

# rmal tuning of Brillouin resonance in free standing silicon nanowire

70nm

Paul Tiebot<sup>1,2</sup>, Raphael Van Laer<sup>1,3</sup>, Dries Van Thourout<sup>1,2</sup>

paul.tiebot@ugent.be.

### Introduction

- Stimulated Brillouin scattering (SBS) a nonlinear process coupling an optical and a mechanical field [1].
- > Brillouin resonance has been demonstrated in different silicon waveguide (WG) geometries [2][3].
- > A small SBS gain can be used for realizing tunable and narrow band RF filters [4].
- $\succ$  The strong dependency of the mechanical resonance frequency,



 $\Omega$ , to the waveguide width allows tailoring of  $\Omega$  but is also responsible for the decrease in mechanical quality factor, Q, due broadening associated fabrication inhomogeous with to imperfections.

We demonstrate the possibility to thermally tune  $\Omega$  and investigate the use of such tuning mechanism as a compensation mechanism for inhomogeneous broadening.

#### Free standing SOI waveguide side view and top view.





TE optical mode for free sanding waveguide and anchoring point.

Mechanical mode.

## **Experimental Setup and Results**



# **Further Work**

- $\succ$  On-chip heaters allows individual tuning of various parts of the free standing waveguide.
- $\succ$  Resonance frequency,  $\Omega n$ , of each individual subsection, n, can be individually measured.







Fano resonance obtained using XPM experiment for 25°, 50°, 60°, 70° and 80°.

We can deduce the frequency shift  $\Delta \Omega$  for temperature variation of  $\Delta T$  by:  $\bigcirc_{1,000}$ 

 $\Delta \Omega (\Delta T) = \Omega \cdot \Delta T \cdot S_{th}$ 

 $\succ \Omega = v/2w$ , phononic Fabry-Perrot





Energy per heater (mW)

References



### $\succ \Delta T = 41.6$ °C temperature difference needed for correct inhomogeneous

broadening.



Number of suspensions N(-)

[1] Léon Brillouin (1914) Diffusion de la lumière par un corps transparent homogène. Comptes Rendus 158, 1331

[2] Van Laer R., Bazin A., & Kuyken, B. (n.d.). Net on-chip Brillouin gain based on suspended silicon nanowires. New Journal of Physics, 17(11).

[3] Van Laer, R., Kuyken, B., Van Thourhout, D., & Baets, R. (2015). Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photonics, 16

[4] B.Morrison and al. (2014). Tunable microwave photonic notch filter using on-chip stimulated Brillouin scattering. Optics Communications, 313.

unec

embracing a better life

Photonics Research Group, INTEC-Department, Ghent University-IMEC Center for Nano- and Biophotonics (NB-Photonics), Ghent University http://photonics.intec.ugent.be

