On the valuations of the near polygon \mathbb{H}_{n}

Bart De Bruyn
Ghent University, Department of Mathematics, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

We characterize the valuations of the near polygon \mathbb{H}_{n} that are induced by classical valuations of the dual polar space $D W(2 n-1,2)$ into which it is isometrically embeddable. An application to near $2 n$-gons that contain \mathbb{H}_{n} as a full subgeometry is given.

Keywords: near polygon, valuation, full subgeometry
MSC2010: 51A50, 05B25, 51A45, 51E12

1 Introduction

A point-line geometry $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ with non-empty point set \mathcal{P}, line set \mathcal{L} and incidence relation $\mathrm{I} \subseteq \mathcal{P} \times \mathcal{L}$ is called a near polygon if the following three properties are satisfied:
(NP1) Every two distinct points are incident with at most one line.
(NP2) For every point x and every line L, there exists a unique point on L that is nearest to x with respect to the distance function $\mathrm{d}(\cdot, \cdot)$ in the collinearity graph Γ.
(NP3) The diameter of Γ is finite.
If d is the diameter of Γ, then the near polygon is called a near $2 d$-gon. This paper is about two families of near polygons, the family $D W(2 n-1,2), n \geq 2$ of symplectic dual polar spaces over the field \mathbb{F}_{2} and the family $\mathbb{H}_{n}, n \geq 2$ of near polygons that arise from matchings of complete graphs.

The main tool for studying near polygons that contain isometrically embedded full sub-near-polygons is that of valuations. In the literature, one can find different variants of the notion of valuation, but in the current paper, we will take the most basic definition. A semi-valuation of a near polygon $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a map $f: \mathcal{P} \rightarrow \mathbb{Z}$ with the property that every line L contains a unique point x_{L} such that $f(x)=f\left(x_{L}\right)+1$ for every point x on L distinct from x_{L}. If the minimal value attained by f is equal to 0 , then the semivaluation is called a valuation. If x is a point of a near polygon $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$, then the
map $\mathcal{P} \rightarrow \mathbb{Z} ; y \mapsto \mathrm{~d}(x, y)$ is a valuation of \mathcal{S}, the so-called classical valuation with center x. If \mathcal{S}_{1} and \mathcal{S}_{2} are two near polygons such that \mathcal{S}_{1} is a full subgeometry of \mathcal{S}_{2}, then every semi-valuation of \mathcal{S}_{2} will induce a (semi-) valuation of \mathcal{S}_{1}.

Valuations seem to be the most valuable tool when it comes to studying and classifying near polygons that contain isometrically embedded full sub-near-polygons. For this reason, they form an indispensable tool for classifying so-called dense near polygons, as theoretical results of Shult \& Yanushka [18] and Brouwer \& Wilbrink [7] guarantee that such near polygons must have isometrically embedded sub-near-polygons (like quads, hexes, maxes, etc.). It is therefore no surprise that the very first successes of "valuation theory" were achieved in the classification of dense near polygons (more precisely, for octagons with three and four points per line). In more recent years, valuations have also been successful in the study of generalized polygons. They have been used to show that the Ree-Tits generalized octagon of order $(2,4)$ is the unique generalized octagon of that order that contains a suboctagon of order $(2,1)$, to show that the dual twisted triality hexagon of order $(2,8)$ is the unique near hexagon that contains the split Cayley hexagon $H(2)^{D}$ as a proper isometrically embedded full subgeometry, and to show that there are no semi-finite generalized hexagons that contain a subhexagon of order (2,2). More details about these results can be found in $[1,14]$. An overview of the most important results and applications of valuations till the year 2012 can be found in the survey paper [13]. A recent and exciting breakthrough was the fact that valuations have been used to construct new near polygons that are highly symmetric and closely related to finite simple groups [2]. In the latter paper, a chain of near polygons was described that was intimately related to the Suzuki chains of groups and graphs. In the recent work [3], valuations have been used to characterize these Suzuki chain near polygons.

The construction and characterization results obtained in $[1,2,3,14]$ all invoke valuation geometries. The valuation geometry of a near polygon \mathcal{S} is a point-line geometry whose points are the valuations of \mathcal{S} and whose lines are certain nice sets of mutually neighbouring valuations. Two valuations f_{1} and f_{2} of \mathcal{S} are called neighbouring if there exists an $\epsilon \in \mathbb{Z}$ such that $\left|f_{1}(x)-f_{2}(x)+\epsilon\right| \leq 1$ for every point x of \mathcal{S}.

In the believe that we have not yet seen the full potential of valuations and that more classification results are still to come, we pursue our investigation of valuations in the present paper. From the eight basic classes of dense near polygons with three points per line described in [10, Chapter 6], there are seven whose valuations have been completely classified elsewhere in the literature. The remaining class consists of the near polygons $\mathbb{H}_{n}, n \geq 2$ and these are under investigation here.

Although we have not been successful in classifying all valuations of \mathbb{H}_{n}, we were still able to obtain the following partial classification. In order to understand this theorem, one should know that the near polygon \mathbb{H}_{n} can be isometrically embedded as a full subgeometry in $D W(2 n-1,2)$ and that \mathbb{H}_{n} has full subquadrangles isomorphic to $W(2) \cong \mathbb{H}_{2}$, the so-called $W(2)$-quads (see Section 2).

Theorem 1.1 Suppose \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$. Then:
(1) The valuations of \mathbb{H}_{n} induced by the classical valuations of $D W(2 n-1,2)$ are pre-
cisely the valuations of \mathbb{H}_{n} for which all induced $W(2)$-quad valuations are classical. In fact, each such valuation of \mathbb{H}_{n} is induced by precisely one classical valuation of $D W(2 n-1,2)$.
(2) Let x_{1} and x_{2} be two distinct points of $D W(2 n-1,2)$ and let f_{1} and f_{2} be the valuations of \mathbb{H}_{n} induced by the classical valuations of $D W(2 n-1,2)$ with centers x_{1} and x_{2}. Then f_{1} and f_{2} are neighbouring if and only if $d\left(x_{1}, x_{2}\right)=1$.

If x is a point and Q is a $W(2)$-quad of a near polygon such that $\mathrm{d}(x, Q)=i$, then by [18, Proposition 2.6] the set of points of Q at distance i from x is either a singleton or an ovoid (which contains a unique point of each line of Q). The pair (x, Q) is called classical or ovoidal depending on whether the first or last case occurs.

Although Theorem 1.1 does not offer a complete classification of all valuations of \mathbb{H}_{n}, this result is certainly useful for studying near $2 n$-gons \mathcal{S} that contain \mathbb{H}_{n} as an isometrically embedded subgeometry such that (x, Q) is classical for every point x of \mathcal{S} and every $W(2)$-quad Q of \mathbb{H}_{n}. Every known such near polygon \mathcal{S} is an isometric embedded full subgeometry of $D W(2 n-1,2)$ and we conjecture that this is always the case. We did not succeed in proving this, but by relying on Theorem 1.1, we were able to prove the following.

Theorem 1.2 Suppose the near polygon \mathbb{H}_{n} is isometrically embedded as a full subgeometry in $\Delta=D W(2 n-1,2)$. If \mathcal{S} is a near $2 n$-gon that contains an isometrically embedded copy \mathbb{H}_{n}^{\prime} of \mathbb{H}_{n} such that every point $W(2)$-quad pair (x, Q) with $Q \subseteq \mathbb{H}_{n}^{\prime}$ is classical, then every line of \mathcal{S} is incident with precisely three points and there exists a map θ from the point set of \mathcal{S} to the point set of $\Delta=D W(2 n-1,2)$ satisfying the following:
(1) θ defines an isomorphism between \mathbb{H}_{n}^{\prime} and \mathbb{H}_{n}.
(2) If $\{x, y, z\}$ is a line of \mathcal{S}, then $\left\{x^{\theta}, y^{\theta}, z^{\theta}\right\}$ is a line of $\Delta=D W(2 n-1,2)$.
(3) If x is a point of \mathcal{S} and y is a point of \mathbb{H}_{n}^{\prime}, then $d_{\mathcal{S}}(x, y)=d_{\Delta}\left(x^{\theta}, y^{\theta}\right)$. In particular, we have $d_{\mathcal{S}}\left(x, \mathbb{H}_{n}^{\prime}\right)=d_{\Delta}\left(x^{\theta}, \mathbb{H}_{n}\right)$.

Note that if the map θ in Theorem 1.2 is injective, then \mathcal{S} can be regarded as a full subgeometry of $D W(2 n-1,2)$.

2 Preliminaries and useful results

2.1 The near polygon \mathbb{H}_{n}

The near polygon $\mathbb{H}_{n}, n \geq 2$, is defined as the point-line geometry whose points are the partitions of the set $X=\{1,2, \ldots, 2 n+2\}$ in $n+1$ subsets of size 2 and whose lines are the partitions of X in one subset of size 4 and $n-1$ subsets of size 2 . A point p is incident
with a line L if and only if p (regarded as a partition) is a refinement of $L . \mathbb{H}_{n}$ is a near $2 n$-gon with three points per line. The near polygon \mathbb{H}_{n} was introduced in $[6$, Section $5]$ and its basic properties can be found in [10, Section 6.2]. Throughout this paper, we meet two families of full subgeometries of \mathbb{H}_{n}.
(1) Suppose $n \geq 3$ and Y is a subset of size 2 of X. Then the points of \mathbb{H}_{n} that contain Y form a subspace of \mathbb{H}_{n} on which the induced geometry is isomorphic to \mathbb{H}_{n-1}. We call these full subgeometries the \mathbb{H}_{n-1}-subgeometries.
(2) Suppose Π is a partition of X in one subset of size 6 and $n-2$ subsets of size 2 . Then the points of \mathbb{H}_{n} that refine the partition Π form a subspace on which the induced subgeometry is isomorphic to the generalized quadrangle $W(2) \cong \mathbb{H}_{2}$. We call these full subgeometries the $W(2)$-quads.

In the abstract theory of near polygons, quads are defined as non-empty convex subspaces on which the induced full subgeometries are (nondegenerate) generalized quadrangles [15]. The near $2 n$-gon $\mathbb{H}_{n}, n \geq 3$ has two types of quads, the $W(2)$-quads defined above and the grid-quads (which are associated with partitions Π of X in two subsets of size 4 and $n-3$ subsets of size 2). The following facts are well-known, see e.g. [10, Section 6.2].

Lemma 2.1 (1) Suppose M is an \mathbb{H}_{n-1}-subgeometry of $\mathbb{H}_{n}, n \geq 3$. Then $d(x, M) \leq 1$ for every point x of \mathbb{H}_{n}. Moreover, there exists a unique point $\pi_{M}(x) \in M$ such that $d(x, y)=d\left(x, \pi_{M}(x)\right)+d\left(\pi_{M}(x), y\right)$ for every point y of M.
(2) Suppose M is an \mathbb{H}_{n-1}-subgeometry and Q is a quad of $\mathbb{H}_{n}, n \geq 3$ that meets M, but is not contained in M. Then $Q \cap M$ is a line.

Lemma 2.2 There exists a partition of $\mathbb{H}_{n}, n \geq 3$ in $2 n+1$ mutually disjoint $\mathbb{H}_{n-1^{-}}$subgeometries.
Proof. Consider the $2 n+1 \mathbb{H}_{n-1}$-subgeometries corresponding to the subsets $\{1, i\}$ of X, where $i \in\{2,3, \ldots, 2 n+2\}$.

2.2 The near polygon $D W(2 n-1,2)$

With a symplectic polarity ζ of $\mathrm{PG}(2 n-1,2)$, there is associated a polar space $W(2 n-1,2)$ in the sense of Tits [19, Chapter 7]. The points of $W(2 n-1,2)$ are the points of $\mathrm{PG}(2 n-$ $1,2)$, while the singular subspaces of $W(2 n-1,2)$ are the subspaces of $\operatorname{PG}(2 n-1,2)$ that are totally isotropic with respect to ζ. With $W(2 n-1,2)$, there is associated a dual polar space. This is the point-line geometry whose points are the maximal singular subspaces of $W(2 n-1,2)$ (those of dimension $n-1)$ and whose lines are the next-tomaximal singular subspaces of $W(2 n-1,2)$ (those of dimension $n-2$), with incidence being reverse containment. The dual polar space $D W(2 n-1,2)$ is a near $2 n$-gon with three points per line. If x is a point of $D W(2 n-1,2)$, then $\Gamma_{i}(x)$ with $i \in \mathbb{N}$ denotes the set of points at distance i from x, and $x^{\perp}:=\{x\} \cup \Gamma_{1}(x)$.

If α is a singular subspace of $W(2 n-1,2)$ of dimension $n-1-k$ where $k \in\{0,1, \ldots, n\}$, then the set of all maximal singular subspaces of $W(2 n-1,2)$ containing α is a convex subspace F_{α} of diameter k of $D W(2 n-1,2)$. This correspondence between singular subspaces of $W(2 n-1,2)$ and non-empty convex subspaces of $D W(2 n-1,2)$ is bijective. We will say that α is the singular subspace of $W(2 n-1,2)$ corresponding to F_{α}, or that F_{α} is the convex subspace of $D W(2 n-1,2)$ corresponding to α. Convex subspaces of diameter 2 are called quads and those of diameter $n-1$ are called maxes. The convex subspaces through a given point x of $D W(2 n-1,2)$, ordered by ordinary inclusion, define a projective space $\operatorname{Res}(x)$ isomorphic to $\operatorname{PG}(n-1,2)$. Every two points x_{1} and x_{2} of $D W(2 n-1,2)$ at distance k from each other are contained in a unique convex subspace $\left\langle x_{1}, x_{2}\right\rangle$ of diameter k.

Suppose F is a convex subspace of diameter k. If $k \geq 2$, then the full subgeometry \widetilde{F} of $D W(2 n-1,2)$ induced on F by the lines that have all their points in F is isomorphic to $D W(2 k-1,2)$. In particular, if $k=2$, then F is a quad and $\widetilde{F} \cong D W(3,2) \cong W(2)$. By abuse of notation, we will often write $F \cong D W(2 k-1,2)$ instead of $\widetilde{F} \cong D W(2 k-1,2)$. The maximal distance from a point x of $D W(2 n-1,2)$ to F is equal to $n-k$. Moreover, there exists a unique point $\pi_{F}(x) \in F$ such that $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), y\right)$ for every point y of F. A non-empty convex subspace of a near polygon having the latter property is called classical.

Two non-empty convex subspaces F_{1} and F_{2} of $D W(2 n-1,2)$ are called parallel if $\mathrm{d}\left(x_{1}, F_{2}\right)=\mathrm{d}\left(x_{2}, F_{1}\right)=\mathrm{d}\left(F_{1}, F_{2}\right)$ for every $x_{1} \in F_{1}$ and every $x_{2} \in F_{2}$. If F_{1} and F_{2} are two parallel convex subspaces of $D W(2 n-1,2)$, then they have the same diameter and the map $F_{i} \rightarrow F_{3-i} ; x \mapsto \pi_{F_{3-i}}(x)$ defines an isomorphism between \widetilde{F}_{i} and $\widetilde{F_{3-i}}$ for every $i \in\{1,2\}$. Moreover, $\theta_{1}^{-1}=\theta_{2}$.

Consider the ambient projective space $\mathrm{PG}(2 n-1,2)$ of $W(2 n-1,2)$. A line $\left\{x_{1}, x_{2}, x_{3}\right\}$ of $\mathrm{PG}(2 n-1,2)$ that is not a singular line of $W(2 n-1,2)$ is called a hyperbolic line of $W(2 n-1,2)$. If M_{i} with $i \in\{1,2,3\}$ is the max of $D W(2 n-1,2)$ corresponding to the point x_{i}, then $\left\{M_{1}, M_{2}, M_{3}\right\}$ is called a hyperbolic set of maxes. This is a set of three mutually disjoint maxes such that every line meeting two of them also meets the third.

A hyperplane of a point-line geometry $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a proper subset of \mathcal{P} that meets each line in either a singleton or the whole line. If x is a point of a near $2 n$-gon \mathcal{S} for which $\Gamma_{n}(x) \neq \emptyset$, then the set of points of \mathcal{S} at distance at most $n-1$ from x is a hyperplane of \mathcal{S}, the so-called singular hyperplane with center x.

Lemma 2.3 Let x_{1} and x_{2} be two distinct points of the dual polar space $D W(2 n-1,2)$, $n \geq 2$, and let $H_{i}, i \in\{1,2\}$, denote the singular hyperplane of $D W(2 n-1,2)$ with center x_{i}. Then the complement H_{3} of the symmetric difference of H_{1} and H_{2} is a singular hyperplane of $D W(2 n-1,2)$ if and only if $d\left(x_{1}, x_{2}\right) \in\{1,2\}$. If $d\left(x_{1}, x_{2}\right)=1$ and if x_{3} is the center of the singular hyperplane H_{3}, then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a line of $D W(2 n-1,2)$. If $d\left(x_{1}, x_{2}\right)=2$ and if x_{3} is the center of the singular hyperplane H_{3}, then $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a hyperbolic line of the quad $\left\langle x_{1}, x_{2}\right\rangle \cong W(2)$.
Proof. (1) Suppose $\mathrm{d}\left(x_{1}, x_{2}\right)=1$, let x_{3} be the third point of $D W(2 n-1,2)$ on the line $x_{1} x_{2}$ and let H_{3} denote the singular hyperplane with center x_{3}. We show that H_{3}
coincides with the complement of the symmetric difference of H_{1} and H_{2}. So, we must show that an arbitrary point u of $D W(2 n-1,2)$ is contained in either 1 or 3 of the sets H_{1}, H_{2} and H_{3}, or equivalently, that u is opposite to either 0 or 2 of the points x_{1}, x_{2} and x_{3}. But this follows from the fact that $D W(2 n-1,2)$ is a near $2 n$-gon.
(2) Suppose $\mathrm{d}\left(x_{1}, x_{2}\right)=2$ and let $Q \cong W(2)$ be the unique quad through x_{1} and x_{2}. Let x_{3} denote the unique point of Q distinct from x_{1} and x_{2} which is collinear with every point of $\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{1}\left(x_{2}\right)$, and let H_{3} denote the singular hyperplane of $D W(2 n-1,2)$ with center x_{3}. Note that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a hyperbolic line of $Q \cong W(2)$. For every $i \in\{1,2,3\}$, put $U_{i}:=x_{i}^{\perp} \cap Q$. We show that H_{3} coincides with the complement of the symmetric difference of H_{1} and H_{2}. Since Q is classical in $D W(2 n-1,2)$, this is equivalent with showing that U_{3} coincides with the complement of the symmetric difference of U_{1} and U_{2} (in Q). The latter claim is easily verified by a direct inspection in $Q \cong W(2)$.
(3) Suppose $n=3$ and $\mathrm{d}\left(x_{1}, x_{2}\right)=3$. Let H be the hyperplane of $D W(5,2)$ which is the complement of the symmetric difference of H_{1} and H_{2}. Then it is known (see e.g. Cooperstein [9, proof of Proposition 2.1]) that \widetilde{H} is isomorphic to the split Cayley generalized hexagon of order 2 . The hyperplane H is therefore called a hexagonal hyperplane of $D W(5,2)$. So, H is not a singular hyperplane.
(4) Suppose now that $\delta:=\mathrm{d}\left(x_{1}, x_{2}\right) \geq 3$. We prove by downwards induction on $i \in\{0,1, \ldots, \delta\}$ that there exists a convex subspace F_{i} of diameter i such that

- $\mathrm{d}\left(x_{1}, \pi_{F_{i}}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{2}, \pi_{F_{i}}\left(x_{2}\right)\right)=n-i ;$
- $\mathrm{d}\left(\pi_{F_{i}}\left(x_{1}\right), \pi_{F_{i}}\left(x_{2}\right)\right)=i$.

Suppose first that $i=\delta$. In the dual polar space $D W(2 n-1,2)$, there exists a point y at maximal distance n from x_{2} such that x_{1} is on a shortest path from x_{2} to y. So, $\mathrm{d}\left(y, x_{1}\right)=n-\delta$ and $\mathrm{d}\left(y, x_{2}\right)=n$. Recall that the convex subspaces of $D W(2 n-1,2)$ through y define an ($n-1$)-dimensional projective space $\operatorname{Res}(y)$. The convex subspace $\left\langle x_{1}, y\right\rangle$ corresponds to an $(n-1-\delta)$-dimensional subspace α of $\operatorname{Res}(y)$. Let F_{δ} denote a convex subspace of diameter δ through y such that the $(\delta-1)$-dimensional subspace β of $\operatorname{Res}(y)$ corresponding to F_{δ} is disjoint from α. Since $\pi_{F_{\delta}}\left(x_{1}\right)$ is on a shortest path between x_{1} and y, the convex subspace $\left\langle\pi_{F_{\delta}}\left(x_{1}\right), y\right\rangle$ is contained in both F_{δ} and $\left\langle x_{1}, y\right\rangle$. Hence, $y=\pi_{F_{\delta}}\left(x_{1}\right)$ and $\mathrm{d}\left(x_{1}, \pi_{F_{\delta}}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{1}, y\right)=n-\delta$. If z is a point of F_{δ} at distance δ from $\pi_{F_{\delta}}\left(x_{2}\right)$, then from $n \geq \mathrm{d}\left(x_{2}, z\right)=\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{2}\right)\right)+$ $\mathrm{d}\left(\pi_{F_{\delta}}\left(x_{2}\right), z\right)=\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{2}\right)\right)+\delta$, it follows that $\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{2}\right)\right) \leq n-\delta$. From $n=$ $\mathrm{d}\left(x_{2}, y\right)=\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{2}\right)\right)+\mathrm{d}\left(\pi_{F_{\delta}}\left(x_{2}\right), \pi_{F_{\delta}}\left(x_{1}\right)\right) \leq n-\delta+\delta=n$, it follows that $\mathrm{d}\left(x_{2}, \pi_{F_{\delta}}\left(x_{2}\right)\right)=n-\delta$ and $\mathrm{d}\left(\pi_{F_{\delta}}\left(x_{1}\right), \pi_{F_{\delta}}\left(x_{2}\right)\right)=\delta$.

Suppose $i<\delta$. By the induction hypothesis, there exists a convex subspace F_{i+1} of diameter $i+1$ of $D W(2 n-1,2)$ satisfying $\mathrm{d}\left(x_{1}, \pi_{F_{i+1}}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{2}, \pi_{F_{i+1}}\left(x_{2}\right)\right)=n-i-1$ and $\mathrm{d}\left(\pi_{F_{i+1}}\left(x_{1}\right), \pi_{F_{i+1}}\left(x_{2}\right)\right)=i+1$. Put $x_{1}^{\prime}:=\pi_{F_{i+1}}\left(x_{1}\right)$ and $x_{2}^{\prime}:=\pi_{F_{i+1}}\left(x_{2}\right)$. Now, let L_{1} denote a line of F_{i+1} through the point x_{1}^{\prime} and let y_{1} denote the unique point of L_{1} at distance $\mathrm{d}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-1=i$ from x_{2}^{\prime}. Let L_{2} denote a line of F_{i+1} through x_{2}^{\prime} not contained in $\left\langle y_{1}, x_{2}^{\prime}\right\rangle$ and let y_{2} denote the unique point of L_{2} at distance $\mathrm{d}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-1=i$ from x_{1}^{\prime}. Let $z_{i}, i \in\{1,2\}$, denote the unique point of the line L_{i} distinct from x_{i}^{\prime} and y_{i}. Recall that for every point u of $L_{j}, j \in\{1,2\}$, there exists a unique point on L_{3-j} nearest to u. Using
this it is straightforward to verify that $\mathrm{d}\left(L_{1}, L_{2}\right)=\mathrm{d}\left(x_{1}^{\prime}, y_{2}\right)=\mathrm{d}\left(x_{2}^{\prime}, y_{1}\right)=\mathrm{d}\left(z_{1}, z_{2}\right)=i$. Put $F_{i}:=\left\langle z_{1}, z_{2}\right\rangle$. Since F_{i} does not contain the points x_{1}^{\prime} and x_{2}^{\prime}, we have $\pi_{F_{i}}\left(x_{1}\right)=z_{1}$ and $\pi_{F_{i}}\left(x_{2}\right)=z_{2}$. So, $\mathrm{d}\left(x_{1}, \pi_{F_{i}}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{1}, \pi_{F_{i+1}}\left(x_{1}\right)\right)+\mathrm{d}\left(\pi_{F_{i+1}}\left(x_{1}\right), z_{1}\right)=n-i-1+1=$ $n-i, \mathrm{~d}\left(x_{2}, \pi_{F_{i}}\left(x_{2}\right)\right)=\mathrm{d}\left(x_{2}, \pi_{F_{i+1}}\left(x_{2}\right)\right)+\mathrm{d}\left(\pi_{F_{i+1}}\left(x_{2}\right), z_{2}\right)=n-i-1+1=n-i$ and $\mathrm{d}\left(\pi_{F_{i}}\left(x_{1}\right), \pi_{F_{i}}\left(x_{2}\right)\right)=\mathrm{d}\left(z_{1}, z_{2}\right)=i$.

Suppose now that the complement of the symmetric difference of H_{1} and H_{2} is a singular hyperplane H_{3} with center x_{3}. Put $F:=F_{3}$ and $H_{i}^{\prime}:=F \cap H_{i}$ for every $i \in$ $\{1,2,3\}$. Recall that F is classical in $D W(2 n-1,2)$. If $\mathrm{d}\left(x_{3}, \pi_{F}\left(x_{3}\right)\right)<n-3$, then $F \subset H_{3}$ and hence $H_{3}^{\prime}=F$. If $\mathrm{d}\left(x_{3}, \pi_{F}\left(x_{3}\right)\right)=n-3$, then $H_{3}^{\prime}=H_{3} \cap F$ is the singular hyperplane of \widetilde{F} with center $\pi_{F}\left(x_{3}\right)$. Since $\mathrm{d}\left(x_{1}, \pi_{F}\left(x_{1}\right)\right)=\mathrm{d}\left(x_{2}, \pi_{F}\left(x_{2}\right)\right)=n-3$, the hyperplanes H_{1}^{\prime} and H_{2}^{\prime} of \widetilde{F} are singular hyperplanes having the points $\pi_{F}\left(x_{1}\right)$ and $\pi_{F}\left(x_{2}\right)$ as respective centers. Now, H_{3}^{\prime} equals the complement of the symmetric difference of H_{1}^{\prime} and H_{2}^{\prime}. Since $\mathrm{d}\left(\pi_{F}\left(x_{1}\right), \pi_{F}\left(x_{2}\right)\right)=3, H_{3}^{\prime}$ should be a hexagonal hyperplane of \widetilde{F} (recall (3)). But that is impossible since H_{3}^{\prime} is either F or a singular hyperplane of \widetilde{F}.

2.3 Isometric embeddings of \mathbb{H}_{n} in $D W(2 n-1,2)$

With a full isometric embedding of a point-line geometry $\mathcal{S}_{1}=\left(\mathcal{P}_{1}, \mathcal{L}_{1}, \mathrm{I}_{1}\right)$ into a point-line geometry $\mathcal{S}_{2}=\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathrm{I}_{2}\right)$, we mean an injective map $\theta: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ that maps lines of \mathcal{S}_{1} to lines of \mathcal{S}_{2} such that $\mathrm{d}_{\mathcal{S}_{1}}(x, y)=\mathrm{d}_{\mathcal{S}_{2}}\left(x^{\theta}, y^{\theta}\right)$ for all $x, y \in \mathcal{P}_{1}$. By [6, Section 5], there exists a (full) isometric embedding of \mathbb{H}_{n} into $D W(2 n-1,2)$. By [12], such an embedding is even unique, up to isomorphism. If \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$, then every two points x and y of \mathbb{H}_{n} are contained in a unique convex subspace F of diameter k of \mathbb{H}_{n} and a unique convex subspace \bar{F} of diameter k of $D W(2 n-1,2)$. Moreover, the points of F are precisely those points of \mathbb{H}_{n} that are contained in \bar{F} ([12, Proposition 2.5]).

Lemma 2.4 Suppose \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$, and let M_{1} and M_{2} be two disjoint \mathbb{H}_{n-1}-subgeometries of \mathbb{H}_{n}. Then $\overline{M_{1}}$ and $\overline{M_{2}}$ are two disjoint maxes of $D W(2 n-1,2)$.

Proof. This is a special case of Proposition 2.7 of De Bruyn [12].
Lemma 2.5 Suppose \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$. Then for every quad Q of $D W(2 n-1,2)$, there exists a $W(2)$-quad Q^{\prime} of \mathbb{H}_{n} parallel with Q.

Proof. We will prove this by induction on the diameter n of $D W(2 n-1,2)$.
Suppose first that $n=2$. Then $\mathbb{H}_{2} \cong D W(3,2) \cong W(2)$. The claim is obvious as there is only one quad in $D W(3,2)$.

Suppose therefore that $n \geq 3$ and that the claim of the lemma holds for every isometric embedding of $\mathbb{H}_{n^{\prime}}$ into $D W\left(2 n^{\prime}-1,2\right)$, where $n^{\prime} \in\{2,3, \ldots, n-1\}$. Let Q be an arbitrary quad of $D W(2 n-1,2)$. By Lemma 2.2, there exists a collection $M_{1}, M_{2}, \ldots, M_{2 n+1}$ of mutually disjoint \mathbb{H}_{n-1}-subgeometries of \mathbb{H}_{n} partitioning its point set. For every $i \in$ $\{1,2, \ldots, 2 n+1\}$, let $\overline{M_{i}}, i \in\{1,2, \ldots, 2 n+1\}$, denote the unique max of $D W(2 n-1,2)$
containing M_{i}. Then $\widetilde{M_{i}} \cong \mathbb{H}_{n-1}$ is isometrically embedded into $\widetilde{\bar{M}_{i}} \cong D W(2 n-3,2)$. By Lemma 2.4, $\left\{\overline{M_{1}}, \overline{M_{2}}, \ldots, \overline{M_{2 n+1}}\right\}$ is a set of $2 n+1$ mutually disjoint maxes of $D W(2 n-$ $1,2)$.

We prove that there exists a $j \in\{1,2, \ldots, 2 n+1\}$ such that $\overline{M_{j}}$ is disjoint from Q. If this would not be the case, then by Lemma $2.1(2)$ each $\overline{M_{i}}, i \in\{1,2, \ldots, 2 n+1\}$, intersects Q in at least a line. This would imply that $15=|Q| \geq(2 n+1) \cdot 3 \geq 21$, a contradiction.

So, let $j \in\{1,2, \ldots, 2 n+1\}$ such that $\overline{M_{j}} \cap Q=\emptyset$. Then $\pi_{\overline{M_{j}}}(Q)$ is a $W(2)$-quad of $\widetilde{M_{j}} \cong D W(2 n-3,2)$. By the induction hypothesis, there exists a $W(2)$-quad Q^{\prime} of $\widetilde{M_{j}} \cong \mathbb{H}_{n-1}$ such that $\pi_{\overline{M_{j}}}(Q)$ and Q^{\prime} are parallel quads of $\widetilde{M_{j}}$. Since $\overline{M_{j}}$ is a classical convex subspace of $D W(2 n-1,2)$, it is now readily seen that also the quads Q and Q^{\prime} need to be parallel.

The dual polar space $D W(2 n-1,2), n \geq 2$, has a nice full projective embedding ϵ in a projective space $\operatorname{PG}(V)$, where V is some vector space of dimension $\binom{2 n}{n}-\binom{2 n}{n-2}$ over \mathbb{F}_{2}, see e.g. Cooperstein [8, Proposition 5.1]. This embedding is known as the Grassmann embedding. If Π is a hyperplane of $\mathrm{PG}(V)$, then the set of all points of $D W(2 n-1,2)$ that are mapped into Π by ϵ is a hyperplane of $D W(2 n-1,2)$, a so-called hyperplane of $D W(2 n-1,2)$ arising from the Grassmann embedding.

Lemma 2.6 Suppose \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$. Then for every hyperplane H of \mathbb{H}_{n}, there exists a unique hyperplane H^{\prime} of $D W(2 n-1,2)$ arising from the Grassmann embedding such that $H \subseteq H^{\prime}$. For this hyperplane H^{\prime}, we have $H=\mathbb{H}_{n} \cap H^{\prime}$.

Proof. Let $\epsilon_{1}: D W(2 n-1,2) \rightarrow \Sigma_{1}$ denote the Grassmann embedding of the dual polar space $D W(2 n-1,2)$. Then ϵ_{1} induces an embedding ϵ_{2} of \mathbb{H}_{n} into a subspace Σ_{2} of Σ_{1}. By [5, Section 3] and [6, Section 5], $\Sigma_{2}=\Sigma_{1}$ and ϵ_{2} is isomorphic to the so-called universal embedding of \mathbb{H}_{n}. This means by [16, Corollary 2, p. 180] that there exists a unique hyperplane Π of $\Sigma:=\Sigma_{1}=\Sigma_{2}$ such that $H=\epsilon_{2}^{-1}\left(\epsilon_{2}(X) \cap \Pi\right)=\epsilon_{1}^{-1}\left(\epsilon_{1}(X) \cap \Pi\right)$, where X is the point set of \mathbb{H}_{n}. Now, put $H^{\prime \prime}:=\epsilon_{1}^{-1}\left(\epsilon_{1}(\mathcal{P}) \cap \Pi\right)$, where \mathcal{P} is the set of points of $D W(2 n-1,2)$. Then $H^{\prime \prime}$ is a hyperplane of $D W(2 n-1,2)$ arising from the Grassmann embedding such that $H \subseteq H^{\prime \prime} \cap X \subsetneq X$. By [4, Theorem 7.3] and [17, Lemma 6.1], the hyperplane H of \mathbb{H}_{n} must be a maximal proper subspace, implying that $H=X \cap H^{\prime \prime}$. The maximality of H also implies that $\epsilon_{1}(H)$ generates the subspace Π.

Conversely, suppose that H^{\prime} is a hyperplane of $D W(2 n-1,2)$ arising from the Grassmann embedding such that $H \subseteq H^{\prime}$. Let Π^{\prime} be the unique hyperplane of Σ such that $H^{\prime}:=\epsilon_{1}^{-1}\left(\epsilon_{1}(\mathcal{P}) \cap \Pi^{\prime}\right)$. As $H \subseteq H^{\prime}$ and $\epsilon_{1}(H)$ generates Π, we should have $\Pi^{\prime}=\Pi$, i.e. $H^{\prime}=H^{\prime \prime}$.

2.4 Semi-valuations of near polygons

Suppose $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a near polygon having only lines of size 3. Suppose also that $f_{1}: \mathcal{P} \rightarrow \mathbb{Z}$ and $f_{2}: \mathcal{P} \rightarrow \mathbb{Z}$ are two maps such that $\left|f_{1}(x)-f_{2}(x)\right| \leq 1$ for every
point $x \in \mathcal{P}$. If $f_{1}(x)=f_{2}(x)$, then we define $f_{1} \diamond f_{2}(x):=f_{1}(x)-1=f_{2}(x)-1$. If $\left|f_{1}(x)-f_{2}(x)\right|=1$, then we define $f_{1} \diamond f_{2}(x):=\max \left\{f_{1}(x), f_{2}(x)\right\}$. Clearly, $f_{2} \diamond f_{1}=f_{1} \diamond f_{2}$. Notice also that $\left|f_{1}(x)-f_{1} \diamond f_{2}(x)\right|,\left|f_{2}(x)-f_{1} \diamond f_{2}(x)\right| \leq 1$ for every point x of \mathcal{S}, and that $\left(f_{1} \diamond f_{2}\right) \diamond f_{1}=f_{2}$ and $\left(f_{1} \diamond f_{2}\right) \diamond f_{2}=f_{1}$. The following lemma was proved in [11, Proposition 2.4].

Lemma 2.7 ([11]) Suppose \mathcal{S} is a near polygon having only lines of size 3 and f_{1}, f_{2} are two semi-valuations of \mathcal{S} such that $\left|f_{1}(x)-f_{2}(x)\right| \leq 1$ for every point x of \mathcal{S}. Then also $f_{1} \diamond f_{2}$ is a semi-valuation of \mathcal{S}.

For a proof of the following result, see Lemma 2.2 of [1].
Lemma 2.8 ([1]) Let \mathcal{S} and \mathcal{S}^{\prime} be two near polygons such that \mathcal{S} is an isometrically embedded subgeometry of \mathcal{S}^{\prime}. For every point x of \mathcal{S}^{\prime} and for every point y of \mathcal{S}, we define $f_{x}(y):=d(x, y)$. Then:
(1) For every point x of \mathcal{S}^{\prime}, the map f_{x} is a semi-valuation of \mathcal{S}.
(2) If x_{1} and x_{2} are two collinear points of \mathcal{S}^{\prime}, then $f_{x_{1}}$ and $f_{x_{2}}$ are two neighbouring semi-valuations of \mathcal{S}.
(3) If $L=\{x, y, z\}$ is a line of size 3 of \mathcal{S}^{\prime}, then $f_{x} \diamond f_{y}=f_{z}$.

3 Proof of Theorem 1.1(1)

In this section, we suppose that \mathbb{H}_{n} is isometrically embedded into $D W(2 n-1,2)$.
Lemma 3.1 For every point x of $D W(2 n-1,2)$, there exists a point of \mathbb{H}_{n} at maximal distance n from x.

Proof. Let y be a point of \mathbb{H}_{n} at maximal distance δ from x, and let F denote the unique convex subspace of diameter δ of $D W(2 n-1,2)$ containing x and y. Then $F \cap \mathbb{H}_{n}$ is a convex subspace of \mathbb{H}_{n} whose diameter δ^{\prime} is at most δ. Suppose $\delta \leq n-1$. Then also $\delta^{\prime} \leq n-1$ and so there exists a line L of \mathbb{H}_{n} through y not contained in $F \cap \mathbb{H}_{n}$. In particular, L is not contained in F and thus contains a point at distance $\delta+1$ from x, in contradiction with the maximality of $\mathrm{d}(x, y)$. We must thus have that $\delta=n$.

If x is a point of $D W(2 n-1,2)$, then the classical valuation of $D W(2 n-1,2)$ with center x induces a valuation g_{x} of \mathbb{H}_{n}. For every point y of \mathbb{H}_{n}, we have $g_{x}(y)=\mathrm{d}(x, y)-m_{x}$, where $m_{x}:=\mathrm{d}\left(x, \mathbb{H}_{n}\right)$. Lemma 3.1 then implies the following.

Corollary 3.2 If M_{x} is the maximal value attained by g_{x}, then $m_{x}+M_{x}=n$.
Lemma 3.3 Every $W(2)$-quad valuation induced by g_{x} is classical.

Proof. Let Q be a $W(2)$-quad of \mathbb{H}_{n}. Then Q is also a $W(2)$-quad of $D W(2 n-1,2)$ and so is classical in $D W(2 n-1,2)$. It follows that there exists a unique point $x^{\prime} \in Q$ such that $\mathrm{d}(x, y)=\mathrm{d}\left(x, x^{\prime}\right)+\mathrm{d}\left(x^{\prime}, y\right)$ for every $y \in Q$. The latter implies that $g_{x}(y)=g_{x}\left(x^{\prime}\right)+\mathrm{d}\left(x^{\prime}, y\right)$ for every $y \in Q$, i.e. the valuation of \widetilde{Q} induced by g_{x} is a classical with center equal to x^{\prime}.

Lemma 3.4 If x_{1} and x_{2} are two distinct points of $D W(2 n-1,2)$, then $g_{x_{1}} \neq g_{x_{2}}$.
Proof. For every $i \in\{1,2\}$, let H_{i} denote the singular hyperplane of $D W(2 n-1,2)$ with center x_{i}. By Lemma 3.1, $H_{i} \cap \mathbb{H}_{n}$ is a hyperplane H_{i}^{\prime} of \mathbb{H}_{n}. Since H_{1}, H_{2} arise from the Grassmann embedding and $H_{1} \neq H_{2}$, we must have $H_{1}^{\prime} \neq H_{2}^{\prime}$ by Lemma 2.6. As H_{i}^{\prime} with $i \in\{1,2\}$ is the set of points of \mathbb{H}_{n} with non-maximal $g_{x_{i}}$-value, we must have that $g_{x_{1}} \neq g_{x_{2}}$.

Let M_{1} be the \mathbb{H}_{n-1}-subgeometry of $\mathbb{H}_{n}, n \geq 3$ corresponding to the pair $\{1,2\}$, let M_{2} be the \mathbb{H}_{n-1}-subgeometry of \mathbb{H}_{n} corresponding to the pair $\{1,3\}$ and let M_{3} denote the \mathbb{H}_{n-1}-subgeometry of \mathbb{H}_{n} corresponding to the pair $\{2,3\}$. Then M_{1}, M_{2}, M_{3} are mutually disjoint and every line meeting two of M_{1}, M_{2}, M_{3} also meets the third. For every $i \in\{1,2,3\}, \widetilde{M}_{i} \cong \mathbb{H}_{n-1}$ is isometrically embedded into $\widetilde{M_{i}} \cong D W(2 n-3,2)$. Note also that $\left\{\overline{M_{1}}, \overline{M_{2}}, \overline{M_{3}}\right\}$ is a hyperbolic set of maxes of $D W(2 n-1,2)$.

Lemma 3.5 Suppose g_{1} and g_{2} are two semi-valuations of $\mathbb{H}_{n}, n \geq 3$ for which all induced $W(2)$-quad valuations are classical. If $g_{1}(x)=g_{2}(x)$ for all $x \in M_{1} \cup M_{2} \cup M_{3}$, then $g_{1}=g_{2}$.
Proof. We still need to prove that $g_{1}(x)=g_{2}(x)$ for every point x of \mathbb{H}_{n} not contained in $M_{1} \cup M_{2} \cup M_{3}$. We will rely on Lemma 2.1. For every $i \in\{1,2,3\}$, let x_{i} denote the unique point of M_{i} collinear with x. Then $\mathrm{d}\left(x_{1}, x_{2}\right)=2$ and the quad $Q:=\left\langle x_{1}, x_{2}\right\rangle$ intersects each M_{i} in a line L_{i}. The quad Q intersects $M_{1} \cup M_{2} \cup M_{3}$ in the 3×3-grid $G=L_{1} \cup L_{2} \cup L_{3}$ and contains the additional point x, showing that Q is a $W(2)$-quad. There are now two cases to consider.
(1) g_{1} (and hence g_{2}) takes three values in G. Then there exists a point $u \in G$ such that $g_{1}(y)=g_{2}(y)=g_{1}(u)+\mathrm{d}(u, y)$ for every $y \in G$. The fact that all induced $W(2)$-quad valuations are classical then implies that $g_{1}(y)=g_{2}(y)=g_{1}(u)+\mathrm{d}(u, y)$ for every $y \in Q$. In particular, $g_{1}(x)=g_{2}(x)$.
(2) g_{1} (and hence g_{2}) takes two values in G. Then there exists an ovoid $\left\{u_{1}, u_{2}, u_{3}\right\}$ of G such that $g_{1}\left(u_{1}\right)=g_{1}\left(u_{2}\right)=g_{1}\left(u_{3}\right)=g_{1}(v)-1$ for every $v \in G \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$. If $u \in Q$ denotes the unique point of Q collinear with u_{1}, u_{2} and u_{3}, then the fact that all induced $W(2)$-quad valuations are classical implies that $g_{1}(y)=g_{2}(y)=g_{1}(u)+d(u, y)$ for every $y \in Q$. In particular, $g_{1}(x)=g_{2}(x)$.

Suppose now that f is a valuation of \mathbb{H}_{n} with the property that every induced $W(2)$-quad valuation is classical. By Lemma 3.4 we then know that f is induced by at most one classical valuation of $D W(2 n-1,2)$. So, if we are able to prove that there exists a point
x of $D W(2 n-1,2)$ and an $\epsilon \in \mathbb{Z}$ such that $f(y)=\mathrm{d}(x, y)+\epsilon$ for every point y of \mathbb{H}_{n}, then we would have shown the validity of Theorem 1.1(1). We will prove this by induction on n, the case $n=2$ being trivial. So, suppose $n \geq 3$. For every $i \in\{1,2,3\}$ and for every point x of M_{1}, we define $f_{i}(x):=f\left(\pi_{M_{i}}(x)\right)$. Then f_{1}, f_{2} and f_{3} are three semi-valuations of $\widetilde{M}_{1} \cong \mathbb{H}_{n-1}$ with the property that all induced $W(2)$-quad valuations are classical. Note that $\left\{x, \pi_{M_{2}}(x), \pi_{M_{3}}(x)\right\}$ is a line for every $x \in M_{1}$. So, $\left|f_{1}(x)-f_{2}(x)\right| \leq 1$ for every point x of M_{1} and $f_{1} \diamond f_{2}=f_{3}$. For every $\delta \in \mathbb{Z}$ and every $i \in\{1,2,3\}$, the map $f_{i}+\delta: x \mapsto f_{i}(x)+\delta$ also is a semi-valuation of M_{1}. We denote by $\left[f_{i}\right]$ the set of all semi-valuations of M_{1} that arise in this way. We now distinguish two cases.
(I) Suppose $\left[f_{1}\right]=\left[f_{2}\right]$. Then $\left[f_{1}\right]=\left[f_{2}\right]=\left[f_{3}\right]$. As $f_{1} \diamond f_{2}=f_{3}$, there exists a $j \in\{1,2,3\}$ such that $f_{j}+1=f_{j+1}=f_{j+2}$, where the additions in the subindices happen modulo 3. By the induction hypothesis, there exists a unique point $x_{j} \in \overline{M_{1}}$ and a unique $\epsilon \in \mathbb{Z}$ such that $f_{j}(x)=\mathrm{d}\left(x_{j}, x\right)+\epsilon$ for every $x \in M_{1}$. Now, put $x^{*}:=\pi_{\overline{M_{j}}}\left(x_{j}\right)$. Since $\left\{\overline{M_{1}}, \overline{M_{2}}, \overline{M_{3}}\right\}$ is a hyperbolic set of maxes of $D W(2 n-1,2)$ and $f_{j+1}=f_{j+2}=f_{j}+1$, we have $f(x)=\mathrm{d}\left(x^{*}, x\right)+\epsilon$ for every $x \in M_{1} \cup M_{2} \cup M_{3}$. By Lemma 3.3, the map $x \mapsto \mathrm{~d}\left(x^{*}, x\right)+\epsilon$ also defines a semi-valuation of \mathbb{H}_{n} for which all induced $W(2)$-quad valuations are classical. By Lemma 3.5, we thus have that $f(x)=\mathrm{d}\left(x^{*}, x\right)+\epsilon$ for every point x of \mathbb{H}_{n}.
(II) Suppose $\left[f_{1}\right] \neq\left[f_{2}\right]$. Then $\left[f_{1}\right],\left[f_{2}\right]$ and $\left[f_{3}\right]$ are mutually distinct. For every $i \in\{1,2,3\}$, let H_{i} denote the set of all points of M_{1} having non-maximal f_{i}-value. Then H_{1}, H_{2} and H_{3} are hyperplanes of \widetilde{M}_{1}. Since $f_{1} \diamond f_{2}=f_{3}$ and $\left[f_{1}\right],\left[f_{2}\right],\left[f_{3}\right]$ are mutually distinct, we know from [11, Proposition 2.14] that $H_{3}=H_{1} * H_{2}:=M_{1} \backslash\left(H_{1} \Delta H_{2}\right)$, where $H_{1} \Delta H_{2}$ denotes the symmetric difference of H_{1} and H_{2}. By the induction hypothesis, there exists for every $i \in\{1,2,3\}$ a unique $x_{i} \in \overline{M_{1}}$ and a unique $\epsilon_{i} \in \mathbb{Z}$ such that $f_{i}(x)=\mathrm{d}\left(x_{i}, x\right)+\epsilon_{i}$ for every $x \in M_{1}$. For every $i \in\{1,2,3\}$, let $\overline{H_{i}}$ denote the singular hyperplane of $\overline{M_{1}}$ with center x_{i}. As $\overline{H_{1}}, \overline{H_{2}}$ arise from the Grassmann embedding, also $\overline{H_{1}} * \overline{H_{2}}:=\overline{M_{1}} \backslash\left(\overline{H_{1}} \Delta \overline{H_{2}}\right)$ arises from the Grassmann embedding. By Lemma 3.1, we have $H_{i}=\overline{H_{i}} \cap M_{1}$. Since $H_{3}=H_{1} * H_{2}$, we thus have that $H_{3}=\left(\overline{H_{1}} * \overline{H_{2}}\right) \cap M_{1}$. Since $\overline{H_{3}}$ and $\overline{H_{1}} * \overline{H_{2}}$ are two hyperplanes of $\overline{M_{1}}$ arising from the Grassmann embedding intersecting M_{1} in H_{3}, we must have $\overline{H_{3}}=\overline{H_{1}} * \overline{H_{2}}$ by Lemma 2.6. By Lemma 2.3, we then know that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is either a line of $\overline{M_{1}}$ or a hyperbolic line of a quad of $\overline{M_{1}}$.

We show that the latter case cannot occur. Suppose $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a hyperbolic line of a quad Q of $\overline{M_{1}}$. By Lemma 2.5, there exists a $W(2)-\operatorname{quad} R$ of M_{1} parallel with Q. Put $y_{i}:=\pi_{R}\left(x_{i}\right), i \in\{1,2,3\}$, and $\delta:=\mathrm{d}(Q, R)$. We have $f_{1}\left(y_{1}\right)=\mathrm{d}\left(x_{1}, y_{1}\right)+\epsilon_{1}=\delta+\epsilon_{1}$ and $f_{2}\left(y_{1}\right)=\mathrm{d}\left(x_{2}, y_{1}\right)+\epsilon_{2}=\mathrm{d}\left(x_{2}, y_{2}\right)+\mathrm{d}\left(y_{2}, y_{1}\right)+\epsilon_{2}=\delta+2+\epsilon_{2}$. As $\left|f_{1}\left(y_{1}\right)-f_{2}\left(y_{1}\right)\right| \leq 1$, we see that $\epsilon_{2}<\epsilon_{1}$. By reversing the roles of y_{1} and y_{2}, we would also have that $\epsilon_{1}<\epsilon_{2}$, an obvious contradiction. We conclude that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a line of $\overline{M_{1}}$.

Now, by Lemma 3.1, there exists a point x of $M_{1} \cong \mathbb{H}_{n-1}$ at distance $n-1$ from a point of $\left\{x_{1}, x_{2}, x_{3}\right\}$. Without loss of generality, we may suppose that $\mathrm{d}\left(x, x_{1}\right)=n-2$ and $\mathrm{d}\left(x, x_{2}\right)=\mathrm{d}\left(x, x_{3}\right)=n-1$. The convex subspace $\left\langle x, x_{1}\right\rangle$ intersects M_{1} in a convex subspace of M_{1} of diameter at most $n-2$. So, there exists a line L of $M_{1} \cong \mathbb{H}_{n-1}$ through x not contained in $\left\langle x, x_{1}\right\rangle \cap M_{1}$, i.e. not contained in $\left\langle x, x_{1}\right\rangle$. This line necessarily is parallel
with $\left\{x_{1}, x_{2}, x_{3}\right\}$. Let y_{i} with $i \in\{1,2,3\}$ denote the unique point of L nearest to x_{i}. Since $f_{1}\left(y_{1}\right)=\mathrm{d}\left(x_{1}, y_{1}\right)+\epsilon_{1}=n-2+\epsilon_{1}$ and $f_{2}\left(y_{1}\right)=\mathrm{d}\left(x_{2}, y_{1}\right)+\epsilon_{2}=\mathrm{d}\left(x_{2}, y_{2}\right)+\mathrm{d}\left(y_{2}, y_{1}\right)+\epsilon_{2}=$ $n-1+\epsilon_{2}$, it follows that $\epsilon_{2} \leq \epsilon_{1}$. Reversing the roles of y_{1} and y_{2}, we see that also $\epsilon_{1} \leq \epsilon_{2}$. Hence, $\epsilon_{1}=\epsilon_{2}$. By symmetry, we can thus conclude that $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}$. Now, let Q denote the unique $W(2)$-quad of $D W(2 n-1,2)$ through $\left\{x_{1}, x_{2}, x_{3}\right\}$ meeting $\overline{M_{1}}, \overline{M_{2}}$ and $\overline{M_{3}}$ in lines, and let x^{*} denote the unique point of Q collinear with each point of the ovoid $\left\{x_{1}, \pi_{\overline{M_{2}}}\left(x_{2}\right), \pi_{\overline{M_{3}}}\left(x_{3}\right)\right\}$ of the 3×3-grid $Q \cap\left(\overline{M_{1}} \cup \overline{M_{2}} \cup \overline{M_{3}}\right)$. Then $x^{*} \notin \overline{M_{1}} \cup \overline{M_{2}} \cup \overline{M_{3}}$ and so $f(x)=f_{i}\left(\pi_{\overline{M_{1}}}(x)\right)=\mathrm{d}\left(x_{i}, \pi_{\overline{M_{1}}}(x)\right)+\epsilon_{i}=\mathrm{d}\left(\pi_{\overline{M_{i}}}\left(x_{i}\right), x\right)+\epsilon_{i}=\mathrm{d}\left(x^{*}, x\right)+\epsilon_{i}-1$ for every $i \in\{1,2,3\}$ and every $x \in M_{i}$. As $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}$, it thus follows that $f(x)=\mathrm{d}\left(x^{*}, x\right)+\epsilon_{1}-1$ for every $x \in M_{1} \cup M_{2} \cup M_{3}$. By Lemma 3.5, this again implies that $f(x)=\mathrm{d}\left(x^{*}, x\right)+\epsilon_{1}-1$ for every point x of \mathbb{H}_{n}.

In each of the cases (I) and (II) above, we have seen that f is induced by a classical valuation of $D W(2 n-1,2)$, finishing the proof of Theorem 1.1(1).

4 Proof of Theorem 1.1(2)

In this section, we suppose that \mathbb{H}_{n} is isometrically embedded in $D W(2 n-1,2)$.
Lemma 4.1 Let x_{1} and x_{2} be two distinct collinear points of $D W(2 n-1,2)$ and let f_{i} with $i \in\{1,2\}$ denote the valuation of \mathbb{H}_{n} induced by the classical valuation of $D W(2 n-1,2)$ with center x_{i}. Then f_{1} and f_{2} are neighbouring.

Proof. There exist $\epsilon_{1}, \epsilon_{2} \in \mathbb{Z}$ such that $f_{1}(x)=\mathrm{d}\left(x_{1}, x\right)+\epsilon_{1}$ and $f_{2}(x)=\mathrm{d}\left(x_{2}, x\right)+\epsilon_{2}$ for every point x of \mathbb{H}_{n}. We have $\left|f_{1}(x)-f_{2}(x)+\epsilon_{2}-\epsilon_{1}\right|=\left|\mathrm{d}\left(x_{1}, x\right)-\mathrm{d}\left(x_{2}, x\right)\right| \leq \mathrm{d}\left(x_{1}, x_{2}\right)=1$ for every point x of \mathbb{H}_{n}, showing that f_{1} and f_{2} are neighbouring.

In the sequel of this section, we suppose that x_{1} and x_{2} are two points of $D W(2 n-1,2)$ such that the valuations f_{1} and f_{2} are neighbouring, where f_{i} with $i \in\{1,2\}$ is the valuation of \mathbb{H}_{n} induced by the classical valuation of $D W(2 n-1,2)$ with center x_{i}. We shall prove that x_{1} and x_{2} are collinear.

If $f_{1}=f_{2}$, then $x_{1}=x_{2}$ by Lemma 3.4. We will therefore suppose that $f_{1} \neq f_{2}$. Then let $g_{1} \in\left[f_{1}\right]$ and $g_{2} \in\left[f_{2}\right]$ such that $\left|g_{1}(x)-g_{2}(x)\right| \leq 1$ for every point x of \mathbb{H}_{n}. Put $g_{3}:=g_{1} \diamond g_{2}$. By Lemma 2.7, we then know that g_{3} is a semi-valuation of \mathbb{H}_{n}. We now show that all $W(2)$-quad valuations induced by g_{3} are classical. So, suppose Q is a $W(2)$-quad. Put $y_{1}:=\pi_{Q}\left(x_{1}\right)$ and $y_{2}:=\pi_{Q}\left(x_{2}\right)$. Since Q is classical in $D W(2 n-1,2)$, there exist $\epsilon_{1}, \epsilon_{2} \in \mathbb{Z}$ such that $g_{1}(x)=\mathrm{d}\left(y_{1}, x\right)+\epsilon_{1}$ and $g_{2}(x)=\mathrm{d}\left(y_{2}, x\right)+\epsilon_{2}$ for every $x \in Q$. We have $\left|g_{1}(x)-g_{2}(x)\right|=\left|\mathrm{d}\left(y_{1}, x\right)-\mathrm{d}\left(y_{2}, x\right)+\epsilon_{1}-\epsilon_{2}\right| \leq 1$ for every point x of Q. Putting x equal to y_{1} and y_{2}, we respectively find that $\left|\epsilon_{1}-\epsilon_{2}-\mathrm{d}\left(y_{1}, y_{2}\right)\right| \leq 1$ and $\left|\epsilon_{1}-\epsilon_{2}+\mathrm{d}\left(y_{1}, y_{2}\right)\right| \leq 1$. So, we have $\mathrm{d}\left(y_{1}, y_{2}\right) \neq 2$. If $\mathrm{d}\left(y_{1}, y_{2}\right)=1$, then necessarily $\epsilon_{1}=\epsilon_{2}$, and we see that $g_{3}(x)=\mathrm{d}\left(x, y_{3}\right)+\epsilon_{3}$ for every point x of Q, where y_{3} is the third point on the line $y_{1} y_{2}$ and $\epsilon_{3}:=\epsilon_{1}=\epsilon_{2}$. If $\mathrm{d}\left(y_{1}, y_{2}\right)=0$, i.e. $y_{1}=y_{2}$, then we have that $\left|\epsilon_{1}-\epsilon_{2}\right| \leq 1$. In this case, we have that $g_{3}(x)=\mathrm{d}\left(x, y_{1}\right)+\epsilon_{3}$ for every point x of Q, where
$\epsilon_{3}:=\epsilon_{1}-1=\epsilon_{2}-1$ if $\epsilon_{1}=\epsilon_{2}$ and $\epsilon_{3}=\max \left\{\epsilon_{1}, \epsilon_{2}\right\}$ if $\epsilon_{1} \neq \epsilon_{2}$. In any case, we see that the valuation of Q induced by g_{3} is classical.

Since all $W(2)$-quad valuations induced by g_{3} are classical, we know from Theorem 1.1(1) that there exists a unique point x_{3} of $D W(2 n-1,2)$ such that g_{3} is induced by the classical valuation of $D W(2 n-1,2)$ with center x_{3}. For every $i \in\{1,2,3\}$, let H_{i}^{\prime} denote the singular hyperplane of $D W(2 n-1,2)$ with center x_{i} and let H_{i} denote the hyperplane of \mathbb{H}_{n} consisting of all points having non-maximal g_{i}-value. By Lemma 3.1, $H_{i}=H_{i}^{\prime} \cap \mathbb{H}_{n}$ for every $i \in\{1,2,3\}$. By [11, Proposition 2.14], the fact that $g_{3}=g_{1} \diamond g_{2}$ and $\left[g_{1}\right] \neq\left[g_{2}\right] \neq\left[g_{3}\right] \neq\left[g_{1}\right]$ implies that $H_{3}=H_{1} * H_{2}$. Hence, $H_{3}=\left(H_{1}^{\prime} * H_{2}^{\prime}\right) \cap \mathbb{H}_{n}$. Since both H_{3}^{\prime} and $H_{1}^{\prime} * H_{2}^{\prime}$ are two hyperplanes of $D W(2 n-1,2)$ arising from the Grassmann embedding intersecting \mathbb{H}_{n} in H_{3}, we know from Lemma 2.6 that $H_{3}^{\prime}=H_{1}^{\prime} * H_{2}^{\prime}$. By Lemma 2.3, we then know that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is either a line or a hyperbolic line of a quad of $D W(2 n-1,2)$.

We show that the latter case cannot occur. Suppose $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a hyperbolic line of a quad Q of $D W(2 n-1,2)$. By Lemma 2.5, there exists a $W(2)$-quad R of \mathbb{H}_{n} parallel with Q. Put $y_{i}:=\pi_{R}\left(x_{i}\right), i \in\{1,2,3\}$, and $\delta:=\mathrm{d}(Q, R)$. There exist $\epsilon_{1}, \epsilon_{2} \in \mathbb{Z}$ such that $g_{1}(x)=\mathrm{d}\left(x, x_{1}\right)+\epsilon_{1}$ and $g_{2}(x)=\mathrm{d}\left(x, x_{2}\right)+\epsilon_{2}$ for all points x of \mathbb{H}_{n}. In particular, we have $g_{1}\left(y_{1}\right)=\mathrm{d}\left(x_{1}, y_{1}\right)+\epsilon_{1}=\delta+\epsilon_{1}$ and $g_{2}\left(y_{1}\right)=\mathrm{d}\left(x_{2}, y_{1}\right)+\epsilon_{2}=\mathrm{d}\left(x_{2}, y_{2}\right)+\mathrm{d}\left(y_{2}, y_{1}\right)+\epsilon_{2}=$ $\delta+2+\epsilon_{2}$. As $\left|g_{1}\left(y_{1}\right)-g_{2}\left(y_{1}\right)\right| \leq 1$, we see that $\epsilon_{2}<\epsilon_{1}$. By reversing the roles of y_{1} and y_{2}, we would also have that $\epsilon_{1}<\epsilon_{2}$, an obvious contradiction.

We conclude that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a line of $D W(2 n-1,2)$. So, the points x_{1} and x_{2} are collinear as we needed to prove. This finishes the proof of Theorem 1.2.

5 Proof of Theorem 1.2

In this section, we suppose again that \mathbb{H}_{n} is isometrically embedded into $\Delta=D W(2 n-$ $1,2)$. We suppose that \mathcal{S} is a near $2 n$-gon that contains an isometrically embedded copy \mathbb{H}_{n}^{\prime} of \mathbb{H}_{n} such that every pair (x, Q) with x a point of \mathcal{S} and Q a $W(2)$-quad of \mathbb{H}_{n}^{\prime} is classical. To ease notation, we will assume that $\mathbb{H}_{n}^{\prime}=\mathbb{H}_{n}$.

Let \mathcal{F} denote the set of all valuations of \mathbb{H}_{n} for which all induced $W(2)$-quad valuations are classical. We denote by Γ the graph with vertex set \mathcal{F}, where two distinct elements $f_{1}, f_{2} \in \mathcal{F}$ are adjacent whenever they are neighbouring. By Theorem 1.1, we then know that Γ is isomorphic to the collinearity graph of $D W(2 n-1,2)$. Denote by $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ the set of all classical valuations of \mathbb{H}_{n}.

For every point x of $D W(2 n-1,2)$, the classical valuation of $D W(2 n-1,2)$ with center x will induce a valuation g_{x} of \mathbb{H}_{n}. If x is a point of \mathbb{H}_{n}, then g_{x} is the classical valuation of \mathbb{H}_{n} with center x. By Theorem 1.1, we know the following.

Lemma 5.1 (1) The map $x \mapsto g_{x}$ defines an isomorphism between the collinearity graph of $D W(2 n-1,2)$ and the graph Γ.
(2) For every point x of $\Delta=D W(2 n-1,2)$, we have $d_{\Delta}\left(x, \mathbb{H}_{n}\right)=d_{\Gamma}\left(g_{x}, \mathcal{F}^{\prime}\right)$.

The following is an immediate consequence of Corollary 3.2 and Lemma 5.1.

Corollary 5.2 Suppose f is a valuation of \mathbb{H}_{n} for which all induced $W(2)$-quad valuations are classical, and let M denote the maximal value attained by f. Then $d_{\Gamma}\left(f, \mathcal{F}^{\prime}\right)+M=n$.

By Lemma 2.8(1), every point x of \mathcal{S} will induce a valuation f_{x} of \mathbb{H}_{n}. Since every pair (x, Q) with x a point of \mathcal{S} and Q a quad of \mathbb{H}_{n} is classical, this valuation has the property that all induced $W(2)$-quad valuations are classical, i.e. $f_{x} \in \mathcal{F}$. Since \mathbb{H}_{n} is isometrically embedded in both \mathcal{S} and $D W(2 n-1,2)$, we know that for every point x of \mathbb{H}_{n}, the valuations f_{x} and g_{x} are equal to the classical valuation of \mathbb{H}_{n} with center x.

Lemma 5.3 For every valuation $f \in \mathcal{F}$ and every point y of \mathbb{H}_{n}, we have $d_{\Gamma}\left(f, f_{y}\right)=$ $d_{\Gamma}\left(f, \mathcal{F}^{\prime}\right)+f(y)$.

Proof. Let x denote the unique point of $D W(2 n-1,2)$ for which $f=g_{x}$. By Lemma 5.1, $\mathrm{d}_{\Gamma}\left(f, f_{y}\right)=\mathrm{d}_{\Gamma}\left(g_{x}, g_{y}\right)=\mathrm{d}_{\Delta}(x, y)=\mathrm{d}_{\Delta}\left(x, \mathbb{H}_{n}\right)+g_{x}(y)=\mathrm{d}_{\Gamma}\left(g_{x}, \mathcal{F}^{\prime}\right)+g_{x}(y)=\mathrm{d}_{\Gamma}\left(f, \mathcal{F}^{\prime}\right)+$ $f(y)$.

Lemma 5.4 Let x be a point of \mathcal{S}. Then $d_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right)=d_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)$ and there exists a point of \mathbb{H}_{n} at distance n from x.

Proof. Let M denote the maximal value attained by f_{x}. Then the maximal distance d from a point of \mathbb{H}_{n} to x is equal to $\mathrm{d}_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right)+M$. By Lemma 2.8(2), we have that $\mathrm{d}_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right) \geq \mathrm{d}_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)$. Hence, $d \geq \mathrm{d}_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)+M$. By Corollary 5.2, we have $\mathrm{d}_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)+$ $M=n$. As $n \geq d$, we then have that $d=n$ and that $\mathrm{d}_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right)=\mathrm{d}_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)$.

Lemma 5.5 For every point x of \mathcal{S} and for every point y of \mathbb{H}_{n}, we have $d_{\mathcal{S}}(x, y)=$ $d_{\Gamma}\left(f_{x}, f_{y}\right)$.
Proof. By Lemmas 5.3 and 5.4, we have $\mathrm{d}_{\mathcal{S}}(x, y)=\mathrm{d}_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right)+f_{x}(y)=\mathrm{d}_{\Gamma}\left(f_{x}, \mathcal{F}^{\prime}\right)+$ $f_{x}(y)=\mathrm{d}_{\Gamma}\left(f_{x}, f_{y}\right)$.

Lemma 5.6 Every line L of \mathcal{S} contains precisely three points.
Proof. Let $x \in L$, let y be a point of \mathbb{H}_{n} at maximal distance n from x (see Lemma 5.4) and let z be the unique point of L nearest to y. Then $\mathrm{d}_{\mathcal{S}}(y, z)=\mathrm{d}_{\mathcal{S}}(y, L)=n-1$. Let z^{\prime} be the unique point of $D W(2 n-1,2)$ such that $g_{z^{\prime}}=f_{z}$. By Lemmas 5.1(1) and 5.5, we have $\mathrm{d}_{\Delta}\left(y, z^{\prime}\right)=\mathrm{d}_{\Gamma}\left(g_{y}, g_{z^{\prime}}\right)=\mathrm{d}_{\Gamma}\left(f_{y}, f_{z}\right)=\mathrm{d}_{\mathcal{S}}(y, z)=n-1$. The convex subspace $\left\langle y, z^{\prime}\right\rangle$ of $D W(2 n-1,2)$ intersects \mathbb{H}_{n} in a convex subspace of \mathbb{H}_{n} of diameter at most $n-1$, showing that there exists a line of \mathbb{H}_{n} through y not contained in $\left\langle y, z^{\prime}\right\rangle$. Such a line contains a point u at distance n from z^{\prime}. By Lemmas 5.1(1) and 5.5, we have $\mathrm{d}_{\mathcal{S}}(u, z)=\mathrm{d}_{\Gamma}\left(f_{u}, f_{z}\right)=\mathrm{d}_{\Gamma}\left(g_{u}, g_{z^{\prime}}\right)=\mathrm{d}_{\Delta}\left(u, z^{\prime}\right)=n$.

Now, put $a_{1}:=y, a_{2}:=u$ and let a_{3} denote the third point on the line $a_{1} a_{2}$. For every $i \in\{1,2,3\}$, let b_{i} be the unique point of L nearest to a_{i}. Then $b_{1}=z$ and $\mathrm{d}_{\mathcal{S}}\left(a_{1}, b_{1}\right)=\mathrm{d}_{\mathcal{S}}\left(a_{1}, L\right)=n-1$. As $\mathrm{d}_{\mathcal{S}}(z, u)=n$, we have $b_{2} \neq b_{1}$ and $\mathrm{d}_{\mathcal{S}}\left(a_{2}, b_{2}\right)=$ $\mathrm{d}_{\mathcal{S}}\left(a_{2}, L\right)=n-1$. If we would have $\mathrm{d}_{\mathcal{S}}\left(a_{3}, b_{3}\right) \leq n-2$, then $\mathrm{d}_{\mathcal{S}}\left(a_{1}, b_{3}\right), \mathrm{d}_{\mathcal{S}}\left(a_{2}, b_{3}\right) \leq n-1$ by the triangle inequality, and we would have $b_{1}=b_{3}=b_{2}$, an obvious contradiction. So, $\mathrm{d}_{\mathcal{S}}\left(a_{3}, b_{3}\right)=\mathrm{d}_{\mathcal{S}}\left(a_{3}, L\right)=n-1$. Hence, $\mathrm{d}_{\mathcal{S}}\left(a_{1} a_{2}, L\right)=n-1$ and every point b of L has
distance $n-1$ from a unique point a of $a_{1} a_{2}$. The correspondence $b \mapsto a$ is bijective and so the lines L and $a_{1} a_{2}$ should contain the same number of points, namely 3 .

Lemma 5.7 If x and y are two distinct collinear points of \mathcal{S}, then $f_{x} \neq f_{y}$.
Proof. Let z denote the third point of the line $x y$. Suppose that $f_{x}=f_{y}$. Then Lemma 2.8(3) implies that $f_{x}=f_{y}=f_{z}$. Let u be a point of \mathbb{H}_{n} for which $f_{x}(u)=f_{y}(u)=$ $f_{z}(u)=0$ and let M denote the maximal value attained by $f_{x}=f_{y}=f_{z}$. As \mathbb{H}_{n} contains points at distance n from x by Lemma 5.4 , we have $\mathrm{d}_{\mathcal{S}}(x, u)+M=\mathrm{d}_{\mathcal{S}}\left(x, \mathbb{H}_{n}\right)+M=n$, i.e. $\mathrm{d}_{\mathcal{S}}(x, u)=n-M$. A similar argument shows that $\mathrm{d}_{\mathcal{S}}(y, u)=\mathrm{d}_{\mathcal{S}}(z, u)=n-M$. But that is impossible, as it would imply that u has the same distance from each point of L.

By Lemma 5.1(1), we can identify each point x of $\Delta=D W(2 n-1,2)$ with its corresponding valuation $g_{x} \in \mathcal{F}$. Then the map $x \mapsto f_{x}$ will induce a map θ from the point set \mathcal{P} of \mathcal{S} to the point set of $D W(2 n-1,2)$, i.e. for every point x of \mathcal{S}, x^{θ} denotes the unique point of $D W(2 n-1,2)$ for which $g_{x^{\theta}}=f_{x}$. If x is a point of \mathbb{H}_{n}, then both g_{x} and f_{x} are equal to the classical valuation of \mathbb{H}_{n} with center x, implying that θ fixes all points of \mathbb{H}_{n}. By Lemmas $2.8(2), 5.1(1)$ and $5.7, \theta$ maps distinct collinear points of \mathcal{S} to distinct collinear points of $D W(2 n-1,2)$. So, θ maps each line of \mathcal{S} to a collection of three mutually collinear points of $D W(2 n-1,2)$, i.e. to a line of $D W(2 n-1,2)$. By Lemmas 5.1(1) and 5.5, we have that $d_{\mathcal{S}}(x, y)=\mathrm{d}_{\Gamma}\left(f_{x}, f_{y}\right)=\mathrm{d}_{\Gamma}\left(g_{x^{\theta}}, g_{y^{\theta}}\right)=\mathrm{d}_{\Delta}\left(x^{\theta}, y^{\theta}\right)$ for every point x of \mathcal{S} and every point y of \mathbb{H}_{n}. This finishes the proof of Theorem 1.2.

References

[1] A. Bishnoi and B. De Bruyn. On semi-finite hexagons of order $(2, t)$ containing a subhexagon. Ann. Comb. 20 (2016), 433-452.
[2] A. Bishnoi and B. De Bruyn. A new near octagon and the Suzuki tower. Electron. J. Combin. 23 (2016), Paper 2.35, 24pp.
[3] A. Bishnoi and B. De Bruyn. Characterizations of the Suzuki tower near polygons. Designs, Codes and Cryptography, to appear.
[4] R. J. Blok and A. E. Brouwer. The geometry far from a residue. Groups and geometries (Siena, 1996), 29-38, Trends Math., Birkhäuser, 1998.
[5] A. Blokhuis and A. E. Brouwer. The universal embedding dimension of the near polygon on the 1-factors of a complete graph. Des. Codes Cryptogr. 17 (1999), 299303.
[6] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata 49 (1994), 349-368.
[7] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata 14 (1983), 145-176.
[8] B. N. Cooperstein. On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A 83 (1998), 221-232.
[9] B. N. Cooperstein. On the generation of some embeddable GF(2) geometries. J. Algebraic Combin. 13 (2001), 15-28.
[10] B. De Bruyn. Near polygons. Frontiers in Mathematics, Birkhäuser, 2006.
[11] B. De Bruyn. The valuations of the near polygon \mathbb{G}_{n}. Electron. J. Combin. 16 (2009), Research Paper 137, 29 pp.
[12] B. De Bruyn. Isometric embeddings of the near polygons \mathbb{H}_{n} and \mathbb{G}_{n} into dual polar spaces. Discrete Math. 313 (2013), 1312-1321.
[13] B. De Bruyn. The use of valuations for classifying point-line geometries. pp. 27-40 in "Groups of exceptional type, Coxeter groups and related geometries" (Groups and Geometries, Bangalore, India, 2012), Springer Proc. Math. Stat. 82, Springer, 2014.
[14] B. De Bruyn. The uniqueness of a certain generalized octagon of order (2, 4). Discrete Math. 338 (2015), 2125-2142.
[15] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edition. EMS Series of Lectures in Mathematics. European Mathematical Society, 2009.
[16] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. European J. Combin. 8 (1987), 179-185.
[17] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299316.
[18] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.
[19] J. Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics 386. Springer, 1974.

