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Abstract
Conserving tree populations safeguards forests since they represent key elements of the ecosystem. The genetic
characteristics underlying the evolutionary success of the tree growth form: high genetic diversity, extensive gene flow and
strong species integrity, contribute to their survival in terms of adaptability. However, different biological and landscape
contexts challenge these characteristics. This study employs 63 de novo developed microsatellite or SSR (Single Sequence
Repeat) markers in different datasets of nine Neotropical Magnolia species. The genetic patterns of these protogynous,
insect-pollinated tree species occurring in fragmented, highly-disturbed landscapes were investigated. Datasets containing a
total of 340 individuals were tested for their genetic structure and degree of inbreeding. Analyses for genetic structure
depicted structuring between species, i.e. strong species integrity. Within the species, all but one population pair were
considered moderate to highly differentiated, i.e. no indication of extensive gene flow between populations. No overall
correlation was observed between genetic and geographic distance of the pairwise species’ populations. In contrast to the
pronounced genetic structure, there was no evidence of inbreeding within the populations, suggesting mechanisms favouring
cross pollination and/or selection for more genetically diverse, heterozygous offspring. In conclusion, the data illustrate that
the Neotropical Magnolias in the context of a fragmented landscape still have ample gene flow within populations, yet little
gene flow between populations.

Introduction

Conservation genetics utilises a representative sample of
DNA and organisms to quantify and study genetic diversity

to preserve species as dynamic entities capable of coping
with environmental change (Frankham et al. 2010). A col-
lection of DNA fragments representing the genome is rea-
lised by employing molecular markers: fragments of DNA
associated with a certain location within the genome, pro-
viding information about the allelic variation at the given
locus (Schlötterer 2004). Microsatellite or SSR (Simple
Sequence Repeat) markers are often the preferred type of
molecular marker in conservation genetics because they are
codominant, highly polymorphic, ubiquitous, reproducible
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and neutral; and they have a high mutation rate, as well as
an easy sample preparation (Selkoe and Toonen 2006).
Although it is labour and cost intensive to develop and test
SSR primer pairs, these can often be employed across
species, with success decreasing proportionally to related-
ness (Kalia et al. 2011). A representative sampling of
organisms can be interpreted at different levels: individuals
for populations, populations for species, and species for
ecosystems. The latter strategy makes use of the umbrella
species concept (Roberge and Angelstam 2004).

An exemplar group of umbrella species are trees: they
maintain the structure and function of forest ecosystems,
and create resource niches and patches for other organisms
(Pautasso 2009). Trees also provide various ecosystem
services and resources for human use (Neale and Kremer
2011) and their genetics and evolution have paradoxical
features (Petit and Hampe 2006). Trees were found to
maintain high levels of genetic diversity (Hamrick et al.
1992), but experience low nucleotide substitution rates and
low speciation rates when compared to annual plant linea-
ges (e.g. Bousquet et al. 1992; Petit and Hampe 2006;
Whittle and Johnston 2003). They combine high local dif-
ferentiation for adaptive traits (Aitken et al. 2008) with
extensive gene flow (Austerlitz et al. 2000; Kremer and Le
Corre 2012). Furthermore, they maintain species integrity,
while expressing abundant interspecific gene flow (Ellstrand
et al. 1996). The abovementioned features provide an
expected capacity for tree survival, as they create resilience
against threats such as climate change or habitat fragmen-
tation (Aitken et al. 2008; Hamrick 2004). However, the
interplay of the biological and landscape context challenges
these generalised characteristics and creates the need for
context-oriented tree conservation genetic studies and sub-
sequent management guidelines (Aparicio et al. 2012; Dick
et al. 2008).

To investigate the general patterns of tree genetics in an
empirical setting, and to contribute to the conservation of
the species and forests under study, we focus on New World
representatives of the tree genus Magnolia (Magnoliaceae)
occurring at tropical latitudes, hereafter named Neotropical
Magnolias. Magnolia trees provide an interesting case-
study with bisexual, protogynous flowers, specialised beetle
pollination with tepal movement, variable flowering phe-
nology and seed dispersal by animals (Thien 1974). The
Red List of Magnoliaceae (Rivers et al. 2016) states that
76% of the Neotropical Magnolias are threatened, with an
additional 16% listed as data deficient. Neotropical Mag-
nolia populations have not been studied from a molecular
point of view (Cires et al. 2013) and their species are
delineated based on morphological and distributional
argumentation (e.g. Howard 1948; Palmarola et al. 2016;
Vázquez-García et al. 2013b). Many of the Magnolia spe-
cies and populations occur in fragmented, highly-disturbed,

relict primary forest landscapes, such as the cloud forests of
the Caribbean islands and the cloud and rain forests of
Mexico (Rivers et al. 2016).

This study aims to (1) provide de novo developed SSR
markers for Neotropical Magnolia species; (2) employ
the SSR markers for genetic species delimitation
between Caribbean Magnolia species; (3) search for pat-
terns of extensive gene flow between Caribbean Magnolia
(sub)species and populations; and (4) test for signs of
inbreeding within the Neotropical Magnolia populations.

Material and methods

Sampling and DNA extraction

Sample information of the 17 different taxa (i.e. 16 species,
of which one species consists of two subspecies) and 17
populations included in this study are given in Table 1. A
map, showing the location information of the wild collected
accessions of NeotropicalMagnolia from the Caribbean and
Mexico, is given in Fig. 1. The wild collected samples
comprise 346 samples, of which 340 represent the 17
populations. The additional six wild collected samples
represent single collections of different species. One further
sample is from an ex situ collection of M. dealbata.

For the 17 populations included in the full genetic ana-
lyses, Average Pairwise Distance between individuals
(APD), Maximum distance between consecutive individuals
(Max), Spatial extent of the populations (SpE) and number
of sampled individuals per populations (NS) are given in
Table 2. Pairwise distances were calculated using the fossil
package (Vavrek 2011) in R v.3.4.3 (R Core Team 2016).

All 347 leaf samples were dried in silica gel and their
DNA was isolated using a modified cetyl-
trimethylammonium bromide (CTAB) (Doyle and Doyle
1987) extraction protocol, with MagAttract Suspension G
solution (Qiagen, Germantown, USA) (Xin and Chen 2012)
mediated cleaning (Larridon et al. 2015). DNA quantity and
quality control was executed using a Qubit® 2.0 Fluo-
rometer (Thermo Fisher Scientific, Massachusetts, USA)
and Nanodrop 2000 Spectrophotometer (Thermo Fisher
Scientific), respectively.

SSR markers: development and testing

Primer pairs were developed to amplify sequences con-
taining SSR repeats based on four Neotropical Magnolia
species: Magnolia lacandonica (MA39), M. mayae
(MA40), M. dealbata (MA41), and M. cubensis subsp.
acunae (MA42). The development of the enriched micro-
satellite library was outsourced to Allgenetics® (A Coruña,
Spain) where enrichment was performed using the Nextera
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XT DNA kit probes (Illumina, California, USA) with the
following motifs: AGG, ACG, AAG, AAC, ACAC and
ATCT. The library was sequenced on an Illumina MiSeq®
platform.

From the 4 × 500 predetermined SSR primer pairs provided
by Allgenetics®, 176 were selected for further testing: 49
developed from MA39-reads, 20 developed from MA40-
reads, 20 developed from MA41-reads and 87 developed from
MA42-reads. Selection of the 176 SSR markers was carried
out randomly, respecting the characteristics specified in Gui-
choux et al. (2011). The forward primers were linked with a
universal tail to accomplish multiplex pooling in a three-
primer PCR (Vartia et al. 2014). The following universal
tags were used: T3: 5′ AATTAACCCTCACTAAAGGG 3′,
M13(-20): 5′ GTAAAACGACGGCCAGT 3’, Hill: 5’
TGACCGGCAGCAAAATTG 3′ (Tozaki et al. 2001) and

Neomycin reverse: 5′ AGGTGAGATGACAGGAGATC 3’.
The reverse primers had a PIG-tail (Brownstein et al. 1996).

All 176 markers were screened for amplification success
on the 17 taxa, each represented by one randomly selected
sample. PCRs were performed on a total volume of 13 µL
under the following conditions: 2 min at 95 °C; 35 cycles of
95 °C for 30 s, 52 °C for 30 s, 72 °C for 90 s; 72 °C for
6 min. The Master Mix contained 0.2 µM forward primer,
0.2 µM reverse primer, 5 ng/ml DNA (suspended in 1 × TE
buffer), 1 × TrueStart Taq Buffer (Thermo Fisher Scien-
tific), 1.5 µM MgCl2 (Thermo Fisher Scientific), 0.125 µM
dNTP, 5U of TrueStart Hot Start DNA polymerase (Thermo
Fisher Scientific), and 0.4 mg/ml BSA (bovine serum
albumin) per reaction. PCR products were run on a 1%
agarose gel, stained with ethidium bromide and visualised
under UV-light. Every (sub)species × primer combination

Table 1 Sample information of 17 Magnolia taxa (i.e. 16 species, of which one species consists of two subspecies) and 17 populations included in
the SSR testing and/or genotyping

Taxa Tax. Population Pop. Class. Country RL Herbarium reference

M. cristalensis CRI – – TAS Cuba EN Falcón et al. HFC-88423 (HAJB)

M. cubensis subsp. acunae* ACU Topes de Collantes TOP TAS Cuba CR Palmarola & González-Torres HFC-89432 (HAJB)

M. cubensis subsp. cubensis CUB Pico Turquino PIC TAS Cuba VU Palmarola & González-Torres HFC-89418 (HAJB)

M. dealbata* DEA – – MAC Mexico NT Veltjen 2018-001 (Arboretum Wespelaar)

M. dodecapetala DOD Martinique MART TAT Lesser Antilles VU Veltjen et al. 2016-010 (GENT, K, MTK)

Guadeloupe GUA Veltjen et al. 2016-015 (GENT, GUAD)

M. domingensis DOM Loma Barbacoa BAR TAS Hispaniola CR Veltjen et al. 2015-011 (GENT, JBSD)

Loma Rodríguez ROD Veltjen et al. 2015-012 (GENT, HAJB, JBSD)

M. ekmanii EKM Morne Grand Bois GRA TAS Haiti CR Veltjen et al. 2015-001 (EHH, IEB, GENT)

Morne Mansinte MAN Veltjen et al. 2015-003 (EHH, IEB, GENT, JBSD, K)

M. hamorii HAM Cortico COR TAS Dominican
Republic

E Veltjen et al. 2015-009 (GENT, HAJB, JBSD, K)

Cachote CAC Veltjen et al. 2015-010 (GENT, JBSD)

M. lacandonica* LAC Lacanjá LAC TAT Mexico CR Samain et al. 2013-039 (IEB, MEXU)

Yajalón YAJ Samain & Martínez 2017-016 (IEB, MEXU)

M. mayae* MAY – – MAG Mexico CR Samain 2013-048 (IEB, MEXU)

M. minor MIN – – TAT Cuba EN Palmarola et al. HFC-84609 (HAJB)

M. oblongifolia OBL – – TAT Cuba CR Falcón et al. HFC-89377 (HAJB)

M. orbiculata ORB – – TAT Cuba VU Palmarola & González-Torres HFC-89393 (HAJB)

M. pallescens PAL Loma de la Sal SAL TAS Dominican
Republic

E Veltjen et al. 2015-004 (GENT, JBSD)

Montellano MON Veltjen et al. 2015-007 (GENT, JBSD)

M. portoricensis POR Toro Negro TOR TAS Puerto Rico E Veltjen & Rodríguez-Guzmán 2015-015 (GENT, K,
UPRRP)

Maricao MARI Veltjen 2015-016 (GENT, UPRRP)

M. splendens SPL El Yunque YUN TAS Puerto Rico E Veltjen et al. 2015-013 (GENT, UPRRP)

M. virginiana VIR – – MAG US LC Conrad s.n. (GENT)

The four taxa used for microsatellite marker development are denoted with an asterisk. Taxa according to García-Morales et al. (2017);
González Torres et al. (2016); Howard (1948); Vázquez-García et al. (2013a) and Vázquez-García et al. (2013b). Tax.: three letter code to
represent the (sub)species. Pop.: three or four letter code to represent the population. When there is no population code this means that only one
DNA sample was present, used for amplification testing only. Class.: classification according to Figlar and Nooteboom (2004); MAC: section
Macrophylla; MAG: section Magnolia; TAS: section Talauma subsection Splendentes; TAT: section Talauma subsection Talauma. RL: Red List
status according to González Torres et al. (2016) and Rivers et al. (2016); CR: Critically Endangered; E: Endangered. VU: Vulnerable. All three
(i.e. E, CR and VU) Red List statuses are considered to be threatened. Herbarium acronyms are according to the Index Herbariorum (Thiers,
[continuously updated]). Samples were collected in 2013 (Mexico, Cuba), 2014 (Cuba), April-May 2015 (Hispaniola, Puerto Rico), June 2016
(Lesser Antilles), August-October 2016 (Puerto Rico) and February 2017 (Mexico)
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was scored. Amplification scores of the 63 published SSR
markers are given in the Supplementary Table S1. The (sub)
species × primer combinations which were scored to have a
single band were submitted to polymorphism testing.

Polymorphism tests were executed on eight individuals per
Magnolia species, comprising four individuals per predefined
population. The individuals for the test-multiplexes were
selected to be spatially spread throughout the populations and
have 260/230 and 260/280 OD (Optical Density) ratios
approximating 2. The (sub)species × primer combinations
were scored: 63 were considered polymorphic and unam-
biguous SSR markers in at least one of the ten tested taxa
(Supplementary Table S2). These 63 SSR markers were used
for species-specific multiplex design and final genotyping.
Their primer information can be found in Supplementary
Table S3.

Genotyping of individuals was executed by a multiplex
pooling with a three-primer PCR (Vartia et al. 2014). The
fluorescent labels FAM, NED, PET and VIC were linked to
the tails T3, Hill, Neo and M13, respectively. The multiplex
pools were designed using Multiplex Manager (Holleley

and Geerts 2009). Multiplex PCRs were performed on a
total volume of 5 µL, under the following conditions:
15 min at 95 °C; 35 cycles of 94 °C for 30 s, 57 °C for 90 s,
72 °C for 90 s; 72 °C for 10 min. Each multiplex reaction
contained 2 × QIA Multiplex PCR Master Mix (Qiagen),
5 ng/µL DNA, 0.025 µM for each forward primer, 0.1 µM
for each reverse primer and 0.1 µM for each specified dye,
carrying the same universal tail as the selected forward
primer of the chosen primer pairs. Fragment analyses were
executed by Macrogen Inc. (Seoul, South Korea) on an ABI
3730XL fragment analyser (Thermo Fisher Scientific) with
a GeneScanTM 500 LIZTM ladder (Thermo Fisher Scien-
tific). The results were analysed in Geneious v.8.1.9
(http://www.geneious.com, Kearse et al. 2012) using the
microsatellite plugin. When the test on the subset of indi-
viduals appeared promising (i.e. one set of clear peaks,
good amplification and more than one allele), 20 individuals
per population were genotyped for that marker. The ten taxa
were genotyped for 21–36 polymorphic markers, delivering
ten separate taxon-datasets (Supplementary Table S2: one
taxon-dataset= one column with the markers coded “A”).

Fig. 1 Location map of 16 Magnolia taxa (i.e. 15 Magnolia species, of
which one species consists of two subspecies) from the Caribbean and
Mexico, collected in the wild. Circles represent the species of the
section Talauma subsection Splendentes. Squares represent species of

the Talauma subsection Talauma. Triangles represent species of the
section Magnolia. Classification is according to Figlar and Nooteboom
(2004)
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Error rates (Selkoe and Toonen 2006) for the markers
(Supplementary Table S3) across all ten taxon-datasets were
calculated, but were not actively and consistently tested for:
duplicate genotyping was produced as a side-product
during testing for polymorphism, optimizing multiplexes,
re-genotyping a complete multiplex for (a) low/unclear
peak(s), or as positive control between PCR batches.

The ten taxon-datasets were submitted to MICRO-
CHECKER v.2.2.3 (Van Oosterhout et al. 2004) and ML-
NullFreq (Kalinowski and Taper 2006) to test for null
alleles. MICRO-CHECKER was run with 1000, and ML-
NullFreq was run with 100 000 repetitions. Based on the
results, markers with a high probability of representing null
alleles were discarded from all downstream analyses.

To ensure that all amplified genetic regions were inde-
pendent samples of the genome, allelic associations
(Lewontin and Kojima 1960) (synonym: Linkage Dis-
equilibrium= LD) per population were analysed in each of
the ten taxon-datasets using the software program GENEPOP
v.4.3 (Rousset 2008) with the dememorization number set to
10 000, batches set to 1000 and 50 000 iterations per batch.

Evaluation of allelic associations was executed by examining
both the uncorrected (Waples 2015) and (sequential Bonfer-
roni) corrected p-values (Holm 1979) with nominal p-values
of 0.05 per species and per population.

Genetic structure

To assess the utility of the SSR markers for genetic species
delimitation between closely located Caribbean Magnolia
species and to search for patterns of extensive gene flow
between Caribbean Magnolia (sub)species, five different
supraspecific (i.e. above species level) datasets were insta-
ted. Dataset 1 comprises 340 individuals representing 17
populations, genotyped for all their polymorphic and
monomorphic loci (see Supplementary Table S2: all mar-
ker × taxon combinations coded A, B and C). Hence, for
this dataset it was assumed that the loci that tested to be
monomorphic for four or eight individuals were mono-
morphic for all 20 individuals. Dataset 2 comprises 340
individuals representing 17 populations, genotyped for all
the polymorphic and monomorphic loci, but not the

Table 2 Population statistics of Caribbean and Mexican Magnolias

Tax. Pop. NS SpE Max APD M P NG A Ho He Fis
T S T S T S T S T S T S T S

ACU TOP 20 3.78 1.8 1.44 31 10 69.565 90 19.871 20 5.452 5.9 0.594 0.610 0.591 0.647 0.021 0.083

CUB PIC 20 5.32 3.9 1.85 30 10 70.455 100 19.967 20 5.833 6.6 0.597 0.625 0.613 0.674 0.052 0.098

DOD MART 20 17.92 10.2 8.62 21 – 65.517 – 19.857 – 6.714 – 0.451 – 0.528 – 0.170* –

DOD GUA 20 26.08 10.4 12.39 21 – 68.966 – 19.905 – 7.238 – 0.515 – 0.573 – 0.127* –

DOM BAR 20 0.16 0.05 0.06 19 10 62.500 100 19.947 20 4.263 5.4 0.625 0.750 0.573 0.673 –0.065 –0.089

DOM ROD 20 0.28 0.09 0.10 19 10 62.500 100 20.000 20 3.368 3.8 0.503 0.600 0.482 0.577 –0.018 –0.014

EKM GRA 20 1.02 0.28 0.47 28 10 57.447 100 20.000 20 4.536 4.3 0.482 0.520 0.464 0.496 –0.013 –0.024

EKM MAN 20 1.52 0.88 0.40 28 10 59.574 80 19.929 19.9 3.786 3.4 0.475 0.465 0.458 0.449 –0.012 –0.01

HAM COR 20 0.98 0.79 0.15 22 10 60.000 90 20.000 20 6.682 6.2 0.723 0.650 0.712 0.668 0.011 0.053

HAM CAC 20 1.70 0.60 0.71 22 10 60.000 90 20.000 20 6.591 6.5 0.707 0.635 0.704 0.661 0.021 0.064

LAC LAC 20 – – – 20 – 64.706 – 20.000 – 4.500 – 0.638 – 0.603 – –0.032 –

LAC YAJ 20 0,23 0.81 0.10 20 – 67.647 – 20.000 – 4.750 – 0.688 – 0.592 – –0.135 –

PAL SAL 20 0.62 0.19 0.20 18 10 59.375 100 20.000 20 4.611 5.5 0.514 0.625 0.511 0.638 0.021 0.046

PAL MON 20 0.16 0.05 0.05 18 10 59.375 100 20.000 20 4.278 5.2 0.464 0.580 0.483 0.594 0.066 0.049

POR TOR 20 10.45 6.1 3.43 28 10 70.000 100 20.000 20 6.286 6.4 0.525 0.510 0.607 0.625 0.160* 0.209*

POR MARI 20 1.95 1.4 0.90 28 10 67.500 90 19.964 20 5.357 6.0 0.566 0.645 0.564 0.622 0.022 –0.011

SPL YUN 20 8.08 3.7 3.31 23 10 69.444 100 19.957 20 5.391 6.2 0.580 0.630 0.602 0.662 0.063 0.073

Tax.: abbreviations of (sub)species according to Table 1. Pop.: population abbreviations according to Table 1. NS: number of sampled individuals.
SpE: Spatial Extent (in km): the greatest pairwise distance in the population. Max: Maximum distance (in km) between two consecutive
individuals of a population (i.e. with no other (recorded) individual(s) in between). APD: Average Pairwise Distance between individuals (in km).
M: number of microsatellite markers employed. T: taxon-datasets, which include all the markers out of the 63 published microsatellite markers that
were polymorphic and unambiguous to score for the species at hand (Supplementary Table S2: A), omitting the markers with high probability of
containing null alleles (Supplementary Table S4). S: The Splendentes-normalized dataset (dataset 3) which contain ten microsatellite markers that
could be genotyped for all the 8 taxa of the section Talauma subsection Splendentes (Figlar and Nooteboom 2004) present in this study (See
Supplementary Table S2: all the microsatellite markers indicated with an asterisk). P: percentage of polymorphic loci (%). NG: average number of
genotyped individuals. A: average number of alleles. Ho: average observed heterozygosity. He: average expected heterozygosity. FIS: population
inbreeding coefficient, significant deviations from Hardy-Weinberg proportions are indicated with * (p= 0.05)
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assumed monomorphic loci (See Supplementary Table S2:
all marker × taxon combinations coded A and B). Dataset 3,
or the Splendentes-normalized-dataset, comprises ten loci
(see Supplementary Table S2: SSR markers labelled with an
asterisk) that were genotyped for 260 individuals repre-
senting 13 populations and eight taxa of section Talauma
subsection Splendentes (Table 1: Class.= TAS). Added to
datasets 1, 2 and 3, two smaller supraspecific datasets were
instated, representing the apparently closely related species
i.e. the two species of Puerto Rico: the PR-dataset; and the
three species of the Dominican Republic: the DR-dataset.
To search for patterns of extensive gene flow between
Caribbean Magnolia population pairs within the defined
species, the 17 populations were studied on the infraspecific
(i.e. below species) level using nine species-datasets (i.e. the
taxon-datasets of the two M. cubensis subspecies were
joined) and 17 population-datasets.

A first batch of analyses was conducted in STRUCTURE
v.2.3.4 (Pritchard et al. 2000) on datasets 1, 2 and 3, the PR-
and DR-datasets, the nine species-datasets and the 17
population-datasets. STRUCTURE analyses were run with
a burn-in of 100 000, 100 000 MCMC steps after the burn-
in and the admixture model as ancestry model. Datasets 1, 2
and 3 were run with the allele frequency model set to
independent allele frequencies. They were expected to
consist of 13 (dataset 3) or 17 (dataset 1 and 2) populations
and were run with K set from 1 to 25. The PR- and DR-
datasets were run both with the independent allele fre-
quency model and the correlated allele frequency model and
their results were compared. They were expected to have
between 2 and 6 populations and K was set from 1 to 15.
The nine species-datasets and 17 population-datasets were
run with the allele frequency model set to correlated allele
frequencies. They were run with K set from 1 to 10. For all
datasets, each value of K was run 10 times. The results were
visualized with Structure Harvester Web v.0.6.94 (Earl and
vonHoldt 2012). The best K-value was selected using the
ΔK statistic (Evanno et al. 2005) and the results for mean
maximum likelihood (Mean LnK). The latter was taken into
consideration because the ΔK statistic appointed K-values
with unstable replicate results for datasets 1, 2 and 3 and
because the ΔK statistic cannot detect single clusters: an
outcome expected at the infraspecific level (i.e. population-
datasets and possibly the species-datasets). Barplots were
visualised using DISTRUCT v.1.1 (Rosenberg 2004).

DAPC analyses (Discriminant Analysis of Principal
Components) on datasets 1, 2 and 3 were executed in R
using the package adegenet (Jombart 2008). In the
find.clusters function we retained 300 PCs for dataset 1
and 2, and 140 PCs for dataset 3. The number of PCs to
retain for the PCA eigenvalues was determined using
cross-validation. All discriminant functions (DA eigen-
values) were kept.

Pairwise FST values (Weir and Cockerham 1984) and
their confidence intervals were calculated in R using the
package diveRsity (Keenan et al. 2013). To visualize the
genetic distances for dataset 1, 2 and 3, an unrooted network
applying the Neighbour-joining (NJ) method based on Nei’s
genetic distance: DA (Nei et al. 1983), was constructed
using Populations v.1.2.32 (http://bioinformatics.org/popula
tions/) using 1000 bootstrap replicates as a confidence
measure.

Mantel tests on the supraspecific level were performed in
GenAlEx v.6.5 (Peakall and Smouse 2006; Peakall and
Smouse 2012) on the pairwise log-transformed geographic
distance and pairwise FST values using 9999 permutations.
Coordinates of one individual were taken as a representative
of its population. Species geographic distance was averaged
over the populations of the species.

Inbreeding and population statistics

To test for inbreeding within the Caribbean Magnolia
populations, the inbreeding coefficient (FIS) for each locus
and population was calculated in FSTAT. Tests to detect
significant deviations from Hardy-Weinberg proportions
(HWP) were calculated in GENEPOP, performing 2-tailed
exact tests for each locus in each population. Complete
enumeration was performed whenever possible (Louis and
Dempster 1987), otherwise MCMC chains were run with
200 batches and 50 000 iterations (Guo and Thompson
1992). Deviations of both the uncorrected and sequential
Bonferroni corrected p-values were used to evaluate if
populations were truly deviating from HWP (Waples 2015).
To frame and discuss the results, different statistical para-
meters were calculated for each locus and population within
the ten taxon-datasets using GenAlEx, i.e. the percentage of
polymorphic loci (P), the number of genotyped individuals
(N), mean number of alleles (A), expected heterozygosity
(He), and observed heterozygosity (Ho).

Results

SSR markers

Overall, 82–92% of the primer pairs amplified, of which
53–67% were scored to be a single amplification product
(Supplementary Table S1). The polymorphism tests of the
markers giving a single amplification product classified
16–37% of the primer pairs unambiguous and polymorphic
(Supplementary Table S2). The reported SSR primers all
have heterozygote states in at least one individual and a
perfect motif (Weber 1990). For 56 SSR markers, the
duplicate runs rendered the same genotypes (Supplementary
Table S3: error rate: 0%). For one SSR marker no genotypes
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were duplicated. The error rates of the other six SSR mar-
kers ranged from 1–3.85%.

Results of detection and frequency of null alleles per
marker × population combination are given in Supplemen-
tary Table S4. Twelve marker × species combinations were
considered to have a high probability of showing null
alleles: M. cubensis (MA42_028), M. domingensis
(MA39_199), M. ekmanii (MA39_023, MA42_087), M.
hamorii (MA40_223, MA42_413), M. lacandonica
(MA39_182), M. pallescens (MA39_023, MA42_472), M.
portoricensis (MA42_481) and M. splendens (MA39_023,
MA42_481).

Associated alleles per marker × species combination are
given in Supplementary Table S4. Magnolia domingensis
andM. lacandonica showed a number of SSR markers with
associated alleles that were higher than expected for the
number of pairwise tests executed. The other eight taxa fell
within their confidence intervals of false positives, whereby

one significantly associated pair of SSR markers was
detected in M. pallescens (MA40_045 ×MA42_472).

Genetic structure: supraspecific level

Supraspecific ΔK and Mean LnK plots are depicted in
Supplementary Figure S5A–E and their interpretation is
summarized in Table 3. Barplots of the STRUCTURE
analyses on the three full supraspecific datasets are depicted
in Fig. 2a–d. The DR-dataset and PR-dataset structured
according to the species given both criteria and correlation
frequency models. In the DAPC analysis, the “true” K in the
replicate runs of the find.clusters algorithm was not uni-
vocal, and ranged between 9–13 for dataset 1, 9–15 for
dataset 2 and 8–11 for dataset 3. For each dataset, a
representative DAPC analysis is visualised in Fig. 3.
Supraspecific pairwise FST values range from 0.216 to 0.618
for dataset 1, 0.166 to 0.472 for dataset 2 and 0.130 to 0.308

Table 3 Number of STRUCTURE clusters of Magnolias from the Caribbean and Mexico

D1 D2 D3 DR(i) DR(c) PR
(i)

PR
(c)

ΔK 2 2 3 3 3 2 2

Mean LnK 9 10 8 7 4 3 3

S5 A B C D1 D2 E1 E2

CU DOD DOM EKM HAM LAC PAL POR SPL

ΔK 2 2 2 2 2 2 2 2 7

Mean LnK 2 2 3 2 1 2 2 5 1

S5 F G H I J K L M N

TOP PIC GUA MART BAR ROD GRA MAN CAC COR

ΔK 2 2 2 2 3 5 2 6 5 2

Mean LnK 1 1 2 1 1 1 1 1 1 1

S5 O1 O2 P1 P2 Q1 Q2 R1 R2 S1 S2

LAC YAJ SAL MON MARI TOR YUN

ΔK 7 7 5 8 3 3 7

Mean LnK 1 1 1 1 1 3 1

S5 T1 T2 U1 U2 V1 V2 N

D1= dataset 1 which comprises 340 individuals representing 17 populations, genotyped for all 63 microsatellite markers where possible, including
the assumed monomorphic data (See Supplementary Table S2: categories A, B and C). D2= dataset 2 which comprises 340 individuals
representing 17 populations, genotyped for all 63 microsatellite markers where possible, excluding the assumed monomorphic data (See
Supplementary Table S2: categories A and B). D3= dataset 3 which comprises 260 individuals representing 13 populations of the 8 taxa of the
section Talauma subsection Splendentes (See Table 1: Class.= TAS), genotyped for 10 microsatellite markers (See Supplementary Table S2:
marker names indicated with an asterisk). DR: DR-dataset comprising the 120 individuals comprising 6 populations and 3 species of the
Dominican Republic for all the markers of which data was generated (See Supplementary Table S2: categories A, B and C in the columns DOM,
HAM and PAL). PR: PR-dataset comprising comprising 60 individuals representing three populations and two species of Puerto Rico for all the
markers of which data was generated (See Supplementary Table S2: categories A, B and C in the columns POR and SPL). The DR- and PR-dataset
were run with the independent allele model (i) and the correlated allele model (c). Abbreviations of species and populations are according to Table
1; CU: Magnolia cubensis. ΔK according to Evanno et al. (2005). Mean LnK=Mean maximum likelihood. S5: the corresponding plots in
Supplementary Figure S5
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for dataset 3 (See Table 4). Their confidence intervals are
visualized in Supplementary Figure S6. The unrooted NJ
trees based on DA are depicted in Fig. 4. The Mantel tests
for all three datasets including all population-pairs were
significant (p= 0.000–0.003). Mantel tests on the supras-
pecific pairwise distances were significant for dataset 1 (p
= 0.000), but not for dataset 2 (p= 0.080) and dataset 3 (p
= 0.256). See Supplementary Figure S7 for visualisation of
the relationship between geographic and genetic distance
and Table 4 for the Pairwise Geographic Distance (PGD)
between the population pairs.

Genetic structure: infraspecific level

Infraspecific ΔK and Mean LnK plots are depicted in Sup-
plementary Figure S5F–V2 and their interpretation is

summarized in Table 3. Barplots of the two infraspecific
STRUCTURE analyses exceeding the predefined clusters:
GUA and TOR are given in Figs. 2e, f, respectively. Infra-
specific pairwise FST values can be found in Table 4 and
range from 0.044 to 0.222 for the species-datasets and 0.035
to 0.226 when standardized cf. dataset 3. Confidence intervals
of the infraspecific pairwise FST values are depicted in Sup-
plementary Figure S6. Mantel tests at the infraspecific level
were not significant (dataset 1 and dataset 2: p= 0.084,
dataset 3: p= 0.080): see Supplementary Figure S7.

Inbreeding: infraspecific level

Detailed results on the population statistics calculated on the
ten taxon-datasets are listed per marker, population and
subset in Supplementary Table S4. Population statistics of

Fig. 2 STRUCTURE barplots of Magnolias from the Caribbean and
Mexico. The replicate with the highest likelihood score is given. a
STRUCTURE barplot of dataset 1 and dataset 2, K= 2. b STRUC-
TURE barplot of dataset 1: K= 9. c STRUCTURE barplot of dataset
3, K= 3. d STRUCTURE barplot of dataset 3, K= 8. e STRUCTURE
barplot of the Guadeloupe population of Magnolia dodecapetala. f
STRUCTURE barplot of the Toro Negro population of Magnolia
portoricensis. Dataset 1 comprises 340 individuals representing 17
populations, genotyped for all 63 microsatellite markers where

possible, including the assumed monomorphic data (See Supplemen-
tary Table S2: categories A, B and C). Dataset 2 comprises 340
individuals representing 17 populations, genotyped for all 63 micro-
satellite markers where possible, excluding the assumed monomorphic
data (See Supplementary Table S2: categories A and B). Dataset 3
comprises 260 individuals representing 13 populations of the 8 taxa of
the section Talauma subsection Splendentes (See Table 1: Class.=
TAS), genotyped for 10 microsatellite markers (See Supplementary
Table S2: marker names indicated with an asterisk)
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the most representative subset are listed in Table 2. Three
populations: GUA, MART and TOR showed significant
departure from HWP. GUA and MART presented

significant deviation from HWP for 5/21 and 4/21 loci (1.45
[0, 3] expected to test false positive when p= 0.05). TOR
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showed significant deviation from HWP for 7/29 loci (1.45
[0, 3] expected to test false positive when p= 0.05).

Discussion

SSR markers

The data on marker development show an attrition of usable
SSR primer pairs during post-sequencing marker develop-
ment, which is a general issue in SSR development (Hodel
et al. 2016). Patterns in success of the polymorphism tests
should be treated with caution because (1) multiplexing
SSR markers can lead to marker interaction; (2) testing with
more individuals or populations can show more markers to
be polymorphic; (3) massive parallel testing was executed,
for which some SSR marker-species combinations were not
replicated; (4) random isolated PCR artefacts have been
observed. Because all 63 reported SSR markers had a het-
erozygous state in at least one individual and contain di- or
tri-repeats, they are labelled nuclear SSR loci (Wheeler et al.
2014).

Sampling design

The sampling design renders a dataset which is standardised
yet limited in the number of individuals per population and
populations per species (Hoban et al. 2013; Ward and
Jasieniuk 2009). It is possible that the limited number of
samples invoked false positives or false negatives due to
random sampling error (Waples 2015), hence, we recom-
mend including SSR markers that reported to have null
alleles when genotyping more individuals and populations

in further analyses, except for the markers that have very
strong evidence i.e. MA42_028 for M. cubensis,
MA39_182 for M. lacandonica and MA42_481 for M.
portoricensis.

Genetic structure: supraspecific level

In general, results of all supraspecific analyses (Tables 3–4,
Figs. 2, 3, 4, Supplementary Figure S5A–E2, S6, S7) are
influenced by the datasets used. Firstly, due to the resolu-
tion: inclusion of more differentiated species/populations
conceals the signal of the lower genetic structural levels
(e.g. Fig. 2a vs. Fig. 2b). Secondly, due to inclusion or
exclusion of the assumed monomorphic SSR loci or fixed
alleles (e.g. Fig. 3a vs. Fig. 3b). On the one hand, fixed
alleles determined a higher differentiation among species.
This is apparent in the NJ-tree when comparing branch
lengths and bootstrap values in Figs. 4a, b and in the DAPC
plots when comparing Fig. 3a with Fig. 3b. On the other
hand, the monomorphic loci strengthen genetically similar
species groups, illustrated by the three species of the
Dominican Republic to be clustered together in Fig. 4a,
while when omitting the assumed monomorphic data (Fig.
4b), M. hamorii is differentiated from the other two
Dominican Magnolias.

Currently, a molecular phylogenetic analysis including a
representative sampling of section Talauma and its four
subsections (Figlar and Nooteboom 2004; Pérez et al. 2016)
is not available. On the basis of the SSR results, it can be
stated that the species delineations of the studied seven
species of subsection Splendentes are genetically confirmed.
Clustering methods placed individuals and populations in
their respective species genetic cluster (Figs. 2b, d, 3a, b
and 4). However, the likelihood of clustering according to
the species was not significant enough for the ΔK method to
recognize the K corresponding to the number of species
(Figs. 2a, c) and species-clusters often overlap in the two-
dimensional visualization of the DAPC analysis (Fig. 3) or
even consistently cluster with another species (Fig. 3c:
mix1, mix2).

Although the SSR data is able to deliver evidence for
species boundaries, there can be little conclusions drawn on
their evolutionary relationships (Fig. 3, Table 4, Fig. 4). The
data illustrates that the set of three Dominican Magnolias
and the set of two Puerto Rican Magnolias are the least
genetically differentiated (Table 4, Figs. 3a, 4a), which is
also visible as a gap in pairwise FST values (Supplementary
Figure S6) and the significant results of the Mantel tests
(Supplementary Figure S7). The pairwise FST values (Table
4, Supplementary Figure S6A, S6B) suggest (M. dom-
ingensis+M. hamorii)+M. pallescens; however, in Figs.
3, 4b, c (M. domingensis+M. pallescens)+M. hamorii is
put forward. Although native to the same island as the three

Fig. 3 DAPC plots of Magnolias from the Caribbean and Mexico.
DAPC: Discriminant Analysis of Principal Components. Populations
and (sub)species are abbreviated cf. Table 1 and CU: Magnolia
cubensis. a DAPC plot of dataset 1 which comprises 340 individuals
representing 17 populations, genotyped for all 63 microsatellite mar-
kers where possible, including the assumed monomorphic data (See
Supplementary Table S2: categories A, B and C). Nine clusters are
visualised following the nine species: CU, DOD, DOM, EKM, HAM,
LAC, PAL, POR, SPL b DAPC plot of dataset 2 which comprises 340
individuals representing 17 populations, genotyped for all 63 micro-
satellite markers where possible, excluding the assumed monomorphic
data (See Supplementary Table S2: categories A and B). Eleven
clusters are visualised: CU (behind SPL), DOD, DOM, HAM, GRA,
LAC (population), MAN, PAL (behind POR), POR (behind DOM),
SPL, YAJ. C DAPC plot of dataset 3 which comprises 260 individuals
representing 13 populations of the 8 taxa of the section Talauma
subsection Splendentes (See Table 1: Class.= TAS), genotyped for 10
microsatellite markers (See Supplementary Table S2: marker names
indicated with an asterisk). mix1: all 40 individuals of DOM and 3
individuals of SAL. mix2: all 40 individuals of PAL and 1 individual
of PIC. Nine clusters are visualised: GRA, MAN, mix1 (behind PAL),
mix2, PAL, PIC, POR, SPL, TOP
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Dominican Magnolias, M. ekmanii is conspicuously dif-
ferentiated from them, as well as from all other species.
There is a hint that EKM is most closely related to the
Cuban Magnolias: their pairwise FST calculated on dataset 1

is significantly lower compared to the other EKM pairwise
comparisons (Table 4, Supplementary Figure S6A), the
DAPC analyses (Fig. 3) place them more closely together
according to the two most explanatory axes in the

Table 4 Pairwise FST values and
pairwise geographic distance
(PGD in km) of Magnolias from
the Caribbean and Mexico

Sp. CU DOD DOM EKM HAM LAC PAL POR SPL

CU D1 0.154

D2 0.154

D3 0.160

PGD 408.404

DOD D1 0.513 0.181

D2 0.360 0.181

D3 – –

PGD 1897.652 168.881

DOM D1 0.428 0.499 0.138

D2 0.262 0.264 0.138

D3 0.196 – 0.093

PGD 890.127 1009.428 4.540

EKM D1 0.455 0.618 0.486 0.223

D2 0.387 0.472 0.380 0.223

D3 0.272 – 0.296 0.226

PGD 513.501 1418.235 424.854 10.079

HAM D1 0.389 0.520 0.216 0.497 0.044

D2 0.187 0.339 0.166 0.325 0.044

D3 0.130 – 0.132 0.275 0.035

PGD 817.711 1088.315 100.864 333.286 3.785

LAC D1 0.539 0.471 0.573 0.611 0.570 0.185

D2 0.316 0.373 0.318 0.423 0.307 0.185

D3 – – – – – –

PGD 1481.214 3245.707 2274.335 1849.511 2181.049 109.658

PAL D1 0.466 0.557 0.318 0.574 0.279 0.607 0.163

D2 0.300 0.346 0.230 0.416 0.216 0.283 0.163

D3 0.152 – 0.164 0.301 0.150 – 0.115

PGD 843.4194 1057.382 66.576 399.205 114.939 2244.901 27.064

POR D1 0.409 0.489 0.422 0.535 0.404 0.541 0.534 0.101

D2 0.246 0.352 0.236 0.396 0.240 0.316 0.314 0.101

D3 0.152 – 0.226 0.308 0.218 – 0.210 0.105

PGD 1259.906 647.440 379.509 803.612 471.798 2652.663 418.427 52.916

SPL D1 0.437 0.559 0.487 0.564 0.461 0.580 0.549 0.338 –

D2 0.264 0.373 0.237 0.402 0.208 0.266 0.282 0.233 –

D3 0.227 – 0.226 0.290 0.223 – 0.257 0.239 –

PGD 1353.569 567.164 479.761 904.498 573.613 2753.896 515.043 102.892 –

FST= θ cf. Weir and Cockerham 1984. Species (Sp.) are abbreviated cf. Table 1 and CU=Magnolia
cubensis. D1= dataset 1 which comprises 340 individuals representing 17 populations, genotyped for all 63
microsatellite markers where possible, including the assumed monomorphic data (See Supplementary Table
S2: categories A, B and C). D2= dataset 2 which comprises 340 individuals representing 17 populations,
genotyped for all 63 microsatellite markers where possible, excluding the assumed monomorphic data (See
Supplementary Table S2: categories A and B). D3= dataset 3 which comprises 260 individuals representing
13 populations of the 8 taxa of the section Talauma subsection Splendentes (See Table 1: Class.= TAS),
genotyped for 10 microsatellite markers (See Supplementary Table S2: marker names indicated with an
asterisk). On the diagonal (in bold): the pairwise infraspecific FST values and the pairwise distances between
the pairs of populations per species
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ordination space, and the NJ-tree of dataset 1 and 2 display
shared ancestry, albeit unsupported (Figs. 4a, b). For EKM
and species relationships across the different Caribbean

islands, the SSR loci have accumulated too many (homo-
logous) mutations for supported relationships to be deduc-
ted (Calonje et al. 2009). Therefore, studying more
conservative DNA fragments by phylogenetic studies (e.g.
on chloroplast DNA or single copy nuclear genes) would be
valuable.

Genetic structure: infraspecific level

GUA, MART and TOR are suspected to suffer from the
Wahlund effect given the larger spatial distances (Table 2:
SpE, Max, APD), significantly high number of null alleles
(Supplementary Table S4), significant FIS value (Table 2),
high number of alleles (Table 2: A) and their population
STRUCTURE (Figs. 2e, f). The absence of genetic HWP-
based structure in the MART population could be due to
unequal mixture fractions (Waples 2015) combined with a
small sample size. For more in-depth study of these popu-
lations, it is recommended to invoke more substructure in
future sampling design and analyses.

The range of pairwise infraspecific FST values (Table 4)
is large (0.035–0.226) and the genetic differentiation can be
labelled: little (HAM), moderate (DOM, PAL: dataset 2,
POR), great (CUB, DOD, EKM, LAC, PAL: dataset 1)
(Hartl and Clark 1997) or significant (CUB, DOD, EKM,
LAC, PAL: dataset 1) (Frankham et al. 2010). The large
range of pairwise, infraspecific FST values reminds us of the
conflict between the continuity of lineage separation and the
discrete entity of a species (de Queiroz 1998). Theoretically,
infraspecific genetic differentiation was expected to be
counteracted by extensive gene flow between populations:
either by long-distance pollen dispersal (Petit and Hampe
2006) or seed dispersal by natural disturbances (Lugo et al.
1981).

The Wahlund effect and moderate to great genetic dif-
ferentiation indicate that the population dynamics of the
studied Neotropical Magnolias occur at a fine spatial scale;
in this sampling design suggested to be limited in the spatial
extent of 4 km (Table 4: PGD of HAM) to 6 km (Table 2:

Fig. 4 NJ trees of the Magnolias from the Caribbean and Mexico.
Unrooted networks are constructed by the Neighbour-joining (NJ)
method based on Nei’s genetic distance: DA (Nei et al. 1983). Boot-
strap values above 70 are depicted. a NJ-tree of dataset 1 which
comprises 340 individuals representing 17 populations, genotyped for
all 63 microsatellite markers where possible, including the assumed
monomorphic data (See Supplementary Table S2: categories A, B and
C). b NJ-tree of dataset 2 which comprises 340 individuals repre-
senting 17 populations, genotyped for all 63 microsatellite markers
where possible, excluding the assumed monomorphic data (See Sup-
plementary Table S2: categories A and B). c NJ-tree of dataset 3 which
comprises 260 individuals representing 13 populations of the 8 taxa of
the section Talauma subsection Splendentes (See Table 1: Class.=
TAS), genotyped for 10 microsatellite markers (See Supplementary
Table S2: marker names indicated with an asterisk).
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SpE of TOR). The Mantel tests on the infraspecific level
(Supplementary Figure S7) and comparisons with Magnolia
SSR literature (Kikuchi and Isagi 2002; Setsuko et al. 2007;
Zhao et al. 2012) show no correlations or trends between
pairwise geographic and infraspecific genetic distance. For
this result, the biological context (i.e. different animal
vectors), different evolutionary histories (i.e. recent long-
distance dispersal), and different landscape context (i.e. less
fragmented landscapes vs. highly disturbed landscapes)
cannot be decoupled from one another. However, given the
conservative flower and fruit morphology within the Mag-
noliaceae family and the extensive deforestation history of
the studied populations, the landscape context is expected to
be the main driver.

Unexpectedly, the two subspecies of M. cubensis express
low genetic differentiation combined with a high geo-
graphic distance, while we find high structuring overall for
the other Magnolias. Here, the hypothesis of relatively
recent long-distance dispersal is put forward as the most
likely explanation to be tested in further research. Similarly,
MAR and GUA, the “populations” of M. dodecapetala,
were expected to have a higher degree of genetic differ-
entiation compared to the other infraspecific genetic dif-
ferentiation regardless of the Wahlund effect, given that the
populations are separated by ocean and that a “population”
on Dominica lies in between that of Guadeloupe and
Martinique.

Population statistics: infraspecific level

The high amount of allelic association found in three
populations (ROD, LAC, YAJ) is most likely due to a major
reduction in population size: a recent bottleneck. This is
concluded given that (a) there is genome-wide allelic
association for all three populations, in contradicting
strengths when compared across populations pairs per
species; and (b) the visited locations had a high degree of
disturbance. The samples studied of the ROD and LAC
populations indicate that they have not been able to
recombine their genetic material since the bottleneck. For
the YAJ population it cannot be excluded that a high degree
of kinship between the samples produced the results. The
20 samples of this population could only be collected at the
border of, what is expected to be, a much larger population
and include two adults and 18 juveniles. It is recommended
to either exclude the population from species-focused ana-
lyses, or to recollect a better representation of the
population.

We cannot easily label the observed genetic diversity
(Table 2) to be healthy, high or low, as there is no related,
non-threatened Magnolia species studied for comparison
(Spielman et al. 2004). However, comparisons of the
population statistics between the studied threatened species

can be made. Firstly, when comparing the statistics of the
taxon-datasets, the two populations of M. hamorii from the
Dominican Republic show a high mean number of alleles
(A), in the same extent as the three populations suspected to
experience the Wahlund effect. They also have the highest
reported values of Ho and He compared with the other
Magnolias of this dataset. In the Splendentes-normalized-
dataset (dataset 3), the statistics of M. hamorii do not stand
out anymore. However, they remain in the higher range of
values, now similar to the statistics found for M. cubensis,
M. portoricensis and M. splendens. The latter three species
also show A- and H-values in the higher range of values in
the calculations of their full taxon-datasets.

Secondly, GRA, MAN and ROD report the three lowest
A values in their taxon-datasets, and MAN and ROD show
lower A and H values than the GRA and BAR populations,
respectively. The lower statistics of the GRA and MAN
populations confirm that conservation management of
Magnolias in the last remaining forests of Haiti is urgent.
Interestingly, even though MAN appeared deforested in an
equal, or even higher extent than the ROD population, its
alleles tested to be independently associated. LD decreases
after recombination events at a rate that depends on the
recombination frequency and generally takes more than one
generation of random mating to restore, even for (physi-
cally) unlinked loci (Slatkin 2008). Hence, the combination
of highly disturbed forest and independently associated
alleles indicates successful pollination events and surviving
new recruits for the MAN population.

Thirdly, the population inbreeding coefficients (FIS) of
the 14 populations not suspected to be under the Wahlund
effect, do not significantly differ from zero. Taking the
reproduction biology of Magnolias into consideration, both
arguments in favour and against this result can be listed. No
(apparent) inbreeding seems likely given that (1) Magnolia
flowers are reported to be protogynous (Gibbs et al. 1977;
Gottsberger 1977; Thien 1974); (2) trees have character-
istics that promote outcrossing (Petit and Hampe 2006); and
(3) high outcrossing rates have been found in other Mag-
nolia species (Tamaki et al. 2009). However, (some degree
of) inbreeding was expected given that (1) geitonogamy is
theoretically possible (Gibbs et al. 1977; Ishida et al. 2003)
provided that they express asynchronous flowering and no
self-incompatibility mechanisms; (2) the species are clas-
sified as threatened due to small population sizes, high
disturbance, and small estimations of extent of occurrence
(Rivers et al. 2016); and (3) significant inbreeding has been
reported for other Magnolias (Kikuchi and Isagi 2002; Sun
et al. 2011). It is possible that recent inbreeding remains
undetected due to a time-lag (Kramer et al. 2008; Lugo et al.
1981).

In conclusion, the data showed structuring on three dif-
ferent levels. Firstly, the supraspecific structuring confirms
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high species integrity with no extensive gene flow between
species. Secondly, species sets within islands express lower
genetic structuring but no signs of current gene flow, which
is interpreted as a more recent shared ancestry. Thirdly, the
populations within species also show moderate to strong
differentiation, uncorrelated with the distance between the
population pairs. The generalisation of extensive gene flow
in trees does not withhold in the studied species. Our data
support the hypothesis that the generalized concept of
extensive gene flow in trees mainly applies to wind polli-
nated trees or trees that have larger animal vectors such as
mammals (Dick et al. 2008). In contrast to the strong
structuring, there is no sign of inbreeding, indicating ample
gene flow within populations and mechanisms favouring
outcrossing. Hence, the reproductive biology of the Neo-
tropical Magnolias appears resilient yet limited in their
animal mediated dispersal. A fragmented landscape is
expected to strengthen this limitation. Hence, in terms of
forest conservation, maintenance of – or preferably: an
increase of – connectivity between forest patches would be
the most effective strategy to ensure the survival of the
species. To practically outline and further investigate the
forest connectivity for Magnoliaceae, Magnolia SSR
research would benefit from studying (1) the reproductive
biology of the Magnolia trees (pollinators, seed dispersers
and phenology) and its limits, shaping the high genetic
differentiation between, and high gene flow within popu-
lations; (2) the genetic diversity of closely related non-
threatened Magnolia species, either in fragmented or con-
tinuous landscapes, placing past and future SSR Magnolia
studies on threatened populations in perspective; and (3)
splittingMagnolia conservation genetic studies according to
age, to exclude this potential time-lag and detect whether or
not the younger generation ofMagnolia trees are genetically
depauperate (e.g. Graignic et al. 2016; Watanabe et al.
2017).

Data archiving

Data available from Dryad: https://doi.org/10.5061/dryad.
0m625h4.

Genbank accession numbers for the 63 original sequen-
ces on which the primers were developed range from
MH923371 to MH923433.
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