular, for β = 0, F (β, γ) is increasing
(decreasing) when γ < (>) φ(0); for β = 1, the objective function is
increasing (decreasing) when γ < (>) φ(1). It is easily seen that φ(0)
and φ(1) can be calculated from results of strict priority scheduling,
see (2.12) (if these results are available). The values φ(0) and φ(1)
are of primordial importance. Indeed, we prove that for certain im-
portant classes of functions gj and depending on the value of γ with
respect to φ(0) and φ(1), strict priority scheduling (either β = 0 or
β = 1) is optimal.

Specifically, we analyze three particular classes for the (increasing)
functions gj namely linear functions, convex functions and concave

CHAPTER 2. TWO CLASSES 43

functions. The derivative of φ(β) will play an important role in these
analyses, so we first calculate this derivative from equation (2.12):

φ′(β) =

(
g′′2 (w̄2(β))g′1(w̄1(β)) + g′2(w̄2(β))g′′1 (w̄1(β))

)
w̄′2(β)(

g′2(w̄2(β)) + g′1(w̄1(β))
)2 (2.13)

Theorem 2.2. Assume g′j(x) > 0 and g′′j (x) = 0, ∀x ∈ Ωj (i.e.,
gj(x) is a linear increasing function). Then φ(β) = φC is a constant
function. As a result, strict priority is always optimal, namely

(i) for γ < φC , β = 0 (strict priority for class 2) is optimal,

(ii) for γ > φC , β = 1 (strict priority for class 1) is optimal, and

(iii) for γ = φC , all values of β are equally optimal.

Proof. From equation (2.13), it follows that φ(β) is a constant (say
φC). Then the theorem follows directly from Lemma 2.3: (i) if
γ < φC , F (β, γ) is strictly increasing with respect to β and has
its minimum in β = 0; (ii) if γ > φC , F (β, γ) is strictly decreasing
with respect to β and reaches its minimum in β = 1; and, (iii) if γ is
equal to the constant φC , F (β, γ) is identical for all values of β.

From this theorem, it follows that strict priority is always opti-
mal when the objective function is a weighted combination of linear
functions of the mean unfinished work in both queues. Similar obser-
vations have been made in the past (cf. the cµ-rule, Section 2.3.2).

We now turn to convex increasing functions gj .

Theorem 2.3. Assume g′j(x) > 0 and g′′j (x) > 0, ∀x ∈ Ωj (i.e.,
gj(x) is strictly increasing and strictly convex). Then φ(β) is a
strictly increasing function. As a result,

(i) for γ ≤ φ(0), β = 0 (strict priority for class 2) is optimal,

(ii) for γ ≥ φ(1), β = 1 (strict priority for class 1) is optimal, and

(iii) for φ(0) < γ < φ(1), βopt(γ) = φ−1(γ) is optimal, with φ−1 the
inverse function of φ. The function βopt(γ) has the following
properties: it is different from 0 or 1 (i.e., we have true GPS)
and it is strictly increasing.

Proof. The right-hand side of equation (2.13) is positive, due to the
assumptions on the functions gj and Theorem 2.1. As a consequence,
φ(β) is a strictly increasing function. It then follows directly that if

44 CHAPTER 2. TWO CLASSES

γ ≤ φ(0), γ < φ(β) for 0 < β ≤ 1. From Lemma 2.3, we have that
F (β, γ) is in this case non-decreasing with respect to β and reaches its
minimum in β = 0. If γ ≥ φ(1), on the other hand, γ > φ(β) for 0 ≤
β < 1. In this case, F (β, γ) is non-increasing with respect to β and
reaches its minimum in β = 1. Finally, when φ(0) < γ < φ(1), there is
a unique β ∈]0, 1[so that φ(β) = γ (since φ(β) is a strictly increasing
function). We denote this β by βopt(γ) (i.e., βopt = φ−1(γ)). Then
Lemma 2.3 indicates that F (β, γ) decreases with β in the interval
[0, βopt(γ)[and increases in the interval]βopt(γ), 1]. As a result,
F (β, γ) is unimodal, and βopt(γ) is optimal and lies between 0 and 1
(0 < βopt(γ) < 1). Finally, βopt(γ) being strictly increasing follows
from βopt(γ) = φ−1(γ) and φ(β) strictly increasing.

From this theorem, it follows that GPS might be optimal for
weighted combinations of convex increasing functions of the mean
unfinished work in both queues. Moreover, the theorem sets bounds
on the values of γ for which GPS is optimal. These bounds can be cal-
culated from results of queueing analyses of a strict priority system.
This is a big advantage, as the analysis of a strict priority system
is usually much easier than the analysis of a GPS system. Outside
the bounds, strict priority is optimal, so one does not have to search
for the optimal β. Only inside the bounds, one should search for the
optimal β. The optimal β is in fact φ−1(γ), with φ(β) defined in
(2.12). In order to calculate φ(β), however, we need to find the mean
unfinished work in both queues for that β, which is the hard part.
To find the optimal β, one can, for example, adopt the golden section
search algorithm, as explained in subsection 2.2.4.

We can see an example of Theorem 2.3 in Figure 2.3. This is
because we can reformulate the optimization problem (2.7) of f2 as
an optimization problem of a function of class F (β, γ).

f2(w̄1(β), w̄2(β)) = (0.5w̄1(β))2 + (1.3w̄2(β))2

=
1

2

(√
2 · 0.5 · w̄1(β)

)2

+
1

2

(√
2 · 1.3 · w̄2(β)

)2

(2.14)

f2 is thus of the form of F (β, γ) with γ = 0.5 and the increasing
convex functions g1(x) = (0.5

√
2x)2 and g2(x) = (1.3

√
2x)2. We thus

calculate φ(0) = 0.10 and φ(1) = 0.84 using (2.12) and (2.4). We find
that in this example γ = 0.5 is indeed in]φ(0), φ(1)[and thus in case
(iii) of Theorem 2.3 which states that there exists a single minimum
for this objective function other than β = 0 or β = 1. This is indeed
what we see in Figure 2.3.

Finally, we consider concave increasing functions gj .

CHAPTER 2. TWO CLASSES 45

Theorem 2.4. Assume g′j(x) > 0 and g′′j (x) < 0, ∀x ∈ Ωj (i.e.,
gj(x) is strictly increasing and strictly concave). Then φ(β) is a
strictly decreasing function. As a result, strict priority is always op-
timal, namely

(i) for γ ≤ φ(1), β = 0 (strict priority for class 2) is optimal,

(ii) for γ ≥ φ(0), β = 1 (strict priority for class 1) is optimal, and

(iii) for φ(1) < γ < φ(0), β = 0 (β = 1) is optimal if F (0, γ) < (>)
F (1, γ); F (0, γ) = F (1, γ), both β = 0 and β = 1 are optimal.

Proof. From equation (2.13) and Theorem 2.1, it follows that φ(β)
is strictly decreasing for strictly increasing and strictly concave func-
tions gj . By similar arguments as in the previous proof, we verify
cases (i) and (ii). When φ(1) < γ < φ(0), F (β, γ) first increases with
respect to β, until it reaches a maximum, and then decreases with
respect to β. Consequently, the minimum of the objective function
is reached for β = 0 or β = 1, depending on which is lowest. This
results in case (iii).

This theorem states that for weighted combinations of concave in-
creasing functions of the mean unfinished work in both queues, strict
priority scheduling is always optimal. One merely has to compare
the objective functions for β = 0 and β = 1 (priority for class 2 and
class 1, respectively).

Some Illustrative Examples

Here we apply and support the analytical derivations from the previ-
ous three theorems to some interesting case studies. Specifically, we
study three interesting (classes of) objective functions F (β, γ), corre-
sponding to each of the three theorems. For these cases, we assume a
general arrival process independent and identically distributed from
slot to slot, as defined in Section 1.3. In the numerical examples
shown in the figures, we chose the two-dimensional binomial arrival
processes (see Section 1.6), additionally, we switched to packet delays
instead of unfinished work. This demonstrates the conversion shown
in the introduction of Section 2.2 and is practically most relevant in
the context of heterogeneous services.

In [143] the authors derive expressions for the pgfs of the queue
contents and the packet delays for a queueing model with two classes
and class 1 having strict priority over class 2 (in our setting with

46 CHAPTER 2. TWO CLASSES

β = 1). This gives

w̄1(1) =λ1 +
λ11

2(1− λ1)
, (2.15)

and

w̄2(1) =λ2 +
λTT

2(1− λT)
− λ11

2(1− λ1)
, (2.16)

for the mean unfinished work in both queues, where λjj , E[a2
j]

the second moment of the number of arrivals of class j, and λTT ,
E[a2

T] the second moment of the total number of arrivals. To find the
formulas for the same model but with class 2 having strict priority
over class 1 (i.e., β = 0 in the GPS setting), one just has to replace
A(z1, z2) by A(z2, z1) in the expressions for the pgfs and take the
appropriate derivatives. Clearly the result is analog:

w̄1(0) =λ1 +
λTT

2(1− λT)
− λ22

2(1− λ2)
, (2.17)

and

w̄2(0) =λ2 +
λ22

2(1− λ2)
. (2.18)

These are also the expressions we used to calculate (2.4). As de-
scribed, these expressions are sufficient to calculate φ(0) and φ(1),
which identify the values of γ for which either priority (β = 0 or
β = 1) or GPS (0 < β < 1) is optimal.

Linear functions: We start with the case where the functions gj
are linear increasing functions. Assume gj(x) = ajx (j = 1, 2), with
aj constants. Using equation (2.12) then yields

φ(β) =
a2

a2 + a1
. (2.19)

As proved in Theorem 2.2, φ(β) is constant in this case. As a result,
the objective function F (β, γ) is strictly increasing w.r.t. β for γ <
φ(β), constant for γ = φ(β), and decreasing for γ > φ(β). This is
demonstrated in Figure 2.5, where we depict F (β, γ) as a function
of β, for aj = 1/λj , α = 0.8, λT = 0.9, and five different values
of γ (including φ(β) = 0.8). As already mentioned, F (β, γ) cannot
be calculated exactly for 0 < β < 1. Estimates for F (β, γ) (here,
and further in this section), for 101 equidistant values of β in the

CHAPTER 2. TWO CLASSES 47

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

β

γ =

,γ)

0.0
0.4
0.8
0.9
1.0

Figure 2.5: Objective functions F (β, γ) as a function of β, for gj(x) =
x/λj (j = 1, 2), α = 0.8, and λT = 0.9

range [0, 1], are obtained through coupled Monte-Carlo simulations,
as described in Section 1.5.

From Theorem 2.2, it follows that β = 0 is optimal if γ < φ(β),
or, by means of formula (2.19), if

a1γ < a2(1− γ). (2.20)

This can be viewed as an occurrence of the cµ-rule which states that
the queue with the highest c · µ should be given the highest priority
[139], with c the weight given to the mean holding time of that queue
in the objective function and µ the service rate of that queue. In
our case, γ and 1− γ play the role of c (the weights in the objective
function) and aj = µj if we are concerned with holding times (queue
contents). For the special case µj = 1, we find that class 2 should
be given priority if γ < 1/2. We look in to the cµ-rule further in
Section 2.3.2. If we are interested in minimizing the weighted sum
of the mean delays, class 2 should be given priority if γ < α. This
can also be observed from Figure 2.5. Note, finally, that all curves
intersect at the same point. For the corresponding value of β, the
objective function is independent of γ. This is only possible if d̄1(β) =
d̄2(β), i.e., if the mean delays for both classes are balanced.

Convex functions: Secondly, we demonstrate the case where the
functions gj are convex increasing functions. As mentioned earlier,
the rationale for convex gj is that increments of high values of the
considered performance measures are penalized more than increments

48 CHAPTER 2. TWO CLASSES

of low values. Assume gj(x) = (ajx)n (j = 1, 2), with n discrete and
larger than 1, and aj constants. First, we treat the case n = 2; later,
we consider general values of n.

n = 2 By using equation (2.12) and expressions (2.15)-(2.18), we
find that

φ(0) =
a2

2(λ22 + 2λ2(1− λ2))(1− λT){
(1− λT)(a2

2 − a2
1)λ22 + a2

1(1− λ2)λTT
+2(1− λT)(1− λ2)(a2

2λ2 + a2
1λ1)

} , (2.21)

and

φ(1) =

a2
2

{
(1− λ1)λTT − (1− λT)λ11

+2λ2(1− λT)(1− λ1)

}
{

(1− λT)(a2
1 − a2

2)λ11 + a2
2(1− λ1)λTT

+2(1− λT)(1− λ1)(a2
2λ2 + a2

1λ1)

} , (2.22)

respectively. In this case, φ(0) and φ(1) are not equal. In fact, it
follows from Theorem 2.3 that φ(0) < φ(1). From (2.21)-(2.22), this
can also be proved for this specific case. In Figure 2.6, we illustrate
φ(0) and φ(1) as functions of α with λT = 0.9. For γ ≥ φ(1) (i.e.,
at the upper left region of the graph), βopt(γ) = 1 according to
Theorem 2.3. When γ ≤ φ(0) (i.e., at the lower right region of the
graph), βopt(γ) = 0. When φ(0) < γ < φ(1), Theorem 2.3 states
that the objective function F (β, γ) reaches a minimum for some β
between 0 and 1. So here, βopt(γ) ∈]0, 1[.

We illustrate these results by choosing a specific value for α and
looking at the behavior of F (β, γ) for that α. Assume α = 0.8. Then
φ(0) = 0.41 and φ(1) = 0.96. Figure 2.7 shows F (β, γ) as a function
of β, for α = 0.8, λT = 0.9, and five different values of γ (includ-
ing 0.41 and 0.96). We clearly see that only when γ ∈]φ(0), φ(1)[,
F (β, γ) reaches a minimum for some β different from 0 and 1. For
all other values of γ (i.e., γ ∈ [0, φ(0)] and γ ∈ [φ(1), 1]), F (β, γ) is
non-decreasing and non-increasing respectively w.r.t. β and, hence,
reaches a minimum in β = 0 and β = 1, respectively. For γ = 0.41
and γ = 0.96, it is observed that the objective functions have hor-
izontal asymptotes in β = 0 and β = 1, respectively, as proved in
Lemma 2.3. Furthermore, it can be seen from the curve for γ = 0.9
that the difference between GPS with β = βopt(γ) and the strict
priority cases β = 0 and β = 1 can be considerable.

When γ ∈]φ(0), φ(1)[, we need to search for the optimal value of
β. Figure 2.8 illustrates the optimal values of β as a function of γ,
for λT = 0.9, and three different values of α. The search for this

CHAPTER 2. TWO CLASSES 49

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

α

φ(0)
φ(1)

Figure 2.6: φ(0) and φ(1) as a function of α, for aj = 1/λj (j = 1, 2)
and λT = 0.9

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

β

γ =

,γ)

0.0
0.41
0.9

0.96
1.0

Figure 2.7: Objective functions F (β, γ) as a function of β, for gj(x) =
(x/λj)

2 (j = 1, 2), α = 0.8, and λT = 0.9

50 CHAPTER 2. TWO CLASSES

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

γ

α=0.8

α=0.5α=0.2

Figure 2.8: Optimal values of β as a function of γ, for λT = 0.9 and
gj(x) = (x/λj)

2 (j = 1, 2)

optimal value is thoroughly described in Section 2.2.4. Here, βopt(γ)
was produced using golden section search on the objective function
for 1001 equidistant values of γ and a β-precision of 0.0001. We
observe that βopt(γ) increases the most for γ close to either φ(0) or
φ(1), which shows that if γ ∈]φ(0), φ(1)[, the optimal β is likely to
be not that close to 0, nor to 1. This will be more pronounced for
general powers n, which we briefly comment on next.

General n Figure 2.9 illustrates the optimal values of β as a
function of γ, for α = 0.8, λT = 0.9, and several values of n. The
optimal values of β are obtained in the same way as in the previous
figure (i.e., with the golden section search algorithm). We observe
that the curves for βopt(γ) become steeper in the neighborhoods of
φ(0) and φ(1) with increasing n4. This can be understood for n→∞,
in particular. For n → ∞, the value of γ becomes meaningless; the
minimization of the objective function comes down to the minimiza-
tion of the maximum of the mean packet delays for both classes, i.e.,
the balancing of the mean packet delays. In other words, for n→∞,
βopt(γ) becomes independent of γ (except for γ = 0 and γ = 1 where
β = 0 and β = 1 are still optimal) and this βopt(γ) ≡ βopt makes
d̄1(βopt) = d̄2(βopt). This effect is also observed in [118] in a different

4 φ(0) can be read from the graph as the smallest value for γ where β = 0 is
no longer optimal. For n = 2 this is 0.42 and for n = 4 it is 0.02. Vice versa, φ(1)
is the smallest value for γ where β = 1 is optimal. For n = 2 this is 0.96 and for
n = 4 it is 1.

CHAPTER 2. TWO CLASSES 51

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

γ

n=2
n=3

n=4

n=5

n=20

Figure 2.9: Optimal values of β as a function of γ, for α = 0.8,
λT = 0.9, and gj(x) = (x/λj)

n (j = 1, 2)

context. Note, furthermore, that βopt is in fact the same β for which
all curves in Figure 2.5 and Figure 2.7 intersect.

A second observation from Figure 2.9 is that φ(0) decreases and
φ(1) increases with n. This is also clear from Figure 2.10, where we
show the difference between φ(1) and φ(0) as a function of n, for
λT = 0.9 and three different values of α (the curves for 0.2 and 0.8
are identical, due to the apparent symmetry). The difference indeed
increases (rapidly) with n. For n = 1, the difference is 0, cf. the linear
example; for n→∞, the difference tends to 1. So for larger n, GPS
is more frequently the optimal scheduling discipline. For γ = 0.2 and
n = 2, for example, strict priority (with β = 0) is optimal; for γ = 0.2
and n = 3, GPS is optimal. This basically means that, to determine
the optimal β, the need for simulation increases when n increases.
To counterbalance this, the optimal β becomes less sensitive to γ, if
γ is not too close to either 0 or 1 (see Figure 2.9).

Concave functions: We end this section with the case where the
functions gj are concave increasing functions. In contrast with con-
vex functions gj , increments of low values of the considered perfor-
mance measures are here more penalized than increments of high
values. Assume gj(x) = ln(ajx) (j = 1, 2), with aj a constant. In
the same way as above, we can easily obtain formulas for φ(0) and
φ(1). According to Theorem 2.4, φ(0) > φ(1). This is demonstrated
in Figure 2.11, where we depict φ(0) and φ(1) as a function of α, for

52 CHAPTER 2. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

n

α = 0.2

0.5

0.8

Figure 2.10: φ(1)−φ(0) as a function of n, for λT = 0.9 and gj(x) =
(x/λj)

n (j = 1, 2)

λT = 0.9. When γ ≥ φ(0), βopt(γ) = 1; when γ ≤ φ(1), βopt(γ) = 0.
When φ(1) < γ < φ(0), it depends on the values of F (0, γ) and
F (1, γ) whether β = 0 or β = 1 is optimal. By using equation
(2.11) and expressions (2.15)-(2.18), we can determine the conditions
on γ so that F (0, γ) < (>,=)F (1, γ). Indeed, solving the equation
F (0, γ) = F (1, γ) for γ leads to a formula for the γ for which both
β = 0 and β = 1 are optimal. Let us denote this value of γ by γ∗.
For the cost function studied here we find

γ∗ =
ln
(
w̄2(0)
w̄2(1)

)
ln
(
w̄2(0)w̄1(1)
w̄1(0)w̄2(1)

) ,
whereby we have omitted using (2.15) - (2.18) for space saving reasons
and because the replacement does not present any significant simpli-
fications. We illustrate the behavior of γ∗ in Figure 2.11. When
γ ≥ γ∗, βopt(γ) = 1. When γ ≤ γ∗, on the other hand, βopt(γ) = 0.

Finally, Figure 2.12 shows F (β, γ) as a function of β, for α = 0.8,
λT = 0.9, and six different values of γ. Amongst those values of γ
are φ(0) (= 0.95) and φ(1) (= 0.33). For these system and objective
function parameters, furthermore, γ∗ = 0.72. We clearly see that
when γ < 0.72, F (β, γ) reaches its minimum in β = 0. For γ > 0.72,
β = 1 minimizes F (β, γ). Furthermore, we observe that the curves
corresponding with γ ∈]φ(1), φ(0)[reach a maximum for some β ∈
]0, 1[, as reasoned in the proof of Theorem 2.4.

CHAPTER 2. TWO CLASSES 53

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

α

*

φ(0)
φ(1)

γ

Figure 2.11: φ(0), φ(1), and γ∗ as a function of α, for gj(x) =
ln(x/λj) and λT = 0.9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

β

γ =

,γ)

0.0
0.33
0.5
0.8

0.95
1.0

Figure 2.12: Objective functions F (β, γ) as a function of β, for α =
0.8, λT = 0.9, and gj(x) = ln(x/λj) (j = 1, 2)

54 CHAPTER 2. TWO CLASSES

2.2.3 Framework for Convex Combination of Gen-
eral Functions

Now we generalize the results from the previous subsection using
the framework from Section 2.2.1. We drop the requirement on gj
and only assume gj to be sufficiently differentiable. This widens the
class of objective functions of the form F (β, γ). The goal is now to
determine the behavior of this class of functions and to do a sensitivity
analysis on γ.

We start by generalizing and promoting Lemma 2.3 to the follow-
ing theorem.

Theorem 2.5. Assume gj is continuously differentiable in Ωj. Then
γ = φ(β) if and only if (iff) ∂F

∂β (β, γ) = 0, with

φ(β) ,
g′2(w̄2(β))

g′2(w̄2(β)) + g′1(w̄1(β))
.

Proof. We find that ∂F
∂β (β, γ) = 0 is equivalent with

[g′2(w̄2(β))− γ(g′1(w̄1(β)) + g′2(w̄2(β)))]w̄′2(β) = 0, (2.23)

where we have used that w̄′1(β) = −w̄′2(β), see Corollary 2.1. Ac-
cording to Theorem 2.1 (w̄′2(β) > 0) and using (2.23), this leads to

γ = φ(β).

The β-values for which φ(β) = γ are the critical points of the
objective function F (β, γ). Critical points can be either extrema or
inflection points with a horizontal asymptote.

For simplicity, we assume φ(β) to be continuous. Discontinuities
only occur for β-values for which g′2(w̄2(β)) = −g′1(w̄1(β)). For these
β-values,

∂F

∂β
(β, γ) = g′2(w̄2(β))w̄′2(β). (2.24)

As w̄′2(β) is positive, the objective function will increase or decrease
like g2. We will disregard these cases in the remainder, as the dis-
continuities in φ(β) do not lead to special cases for F (β, γ). The
extensions are straightforward but only result in more involved ex-
pressions.

To be able to distinguish extrema from inflection points, we need
higher-order derivatives of the objective function. These will allow us
to perform the higher-order derivative test on the objective function.
Therefore, we extend Theorem 2.5.

CHAPTER 2. TWO CLASSES 55

Theorem 2.6. Assume gj is n times continuously differentiable in

Ωj. Then φ(i−1)(β) = 0,∀i = 2, ..., n, and φ(β) = γ iff ∂iF
∂βi (β, φ(β)) =

0,∀i = 1, ..., n. Here, φ(j)(β) denotes the j-th derivative of φ(β).

Proof. (by induction) The base case n = 1 follows from Theorem 2.5.
For the induction hypothesis, assume that φ(β) = γ and φ(i−1)(β) =

0 for i = 2, ..., n − 1 iff ∂iF
∂βi (β, φ(β)) = 0 for i = 1, ..., n − 1. To

complete the theorem, we prove that φ(n−1)(β) = 0 iff ∂nF
∂βn (β, φ(β)) =

0. We find that

∂nF

∂βn
=
∂n−1

∂βn−1

(
∂F

∂β

)
=
∂n−1

∂βn−1

(
w̄′2(β)

(
g′1(w̄1(β)) + g′2(w̄2(β))

)(
φ(β)− γ

))
,

where we have used (2.23). Define, furthermore, ∆(β, γ) as φ(β)− γ
and χ(β) as w̄′2(β)

(
g′1(w̄1(β)) + g′2(w̄2(β))

)
. Then we write

∂nF

∂βn
=

∂n−1

∂βn−1

(
χ(β)∆(β, γ)

)
=

n−1∑
l=0

(
n− 1

l

)
χ(n−1−l)(β)

∂l∆

∂βl
(β, γ).

Now, iff ∂l∆
∂βl (β, γ) = ∂l(φ(β)−γ)

∂βl = ∂lφ(β)
∂βl = φ(l)(β) = 0 for l =

1, ..., n− 2, and ∆(β, γ) = 0 (i.e. the induction hypothesis),

∂nF

∂βn
=

(
n− 1

n− 1

)
χ(0)(β)

∂n−1∆

∂n−1β
(β, γ)

= w̄′2(β)
(
g′1(w̄1(β)) + g′2(w̄2(β))

)
φ(n−1)(β).

Strict monotonicity of w̄2(β) and the continuity assumption of φ(β)
that we made earlier prove that φ(n−1)(β) = 0 iff ∂nF

∂βn (β, φ(β)) = 0.
This together with the induction hypothesis proves the induction step
and thus concludes the proof of the theorem.

The next corollary follows directly from Theorem 2.6:

Corollary 2.3. If γ = φ(β), φ(1)(β) = · · · = φ(n)(β) = 0 and
φ(n+1)(β) 6= 0, then F (β, γ) has a local extremum at β if n is even
and an inflection point at β if n is odd.

With this corollary, we can determine the behavior of F (β, γ)
by studying the behavior of φ(β). Suppose, for instance, that φ(β)

56 CHAPTER 2. TWO CLASSES

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

β

(a) φ(β)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

w
—
 2

(b) φ∗(w̄2)

Figure 2.13: For F4: Comparison between φ(β) and φ∗(w̄2)

has one inflection point β̂ with horizontal tangent. Then φ(2)(β̂) =

φ(1)(β̂) = 0 and φ(3)(β̂) 6= 0, and, as a consequence, F (β, γ) has an

extremum at β̂ when γ = φ(β̂).
Unfortunately, we do not have a formula for φ(β), as we do not

have explicit analytical results for the functions w̄j(β). This is where
the framework of Section 2.2.1 comes into play. In particular, the
function φ(β) can be translated into a function in terms of w̄2(β)
instead of β (i.e. φ∗(w̄2) in the remainder). As there is a one-to-one
mapping between the values in Ω2 and the values in [0, 1], we find
that

φ∗(w̄2) =
g′2(w̄2)

g′2(w̄2) + g′1(w̄T − w̄2)
.

Using the framework, the previous corollary is reformulated as fol-
lows:

Corollary 2.4. If γ = φ∗(ˆ̄w2), φ∗(1)(ˆ̄w2) = · · · = φ∗(n)(ˆ̄w2) = 0 and

φ∗(n+1)(ˆ̄w2) 6= 0, then F ∗(ˆ̄w2, γ) has a local extremum at ˆ̄w2 if n is
even and an inflection point at ˆ̄w2 if n is odd. As w̄2(β) is bijective on

[0, 1] (Corollary 2.2) , F (β, γ) also has a local extremum at β̂ (with

w̄2(β̂) = ˆ̄w2) if n is even and an inflection point at β̂ if n is odd.

Hereby, we defined F ∗(w̄2, γ) analogously to the other functions
marked with a star, using the framework presented earlier. Now, we
look at some examples to demonstrate the use of this corollary.

As a first example, we have composed figures to compare φ(β)
(see Figure 2.13a) with φ∗(w̄2) (see Figure 2.13b). For these figures,
we have used the objective function

F4(β, γ) = γ(0.5
√

2w̄1(β))2 + (1− γ)(1.3
√

2w̄2(β))2. (2.25)

CHAPTER 2. TWO CLASSES 57

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

β

(a) φ(β)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

w
—
 2

(b) φ∗(w̄2)

Figure 2.14: For F5: Comparison between φ(β) and φ∗(w̄2)

and the same two-dimensional binomial arrival process as in Sec-
tion 2.2.1. It should be noticed that F4(β, 0.5) = f2(w̄1(β), w̄2(β)),
see (2.14). We can draw similar conclusions as with the comparisons
in Section 2.2.1. For instance, we can see that both graphs have the
same range.

Using the aforementioned corollary, we see that for γ ∈ [0.1, 0.83],
F4(β, γ) reaches an extremum at a β-value different from 0 or 1. In
particular for γ ∈ [0.1, 0.83], there is a β-value and corresponding

w̄2(β)-value, say β̂ and w̄2(β̂), respectively, for which γ = φ(β) =

φ∗(w̄2(β)). Visually, this β̂ and w̄2(β̂) can be presented in the Carte-
sian coordinate systems (β, φ(β)) and (w̄2, φ

∗(w̄2)), by drawing a hor-
izontal line at the chosen value of γ (see Figure 2.13b); the intersec-
tion points of the horizontal lines and curves of φ(β) and φ∗(w̄2) then

yield β̂ and w̄2(β̂), respectively.

Now according to Theorem 2.6, ∂F4

∂β (β̂, γ) = 0 and we have an

extremum at β̂ if ∂2F4

∂β2 (β̂, γ) 6= 0 or, equivalently, if φ(1)(β̂) 6= 0.

From Figure 2.3, where we have depicted F4(β, γ) for γ = 0.5 (i.e.,
f2(w̄1(β, w̄2(β))), we can see that F4(β, γ) is decreasing at β = 0 for

γ ∈ [0.1, 0.83]. As we have a β̂ for which γ = φ(β) in that interval,
F4(β, γ) has an extremum, which is necessarily a minimum. Sum-
marized, the couples (β, φ(β)), indicated by the curve in the figure,
are parameter combinations for (β, γ) that minimize the objective
function. For γ < 0.1, there is no β for which γ = φ(β) and thus,
according to Theorem 2.5, F4(β, γ) has no extremum between 0 and
1. Since F4(β, γ) is increasing at β = 0, F4(β, γ) is increasing with
respect to all β. Analogously, for γ > 0.83, the objective function is
decreasing with respect to β.

58 CHAPTER 2. TWO CLASSES

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.5 1 1.5 2 2.5 3

w
—
 2

Figure 2.15: Objective function F ∗5 (w̄2, γ) for γ = 0.4

As a last example, we look at the objective function

F5(β, γ) =
γ

1 + e−3w̄1(β)+9
+

1− γ
1 + e−4w̄2(β)+7

. (2.26)

Using the same arrival processes and the same arrival process pa-
rameters as before, we depict the corresponding φ(β) in Figure 2.14a
and φ∗(w̄2) in Figure 2.14b. Recall that the former is obtained via
simulations, while the latter can be drawn directly. We can make
the same reasoning as before. φ(β) and φ∗(w̄2) will have intersection
points with horizontal lines at γ ∈ [0.2, 0.58] only. For a γ-value in
this interval, Theorem 2.5 dictates that F5(β, γ) will have extrema or
inflection points. Using the corollary of Theorem 2.6, we know that
inflection points only occur when also φ′(β) = 0, so when φ(β) and
φ∗(w̄2) have an extremum. For the example at hand, this occurs for
γ = 0.58 and w̄2 = 1.8 (and from simulation, β = 0.82).

At w̄2 = 0.2 (β = 0), F ∗5 (w̄2, γ) is decreasing if γ > 0.2 and
increasing if γ < 0.2 (this can easily be seen from (2.26)). So if
we take γ = 0.4, we find that F ∗5 (w̄2, γ) is decreasing at w̄2 = 0.2.
Furthermore, F ∗5 (w̄2, 0.4) reaches an extremum at w̄2 = 1.1 because
at that w̄2-value φ∗(w̄2) intersects with a horizontal line at 0.4 (see
Figure 2.14b). This extremum is necessarily a minimum. For higher
values of w̄2, F ∗5 (w̄2, γ) is increasing again. At w̄2 = 2.7, we once
more have a point of intersection between φ∗(w̄2) and the horizontal
line at 0.4, and, hence, F ∗5 (w̄2, γ) has a second extremum, in this case
a maximum. These conclusions can be verified in Figure 2.15, where
we have plotted F ∗5 (w̄2, 0.4).

Using similar arguments for other values of γ, we constructed an
annotated version of Figure 2.14a in Figure 2.16. In this figure, the

CHAPTER 2. TWO CLASSES 59

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

β

Figure 2.16: Annotated version of Figure 2.14a

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

β

γ = 0.8
0.58

0.5
0.28

0.1

Figure 2.17: Simulation of F5 for several γ

arrows indicate the behavior of F5(β, γ) for the (β, γ)-values in that
area. We see that F5(β, γ) is decreasing above the curve of φ(β) and
increasing under the curve. In fact, if we draw a path in the unit
square (a collection of couples for (β, γ)), we know that the behav-
ior of the objective function is indicated by the arrows in the figure.
Furthermore, the sign (and thus the behavior) of ∂F5

∂β (β, γ) will only

change if the path intersects with φ(β). At the intersection point, the
sign will change and the objective function will have an extremum or
an inflection point. We can thus conclude that from a plot of φ∗(w̄2),
we can determine the complete behavior of the objective function
without running any simulation or relying on possibly inaccurate ap-
proximate expressions for the performance characteristics.

In Figure 2.17, finally, we have graphs of F5(β, γ), for several γ;
they are obtained through simulation. We have chosen a γ-value from

60 CHAPTER 2. TWO CLASSES

each area in Figure 2.16 and we see that the graphs in Figure 2.17
confirm our analysis. For γ = 0.5, for instance, we see that F5(β, γ)
first reaches a minimum and later a maximum; for γ = 0.58, F5(β, γ)
has an inflection point. We see from this study that the behavior
of the objective function largely depends on the coefficient γ in that
function. Using our theorems presented here, these different behav-
iors can be seen at a glance from a graph of φ∗(w̄2).

Let us now return to the sensitivity analysis. From Figure 2.14b,
an analyst can see what the impact of a variation in γ will be on w̄2

(and subsequently also on the value of the objective function). An
annotated version as presented in Figure 2.16 easily shows how the
objective function behaves for different γ. This figure can be used to
make a selection of different values of γ for which the objective func-
tion can be studied more closely, as was done in Figure 2.17. The
mapping from w̄2 to β, however, is still unknown. To get this infor-
mation, one needs to resort to either simulation or approximations.
Part II of this dissertation is devoted to approximation analysis and
in the next section, we show how simulations can be done efficiently.

2.2.4 Achieving the optimum

In this section, we combine the results obtained in the previous sec-
tions to optimize the simulation and optimization procedure. We
will optimize objective functions of the form of (2.11) without the
restriction on gj being an increasing function (like in the previous
section). We do this by optimizing for 101 values of γ equally spaced
in [0, 1]. We compare several techniques and see how they influence
the simulation effort and execution time. Lastly, we give some closing
remarks on how the procedure could be sped up even further. If you
only need to optimize a simple objective function (without changing
the γ parameter) the optimization is even faster, though completely
analog to the one presented here.

For the numerical results in this section, we optimized the objec-
tive function F4. During the simulation runs for different γ, we only
do one simulation for a given value of β. A table in memory holds
the already simulated values for β and their results. This is a first
way to speed up the process.

The search for the optimum (given that there is one, see previous
subsections) boils down to the determination of the minimum of a
function which cannot be computed exactly and thus has to be esti-
mated. A first, albeit naive, method is to just simulate equally spaced
β’s in [0, 1], with the spacing tailored to the required precision. We
call this the brute force method.

CHAPTER 2. TWO CLASSES 61

If the function is strictly unimodal there are some well-known
techniques for this optimization problem. In particular ’golden sec-
tion search’, ’successive parabolic interpolation’, or a combination
of these two, and ‘stochastic approximation’ (e.g., Robbins-Monro
and Kiefer-Wolfowitz), have proven their merit in the past (see, e.g.,
[31,73,94] for more information). As a second method, we have used
the ’golden section search’ algorithm on the objective function5. This
algorithm is known to be reliable [95] and easy to implement. Con-
vergence to the global minimum is relatively slow but certain.

Golden section search & binary search
The golden section search algorithm [114] on a unimodal function h(x) (that can
not be evaluated but needs simulations) can be summarized as follows. In each
iteration, we start with a triplet (x1, x2, x3) of values of x (x1 < x2 < x3) with
h(x2) < h(x1) and h(x2) < h(x3). So the minimum of h(x) lies inside the interval
[x1, x3] and the current estimation of this minimum is x2. The next x (say x4)
is chosen in the largest of the two intervals [x1, x2] and [x2, x3], at a distance of
0.38197 = 1 − 1

φ
(with φ the golden ratio) times this interval from x2. x4 splits

the largest of these intervals, creating two intervals that relate to each other
according to the golden ratio. Then, h(x) is estimated for x = x4 via Monte-
Carlo simulation. Depending on the value of h(x4) relative to that of h(x2), the
triplet (x1, x2, x3) is updated (x4 becomes an element of this triplet), leading to a
narrower search interval. As termination condition for this algorithm, we choose
to test the gaps between the values of x1 and x3. The algorithm terminates when
the relative accuracy bounds |x3 − x1| < τ , where we define τ as the x-precision.
It is important to remark that estimates of h(x) are still obtained through coupled
Monte-Carlo simulations for different values of x.

Essentially the algorithm maintains an interval [x1, x2] in which it knows the
minimum is located. Two intermediate points are selected x3 and x4 after which
it can shorten the interval to either [x1, x4] or [x3, x2] (given that x3 < x4) as we
can identify the interval in which the minimum lies by evaluating the unknown
function for x3 and x4. Instead of using the golden ratio to determine x3 and x4
in the interval, we can just uniformly distribute them, i.e., at one and two thirds
of the length of the interval. In that case the algorithm is known as ’ternary
search’.

Say we have a function h(x), strictly monotone in the domain of interest,
that can not be evaluated but needs simulation, and we have to determine for
which value of x it achieves a certain value. In that case we can use a simpler
version of the golden section search algorithm. In the interval [x1, x2] we select
x3 according to the golden ratio. We simulate h(x3) and compare to h(x1) and
h(x2). As h is monotone we can select in which of the two intervals [x1, x3] or
[x3, x2] the value of interest is located.

Again instead of using the golden ratio the interval can simply be divided in
two equal parts. In that case the interval is known as binary search.

All algorithms explained in this sidenote are standard algorithms for numer-
ical analysis. They are examples of what is known in computer science as divide
and conquer algorithms.

5This method was used for the optimization in Section 2.2.2, for instance, in
Figures 2.8 and 2.9.

62 CHAPTER 2. TWO CLASSES

Table 2.1: Simulation times

Method Stopping criterium # simulations

Brute force β-precision: 0.0001 10001

Golden section on F β-precision: 0.0001 897

Golden section on w̄2 β-precision: 0.0001 617

Golden section on w̄2 β-precision: 0.0001 12

or F -precision: 1%

This method, however, is only usable for objective functions known
to have a single extremum. This is, for instance, the case for F4 as it
has convex gj (see Theorem 2.3). A third method, that is usable for
all objective functions, follows from the general framework presented
in Section 2.2.1. We know that it is not needed to work directly
with the objective function. From the objective function, the opti-
mal value of w̄2 can be calculated. Subsequently, the corresponding
value of β to achieve this value of w̄2 needs to be obtained by simu-
lation. Knowing that w̄2(β) is monotonically increasing, we can use
a simplified version of the golden section search method (see note).

We can use two different stopping criteria. The first one is the
β-precision, as described in the note on golden section search. This
is the size of the interval x2 − x1; if this value is small enough, we
stop the algorithm and use the average (x1 +x2)/2 as value for βopt.
Another option, called the F -precision, is to stop the simulation once
we found a β that leads to a reasonable value of F . This F -precision is
the percentage deviation from the minimum of the objective function
F (which we can calculate in advance, as shown in Section 2.2.1).

The computational effort of the different simulation methods for
this specific case can be found in Table 2.1. Cases can be engineered
where the efficiency order of these methods is different; however,
these cases are exceptional and need to be tailor-made. Further-
more, golden section search on F has a limited usability as it can
only be used for objective functions with a single extremum, specifi-
cally a minimum. It is clear that in general the more information and
knowledge you have about the queueing system and objective func-
tion, the less simulations are needed. This often leads to complex
algorithms that are only usable in a limited number of cases. The
framework presented here, being as simple and general as it is, leads
to large simulation gains without significant increase in complexity.

The methods presented here can be improved even further. In-

CHAPTER 2. TWO CLASSES 63

stead of using the golden section search in its purest form, the table
with the already simulated β’s could be used to select a starting inter-
val [x1, x2] after which golden section search could be used to further
refine the result. This would lead to faster convergence. Another
method (variation on golden section search), is to use multiple cores
and select multiple x3’s. This way the interval [x1, x2] will shrink
much faster. Lastly, one could also vary the number of simulated
slots as we get further into the algorithm, simulating less slots (and
having a rougher estimation) when the interval [x1, x2] is still large.
A word of caution however is in order here, as this also induces extra
variance. This variance could cause the algorithm to exclude the min-
imum. Using the presented insights the algorithm can easily detect
when this happens and act accordingly.

2.3 Extension to general work-conserving
parameterized schedulers

The framework we presented in Section 2.2.2 has a wider application
range than only GPS as presented in the previous section. In this sec-
tion, we show that the application of the framework can be extended
to other examples of which we detail two specific examples namely the
cµ-rule we mentioned before and a semi-preemptive priority queue.
This is a small side-step from the main topic of this dissertation, i.e.
the study of discrete-time GPS, nevertheless it provides more insight
into the mechanism of the framework.

2.3.1 Framework

We notice that the proofs of the most important theorems (Lemma 2.3
and Theorems 2.2-2.4) of the framework in the previous section are
based on just two properties of the performance characteristic w̄j , i.e.
Corollary 2.1 and Theorem 2.1. As a result, in whatever setting these
properties are valid, the theorems from the framework are applicable.
We now formalize this setting.

Consider a queueing system where tasks of two user classes, named
1 and 2, have to be executed. We adopt a work-conserving schedul-
ing policy with parameter β ∈ [0, 1] expressing the preference given
to class 1. We wish to minimize an objective function that is a con-
vex combination of strictly increasing functions of two performance
measures of interest related to the two classes.

More specifically, assume that the performance measures of class 1
and class 2 are denoted by w̄1(β) and w̄2(β), respectively. It is as-

64 CHAPTER 2. TWO CLASSES

sumed that w̄1(β) (w̄2(β)) decreases when the performance of class 1
(2) improves. Note the dependence of the performance measures on
β. The assumption of a work-conserving and parametrized scheduling
policy is represented by the following key properties:

Property (1) Function w̄1(β) + w̄2(β) is independent of β.

Property (2) Functions w̄2(β) and w̄1(β) are continuous and strictly
monotonic (increasing and decreasing, respectively)
w.r.t. β on the interval [0, 1].

While the first property is the formalization of the work-conserving
nature of the scheduling policy, the second property characterizes the
meaning of parameter β, i.e., the degree of preference given to class 1.
The objective function to be minimized is given by (2.11) which we
repeat here for completeness

F (β, γ) , γg1(w̄1(β)) + (1− γ)g2(w̄2(β)), (2.27)

with 0 ≤ γ ≤ 1. The functions g1 and g2 are analytic and increasing
functions. From the continuity of w̄j(β) (Property 2) and continuity
of gj it is clear that F (β, γ) is also continuous.

We emphasize that w̄j here not necessarily denotes the mean un-
finished work of class j. It is just a notation for a generic performance
measure that satisfies both specified properties. Instead of average
values of stationary variables, some transient (discounted) costs (over
a finite or infinite time horizon) can also be used as performance mea-
sures [13, 22, 33]. For instance, the discounted holding cost of class j
over an infinite time horizon is defined as

w̄j(β) = E

[∫ ∞
0

e−χtuj(t, β)dt

]
, (2.28)

with uj(t, β) the buffer occupancy of class j at time t and χ the
discount factor. Since these performance measures satisfy the two
properties, we can use the results of this chapter for objective func-
tions in these measures as well.

With these two properties as prerequisites, Theorems 2.2-2.4 can
be reproven and rewritten in this setting. We will leave the proof
to the reader as it is basically identical to the proofs of the corre-
sponding theorems in the previous section. For completeness, we do
reformulate the theorems below, i.e. omitting references to the spe-
cific GPS case. φ(β) is defined exactly like in (2.12), Lemma 2.3 is
valid without changes.

CHAPTER 2. TWO CLASSES 65

Theorem 2.7. Assume g′j(x) > 0 and g′′j (x) = 0 for j = 1, 2 and all
x in the region of interest (i.e., the functions gj are linearly increasing
in x). Then φ(β) = φC is a constant function. As a result, either
β = 0 or β = 1 is optimal, namely

(i) for γ < φC , β = 0 is optimal,

(ii) for γ > φC , β = 1 is optimal, and

(iii) for γ = φC , all values of β are equally optimal.

Theorem 2.8. Assume g′j(x) > 0 and g′′j (x) ≥ 0 for j = 1, 2 and
g′′j (x) > 0 for at least one j, for all x in the region of interest (i.e., the
functions gj are strictly increasing and convex in x with at least one
of them strictly convex). Then φ(β) is a strictly increasing function.
As a result,

(i) for γ ≤ φ(0), β = 0 is optimal,

(ii) for γ ≥ φ(1), β = 1 is optimal, and

(iii) for φ(0) < γ < φ(1), βopt(γ) = φ−1(γ) is optimal, with φ−1 the
inverse function of φ. The function βopt(γ) has the following
properties: it is different from 0 and 1 and it is strictly increas-
ing.

Theorem 2.9. Assume g′j(x) > 0 and g′′j (x) ≤ 0 for j = 1, 2 and
g′′j (x) < 0 for at least one j, for all x in the region of interest (i.e., the
functions gj are strictly increasing and concave in x with at least one
of them strictly concave). Then φ(β) is a strictly decreasing function.
As a result, either β = 0 or β = 1 is optimal, namely

(i) for γ ≤ φ(1), β = 0 is optimal,

(ii) for γ ≥ φ(0), β = 1 is optimal, and

(iii) for φ(1) < γ < φ(0), β = 0 (β = 1) is optimal if F (0, γ) <
(>)F (1, γ); if F (0, γ) = F (1, γ), both β = 0 and β = 1 are
optimal.

2.3.2 Some illustrative examples

Discrete-time GPS

A first example is obviously discrete-time GPS as we discussed in
Section 2.2.2 in full detail. In [134], we studied discrete-time GPS
with service times general and class-dependent but independent from

66 CHAPTER 2. TWO CLASSES

customer to customer, i.e. no longer a deterministic single slot as
in Section 2.2.2. The results are interesting but not fundamentally
different from the ones in Section 2.2.2. They add little extra value
here, so we omit them and refer the interested reader to [134].

A coupled processor model

Assume the following continuous-time coupled-processor model, see
also [58]. Two types of tasks arrive to the system according to two
independent Poisson arrival processes and are backlogged in two dif-
ferent queues. Service times are exponentially distributed and the
service rate is equal to µ. When one of the queues is empty, the
complete service rate is allocated to the other queue. When both
queues are non-empty, the service rate µ is split, queue 1 getting a
service rate of βµ and queue 2 of (1− β)µ. Assume that the perfor-
mance measure w̄j(β) of queue j is the mean stationary unfinished
work in queue j. Then both properties apply: (1) the scheduling is
work-conserving meaning that the total (mean) unfinished work is
independent of β, and (2) a higher value of β gives more preference
to queue 1 leading to a strictly increasing w̄2(β). Hence, this example
fits our framework. We omit further discussion of this famous model.

Relation of the framework to the cµ-rule

The cµ-rule is well known in literature [13, 33, 44, 71, 98]. With µj
defined as the service rate for queue j and cj the coefficient of queue
j in the linear cost function, it says that strict priority scheduling with
the highest priority for the queue with the highest cjµj is optimal in
the case of N queues sharing a single resource. This has been proven
for a wide range of cost functions containing a linear combination of
some queue size measure. For instance in [33] the authors prove the
optimality for N classes of tasks, each requiring a service time of a
number of slots generated by a geometric distribution with mean µ−1

j .
The service discipline is preemptive, meaning the server can interrupt
the service of a task to continue later. The authors minimize the
expected total discounted waiting cost

E

 T∑
t=1

χt
N∑
j=1

cjU
π
j (t)

 , (2.29)

with χ the discounting parameter and Uπj (t) the queue content of
queue j at time t under scheduling policy π. This minimization is

CHAPTER 2. TWO CLASSES 67

over all possible scheduling policies π that only depend on previous
and present queue lengths and control actions.

In this paragraph, we show that the conclusions made there also
fit our framework in case of two queues. To this end, we rewrite the
cost function for two queues as:

E

[
T∑
t=1

χt (c1U
π
1 (t) + c2U

π
2 (t))

]
(2.30)

= c1E

[
T∑
t=1

χtUπ1 (t)

]
+ c2E

[
T∑
t=1

χtUπ2 (t)

]
(2.31)

= c1µ1

T∑
t=1

χtE [Wπ
1 (t)] + c2µ2

T∑
t=1

χtE [Wπ
2 (t)] , (2.32)

where Wπ
j (t) denotes the unfinished work in queue j. In the last

step, we used that E
[
Wπ
j (t)

]
= µ−1

j E
[
Uπj (t)

]
as each packet in

the queue on average accounts for a service time of µ−1
j . The first

packet in the queue could have been serviced for some time be-
fore, so we should only account for a residual service time; how-
ever, as the service times are geometrically distributed so are the
residual service times. This cost function is of the form of Equa-
tion (2.27), by substituting γ = c1

c1+c2
, gj(x) = (c1 + c2)µjx and

w̄j(β) = w̄j(β(π)) =
∑T
t=1 χ

tE[Wπ
j (t)]. The β parameter is in-

troduced by ordering all policies π according to increasing values
for
∑T
t=1 χ

tE[Wπ
2 (t)] and mapping each policy π to a specific value

β(π) in the interval [0, 1], so that increasing β(π) leads to increas-

ing
∑T
t=1 χ

tE[Wπ
2 (t)]. As a result, a continuum is reached as every

w̄j(β(π)) can be obtained by using different strict priority policies in
different busy periods (as is done in e.g. [61]). For two distinct policies

π1 and π2,
∑T
t=1 χ

tE[Wπ1
2 (t)] =

∑T
t=1 χ

tE[Wπ2
2 (t)] iff β(π1) = β(π2).

Furthermore, we discard all non work-conserving policies (these will
never lead to an optimal solution in this preemptive setting), as a con-

sequence
∑T
t=1 χ

tE[Wπ
1 (t)] +

∑T
t=1 χ

tE[Wπ
2 (t)] =

∑T
t=1 χ

tE[WT (t)]
is a constant independent of the scheduling policy. Property 1 is thus
fulfilled. Property 2 is also fulfilled, as by construction w̄2(β(π)) is
strictly increasing and as a consequence of property 1 w̄1(β(π)) is
strictly decreasing.

For this configuration, we get φC = µ2

µ1+µ2
, see Equation (2.12).

Theorem 2.7 then states that β = 0 is optimal when γ < φC with
γ = c1

c1+c2
; this is when c1µ1 < c2µ2. β = 1 is optimal when γ > φC ,

i.e., when c1µ1 > c2µ2. β = 0 (β = 1) means that we should use the

68 CHAPTER 2. TWO CLASSES

policy π that minimizes (maximizes)
∑T
t=1 χ

tE[Wπ
2 (t)], we should

thus give strict priority to tasks of class 2 (class 1). Our framework
thus also leads to the cµ-rule, for the cases in which it is applicable.
The framework can, for instance, also be used with the cost defined
in Equation (2.28). As such, the cµ-rule for two classes can be seen
as a special case of our more general framework, more specifically a
special case of Theorem 2.7 with linear gj functions.

Semi-preemptive priority scheduling

The last example we discuss is a particular priority queueing system.
Priority queueing systems are usually labeled as either preemptive
or non-preemptive. In the first case, high-priority arrivals interrupt
service of an on-going low-priority service (which is later resumed or
repeated), while new high-priority arrivals have to wait for service
at least until the end of the ongoing service in the non-preemptive
systems. In that respect, preemptive priority delivers more prior-
ity than non-preemptive priority. However, one could wonder which
one is better, or, even if there is nothing better in between. Indeed,
non-preemptiveness seems to be reasonable when low-priority service
times are small, while for long low-priority service times preemptive
priority could be preferable. For this reason, semi-preemptive prior-
ity rules have been investigated in the recent past [87,142]. In [142], a
(discrete) threshold T on the remaining service time of a low-priority
service at an arrival instant of a high-priority task is introduced6. If
the remaining service time is larger than or equal to T , the service is
interrupted; otherwise, it is not interrupted. We assume interrupted
services are resumed afterwards.

The idea is to optimize the system in the positive integer T . We
stress that the problem is somewhat different from GPS. Here, we
assume that tasks of class 1 have priority over tasks of class 2 inher-
ently, and we only allow optimization of interruptions of low-priority
services, through the threshold T . The parameter T can be trans-
formed to play the role of β here. Assume, for instance, that service
times of class 2 are bounded by the positive integer S (S > 1)7.
Then T is between 1 and S, and by defining β as (S−T)/(S−1) and
w̄j(β) as the average stationary unfinished work of class j (j = 1, 2),
the framework of Section 2.3.1 applies. Indeed, β is to be optimized
in the interval [0, 1] (0 corresponding to the non-preemptive policy

6We assume we know the exact value of the remaining service time at all times.
7If they are not bounded, one can still introduce a (large enough) S which

would mean that for a remaining service time larger than this value, the class-2
service is interrupted anyway.

CHAPTER 2. TWO CLASSES 69

T = S and 1 to the preemptive one T = 1), the scheduling is work-
conserving (property 1 is valid), and more preference is given to class
1 if β increases (property 2 is valid).

In contrast with GPS, a queueing system with this kind of schedul-
ing is analytically tractable, at least for some arrival and service pro-
cesses. For instance, a discrete-time semi-preemptive priority queue-
ing system with geometric service times for the high-priority class and
fixed service times for the low-priority class, was analyzed, in [142].
We will use the formulas from this paper for optimization and relate
them to our framework.

The numbers of task arrivals are independent and identically dis-
tributed from slot to slot, but correlation between the numbers of
arrivals of both classes within one slot is allowed. The mean number
of arrivals of class j equals λj . Service times of class 1 are geo-
metrically distributed with mean s̄1 and service times of class 2 are
deterministically equal to S. In [142], average values of the mean
buffer occupancies and mean delays of both classes have been cal-
culated. The two key properties of our framework, however, do not
directly apply to these performance measures. Therefore, we assume
the performance measures of the objective function (2.27) to be the
average unfinished work of both classes8. The average unfinished
work of both classes can be calculated from the results of [142]. We
refer to the appendix of [134] for details. We find that

w̄1(β) =
s̄1[s̄1Var[a1] + ρ1(1− λ1)]

2(1− ρ1)

+
ρ1λ2(1− β)(S − 1)[β + (1− β)S]

2(1− ρ1)
(2.33)

and

w̄2(β) =
ρ2

2
+
S2Var[a2] + 2s̄1SCov[a1, a2]

2(1− ρT)

+
ρ2s̄1[s̄1Var[a1] + λ1(s̄1 − 1)]

2(1− ρT)(1− ρ1)

− ρ1λ2(1− β)(S − 1)[β + (1− β)S]

2(1− ρ1)
, (2.34)

with ρT the total load and ρj the class-j arrival load (i.e., ρ1 , λ1s̄1

and ρ2 = λ2S), Var[aj] the variance of the number of class-j arrivals
during a slot, and Cov[a1, a2] the covariance between the numbers

8We show how to deal with mean buffer occupancies and mean delays later.

70 CHAPTER 2. TWO CLASSES

of class-1 and class-2 arrivals. Summing the unfinished work of both
classes leads to

w̄ =
ρ1 + ρ2

2
+
s̄2

1Var[a1] + 2s̄1SCov[a1, a2] + S2Var[a2]

2(1− ρ1 − ρ2)

+
ρ1(s̄1 − 1)

2(1− ρ1 − ρ2)
.

It is clear that w̄1(β) and w̄2(β) fulfill the two properties, so our
framework applies. This means, for instance, that for weighted com-
binations of linear or concave functions of the mean unfinished work
of both classes, either preemptive or non-preemptive priority is opti-
mal. For convex functions of the mean unfinished work, a threshold
T different from 1 or S can be optimal. We note that T is a discrete
parameter, while the optimization will deliver a continuous optimal
β. However, since we know that the objective function is unimodal
in β, the optimal discrete threshold will be one of the two nearest
discrete values.

We conclude this paragraph with an example where a particular
linear objective function does not lead to an optimal value for β of 0
or 1. Consider following objective function

F (β, γ) =γū1(β) + (1− γ)ū2(β), (2.35)

with ūj(β) the mean buffer occupancy. It was shown in [142] that
the optimal threshold T (equivalent to the optimal β, see above)
is not necessarily 1 or S but can be any value in between. The
reason is obviously that ū1(β) and ū2(β) do not fulfill both properties,
viz., Property 1. However, we can still use our framework to prove
that the optimal threshold is not necessarily at the extremes. Let us
transform objective function (2.35) into an objective function in the
mean unfinished work of both classes, i.e., into

F (β, γ) =γg1(w̄1(β)) + (1− γ)g2(w̄2(β)). (2.36)

In order to find the functions gj , we need to investigate the rela-
tions between the mean buffer occupancies and the mean unfinished
work of both classes. For class 1, this relation is immediate from the
memoryless property of the class-1 service times

ū1(β) =
w̄1(β)

s̄1
,

and we thus have a linear relation. For class 2, a relation is harder
to find. From calculations in the appendix of [134], we obtain that

ū2(β) =
w̄2(β)

S
+
λ2(S − 1)

2
+
λ2ρ1β(S − 1)(1− β + βS)

2S(1− ρ1)
. (2.37)

CHAPTER 2. TWO CLASSES 71

This does not provide a direct relation g2 between ū2(β) and w̄2(β), as
the right-hand side of (2.37) also explicitly depends on β. Since w̄2(β)
is strictly increasing in β, however, this function can be inverted, and
β can be written as function of w̄2. So, a g2 exists. We will not
actually calculate g2, but calculate its two first derivatives (to see
how it fits the framework). The first derivative of g2 can be found
from (2.37) as follows:

dg2(w̄2(β))

dβ
=g′2(w̄2(β)) · w̄′2(β)

=
w̄′2(β)

S
+
λ2ρ1(S − 1)[1 + 2β(S − 1)]

2S(1− ρ1)
.

This leads to

g′2(w̄2(β)) =
1

S
+
λ2ρ1(S − 1)[1 + 2β(S − 1)]

2S(1− ρ1)w̄′2(β)
,

which is strictly positive as all factors in both terms are positive.
Then taking the derivative to β once more yields

g′′2 (w̄2(β)) =
λ2ρ1(S − 1)

2S(1− ρ1)(w̄′2(β))2
·
(

2(S − 1)w̄′2(β)

− [1 + 2β(S − 1)]w̄′′2 (β)
)
.

Since the coefficient of the quadratic term β2 of w̄2(β) is smaller than
zero (see expression (2.34)), w̄2(β) is concave, and as a result g2 is
convex. This explains why an optimal T different from the endpoints
was found in [142]. In fact, we can calculate φ(0) and φ(1), resulting
in

φ(0) =
2s̄1

2(s̄1 + S)− 1
, (2.38)

φ(1) =
2s̄1

2s̄1 + 1
.

For γ ∈]φ(0), φ(1)[, T = 1 or T = S are not necessarily9 optimal.
Note that φ(0) and φ(1) depend on the (mean) service times of

both classes only. In fact, φ(1) depends only on the mean service time
of class 1, i.e., s̄1. Since s̄1 ∈ [1,∞[, the range for φ(1) is [2/3, 1[. This
is also plotted in Figure 2.18, where we show φ(1) as a function of s̄1.
In the same figure, φ(0) is also presented as a function of s̄1 for several

9 Due to the discretization it is possible for T = 1 or T = S to still be optimal
in the boundary cases.

72 CHAPTER 2. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

s1

S = 2 S = 10

S = 50

S = 1000

φ(1)

φ(0)

Figure 2.18: The behavior of φ(0) and φ(1) as a function of S and s̄1

values of the fixed service time of class 2, i.e., S. For a given value
of s̄1, φ(0) consequently ranges from φ(1) to 0. Summarized, since
S ∈ [1,∞[it is clear that for increasing service times of one of the
classes (or both simultaneously), the interval [φ(0), φ(1)] increases.
Thus the range of values for γ (γ ∈]φ(0), φ(1)[), where the optimum
of the objective function F is different from the endpoints increases.

The problem described in this example is an interruption prob-
lem rather than a scheduling problem. In this kind of problems, the
question of what type to schedule when the server becomes free is
assumed to be answered, and the remaining question is an optimal
interruption policy. We showed that this problem also fits our frame-
work. This example also demonstrates that linear objective functions
in the mean buffer occupancies can result in convex objective func-
tions in the mean unfinished work. Therefore, even for linear objec-
tive functions, the optimal value of the parameter is not necessarily
one of the endpoints. It would be interesting to investigate if this
convexity holds for more general arrival and service time models.

2.4 Summary

In this chapter, we have shown what performance region is achievable
by a discrete-time GPS system and proved the monotonicity of the
performance measures. This enabled us to develop important theo-
rems about the optimization of the system. These theorems make it
possible to, a priori, determine the behavior of the objective function

CHAPTER 2. TWO CLASSES 73

and in what cases strict priority is optimal and in which cases true
GPS. This significantly speeds up or cancels any computationally
expensive optimization search. For the cases wherein this search is
needed anyway, we presented and evaluated some algorithms. Lastly,
we have shown that part of the results presented here can be ported
to a wider class of scheduling problems of which we presented some
examples. The results from this chapter have also been published
in [133,134,138,146].

74 CHAPTER 2. TWO CLASSES

“Hoge klemmers, verre zwemmers en
schaatsers op het ijs, ze zijn allemaal
niet goed wijs.“

— Jerome Vanlerberghe

3
Three Classes

3.1 Extending discrete-time GPS to three
classes

Extending the discrete-time two-class version of GPS, introduced in
Section 1.3, to a version with more classes is not as easy as it seems.
For instance, if we envision the version from Figure 3.1 with 3 classes,
we lose key properties of the two-class model. This makes that anal-
ysis methods for the two-class model do not extend to the three-class
version.

In the version of Figure 3.1, when all queues are backlogged,
classes 1, 2 and 3 are served with probabilities β1, β2, 1 − β1 − β2,
respectively. If only queue 1 is empty, its probability share is propor-

Figure 3.1: Figure of model with 3 classes

75

76 CHAPTER 3. THREE CLASSES

tionally redivided amongst the non-empty classes 2 and 3, i.e. class
2 (class 3) is served with probability β2

1−β1
(1−β1−β2

1−β1
). The policy is

analogous if only queue 2 or 3 are empty. Lastly, when two queues
are simultaneously empty, the only remaining non-empty queue is
served.

The special case β1 = 1 gives strict priority to class-1 customers.
With β1 = 1 the weights for queues 2 and 3 are 0 and, as a result, it is
undefined what to do when queue 1 is empty. Give priority to queue
2 or 3 is an option, which produces a strict priority case, but anything
in between is also possible. As shown, the definition of this three-
class policy is non-trivial. To keep all priority policies as a special
case in the three-class version, extra parameters other than β1 and
β2 are needed. Another possibility is to add the restriction that no
queue weight can equal 1. That way the priority cases are no longer
possible but can be viewed as limit cases. For instance the priority
case 1 > 2 > 3 is obtained by β1 → 1, β2 → 0 and 1− β1 − β2 = 0.

The main disadvantage however is the difficult analysis of its per-
formance and the subsequent optimization of the parameters. Ob-
taining these β1 and β2 that lead to a desired performance vector w̄∗

is far from straightforward. The fact that a small perturbation in one
of the βi (i = 1, 2) probabilities has an influence on each of the w̄j
(j = 1, 2, 3), makes for instance hierarchical optimization of the βi’s
cumbersome.

To mitigate these analysis and optimization challenges of GPS, we
investigate a hierarchical version of the aforementioned discrete-time
GPS. This version is related to other practical implementations of the
idealized H-GPS scheduling discipline, as for instance described in
[15,35,66,82]. In this discrete-time H-GPS version, we introduce two
hierarchical levels. In each slot, assuming all queues are backlogged,
the server first decides on the first hierarchical level to either serve
queue 1 with probability β1, or delegate service to hierarchical level
2 with probability 1 − β1. If service is delegated to level 2, queue 2
is served with probability β2 and queue 3 is served with probability
1− β2. If queue 1 is empty, service is by default delegated to level 2.
Conversely, if queues 2 and 3 are empty queue 1 is served. If service is
delegated to level 2 and one of the queues on that level is empty, the
other queue is served. Obviously no service happens when the system
is empty. The policy is illustrated in Figure 3.2. It is clear from this
definition that β2 has no influence on the decision whether or not to
serve queue 1. The latter decision is taken on the first hierarchical
level where β2 plays no role. As a consequence, β2 has no influence
on w̄1, and thus β1 and β2 can be optimized hierarchically.

For completeness of the description of the dynamics of the H-

CHAPTER 3. THREE CLASSES 77

Level 1Level 2

Figure 3.2: Discrete-time Hierarchical Generalized Processor Sharing

GPS system, we specify the system equations below using the usual
symbols defined in Section 1.4.

• if wk = 0

wk+1 = ak

• if wi,k > 0; wj,k = 0 with j = {1, 2, 3} \ {i}

wi,k+1 = wi,k − 1 + ai,k

wj,k+1 = aj,k

• if w1,k = 0; w2,k, w3,k > 0

wk+1 = wk − (0, 1, 0) + ak w.p. β2

wk+1 = wk − (0, 0, 1) + ak w.p. 1− β2

• if w2,k = 0; w1,k, w3,k > 0

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 0, 1) + ak w.p. 1− β1

• if w3,k = 0; w1,k, w2,k > 0

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 1, 0) + ak w.p. 1− β1

• if wj,k > 0 with j = {1, 2, 3}

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 1, 0) + ak w.p. (1− β1)β2

wk+1 = wk − (0, 0, 1) + ak w.p. (1− β1)(1− β2)

78 CHAPTER 3. THREE CLASSES

However, it is unclear whether the achievable performance region
of H-GPS matches the one from GPS, i.e., we are not certain that each
vector w̄ = (w̄1, w̄2, w̄3) that can be generated by a particular GPS
system can also be constructed with our new H-GPS system (and vice
versa). Therefore, we first study the performance region of H-GPS
and GPS in the next section. We show that a single H-GPS system
cannot achieve the performance region of GPS. There are however
several possibilities to route classes to queues, delivering different
performance for the classes. We prove that with the union of these
different H-GPS configurations, the whole GPS performance region
is achieved. Subsequently in Section 3.3, we look at the optimization
of discrete-time H-GPS. Lastly, in Section 3.4, we investigate the
extension to more than three classes.

3.2 Achievable Region

We start by identifying the achievable region of strict priority schedul-
ing policies. As in Section 2.1, we express an achievable performance
point as a vector w̄ = (w̄1, w̄2, w̄3). For strict priority, it is clear that
only 3! = 6 different priority orderings exist and that we thus have 6
achievable performance vectors.

One can intuitively see that, if we only consider work-conserving
policies, the performance vector of every policy will always be in-
cluded in the convex polytope with the 6 performance vectors of strict
priority as vertices. This is also clarified in for instance [21,45,70,72,
112, 120]. Furthermore, Federgruen and Groenevelt [61] have shown
that every performance vector in this polytope can be achieved by
a certain policy. In their paper, they construct a policy whereby in
each busy cycle a different priority ordering is used. By selecting the
different orderings with appropriate probabilities in the subsequent
busy cycles, the policy achieves the requested performance vector in
the limit (averaged over all busy cycles). In practice, this policy
is not very valuable as the performance for customers of a certain
class strongly depends on the busy cycle of their arrival. This is an
undesired property for practitioners; this policy lacks consistency of
performance in time. It mainly has merit from a theoretical point of
view, for proving the feasibility of any point in the polytope by at
least one scheduling policy.

Let us first look at this polytope. We denote the area enclosed
by the polytope by Ω ⊂ R3; the performance vector resulting from
a certain work-conserving policy will always be an element of Ω. An
example of such a polytope Ω is drawn with a thick line in Figure 3.3.

CHAPTER 3. THREE CLASSES 79

Figure 3.3: Enclosed by thick lines: polytope enclosing possible per-
formance vectors for work-conserving policies in 3D

As can be seen from the figure, Ω lies in a plane. The reason is that,
given that we have three classes and only consider work-conserving
policies, the mean total amount of work in the system is a constant.
This constant is:

w̄T = w̄1 + w̄2 + w̄3, (3.1)

whereby w̄i depends on the policy and w̄T is a constant, independent
of the policy. Expression (3.1) is the equation for the plane shown
in Figure 3.3. As such, we can draw the polytope in 2D for clarity,
discarding w̄3 as it can be calculated from w̄1 and w̄2. An example
is shown in Figure 3.4. In this figure the black circles with notation
(A > B > C) (with (A,B,C) a permutation of (1, 2, 3)) designate
the performance vector where class A has highest priority, followed
by class B and class C has the lowest priority.

The discrete-time version of GPS can achieve any performance
vector inside Ω, by choosing the weights β1 and β2 appropriately1.
The border of the polytope (and the vertices that correspond to prior-
ity scheduling) is reached in the limit where one of the probabilities
is 1 (high priority) and both others 0. In this limit case however,
it is necessary to further specify the bandwidth shares between the
classes with 0 probability (as mentioned in the previous section), as
it is otherwise unclear which queue to serve in the event that the

1 We do not have a formal proof for this claim nor did we find any in the liter-
ature. However, we intuitively feel from the GPS mechanism and the continuous
nature of the parameters together with the fact that the limiting cases constitute
the priority vertices, that this is indeed true. Extensive simulations that we did
confirmed this belief.

80 CHAPTER 3. THREE CLASSES

Figure 3.4: Polytope enclosing possible performance vectors for work-
conserving policies in 2D

high-priority queue is empty.

Reasoning about the H-GPS system, it is intuitively clear that
priority ordering (1 > 2 > 3) is achieved by choosing β1 = 1 and
β2 = 1. This is easily done for (1 > 3 > 2), (3 > 2 > 1) and (2 > 3 >
1) as well, choosing respectively (β1 = 1, β2 = 0), (β1 = 0, β2 = 0)
and (β1 = 0, β2 = 1). However, it is also clear that it is impossible
to achieve (3 > 1 > 2) and (2 > 1 > 3) with this H-GPS system. For
instance to assign class 3 with the highest priority, β1 = 0 and β2 = 0
is needed, which however results necessarily (due to the hierarchy)
in class 2 having priority over class 1. Subsequently, this means
that we cannot achieve the full polytope Ω using this H-GPS system.
However, we can effectuate (3 > 1 > 2) by switching hierarchy levels,
i.e., by sending class 3 customers to queue 1 (Q1), class 1 customers
to queue 2 (Q2), class 2 customers to queue 3 (Q3) and by choosing
β1 = 1;β2 = 1. If we schematically represent the three-class H-GPS
system as: (Q1,(Q2,Q3)) then we can note the aforementioned system
as: (3, (1, 2)). Effectively, for three classes we have 3 possible H-GPS
systems (omitting symmetric systems, interchanging the classes on
the deepest level): (1, (2, 3)), (2, (1, 3)) and (3, (1, 2)). The aim of
this section is to prove the next theorem that states that the union
of the performance regions of these 3 systems is indeed equal to the

CHAPTER 3. THREE CLASSES 81

entire polytope Ω.

Theorem 3.1. Every performance vector w̄ in Ω is feasible with at
least one of the three possible H-GPS systems (1, (2, 3)), (2, (1, 3)) or
(3, (1, 2)).

The remainder of this section is dedicated to proving this crucial
theorem. We start with an example and a sketch of the proof to
provide some intuition. Subsequently, we state two lemmas used in
the formal proof of Theorem 3.1 at the end of this section.

As an example, Figure 3.5 shows the performance regions of the
three possible H-GPS systems for a specific arrival pattern (i.e.: a
multinomial arrival process with λT = 0.9, N = 16, α1 = 0.16, α2 =
0.32). From the figure we can, for instance, see that indeed (1, (2, 3))
does not achieve the performance of priority ordering (3 > 1 > 2)
and (2 > 1 > 3). We also see that the performance vectors in the
regions that are outside of the feasible region for H-GPS (1, (2, 3)),
are inside the feasible region of either (2, (1, 3)) or (3, (1, 2)).

First, we observe that given a certain performance vector w̄∗ =
(w̄∗1 , w̄

∗
2 , w̄

∗
3) in the polytope Ω, each of the three H-GPS systems

can at least provide a performance vector for which the performance
of the class on its highest level is correct. For instance, for H-GPS

(2, (1, 3)) a b2 exists for which w̄∗2 = w̄
(2,(1,3))
2 (b2, b

′
2). This is evi-

dently the case as w̄
(2,(1,3))
2 (b2, b

′
2) spans from w̄2,max to w̄2,min as b2

traverses from 0 to 1 (independently of b′2). This observation forms

the basis of our proof. As such ∃b1, b2, b3 : w̄∗1 = w̄
(1,(2,3))
1 (b1, ·), w̄∗2 =

w̄
(2,(1,3))
2 (b2, ·), w̄∗3 = w̄

(3,(1,2))
3 (b3, ·). It is however unsure (and not al-

ways the case) that a b′2 can be found such that w̄∗1 = w̄
(2,(1,3))
1 (b2, b

′
2)

and w̄∗3 = w̄
(2,(1,3))
3 (b2, b

′
2). In the formal proof of Theorem 3.1, we

show that the assumption that w̄∗ cannot be achieved by any of the
systems leads to a contradiction with regards to the bi values. The
two lemmas stated and explained in the following subsections, help
us establishing the behavior of the performance metrics with regards
to their parameter settings.

The proofs presented in this paper are based on coupling argu-
ments, as in Section 2.1. For the proofs (and thus the theorems) we
impose some assumptions on the arrival process. We assume the ar-
rival process is such that wk is a discrete-time regenerative process
and that there are arrivals for each of the three classes. Addition-
ally, we assume (i) the limiting distribution of wk exists and has a
finite mean and (ii) the unfinished work in all queues at regeneration
points does not depend on the (configuration of the) specific policy.
In practice this means that a finite-mean regeneration cycle length

82 CHAPTER 3. THREE CLASSES

Figure 3.5: Performance space (grey area) for three different H-GPS
systems with 3 classes of customers: (1, (2, 3))-top ; (2, (1, 3))-middle
and (3, (1, 2))-bottom

CHAPTER 3. THREE CLASSES 83

and empty system (wk = 0) at regeneration epochs suffice as (not
very restrictive) conditions [7].

3.2.1 The influence of β1 in H-GPS

Lemma 3.1. For (A,B,C) an arbitrary permutation of (1, 2, 3), we
have for each β and ∆β such that 0 ≤ β < β + ∆β ≤ 1:

(i) w̄
(A,(B,C))
A (β, 1) ≥ w̄(A,(B,C))

A (β + ∆β, 1) and

(ii) w̄
(A,(B,C))
C (β, 1) ≤ w̄(A,(B,C))

C (β + ∆β, 1).

We formulate the lemma in terms of H-GPS (A, (B,C)) to em-
phasize, that it is generic for the three possible systems (1, (2, 3)),
(2, (1, 3)) and (3, (1, 2). Basically, Lemma 3.1 says that if we give
class B priority over class C (second configuration parameter β2 = 1),
the mean unfinished work of class A (class C) will be decreasing (in-
creasing) for increasing (first configuration parameter) β1.

The proof of this lemma is based on a coupling argument. We
couple arrivals and server decisions of two systems S(A,(B,C))(β, 1)
and S(A,(B,C))(β + ∆β, 1) and compare the sample paths of their
unfinished work. As such, if ∆β would be equal to zero, the unfin-
ished work would be equal in each queue in each slot. For making
the decision which queue to serve, the server generates two deci-
sion variables r1,k and r2,k uniformly in the interval [0, 1] in each
slot k. Subsequently, these values are compared to β1 and β2 (i.e.:
the weight parameters on the first and second hierarchical level, see
Figure 3.2) to make a decision on which queue to serve. For in-
stance, when all queues are backlogged in slot k, queue 2 will be
served when r1,k ∈ [β1, 1] and r2,k ∈ [0, β2[. Consequently, the sam-
ple paths for these two coupled systems can only start to diverge
in a slot where β ≤ r1,k < β + ∆β. We prove that there are al-
ways at least as much class-A (class-C) customers in S(A,(B,C))(β, 1)
(S(A,(B,C))(β + ∆β, 1)) as in S(A,(B,C))(β + ∆β, 1) (S(A,(B,C))(β, 1))
sample path wise. To this end, we study the difference vector ∆wk =
w(A,(B,C))(β + ∆β, 1)−w(A,(B,C))(β, 1) from slot to slot. The proof
then boils down to proving that the first (last) element of the dif-
ference vector is always negative (positive). The introduction of the
difference vector is a concise way of comparing the sample paths of
both coupled systems.

We show an illustrative example for the proof of Lemma 3.1 in
Figure 3.6. In the first two slots of the example both systems are
aligned. In slot 2, β ≤ r1,k < β + ∆β thus S(A,(B,C))(β, 1) serves
class C (class B empty) and S(A,(B,C))(β + ∆β, 1) serves class A.

84 CHAPTER 3. THREE CLASSES

Figure 3.6: Illustration of Lemma 3.1 S(A,(B,C))(β + ∆β, 1) (dotted)
S(A,(B,C))(β, 1) (solid)

CHAPTER 3. THREE CLASSES 85

As a result, the difference vector in slot 3 is (−1, 0, 1). In slot 3,
S(A,(B,C))(β, 1) serves class A, but S(A,(B,C))(β + ∆β, 1) serves class
B as in that system class A is empty. Subsequently, the difference
vector in slot 4 is (0,−1, 1) and evolves back to (−1, 0, 1) in slot
5. In slot 5, β ≤ r1,k < β + ∆β thus S(A,(B,C))(β, 1) serves class
B and S(A,(B,C))(β + ∆β, 1) serves class A. In the next slot, the
difference vector is thus (−2, 1, 1), afterwards both systems empty
at which point both systems synchronize. From this example, we
see that it is possible for the second element of the difference vector

to be positive as well as negative. As such, w̄
(A,(B,C))
B (β, 1) is not

necessarily monotone in β.

Non-monotonicity of w̄B

In the system S(A,(B,C))(β, 1) we would ex-
pect that if β increases, i.e., the bandwidth
of class A increases, that this would be at the
expense of both classes B and C. However, it
is possible for w̄B to decrease as β increases;
although it is counterintuitive. This possi-
bility is, for instance, what we see in slot 4
of the example in Figure 3.6.
In Figure 3.7, we show another complete
counterexample to demonstrate the possibil-
ity of w̄B decreasing as β increases. Suppose
the events in these 8 slots are repeated ad
infinitum. Then by increasing β to β + ∆β
(in the counterexample), we get that w̄A de-
creases from 0.25 to 0.125 and w̄C increases
from 0.125 to 0.75. Counterintuitively w̄B
also decreases from 1.75 to 1.25.
To end up in this scenario it is necessary for
class A to be empty and B,C non-empty in
the β+∆β-system whilst in the β-system all
are non-empty. At that particular slot the
decision variable has to draw to serve class A.
For a full survey of the possibilities we refer
to the formal proof. It is however clear that
the situation wherein w̄B decreases as β in-
creases in S(A,(B,C))(β, 1) over the full range
of possible scenarios is unlikely for regular
systems. We will use this in our construction
of an optimization algorithm in Section 3.3.

Figure 3.7: Counterexample de-
creasing w̄B for increasing β.

The example and explanation of Figure 3.6 demonstrate the struc-
ture and most important cases of the proof of Lemma 3.1. We now
state the formal proof.

Proof. Assume two coupled systems S(A,(B,C))(β, 1) and S(A,(B,C))(β+

86 CHAPTER 3. THREE CLASSES

∆β, 1) (0 ≤ β < β+∆β ≤ 1), both systems have the same number of
arrivals in each slot and use the same decision variables for schedul-
ing. We now study the system starting from a certain slot, whereby
this slot is such that the unfinished work of corresponding classes in
both systems is equal. This can be done without loss of generality,
as it is the case in the first slot of a regeneration cycle.

We study the sample paths of both systems from slot to slot.
We keep track of the difference vector in slot k defined as: ∆wk =

w
(A,(B,C))
k (β+∆β, 1)−w(A,(B,C))

k (β, 1). In Tables 3.1-3.5, we describe
starting from a certain difference vector ∆wk (indicated at the top
of the table) the possibilities for the difference vector in the next slot
(i.e.: ∆wk+1) and under which conditions these transitions occur.
We will explain the parts marked in grey in extenso to clarify the
tables further.

When the difference vector at the start of the slot equals (0, 0, 0)
both systems are synchronized and they will stay synchronized when
rk /∈ [β, β+∆β[. In Table 3.1, we only list the cases where rk ∈ [β, β+
∆β[. As an example, we explain the case marked in grey. When class
B is empty and classes A and C backlogged in both systems (∆wk =
(0, 0, 0)), S(A,(B,C))(β, 1) serves class C and S(A,(B,C))(β + ∆β, 1)
serves class A. As a consequence ∆wk+1 = (−1, 0, 1).

The difference vector of (−1, 0, 1) is of the form (−m, 0,m) with
(m > 0), transition possibilities for this case are listed in Table 3.2.

We focus on the case in grey for illustration purposes. When w
(A,(B,C))
A,k

(β+∆β, 1) = 0, w
(A,(B,C))
B,k (β+∆β, 1) > 0, w

(A,(B,C))
C,k (β+∆β, 1) ≥ m,

we know (as the difference vector equals (−m, 0,m)) w
(A,(B,C))
A,k (β +

∆β, 1) = m,w
(A,(B,C))
B,k (β + ∆β, 1) > 0, w

(A,(B,C))
C,k (β + ∆β, 1) ≥ 0.

As a consequence, S(A,(B,C))(β + ∆β, 1) always serves class B, but
S(A,(B,C))(β, 1) serves class A when rk < β and class B otherwise.
Consequently, ∆wk+1 = (−m+1,−1,m) when rk < β and ∆wk+1 =

∆wk otherwise. When w
(A,(B,C))
A,k (β+∆β, 1), w

(A,(B,C))
B,k (β+∆β, 1) >

0, w
(A,(B,C))
C,k (β + ∆β, 1) ≥ m, we know that w

(A,(B,C))
A,k (β + ∆β, 1) >

m,w
(A,(B,C))
B,k (β + ∆β, 1) > 0, w

(A,(B,C))
C,k (β + ∆β, 1) ≥ 0. As none of

the queues is empty in both systems they serve the same class when
rk /∈ [β, β + ∆β[. However, when β ≤ rk < β + ∆β, S(A,(B,C))(β, 1)
serves class B and S(A,(B,C))(β+∆β, 1) serves class A. Consequently,
∆wk+1 = (−m−1, 1,m) when β ≤ rk < β+∆β and ∆wk+1 = ∆wk

otherwise.

Analogously, Tables 3.3, 3.4 and 3.5 are constructed summarizing
all possible starting scenarios of ∆wk. We observe that the first

CHAPTER 3. THREE CLASSES 87

Table 3.1: Exhaustively listing all possible difference vector tran-
sitions in slot k starting from difference vector (0, 0, 0) given that
β ≤ rk < β + ∆β

∆wk = (0, 0, 0) and β ≤ rk < β + ∆β

w
(A,(B,C))
·,k (β + ∆β, 1)

∆wk+1
A B C
0 ≥ 0 ≥ 0 (0, 0, 0)
≥ 0 0 0 (0, 0, 0)
> 0 0 > 0 (−1, 0, 1)
> 0 > 0 ≥ 0 (−1, 1, 0)

Table 3.2: Exhaustively listing all possible difference vector transi-
tions in slot k starting from difference vector (−m, 0,m) with (m > 0)

∆wk = (−m, 0,m);m > 0

w
(A,(B,C))
·,k (β + ∆β, 1)

∆wk+1
A B C rk
0 0 m (−m+ 1, 0,m− 1)
0 0 > m rk < β (−m+ 1, 0,m− 1)

else (−m, 0,m)
0 > 0 ≥ m rk < β (−m+ 1,−1,m)

else (−m, 0,m)
> 0 0 m rk ≥ β + ∆β (−m+ 1, 0,m− 1)

else (−m, 0,m)
> 0 0 > m β ≤ rk < β + ∆β (−m− 1, 0,m+ 1)

else (−m, 0,m)
> 0 > 0 ≥ m β ≤ rk < β + ∆β (−m− 1, 1,m)

else (−m, 0,m)

Table 3.3: Exhaustively listing all possible difference vector transi-
tions in slot k starting from difference vector (0,−m,m) with (m > 0)

∆wk = (0,−m,m);m > 0

w
(A,(B,C))
·,k (β + ∆β, 1)

∆wk+1
A B C rk
0 0 ≥ m (0,−m+ 1,m− 1)
0 > 0 ≥ m (0,−m,m)
> 0 0 ≥ m rk ≥ β + ∆β (−1,−m+ 1,m)

rk < β (0,−m,m)
rk ≥ β + ∆β (0,−m+ 1,m− 1)

> 0 > 0 ≥ m β ≤ rk < β + ∆β (−1,−m+ 1,m)
else (0,−m,m)

88 CHAPTER 3. THREE CLASSES

Table 3.4: Exhaustively listing all possible difference vector transi-
tions in slot k starting from difference vector (−m − n,m, n) with
(m > 0, n ≥ 0)

∆wk = (−m − n,m, n);m > 0, n ≥ 0

w
(A,(B,C))
·,k (β + ∆β, 1)

∆wk+1
A B C rk
0 m n (−m− n+ 1,m− 1, n)
0 m > n rk < β (−m− n+ 1,m− 1, n)

else (−m− n,m− 1, n+ 1)
0 > m ≥ n rk < β (−m− n+ 1,m− 1, n)

else (−m− n,m, n)
> 0 m n rk ≥ β + ∆β (−m− n+ 1,m− 1, n)

else (−m− n,m, n)
> 0 m > n β ≤ rk < β + ∆β (−m− n− 1,m, n+ 1)

rk < β (−m− n,m, n)
rk ≥ β + ∆β (−m− n,m− 1, n+ 1)

> 0 > m ≥ n β ≤ rk < β + ∆β (−m− n− 1,m+ 1, n)
else (−m− n,m, n)

Table 3.5: Exhaustively listing all possible difference vector transi-
tions in slot k starting from difference vector (−m,−n,m + n) with
(m,n > 0)

∆wk = (−m,−n,m + n);m,n > 0

w
(A,(B,C))
·,k (β + ∆β, 1)

∆wk+1
A B C rk
0 0 ≥ m+ n rk < β (−m+ 1,−n,m+ n− 1)

else (−m,−n+ 1,m+ n− 1)
0 > 0 ≥ m+ n rk < β (−m+ 1,−n− 1,m+ n)

else (−m,−n,m+ n)
> 0 0 ≥ m+ n rk ≥ β + ∆β (−m− 1,−n+ 1,m+ n)

rk < β (−m,−n,m+ n)
rk ≥ β + ∆β (−m,−n+ 1,m+ n− 1)

> 0 > 0 ≥ m+ n β ≤ rk < β + ∆β (−m− 1,−n+ 1,m+ n)
else (−m,−n,m+ n)

CHAPTER 3. THREE CLASSES 89

element in the possible difference vectors is always negative and the
third element is always positive. The second element can be positive
or negative, which makes further conclusions for wB impossible. As
such, we conclude that for every slot k in the sample path for the
coupled systems:

w
(A,(B,C))
A,k (β, 1) ≥ w(A,(B,C))

A,k (β + ∆β, 1),

w
(A,(B,C))
C,k (β, 1) ≤ w(A,(B,C))

C,k (β + ∆β, 1). (3.2)

And thus, their means satisfy:

w̄
(A,(B,C))
A (β, 1) ≥ w̄(A,(B,C))

A (β + ∆β, 1),

w̄
(A,(B,C))
C (β, 1) ≤ w̄(A,(B,C))

C (β + ∆β, 1). (3.3)

3.2.2 Comparison of the interior boundary for two
H-GPS systems

Lemma 3.2. For (A,B,C) an arbitrary permutation of (1, 2, 3),
w̄(A,(B,C))(1, 0) = w̄(B,(A,C))(0, 1). Furthermore we have for β ∈
]0, 1] that:

(1) w̄
(A,(B,C))
A (1− β, 0) ≥ w̄(B,(A,C))

A (β, 1)

(2) w̄
(A,(B,C))
B (1− β, 0) ≥ w̄(B,(A,C))

B (β, 1)

(3) w̄
(A,(B,C))
C (1− β, 0) ≤ w̄(B,(A,C))

C (β, 1)

In the proof of this lemma, the difference vector w(B,(A,C))(β, 1)−
w(A,(B,C))(1− β, 0) is analyzed sample-path wise. Studying this dif-
ference vector is equivalent to comparing the sample paths of both
w(B,(A,C))(β, 1) and w(A,(B,C))(1− β, 0). The proof couples two sys-
tems: S(A,(B,C))(1−β, 0) and S(B,(A,C))(β, 1). To couple the decision
variables S(B,(A,C))(β, 1) uses r1,k and S(A,(B,C))(1−β, 0) uses 1−r1,k.
That way, when r1,k ≥ β, class A gets served in both S(B,(A,C))(β, 1)
and S(A,(B,C))(1 − β, 0) (1 − r1,k ≤ 1 − β). When no A-customers
are present both systems serve class C. As such, S(B,(A,C))(β, 1) and
S(A,(B,C))(1−β, 0) only make different decisions when r1,k < β. With
β = 0, both systems correspond to the priority ordering (A > C > B)
policy, consequently w̄(A,(B,C))(1, 0) = w̄(B,(A,C))(0, 1).

In Figure 3.8, we present a samplepath containing all (blueprints
of) possible difference vectors as an example. In the figure, we start

90 CHAPTER 3. THREE CLASSES

Figure 3.8: Illustration of Lemma 3.2 S(B,(A,C))(β, 1) (dotted)
S(A,(B,C))(1− β, 0) (solid)

CHAPTER 3. THREE CLASSES 91

Figure 3.9: Systems S(B,(A,C))(β, 1) (left) and S(A,(B,C))(1 − β, 0)
(right) as considered in the proof of Lemma 3.2.

from a situation where the sample paths of both systems S(B,(A,C))

(β, 1) and S(A,(B,C))(1−β, 0) are aligned, and the difference vector is
(0, 0, 0). In the second slot r1 < β and S(A,(B,C))(1−β, 0) serves class
C, while S(B,(A,C))(β, 1) serves class A (class B is empty). The result
is a difference vector of (−1, 0, 1). The same happens in slot 3, adding
up to a difference vector of (−2, 0, 2). These differences stay constant
up to the first slot where r1 < β and class B is non-empty. At this
point, S(A,(B,C))(1−β, 0) serves class C, while S(B,(A,C))(β, 1) serves
class B, resulting in a difference vector of (−2,−1, 3). In the next
slot, S(A,(B,C))(1 − β, 0) serves class A, while S(B,(A,C))(β, 1) serves
class C (class A is empty in this slot in this system). The difference
vector now (in slot 7) is (−1,−1, 2) and we get the same situation
as in slot 5, amounting to a difference vector of (−1,−2, 3). From
this point on r1 ≥ β and both systems empty, aligning them both
when they are empty. Looking at the possible difference vectors, the
inequalities from Lemma 3.2 are clear.

Similar as for Lemma 3.1, the example we just discussed demon-
strates the structure of the proof of Lemma 3.2. For completeness,
we write down the formal proof below.

Proof. Assume two coupled systems S(B,(A,C))(β, 1) and S(A,(B,C))

(1 − β, 0), where both systems have the same arrivals in each slot.
To couple the decision variables in slot l, S(B,(A,C))(β, 1) uses rl and
S(A,(B,C))(1 − β, 0) uses 1 − rl. We now study the system starting
from a certain slot, whereby this slot is such that the unfinished work
of corresponding classes in both systems is equal. This can be done
without loss of generality, as this could very well be the first slot of
a regeneration cycle.

We study the sample path of both systems from slot to slot,
whereby the current slot is denoted as k. We keep track of the differ-

ence vector in the current slot k defined as: ∆wk = w
(B,(A,C))
k (β, 1)−

w
(A,(B,C))
k (1 − β, 0). In Tables 3.6-3.9, we describe starting from a

certain difference vector ∆wk (indicated at the top of the table) the

92 CHAPTER 3. THREE CLASSES

possibilities for the difference vector in the next slot (i.e.: ∆wk+1)
and under which conditions these transitions occur. We will explain
the parts marked in grey in extenso to clarify the tables further.
Furthermore, for brevity, we drop the arguments (1 − β, 0) for the
(A, (B,C)) system and (β, 1) for the (B, (A,C)) system in the re-
mainder of the proof.

As a first example, we start from synchronized sample paths
so the difference vector is (0, 0, 0), subsequently, the possibilities in
that slot are listed in Table 3.6. We study the case in grey. The

first three columns indicate that w
(B,(A,C))
A,k , w

(B,(A,C))
B,k , w

(B,(A,C))
C,k > 0

as the difference vector in the current slot is (0, 0, 0) this means

that also w
(A,(B,C))
A,k , w

(A,(B,C))
B,k , w

(A,(B,C))
C,k > 0. With probability

1 − β, both systems serve class A, keeping the systems aligned and
∆wk = (0, 0, 0). With probability β, (A, (B,C)) serves class C, while
(B, (A,C)) serves class B. This results in a difference vector (0,−1, 1)
for the next slot. From the complete table we see that from difference
vector (0, 0, 0) the systems can either stay aligned in the next slot or
evolve to difference vectors (0,−1, 1) or (−1, 0, 1).

Vector (0,−1, 1) is of the form (0,−m,m) (with m > 0), and we
indicate the possibilities from this difference vector onwards in Ta-

ble 3.7. As a second example, we focus on the case where w
(B,(A,C))
A,k >

0, w
(B,(A,C))
B,k = 0, w

(B,(A,C))
C,k = m (indicated in grey) as the cur-

rent difference vector is (0,−m,m), w
(A,(B,C))
A,k > 0, w

(A,(B,C))
B,k = m,

w
(A,(B,C))
C,k = 0, see Table 3.7. With probability β, (A, (B,C)) serves

class B and (B, (A,C)) serves class A, in the next slot the differ-
ence vector thus equals (−1,−m + 1,m). With probability 1 − β,
both systems serve class A and the difference vector stays as is, i.e.:
(0,−m,m).

Analogous to these two examples the complete Tables 3.6 - 3.9 can
be built. Comparing the sample paths of both coupled systems there
are only 4 possible (blueprints of) difference vectors for every slot :
(0, 0, 0), (−m, 0,m), (0,−m,m) and (−m,−n,m+ n) with m,n > 0.
As such, we conclude that for every slot k in the sample path for the
coupled systems:

w
(A,(B,C))
A,k ≥ w(B,(A,C))

A,k ,

w
(A,(B,C))
B,k ≥ w(B,(A,C))

B,k ,

w
(A,(B,C))
C,k ≤ w(B,(A,C))

C,k . (3.4)

CHAPTER 3. THREE CLASSES 93

Table 3.6: Exhaustively listing all difference vector transitions start-
ing from difference vectors (0, 0, 0)

∆wk = (0, 0, 0)

w
(B,(A,C))
·,k w.p. ∆wk+1

A B C
> 0 0 0 1 (0, 0, 0)
0 > 0 0 1 (0, 0, 0)
0 0 > 0 1 (0, 0, 0)
0 > 0 > 0 β (0,−1, 1)

1− β (0, 0, 0)
> 0 0 > 0 β (−1, 0, 1)

1− β (0, 0, 0)
> 0 > 0 0 1 (0, 0, 0)
> 0 > 0 > 0 β (0,−1, 1)

1− β (0, 0, 0)

Table 3.7: Exhaustively listing all difference vector transitions start-
ing from difference vectors (0,−m,m) (m > 0)

∆wk = (0,−m,m)

w
(B,(A,C))
·,k w.p. ∆wk+1

A B C
0 0 m 1 (0,−m+ 1,m− 1)
0 0 > m 1 (0,−m,m)
0 > 0 m β (0,−m,m)

1− β (0,−m+ 1,m− 1)
0 > 0 > m β (0,−m− 1,m+ 1)

1− β (0,−m,m)
> 0 0 m β (−1,−m+ 1,m)

1− β (0,−m,m)
> 0 0 > m β (−1,−m,m+ 1)

1− β (0,−m,m)
> 0 > 0 m 1 (0,−m,m)
> 0 > 0 > m β (0,−m− 1,m+ 1)

1− β (0,−m,m)

94 CHAPTER 3. THREE CLASSES

Table 3.8: Exhaustively listing all difference vector transitions start-
ing from difference vectors (−m,−n,m+ n) (m,n > 0)

∆wk = (−m,−n,m + n)

w
(B,(A,C))
·,k w.p. ∆wk+1

A B C
0 0 m+ n β (−m,−n+ 1,m+ n− 1)

1− β (−m+ 1,−n,m+ n− 1)
0 0 > m+ n β (−m,−n,m+ n)

1− β (−m+ 1,−n,m+ n− 1)
0 > 0 m+ n β (−m,−n,m+ n)

1− β (−m+ 1,−n,m+ n− 1)
0 > 0 > m+ n β (−m,−n− 1,m+ n+ 1)

1− β (−m+ 1,−n,m+ n− 1)
> 0 0 m+ n β (−m− 1,−n+ 1,m+ n)

1− β (−m,−n,m+ n)
> 0 0 > m+ n β (−m− 1,−n,m+ n+ 1)

1− β (−m,−n,m+ n)
> 0 > 0 m+ n 1 (−m,−n,m+ n)
> 0 > 0 > m+ n β (−m,−n− 1,m+ n+ 1)

1− β (−m,−n,m+ n)

Table 3.9: Exhaustively listing all difference vector transitions start-
ing from difference vectors (−m, 0,m) (m > 0)

∆wk = (−m, 0,m)

w
(B,(A,C))
·,k w.p. ∆wk+1

A B C
0 0 m 1 (−m+ 1, 0,m− 1)
0 0 > m β (−m, 0,m)

1− β (−m+ 1, 0,m− 1)
0 > 0 m β (−m, 0,m)

1− β (−m+ 1, 0,m− 1)
0 > 0 > m β (−m,−1,m+ 1)

1− β (−m+ 1, 0,m− 1)
> 0 0 m 1 (−m, 0,m)
> 0 0 > m β (−m− 1, 0,m+ 1)

1− β (−m, 0,m)
> 0 > 0 m 1 (−m, 0,m)
> 0 > 0 > m β (−m,−1,m+ 1)

1− β (−m, 0,m)

CHAPTER 3. THREE CLASSES 95

And thus, their means satisfy:

w̄
(A,(B,C))
A (1− β, 0) ≥ w̄(B,(A,C))

A (β, 1),

w̄
(A,(B,C))
B (1− β, 0) ≥ w̄(B,(A,C))

B (β, 1),

w̄
(A,(B,C))
C (1− β, 0) ≤ w̄(B,(A,C))

C (β, 1). (3.5)

3.2.3 Proof of Theorem 3.1

With the aid of Lemmas 3.1 and 3.2, we can now proceed to the proof
of Theorem 3.1.

Proof of Theorem 3.1. Take the performance vector w̄∗ = (w̄∗1 , w̄
∗
2 ,

w̄∗3) in the polytope Ω. Then ∃b1, b2, b3 : w̄∗1 = w̄
(1,(2,3))
1 (b1, ·), w̄∗2 =

w̄
(2,(1,3))
2 (b2, ·), w̄∗3 = w̄

(3,(1,2))
3 (b3, ·).

There are three possibilities with respect to w̄∗ and H-GPS. Take
one of the configurations, e.g. (1, (2, 3)):

• w̄(1,(2,3))
2 (b1, 1) ≤ w̄∗2 ≤ w̄

(1,(2,3))
2 (b1, 0)

In this case ∃b′1 : w̄∗2 = w̄
(1,(2,3))
2 (b1, b

′
1) and because of the

work-conserving property w̄∗3 = w̄
(1,(2,3))
3 (b1, b

′
1). As such w̄∗

is feasible with system (1, (2, 3)) and parameter combination
(b1, b

′
1).

• w̄∗2 < w̄
(1,(2,3))
2 (b1, 1).

From the work-conserving property, it follows w̄∗3 > w̄
(1,(2,3))
3

(b1, 1). Since w̄∗2 = w̄
(2,(1,3))
2 (b2, 0), we find that w̄

(1,(2,3))
2 (b1, 1)

≤ w̄(2,(1,3))
2 (1−b1, 0), by means of Lemma 3.2. Then, Lemma 3.1

yields b2 > 1−b1. Analogously b3 < 1−b1 as w̄∗3 = w̄
(3,(1,2))
3 (b3, 1)

> w̄
(1,(2,3))
3 (b1, 1) ≥ w̄

(3,(1,2))
3 (1−b1, 1). To summarize: w̄∗ is

not feasible with system (1, (2, 3)) in this case and b3 < 1−b1 <
b2.

• w̄∗2 > w̄
(1,(2,3))
2 (b1, 0) and thus w̄∗3 < w̄

(1,(2,3))
3 (b1, 0)

Analogously as in the previous case we get that w̄∗ is not fea-
sible with system (1, (2, 3)) and that b3 > 1− b1 > b2.

For H-GPS (2, (1, 3)) we have:

• w̄(2,(1,3))
1 (b2, 1) ≤ w̄∗1 ≤ w̄

(2,(1,3))
1 (b2, 0)

In this case ∃b′2 : w̄∗1 = w̄
(2,(1,3))
1 (b2, b

′
2) and because of the

96 CHAPTER 3. THREE CLASSES

work-conserving property w̄∗3 = w̄
(2,(1,3))
3 (b2, b

′
2). As such w̄∗

is feasible with system (2, (1, 3)) and parameter combination
(b2, b

′
2).

• w̄∗1 < w̄
(2,(1,3))
1 (b2, 1) and w̄∗3 > w̄

(2,(1,3))
3 (b2, 1)

Analogous to (1, (2, 3)), we have that b1 > 1−b2 and 1−b2 > b3.
Which summarizes to: b3 < 1− b2 < b1 and that w̄∗ cannot be
achieved with system (2, (1, 3)).

• w̄∗1 > w̄
(2,(1,3))
1 (b2, 0) and w̄∗3 < w̄

(2,(1,3))
3 (b2, 0)

Analogously, we get that w̄∗ cannot be reached with system
(2, (1, 3)) and that b1 < 1− b2 < b3.

Lastly for H-GPS (3, (1, 2)) we have:

• w̄(3,(1,2))
1 (b3, 1) ≤ w̄∗1 ≤ w̄

(3,(1,2))
1 (b3, 0)

In this case ∃b′3 for which w̄∗ is feasible with system (3, (1, 2))
and parameter combination (b3, b

′
3).

• w̄∗1 < w̄
(3,(1,2))
1 (b3, 1) and w̄∗2 > w̄

(3,(1,2))
2 (b3, 1)

Consequently, w̄∗ is not feasible with system (3, (1, 2)) and b2 <
1− b3 < b1.

• w̄∗1 > w̄
(3,(1,2))
1 (b3, 0) and w̄∗2 < w̄

(3,(1,2))
2 (b3, 0)

As a consequence, w̄∗ cannot be reached with system (3, (1, 2))
and b1 < 1− b3 < b2.

We now combine all possibilities; this is shown in the tree struc-
ture in Figure 3.10. It is easily seen that the combinations where w̄∗

is infeasible with all three H-GPS systems lead to a contradiction.
As an example, we focus on the topmost path with three edges in the
tree from the figure. In this case w̄∗ is infeasible with all three H-GPS
systems but we also obtain the inequalities from (3.6). Clearly the
first and last equations are contradictory, proving this combination is
impossible. As all paths whereby w̄∗ is infeasible lead to contradic-
tions, only paths where w̄∗ is feasible by one of the H-GPS systems
are valid, concluding the proof.

b2 < 1− b1 < b3

b1 < 1− b2 < b3

b1 < 1− b3 < b2

(3.6)

CHAPTER 3. THREE CLASSES 97

Figure 3.10: Tree showing possibilities for the proof of Theorem 3.1

98 CHAPTER 3. THREE CLASSES

An alternative way of looking at the proof of Theorem 3.1
If we look again at Figure 3.5, we establish that every H-GPS feasible region is
bounded by 2 straight lines of the polytope Ω and 2 curves in the interior of
Ω (these curves where obtained via simulation). For the straight lines of the
achievable region of S(A,(B,C))(β1, β2), we have that β1 equals either 0 or 1
while β2 traverses from 0 to 1. Clearly this is a boundary of Ω as we keep highest
(lowest) priority for class A while investigating all work-conserving possibilities for
(w̄B , w̄C). For the curves bounding the achievable region of S(A,(B,C))(β1, β2),
we have that β1 traverses from 0 to 1 while β2 equals either 0 or 1. For instance,
S(A,(B,C))(0 → 1, 1) results in a curve (B > C > A) → (A > B > C) which
indeed travels through the interior of Ω. The fact that these lines are curves
shows that β1 indeed impacts all of the queues in the system.

Figure 3.11: Interior boundaries to Ω of H-GPS systems.

In Figure 3.11, we have drawn all these interior curves that bound one of the
achievable regions of a H-GPS system. We see that each vertex of the polytope
Ω is an endpoint to two curves of different H-GPS systems. If we can prove that
none of the curves, that have an endpoint in common, intersect creating a gap,
the whole polytope Ω is necessarily achieved by at least one of the H-GPS systems
(try it!). This can easily be proven using Lemmas 3.1 and 3.2. Lemma 3.2, in
fact, compares two of these curves (this also explains the title of Section 3.2.2).

For instance, if we apply Lemma 3.2 to (A,B,C) = (1, 2, 3), then
w̄(1,(2,3))(1, 0) = w̄(2,(1,3))(0, 1) = w̄(1>3>2). The curves S(1,(2,3))(1 − β, 0)
and S(2,(1,3))(β, 1) are indicated by and flow in the direction of the arrows in
Figure 3.11, if β traverses from 0 to 1. If these lines were to intersect, then for
some b1 and b2 we have that

w̄
(1,(2,3))
1 (1− b1, 0) = w̄

(2,(1,3))
1 (b2, 1), (3.7)

CHAPTER 3. THREE CLASSES 99

from Lemma 3.2 we get that

w̄
(1,(2,3))
1 (1− b2, 0) ≥ w̄(2,(1,3))

1 (b2, 1). (3.8)

Combining (3.7) and (3.8) and applying Lemma 3.1, we find that b2 ≥ b1. Sub-
sequently, we find

w̄
(1,(2,3))
2 (1− b1, 0) ≥ w̄(2,(1,3))

2 (b1, 1) ≥ w̄(2,(1,3))
2 (b2, 1),

as b2 ≥ b1, using Lemma 3.2 for the right-hand inequality and Lemma 3.1 for
the left-hand inequality . Summarized, we find that for any b1 and b2 for which

w̄
(1,(2,3))
1 (1 − b1, 0) = w̄

(2,(1,3))
1 (b2, 1), w̄

(1,(2,3))
2 (1 − b1, 0) ≥ w̄

(2,(1,3))
2 (b2, 1), as

a result one curve is always above (or on) the other and it is impossible to create
a gap that possibly creates an inachievable zone by H-GPS in Ω.

3.3 Optimization

Given a certain cost function f(w̄), we want to find the H-GPS sys-
tem and corresponding parameters β1 and β2 that lead to a minimum
cost. This cost function combined with the knowledge of the total
performance region of any H-GPS system (feasible values for w̄),
which was the subject of the previous section, makes it possible to
optimize the cost function in two steps. In the first step, we search
the performance vector w̄∗ for which the cost function is minimal, i.e.
w̄∗ = argminw̄∈Ω f(w̄). This is an optimization problem that can be
solved using standard techniques from linear or non-linear program-
ming (depending on the form of the cost function) [16, 116, 132]. In
a second step, we need to find a H-GPS system and the parameter
combination (β1, β2) that achieves the optimal performance vector
w̄∗, since we proved in the previous section that at least one of the
three H-GPS systems can achieve w̄∗. This second step is the subject
of this section.

We are left with two problems. Given a certain desired perfor-
mance w̄∗, we answer (i) how to select a H-GPS system that achieves
this and (ii) how to find the corresponding parameters β1 and β2 for
that system. For (i), we start by identifying some regions of Ω that
are certain to be achieved by a given H-GPS system. For instance, we
are certain that H-GPS (1, (2, 3)) achieves the region governed by the
following inequalities (whereby w̄1 and w̄2 denote the axis variables.)

w̄1 ≤ w̄1,max, (3.9)

w̄2 ≤ w̄(1,(2,3))
2 (0, 0), (3.10)

w̄1 + w̄2 ≥ w̄T − w̄(1,(2,3))
3 (0, 1). (3.11)

100 CHAPTER 3. THREE CLASSES

(a) (b)

Figure 3.12: Regions certain (left) and likely (right) to be achievable
by corresponding H-GPS systems.

(3.9) follows from Lemma 3.1 that dictates w̄
(1,(2,3))
1 (β, 0) ≤ w̄(1,(2,3))

1

(0, 0) = w̄1,max. For each β the possible values for w̄2 are in [w̄
(1,(2,3))
2

(β, 1), w̄
(1,(2,3))
2 (β, 0)]. According to Lemma 3.1, w̄

(1,(2,3))
2 (0, 0) ≤

w̄
(1,(2,3))
2 (β, 0) and w̄

(1,(2,3))
3 (0, 1) ≤ w̄

(1,(2,3))
3 (β, 1). We use w̄

(1,(2,3))
3

(β, 1) = w̄T − w̄(1,(2,3))
1 (β, 1) − w̄(1,(2,3))

2 (β, 1) in this last inequality.

We thus find that every value in [w̄T −w̄(1,(2,3))
2 (β, 0)−w̄(1,(2,3))

3 (0, 1),

w̄
(1,(2,3))
2 (0, 0)]. This gives (3.10) and (3.11).

The other two systems yield analogous achievable regions. We
have drawn these regions in Figure 3.12a for an example. From ex-
tensive simulations, we have also identified regions for which it is
very likely that they are achievable by a particular H-GPS system.
These are depicted in Figure 3.12b. The existence of points in these
regions that are not achievable by the corresponding H-GPS sys-

tem, demand that there are also points for which w̄
(A,(B,C))
B (β, 1) >

w̄
(A,(B,C))
B (β + ∆β, 1). As we know from Lemma 3.1 and the proof

thereof this is possible. However, the proof provides insight that the
probability of this occurring is in general smaller than the alternative.
This makes the existence of a significant amount of points in these
regions not achievable by the corresponding H-GPS system unlikely.
It is easily proven that these 6 regions (3 certain and 3 likely) always
span the whole polytope Ω.

With regard to issue (ii), we exploit the property of H-GPS (op-
posed to GPS) that the performance of the class on the first hierar-

CHAPTER 3. THREE CLASSES 101

chical level is independent of the decision parameter on the second

level. For instance in S(A,(B,C))(β1, β2), w̄
(A,(B,C))
A is a function of β1

only, while w̄B and w̄C are functions of both β1 and β2. As a result,
the optimization can be done hierarchically. First, one optimizes for

β1 so that w̄∗A = w̄
(A,(B,C))
A (β1, ·). In a second step, β2 is optimized

so that w̄∗B = w̄
(A,(B,C))
B (β1, β2).

We bundled all this into Algorithm 3.1. The first step of the
algorithm is to sort the H-GPS systems to likeliness of achieving
the required performance vector (recall that we proved that at least
one achieves it). Therefore, we first assess if the target performance
vector w̄∗ is in one of the certain regions. If it is, these are placed
first in the list L. If the target performance is not in one of the
certain regions, we look at the likely regions. For further ordering, for
instance when the target performance is in two or more likely regions,
we consider the distance to the extrema on the first level of the H-GPS
system. For instance for H-GPS (1, (2, 3)), we calculate min(w̄∗1 −
w̄1,min, w̄1,max−w̄∗1) and compare it to the other distances calculated.
This is illustrated in Figure 3.13. For the optimization steps in the
algorithm, one can for instance use binary search. In binary search,
one simulates for β = 0.5 and identifies in which interval w̄∗ lies:
either [0; 0.5] or [0.5; 1]. If it is in the first interval one simulates for
β = 0.25 and so on (see also the description of the algorithm in the
note on page 61). As such the interval (and uncertainty) halves each
step.

Define: L=[H-GPS-1,H-GPS-2,H-GPS-3]
/* Sort list to likeliness of achieving w̄∗ */

sort(L);
for H-GPS-j in L do

/* Optimize β1 on first hierarchical level achieving w̄j */

β1 = optimize(H-GPS-j,w̄∗);
/* Check if H-GPS-j achieves w̄∗ (β2 = 0 and β2 = 1) */

if achievable(H-GPS-j,w̄∗,β1) then
/* Optimize β2 on second hierarchical level */

β2 = optimize(H-GPS-j,w̄∗,β1);
return [H-GPS-j,β1, β2];

else
/* Remove H-GPS-j from list and try next system */

remove(H-GPS-j, L);

end if

end for

Algorithm 3.1: Algorithm to find a H-GPS system and con-
figuration (β1, β2) that achieves w̄∗ = (w̄∗1 , w̄

∗
2 , w̄

∗
3).

We tested this algorithm by running it 2160 times for different

102 CHAPTER 3. THREE CLASSES

Figure 3.13: Illustration of the distance-criterium when w̄∗ is in mul-
tiple regions.

input configurations. As an arrival process we used a multinomial
distribution for the number of arrivals as explained in Section 1.6,
with N = 16, λT varying from 0.2 to 0.95 and αi from 0.1 to 0.8 over
the 2160 tests. For each test a w̄∗ target was randomly chosen (uni-
formly) in Ω. Each optimization was done using binary search and
with simulations over a sample path of 108 slots. The optimization
was stopped when βi was accurate up to 3 digits or w̄i was within
0.1% of w̄∗i . In all 2160 tests w̄∗ was found with the H-GPS system
that was tried first. In 33 % of the cases the target was found inside
a certain region in all other cases it was found in a likely region. The
binary search algorithm needed on average 18.6 steps with a standard
deviation of 4.0 to find (β1, β2).

Algorithm 3.1 guarantees the return of a H-GPS configuration
that achieves the desired performance to the specified accuracy in
a finite amount of time. This is clear from the theorems and lem-
mas from Section 3.2. For the discrete-time version of GPS described
in Section 3.1 on the contrary, no such algorithms are described in
literature, to the best of our knowledge. The greatest complication
is that each optimization parameter has an influence on the mean
unfinished work of all three queues, which is in some cases even non-

CHAPTER 3. THREE CLASSES 103

monotone. Therefore, it is necessary to resort to general techniques
from gradient-free optimization, such as Nelder-Mead, simulated an-
nealing, pattern search etc [42,52,107] to optimize GPS. These algo-
rithms all produce local extrema for the defined objective function.
Without extra knowledge about the behavior of GPS, it is hard to
construct an algorithm that guarantees a result in finite time with
the desired accuracy. For H-GPS, however, the greatest complica-
tion from GPS is absent by design, which enabled us to construct an
optimization algorithm as shown in this section.

3.4 Extending to more than three classes

In this section, we briefly consider the expansion of our work to four
and possibly more classes of customers. This is only a small overview
of the challenges and possible solutions; more research is required.
Firstly, we look at the polytope of the feasible region for the perfor-
mance of work-conserving scheduling policies for four classes of cus-
tomers. As a consequence of the work-conserving requirement, the
sum of the mean unfinished work in all of the queues is a constant.
Therefore, w̄4 = w̄T − w̄1 − w̄2 − w̄3 and the polytope can be drawn
in 3 dimensions. An example is shown in Figure 3.14. The vertices
of the polytope are the 24 possible strict priority scheduling policies,
e.g. (1 > 2 > 3 > 4), (2 > 1 > 3 > 4). The polytope has 8 hexagonal
faces, formed by the vertices with the same class as either high or
low priority class. These hexagonal faces are parallel to one of the
axes or have (1,1,1) as a normal vector (w̄4 constant). The polytope
also has 6 quadrilateral faces of which the face with the performance
vector α is an example in Figure 3.14. For the face containing α,
w̄1 + w̄2 is a constant and w̄3 + w̄4 is a constant. Its vertices are
the strict priority policies where classes 3 and 4 have priority over
1 and 2, i.e.: (4 > 3 > 2 > 1), (4 > 3 > 1 > 2), (3 > 4 > 1 > 2)
and (3 > 4 > 2 > 1). For every point on this face, every class-3 and
class-4 customer has strict priority over customers of classes 1 and 2.

With the straightforward extension of H-GPS to four classes where
on each hierarchical level exactly one queue is separated, see Fig-
ure 3.15, it is impossible to achieve all performance vectors of the
polytope. For instance, the performance vector of point α cannot be
achieved. There are 12 possibilities to associate the 4 classes with the
4 queues leading to different performance regions for H-GPS. With
none of the 12, it is possible to achieve the performance at the point
α. Indeed, with these systems, we can only reach the performance
of the sides of the quadrilateral face in which α lies. This is because

104 CHAPTER 3. THREE CLASSES

0
0.5

1
1.5

2
2.50 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

w

Figure 3.14: Example of the polytope Ω for a system with four classes.

Level 1Level 2Level 3

Figure 3.15: Simple extension of H-GPS for four classes.

CHAPTER 3. THREE CLASSES 105

Level 1Level 2

Figure 3.16: H-GPS systems built from other binary decision trees.

the parameter combinations in the H-GPS systems of the form of
Figure 3.15 that give strict priority to two classes over the others
are fairly limited. However, if we extend the decision tree with other
hierarchical orderings of the form of Figure 3.16, we conjecture that
the complete space can be achieved. In this system it is easy to give
two queues priority over the other two. For instance, sending class-i
customers to queue i in Figure 3.14, we give classes 1 and 2 priority
over 3 and 4 by setting β1 = 0. The proof of this conjecture is not
straightforwardly drawn from the proofs presented here and possibly
requires a different approach. Furthermore, we conjecture that for N
classes of customers every point in the polytope Ω of possible per-
formance vectors resulting from work-conserving policies as defined
in [61] is achievable with the latter extension of H-GPS systems. Such
H-GPS systems are modeled as binary decision trees to choose which
queue to serve, analogously to the examples in Figures 3.15 and 3.16.

For the optimization part, the main difficulty is that intuition is
lost as it is impossible to visualize the achievable regions. The number
of possible binary trees quickly rises with the amount of classes. For
N classes, there are (2N−3)!! = 1·3·5·. . .·(2N−3) (double factorial of
odd numbers [123]) possible binary trees leading to a unique H-GPS
system2. As such, step one of the algorithm, ordering the H-GPS

2 The number of possible binary trees that lead to a unique H-GPS system with
N classes equals the number of unordered full binary trees with N labeled leaves
[123]. In a full binary tree every node has either 0 or 2 childeren. In an unordered
three, the childeren have no particular order. It is clear from the definition of

106 CHAPTER 3. THREE CLASSES

systems to likeliness is hard and not scalable. We propose to use the
distance measure from w̄∗ to the hyperplanes bounding Ω to select
the first hierarchical level to optimize. For instance in the case of α
in Figure 3.14, the closest hyperplane is the plane that contains α
itself. As such, we optimize a two queue H-GPS system (1 + 2, 3 + 4)
to achieve w̄∗1 + w̄∗2 retrieving β1 from Figure 3.16. If this proves
impossible, we should return a step and choose the hyperplane that is
the second closest to w̄∗. In summary, the algorithm iteratively builds
the binary decision tree and retraces a step when it gets blocked.

unordered full binary trees with labeled leaves that this indeed corresponds to
our combinatorics problem of counting the possible number of unique H-GPS
systems. The sequence looks like this starting from N = 1: 1, 1, 3, 15, 105, 945,
10395 . . .

Part II

Analysis

107

“Waarom gemakkelijk doen als je het
ook moeilijk kunt doen.“

— Simon Scharlaken

4
Two Classes

4.1 Introduction

In Part I, we studied the optimization of discrete-time GPS systems.
To this end, we first determined the achievable performance vectors
for the systems, so that we could use standard optimization tech-
niques to find an achievable performance vector that minimizes the
objective function. In a second step, we obtained the specific config-
uration of the GPS system that achieved this optimal performance
vector. The algorithms we developed assumed that we could not cal-
culate the performance measures of the system from the parameters
Therefore they relied on important properties of the systems (mono-
tonicity of the performance measures and hierarchical nature of the
system) and iterative search algorithms whereby performance values
were determined using simulation.

Now in Part II, we look at the analysis of the discrete-time GPS
systems; in concreto, we discuss ways to calculate the performance
measures from the system configuration. In this chapter, we study
the two-class discrete-time GPS model from Section 1.3, i.e. with a
general, but i.i.d. from slot to slot, arrival process. Specifically, we
discuss the application of the power series approximation method
from [145]. In the next chapter, we extend the application of this
approximation method to the three-class H-GPS system we proposed
in Section 3.1. Lastly, in Chapter 6, we develop a new method for

109

110 CHAPTER 4. TWO CLASSES

the two-class model that provides a better and faster approximation;
however, the method is currently limited to a bivariate Bernoulli
arrival distribution.

For two customer classes, the GPS-model leads to a random walk
on the two-dimensional lattice in the quarter plane. In these cases
the stationary distribution can be found using the theory of bound-
ary value problems. The formal solution, however, requires consid-
erable numerical efforts, including the numerical determination of a
conformal mapping [40, 41, 58, 145]. Other approaches for analyzing
two-dimensional queueing models include the uniformization tech-
nique [88], the compensation method [4], and the power series ap-
proximation [23,24,76]. For a comparison of the approaches see [2].

Using power series to solve complex mathematical problems is a
well known technique in queueing theory and in engineering in gen-
eral [62,128]. This power series method also goes by different names
in queueing theory, such as: perturbation technique or light traffic
analysis [10,25,57,91,92,126]. Most power series approximations are
based on an expansion of the steady state probabilities as a power
series in the parameter denoting the total load offered to the system.
Using the balance equations of the system, subsequently, the coeffi-
cients of the power series can be calculated iteratively. The result
is that the accuracy of the approximation deteriorates as the load
increases. In [145], Walraevens et al. study the two-class discrete-
time GPS system we also study in this dissertation1 using a power
series approximation technique. The great novelty from that paper is
that the power series is constructed in the parameter β rather than
in the load. In the next section, we summarize the main elements
from [145] that will be used in the remainder of this dissertation. In
the rest of this chapter, we will discuss the difficulties and some new
adjustments in applying the power series approximation from [145].

4.2 Power series approximation of the joint
probability generating function

In this section, we summarize the power series approximation from
[145] adapted to the setting of this dissertation, i.e. by only consid-
ering single slot service times for the customers. The reader should
note that the author of this dissertation was not involved in the writ-
ing nor the research that lead to [145], and thus the results from this
Section 4.2. We merely summarize the content here, to make the text

1 albeit for customers requiring geometric service times

CHAPTER 4. TWO CLASSES 111

self-contained as we will heavily build upon this paper in the coming
sections and the next chapter.

For clarity, we repeat the most important definitions. In the two-
class system, when both classes are backlogged, class 1 (class 2) is
served with probability β (1 − β). In all other cases the backlogged
class (if any), is served. We recall that wj,k denotes the unfinished
work of class j in slot k, and wk = (w1,k, w2,k, w3,k). Analogously
aj,k and ak = (a1,k, a2,k, a3,k) are used to denote the arrivals in slot
k. Lastly, we repeat the system equations of (1.1).

• if wk = 0

wk+1 = ak

• if wi,k > 0; w3−i,k = 0 with i = {1, 2}

wi,k+1 = wi,k − 1 + ai,k

w3−i,k+1 = a3−i,k

• if wj,k > 0 with j = {1, 2}

wk+1 = wk − (1, 0) + ak w.p. β

wk+1 = wk − (0, 1) + ak w.p. 1− β

We define the joint probability generating function of the unfin-
ished work in slot k as Wk(z1, z2) = E[z

w1,k

1 z
w2,k

2]. Using this defini-
tion, we transform the system equations to the following functional
equation of pgf’s:

Wk+1(z1, z2) (4.1)

= A(z1, z2)


Wk(0, 0) + 1

z2

(
Wk(0, z2)−Wk(0, 0)

)
+ 1
z1

(
Wk(z1, 0)−Wk(0, 0)

)
+
(
β
z1

+ 1−β
z2

)(Wk(z1, z2)−Wk(0, z2)
−Wk(z1, 0) +Wk(0, 0)

)
 .

Next, with the stability condition (λT < 1) fulfilled, we let k → ∞,
with Wk(z1, z2) = Wk+1(z1, z2) = W (z1, z2) and W (z1, z2) the steady
state pgf. The previous expression thus translates to the functional
equation for the steady state pgf of the unfinished work.

W (z1, z2)
(
z1(z2 −A(z1, z2))−A(z1, z2)β(z2 − z1)

)
(4.2)

= A(z1, z2)

 W (z1, 0)(1− β)(z2 − z1)
−W (0, z2)β(z2 − z1)
+W (0, 0) (z2(z1 − 1) + β(z2 − z1))



112 CHAPTER 4. TWO CLASSES

Now, we need to eliminate the boundary functions W (z1, 0), W (0, z2)
and the constant W (0, 0). The great difficulty is that the functional
equation includes both W (z1, 0) and W (0, z2), whereas for a strict
priority scheme the functional equation for the steady state pgf only
comprises one of them [143]2. We, however, observe that W (0, z2)
only appears with a factor β. By expanding the pgf’s as power series
in β and equating corresponding coefficients to iteratively calculate
these coefficients of the power series, one unknown is eliminated.

Assuming W (z1, z2) is an analytic function of β in a neighborhood
of 0, we write W (z1, z2) =

∑∞
m=0 Vm(z1, z2)βm as its power series

expansion in β for all z1 and z2 in the unit disk. Substituting the
power series in (4.2) and equating coefficients of corresponding powers
of β, results in a functional equation for Vm, for m ≥ 0:

Vm(z1, z2)
(
z1(z2 −A(z1, z2))

)
(4.3)

= A(z1, z2)

(
(z2 − z1)Vm(z1, 0) + z2(z1 − 1)Vm(0, 0)
+(z2 − z1)Pm−1(z1, z2)

)
,

with Pm , Vm(z1, z2)− Vm(z1, 0)− Vm(0, z2) + Vm(0, 0), m ≥ 0 and
P−1 , 0. For a certain fixed m, we assume that Pm−1(z1, z2) is known
and we want to express Vm(z1, z2) in terms of Pm−1(z1, z2). We then,
indeed, see that two unknowns are left Vm(z1, 0) and Vm(0, 0). By
using Rouché’s theorem [3], we prove that z2−A(z1, z2) has one zero
in the unit disk of z2 for an arbitrary z1 in the unit disk. Denote this
zero by Y (z1); it is defined in the unit disk as Y (z1)−A(z1, Y (z1)) = 0
and |Y (z1)| < 1. The implicit function theorem then says that Y (z1)
is an analytic function in the unit disk. Since W (z1, z2) is analytic for
all z1 and z2 in the unit disk, the Vm(z1, z2) are as well. Therefore,
the right-hand side of (4.3) should equal zero for z2 = Y (z1). This
gives

Vm(z1, 0) = −Y (z1)(z1 − 1)

Y (z1)− z1
Vm(0, 0)− Pm−1(z1, Y (z1)). (4.4)

By substituting (4.4) in (4.3), we obtain

Vm(z1, z2)
(
z1(z2 −A(z1, z2))

)
(4.5)

= A(z1, z2)

(
(z2 − z1)Qm−1(z1, z2) + Vm(0, 0)·(
z2(z1 − 1)− Y (z1)(z1−1)(z2−z1)

Y (z1)−z1

))
,

2 This can also easily be seen by setting β = 0 or 1 in (4.2).

CHAPTER 4. TWO CLASSES 113

with

Qm(z1, z2) , Pm(z1, z2)− Pm(z1, Y (z1))

= Vm(z1, z2)− Vm(z1, Y (z1))− Vm(0, z2) + Vm(0, Y (z1)).
(4.6)

The last step is the calculation of Vm(0, 0), this constant is found
from the normalization condition. Since W (1, 1) = 1 for all β, it
follows that V0(1, 1) = 1 and Vm(1, 1) = 0 for all m > 0. Setting
z1 = z2 = 1 in (4.5) and using that Qm(1, 1) = 0 for all m ≥ 0, we
find that V0(0, 0) = 1 − λT and Vm(0, 0) = 0 for m > 0. We finally
arrive at the following relations for m > 0:

Vm(z1, z2) =
A(z1, z2)(z2 − z1)Qm−1(z1, z2)

z1(z2 −A(z1, z2))
(4.7)

and

V0(z1, z2) =
(1− λT)A(z1, z2)(z1 − 1)(z2 − Y (z1))

(z2 −A(z1, z2))(z1 − Y (z1))
. (4.8)

Hence starting from V0 in (4.8), every Vm can, in theory, be deter-
mined iteratively via (4.7) and (4.6).

The implicit function Y (z1)
We defined the function Y (z1) implicitly as Y (z1) = A(z1, Y (z1)), i.e. the zeros
for arbitrary z1 in the unit disk of z2−A(z1, z2). We show that Y (z1) is actually
the pgf of the stochastic variable y, which is defined as the number of class-1
arrivals during a sub-busy period initiated by a random customer in the system
with β = 0 (i.e. in a strict priority system with priority for class-2). This was
shown in [141] and we merely summarize here. A sub-busy period is initiated by
the arrival of a random customer, this customer is subsequently tagged. At the
beginning of the arrival slot of the tagged customer, we count x customers that
need to be served before the tagged customer. The sub-busy period ends when
the amount of customers that need to be served before the tagged customer is for
the first time less than x, i.e. x− 1.

If the tagged customer is of class-2, the sub-busy period is only 1 slot long.
If the tagged customer is of class-1 and in the first slot of this sub-busy period no
class-2 customers (having priority with β = 0) arrive, then none of the arrivals in
that slot will cut in line before the tagged customer. Subsequently, the amount of
customers needing service before the tagged customer decreases to x− 1 and the

sub-busy period ends. In that case y = a
(1)
1 , whereby we denote the number of

class-j arrivals in the k-th slot of the sub-busy period by a
(k)
j . If in the first slot

class-2 customers arrive, they need to be served before the tagged customer. The
amount of customers needing service before the tagged customer thus does not

decrease, it is x− 1 + a
(1)
2 and a

(1)
2 > 0. In fact every class-2 customer initiates a

new sub-busy period, each having the same distribution as the original sub-busy
period. For y we thus need to count the class-1 arrivals in the first slot of the

114 CHAPTER 4. TWO CLASSES

sub-busy period and add the class-1 arrivals in the newly begun sub-busy periods.
We thus write:

y = a
(1)
1 +

a
(1)
2∑
l=1

y
(1)
l , (4.9)

whereby we denoted the amount of class-1 arrivals in the sub-busy period initiated
by the l-th class-2 arrival in the first slot of the sub-busy period of the tagged

customer by y
(1)
l . Taking the z-transform of (4.9) and using the fact that (i)

each y
(1)
l is independent and identically distributed as y itself and (ii) y

(1)
l is

independent from a
(1)
j (j = 1, 2), we find

Y (z1) = A(z1, Y (z1)).

For β = 0, the second queue has strict priority over the first. The
pgf of the unfinished work in this case equals W (z1, z2) = V0(z1, z2)
as given in (4.8). This last expression is indeed the pgf in a discrete-
time priority queueing system with the first queue having low priority
(see [143]).

Subsequently, we calculate the performance measures of the sys-
tem:

w̄j(β) =
∂W (z1, z2)

∂zj

∣∣∣∣
z1=z2=1

=

∞∑
m=0

βm
∂Vm(z1, z2)

∂zj

∣∣∣∣
z1=z2=1

.

As w̄1(β) + w̄2(β) equals a constant w̄T , we find that for m > 0

∂Vm(z1, z2)

∂z1

∣∣∣∣
z1=z2=1

= − ∂Vm(z1, z2)

∂z2

∣∣∣∣
z1=z2=1

.

Consequently, we focus on just one of both, for instance, w̄2, as w̄1

can be calculated as w̄T − w̄2. Furthermore, if we note w̄2(β) =
E[w2] =

∑∞
m=0 E[w2]mβ

m, we write

E[w2]m =
∂Vm(z1, z2)

∂z2

∣∣∣∣
z1=z2=1

.

A first approximation constitutes the truncation of this power series

w̄2(β) ≈
M∑
m=0

E[w2]mβ
m.

Clearly, the larger M the better the approximation gets3. The ap-
proximation is good for β in the neighborhood of 0, the expansion

3The bigger M already is, the smaller the gain of adding an extra coefficient
is though.

CHAPTER 4. TWO CLASSES 115

point of the power series. Evidently, this is because the approxima-
tion matches the first M derivatives in β = 0.

Additionally, we recall that the problem is symmetric in β, as
noted in Section 1.3. We can thus reuse the expressions to calculate
the coefficients of a power series in β = 1. This is done by replacing
A(z1, z2) by A(z2, z1), i.e., sending class-1 customers to queue 2 and
vice versa. To subsequently calculate the mean class-2 unfinished
work, we need to use the formulas for queue 1. We note Vm with
A(z1, z2) replaced by A(z2, z1) as Ṽm and

E[w̃2]m =
∂Ṽm(z1, z2)

∂z1

∣∣∣∣∣
z1=z2=1

.

Then, we obtain

w̄2(β) =

∞∑
m=0

E[w̃2]m(1− β)m.

A truncation of this power series provides a good approximation in
the neighborhood of β = 1.

Obviously, our goal is to find a good approximation for the whole
domain β ∈ [0, 1]. An alternative for the truncated power series
(polynomials) are Padé approximants, which are rational functions.
We explain their definition and use in the next section.

4.3 Padé approximants

Padé approximants are rational functions of the form

[L/K](β) =

∑L
l=0 c1,lβ

l∑K
k=0 c2,kβ

k
. (4.10)

These have L+K + 2 parameters of which we fix one, c1,0 = 1, as a
normalization4. The remaining L+K+1 parameters need to be set to
make for a good approximation. In our case, we calculate them from
the coefficients of the power series, by requiring that the derivatives
of the Padé approximant in β = 0 and 1 equal the derivatives of the
power series of the performance measures in β = 0 and 1. Say, we
calculated both power series truncated at the M -th order coefficient,
then this results in 2(M+1) different functions (L = 0, . . . , 2M+1) of
which the [L/0] approximant represents a polynomial approximation.

4Otherwise you get an identical function by dividing every parameter by c1,0.

116 CHAPTER 4. TWO CLASSES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

β

[0/5]
[1/4]
[2/3]
[3/2]
[4/1]
[5/0]

Figure 4.1: Padé approximants for w̄1(β) for a binomial arrival pro-
cess with N = 16, α = 0.8 and λT = 0.9

The Padé approximants are exact in β = 0 and β = 1 and accurate
in their neighborhoods by design (matching the first M derivatives in
both points). We expect the Padé approximants to be less accurate
moving further away from the endpoints 0 and 1.

Some observations of the Padé approximants even indicate greater
challenges in using it reliably as an approximation. In Figure 4.1,
we show an example of the Padé approximants to illustrate these
observations. For the example, a two-dimensional binomial arrival
process is used with N = 16, α = 0.8 and λT = 0.9. The figure
shows the Padé approximants for w̄1 with the power series truncated
at M = 2.

The first observation is that, since Padé approximants are ratio-
nal functions, they can have singularities in the interval [0, 1]. This
could be a reason to stick with polynomials as these cannot have any
singularities, but our results show that at least one of the Padé ap-
proximants always leads to a better approximation. The difficulty is
to filter out the good approximations from the bad. For instance, the
[1/4] Padé approximant of w̄1(β) in Figure 4.1 has a pole for β = 0.8.
Obviously, the actual function w̄j(β) cannot have such poles as the
system is assumed to be stable for all β and is shown to be contin-
uous in Theorem 2.1. This means that we can, a priori, discard the
approximants which have poles in [0, 1].

A second observation is that some of the approximants are non-
monotone. An example can also be seen in Figure 4.1; the [0/5] Padé
approximant has a maximum. We however proved in Theorem 2.1

CHAPTER 4. TWO CLASSES 117

that w̄1(β) is monotonically decreasing and w̄2(β) is monotonically
increasing. We can thus also filter out these approximants by calcu-
lating the zeros of the first derivative: zeros between 0 and 1 indicate
a local extremum and therefore non-monotonicity.

Last but not least, we know from Corollary 2.1 that

w̄1(β) + w̄2(β) = w̄T . (4.11)

As mentioned before w̄T can be calculated as the mean unfinished
work of a single-class system, aggregating the two classes of customers
in one queue [32]. We, however, observe that calculating approxima-
tions for w̄1(β) and w̄2(β) independently does not sum to w̄T , and
in many cases is far off. This means we can double the amount of
available approximants by calculating w̄j(β) from w̄3−j(β) and w̄T ,
by using (4.11). For instance, if we calculate the M -th order ap-
proximation for W (z1, z2), we can calculate 2(M + 1) parameters for
w̄j(β), i.e. 2(M + 1) Padé approximants for w̄1(β) and 2(M + 1) ap-
proximants for w̄2(β). This leads to 4(M + 1) approximations for
w̄1(β), 2(M + 1) Padé approximants and 2(M + 1) calculated using
the approximants of w̄2(β), i.e. w̄T−w̄2(β). Most of these approxima-
tions are different except for both polynomial approximants, which
already satisfy (4.11) (this can easily be seen from the way they are
constructed). As an example, we have the 6 approximants for w̄1(β)
from Figure 4.1. By calculating the 6 Padé approximants for w̄2(β)
(from the same truncated power series for the joint pgf) and using
(4.11), we find another 6 approximants for w̄1(β) = w̄T − w̄2(β).
These are depicted in Figure 4.2.

After filtering the invalid solutions (non-monotonic functions, func-
tions with singularities both in [0, 1]), we end up with a set of approx-
imations for w̄j(β). The best approximation from this set depends
on the parameters of the studied system. When no simulation is
available (which is obviously the case when one wants to use the ap-
proximations in practice) it is consequently, not a priori, clear which
approximation performs best. Therefore, we propose as a heuristic
to aggregate the set of approximations by taking the average over the
set. By taking the average over this set of approximations, that all
have the same M derivatives in the endpoints, these derivatives in
the endpoints are retained in the resulting average. Taking all this
together, we get Algorithm 4.1.

It should be noted that the expressions obtained for the Padé ap-
proximants are symbolic and that they do not have to be recalculated
for each set of parameters. Filtering the approximations for singu-
larities and non-monotonicity should be done for each parameter set
as the appearance of these phenomena depends on the values for the

118 CHAPTER 4. TWO CLASSES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

β

[0/5]
[1/4]
[2/3]
[3/2]
[4/1]
[5/0]

Figure 4.2: w̄1(β) calculated as w̄T − w̄2(β) for a binomial arrival
process with N = 16, α = 0.8 and λT = 0.9, with w̄2(β) a Padé
approximant.

/* Aggregate queues and use single-class results */

1 w̄T = calc total unf work(arrival process);
/* Calculate the truncated power series for w̄j(β) to M-th

order */

2 w̄1 left = calc unf work(1, arrival process, M, β = 0);
3 w̄1 right = calc unf work(1, arrival process, M, β = 1);
4 w̄2 left = calc unf work(2, arrival process, M, β = 0);
5 w̄2 right = calc unf work(2, arrival process, M, β = 1);

/* Construct Padé approximants using the coefficients of the

power series */

6 list pade w̄1 = padé(w̄1 left,w̄1 right);
7 list pade w̄2 = padé(w̄2 left,w̄2 right);

/* Use (4.11) to construct extra approximations */

8 concatenate(list pade w̄1, w̄T -list pade w̄2);
/* Remove approximants with poles and non-monotonicities */

9 filter poles(list pade w̄1);
10 filter non monotone(list pade w̄1);

/* Average remaining approximants */

11 return average(list pade w̄1);

Algorithm 4.1: Filter and aggregate the Padé approximants
to get one master approximation.

CHAPTER 4. TWO CLASSES 119

parameters. We can thus use the approximation to do sensitivity
analysis on the parameters of the system without the need for large
amounts of computations (e.g. simulations).

4.4 Using the approximants for optimiza-
tion

In this section, we use the approximation from Algorithm 4.1 of the
previous section and apply it in an optimization setting. Specifically,
we study the minimization of the cost function

F (β, γ) = γ
(
d̄1(β)

)n
+ (1− γ)

(
d̄2(β)

)n
.

As mentioned in Chapter 2, for single slot service times we can write
the mean delay as a function of the mean unfinished work (which
equals the mean queue content for single slot service times) using Lit-

tle’s law, i.e., d̄j(β) =
w̄j(β)
λj

. Subsequently, we observe that F (β, γ)

is of the form of the objective function which was discussed in The-

orem 2.3, with gj(x) =
(
x
λj

)n
increasing and convex functions. The

theorem then stated that the minimum of F is reached at a β value
different from 0 or 1 when γ is in the interval]φ(0), φ(1)[. Further-
more, βopt(γ) is the inverse of φ(β), that equals for this particular
choice of F :

φ(β) =
λn1

(
w̄2(β)

)n−1

λn2

(
w̄1(β)

)n−1

+ λn1

(
w̄2(β)

)n−1 .

Taking the n-th derivative of φ(β), we see that only derivatives up
to the M -th of w̄j(β) appear in the resulting expression. As a con-
sequence, if we know the exact values of up to the M -th deriva-
tive of w̄j(β), we can also calculate the exact values of up to the
M -th derivative of φ(β). By using the chain rule and taking the
derivative of both sides of the equation φ−1(φ(β)) = β, we find
D(φ−1)(φ(β))D φ(β) = 1 and thus D(φ−1)(φ(β)) = (D φ(β))−1. We
can thus easily see that having up to the M -th derivative of φ in
β = 0 and 1 also gives us up to the M -th derivative of βopt = φ−1 in
φ(0) and φ(1).

For the cost function, we need approximations for both w̄1(β)
and w̄2(β). Our tests have shown that a better approximation for
φ(β) (and thus βopt(γ)) is found when calculating the approximant

120 CHAPTER 4. TWO CLASSES

for one of the queues and using (4.11) to calculate the approximant
for the complementing queue, as opposed to calculating the approx-
imants for both queues independently. Still there are two options to
construct an approximation of βopt(γ). The first one is to use w̄2(β)
constructed with Algorithm 4.1 and use that in φ(β); after inver-
sion we then obtain an approximation for βopt(γ). A second option
is to use each w̄2(β) approximant in the filtered list constructed in
line 10 of Algorithm 4.1 and construct an approximation for φ(β).
Subsequently, the list of φ(β) is averaged and afterwards inverted
to obtain an approximation for βopt(γ). We summarized this in Al-
gorithm 4.2. Only in very specific cases both construction methods
lead to the same approximation. We have found that in general the
second method provides better results as we will demonstrate at the
end of this section.

/* Construct a list of filtered Padé approximants cf. lines

1-10 from Algorithm 4.1 */

1 list pade w̄1 = filtered pade list(arrival process,M);
/* Construct a list of φ(β) approximants based on the Padé

approximants */

2 list φ = phi(list pade w̄1,w̄T);
/* Average the φ(β) approximants */

3 avg φ = average(list φ);
/* Return the inverse of the averaged approximant for φ(β) */

4 return invert(avg φ);

Algorithm 4.2: Approximation for βopt(γ) constructed using
the Padé approximants from Algorithm 4.1.

4.4.1 Influence of the arrival process

First, we study the influence of the arrival process on the approxi-
mation of βopt(γ). To this end, we fix n = 2 in the cost function
and study two arrival processes for several configurations. The first
arrival process is a two-dimensional binomial arrival process as speci-
fied in Section 1.6. We plotted some results for various parameters of
the arrival process in Figure 4.3. The leftmost figures display the per-
formance of increasing orders (M) of the approximation for βopt(γ)
by plotting them together with results from simulation (obtained us-
ing the specifics detailed in Section 1.5). In the remainder of this
section, we will denote the real optimal β as βopt, this value is ob-
tained by simulation. Approximations for the optimal β are denoted
by β̃opt, these values are obtained by using Algorithm 4.2. In the
center figures, we have plotted the value of the cost function for βopt

CHAPTER 4. TWO CLASSES 121

as a function of γ with a solid line. The other curves are the real
costs that would be obtained when using the suboptimal β̃opt value
found from the respective approximations. The graphs on the right
show the fractional difference between the approximation curves and
the simulated curve in the center figures. This fractional difference
is calculated as ∣∣∣F (β̃opt)− F (βopt)

∣∣∣
F (βopt)

.

As can be seen from the figures, increasing the order of the ap-
proximation M always leads to a better approximation of the real
results. Specifically, we see that the approximation at the endpoints
(βopt equals 0 or 1) is progressively better. This could be expected
by the way we constructed the approximation and the properties of
the Power Series Approximation. It was already shown analytically
and we now visually confirm that increasing the order matches more
derivatives of βopt(γ) at the endpoints. The required extra compu-
tational effort thus pays off.

We also see that misprediction of βopt does not lead to the same
level of misprediction of the cost. For instance, we see from the left
graph of Figure 4.3a that the maximum misprediction of the optimal
weight by the first order approximation is 33% at γ = 0.7. Looking at
the right graph, we however see that the misprediction of the optimal
cost is about 3%. We see a maximum misprediction of the optimal
cost of 6.5% for γ = 0.85 where the error on βopt is 18%. We conclude
that even with a far from optimal weight value we can get close to
the optimal cost.

One other conclusion is that a higher load on the system reduces
the accuracy of the approximation. The error (with respect to the
real cost) for a load of 90% is at its worst about 1% using the third
order approximation, but for a load of 70% the approximation is
nearly perfect. Even when only the first order approximation is used
the fractional difference is less than 0.2%. Using the third order
approximation, we got an error of 30% for a load of 99% and for a
load of 50% we had a maximum error of 0.05%. This follows from
the fact that with a lower load there is less queueing, this results in
lower values for w̄j(β). As a consequence the difference between φ(0)
and φ(1) is smaller, leaving less room (and thus error) for possible
functions in between.

The second arrival process we used to analyze the performance
of the approximation applied to optimization (still for n = 2), is a

122 CHAPTER 4. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(a) n = 2, N = 16, α = 0.8, λT = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(b) n = 2, N = 16, α = 0.5, λT = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(c) n = 2, N = 16, α = 0.8, λT = 0.7

Figure 4.3: βopt(γ) (left), real F when using approximation (center),
fractional difference (right) for several parameter combinations.

CHAPTER 4. TWO CLASSES 123

bivariate Bernoulli process with pgf

A(z1, z2) =1− λ1 − λ2 + ρ+ (λ1 − ρ)z1 + (λ2 − ρ)z2 + ρz1z2.

From this pgf, we see that λj is again the arrival rate of class j in
accordance with previous definitions. ρ is the probability that packets
from both classes arrive in the same slot. No more than two packets
can arrive in the same slot using this arrival process. If ρ = 0 then
there is at most one arrival per slot; as a consequence this packet can
be served in the slot thereafter and no backlog occurs.

We always used the third order approximation for tests with the
bivariate Bernoulli arrival process. Figure 4.4 shows the mean ab-
solute error on βopt of the approximation. This mean is calculated
by sampling over γ. For each γ, we calculate the absolute difference
between βopt from simulation and β̃opt. Subsequently, the mean is
calculated over all samples. Visually it is the mean vertical distance
between the simulated curve and an approximated curve for βopt in
the left graph of Figure 4.3. The mean fractional error on F when
β̃opt is used, is shown in Figure 4.5. Visually this is the mean value
for one of the curves in the rightmost graph in Figure 4.3, obtained
by sampling. We did this experiment for α , λ1

λT
= 0.2 and α = 0.5,

whereby ρ was kept equal to λ1

2 . The same conclusions as in the
previous paragraph can be drawn. A higher load does not increase
the misprediction on βopt whereas it does increase the relative in-
duced error on F . For one dataseries, we also included the standard
deviation over the error samples as error bars in the graph. As the
load increases so does the standard deviation. We only show error
bars for one series, as to not overload the figure, but the same trend
is seen for the other series. This all proves that the approximation
is less accurate for higher loads, not only on average, there is also a
higher variability on the error.

To test the robustness of the approximation, we ran a more in-
volved simulation. The bivariate Bernoulli arrival process has three
parameters (λ1, λ2, ρ). We ran 108 separate simulations taking sam-
ples out of the possible parameter space for the arrival process. Our
program chose λT uniformly in [0.3, 0.99] (excluding very low loads),
subsequently α in [0.01, 0.99] and lastly ρ in]0,min(λ1, λ2)] (exclud-
ing 0 as there is never any backlog in that situation). From these
parameters the conversion to the parameters λ1, λ2, ρ is evident.

For each sample point, we also calculated the minimum of F using
the third order approximation constructed with Algorithm 4.2 (i.e.
with M = 3). Subsequently, the mean absolute error and standard
deviation on the difference between βopt and β̃opt were calculated.

124 CHAPTER 4. TWO CLASSES

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.4 0.5 0.6 0.7 0.8 0.9 1

λΤ

α=0.2
0.5

Figure 4.4: Mean absolute error on βopt for bivariate Bernoulli arrival
process with increasing load.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.4 0.5 0.6 0.7 0.8 0.9 1

λΤ

α=0.2
0.5

Figure 4.5: Mean fractional error on F by using approximated βopt

for bivariate Bernoulli arrival process with increasing load.

CHAPTER 4. TWO CLASSES 125

Table 4.1: Performance of the approximation over 108 random sam-
ples for the parameters of the second arrival process.

Over all samples
Mean STDEV

O
ve

r
al

l
γ ∣∣∣β̃opt − βopt

∣∣∣ Mean 0.085 0.025
STDEV 0.053 0.019∣∣∣F (β̃opt)−F (βopt)

∣∣∣
F (βopt)

Mean 0.89% 1.12%
STDEV 1.77% 2.67%

Secondly, we calculated the fractional difference between the value of
the cost function at βopt and the value of the cost function at β̃opt

from the approximation. Lastly, we calculated the mean and stan-
dard deviation over all samples for these values, they are displayed
in Table 4.1. For instance, the top left cell 0.085 is the mean (col-
umn) over all 108 samples of the means (row) per sample over γ; the
top right cell 0.025 is the standard deviation (column) over the 108
samples of the means (row) per sample over γ. We can see that the
approximation performs well with a mean fractional error on F of
less than 1% and a mean standard deviation of less than 2%.

Each of the 108 simulations took about 3 hours on a modern
processor (using a single core). The calculations for the Padé ap-
proximants are done in less than 5 minutes and can be reused for
each sample (lines 1-8 of Algorithm 4.1). In fact, it can be reused
by everyone for all possible parameters and arrival processes, so it
really only needs to be calculated once. Filtering the approxima-
tions (lines 9-10 of Algorithm 4.1) and subsequently averaging and
inverting (Algorithm 4.2) needs to be done for each sample, but this
is done instantly. The time gains from using the approximation are
self-evident.

4.4.2 Influence of the cost function

Now we look at the influence of the cost function for a given ar-
rival process; specifically we vary the exponent n in the cost function
F (β, γ) specified earlier. With n > 1, we keep the g functions (in the
sense of Theorem 2.3) convex as to yield optimal weights differing
from 0 or 1. These results are given in Figure 4.6 in the same format
as in Figure 4.3.

We see that with higher powers of the average delay (i.e.: higher
n) the amount of misprediction of βopt stays roughly the same, but
the fractional cost difference increases. This can be explained by

126 CHAPTER 4. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(a) n = 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(b) n = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(c) n = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 5e+14

 1e+15

 1.5e+15

 2e+15

 2.5e+15

 3e+15

 3.5e+15

 4e+15

 0 0.2 0.4 0.6 0.8 1

γ

simulation
1st order

2nd order
3th order

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1

γ

1st order
2nd order
3th order

(d) n = 20

Figure 4.6: βopt(γ) (left), real F when using approximation (center),
fractional difference (right) for several cost functions. The arrival
process uses the following parameters: N = 16, α = 0.8, λT = 0.9.

CHAPTER 4. TWO CLASSES 127

making the following reasoning. Take two different cost functions one
(F1) with a low power, say n = 2, and one (F2) using a high power,
for instance n = 20. If the approximations for both cost functions
indicate the same βopt for a given γ in the cost function, both will
have used the same Padé approximants for w̄j(β). Consequently, they
will both have the same misprediction on w̄j(β). Leading to roughly
the same misprediction on βopt. However, in F2 this misprediction
on w̄j(β) will get blown up because of raising the power, leading to
a higher fractional difference.

The higher n, the more the βopt(γ) function approaches a constant
function for γ ∈]0, 1[, as explained in Section 2.2.2. This already
makes it harder to approximate the real βopt using the method we
presented here (since we use continuous rational functions). For this
class of cost functions, we should develop other techniques to achieve
reasonable approximations. One can also wonder how relevant these
kinds of cost functions with higher n are in practice.

For the first order approximation of βopt(γ), we can see a vertical
jump in the graph which becomes more outspoken for higher n. A
clear example hereof is the leftmost graph in Figure 4.6d at γ = 0.7.
This is a consequence of the averaging over the set of φ(β) approx-
imations, whereas the individual approximations in this set do not
present this jump. We zoom in on the example of the first order
approximation in Figure 4.6d. φ(β) approaches a step function with
a very steep gradient at β = 0.7. Before averaging we have three
clusters of approximations; each cluster approaches a step function
with the step at another value for β. We see clusters with steps at
β equal to 0.4, 0.65 and 0.72. Taking the average results in multiple
steps at each of these values, where the height of the step is largely
determined by the number of approximations in the cluster. Subse-
quently calculating the inverse, gives us (quasi-)horizontal parts in
the graph at 0.4, 0.65 and 0.72 and the resulting jump at γ = 0.7 and
γ = 0.85.

The other way to construct an approximation for βopt(γ) by using
the average of the Padé approximants of w̄j(β) in φ(β) and inverting
that, is shown in Figure 4.7. We see that this alternative method does
not present this jump. For the exotic case of n = 20 it even performs
better, or at least more consistently bad. Where our proposed method
performs worse for most γ it performs much better in a narrow range.

However, overall our tests have shown that this alternative method
leads to less accurate results as is indicated in Figure 4.8. We see that
the method proposed in Algorithm 4.2 performs about 3% better
at the maximum misprediction point using the first order approx-
imation. For the second order approximation this reduces to 0.5%.

128 CHAPTER 4. TWO CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
alternative method

proposed method

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

γ

alternative method
proposed method

Figure 4.7: Comparison of first order approximations of two methods:
βopt(γ) (left), fractional cost difference (right) for n = 20. The arrival
process uses the following parameters: N = 16, α = 0.8, λT = 0.9.

Lastly, for the third order approximation the difference between both
methods further decreases, leading to quasi-identical results. For
other parameters of the arrival process or other cost functions, we
also see that both methods achieve the same results for the third
order approximation. As this jump only presents itself when using
cost functions that are not used in practice, we suggest to use the
method we proposed in Algorithm 4.2. The exotic case for n = 20
is only mentioned here for completeness and a clearer illustration of
this jump phenomenon.

4.5 The major challenge with the power
series approximation

In the previous section, we constructed approximations based on
truncated power series with maximum M = 3, i.e. with only 4 coeffi-
cients. This is because the actual calculation of the power series is far
from straightforward. The reason for this is that l’Hôpital’s rule has
to be used multiple times, which leads to expressions for Vm(z1, z2)
that become more complex with m. Even worse, when we want to
calculate the coefficients of the mean; the generating functions have
to be differentiated in 1 which again requires multiple applications of
l’Hôpital’s rule. This was already mentioned in [145]. In this section,
we elaborate on the problem and indicate some techniques to get the
maximum out of the power series approximation.

CHAPTER 4. TWO CLASSES 129

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
alternative method

proposed method

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1

γ

alternative method
proposed method

(a) First order approximation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

γ

simulation
alternative method

proposed method

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1

γ

alternative method
proposed method

(b) Second order approximation

Figure 4.8: Comparison of two methods: βopt(γ) (left), fractional cost
difference (right) for n = 2. The arrival process uses the following
parameters: N = 16, α = 0.8, λT = 0.9.

130 CHAPTER 4. TWO CLASSES

In the calculation ofQm(z1, z2) (m > 1) using (4.6), Vm(z1, Y (z1))
and Vm(0, z2) each require the use of l’Hôpital’s rule. Furthermore,
for calculating the coefficients of the mean, the Vm(z1, z2) functions
need to be differentiated and evaluated in z1 = z2 = 1. This again
requires the use of l’Hôpital’s rule. As a result of all these differen-
tiations and the recursive nature of the Vm(z1, z2) expressions, the
intermediate results in the calculations of the coefficients quickly be-
come very large and hog up all computer memory. This made it
impossible for us to calculate more than 4 coefficients in the power
series for an unspecified generic arrival process.

To lessen the problem associated with l’Hôpital’s rule, we did two
modifications. The first one is to not first calculate Vm(z1, z2) recur-
sively as a function of only the arrival process. In concreto, to calcu-
late E[w1]3 we need the derivative of V3 with respect to z1 and evalu-
ate it in z1 = z2 = 1. Therefore, we do this derivation and evaluation
on the expression of V3(z1, z2) as a function of V2(z1, z2). This gives
us an expression with certain derivatives of V2; we calculate these sub-
sequently as a function of V1 and so on. The advantage is that these
are all smaller expressions, which keeps the application of l’Hôpital’s
rule more tractable. The disadvantage is that we have lots of expres-

sions, for instance, for E[w1]3 we require ∂3V0(z1,z2)
∂z21∂z2

∣∣∣
z1=0,z2=Y (0)

and

21 other expressions. Moreover, the amount of l’Hôpital’s rule appli-
cations does not change and thus still rises quickly5. However, reuse
of some of the intermediate expressions is possible when you need to
calculate up to a certain coefficient, for instance, some expressions
used in the calculation of E[w1]2 can be reused for the calculation of
E[w1]3. To illustrate the problem, we show in Table 4.2 the number
of evaluations of l’Hôpital’s rule that we needed for the evaluation
of each of the coefficients. This modification mainly makes it more
tractable to implement an automated procedure, and (slightly) delays
our l’Hôpital application limit.

The second modification relates to the evaluation. With our first
modification, we now no longer have an analytical formula for E[w1]m
as a function of the parameters of the arrival process only. We thus
lose the possibility for an analytical sensitivity analysis. As such,
the second modification is to directly use numerical values for the
parameters of the arrival process. The result is that, the interme-
diate expressions are much smaller in memory as we now only have
numerical coefficients for the Vm terms. Whereas if we only do the
first modification we still have complicated (and increasingly larger
in memory) expressions for the coefficients.

5On the order of m4.

CHAPTER 4. TWO CLASSES 131

Coefficient #l’Hôpital Extra

E[w1]0 4 4
E[w1]1 5 5
E[w1]2 10 7
E[w1]3 48 40

Table 4.2: Required amount of applications of l’Hôpital’s rule to ob-
tain the desired coefficient (middle). Required extra amount of ap-
plications of l’Hôpital’s rule to obtain up to the desired coefficient
(right).

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

5-th order
4-th order
3-th order
simulation

Figure 4.9: Truncated power series approximations for w̄1(β) in β =
0 and β = 1. The arrival process is a two-dimensional binomial
distribution with N = 16, λT = 0.9, α1 = 0.8.

Using these techniques, we implemented a procedure to automat-
ically calculate the numerical coefficients for an arrival process with
numerically specified parameters. With this procedure we were able
to calculate 5 coefficients. In Figure 4.9, we show the power series re-
sulting from these extra coefficients. In Figure 4.10, we show the aver-
age of the valid Padé approximants constructed using Algorithm 4.1.
We see that extra coefficients indeed provide better approximations.

Undoubtedly, there are still some tweaks left to calculate even
more coefficients, for instance, developing a better implementation
in Maple, using a new Maple version or getting rid of Maple all to-
gether. A revolution in computer memory technology, so that more

132 CHAPTER 4. TWO CLASSES

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

3-th order
4-th order
5-th order
simulation

Figure 4.10: Average of valid Padé approximants for w̄1(β) calcu-
lated from the truncated power series approximations in β = 0 and
β = 1 using Algorithm 4.1. The arrival process is a two-dimensional
binomial distribution with N = 16, λT = 0.9, α1 = 0.8.

memory is available might also provide improvements6. Clearly the
main problem here is inherent to the method that implies the use of
l’Hôpital’s rule. In Chapter 6, we develop a new method to calculate
a power series approximation of the mean unfinished work, without
using generating functions and thus circumventing the problems as-
sociated with l’Hôpital’s rule.

6We now used machines with 64GB RAM. Enabling a SWAP memory of
200GB on an SSD harddisk really put our patience to the test, but did not
provide extra coefficients.

“Denk na, voor je iets doet.“

— Paul Pattyn

5
Three Classes

5.1 Introduction

In this chapter, the aim is to extend the power series approximation
approach for two-class GPS queues (Section 4.2) to a three-class Hier-
archical GPS queue as introduced in Section 3.1. This H-GPS model
is illustrated in Figure 5.1. In each slot, assuming all queues are back-
logged, the server first decides on the first hierarchical level to either
serve queue 1 with probability β1, or delegate service to hierarchical
level 2 with probability 1−β1. If service is delegated to level 2, queue
2 is served with probability β2 and queue 3 is served with probability
1− β2. If queue 1 is empty, service is by default delegated to level 2.
Conversely, if queues 2 and 3 are empty queue 1 is served. If service
is delegated to level 2 and one of the queues on that level is empty,
the other queue is served. Furthermore, we assume that the arrival
process is independent and identically distributed from slot to slot
and that each customer requires a single slot of service.

This model with three classes leads to a random walk on the three-
dimensional lattice in the positive octant, where the method of [41]
is no longer applicable. Furthermore, to the best of our knowledge,
analytical results for GPS models with three classes have not been
obtained in the literature before.

We start our study for the special case β1 = 0 in the next section.
In this special case, classes 2 and 3 are served using GPS with pa-

133

134 CHAPTER 5. THREE CLASSES

Level 1Level 2

Figure 5.1: Discrete-time Hierarchical Generalized Processor Sharing

rameter β2 and class 1 has lower priority than the other two classes.
The dynamics of this model are quite simple: classes 2 and 3 are
uninfluenced by class 1 and use two-class GPS for which we already
have a power series approximation. Class 1 is just a regular lowest
priority class. We use this special case as a stepping stone to the con-
struction of a power series approximation centered around β1 = 0 for
the general model of Figure 5.1, in Section 5.3. Next, in Section 5.4,
we study the special case for β1 = 1. In this special case, class 1
has highest priority and the remaining capacity is shared using GPS
among classes 2 and 3. Clearly, this special case is more complex
than the special case β1 = 0, as class 1 now influences the dynamics
of the GPS-classes 2 and 3. As this is also a very interesting special
case from a practical point of view, we conducted a thorough study
of the influence of these high-priority customers on the remaining
customers using numerical examples. With the special case β1 = 1
in mind, we likewise construct a power series approximation centered
around β1 = 1 for the general model, in Section 5.5. Subsequently, in
Section 5.6, we summarize the different power series for the general
model that we constructed in this chapter. Lastly, in Section 5.7, we
study some numerical examples that use the different power series.

5.2 GPS with an extra low-priority class

If we add an extra low-priority class to the two-class GPS model, we
get the model in Figure 5.2. This corresponds to the special case
β1 = 0 in the three-class H-GPS model from Figure 5.1. In this
case, queue 1 has low priority and is only served when both queues
2 and 3 are empty. In all other cases, the service of queues 2 and 3

CHAPTER 5. THREE CLASSES 135

Figure 5.2: Special case: β1 = 0.

is scheduled using two-class GPS with parameter β2.
We define the joint pgf of the steady-state unfinished work prob-

abilities of the three customer classes W (z1, z2, z3) = E[zw1
1 zw2

2 zw3
3].

Subsequently, we expand this pgf as a power series in β2

W (z1, z2, z3) =

∞∑
m=0

Vm(z1, z2, z3)βm2 .

For β2 = 0, we find W (z1, z2, z3)|β2=0 = V0(z1, z2, z3). This pgf
should correspond to that of the strict priority case (3 > 2 > 1),
which can be found from [144] and is written as:

V0(z1,z2, z3)

=
(1− λT)A(z1, z2, z3)(z1 − 1)(z2 − Y1(z1))(z3 − Y2(z1, z2))

(z1 − Y1(z1))(z2 − Y2(z1, z2))(z3 −A(z1, z2, z3))
,

whereby the functions Y1 and Y2 are implicitly defined as Y1(z1) =
A(z1, Y1(z1), Y1(z1)) and Y2(z1, z2) = A(z1, z2, Y2(z1, z2)). In the
next section, we describe the origin and significance of these implicit
functions in detail.

The coefficients Vm(z1, z2, z3) for m > 0 capture the GPS dynam-
ics between classes 2 and 3. We can thus use the results from the
power series for two-class GPS. We find for m > 0:

Vm(z1, z2, z3) =
A(z1, z2, z3)(z3 − z2)Qm−1(z1, z2, z3)

z2(z3 −A(z1, z2, z3))
,

where we define Qm(z1, z2, z3) , Vm(z1, z2, z3)−Vm(z1, z2, Y2(z1, z2))
− Vm(z1, 0, z3) + Vm(z1, 0, Y2(z1, z2)).

Analogously as for the two-class case, we can complement this
power series centered around β2 = 0 with a power series centered
around β2 = 1 by using the symmetry between classes 2 and 3.
In concreto, W (z1, z3, z2) =

∑∞
m=0 Ṽm(z1, z2, z3)(1 − β2)m whereby

136 CHAPTER 5. THREE CLASSES

the expressions for Ṽm are obtained by replacing A(z1, z2, z3) with
A(z1, z3, z2), i.e. sending class-2 customers to queue 3 and vice versa.
Note that in this expression z3 (z2) has now taken the role of the for-
mal variable of the z-transform of the steady state unfinished work
of class 2 (class 3), i.e. w2 (w3).

This special case could serve as a model for systems that share
bandwidth among two traffic classes, while also offering a best-effort
kind of service that just uses leftover bandwidth. This low-priority
class could for instance be used for maintenance data, back-ups, etc.
One specific example is as a model for cognitive radio which is ex-
plicitly designed to employ unused bandwidth [54,81,85,113].

We skip the derivation of the mean values of the unfinished work
in the queues in this section. The calculation of the mean value for
class 2 or 3, is already possible from the results for the two-class
system by ignoring class 1. The mean value for class 1 is calculated
as the mean for a low-priority class by considering the aggregation of
class 2 and 3 as a single high-priority class.

5.3 Power series approximation for H-GPS
centered around β1 = 0

5.3.1 Introducing the power series

In this section, we study the general model from Figure 5.1 for general
β1. In the previous section, we showed that a power series approxima-
tion for the special case β1 = 0 is possible from the already obtained
results. Now, we want to capture the influence of β1 by constructing
a power series centered around β1 = 0. This construction is not that
straightforward, that is why we start from the system equations. For
ease of reference, we repeat them first.

• if wk = 0

wk+1 = ak

• if wi,k > 0; wj,k = 0 for all j ∈ {1, 2, 3} \ {i}

wi,k+1 = wi,k − 1 + ai,k

wj,k+1 = aj,k

• if w1,k = 0; w2,k, w3,k > 0

wk+1 = wk − (0, 1, 0) + ak w.p. β2

wk+1 = wk − (0, 0, 1) + ak w.p. 1− β2

CHAPTER 5. THREE CLASSES 137

• if w2,k = 0; w1,k, w3,k > 0

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 0, 1) + ak w.p. 1− β1

• if w3,k = 0; w1,k, w2,k > 0

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 1, 0) + ak w.p. 1− β1

• if wj,k > 0 with j = {1, 2, 3}

wk+1 = wk − (1, 0, 0) + ak w.p. β1

wk+1 = wk − (0, 1, 0) + ak w.p. (1− β1)β2

wk+1 = wk − (0, 0, 1) + ak w.p. (1− β1)(1− β2)

With Wk(z1, z2, z3) = E[z
w1,k

1 z
w2,k

2 z
w3,k

3] defined as the joint pgf
of the unfinished work of the three classes, we transform the system
equations to the following functional equation of this pgf:

Wk+1(z1, z2, z3) = A(z1, z2, z3)· (5.1)

Wk(0, 0, 0) + 1
z1

(
Wk(z1, 0, 0)−Wk(0, 0, 0)

)
+ 1
z2

(
Wk(0, z2, 0)−Wk(0, 0, 0)

)
+ 1
z3

(
Wk(0, 0, z3)−Wk(0, 0, 0)

)
+
(
β2
z2

+ 1−β2
z3

)(
Wk(0, z2, z3)−Wk(0, 0, z3)−Wk(0, z2, 0) +Wk(0, 0, 0)

)
+
(
β1
z1

+ 1−β1
z2

)(
Wk(z1, z2, 0)−Wk(z1, 0, 0)−Wk(0, z2, 0) +Wk(0, 0, 0)

)
+
(
β1
z1

+ 1−β1
z3

)(
Wk(z1, 0, z3)−Wk(z1, 0, 0)−Wk(0, 0, z3) +Wk(0, 0, 0)

)
+
(
β1
z1

+
(1−β1)β2

z2
+

(1−β1)(1−β2)
z3

)
·(

Wk(z1, z2, z3)−Wk(0, z2, z3)−Wk(z1, 0, z3)−Wk(z1, z2, 0)
+Wk(0, 0, z3) +Wk(0, z2, 0) +Wk(z1, 0, 0)−Wk(0, 0, 0)

)


.

By letting k → ∞ in (5.1) and with the stability condition λT <
1 fulfilled, we find a functional equation for the steady-state pgf
W (z1, z2, z3) = limk→∞Wk(z1, z2, z3) = limk→∞Wk+1(z1, z2, z3). By
rearranging terms, we find:

138 CHAPTER 5. THREE CLASSES

W (z1, z2, z3)

(
z1z2z3 −A(z1, z2, z3)

(
z1z2 + β1z2(z3 − z1)
+(1 − β1)β2z1(z3 − z2)

))
=A(z1, z2, z3)· (5.2)

β1 (z2(z1 − z3) + β2z1(z3 − z2)))W (0, z2, z3)
+(1 − β1)β2z1(z2 − z3)W (z1, 0, z3)
+(1 − β1)(1 − β2)z1(z3 − z2)W (z1, z2, 0)
+(1 − β1)(z3(z2 − z1) + β2z1(z3 − z2))W (z1, 0, 0)
+β1(1 − β2)z1(z3 − z2)W (0, z2, 0)
+β1β2z1(z2 − z3)W (0, 0, z3)

+
(
z2z3(z1 − 1) + β1β2z1(z3 − z2) + β1z3(z2 − z1)

)
W (0, 0, 0)


.

Instead of the three boundary functions for two-class GPS, we now
need to eliminate seven boundary functions W (0, z2, z3), W (z1, 0, z3),
W (z1, z2, 0), W (z1, 0, 0), W (0, z2, 0), W (0, 0, z3), W (0, 0, 0). We ob-
serve that W (0, z2, z3), W (0, z2, 0) and W (0, 0, z3) only appear with
coefficients with a factor β1. Analogously as in the two-class case we
therefore introduce a power series in β1.

By assuming W (z1, z2, z3) is an analytic function of β1 in a neigh-
borhood of 0, we write W (z1, z2, z3) =

∑∞
m=0 V̆m(z1, z2, z3)βm1 as its

power series expansion in β1 for all z1, z2 and z3 in the complex unit
disk. We substitute this power series in (5.2) and equate coefficients
of corresponding powers of β1. The result is the following functional
equation for V̆m, for m ≥ 0:

V̆m(z1, z2, z3)z1
(
z2z3 −A(z1, z2, z3)

(
z2 − β2(z3 − z2)

))
(5.3)

+A(z1, z2, z3)


z1β2(z3 − z2)(V̆m(z1, 0, z3)− V̆m(z1, 0, 0))

−z1(1− β2)(z3 − z2)V̆m(z1, z2, 0)

−z3(z2 − z1)V̆m(z1, 0, 0)

−z2z3(z1 − 1)V̆m(0, 0, 0)



=A(z1, z2, z3)


z1β2(z3 − z2)

 −V̆m−1(z1, z2, z3) + V̆m−1(0, z2, z3)

+V̆m−1(z1, 0, z3)− V̆m−1(z1, 0, 0)

−V̆m−1(0, 0, z3) + V̆m−1(0, 0, 0)


+z1(1− β2)(z3 − z2)(V̆m−1(0, z2, 0)− V̆m−1(z1, z2, 0))

+z2(z3 − z1)(V̆m−1(z1, z2, z3)− V̆m−1(0, z2, z3))

+z3(z2 − z1)(V̆m−1(0, 0, 0)− V̆m−1(z1, 0, 0))

 ,

whereby we define V̆−1 , 0. We assume that for a certain fixed m,
V̆m−1(z1, z2, z3) is known and we want to find V̆m(z1, z2, z3). Then
we have 4 unknowns left to eliminate: V̆m(z1, 0, z3), V̆m(z1, z2, 0),
V̆m(z1, 0, 0) and V̆m(0, 0, 0). Noting that some have a factor β2 and
others do not, we can reiterate our power series mechanism.

CHAPTER 5. THREE CLASSES 139

By assuming V̆m(z1, z2, z3) is an analytic function of β2 in a neigh-
borhood of 0, we write V̆m(z1, z2, z3) =

∑∞
n=0 Vm,n(z1, z2, z3)βn2 as

its power series expansion in β2 for all z1, z2 and z3 in the unit
disk. Observe that we have actually expanded W (z1, z2, z3) as a two-
dimensional power series

∑∞
n=0

∑∞
m=0 Vm,n(z1, z2, z3)βm1 β

n
2 of (β1, β2)

about the point (0, 0). Subsequently, we substitute our power series
for V̆m in (5.3) and equate coefficients of corresponding powers of β2.
We then obtain a functional equation for Vm,n, for m,n ≥ 0:

z1z2(z3 −A(z1, z2, z3))Vm,n(z1, z2, z3) (5.4)

− z1(z3 − z2)A(z1, z2, z3)Vm,n(z1, z2, 0)

− z3(z2 − z1)A(z1, z2, z3)Vm,n(z1, 0, 0)

− z2z3(z1 − 1)A(z1, z2, z3)Vm,n(0, 0, 0)

=A(z1, z2, z3)·

z2(z3 − z1)
(
Vm−1,n(z1, z2, z3)− Vm−1,n(0, z2, z3)

)

+z1(z3 − z2)



Vm,n−1(z1, z2, z3)− Vm−1,n−1(z1, z2, z3)
+Vm−1,n−1(0, z2, z3)− Vm,n−1(z1, 0, z3)
+Vm−1,n−1(z1, 0, z3)− Vm−1,n−1(0, 0, z3)
−Vm,n−1(z1, z2, 0) + Vm−1,n−1(z1, z2, 0)
+Vm,n−1(z1, 0, 0)− Vm−1,n−1(z1, 0, 0)
+Vm−1,n(0, z2, 0)− Vm−1,n−1(0, z2, 0)
−Vm−1,n(z1, z2, 0) + Vm−1,n−1(0, 0, 0)


+z3(z2 − z1)

(
− Vm−1,n(z1, 0, 0) + Vm−1,n(0, 0, 0)

)


,A(z1, z2, z3)

 z2(z3 − z1)P
(1)
m,n(z1, z2, z3)

+z1(z3 − z2)P
(2)
m,n(z1, z2, z3)

+z3(z2 − z1)P
(3)
m,n(z1)

 ,

whereby we define Vm,n = 0 for m or n < 0 and in the last line we

define P
(1)
m,n(z1, z2, z3), P

(2)
m,n(z1, z2, z3) and P

(3)
m,n(z1) as short for the

expression in brackets in the three terms on the previous line. As-
suming for fixed m,n Vm′,n′(z1, z2, z3) with m′+n′ < m+n is known,
then we are left with determining Vm,n(z1, z2, 0), Vm,n(z1, 0, 0) and
Vm,n(0, 0, 0) to fully specify Vm,n(z1, z2, z3).

By using Rouché’s theorem (see next section), we find that z3 −
A(z1, z2, z3) has one zero in the unit disk of z3 for arbitrary |z1| < 1
and |z2| < 1. We denote this zero by Y2(z1, z2), which is thus defined
by the implicit definition: Y2(z1, z2) = A(z1, z2, Y2(z1, z2)). In fact,
as for the two-class case, we will again show that this is a joint pgf

140 CHAPTER 5. THREE CLASSES

of random variables. Setting z3 = Y2(z1, z2) in (5.4), we find

−z1(Y2(z1, z2)− z2)Vm,n(z1, z2, 0) (5.5)

−Y2(z1, z2)(z2 − z1)Vm,n(z1, 0, 0)

−z2Y2(z1, z2)(z1 − 1)Vm,n(0, 0, 0)

=

 z2(Y2(z1, z2)− z1)P
(1)
m,n(z1, z2, Y2(z1, z2))

+z1(Y2(z1, z2)− z2)P
(2)
m,n(z1, z2, Y2(z1, z2))

+Y2(z1, z2)(z2 − z1)P
(3)
m,n(z1)

 .

Once again using Rouché’s theorem, we find that Y2(z1, z2)− z2 has
one zero in the unit disk of z2 for arbitrary |z1| < 1. We denote this
zero by Y1(z1); it is defined in the unit disk as Y1(z1) = Y2(z1, Y1(z1))
and |Y1(z1)| < 1. Setting z2 = Y1(z1) in (5.5), we find

−(Y1(z1)− z1)Vm,n(z1, 0, 0)− Y1(z1)(z1 − 1)Vm,n(0, 0, 0) (5.6)

= (Y1(z1)− z1)(P (1)
m,n(z1, Y1(z1), Y1(z1)) + P (3)

m,n(z1)).

Lastly, we argue that W (0, 0, 0) equals Pr[wT = w1 + w2 + w3 = 0],
i.e., the probability that the complete system is empty, which we know
is only related to the arrival process and not to the scheduling (since
it is work-conserving). As such, W (0, 0, 0) equals 1 − λT and does
not depend on β1 or β2. Since W (0, 0, 0) =

∑∞
n=0

∑∞
m=0 Vm,n(0, 0, 0)

βm1 β
n
2 , we find that V0,0(0, 0, 0) = 1 − λT and Vm,n(0, 0, 0) equals 0,

for all other cases.
We can now recursively work our way back through the expres-

sions to finally obtain a fully specified expression for Vm,n(z1, z2, z3).
Using Vm,n(0, 0, 0) in (5.6) we find (m+ n > 0):

Vm,n(z1, 0, 0) = −P (1)
m,n(z1, Y1(z1), Y1(z1))− P (3)

m,n(z1) (5.7)

V0,0(z1, 0, 0) =
Y1(z1)(z1 − 1)(1− λT)

z1 − Y1(z1)
,

where we used that P
(i)
0,0 = 0 (i = 1, . . . , 3). Using (5.7) in (5.5):

Vm,n(z1, z2, 0) =

(
z2(Y2(z1, z2)− z1)P

(1)
m,n(z1, z2, Y2(z1, z2))

−Y2(z1, z2)(z2 − z1)P
(1)
m,n(z1, Y1(z1), Y1(z1))

)
z1(z2 − Y2(z1, z2))

− P (2)
m,n(z1, z2, Y2(z1, z2)) (5.8)

V0,0(z1, z2, 0) =
(1− λT)(z1 − 1)Y2(z1, z2)(z2 − Y1(z1))

(z2 − Y2(z1, z2))(z1 − Y1(z1))
.

CHAPTER 5. THREE CLASSES 141
S
u
m

m
a
ry

o
f

p
o
w

e
r

se
ri

e
s

e
x
p
a
n
si

o
n

o
f
W

(z
1
,z

2
,z

3
)

in
(β

1
,β

2
)
=

(0
,0
)

F
or
W

(z
1
,z

2
,z

3
)
,
∑ ∞ n=

0

∑ ∞ m=
0
V
m
,n

(z
1
,z

2
,z

3
)β
m 1
β
n 2
,

w
e

fi
n

d
:

V
0
,0

(z
1
,z

2
,z

3
)

=
(1
−
λ
T

)A
(z

1
,z

2
,z

3
)(
z 1
−

1
)(
z 2
−
Y

1
(z

1
))

(z
3
−
Y

2
(z

1
,z

2
))

(z
1
−
Y

1
(z

1
))

(z
2
−
Y

2
(z

1
,z

2
))

(z
3
−
A

(z
1
,z

2
,z

3
))

,

w
it

h
im

p
li

ci
tl

y
d

efi
n
ed

Y
2
(z

1
,z

2
)

=
A

(z
1
,z

2
,Y

2
(z

1
,z

2
))

a
n

d
Y

1
(z

1
)

=
Y

2
(z

1
,Y

1
(z

1
))

.
F

u
rt

h
er

m
o
re

,
fo

r
m

+
n
>

0
w

e
fi

n
d

: V
m
,n

(z
1
,z

2
,z

3
)

=
A

(z
1
,z

2
,z

3
)(
z 3
−
z 2

)Q
m
,n
−

1
(z

1
,z

2
,z

3
)

z 2
(z

3
−
A

(z
1
,z

2
,z

3
))

(5
.9

)

+
A

(z
1
,z

2
,z

3
)(
z 3
−
z 1

)(
V
m
−

1
,n

(z
1
,z

2
,z

3
)
−
V
m
−

1
,n

(0
,z

2
,z

3
))

z 1
(z

3
−
A

(z
1
,z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 2
−
z 3

)(
z 1
−
Y

2
(z

1
,z

2
))

(V
m
−

1
,n

(z
1
,z

2
,Y

2
(z

1
,z

2
))
−
V
m
−

1
,n

(0
,z

2
,Y

2
(z

1
,z

2
))

)

z 1
(z

2
−
Y

2
(z

1
,z

2
))

(z
3
−
A

(z
1
,z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 1
−
z 2

)(
z 3
−
Y

2
(z

1
,z

2
))

(V
m
−

1
,n

(z
1
,Y

1
(z

1
),
Y

1
(z

1
))
−
V
m
−

1
,n

(0
,Y

1
(z

1
),
Y

1
(z

1
))

)

z 1
(z

2
−
Y

2
(z

1
,z

2
))

(z
3
−
A

(z
1
,z

2
,z

3
))

,

w
it

h

Q
m
,n
−

1
(z

1
,z

2
,z

3
)

=
P

(2
)

m
,n

(z
1
,z

2
,z

3
)
−
P

(2
)

m
,n

(z
1
,z

2
,Y

2
(z

1
,z

2
))

=
V
m
,n
−

1
(z

1
,z

2
,z

3
)
−
V
m
,n
−

1
(z

1
,z

2
,Y

2
(z

1
,z

2
))
−
V
m
−

1
,n
−

1
(z

1
,z

2
,z

3
)

+
V
m
−

1
,n
−

1
(z

1
,z

2
,Y

2
(z

1
,z

2
))

+
V
m
−

1
,n
−

1
(0
,z

2
,z

3
)
−
V
m
−

1
,n
−

1
(0
,z

2
,Y

2
(z

1
,z

2
))
−
V
m
,n
−

1
(z

1
,0
,z

3
)

+
V
m
,n
−

1
(z

1
,0
,Y

2
(z

1
,z

2
))

+
V
m
−

1
,n
−

1
(z

1
,0
,z

3
)
−
V
m
−

1
,n
−

1
(z

1
,0
,Y

2
(z

1
,z

2
))
−
V
m
−

1
,n
−

1
(0
,0
,z

3
)

+
V
m
−

1
,n
−

1
(0
,0
,Y

2
(z

1
,z

2
))
.

142 CHAPTER 5. THREE CLASSES

And finally with (5.8) in (5.4), we find the expressions of the power
series that are summarized on page 141. Note that it is only because
of significant simplifications that all terms have a common index (n−1
for Q), which we also make explicit in the new definition. This also
helps in better seeing the structure of the equations.

In the next subsection, we prove that the application of Rouché’s
theorem to obtain Y2 and Y1 is justified. Furthermore, we show that
they represent stochastic variables and as such explain their function
in the equations. In the subsection thereafter, we study the structure
of the equations. We will show the correctness of the equations and
improve the intuition about what they represent. In the last sub-
section, we look at some numerical examples, to show their use and
performance in practice.

5.3.2 The implicitly defined functions Y1 and Y2

In the previous section, we introduced Y1 and Y2 as unique zeros of re-
spectively Y2(z1, z2)−z2 and z3−A(z1, z2, z3) and stated that the ex-
istence of this zeros could be proven using Rouché’s theorem. In this
section, we actually prove this statement and show that each func-
tion is the pgf of a stochastic variable. We start by stating Rouché’s
theorem for completeness.

Theorem 5.1. Let f(z) and g(z) be two analytic functions inside and
on a closed contour C in the complex z-plane such that |g(z)| < |f(z)|
for all z on C. Then the functions f(z) and f(z)+g(z) have the same
number of zeros inside C.

First we look at Y2(z1, z2). For each |z1| < 1, |z2| < 1, we define
f(z3) = z3 and g(z3) = A(z1, z2, z3). We then show that |g(z3)| <
|f(z3)| for all |z3| = 1:

|g(z3)| =

∣∣∣∣∣∣
∞∑
i=0

∞∑
j=0

∞∑
k=0

Pr[a1 = i, a2 = j, a3 = k]zi1z
j
2z
k
3

∣∣∣∣∣∣
≤
∞∑
i=0

∞∑
j=0

∞∑
k=0

Pr[a1 = i, a2 = j, a3 = k]|z1|i|z2|j |z3|k

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

Pr[a1 = i, a2 = j, a3 = k]|z1|i|z2|j

<1 = |f(z3)|,

where we have consecutively used the triangle inequality, the fact that
|z3| = 1 and, in the last step, |z1| < 1, |z2| < 1 and the normalization

CHAPTER 5. THREE CLASSES 143

condition. According to Rouché’s theorem, z3−A(z1, z2, z3) then has
exactly one zero in the unit disk for arbitrary |z1| < 1 and |z2| < 1.
We denote this zero by Y2(z1, z2) and it is thus defined by the equation
Y2(z1, z2) − A(z1, z2, Y2(z1, z2)) = 0 or equivalently by Y2(z1, z2) =
A(z1, z2, Y2(z1, z2)). The introduction of Y2(z1, z2) in the previous
section was thus justified.

Furthermore, we show that Y2(z1, z2) is the joint pgf of the number
of class-1 and class-2 arrivals during a sub-busy period1 initiated by
a random arrival in the queueing system with priority for class-3 and
where classes 1 and 2 are served in their order of arrival. Define y2,1

as the number of class-1 arrivals and y2,2 as the number of class-2
arrivals in such sub-busy period. We then write, analogously as in
Section 4.2, the numbers of arrivals in a tagged sub-busy period as:

y2,1 =a
(1)
1 +

a
(1)
3∑
l=1

y
(1)
2,1,l

y2,2 =a
(1)
2 +

a
(1)
3∑
l=1

y
(1)
2,2,l,

whereby a
(1)
j denotes the class-j arrivals in the first slot of the tagged

sub-busy period and y
(1)
2,j,l the number of class-j arrivals in the sub-

busy period initiated by the l-th class-3 arrival in the first slot of the
tagged sub-busy period. Taking a simple z-transform we find:

Y2(z1, z2) =E
[
z
y2,1
1 z

y2,2
2

]
=E

[
z
a
(1)
1

1 z
a
(1)
2

2 z
∑a

(1)
3

l=1 y
(1)
2,1,l

1 z
∑a

(1)
3

l=1 y
(1)
2,2,l

2

]

=E

[
z
a
(1)
1

1 z
a
(1)
2

2 (z
y2,1
1 z

y2,2
2)a

(1)
3

]
=A(z1, z2, Y2(z1, z2)),

by noting in the second step that y2,j and y
(1)
2,j,l have an identical

distribution and are independent.

Next we prove the existence of the zero Y1(z1) of Y2(z1, z2)− z2.
For each |z1| < 1, we define f(z2) = z2 and g(z2) = Y2(z1, z2). We

1We defined the notion of a sub-busy period in the sidenote in Section 4.2.

144 CHAPTER 5. THREE CLASSES

show that |g(z2)| < |f(z2)| for all |z2| = 1:

|g(z2)| =

∣∣∣∣∣∣
∞∑
i=0

∞∑
j=0

Pr[y1 = i, y2 = j]zi1z
j
2

∣∣∣∣∣∣
≤
∞∑
i=0

∞∑
j=0

Pr[y1 = i, y2 = j]|z1|i|z2|j

=

∞∑
i=0

∞∑
j=0

Pr[y1 = i, y2 = j]|z1|i

<1 = |f(z2)|,

where we again consecutively used the triangle inequality, the fact
that |z2| = 1 and in the last step |z1| < 1. According to Rouché’s
theorem Y2(z1, z2)− z2 then has exactly one zero in the unit disk for
arbitrary |z1| < 1 and normalization. We denote this zero by Y1(z1)
and it is thus defined by the equation Y2(z1, Y1(z1))− Y1(z1) = 0 or
equivalently by Y1(z1) = Y2(z1, Y1(z1)). The introduction of Y1(z1)
in the previous section was thus justified.

Using the implicit definition of Y2 in the implicit definition of
Y1(z1) = Y2(z1, Y1(z1)), we find Y1(z1) = A(z1, Y1(z1), Y2(z1, Y1(z1)))
which in turn equals Y1(z1) = A(z1, Y1(z1), Y1(z1)). We prove that
Y1(z1) is the pgf of the number of class-1 arrivals during a sub-busy
period initiated by a random arrival in the strict priority system
obtained by setting β1 = β2 = 0, i.e. (3 > 2 > 1)2. Defining y1 as the
number of class-1 arrivals in such a sub-busy period, we then write:

y1 = a
(1)
1 +

a
(1)
2 +a

(1)
3∑

l=1

y
(1)
1,l .

The z-transform, subsequently yields,

Y1(z1) =E [zy11]

=E

[
z
a
(1)
1

1 (zy11)a
(1)
2 (zy11)a

(1)
3

]
=A(z1, Y1(z1), Y1(z1)).

2 Note that any priority system where classes 2 and 3 have priority over class 1
suffices. For instance, the system (2 > 3 > 1), i.e. β1 = 0, β2 = 1, yields an
equivalent Y1(z1). In fact, Y1(z1) is identical to the implicit function from a
two-class priority system with low priority for class 1 and high priority for the
aggregation of classes 2 and 3.

CHAPTER 5. THREE CLASSES 145

Equivalently, we can also use the stochastic variables y2,1 and y2,2

from Y2 to define y1:

y1 = y2,1 +

y2,2∑
l=1

y1,l,

because any class-2 arrival (y2,2) now also has priority over class-
1 and initiates new sub-busy periods with arrival opportunities for
class-1. Z-transforming the previous expression gives

Y1(z1) =E [zy11]

=E
[
z
y2,1
1 (zy11)y2,2

]
=Y2(z1, Y1(z1)),

which is indeed equal to our first implicit function definition of Y1(z1).
Lastly, we note that the implicit functions Y2(z1, z2) and Y1(z1)

are pgf’s of numbers of arrivals in sub-busy periods in a related prior-
ity queueing system. The functions we used here are equivalent to the
implicit functions defined in [144] for multi-class strict priority queue-
ing systems. Moreover, they are identical to the implicit functions
that were used in Section 5.2. Furthermore, y1 is equal to the number
of class-1 arrivals in a two-queue system whereby we label our original
class-2 and class-3 customers with the same label. Y1(z1) here is thus
equivalent to Y (z1) of Section 4.2 given that we aggregate class-2 and
class-3 customers in queue 2 of that system. This can also be seen
from the implicit function definition Y1(z1) = A(z1, Y1(z1), Y1(z1)).

5.3.3 Seeing the patterns

In this section, we look at some already known special cases of our
H-GPS system. This way we test the correctness of our solution
and also get a better insight in the patterns that govern the ex-
pressions we obtained. A first test is setting β1 = β2 = 0, which
corresponds to the priority queueing system (3 > 2 > 1). For that
system, we find W (z1, z2, z3)|β1=β2=0 = V0,0(z1, z2, z3) which cor-
responds with the results of [144]. If, we aggregate classes 2 and
3 in one high-priority class, we obtain a two-queue priority system
(3, 2 > 1). So E[zw1

1 zw2+w3
23 |β1 = β2 = 0] = W (z1, z23, z23)|β1=β2=0 =

V0,0(z1, z23, z23),

V0,0(z1, z23, z23) =
(1− λT)A(z1, z23, z23)(z1 − 1)(z23 − Y1(z1))

(z1 − Y1(z1))(z23 −A(z1, z23, z23))
.

146 CHAPTER 5. THREE CLASSES

This is indeed the pgf of the unfinished work in a two-class priority
queue [143]. Note that, we also find this last result for any other
value β2.

If we only aggregate classes 2 and 3 (for general β1 and β2), we ob-
tain a two-class GPS system. Checking this with our expressions, we
find E[zw1

1 zw2+w3
23] = W (z1, z23, z23) =

∑∞
m=0

∑∞
n=0 Vm,n(z1, z23, z23)

βm1 β
n
2 and

Vm,n(z1, z23, z23)

=
A(z1, z23, z23)(z23 − z1)

z1(z23 −A(z1, z23, z23))
·(

Vm−1,n(z1, z23, z23)− Vm−1,n(0, z23, z23)
−Vm−1,n(z1, Y1(z1), Y1(z1)) + Vm−1,n(0, Y1(z1), Y1(z1))

)
We note that Vm,n(z1, z23, z23) with n > 0 is recursively defined
(via Vm−1,n) in terms of V−1,n(z1, z23, z23) which equals 0. With
Vm,n(z1, z23, z23) = 0 for n > 0, W (z1, z23, z23) simplifies to the sin-
gle dimensional series

∑∞
m=0 Vm,0(z1, z23, z23)βm1 , which indeed elim-

inates the superfluous β2 and corresponds with the power series ap-
proximation we found in Section 4.2.

By setting β1 = 0 and ignoring class-1 customers, we should
also find a two-queue GPS system with classes 2 and 3. We write:
E[zw2

2 zw3
3 |β1 = 0] = W (1, z2, z3)|β1=0 =

∑∞
n=0 V0,n(1, z2, z3)βn2 .

V0,n(1, z2, z3) =
A(1, z2, z3)(z3 − z2)Q0,n−1(1, z2, z3)

z2(z3 −A(1, z2, z3))

V0,0(1, z2, z3) =
1− λT

1− Y ′1(1)

A(1, z2, z3)(z2 − 1)(z3 − Y2(1, z2))

(z2 − Y2(1, z2))(z3 −A(1, z2, z3))
,

whereby we used l’Hôpital’s rule in the last line. To find Y ′1(1) we
derive the implicit definition Y1(z1) = A(z1, Y1(z1), Y1(z1)) to find

Y ′1(1) =
λ1

1− λ2 − λ3
,

and thus

V0,0(1, z2, z3) =
(1− λ2 − λ3)A(1, z2, z3)(z2 − 1)(z3 − Y2(1, z2))

(z2 − Y2(1, z2))(z3 −A(1, z2, z3))
.

Furthermore

Q0,n−1(1, z2, z3) =V0,n−1(1, z2, z3)− V0,n−1(1, z2, Y2(1, z2))

− V0,n−1(1, 0, z3) + V0,n−1(1, 0, Y2(1, z2)).

CHAPTER 5. THREE CLASSES 147

We thus indeed find the expected expressions for the power series of
a two-class system. Note how λT got replaced by the total load of
the two considered classes via Y ′1 .

As a last example, for β1 = 0, we find W (z1, z2, z3)|β1=0 =∑∞
n=0 V0,n(z1, z2, z3)βn2 . Using (5.9) for the calculation of these coef-

ficients, we obtain:

V0,n(z1, z2, z3) =
A(z1, z2, z3)(z3 − z2)Q0,n−1(z1, z2, z3)

z2(z3 −A(z1, z2, z3))
,

Q0,n−1(z1, z2, z3) =V0,n−1(z1, z2, z3)− V0,n−1(z1, z2, Y2(z1, z2))

− V0,n−1(z1, 0, z3) + V0,n−1(z1, 0, Y2(z1, z2)).

These expressions indeed correspond to the expressions from the spe-
cial case in Section 5.2.

In this section, we have shown that the power series for three-class
H-GPS includes all previous obtained results for the relevant config-
urations. This verifies the correctness of the result and strengthens
intuition on the construction of the expression. In the next section,
we use the power series approximation to approximate the perfor-
mance measures and compare them with simulation results.

5.3.4 Numerical examples

In Section 5.3.1, we developed a power series for the joint pgf of
the unfinished work around the point (β1, β2) = (0, 0). Analogously,
as in the two-class case we derive a power series from this for the
mean unfinished work of the classes. Note that we concentrate on
the mean unfinished work of class 2 in the remainder. The mean
unfinished work of class 1 is, because of the hierarchical nature of the
system, independent of β2 and can be calculated from the two-class
system by aggregating classes 2 and 3 in one new class. Because of
the symmetry in the system, the expressions for the mean unfinished
work of class 3 are analogous to those for class 2.

w̄2 =

∞∑
m=0

∞∑
n=0

∂Vm,n(z1, z2, z3)

∂z2

∣∣∣∣
z1=z2=z3=1

βm1 β
n
2

This is a power series centered around (β1, β2) = (0, 0), we can thus
expect it to have deteriorating accuracy for larger β1 or β2.

Like in the two-class system, we can use the symmetry between
classes 2 and 3 to construct a power series around (β1, β2) = (0, 1):

w̄2 =

∞∑
m=0

∞∑
n=0

∂Ṽm,n(z1, z2, z3)

∂z3

∣∣∣∣∣
z1=z2=z3=1

βm1 (1− β2)n,

148 CHAPTER 5. THREE CLASSES

whereby Ṽm,n hasA(z1, z2, z3) replaced withA(z1, z3, z2). This means
we send class-2 customers to queue 3 and calculate the unfinished
work in that queue (derivative w.r.t. z3).

In Figures 5.3 and 5.4, we study the performance of the approx-
imation. We used a multinomial distribution (see Section 1.6) with
N = 16, λT = 0.9, α1 , λ1

λT
= 0.4, α2 , λ2

λT
= 0.3 as an arrival pro-

cess. Each of the graphs displays the truncated power series of w̄2,
whereby M denotes the degree of the polynomial. The ∼ is used to
denote the polynomial that is calculated using the symmetric system
and is drawn in thicker lines. The +-symbols denote simulation re-
sults. In Figure 5.3 we show w̄2 as a function of β1 for fixed values
of β2 = {0, 0.2, 0.8, 1}. We see in the top left graph (β2 = 0) that
the regular approximation is perfect for β1 = 0. In the neighbor-
hood of β1 = 0 the approximation is good and improves by adding
extra terms in the power series. For higher β2, we see that the accu-
racy of the approximation steadily declines. On the other hand the
approximation by the symmetric systems improves. In the bottom
right graph for β2 = 0, the approximation matches the derivatives
perfectly. These observations are expected, by the very definition of
the power series.

In Figure 5.4 w̄2 is displayed as a function of β2 for fixed values of
β1 = {0, 0.2, 0.8, 1}. In the top left graph, we see that for β2 = 0 the
regular power series performs well as does the symmetric power series
for β2 = 1, as expected. For β1 = 0.2 (top right graph), the accuracy
of both is reasonable. However for β1 = 0.8 or 1 the approximations
are practically unusable.

In general, as expected, the truncated power series approximation
deteriorates as we move further away from the expansion points of the
power series, i.e., the points (β1, β2) = (0, 0) and (β1, β2) = (0, 1). To
derive a power series centered around (β1, β2) = (1, 0) or (β1, β2) =
(1, 1), we cannot exploit symmetry of the system. If we were to send
the arrivals of class 2 or 3 to queue 1 the whole system dynamic
changes. We will come back to this in Section 5.5, where we develop
a power series approximation around these aforementioned expansion
points. As a stepping stone, in the next section, we first study the
special case where β1 = 1, in that way creating a priority class above
two GPS classes.

CHAPTER 5. THREE CLASSES 149

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

M=2, ~
M=3, ~

(a) w̄2(β1, 0)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(β1, 0.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(β1, 0.8)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(β1, 1)

Figure 5.3: Truncated power series for w̄2(β1, β2) with N = 16,
λT = 0.9, α1 = 0.4, α2 = 0.3. The ∼ indicates the cases where
we used the symmetric system.

150 CHAPTER 5. THREE CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

M=2, ~
M=3, ~

(a) w̄2(0, β2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(0.2, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(0.8, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(1, β2)

Figure 5.4: Truncated power series for w̄2(β1, β2) with N = 16,
λT = 0.9, α1 = 0.4, α2 = 0.3. The ∼ indicates the cases where
we used the symmetric system.

CHAPTER 5. THREE CLASSES 151

5.4 Influence of high-priority customers
on a GPS queue

Numerous queueing systems in practice, have a high-priority bypass
possibility. For instance, the processor of a computer system is shared
by several jobs, whereby each class of jobs gets a time-share accord-
ing to the weight of its class. However, the processor can also be
interrupted, for hardware I/O for instance (i.e., the user pushes a
key, requested data from the harddisk becomes available . . .), these
are in fact short high-priority jobs, bypassing the normal scheduling
mechanism.

An example from telecommunications is DiffServ [108]. DiffServ
is short for Differentiated Services and is an architecture designed to
deliver a different Quality of Service (QoS) grade to various services
in telecommunication networks. It defines an Expedited Forwarding
(EF) class of packets next to the Assured Forwarding (AF) class.
EF packets have essentially high priority and are thus given strict
priority over all other packets. The AF class of packets is divided
into subclasses, and the scheduling amongst the subclasses is a GPS-
based scheduling.

Cisco implemented this kind of scheduling mechanism in some
of its gigabit switch routers. The brand names used are IP Real-
time Transport Protocol (RTP) Priority and Low Latency Queueing
(LLQ); both are based on a mixture of GPS-like scheduling with pri-
ority bypassing [36]. They differ in the type of traffic they support,
i.e., UDP vs TCP.

As a result of its practical application, this model also attracted
attention from the research community, where it is frequently referred
to as PQ-GPS. Jin et al. [79, 80] studied PQ-GPS under long-range
dependent traffic by using a flow decomposition approach dividing
the system into single-server single-queue (SSSQ) systems. They ob-
tain analytical upper and lower bounds. Parveen [111] used the same
SSSQ approach to study a system containing both long-range and
short-range dependent traffic. After the single queue decomposition
he however uses another technique resulting in a single approxima-
tion, as opposed to an upper and lower bound. Lastly, we mention
Wang et al. [148] who studied a finite hybrid queueing model using
PQ and Weighted Fair Queueing (WFQ). As WFQ is known to be a
good approximation for GPS, it is also of interest here. Drawing up a
Markov chain for the system and solving it for the steady-state prob-
ability, they conclude with a sensitivity analysis for the parameters
of the system.

152 CHAPTER 5. THREE CLASSES

Figure 5.5: Model PQ-GPS

In this section, we study the influence of these high-priority cus-
tomers on a generalized processor sharing (GPS) queue. This model
corresponds with a H-GPS model with β1 = 1, thus giving class-1
high priority while letting classes 2 and 3 share the remaining slots
with GPS. As such it is a special case of our general model in Sec-
tion 5.3.1. However, as we have seen in the numerical results, the
performance of the power series approximation for the general model
performs bad for β1 values not in the neighborhood of 0. The solution
is to repeat the method we used there and apply it to this specific
setting. We summarize the model in Figure 5.5.

5.4.1 The power series approximation

We can follow the exact same steps as in the derivation of the power
series for the general model (Section 5.3.1). We start with setting
β1 = 1 in the functional equation (5.2) to obtain the functional equa-
tion for this case:

W (z1, z2, z3)z2z3

(
z1 −A(z1, z2, z3)

)
=A(z1, z2, z3)· (5.10)

(z2(z1 − z3) + β2z1(z3 − z2)))W (0, z2, z3)
+(1− β2)z1(z3 − z2)W (0, z2, 0)
+β2z1(z2 − z3)W (0, 0, z3)

+
(
z1z3(z2 − 1) + β2z1(z3 − z2)

)
W (0, 0, 0)

 .

Note that this functional equation only includes boundary functions
with z1 = 0, these include the system dynamics in the important
situation when w1 = 0, i.e. no high-priority class-1 customers are
present in the system. Subsequently, we introduce the power series
W (z1, z2, z3) =

∑∞
m=0 Vm(z1, z2, z3)βm2 in (5.10). Equating corre-

CHAPTER 5. THREE CLASSES 153

sponding coefficients of β2, we find:

z2z3

(
z1 −A(z1, z2, z3)

)
Vm(z1, z2, z3) (5.11)

− z2(z1 − z3)A(z1, z2, z3)Vm(0, z2, z3)

− z1(z3 − z2)A(z1, z2, z3)Vm(0, z2, 0)

− z1z3(z2 − 1)A(z1, z2, z3)Vm(0, 0, 0)

=A(z1, z2, z3)z1(z3 − z2)Pm−1(z2, z3),

whereby for short, we defined Pm(z2, z3) , Vm(0, z2, z3)−Vm(0, z2, 0)
− Vm(0, 0, z3) + Vm(0, 0, 0) and V−1(z1, z2, z3) , 0.

By using Rouché’s theorem, analogous as in Section 5.3.2, we show
that z1 − A(z1, z2, z3) has exactly one zero in the unit disk of z1 for
arbitrary |z2| < 1 and |z3| < 1. We denote this zero by Y2(z2, z3)
and it is thus implicitly defined by Y2(z2, z3) = A(Y2(z2, z3), z2, z3).
Furthermore, Y2(z2, z3) is the joint pgf of the number of class-2 and
class-3 arrivals during a sub-busy period initiated by a random arrival
in the queueing system with priority for class-1 and where classes
2 and 3 are served in their order of arrival3. Using z1 = Y2(z2, z3) in
(5.11), we obtain

−z2(Y2(z2, z3)− z3)Vm(0, z2, z3) (5.12)

− Y2(z2, z3)(z3 − z2)Vm(0, z2, 0)

− Y2(z2, z3)z3(z2 − 1)Vm(0, 0, 0)

=Y2(z2, z3)(z3 − z2)Pm−1(z2, z3).

Once more, we use Rouché’s theorem and show that Y2(z2, z3)−z3

has one zero in the unit disk of z3 for arbitrary |z2| < 1. We denote
it by Y1(z2) and it is implicitly defined by Y1(z2) = Y2(z2, Y1(z2)) =
A(Y1(z2), z2, Y1(z2)). Y1(z2) is the pgf of the number of class-2 ar-
rivals during a sub-busy period initiated by a random arrival in
the queueing system with priority for classes 1 and 3. Substituting
z3 = Y1(z2) in (5.12), gives

−(Y1(z2)− z2)Vm(0, z2, 0) (5.13)

− Y1(z2)(z2 − 1)Vm(0, 0, 0)

=(Y1(z2)− z2)Pm−1(z2, Y1(z2)).

Using W (0, 0, 0) =
∑∞
m=0 Vm(0, 0, 0)βm2 = 1 − λT , we find that

V0(0, 0, 0) = 1− λT and Vm(0, 0, 0) = 0 for m > 0. Subsequently, we

3 Note that Rouché’s theorem could already be used on (5.10) to introduce
Y2. However, we did not do that, for symmetry reasons in the methodology.
Obviously, the end result is identical.

154 CHAPTER 5. THREE CLASSES

can work our way back up to Vm(z1, z2, z3). We start with (5.13) and
find for m > 0:

V0(0, z2, 0) =
Y1(z2)(z2 − 1)(1− λT)

z2 − Y1(z2)

Vm(0, z2, 0) =− Pm−1(z2, Y1(z2)).

We substitute these expressions in (5.12) to obtain

V0(0, z2, z3) =
Y2(z2, z3)(1− λT)(z2 − 1)(z3 − Y1(z2))

(z2 − Y1(z2))(z3 − Y2(z2, z3))

Vm(0, z2, z3) =
Y2(z2, z3)(z3 − z2)

(
Pm−1(z2, z3)− Pm−1(z2, Y1(z2))

)
z2(z3 − Y2(z2, z3))

.

Lastly, we feed the expressions for Vm(0, z2, 0) and Vm(0, z2, z3) back
into (5.11) and find the expressions that make up our recursive defi-
nition of the power series:

V0(z1, z2,z3)

=
A(z1, z2, z3)(1− λT)(z2 − 1)(z1 − Y2(z2, z3))(z3 − Y1(z2))

(z1 −A(z1, z2, z3))(z2 − Y1(z2))(z3 − Y2(z2, z3))

Vm(z1, z2,z3) =
A(z1, z2, z3)(z3 − z2)(z1 − Y2(z2, z3))Qm−1(z2, z3)

z2(z1 −A(z1, z2, z3))(z3 − Y2(z2, z3))
,

whereby we have defined

Qm(z2, z3) ,Pm(z2, z3)− Pm(z2, Y1(z2))

=Vm(0, z2, z3)− Vm(0, z2, Y1(z2))

− Vm(0, 0, z3) + Vm(0, 0, Y1(z2)). (5.14)

We note that with z2 = z3 = z23, which corresponds to aggre-
gating queues 2 and 3, Vm(z1, z23, z23) = 0 for m > 0. This is what
we expect as W (z1, z23, z23) is independent of β2 (the total unfin-
ished work in the low-priority queues is independent of β2 due to the
work-conserving nature of GPS).

5.4.2 Approximations of performance measures

As for the previous power series of pgf’s, we now study how to derive
expressions for the mean unfinished work. As before, we write

w̄j =
∂W (z1, z2, z3)

∂zj

∣∣∣∣
z1,z2,z3=1

=

∞∑
m=0

βm2
∂Vm(z1, z2, z3)

∂zj

∣∣∣∣
z1,z2,z3=1

.

CHAPTER 5. THREE CLASSES 155

Considering that Vm(z1, 1, 1) = 0 for m > 0 we find

w̄1 =
∂V0(z1, 1, 1)

∂z1

∣∣∣∣
z1=1

,

the mean unfinished work in queue 1 indeed does not depend on β2.
Furthermore as w̄T = w̄1 + w̄2 + w̄3 is also independent of β2, we find
for m > 0 (analogously to the two-class case)

∂Vm(1, z2, 1)

∂z2

∣∣∣∣
z2=1

= − ∂Vm(1, 1, z3)

∂z3

∣∣∣∣
z3=1

.

This eliminates the need to calculate the coefficients for the power
series of both w̄2 and w̄3 separately.

In addition, we can calculate the power series around β2 = 1 by
exploiting the symmetry of the model. As before, we therefore send
class-2 customers to queue 3 and vice versa.

w̄2 =

∞∑
m=0

∂Ṽm(1, 1, z3)

∂z3

∣∣∣∣∣
z3=1

(1− β2)m,

whereby Ṽm is defined by replacing A(z1, z2, z3) by A(z1, z3, z2) in
Vm.

With truncated power series in both β2 = 0 and β2 = 1, we can
set the Padé approximants to work again. Furthermore as on the first
level we have invariable strict priority, we know w̄2 should decrease
with increasing β2. We could thus employ an adapted version of
Algorithm 4.1. However, we will just use the pure approximants for
the numerical examples in the next section.

5.4.3 Numerical examples

In this section, we compare our power series approximation for the
mean unfinished work with simulation results. As the unfinished work
for class 1 is not influenced by the other queues and could also easily
be calculated from results for single-class FCFS queueing, we will not
discuss it here. Furthermore, we only analyze queue 2, as the results
for queue 3 follow easily from the work conserving properties of the
system. We have used a multinomial arrival process with N = 16.

In Figure 5.6, we show the mean unfinished work of class 2 as
a function of the weight β2, with λT = 0.9, α1 = 0.1, and α2 =
0.1. The figure shows curves of the simulation result and the Padé
approximants without poles. We can see that for these parameters the
[2/3] Padé approximant is very accurate. Secondly, we reconfirm that

156 CHAPTER 5. THREE CLASSES

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

simulation
[0/5]
[2/3]
[3/2]

Figure 5.6: w̄2(β2): comparison between simulation and Padé ap-
proximants.

the approximations perform best close to β2 = 0 and β2 = 1. This is
expected as the available information is exactly the value up to theM -
th order derivative in these points (in this case M = 2). Subsequently,
the approximants are constructed to match this information, thus
performing well near β2 = 0 and β2 = 1.

In a second numerical example, we study the influence of the
amount of high-priority (i.e., class-1) customers. We keep the total
load λT = 0.9 fixed and λ2 = λ3, while increasing α1 from 0.1 to 0.6.
w̄2(β2) is depicted in Figure 5.7 on the left, showing both the simula-
tion results and the best performing Padé approximant. We can see
that the performance of the approximation is still accurate though
slightly deteriorates as α1 decreases, this results from the choice of
the approximant. For this graph, we chose the [3/2] approximant,
which on average performs best for these curves, but for smaller α1

the [2/3] approximant is actually better. Furthermore for β2 = 1, i.e.,
when the queueing system is effectively a strict priority system with
class 1 having highest priority, class 2 medium priority and class 3 low
priority, higher α1 barely makes a difference. This is mainly because
there are few class-2 customers in the system as α2 decreases from
0.45 to 0.2. On the other end for β2 = 0, we have a strict priority
queueing system with class 1 high priority, class 3 medium priority

CHAPTER 5. THREE CLASSES 157

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

α1=0.1

α
1 =0.6

simulation
[3/2]

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

α1=0.6

α1=0.1

simulation
[3/2]

Figure 5.7: Mean unfinished work of class 2 (left) and mean class-2
delay (right) as a function of β2: effect of increasing fraction of class-1
customers

and class 2 low priority. As class 2 is the lowest on the priority lad-
der, the influence of bypassing (higher priority) class-3 and class-1
customers is greater.

Using Little’s law, we also calculated the mean class-2 delay; it
is depicted in Figure 5.7 on the right. We saw before that as α1 in-
creases the mean queue-2 unfinished work decreases, mainly because
α2 decreases (we keep the total load and ratio between class-2 and
3 packets fixed). As we can see from the graph of the delay, for an
increasing amount of high-priority packets the class-2 packets have
a larger delay. There are thus less class-2 packets in the system but
they stay there longer.

In Figure 5.8, we show w̄2 as a function of β2 for different values
of the total load λT , with α1 = α2 = 0.1 fixed. As the load in the
system increases, we observe the queue-2 unfinished work increases
as well. This is a classical queueing result: a higher load always leads
to higher congestion. As in the previous example (and for the same
reason), we can see the effect at β2 = 1 is barely visible as opposed
to at β2 = 0. Furthermore, we see that the approximation is close to
the simulated result. For λT = 0.99, we see that because of the high
load the approximation deteriorates, especially for small β2.

Lastly, we look at the influence of the amount of class-2 customers
while keeping the total load and the amount of high-priority packets
constant. The results are depicted in Figure 5.9 for λT = 0.9, α1 = 0.1
and α2 ranging from 0.1 to 0.5. As the amount of class-2 packets

158 CHAPTER 5. THREE CLASSES

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

λT=0.99

λT=0.9

λT=0.8

λT=0.7
λT=0.5

simulation
[2/3]

Figure 5.8: Mean class-2 unfinished work as a function of β2: effect
of increasing total load

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

α2=0.5

α2=0.4

α2=0.3

α2=0.2

α2=0.1

simulation
[2/3]

Figure 5.9: Mean class-2 unfinished work as a function of β2: effect
of increasing fraction of class-2 customers

CHAPTER 5. THREE CLASSES 159

increases the unfinished work increases, which was to be expected.
Another observation is that the performance of the approximation
deteriorates. In Figure 5.9, we chose to show the [2/3] approximant.
This is, however, not the best approximation for every parameter
combination. For instance, for α2 = 0.5 Padé approximant [3/2] is
the best one. However, even if we compare every simulation with the
best fitting approximant, the performance still deteriorates.

For the numerical results in this section, we have generally used
the best fitting Padé approximant. In practice, however, it is im-
possible to know which Padé approximant has the best fit, because
the availability of simulations results would largely defeat the pur-
pose of constructing the approximation in the first place. A solution
to the selection problem of the best approximant is an extension of
Algorithm 4.1, which we discussed in length in the previous chapter.

5.5 Power series approximation for H-GPS
centered around β1 = 1

In Section 5.3, we developed a power series approximation for the
joint pgf of the unfinished work in the queues of the three-class H-GPS
system. This power series was centered around the point (β1, β2) =
(0, 0). Via the symmetric system, i.e. interchanging classes 2 and 3,
we also obtained a power series about the point (β1, β2) = (0, 1). As
expected, we established that the performance of the approximation
deteriorates for points (β1, β2) further away from these expansion
points. In the previous section, we studied the H-GPS system with
β1 = 1, therefor constructing a power series approximation about
β2 = 0 or 1. Note that this was a one-dimensional power series
(parameter β2). However, it showed that the system with β1 = 1
can be studied using our power series approach. In this section,
we construct a two-dimensional power series for the general H-GPS
system, whereby the series is centered around (β1, β2) = (1, 0). Via
the symmetric system, we then also obtain a power series centered
around (β1, β2) = (1, 1).

We introduce the power series about (β1, β2) = (1, 0):

W (z1, z2, z3) =

∞∑
m=0

∞∑
n=0

V̂m,n(z1, z2, z3)(1− β1)mβn2 . (5.15)

In the next step, we perform the substitution of (5.15) in the func-
tional equation of the H-GPS system (5.2). Subsequently, as before,

160 CHAPTER 5. THREE CLASSES

we equate corresponding coefficients of powers of β1 and β2, result-
ing in a functional equation for the coefficients of the power series
V̂m,n. The remaining steps are analogous as in Section 5.3.1. Using
Rouché’s theorem twice, we introduce the implicitly defined func-
tions Ŷ2(z2, z3) = A(Ŷ2(z2, z3), z2, z3) and Ŷ1(z2) = Ŷ2(z2, Ŷ1(z2)) =
A(Ŷ1(z2), z2, Ŷ1(z2)). Note that these functions are identical4 to the
ones defined in the previous section for the special case β1 = 1. Ul-
timately, we obtain the expressions on pages 161-162.

Note that for β1 = 1 the coefficients V̂0,n(z1, z2, z3) are the only
ones remaining in the power series. For n > 0, we see that only the
last term in the expression for V̂0,n remains and only the first four in

Q̂
(2)
0,n−1. The remaining terms and expressions indeed correspond to

the power series we found in Section 5.4.1. As a second check, setting
z2 = z3 = z23, we indeed find the expression for the symmetric two-
class GPS power series approximation.

Using the symmetry between classes 2 and 3 in the H-GPS system,
we derive a power series about (β1, β2) = (1, 1). We write:

W (z1, z3, z2) =

∞∑
n=0

∞∑
m=0

ˆ̃Vm,n(z1, z2, z3)(1− β1)m(1− β2)n,

whereby ˆ̃Vm,n has A(z1, z2, z3) replaced with A(z1, z3, z2), i.e. we send
class-2 customers to queue 3 and vice versa. Note that in this ex-
pression z3 (z2) has now taken the role of the formal variable of the
z-transform of the steady state unfinished work of class 2 (class 3),
i.e. w2 (w3).

5.6 Summary of power series for H-GPS

Collecting all results from this chapter, we summarize the four dif-
ferent power series for E[w2], whereby the superscript denotes the

4 We use the ˆ-symbol here to differentiate Ŷ1 and Ŷ2 from Y1 and Y2 used in
the power series about β1 = 0. Likewise, we also use V̂m,n to differentiate from
Vm,n.

CHAPTER 5. THREE CLASSES 161
S
u
m

m
a
ry

o
f

p
o
w

e
r

se
ri

e
s

e
x
p
a
n
si

o
n

o
f
W

(z
1
,z

2
,z

3
)

in
(β

1
,β

2
)
=

(1
,0
)

F
or
W

(z
1
,z

2
,z

3
)
,
∑ ∞ n=

0

∑ ∞ m=
0
V̂
m
,n

(z
1
,z

2
,z

3
)(

1
−
β

1
)m
β
n 2
,

w
e

fi
n

d
:

V̂
0
,0

(z
1
,z

2
,z

3
)

=
(1
−
λ
T

)A
(z

1
,z

2
,z

3
)(
z 2
−

1
)(
z 1
−
Ŷ

2
(z

2
,z

3
))

(z
3
−
Ŷ

1
(z

2
))

(z
1
−
A

(z
1
,z

2
,z

3
))

(z
2
−
Ŷ

1
(z

2
))

(z
3
−
Ŷ

2
(z

2
,z

3
))

,

w
it

h
im

p
li

ci
tl

y
d
efi

n
ed

Ŷ
1
(z

2
)

=
A

(Ŷ
1
(z

2
),
z 2
,Ŷ

1
(z

2
))

Ŷ
2
(z

2
,z

3
)

=
A

(Ŷ
2
(z

2
,z

3
),
z 2
,z

3
).

F
u

rt
h

er
m

or
e,

w
e

fi
n

d
fo

r
m

+
n
>

0:

V̂
m
,n

(z
1
,z

2
,z

3
)

=
A

(z
1
,z

2
,z

3
)(
z 1
−
z 3

)(V̂
m
−

1
,n

(z
1
,z

2
,z

3
)
−
V̂
m
−

1
,n

(Ŷ
2
(z

2
,z

3
),
z 2
,z

3
))

z 3
(z

1
−
A

(z
1
,z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 2
−
z 1

)V̂
m
−

1
,n

(z
1
,0
,0

)

z 2
(z

1
−
A

(z
1
,z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 1
−
z 3

)(
z 2
−
Ŷ

2
(z

2
,z

3
))
V̂
m
−

1
,n

(Ŷ
2
(z

2
,z

3
),

0
,0

)

z 2
(z

1
−
A

(z
1
,z

2
,z

3
))

(z
3
−
Ŷ

2
(z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 3
−
z 2

)(
z 1
−
Ŷ

2
(z

2
,z

3
))
V̂
m
−

1
,n

(Ŷ
1
(z

2
),

0,
0
)

z 2
(z

1
−
A

(z
1
,z

2
,z

3
))

(z
3
−
Ŷ

2
(z

2
,z

3
))

162 CHAPTER 5. THREE CLASSES

+

A
(z

1
,z

2
,z

3
)(
z 3
−
z 2

)

  z 1
(z

3
−
Ŷ

2
(z

2
,z

3
))
Q̂

(1
)

m
−

1
,n

(z
1
,z

2
,z

3
)

−
z 3

(z
1
−
Ŷ

2
(z

2
,z

3
))
Q̂

(1
)

m
−

1
,n

(Ŷ
1
(z

2
),
z 2
,Ŷ

1
(z

2
))

+
Ŷ

2
(z

2
,z

3
)(
z 1
−
z 3

)Q̂
(1

)
m
−

1
,n

(Ŷ
2
(z

2
,z

3
),
z 2
,z

3
)

  
z 2
z 3

(z
1
−
A

(z
1
,z

2
,z

3
))

+
A

(z
1
,z

2
,z

3
)(
z 3
−
z 2

)(
z 1
−
Ŷ

2
(z

2
,z

3
))
Q̂

(2
)

m
,n
−

1
(z

1
,z

2
,z

3
)

z 2
(z

1
−
A

(z
1
,z

2
,z

3
))

(z
3
−
Ŷ

2
(z

2
,z

3
))

,

w
it

h

Q̂
(1

)
m
−

1
,n

(z
1
,z

2
,z

3
)
,
V̂
m
−

1
,n
−

1
(z

1
,z

2
,z

3
)
−
V̂
m
−

1
,n
−

1
(z

1
,0
,z

3
)
−
V̂
m
−

1
,n
−

1
(z

1
,z

2
,0

)
+
V̂
m
−

1
,n

(z
1
,z

2
,0

)
+
V̂
m
−

1
,n
−

1
(z

1
,0
,0

)

Q̂
(2

)
m
,n
−

1
(z

1
,z

2
,z

3
)
,
V̂
m
,n
−

1
(0
,z

2
,z

3
)
−
V̂
m
,n
−

1
(0
,z

2
,Ŷ

1
(z

2
))
−
V̂
m
,n
−

1
(0
,0
,z

3
)

+
V̂
m
,n
−

1
(0
,0
,Ŷ

1
(z

2
))

−
V̂
m
−

1
,n
−

1
(0
,z

2
,z

3
)

+
V̂
m
−

1
,n
−

1
(0
,z

2
,Ŷ

1
(z

2
))

+
V̂
m
−

1
,n
−

1
(0
,0
,z

3
)
−
V̂
m
−

1
,n
−

1
(0
,0
,Ŷ

1
(z

2
))
.

CHAPTER 5. THREE CLASSES 163

expansion point,

E[w2](0,0) =

∞∑
m=0

∞∑
n=0

∂Vm,n(z1, z2, z3)

∂z2

∣∣∣∣
z1=z2=z3=1

βm1 β
n
2

E[w2](0,1) =

∞∑
m=0

∞∑
n=0

∂Ṽm,n(z1, z2, z3)

∂z3

∣∣∣∣∣
z1=z2=z3=1

βm1 (1− β2)n

E[w2](1,0) =

∞∑
m=0

∞∑
n=0

∂V̂m,n(z1, z2, z3)

∂z2

∣∣∣∣∣
z1=z2=z3=1

(1− β1)mβn2

E[w2](1,1) =

∞∑
m=0

∞∑
n=0

∂ ˆ̃Vm,n(z1, z2, z3)

∂z3

∣∣∣∣∣
z1=z2=z3=1

(1− β1)m(1− β2)n.

Note that it is also possible to calculate expressions for power
series expanded about (β1, β2) = (0, 1) and (β1, β2) = (1, 1) using
the exact same method as for (β1, β2) = (0, 0) and (β1, β2) = (1, 0).
That way the symmetry of the system is not exploited, see also the
discussion on two-class GPS in Chapter 4. Furthermore, if a com-
puter algorithm is implemented to calculate the power series about
(β1, β2) = (0, 0), the algorithm can be reused for the calculation of
the power series about (β1, β2) = (0, 1), using the symmetry of the
system. By not exploiting the symmetry, one would need to imple-
ment a new algorithm from the power series about (β1, β2) = (0, 1).

5.7 Numerical examples

In Figures 5.10 and 5.11 we show the performance of the truncated
power series at the M -th order coefficient centered around (1, 0).
The ∼ is used to denote the polynomials that are calculated using
the symmetric system (i.e. power series about (β1, β2) = (1, 1)) and
are drawn in thicker lines. The setting is exactly the same as in
Figures 5.3 and 5.4. The observations are also analogous. We have
good performance near the expansion points see the top left and
bottom right graph of Figure 5.10 and the bottom right graph of
Figure 5.11.

Now that we have power series approximations for every ver-
tex of the (β1, β2) space, the task of combining them in one sin-
gle approximation that is accurate for the complete space is posed.
We can easily think of an extension of the Padé approximants in
this two-dimensional setting, these are rational functions with two-
dimensional polynomials in numerator and denominator. However,

164 CHAPTER 5. THREE CLASSES

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

M=2, ~
M=3, ~

(a) w̄2(β1, 0)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(β1, 0.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(β1, 0.8)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(β1, 1)

Figure 5.10: Truncated power series for w̄2(β1, β2) with N = 16,
λT = 0.9, α1 = 0.4, α2 = 0.3. The ∼ indicates the cases where we
used the symmetric system.

CHAPTER 5. THREE CLASSES 165

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

M=2, ~
M=3, ~

(a) w̄2(0, β2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(0.2, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(0.8, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(1, β2)

Figure 5.11: Truncated power series for w̄2(β1, β2) with N = 16,
λT = 0.9, α1 = 0.4, α2 = 0.3. The ∼ indicates the cases where we
used the symmetric system.

166 CHAPTER 5. THREE CLASSES

these two-dimensional Padé approximants are non-trivial to work
with. A first big challenge is that much more unknowns are involved
in determining the Padé approximants, which makes it computation-
ally intensive and quickly intractable. For instance if, we use the
four different power series truncated at M = m + n = 2, i.e., with
constant term and terms of order β1, β2, β

2
1 , β1β2, β

2
2 , we thus have

24 parameters. As such, we require a Padé approximant with 24 un-
knowns. The second challenge is that the notion of singularities for
two-dimensional functions is much more complex. Algorithm 4.1 is
thus not simply extended for the two-dimensional functions, as the
filtering of valid approximations is non-trivial.

The derivation of a good approximation for the complete (β1, β2)
space deserves a study on its own. As such, we do not explore this
line of research further in this dissertation. As a teaser, we did build a
Padé approximant with 15 coefficients in the numerator and 9 in the
denominator, that match the 24 coefficients of the four power series
truncated at M = 2. Another Padé approximant with 21 coefficients
in the numerator and 19 in the denominator was calculated from the
truncated power series at M = 3. The result of these approximants
is shown in Figures 5.12 and 5.13, together with the simulated results
for comparison. For the Padé approximant with M = 2, we clearly
see the consequences of the possibility of having singularities in the
Padé approximant, i.e. some of the graphs show that the approximant
has a pole. By coincidence the Padé approximant for M = 3 has no
singularities, furthermore, we see that in most cases the approximant
is reasonably accurate.

CHAPTER 5. THREE CLASSES 167

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

(a) w̄2(β1, 0)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(β1, 0.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(β1, 0.8)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(β1, 1)

Figure 5.12: Padé approximants for w̄2(β1, β2) with N = 16, λT =
0.9, α1 = 0.4, α2 = 0.3.

168 CHAPTER 5. THREE CLASSES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M=2
M=3

(a) w̄2(0, β2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) w̄2(0.2, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

(c) w̄2(0.8, β2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

(d) w̄2(1, β2)

Figure 5.13: Padé approximants for w̄2(β1, β2) with N = 16, λT =
0.9, α1 = 0.4, α2 = 0.3.

“Stel niet uit tot morgen wat je heden
kunt doen.“

— Marijke Pattyn

6
Direct calculation of mean

performance measures

In the previous two chapters, we have calculated a power series for the
mean unfinished work of a GPS queueing system. This power series
was derived from the power series of the joint pgf of the unfinished
work in the queues. The conversion from a power series of the pgf
to a power series of the means led to heavy use of l’Hôpital’s rule.
Together with the recursive nature of the power series this led to a
limitation on the number of calculable coefficients in the power series.
In this chapter, we therefore study the two-class model again but try
to directly calculate the means from the system equations without
passing through the probability generating functions.

In order to not overcomplicate the analysis, we restrict the arrival
process to a bivariate Bernoulli process, that we summarize as follows:

Pr[a1,k = m, a2,k = n] = pmn,

p00 + p01 + p10 + p11 = 1,

whereby m,n = 1, 2 and aj,k denotes the number of class-j (j = 1, 2)
arrivals in slot k. Pr[a1,k = m, a2,k = n] with m or n greater than
1 equals zero. The total load is equal to p01 + p10 + 2p11. Note
that the restriction of the arrival process to this special case does not
eliminate the major difficulties in the analysis of the GPS-model, but
rather allows us to focus on finding solutions for these difficulties.

169

170 CHAPTER 6. DIRECT CALCULATION OF MEAN

We start from the system equations and directly transform them
to expressions for the mean values of the unfinished work. The ex-
pressions for the mean unfinished work are not fully specified, they
contain unknown probabilities. By expanding all unknowns as their
power series in β, we derive an iterative procedure to calculate the
coefficients in the power series of the mean unfinished work. This is
mainly done in Section 6.1. To eliminate all unknowns, the power
series coefficients of some joint unfinished work probabilities are also
required. These are calculated from the state diagram in Section 6.2.
We also prove that the probability of having l customers in queue 2
is of O(βl−1) for l > 0. This proof is key to the solution and resulting
algorithm.

In Section 6.3, we evaluate the numerical complexity of the result-
ing algorithm. Calculating the power series of the mean unfinished
work of a certain class up to the M -th coefficient is of O(M3). This
method certainly allows us to calculate more coefficients in the series
than our previous method via the generating function. Having more
coefficients enables us to estimate the dominant singularities limiting
the convergence radius of the series. In return, combining the knowl-
edge of these singularities and having more coefficients allows us to
build better approximations. In general, the area of convergence may
not include the complete interval [0, 1]. Therefore, the utility of the
approximation has to be extended outside the convergence area of
the power series to cover the whole interval of interest β = [0, 1].
Building this approximation and evaluating its performance is done
in Section 6.4.

6.1 Analysis mean unfinished work

In this section, we derive equations for the mean unfinished work in
both queues starting from the system equations. These equations en-
tail partials of these means and as a result are not directly solvable.
By writing all unknowns as their power series in β, we show that it is
possible to solve for the coefficients of interest. The end result of this
section is an iterative procedure to calculate higher-order coefficients
of the mean unfinished work of a certain class. The expressions for
these coefficients are a function of coefficients of unknown probabili-
ties; eliminating these is the subject of the next section.

We write the mean unfinished work of queue j as: E[wj] =∑∞
n=0 E[wj]nβ

n. With 1C defined as the indicator function which
equals 1 if condition C is true and 0 otherwise, we formulate our first
theorem.

CHAPTER 6. DIRECT CALCULATION OF MEAN 171

Theorem 6.1. The coefficients for the power series of the mean
unfinished work satisfy:

−(p10 + p11)E[w1]n

=

{
(p10 + p11)(1− p10 − p11)− E[w11w2=0]0, n = 0

−E[w1]n−1 − E[w11w2=0]n + E[w11w2=0]n−1, otherwise

(1−p01 − p11)E[w2]n

=

{
(p01 + p11)(1− p01 + p11), n = 0

E[w2]n−1 − E[w21w1=0]n−1, otherwise

Proof. We start by reformulating the system equations for the unfin-
ished work that were listed in Section 1.3, using the indicator func-
tion. We have{

w1,k+1 = a1,k + w1,k − 1w1,k>0,w2,k=0 − 1w1,k>0,w2,k>0,rk<β

w2,k+1 = a2,k + w2,k − 1w1,k=0,w2,k>0 − 1w1,k>0,w2,k>0,rk>β .

(6.1)

In these equations rk denotes the decision variable that we used before
and that is generated in slot k from a uniform distribution in [0, 1].
When rk ≤ β queue 1 is served (i.e. with probability β) and when
rk > β queue 2 is served (i.e. with probability 1−β), given that both
classes are backlogged (w1,k > 0, w2,k > 0).

Taking the limit of (6.1) for k →∞ and calculating the expected
value of both sides, eliminates E[wj]. This step does therefore not lead
to expressions for the mean unfinished work in both queues in steady
state directly, they do however provide some valuable equations:

0 = (p10 + p11)− Pr[w1 > 0, w2 = 0]− β Pr[w1 > 0, w2 > 0], (6.2)

0 = (p01 + p11)− Pr[w1 = 0, w2 > 0]− (1− β) Pr[w1 > 0, w2 > 0].

Secondly, we take the expected values of the squares of both sides
of equations (6.1). The first equation yields:

E[w2
1] =E[(a1 + w1 − 1w1>0,w2=0 − 1w1>0,w2>0,r<β)2]

=E[w2
1] + E[a2

1] + Pr[w1 > 0, w2 = 0] + β Pr[w1 > 0, w2 > 0]

+ 2E[a1]E[w1]− 2E[w11w2=0]− 2βE[w11w2>0]

− 2E[a1] Pr[w1 > 0, w2 = 0]− 2E[a1]β Pr[w1 > 0, w2 > 0].

Eliminating E[w2
1] and using (6.2), we find

(β − p10−p11)E[w1] (6.3)

= (p10 + p11)(1− p10 − p11)− (1− β)E[w11w2=0].

172 CHAPTER 6. DIRECT CALCULATION OF MEAN

Analogous for queue 2, we get from the second equation of (6.1):

(1− β − p01−p11)E[w2] (6.4)

=(p01 + p11)(1− p01 + p11)− βE[w21w1=0].

Lastly, we write E[wj] and E[wj1w3−j=0] as a power series in β,
i.e.

E[wj] =

∞∑
n=0

E[wj]nβ
n,

E[wj1w3−j=0] =

∞∑
n=0

E[wj1w3−j=0]nβ
n.

Doing so, and by equating equal order coefficients in β in (6.3)-(6.4),
we find the equations from the theorem.

In the remainder, we further concentrate on E[w2]. As was dis-
cussed in the previous chapters extensively, E[w1] can be calculated
from the total unfinished work E[wT], or by considering the symmetry
of the system. Yet another alternative, of course, is to extend the re-
mainder of this chapter to calculate E[w1] which is a straightforward
exercise.

Theorem 6.1 provides an equation for E[w2]n but contains the
unknown partial mean E[w21w1=0]n. Given (the power series of)
E[w21w1=0], the power series of E[w2] can be calculated iteratively
using Theorem 6.1. Calculating the coefficients of this partial mean
is the subject of our next theorem.

Theorem 6.2. The coefficients of the partial mean E[w21w1=i] sat-
isfy the expressions on page 173.

Proof. To prove (6.6), we first list the system equation for w2,k+1

given that w1,k+1 = 0:

w2,k+1

=


w2,k + a2,k − 1w2,k>0; w1,k = 0, a1,k = 0

a2,k; w1,k = 1, a1,k = 0, w2,k = 0

w2,k + a2,k; w1,k = 1, a1,k = 0, w2,k > 0, rk < β

If in slot k+1 queue 1 is empty, then in slot k queue 1 was either empty
and had no arrivals (case 1) or had one customer that got served in
that slot and no arrivals (cases 2 and 3). If queue 1 contained one
customer in slot k it gets served either because queue 2 was empty
(case 2) or because of the probabilistic decision of the server (case 3).

CHAPTER 6. DIRECT CALCULATION OF MEAN 173
T

h
e
o
re

m
6
.2

.
T

h
e

co
effi

ci
en

ts
o
f

th
e

pa
rt

ia
l

m
ea

n
E

[w
2
1
w

1
=
i]

sa
ti

sf
y:

•
i

=
0
:

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
0
] 0

=
−
p
0
0

P
r[
w

1
=

0
] 0

+
(p

0
0

+
p
0
1
)
P

r[
w

1
=

0
,w

2
=

0
]
+
p
0
1

P
r[
w

1
=

1
,w

2
=

0
] 0
,

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
0
] n

=
−
p
0
0

P
r[
w

1
=

0
] n

+
(p

0
0

+
p
0
1
)E

[w
2
1
w

1
=
1
] n
−
1

+
p
0
1

(P
r[
w

1
=

1
,w

2
=

0
] n

−
P

r[
w

1
=

1
,w

2
=

0
] n
−
1

+
P

r[
w

1
=

1
] n
−
1

) ,
(6

.6
)

•
i

=
1
:

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
1
] 0

=
(p

0
0

+
p
1
1
)
P

r[
w

1
=

1
,w

2
=

0
] 0

+
p
0
1

P
r[
w

1
=

2
,w

2
=

0
] 0

+
(p

1
0

+
p
1
1
)(E

[w
2
1
w

1
=
0
] 0

+
P

r[
w

1
=

0
,w

2
=

0
]) +

p
1
0

P
r[
w

1
=

0
] 0
−
p
0
0

P
r[
w

1
=

1
] 0
,

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
1
] n

=
(p

0
0

+
p
1
1
)(P

r[
w

1
=

1
,w

2
=

0
] n

−
P

r[
w

1
=

1
,w

2
=

0
] n
−
1

+
P

r[
w

1
=

1
] n
−
1

)
(6

.7
)

+
(p

1
0

+
p
1
1
)(E

[w
2
1
w

1
=
0
] n

+
E

[w
2
1
w

1
=
1
] n
−
1

) +
(p

0
1

+
p
0
0
)(E

[w
2
1
w

1
=
2
] n
−
1
−

E
[w

2
1
w

1
=
1
] n
−
1

)
−
p
0
0

P
r[
w

1
=

1
] n

+
p
1
0

P
r[
w

1
=

0
] n

+
p
0
1

(P
r[
w

1
=

2
] n
−
1

+
P

r[
w

1
=

2
,w

2
=

0
] n

−
P

r[
w

1
=

2
,w

2
=

0
] n
−
1

) ,
•
i
>

1
:

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
i
] 0

=
p
1
0

(P
r[
w

1
=
i
−

1
,w

2
=

0
] 0
−

P
r[
w

1
=
i
−

1
] 0
)

+
(p

0
0

+
p
1
1
)
P

r[
w

1
=
i,
w

2
=

0
] 0

+
p
0
1

P
r[
w

1
=
i

+
1
,w

2
=

0
] 0

+
(p

1
0

+
p
1
1
)E

[w
2
1
w

1
=
i−

1
] 0
−
p
0
0

P
r[
w

1
=
i]
0
,

(1
−
p
0
0
−
p
0
1
)E

[w
2
1
w

1
=
i
] n

=
p
0
1

(P
r[
w

1
=
i

+
1
] n
−
1

+
P

r[
w

1
=
i

+
1
,w

2
=

0
] n

−
P

r[
w

1
=
i

+
1
,w

2
=

0
] n
−
1

)
+

(p
1
0

+
p
1
1
)(E

[w
2
1
w

1
=
i−

1
] n

−
E

[w
2
1
w

1
=
i−

1
] n
−
1

+
E

[w
2
1
w

1
=
i
] n
−
1

) +
(p

0
1

+
p
0
0
)(E

[w
2
1
w

1
=
i+

1
] n
−
1
−

E
[w

2
1
w

1
=
i
] n
−
1

)
+

(p
0
0

+
p
1
1
)(P

r[
w

1
=
i,
w

2
=

0
] n

−
P

r[
w

1
=
i,
w

2
=

0
] n
−
1

+
P

r[
w

1
=
i]
n
−
1

) −p
0
0

P
r[
w

1
=
i]
n

+
p
1
0

(P
r[
w

1
=
i
−

1
,w

2
=

0
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

0
] n
−
1

+
P

r[
w

1
=
i
−

1
] n
−
1
−

P
r[
w

1
=
i
−

1
] n
) ,

(6
.8

)

w
it

h
n
>

0.

174 CHAPTER 6. DIRECT CALCULATION OF MEAN

By using the same steps as in the proof of Theorem 6.1 we find:

(1− p00 − p01)E[w21w1=0] (6.5)

=− p00 Pr[w1 = 0]

+ (p00 + p01)
(

Pr[w1 = 0, w2 = 0] + βE[w21w1=1]
)

+ p01

(
β Pr[w1 = 1] + (1− β) Pr[w1 = 1, w2 = 0]

)
.

The probability of a completely empty system, i.e. Pr[w1 = 0,
w2 = 0], is independent of β and equals 1−λT = 1−p01−p10−2p11.
After expanding all performance measures in (6.5) as power series in
β and equating equal order coefficients (6.6) is obtained.

The parts of the proof for (6.7) and (6.8) are analogous to the
part for (6.6), and are therefore omitted.

Theorem 6.2 provides equations for the power series of E[w21w1=0]
in (6.6). This however introduces the unknown E[w21w1=1]. As such
(6.7) is included which subsequently introduces E[w21w1=2] and so
on. Note that (6.7) cannot be included in (6.8). Setting i = 1 in
(6.8) produces different (and wrong) equations than in (6.7). This is
because the empty state, when both queues are empty comes in to
play in (6.7), i.e. considering state transitions to and from states with
1 customer in queue 1. From the equations in the theorem, we see
the order of the needed coefficients reduces, but higher probabilities
are involved.

Using the theorems presented in this section iteratively, all ex-
pectations (E[·]) can be written as partial expectations of the known
priority case (β = 0), i.e. the 0-th order coefficient. However, the
expressions still contain coefficients of probabilities (for instance of:
Pr[w1 = 0], Pr[w1 = 1], Pr[w1 = 1, w2 = 0], . . .) that we have not
yet calculated. The calculation of these coefficients is the subject of
the next section.

6.2 Analysis of stationary unfinished work
probabilities

In the first part of this section, we calculate probabilities of the form
Pr[w1 = ·]. The process and result is similar to the procedure we
used to calculate E[w21w1=·] in the previous section. The resulting
expressions contain joint probabilities of the unfinished work, the
solution of which is the subject of the second part of this section. To
this end, we construct and analyze the state diagram of the queueing

CHAPTER 6. DIRECT CALCULATION OF MEAN 175

system. From the state diagram, we prove that numerous power series
coefficients of the state probabilities are zero. Using this observation
the last remaining unknowns are eliminated from the expressions for
the coefficients of E[w2], producing a well-defined iterative algorithm
for their calculation.

We start with Pr[w1 = i]:

Theorem 6.3. The coefficients of the probability Pr[w1 = i] satisfy
the expressions on page 177.

Proof. The proof is analogous to the proof of Theorem 6.2. For (6.9),
we start from the system equation (6.1) and do a probability trans-
formation.

Pr[w1,k+1 = 0]

= Pr[a1,k + w1,k − 1w1,k>0,w2,k=0 − 1w1,k>0,w2,k>0,rk<β = 0]

=(p00 + p01)
(

Pr[w1,k = 0] + Pr[w1,k = 1, w2,k = 0]

+ β Pr[w1,k = 1, w2,k > 0]
)

Taking the limit for k → ∞ (steady state), isolating Pr[w1 = 0] and
using the equality Pr[w1 = 1, w2 > 0] = Pr[w1 = 1] − Pr[w1 = 1,
w2 = 0], we find:

(1− p00 − p01) Pr[w1 = 0]

= (p00 + p01)
(

Pr[w1 = 1, w2 = 0]

+ β(Pr[w1 = 1]− Pr[w1 = 1, w2 = 0])
)

Lastly, we expand the probabilities as power series in β and com-
pare terms of equal powers of β. This produces the expressions from
(6.9). Again, to prove equations (6.10) and (6.11) the reasoning is
analogous.

The remaining unknowns in the previous theorems are the coeffi-
cients of joint probabilities Pr[w1 = i, w2 = 0] (i ≥ 1). In the remain-
der of this section, we show how to calculate these. We first construct
the state diagram of the discrete-time Markov chain {(w1,k, w2,k)} in
Figure 6.1. The state diagram continues infinitely to the right and
bottom of the figure. State (0, 1) signifies the state where w1 = 0
and w2 = 1. To avoid overloading the image, we have omitted the
reflexive transitions; for instance state (0, 1) should include a loop to
itself with transition probability p01 so as to make all outgoing transi-
tions sum to 1. Solving the balance equations for Pr[w1 = i, w2 = 0]
is equivalent to solving for all state probabilities of the state dia-
gram. Consequently, we consider the whole state diagram in our

176 CHAPTER 6. DIRECT CALCULATION OF MEAN

Figure 6.1: State diagram, omitting reflexive transitions

CHAPTER 6. DIRECT CALCULATION OF MEAN 177
T

h
e
o
re

m
6
.3

.
T

h
e

co
effi

ci
en

ts
o
f

th
e

p
ro

ba
bi

li
ty

P
r[
w

1
=
i]

sa
ti

sf
y:

•
i

=
0
:

(1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=

0
] 0

=
(p

0
0

+
p
0
1
)
P

r[
w

1
=

1
,w

2
=

0
] 0
,

(6
.9

)

(1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=

0
] n

=
(p

0
0

+
p
0
1
)(P

r[
w

1
=

1
,w

2
=

0
] n

−
P

r[
w

1
=

1
,w

2
=

0
] n
−
1

+
P

r[
w

1
=

1
] n
−
1

) ,
•
i

=
1
: (1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=

1
] 0

(6
.1

0
)

=
(p

0
0

+
p
0
1
)
P

r[
w

1
=

2
,w

2
=

0
] 0

+
(1

−
2
(p

0
0

+
p
0
1
))

P
r[
w

1
=

1
,w

2
=

0
] 0

+
(1

−
p
0
0
−
p
0
1
)
P

r[
w

1
=

0
] 0
,

(1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=

1
] n

=
(p

0
0

+
p
0
1
)(P

r[
w

1
=

2
,w

2
=

0
] n

−
P

r[
w

1
=

2
,w

2
=

0
] n
−
1

+
P

r[
w

1
=

2
] n
−
1

) +
(1

−
p
0
0
−
p
0
1
)
P

r[
w

1
=

0
] n

+
(1

−
2
(p

0
0

+
p
0
1
))
(P

r[
w

1
=

1
] n
−
1

+
P

r[
w

1
=

1
,w

2
=

0
] n

−
P

r[
w

1
=

1
,w

2
=

0
] n
−
1

) ,
•
i
>

1
:

(1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=
i]
0

(6
.1

1
)

=
(p

0
0

+
p
0
1
)
P

r[
w

1
=
i

+
1
,w

2
=

0
] 0

+
(1

−
2
(p

0
0

+
p
0
1
))

P
r[
w

1
=
i,
w

2
=

0
] 0

+
(1

−
p
0
0
−
p
0
1
)(P

r[
w

1
=
i
−

1
] 0
−

P
r[
w

1
=
i
−

1
,w

2
=

0
] 0
) ,

(1
−
p
0
0
−
p
0
1
)
P

r[
w

1
=
i]
n

=
(p

0
0

+
p
0
1
)(P

r[
w

1
=
i

+
1
,w

2
=

0
] n

−
P

r[
w

1
=
i

+
1
,w

2
=

0
] n
−
1

+
P

r[
w

1
=
i

+
1
] n
−
1

)
+

(1
−

2
(p

0
0

+
p
0
1
))
(P

r[
w

1
=
i]
n
−
1

+
P

r[
w

1
=
i,
w

2
=

0
] n

−
P

r[
w

1
=
i,
w

2
=

0
] n
−
1

)
+

(1
−
p
0
0
−
p
0
1
)(P

r[
w

1
=
i
−

1
] n

−
P

r[
w

1
=
i
−

1
] n
−
1

+
P

r[
w

1
=
i
−

1
,w

2
=

0
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

0
] n
−
1

) .
w

it
h
n
>

0.

178 CHAPTER 6. DIRECT CALCULATION OF MEAN

search for Pr[w1 = i, w2 = 0]. We see from the figure that all tran-
sitions from states (·, l − 1) to (·, l) with l > 1 possess a factor β in
their transition probability. As a result the steady state probability
of Pr[w1 = ·, w2 = l] is of O(βl−1).

Lemma 6.1. Pr[w1 = ·, w2 = l] is of O(βl−1) with l ≥ 1 and
Pr[w1 = ·, w2 = 0] =O(1).

The lemma is intuitively understood looking at sample paths to
arrive in state w1 = ·, w2 = l. When β = 0 class 2 has strict priority
and w2 ≤ 1, as at most one packet of each class can arrive in the
same slot (Bernoulli arrivals). For queue 2 to contain l packets the
scheduler had to deviate from the strict priority scheduling minimally
l − 1 times, each time with probability β, which accounts for the
order of Pr[w1 = ·, w2 = l]. This intuitive reasoning is known in
the literature as the n-events rule, stating that for the n-th order
coefficient only sample paths with n or fewer of such events must
be considered [25, 47, 117]. The event in our context refers to the
server making a decision and choosing queue 1 (which happens with
probability β). We now formalize the proof.

Proof. This lemma states that Pr[w1 = ·, w2 = l] is of O(βl−1) for
l > 1. In concreto, this means Pr[w1 = ·, w2 = l]n = 0 for l > 1, n <
l − 1. To this end, we construct the balance equations regarding
column transitions in the state diagram shown in Figure 6.1. For the
transition from l − 1-th to l-th column (l > 1), we get:

(p01 + p11)β
(

Pr[w2 = l − 1]− Pr[w1 = 0, w2 = l − 1]
)

(6.12)

=(p00 + p10)
(

Pr[w1 = 0, w2 = l]

+ (1− β)
(

Pr[w2 = l]− Pr[w1 = 0, w2 = l]
))
.

Subsequently, we write all probabilities as power series in β and
equate equal order coefficients. Now we study the resulting equations
inductively in l, proving the lemma. For the base case, we consider
the constant coefficient of (6.12) with l = 2:

0 = (p00 + p10) Pr[w2 = 2]0.

As Pr[w2 = 2]0 =
∑∞
i=0 Pr[w1 = i, w2 = 2]0 and the constant

coefficient of Pr[w1 = i, w2 = 2] is non-negative (being the prob-
ability in the case β = 0), Pr[w1 = i, w2 = 2]0 = 0. Therefore
Pr[w1 = i, w2 = 0] =O(β) and this ends the proof of base case.

CHAPTER 6. DIRECT CALCULATION OF MEAN 179

The induction hypothesis states Pr[w1 = ·, w2 = l′]n = 0 for
l′ > 1, n < l′ − 1 and l′ < l. In this inductive step, we consider the
coefficients in (6.12). For the constant coefficient, this gives:

0 = (p00 + p10) Pr[w2 = l]0,

proving Pr[w1 = ·, w2 = l]0 = 0. For the coefficient of βn, 0 < n <
l − 1, we write:

(p01 + p11)
(

Pr[w2 = l − 1]n−1 − Pr[w1 = 0, w2 = l − 1]n−1

)
=(p00 + p10)

(
Pr[w2 = l]n − Pr[w2 = l]n−1

+ Pr[w1 = 0, w2 = l]n−1

)
.

The left hand side equals zero as a result of the induction hypothesis.
For n = 1, the last two terms of the right-hand side (Pr[w2 = l]0,
Pr[w1 = 0, w2 = l]0) are already known to be 0. Consequently,
Pr[w2 = l]1 = 0 =

∑∞
i=0 Pr[w1 = i, w2 = l]1. Furthermore, Pr[w1 = ·,

w2 = l]1 should be positive or zero, as smaller order coefficients equal
zero and the first non-zero coefficient determines the sign of the power
series for infinitesimal β, which should be positive being a probabil-
ity. As such, Pr[w1 = ·, w2 = l]1 = 0. This reasoning can iteratively
be continued for n < l − 1, proving Pr[w1 = ·, w2 = l]n = 0 for
l > 1, n < l − 1.

As a consequence of this lemma numerous coefficients of the power
series in β of the state probabilities equal zero. In Figure 6.2, we show
a 3-dimensional plot indicating with crosses where Pr[w1 = i, w2 = l]n
is non-zero.

We now consider the balance equations for each state in the state
diagram. We observe that for the balance equation of each state in
row i of the state diagram all terms including Pr[w1 = i+ 1, w2 = ·]
have a factor β except for Pr[w1 = i + 1, w2 = 0]. After expand-
ing all probabilities as power series in β and equating equal or-
der coefficients, we end up with equations for Pr[w1 = i, w2 = l]n
(l > 0) and Pr[w1 = i + 1, w2 = 0]n only containing coefficients
Pr[w1 = i′, w2 = l]n′ of either lower order (n′ < n) or on a higher row
in the state diagram (i′ ≤ i). As the amount of non-zero coefficients
for βn of the probabilities of states on the same row is finite, we can
iteratively calculate equal-order coefficients row-by-row starting from
the top using coefficients from a lower order. This effectively sums
up an iterative procedure to calculate all power series coefficients for
the state probabilities of the state diagram. We list the resulting
expressions on pages 181-182.

180 CHAPTER 6. DIRECT CALCULATION OF MEAN

 0

 2

 4

 0 1 2 3 4 5

 1

 2

 3

 4

 5

n

w1

w2

n

Figure 6.2: Diagram of non-zero coefficients Pr[w1 = i, w2 = l]n
(crosses), the circled coefficients are needed to calculate Pr[w1 = 2,
w2 = 3]4 indicated by the solid disk.

CHAPTER 6. DIRECT CALCULATION OF MEAN 181
P

r[
w

1
=
i

+
1
,w

2
=

0]
an

d
P

r[
w

1
=
i,
w

2
=

1
]

•
i

=
0
: P

r[
w

1
=

0
,w

2
=

1
] n

=
p
0
1

p
0
0

P
r[
w

1
=

0
,w

2
=

0
] n

+
p
0
0

(P
r[
w

1
=

0
,w

2
=

2
] n

+
P

r[
w

1
=

1
,w

2
=

1
] n
−
1

)
(6

.1
3
)

P
r[
w

1
=

1
,w

2
=

0
] n

=
1
−
p
0
0
−
p
0
1

p
0
0

P
r[
w

1
=

0
,w

2
=

0
] n

−
p
0
0

(P
r[
w

1
=

0
,w

2
=

2
] n

+
P

r[
w

1
=

1
,w

2
=

1
] n
−
1

)
•
i

=
1
:

P
r[
w

1
=

2
,w

2
=

0
] n

=
−
p
1
0
(1

−
p
0
1
)
−
p
1
1
p
0
0

p
2 0
0

P
r[
w

1
=

0
,w

2
=

0
] n

+
(1

−
p
1
0
)
P

r[
w

1
=

1
,w

2
=

1
] n
−
1

(6
.1

4
)

+
1
−
p
0
1

p
0
0

P
r[
w

1
=

1
,w

2
=

0
] n

−
p
1
0

P
r[
w

1
=

0
,w

2
=

2
] n

−
p
0
0

(P
r[
w

1
=

1
,w

2
=

2
] n

−
P

r[
w

1
=

1
,w

2
=

2
] n
−
1

+
P

r[
w

1
=

2
,w

2
=

1
] n
−
1

)
P

r[
w

1
=

1
,w

2
=

1
] n

=
p
1
1
p
0
0
−
p
1
0
p
0
1

p
2 0
0

P
r[
w

1
=

0
,w

2
=

0
] n

+
p
1
0

P
r[
w

1
=

1
,w

2
=

1
] n
−
1

+
p
1
0

P
r[
w

1
=

0
,w

2
=

2
] n

+
p
0
1

p
0
0

P
r[
w

1
=

1
,w

2
=

0
] n

+
p
0
0

(P
r[
w

1
=

1
,w

2
=

2
] n

−
P

r[
w

1
=

1
,w

2
=

2
] n
−
1

+
P

r[
w

1
=

2
,w

2
=

1
] n
−
1

)
•
i
>

1
:

P
r[
w

1
=
i,
w

2
=

1
] n

=
p
1
1
p
0
0

+
p
0
1
(1

−
p
1
0
)

p
0
0

P
r[
w

1
=
i,
w

2
=

0
] n

(6
.1

5
)

+
p
1
1
p
0
0
−
p
1
0
p
0
1

p
0
0

(P
r[
w

1
=
i
−

1
,w

2
=

1
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

1
] n
−
1

)
+
p
0
0

(P
r[
w

1
=
i,
w

2
=

2
] n

−
P

r[
w

1
=
i,
w

2
=

2
] n
−
1

+
P

r[
w

1
=
i

+
1
,w

2
=

1
] n
−
1

)
+
p
1
0

(P
r[
w

1
=
i
−

1
,w

2
=

2
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

2
] n
−
1

+
P

r[
w

1
=
i,
w

2
=

1
] n
−
1

)
P

r[
w

1
=
i

+
1
,w

2
=

0
] n

=
(1

−
p
1
0
)(

1
−
p
0
1
)
−
p
1
1
p
0
0

p
0
0

P
r[
w

1
=
i,
w

2
=

0
] n

+
(1

−
p
1
0
)
P

r[
w

1
=
i,
w

2
=

1
] n
−
1

182 CHAPTER 6. DIRECT CALCULATION OF MEAN

+
−
p
1
0
(1

−
p
0
1
)
−
p
1
1
p
0
0

p
0
0

(P
r[
w

1
=
i
−

1
,w

2
=

1
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

1
] n
−
1

)
−
p
0
0

(P
r[
w

1
=
i,
w

2
=

2
] n

−
P

r[
w

1
=
i,
w

2
=

2
] n
−
1

+
P

r[
w

1
=
i

+
1
,w

2
=

1
] n
−
1

)
−
p
1
0

(P
r[
w

1
=
i
−

1
,w

2
=

2
] n

−
P

r[
w

1
=
i
−

1
,w

2
=

2
] n
−
1

)
P

r[
w

1
=
i,
w

2
=
l]
n

w
it

h
l
>

1

•
i

=
0
:

P
r[
w

1
=

0
,w

2
=
l]
n

=
p
0
1

1
−
p
0
1

P
r[
w

1
=

1
,w

2
=
l
−

1
] n
−
1

+
p
0
0

1
−
p
0
1

(P
r[
w

1
=

0
,w

2
=
l
+

1
] n

+
P

r[
w

1
=

1
,w

2
=
l]
n
−
1

)
(6

.1
6
)

•
i

=
1
:

P
r[
w

1
=

1
,w

2
=
l]
n

=
p
0
1

1
−
p
0
1

P
r[
w

1
=

2
,w

2
=
l
−

1
] n
−
1

+
p
1
0
−
p
0
1

1
−
p
0
1

P
r[
w

1
=

1
,w

2
=
l]
n
−
1

(6
.1

7
)

+
p
0
0

1
−
p
0
1

(P
r[
w

1
=

2
,w

2
=
l]
n
−
1

+
P

r[
w

1
=

1
,w

2
=
l
+

1
] n

−
P

r[
w

1
=

1
,w

2
=
l
+

1
] n
−
1

)
+

p
1
0

1
−
p
0
1

P
r[
w

1
=

0
,w

2
=
l
+

1
] n

+
p
1
1

1
−
p
0
1

(P
r[
w

1
=

1
,w

2
=
l
−

1
] n
−
1

+
P

r[
w

1
=

0
,w

2
=
l]
n

)
•
i
>

1
: P
r[
w

1
=
i,
w

2
=
l]
n

=
p
0
1

1
−
p
0
1

P
r[
w

1
=
i

+
1
,w

2
=
l
−

1
] n
−
1

+
p
1
0
−
p
0
1

1
−
p
0
1

P
r[
w

1
=
i,
w

2
=
l]
n
−
1

(6
.1

8
)

+
p
0
0

1
−
p
0
1

(P
r[
w

1
=
i

+
1
,w

2
=
l]
n
−
1

+
P

r[
w

1
=
i,
w

2
=
l
+

1
] n

−
P

r[
w

1
=
i,
w

2
=
l
+

1
] n
−
1

)
+

p
1
0

1
−
p
0
1

(P
r[
w

1
=
i
−

1
,w

2
=
l
+

1
] n

−
P

r[
w

1
=
i
−

1
,w

2
=
l
+

1
] n
−
1

)
+

p
1
1

1
−
p
0
1

(P
r[
w

1
=
i,
w

2
=
l
−

1
] n
−
1

+
P

r[
w

1
=
i
−

1
,w

2
=
l]
n
−

P
r[
w

1
=
i
−

1
,w

2
=
l]
n
−
1

)

CHAPTER 6. DIRECT CALCULATION OF MEAN 183

To illustrate the construction of these expressions, we provide a
small example of the process described above. In the example, we
calculate expressions for Pr[w1 = 0, w2 = 1]0, Pr[w1 = 1, w2 = 0]0,
Pr[w1 = 0, w2 = 1]1, Pr[w1 = 1, w2 = 0]1, Pr[w1 = 0, w2 = 2]1,
Pr[w1 = 1, w2 = 1]0. We start with the construction of the balance
equations for states (0, 0) and (0, 1), i.e.:

Pr[w1 = 0, w2 = 0] =p00

(
Pr[w1 = 1, w2 = 0] + Pr[w1 = 0, w2 = 1]

+ Pr[w1 = 0, w2 = 0]
)
,

Pr[w1 = 0, w2 = 1] =p00

(
Pr[w1 = 0, w2 = 2] + β Pr[w1 = 1, w2 = 1]

)
+
p01

p00
Pr[w1 = 0, w2 = 0].

Pr[w1 = 0, w2 = 0] is known and equals 1− p01 − p10 − 2p11. Subse-
quently, we expand all probabilities as their power series in β, equate
corresponding coefficients and solve the system of equations for the
unknowns. This gives:

Pr[w1 = 0,w2 = 1]n =
p01

p00
Pr[w1 = 0, w2 = 0]n

+ p00

(
Pr[w1 = 0, w2 = 2]n + Pr[w1 = 1, w2 = 1]n−1

)
,

Pr[w1 = 1,w2 = 0]n =
1− p00 − p01

p00
Pr[w1 = 0, w2 = 0]n

− p00

(
Pr[w1 = 0, w2 = 2]n + Pr[w1 = 1, w2 = 1]n−1

)
,

where we also introduced the convention that Pr[w1 = ·, w2 = ·]n with
n < 0 equals zero. The constant coefficients are easily calculated by
plugging in n = 0 as Pr[w1 = 0, w2 = 2] is of O(β) and Pr[w1 = 1,
w2 = 1]−1 = 0:

Pr[w1 = 0, w2 = 1]0 =
p01

(
1− p01 − p10 − 2p11

)
p00

,

Pr[w1 = 1, w2 = 0]0 =

(
1− p00 − p01

)(
1− p01 − p10 − 2p11

)
p00

.

For the linear coefficients we have:

Pr[w1 = 0,w2 = 1]1

=p00

(
Pr[w1 = 0, w2 = 2]1 + Pr[w1 = 1, w2 = 1]0

)
,

Pr[w1 = 1,w2 = 0]1

=− p00

(
Pr[w1 = 0, w2 = 2]1 + Pr[w1 = 1, w2 = 1]0

)
.

184 CHAPTER 6. DIRECT CALCULATION OF MEAN

From the balance equation for state (0, 2) we further get:

Pr[w1 = 0, w2 = 2]1 =
p01

1− p01
Pr[w1 = 1, w2 = 1]0.

Lastly for Pr[w1 = 1, w2 = 1]0, from the balance equations for the
second row (states (1, 0) and (1, 1)), we expand:

p00

(
Pr[w1 = 2, w2 = 0]0 + Pr[w1 = 1, w2 = 1]0

)
= Pr[w1 = 1, w2 = 0]0 + p10

(
Pr[w1 = 0, w2 = 0]0

+ Pr[w1 = 1, w2 = 0]0 + Pr[w1 = 0, w2 = 1]0
)
,

(1− p01) Pr[w1 = 1, w2 = 1]0 − p01 Pr[w1 = 2, w2 = 0]0

=p11

(
Pr[w1 = 0, w2 = 0]0 + Pr[w1 = 1, w2 = 0]0

+ Pr[w1 = 0, w2 = 1]0
)
.

Solving this system of equations, we find:

Pr[w1 = 1, w2 = 1]0 =
p01

p00
Pr[w1 = 1, w2 = 0]0

+
p00p11 − p01p10

p2
00

Pr[w1 = 0, w2 = 0]0.

In this small example, we calculated expressions for Pr[w1 = 0,
w2 = 1]0, Pr[w1 = 1, w2 = 0]0, Pr[w1 = 0, w2 = 1]1, Pr[w1 = 1,
w2 = 0]1, Pr[w1 = 0, w2 = 2]1, Pr[w1 = 1, w2 = 1]0 that are only a
function of the input parameters (and of each other). Continuing this
pattern all coefficients of each state can be calculated. The result of
that process are the expressions listed in (6.13)-(6.18). Each resulting
expression contains only coefficients of state probabilities in such a
way that in a finite number of successive substitutions an expression
is obtained that is an exclusive function of the input parameters.

6.3 Summary of the algorithm and nu-
merical complexity

In this section, we take a closer look at the algorithm resulting from
the formulas. We derive the numerical complexity to estimate the
scaling behavior of the algorithm. Furthermore, we list which mea-
sures need to be calculated to obtain the M -th coefficient of E[w2].

To calculate E[w2]M , we see from the theorems that all coeffi-
cients of lower order of E[w2] are needed (E[w2]j : ∀j < M). Fur-
thermore, E[w21w1=i]j and Pr[w1 = i]j for j < M and i < M − j are

CHAPTER 6. DIRECT CALCULATION OF MEAN 185

needed. During these calculations, numerous joint probability coef-
ficients Pr[w1 = i, w2 = l]n are required for which the calculation in
turn requires more joint probability coefficients. For instance to cal-
culate Pr[w1 = 2, w2 = 3]4 indicated by the solid disk in Figure 6.2,
all coefficients indicated by circles, need to be calculated. This is
done using the equations presented in (6.13)-(6.18).

It is thus clear that the complexity to calculate E[w2]M is of the
same complexity as calculating the complete power series of E[w2]
up to the M -th coefficient. This calculation is summarized in Algo-
rithm 6.1. The algorithm requires a cache to store the values calcu-
lated in the last two top-level iterations. For instance calculations
in iteration j require values calculated in iterations j − 1 and j − 2.
Calculating the coefficients in ascending order avoids the need to re-
member all previously calculated values and thus minimizes memory
consumption. Lastly, from the three levels deep for-loop in Algo-
rithm 6.1, we derive that the algorithm is of O(M3).

Calculate E[w2]0
for i = 1 to M do
/* calculate joint probabilities using

(6.13)-(6.18) */

for n = 0 to i− 1 do
for l = 1 to n+ 1 do

Calculate Pr[w1 = i− n− 1, w2 = l]n
end for

end for
/* calculate probabilities using Theorem 6.3 */

for n = 0 to i− 1 do
Calculate Pr[w1 = i− n− 1]n

end for
/* calculate partial means using Theorem 6.2 */

for n = 0 to i− 1 do
Calculate E[w21w1=i−n−1]n

end for
Calculate E[w2]i

end for

Algorithm 6.1: Algorithm to calculate the power series of
E[w2] up to the M -th coefficient.

186 CHAPTER 6. DIRECT CALCULATION OF MEAN

6.4 Numerical continuation of the power
series

All techniques involving a Taylor series expansion at a certain value of
one of the system parameters pose the same challenge of constructing
a good approximation from it. The challenge is twofold [62,74,128]. A
first part is deriving the radius of convergence of the power series. The
power series of a given function is centered around a certain point and
the radius of convergence of that series is the largest disk around that
point for which the series converges and equals that given function1.
A second part of the challenge is extending an approximation outside
this convergence radius. In this section, we address both parts of this
challenge.

One simple heuristic for determining the radius of convergence is
by checking if the power series still converges by verifying if the result
does not change significantly by for instance doubling the number of
coefficients [65]. The radius of convergence is limited by the singular-
ity closest to the expansion point. Deriving these singularities from
the power series is non-trivial. Some methods are Domb-Sykes [53]
for a single singularity on the real axis or Hunter and Guerrieri [77]
for a pair of complex conjugate singularities. Other methods are also
referenced in those two papers.

For our algorithm, we start by looking at the raw performance
of the truncated power series. The results from sections 6.1 and 6.2
provide us with all necessary equations for the iterative calculation of
the coefficients of the power series in β of E[w2]. In Figure 6.3a, we

compare the truncated power series for E[w2], i.e.:
∑M
n=0 E[w2]nβ

n,
with simulation results for an example with arrival parameters p00 =
0.46; p01 = 0.12; p10 = 0.06; p11 = 0.36. These simulation results
were obtained for 101 equally spaced values of β. From the graphs,
we see that the approximations are extremely accurate for β < 0.5.
For β > 0.5, we approach (and cross) the border of the convergence
radius for the power series. The power series diverges in that region
and no longer equals E[w2]; thus for higher M the performance of the
power series deteriorates. As such the truncated power series does
not provide good results for all values β ∈ [0, 1].

A partial solution is to use the symmetry of the queueing system at
hand, as was extensively discussed before. We define the tilde-system,
which is the symmetric system, whereby class-1 customers are sent to

1Note that for the power series in Chapter 4 and Chapter 5 we could only
calculate the first few coefficients. In those cases accurately determining the
radius of convergence from the power series coefficients is impossible.

CHAPTER 6. DIRECT CALCULATION OF MEAN 187

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

E
[w

2
]

β

sim
N=5

N=10
N=20
N=30
N=40
N=50

(a) Regular system

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

β

sim
N=5

N=10
N=20
N=30
N=40
N=50

(b) Symmetric system

Figure 6.3: Comparison of simulation with power series result.

queue 2 and vice-versa, i.e.: p̃00 = p00; p̃10 = p01; p̃01 = p10; p̃11 = p11.
In this system E[w̃1] for β̃ = 1−β equals E[w2] in the regular system.
Via this symmetric system, we calculate the power series for E[w2]
in β = 1. This produces the result from Figure 6.3b, where we
observe the same problem as in Figure 6.3a. We conclude that, in
this example, the convergence radius of the power series of E[w2] both
in β = 0 and β = 1 is smaller than 1.

If E[w2] is only required for a single value of β the easiest approx-
imation is checking if the power series of either the regular or sym-
metric (tilde) system converges for this β value. This convergence is
most easily tested by verifying the change of doubling the number of
coefficients, as mentioned before. If β is however outside/very close
to the radius of convergence of both systems or we require a single
approximation for the full β spectrum, none of both truncated power
series deliver satisfactory results.

To extend the approximation beyond the radius of convergence
of the power series (also known as numerical continuation), we have
already demonstrated the use of Padé approximants in the previous
chapters. For higher M the Padé approximants have numerous un-
knowns and calculating them is computationally intensive (we were
only able to calculate Padé approximants up to N = 6). Furthermore,
it worsens the problems with local extrema and poles as described in
Section 4.3.

Another method for numerical continuation is to find the exact

188 CHAPTER 6. DIRECT CALCULATION OF MEAN

location of the singularities that limit the convergence radius and
use this knowledge explicitily to our advantage. In this example, the
power series have convergence radii smaller than 1; as such there
needs to be a singularity inside the unit circle. Given the nature
of the function at hand, E[w2] defined everywhere for β ∈ [0, 1], a
singularity in the real interval [0, 1] is impossible. Assuming the sin-
gularity limiting the convergence radius is a conjugate, complex pair
of singularities inside the unit circle, we estimate the position of these
singularities from the power series. To this end, we use the method
of Hunter and Guerrieri [77] together with the notes of Corliss [43].
The result of this method is an estimate of R and θ, the norm and
argument of one of the singularities. Clearly, the complex conjugate
has the same norm R which also equals the convergence radius of the
power series and an opposite argument, −θ. Furthermore, Hunter
and Guerrieri estimate ν which is an index describing the nature of
the singularity. We write for β in the neighborhood of R:

E[w2] ≈ K(β −R · eıθ)ν(β −R · e−ıθ)ν ,

with ı the complex unit and K a constant.
For the power series of E[w2] in β = 1 (calculated via the sym-

metric case as described earlier), we can also search for the dominant
singularities. This results in an R′, θ′ and ν′. In all examples we
tested we found that R = R′, θ = θ′ and ν = ν′. This means
that there are precisely 2 conjugate and complex singularities with
R cos θ < 1. If more singularities existed with real part in [0, 1] one
of both (β = 0 and β = 1) power series would indeed yield a differ-
ent dominant singularity. However, we were not able to prove only
two conjugate dominant singularities exist for all possible cases. In
the remainder, we assume this result is true in general, nonetheless
the remainder is easily extended to incorporate 2 pairs of conjugate
singularities.

Subsequently, we construct an approximation method from these
singularities. We reuse the principle of Padé approximants and en-
force an approximation of rational form that (1) matches the first
M coefficients of the power series in both endpoints and (2) has the
correct singularities. As such, we obtain a new and simple approxi-
mation of the form: ∑2M+1

j=0 cjβ
j

(β −R · eıθ)−ν(β −R · e−ıθ)−ν
. (6.19)

The denominator is calculated using the Hunter and Guerrieri method,
the variables cj in the numerator are calculated in such a way to

CHAPTER 6. DIRECT CALCULATION OF MEAN 189

match the values and first M derivatives of E[w2] in both β equal to
0 and 1.

In Figure 6.4, we compare the approximations from Padé approx-
imants and the approximant of the form of equation (6.19) with sim-
ulation results. The Padé approximants are shown on the left side
and the titles in the legend use our normal nomenclature, i.e., [degree
of numerator / degree of denominator]. The approximants match the
first 6 coefficients of the power series in β = 0 and β = 1. The re-
sult of Algorithm 4.1 (i.e. filtering invalid approximants with poles
or extrema and averaging the remaining approximants) is displayed
on the right of Figure 6.4 together with the approximant of the form
of equation (6.19). This last approximation includes the singularities
found with the method of Hunter and Guerrieri’s method (to find
R, θ and ν) and is executed using the coefficients of the power se-
ries of E[w2] from order 10 to order 50. Furthermore, M is chosen
equal to 5, such that 6 coefficients are matched on both sides of the
approximation (like for the Padé approximant).

Clearly the result from the Padé approximants is better than
in Section 4.4, as we are now able to calculate more coefficients in
the power series (than via the generating function) and thus match
more coefficients. Our newly constructed approximation method
from equation (6.19) does not always perform better than the av-
erage of the valid Padé approximants, as for instance in Figure 6.4a.
In fact, for that example both approximations on the right are not
symmetric (point-symmetry for β = 0.5), which should be the case
as the arrival process is completely symmetric (p01 = p10). In those
symmetric cases there is definitely room for improvement by enforc-
ing this symmetry of the result in the construction of Padé approxi-
mants or the form of equation (6.19). For the examples in Figure 6.4b
and 6.4c the approximation including the singularities in the approx-
imation performs better than the Padé approximants, proving that
this approach certainly has its value.

190 CHAPTER 6. DIRECT CALCULATION OF MEAN

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

E
[w

2
]

sim
[0/11]
[1/10]

[2/9]
[3/8]
[4/7]
[5/6]
[6/5]
[7/4]
[8/3]
[9/2]

[10/1]
[11/0]

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

sim
Padé avg valid

singularities approx

(a) p00 = 0.55; p01 = p10 = 0; p11 = 0.45

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

E
[w

2
]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

(b) p00 = 0.46; p01 = 0.12; p10 = 0.06; p11 = 0.36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

E
[w

2
]

β

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

β

(c) p00 = 0.36; p01 = p10 = 0.24; p11 = 0.16

Figure 6.4: Comparison of simulation with (left) Padé approximants
matching 6 coefficients on both sides and (right) average of valid Padé
approximants & approximation including the singularities of the form
of equation (6.19) also matching 6 coefficients on both sides.

“De laatste koe doet de deur toe.“

— Germaine Deryckere

7
Conclusions

In this dissertation, we studied a discrete-time, probabilistic imple-
mentation of Generalized Processor Sharing. This is a scheduler that
can be used to schedule the service of several classes of customers
with the goal to achieve service differentiation. This service differen-
tiation, in turn, makes it possible to guarantee a sufficient Quality of
Service for the different customer classes in the system. The analysis
and optimization of GPS schedulers is known to be very difficult even
for the most elementary arrival processes. Few analytical results are
available and they are mostly limited to the boundary cases, where
the GPS scheduler in fact degenerates to a priority scheduler.

First, we defined the two-class model. In this model, in case of
contention, class-1 (class-2) is served with probability β (1−β). In all
other cases, the backlogged class (if any) is served. Furthermore, we
considered a general arrival process that is identical and independent
from slot to slot whereby every customer requires a single slot of
service. In Chapter 2, we first proved two important properties about
the performance measures of the system. We proved that (1) the
system is work-conserving, i.e. the total amount of unfinished work
in the system is independent of β and (2) that the mean unfinished
work of class 2 (class 1) is a monotonically increasing (decreasing)
function of β.

Using these important properties, we showed that it is possible
to study the behavior and the optimum of any objective function

191

192 CHAPTER 7. CONCLUSIONS

that is a function of the mean unfinished work of both classes. As
we proved that w̄2 and β are related through a bijection, this study
is done in terms of w̄2. Furthermore, we showed that in some cases
it is possible to rewrite an objective function that is a function of
some other performance measure, like the mean delay, as an objective
function in the mean unfinished work.

For a specific class of objective functions, namely a convex com-
bination (with parameter γ) of functions gj of the mean unfinished
work of both classes, we studied the influence of the choice of gj and
γ on the optimum. We proved that if the gj are linear or concave
increasing functions (in the region of interest) that the optimum will
always be in one of the endpoints, i.e. either β = 0 or β = 1 which
correspond to priority cases. If the gj are convex increasing functions,
there is a single optimum in β ∈]0, 1[(pure GPS) when γ is chosen
in a specific interval that can be calculated a priori in terms of the
model parameters (]φ(0), φ(1)[). Furthermore, we proved some theo-
rems that allow the same kind of analysis for general functions gj . We
also made the important side note that the analysis of this subclass
of objective functions relies on few properties of the GPS scheduler.
We showed that these properties are also fulfilled in several other
settings and that the analysis thus also transfers to these situations.
Specifically, we discussed the famous cµ-rule and a semi-preemptive
priority scheduler, in extenso.

The analysis of these objective functions gives us values for the
extrema in terms of w̄2, for the configuration of the GPS system;
however, we require the corresponding β-value. In Chapter 2, we
studied and suggested some algorithms that are based on simulations
of the system to find this optimal β-value. These algorithms are, once
more, based on the important properties that we proved at the start
of the chapter.

Another possibility to find the correspondence between w̄2 and
β is the analysis of the system itself. In Chapter 4, we summarized
a method from the literature that iteratively calculates higher-order
coefficients in the power series of w̄2 in β = 0. This power series
for the mean value is derived from a power series of the probabil-
ity generating function. We discussed the challenges associated with
this method, namely the fact that only a limited amount of coeffi-
cients can be calculated, due to computational limitations resulting
from repeated use of l’Hôpital’s rule for the conversion from the pgf.
We proposed some solutions for this and studied their performance
and accuracy in an optimization setting. Furthermore, we showed
some possible modifications to the implementation of this method to
maximize the number of calculable coefficients and thus the resulting

CHAPTER 7. CONCLUSIONS 193

performance.
Lastly, in Chapter 6, we derived the same power series for w̄2 but

now directly from the system equations without going through the
pgf. This enabled us to calculate more coefficients and determine the
dominant singularities that limit the convergence radius of the power
series. Using these coefficients and the singularities, we proposed a
better approximation method. The discussion in this chapter was
limited to a Bernoulli arrival process, to make the study less intricate
as a starting point. The restriction to this arrival process, however,
does not simplify the inherent difficulties associated with GPS sched-
ulers which is the subject of this work.

In Chapter 3, we investigated the extension of two-class discrete-
time GPS to three classes. We showed that a hierarchical implemen-
tation (H-GPS) has some important advantages compared to a non-
hierarchical one. The most important one is that the optimization
can also be done hierarchically, as β2, the probability parameter on
the second hierarchy level, has no influence on the customers on level
1 (queue 1). However, this single H-GPS system has a smaller per-
formance region than a non-hierarchical GPS system; the latter can
achieve any performance in the simplex span by the vertices of strict
priority performances, while the former cannot. H-GPS, though, has
three possible configurations by permuting which customer class is
enqueued on the highest level in the hierarchy. We proved that the
union of the performance regions of these three configurations co-
incides with the performance region of GPS. Furthermore, we used
some important steps from this proof to construct an algorithm to
fast and accurately select which configurations to use for a specific
desired performance.

A second advantage of H-GPS is that we showed in Chapter 5,
that we could extend the power series approximation for the two-class
system, summarized in Chapter 4, to this three-class H-GPS system.
The result is a two-dimensional power series centered around any
of the boundary configuration points, i.e. (β1, β2) = {(0, 0), (1, 0),
(0, 1), (1, 1)}. Furthermore, we studied the special case where one
high-priority class has priority over two other classes that share the
remaining capacity using GPS. In the numerical examples for this
case, we thoroughly investigated the influence of the amount of high-
priority customers on the other two classes.

194 CHAPTER 7. CONCLUSIONS

Bibliography

[1] S Aalto, U Ayesta, SC Borst, V Misra, and R Núñez-Queija.
Beyond processor sharing. ACM SIGMETRICS Performance
Evaluation Review, 34(4):36–43, 2007.

[2] IJBF Adan, OJ Boxma, and JAC Resing. Queueing models
with multiple waiting lines. Queueing Systems, 37(1-3):65–98,
2001.

[3] IJBF Adan, JSH Van Leeuwaarden, and Erik MM Winands.
On the application of Rouché’s theorem in queueing theory.
Operations Research Letters, 34(3):355–360, 2006.

[4] IJBF Adan, J Wessels, and WHM Zijm. A compensation ap-
proach for two-dimensional Markov processes. Advances in Ap-
plied Probability, 25(4):783–817, 1993.

[5] E Altman, K Avrachenkov, and U Ayesta. A survey on discrim-
inatory processor sharing. Queueing Systems, 53(1-2):53–63,
2006.

[6] E Altman and U Yechiali. Polling in a closed network. Proba-
bility in the Engineering and Informational Sciences, 8(3):327–
343, 1994.

[7] S Asmussen. Applied probability and queues, volume 51.
Springer Science & Business Media, 2008.

[8] S Asmussen and PW Glynn. Stochastic simulation: algorithms
and analysis, volume 57. Springer Science & Business Media,
2007.

[9] K Avrachenkov and T Bodas. On the equivalence between mul-
ticlass processor sharing and random order scheduling policies.
ACM SIGMETRICS Performance Evaluation Review, 45(4):2–
6, 2018.

[10] KE Avrachenkov, JA Filar, and PG Howlett. Analytic pertur-
bation theory and its applications. SIAM, 2013.

195

196 BIBLIOGRAPHY

[11] U Ayesta. A unifying conservation law for single-server queues.
Journal of Applied Probability, 44(4):1078–1087, 2007.

[12] U Ayesta, A Izagirre, and IM Verloop. Heavy traffic analysis
of the discriminatory random-order-of-service discipline. ACM
SIGMETRICS Performance Evaluation Review, 39(2):41–43,
2011.

[13] JS Baras, DJ Ma, and AM Makowski. K competing queues with
geometric service requirements and linear costs: The µc-rule is
always optimal. Systems & Control Letters, 6(3):173–180, 1985.

[14] JCR Bennett, DC Stephens, and H Zhang. High speed, scalable,
and accurate implementation of packet fair queueing algorithms
in ATM networks. In Network Protocols, 1997. Proceedings.,
1997 International Conference on, pages 7–14. IEEE, 1997.

[15] JCR Bennett and H Zhang. Hierarchical packet fair queueing
algorithms. IEEE/ACM Transactions on networking, 5(5):675–
689, 1997.

[16] DP Bertsekas. Nonlinear programming. Athena scientific Bel-
mont, 1999.

[17] D Bertsimas. The achievable region method in the optimal
control of queueing systems; formulations, bounds and policies.
Queueing Systems, 21(3-4):337–389, 1995.

[18] D Bertsimas and J Niño-Mora. Conservation laws, extended
polymatroids and multiarmed bandit problems; a polyhedral
approach to indexable systems. Mathematics of Operations Re-
search, 21(2):257–306, 1996.

[19] D Bertsimas and J Niño-Mora. Optimization of multiclass
queueing networks with changeover times via the achievable
region approach: Part i, the single-station case. Mathematics
of Operations Research, 24(2):306–330, 1999.

[20] D Bertsimas, IC Paschalidis, and JN Tsitsiklis. Large de-
viations analysis of the generalized processor sharing policy.
Queueing Systems, 32(4):319–349, 1999.

[21] D Bertsimas, ICH Paschalidis, and JN Tsitsiklis. Optimiza-
tion of multiclass queueing networks: Polyhedral and nonlinear
characterizations of achievable performance. The Annals of Ap-
plied Probability, pages 43–75, 1994.

BIBLIOGRAPHY 197

[22] CF Bispo. The single-server scheduling problem with convex
costs. Queueing Systems, 73(3):261–294, 2013.

[23] JPC Blanc. On a numerical method for calculating state prob-
abilities for queueing systems with more than one waiting line.
Journal of Computational and Applied Mathematics, 20:119–
125, 1987.

[24] JPC Blanc. A numerical study of a coupled processor model.
In Computer performance and reliability, volume 2, pages 289–
303, 1988.

[25] B Blaszczyszyn, T Rolski, and V Schmidt. Light-traffic approx-
imations in queues and related stochastic models. Advances in
Queueing, CRC Press, Boca Raton, pages 379–406, 1995.

[26] SC Borst, OJ Boxma, and P Jelenkovic. Asymptotic behavior
of generalized processor sharing with long-tailed traffic sources.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 2, pages 912–921. IEEE, 2000.

[27] SC Borst, OJ Boxma, and P Jelenković. Reduced-load equiv-
alence and induced burstiness in GPS queues with long-tailed
traffic flows. Queueing Systems, 43(4):273–306, 2003.

[28] OJ Boxma. Analysis and optimization of polling systems. CWI
Amsterdam, 1991.

[29] OJ Boxma. Static optimization of queueing systems. In Recent
Trends in Optimization Theory and Applications, pages 1–16.
World Scientific, 1995.

[30] OJ Boxma and JA Weststrate. Waiting times in polling sys-
tems with Markovian server routing. In Messung, Modellierung
und Bewertung von Rechensystemen und Netzen, pages 89–104.
Springer, 1989.

[31] RP Brent. Algorithms for minimization without derivatives.
Courier Corporation, 2013.

[32] H Bruneel and BG Kim. Discrete-time models for communica-
tion systems including ATM, volume 205. Springer Science &
Business Media, 2012.

[33] C Buyukkoc, P Variaya, and J Walrand. cµ rule revisited. Adv.
Appl. Prob., 17(1):237–238, 1985.

198 BIBLIOGRAPHY

[34] HM Chaskar and U Madhow. Fair scheduling with tunable
latency: a round-robin approach. IEEE/ACM Transactions on
Networking (TON), 11(4):592–601, 2003.

[35] MX Chen and SH Liu. Hierarchical deficit round-robin packet
scheduling algorithm. In Advances in Intelligent Systems and
Applications-Volume 1, pages 419–427. Springer, 2013.

[36] Cisco. VoIP over PPP links with quality of service. published
electronically at https://www.cisco.com/c/en/us/support/

docs/voice/voice-quality/7111-voip-mlppp.html, 2018.

[37] D Claeys. Analysis of queueing models with batch service. PhD
thesis, Ghent University, 2011.

[38] D Claeys, K Laevens, J Walraevens, and H Bruneel. Complete
characterisation of the customer delay in a queueing system
with batch arrivals and batch service. Mathematical Methods
of Operations Research, 72(1):1–23, Aug 2010.

[39] D Claeys, J Walraevens, K Laevens, and H Bruneel. Analysis
of threshold-based batch-service queueing systems with batch
arrivals and general service times. Performance Evaluation,
68(6):528 – 549, 2011.

[40] JW Cohen. Boundary value problems in queueing theory.
Queueing Systems, 3(2):97–128, 1988.

[41] JW Cohen and OJ Boxma. Boundary value problems in queue-
ing system analysis, volume 79. Elsevier, 2000.

[42] AR Conn, K Scheinberg, and LN Vicente. Introduction to
derivative-free optimization. SIAM, 2009.

[43] G Corliss. On computing Darboux type series analyses. Non-
linear Analysis: Theory, Methods & Applications, 7(11):1247–
1253, 1983.

[44] DR Cox and WL Smith. Queues, volume 2. CRC Press, 1961.

[45] M Dacre, K Glazebrook, and J Niño-Mora. The achievable
region approach to the optimal control of stochastic systems.
Journal of the Royal Statistical Society. Series B, Statistical
Methodology, pages 747–791, 1999.

[46] E De Cuypere. Numerical methods for queues with shared ser-
vice. PhD thesis, Ghent University, 2014.

https://www.cisco.com/c/en/us/support/docs/voice/voice-quality/7111-voip-mlppp.html
https://www.cisco.com/c/en/us/support/docs/voice/voice-quality/7111-voip-mlppp.html

BIBLIOGRAPHY 199

[47] K De Turck, E De Cuypere, S Wittevrongel, and D Fiems.
Algorithmic approach to series expansions around transient
Markov chains with applications to paired queuing systems.
In Performance Evaluation Methodologies and Tools (VALUE-
TOOLS), 2012 6th International Conference on, pages 38–44.
IEEE, 2012.

[48] G de Veciana, G Kesidis, and J Walrand. Resource management
in wide-area ATM networks using effective bandwidths. IEEE
Journal on Selected Areas in Communications, 13(6):1081–
1090, 1995.

[49] G De Veciana and J Walrand. Effective bandwidths: Call ad-
mission, traffic policing and filtering for ATM networks. Queue-
ing Systems, 20(1-2):37–59, 1995.

[50] K Debicki and M Mandjes. A note on large-buffer asymptotics
for generalized processor sharing with Gaussian inputs. Queue-
ing Systems, 55(4):251–254, 2007.

[51] T Demoor. Priority queues with limited capacity. PhD thesis,
Ghent University, 2014.

[52] JE Dennis and VJ Torczon. Derivative-free pattern search
methods for multidisciplinary design problems. In The Fifth
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, pages 922–932, 1994.

[53] C Domb and MF Sykes. On the susceptibility of a ferromagnetic
above the Curie point. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences,
volume 240, pages 214–228. The Royal Society, 1957.

[54] AN Dudin, MH Lee, O Dudina, and SK Lee. Analysis of pri-
ority retrial queue with many types of customers and servers
reservation as a model of cognitive radio system. IEEE Trans-
actions on Communications, 65(1):186–199, 2017.

[55] A Elwalid and D Mitro. Design of generalized processor shar-
ing schedulers which statistically multiplex heterogeneous QoS
classes. In INFOCOM’99. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 3, pages 1220–1230. IEEE, 1999.

[56] AK Erlang. Solutions of some problems in the theory of proba-
bilities of significance in automatic telephone exchanges. 13:5–
13, 01 1917.

200 BIBLIOGRAPHY

[57] E Evdokimova, S Wittevrongel, and D Fiems. A Taylor series
approach for service-coupled queueing systems with intermedi-
ate load. Mathematical Problems in Engineering, 2017, 2017.

[58] G Fayolle and R Iasnogorodski. Two coupled processors:
the reduction to a Riemann-Hilbert problem. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 47(3):325–
351, 1979.

[59] G Fayolle, I Mitrani, and R Iasnogorodski. Sharing a proces-
sor among many job classes. Journal of the ACM (JACM),
27(3):519–532, 1980.

[60] A Federgruen and H Groenevelt. Characterization and opti-
mization of achievable performance in general queueing sys-
tems. Operations Research, 36(5):733–741, 1988.

[61] A Federgruen and H Groenevelt. M/G/c queueing systems
with multiple customer classes: characterization and control
of achievable performance under nonpreemptive priority rules.
Management Science, 34(9):1121–1138, 1988.

[62] AV Ferris-Prabhu and DH Withers. Numerical analytic con-
tinuation using Padé approximants. Journal of Computational
Physics, 13(1):94–99, 1973.

[63] M Fiedler, T Hossfeld, and P Tran-Gia. A generic quantita-
tive relationship between quality of experience and quality of
service. Network, IEEE, 24(2):36–41, 2010.

[64] D Fiems. Analysis of discrete-time queueing systems with va-
cations. PhD thesis, Ghent University, 2004.

[65] D Fiems and K De Turck. A series expansion approach
for finite-capacity processor sharing queues. In Proceedings
of the 7th International Conference on Performance Evalua-
tion Methodologies and Tools, pages 118–125. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2013.

[66] S Floyd and V Jacobson. Link-sharing and resource manage-
ment models for packet networks. IEEE/ACM transactions on
Networking, 3(4):365–386, 1995.

[67] E Gelenbe, X Mang, and R Onvural. Bandwidth allocation and
call admission control in high-speed networks. IEEE Commu-
nications Magazine, 35(5):122–129, 1997.

BIBLIOGRAPHY 201

[68] L Green. A queueing system with general-use and limited-use
servers. Operations Research, 33(1):168–182, 1985.

[69] F Guillemin and D Pinchon. Analysis of generalized processor-
sharing systems with two classes of customers and exponential
services. Journal of Applied Probability, 41(3):832–858, 2004.

[70] MK Gupta, N Hemachandra, and J Venkateswaran. On com-
pleteness and equivalence of some dynamic priority schemes.
Technical report, Tech. rep., IIT Bombay, 2014.

[71] JM Harrison. Dynamic scheduling of a multiclass queue: Dis-
count optimality. Operations Research, 23(2):270–282, 1975.

[72] R Hassin, J Puerto, and FR Fernández. The use of relative pri-
orities in optimizing the performance of a queueing system. Eu-
ropean Journal of Operational Research, 193(2):476–483, 2009.

[73] MT Heath. Scientific computing. McGraw-Hill New York, 2002.

[74] P Henrici. An algorithm for analytic continuation. SIAM Jour-
nal on Numerical Analysis, 3(1):67–78, 1966.

[75] MF Homg, WT Lee, KR Lee, and YH Kuo. An adaptive ap-
proach to weighted fair queue with qos enhanced on ip net-
work. In TENCON 2001. Proceedings of IEEE Region 10 In-
ternational Conference on Electrical and Electronic Technology,
volume 1, pages 181–186. IEEE, 2001.

[76] G Hooghiemstra, M Keane, and S Van de Ree. Power series
for stationary distributions of coupled processor models. SIAM
Journal on Applied Mathematics, 48(5):1159–1166, 1988.

[77] C Hunter and B Guerrieri. Deducing the properties of singu-
larities of functions from their Taylor series coefficients. SIAM
Journal on Applied Mathematics, 39(2):248–263, 1980.

[78] A Itai and Z Rosberg. A golden ratio control policy for
a multiple-access channel. IEEE Transactions on Automatic
Control, 29(8):712–718, 1984.

[79] X Jin and G Min. Analytical modelling of hybrid PQ-
GPS scheduling systems under long-range dependent traffic.
In Advanced Information Networking and Applications, 2007.
AINA’07. 21st International Conference on, pages 1006–1013.
IEEE, 2007.

202 BIBLIOGRAPHY

[80] X Jin and G Min. Performance modelling of hybrid PQ-GPS
systems under long-range dependent network traffic. Commu-
nications Letters, IEEE, 11(5):446–448, 2007.

[81] C Joo and NB Shroff. A novel coupled queueing model to
control traffic via QoS-aware collision pricing in cognitive radio
networks. In INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE, pages 1–9. IEEE, 2017.

[82] CR Kalmanek, H Kanakia, and S Keshav. Rate controlled
servers for very high-speed networks. In Global Telecommu-
nications Conference, 1990, and Exhibition.’Communications:
Connecting the Future’, GLOBECOM’90., IEEE, pages 12–20.
IEEE, 1990.

[83] M Katevenis, S Sidiropoulos, and C Courcoubetis. Weighted
round-robin cell multiplexing in a general-purpose ATM switch
chip. IEEE Journal on selected Areas in Communications,
9(8):1265–1279, 1991.

[84] JC Ke, CH Wu, and ZG Zhang. Recent developments in vaca-
tion queueing models: a short survey. International Journal of
Operations Research, 7(4):3–8, 2010.

[85] N Khedun and V Bassoo. Analysis of priority queueing with
multichannel in cognitive radio network. In EUROCON 2015-
International Conference on Computer as a Tool (EUROCON),
IEEE, pages 1–6. IEEE, 2015.

[86] J Kim, B Kim, and H Luh. Analysis of a Markovian feedback
queue with multi-class customers and its application to the
weighted round-robin queue. Annals of Operations Research,
pages 1–23, 2018.

[87] K Kim and KC Chae. Discrete-time queues with discre-
tionary priorities. European Journal of Operational Research,
200(2):473–485, 2010.

[88] JFC Kingman. Two similar queues in parallel. The Annals of
Mathematical Statistics, 32(4):1314–1323, 1961.

[89] L Kleinrock. Queueing systems, volume 2: Computer applica-
tions, volume 66. wiley New York, 1976.

[90] L Kleinrock and H Levy. The analysis of random polling sys-
tems. Operations Research, 36(5):716–732, 1988.

BIBLIOGRAPHY 203

[91] IN Kovalenko. Rare events in queueing systems—a survey.
Queueing Systems, 16(1):1–49, 1994.

[92] DP Kroese and V Schmidt. Light-traffic analysis for queues
with spatially distributed arrivals. Mathematics of operations
research, 21(1):135–157, 1996.

[93] K Kumaran, GE Margrave, D Mitra, and KR Stanley. Novel
techniques for the design and control of generalized proces-
sor sharing schedulers for multiple QoS classes. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, vol-
ume 2, pages 932–941. IEEE, 2000.

[94] H Kushner and GG Yin. Stochastic approximation and recur-
sive algorithms and applications, volume 35. Springer Science
& Business Media, 2003.

[95] K Lange. Numerical analysis for statisticians. Springer Science
& Business Media, 2010.

[96] HW Lee, C Kim, and S Chong. Scheduling and source control
with average queue-length control in cellular networks. In Com-
munications, 2007. ICC’07. IEEE International Conference on,
pages 109–114. IEEE, 2007.

[97] M Lelarge. Asymptotic behavior of generalized processor shar-
ing queues under subexponential assumptions. Queueing Sys-
tems, 62(1-2):51–73, 2009.

[98] C Li and MJ Neely. Solving convex optimization with side
constraints in a multi-class queue by adaptive cµ rule. Queueing
Systems: Theory and Applications, 77(3):331–372, 2014.

[99] P Lieshout. Queueing models for bandwidth-sharing disciplines.
PhD thesis, Universiteit van Amsterdam, 2008.

[100] P Lieshout and M Mandjes. Generalized processor sharing:
Characterization of the admissible region and selection of op-
timal weights. Computers & Operations Research, 35(8):2497–
2519, 2008.

[101] P Lieshout, M Mandjes, and S Borst. GPS scheduling: selec-
tion of optimal weights and comparison with strict priorities.
In ACM SIGMETRICS Performance Evaluation Review, vol-
ume 34, pages 75–86. ACM, 2006.

204 BIBLIOGRAPHY

[102] T Maertens. Analysis of discrete-time queueing systems with
priority jumps. PhD thesis, Springer, 2010.

[103] T Maertens, J Walraevens, and H Bruneel. A modified hol
priority scheduling discipline: performance analysis. European
Journal of Operational Research, 180(3):1168–1185, 2007.

[104] W Mélange, J Walraevens, D Claeys, B Steyaert, and
H Bruneel. The impact of a global FCFS service discipline
in a two-class queue with dedicated servers. Computers & Op-
erations Research, 71:23–33, 2016.

[105] JA Morrison and SC Borst. Interacting queues in heavy traffic.
Queueing Systems, 65(2):135–156, 2010.

[106] MJ Neely. Delay-based network utility maximization.
IEEE/ACM Transactions on Networking (TON), 21(1):41–54,
2013.

[107] JA Nelder and R Mead. A simplex method for function mini-
mization. The computer journal, 7(4):308–313, 1965.

[108] K Nichols, S Blake, F Baker, and D Black. Definition of the
differentiated services field (DS field) in the IPv4 and IPv6
headers. RFC 2474 (Proposed Standard), dec 1998. Updated
by RFCs 3168, 3260.

[109] AK Parekh and RG Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks-the
multiple node case. In INFOCOM’93. Proceedings. Twelfth An-
nual Joint Conference of the IEEE Computer and Communica-
tions Societies. Networking: Foundation for the Future, IEEE,
pages 521–530. IEEE, 1993.

[110] AK Parekh and RG Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks:
the single-node case. IEEE/ACM transactions on networking,
1(3):344–357, 1993.

[111] AS Parveen. A survey of an integrated scheduling scheme
with long-range and short-range dependent traffic. Interna-
tional Journal of Engineering Sciences & Research Technology,
3(1):430–439, 2014.

[112] JM Pavlin. Dual bounds of a service level assignment prob-
lem with applications to efficient pricing. European Journal of
Operational Research, 262(1):239–250, 2017.

BIBLIOGRAPHY 205

[113] H Phan, TMC Chu, HJ Zepernick, and P Arlos. Packet loss pri-
ority of cognitive radio networks with partial buffer sharing. In
Communications (ICC), 2015 IEEE International Conference
on, pages 7646–7652. IEEE, 2015.

[114] WH Press, SA Teukolsky, WT Vetterling, and BP Flannery.
Numerical Recipes 3rd Edition: The Art of Scientific Comput-
ing. Cambridge University Press, New York, NY, USA, 3 edi-
tion, 2007.

[115] FL Presti, ZL Zhang, and D Towsley. Bounds, approximations
and applications for a two-queue GPS system. In IEEE INFO-
COM, volume 96, pages 1310–1317. INSTITUTE OF ELEC-
TRICAL ENGINEERS INC (IEEE), 1996.

[116] RL Rardin. Optimization in operations research. Prentice Hall,
2016.

[117] MI Reiman and B Simon. Open queueing systems in light traf-
fic. Mathematics of operations research, 14(1):26–59, 1989.

[118] B Rengarajan, C Caramanis, and G De Veciana. Analyzing
queueing systems with coupled processors through semidefinite
programming. INFORMS: Applied Probability Session, 2008.

[119] C Semeria. Supporting differentiated service classes: queue
scheduling disciplines. Juniper networks, pages 11–14, 2001.

[120] JG Shanthikumar and DD Yao. Multiclass queueing systems:
Polymatroidal structure and optimal scheduling control. Oper-
ations Research, 40(3-supplement-2):S293–S299, 1992.

[121] M Shreedhar and G Varghese. Efficient fair queueing using
deficit round robin. In ACM SIGCOMM Computer Communi-
cation Review, volume 25, pages 231–242. ACM, 1995.

[122] RA Shumsky. Approximation and analysis of a call center with
flexible and specialized servers. OR Spectrum, 26(3):307–330,
2004.

[123] NJA Sloane. A001147 - the on-line encyclopedia of inte-
ger sequences. published electronically at https://oeis.org/
A001147, 2018.

[124] JC Spall. Introduction to stochastic search and optimization:
estimation, simulation, and control, volume 65. John Wiley &
Sons, 2005.

https://oeis.org/A001147
https://oeis.org/A001147

206 BIBLIOGRAPHY

[125] H Takagi. Queuing analysis of polling models. ACM Computing
Surveys (CSUR), 20(1):5–28, 1988.

[126] WB van den Hout. The power-series algorithm. a numerical
approach to Markov processes. Technical report, Tilburg Uni-
versity, School of Economics and Management, 1996.

[127] RD van der Mei. Polling systems and the power-series algo-
rithm. PhD thesis, Tilburg University, 1995.

[128] M Van Dyke. Analysis and improvement of perturbation series.
The Quarterly Journal of Mechanics and Applied Mathematics,
27(4):423–450, 1974.

[129] G van Kessel, R Núñez-Queija, and SC Borst. Asymptotic
regimes and approximations for discriminatory processor shar-
ing. SIGMETRICS Performance Evaluation Review, 32(2):44–
46, 2004.

[130] A Van Moorsel. Metrics for the internet age: Quality of experi-
ence and quality of business. In Fifth International Workshop
on Performability Modeling of Computer and Communication
Systems, Arbeitsberichte des Instituts für Informatik, Univer-
sität Erlangen-Nürnberg, Germany, volume 34, pages 26–31.
Citeseer, 2001.

[131] M van Uitert. Generalized processor sharing queues. PhD the-
sis, Eindhoven University of Technology, 2003.

[132] RJ Vanderbei. Linear programming. Springer, 2015.

[133] J Vanlerberghe, T Maertens, J Walraevens, S De Vuyst, and
H Bruneel. A hybrid analytical/simulation optimization of gen-
eralized processor sharing. In Teletraffic Congress (ITC), 2013
25th International, pages 1–9. IEEE, 2013.

[134] J Vanlerberghe, T Maertens, J Walraevens, S De Vuyst, and
H Bruneel. On the optimization of two-class work-conserving
parameterized scheduling policies. 4OR, 14(3):281–308, 2016.

[135] J Vanlerberghe, J Walraevens, T Maertens, and H Bruneel. Ap-
proximating the optimal weights for discrete-time generalized
processor sharing. In Networking Conference, 2014 IFIP, pages
1–9. IEEE, 2014.

BIBLIOGRAPHY 207

[136] J Vanlerberghe, J Walraevens, T Maertens, and H Bruneel.
On the influence of high priority customers on a generalized
processor sharing queue. In International Conference on An-
alytical and Stochastic Modeling Techniques and Applications,
pages 203–216. Springer, 2015.

[137] J Vanlerberghe, J Walraevens, T Maertens, and H Bruneel.
Calculation of the performance region of an easy-to-optimize
alternative for generalized processor sharing. European Journal
of Operational Research, 270(2):625 – 635, 2018.

[138] J Vanlerberghe, J Walraevens, T Maertens, S De Vuyst, and
H Bruneel. On generalized processor sharing and objective
functions: Analytical framework. In European Workshop on
Performance Engineering, pages 96–111. Springer, 2015.

[139] IM Verloop, U Ayesta, and S Borst. Monotonicity properties
for multi-class queueing systems. Discrete Event Dynamic Sys-
tems, 20(4):473–509, 2010.

[140] VM Vishnevskii and OV Semenova. Mathematical methods to
study the polling systems. Automation and Remote Control,
67(2):173–220, 2006.

[141] J Walraevens. Discrete-time queueing models with priorities.
PhD thesis, Ghent University, 2004.

[142] J Walraevens, T Maertens, and H Bruneel. A semi-preemptive
priority scheduling discipline: Performance analysis. European
Journal of Operational Research, 224(2):324–332, 2013.

[143] J Walraevens, B Steyaert, and H Bruneel. Performance anal-
ysis of a single-server ATM queue with a priority scheduling.
Computers & Operations Research, 30(12):1807–1829, 2003.

[144] J Walraevens, B Steyaert, M Moeneclaey, and H Bruneel. A
discrete-time HOL priority queue with multiple traffic classes.
In International Conference on Networking, pages 620–627.
Springer, 2005.

[145] J Walraevens, JSH van Leeuwaarden, and OJ Boxma. Power
series approximations for two-class generalized processor shar-
ing systems. Queueing Systems, 66(2):107–130, 2010.

[146] J Walraevens, J Vanlerberghe, T Maertens, S De Vuyst, and
H Bruneel. Strict monotonicity and continuity of mean unfin-
ished work in two queues sharing a server. Operations Research
Letters, 45(2):151–153, 2017.

208 BIBLIOGRAPHY

[147] J Walraevens, S Wittevrongel, and H Bruneel. A discrete-time
priority queue with train arrivals. Stochastic Models, 23(3):489–
512, 2007.

[148] L Wang, G Min, DD Kouvatsos, and X Jin. Analytical mod-
eling of an integrated priority and WFQ scheduling scheme in
multi-service networks. Computer Communications, 33:S93–
S101, 2010.

[149] L Xia and XR Cao. Performance optimization of queueing
systems with perturbation realization. European journal of op-
erational research, 218(2):293–304, 2012.

[150] O Yaron and M Sidi. Generalized processor sharing networks
with exponentially bounded burstiness arrivals. Journal of High
Speed Networks, 3(4):375–387, 1994.

[151] ZL Zhang. Large deviations and the generalized processor shar-
ing scheduling for a two-queue system. Queueing Systems, 26(3-
4):229–254, 1997.

[152] ZL Zhang. Large deviations and the generalized processor shar-
ing scheduling for a multiple-queue system. Queueing Systems,
28(4):349–376, 1998.

[153] ZL Zhang, Z Liu, J Kurose, and D Towsley. Call admission
control schemes under generalized processor sharing scheduling.
Telecommunication Systems, 7(1-3):125–152, 1997.

[154] ZL Zhang, D Towsley, and J Kurose. Statistical analysis of
generalized processor sharing scheduling discipline. ACM SIG-
COMM Computer Communication Review, 24(4):68–77, 1994.

