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Abstract

We obtain a classification of the non-classical hyperplanes of all finite thick dual
polar spaces of rank at least 3 under the assumption that there are no ovoidal
and semi-singular hex intersections. In view of the absence of known examples
of ovoids and semi-singular hyperplanes in finite thick dual polar spaces of rank
3, the condition on the nonexistence of these hex intersections can be regarded
as not very restrictive. As a corollary, we also obtain a classification of the non-
classical hyperplanes of DW (2n− 1, q), q even. In particular, we obtain a complete
classification of all non-classical hyperplanes of DW (2n− 1, q) if q ∈ {8, 32}.

Keywords: dual polar space, (classical, non-classical) hyperplane

MSC2010: 51A50, 05B25

1 Introduction

Suppose Π is a finite thick polar space of rank n ≥ 2 which is fully embeddable in a
projective space Σ. By Tits’ classification of polar spaces, we then know that there is
some prime power q such that Π is isomorphic to one of W (2n − 1, q), H(2n − 1, q2),
H(2n, q2), Q(2n, q), Q−(2n+ 1, q). Each of these polar spaces is defined by a nonsingular
quadric Q (of Witt index n) or a polarity ζ of Σ (see Table 1). The singular subspaces
of Π are then those subspaces of Σ that are either contained in Q or totally isotropic
with respect to ζ. We note that not all these polar spaces are nonisomorphic. Indeed,
Q(2n, q) ∼= W (2n− 1, q) if and only if q is even.

The dual polar space ∆ associated with Π is the point-line geometry whose points and
lines are the (n−1)- and (n−2)-dimensional subspaces of Π, with incidence being reverse
containment. The distance d(x1, x2) between two points x1 and x2 of ∆ is by convention
the distance in the collinearity graph. This is a graph of diameter n. The notation of ∆
is also given in Table 1.

We use the brackets 〈· · ·〉 to denote the smallest convex subspace of ∆ that contains
the objects they enclose. If x1 and x2 are two points of ∆, then 〈x1, x2〉 is the unique
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Polar space Ambient space Defining object Dual polar space

W (2n− 1, q) PG(2n− 1, q) symplectic polarity DW (2n− 1, q)
H(2n− 1, q2) PG(2n− 1, q2) Hermitian polarity DH(2n− 1, q2)
H(2n, q2) PG(2n, q2) Hermitian polarity DH(2n, q2)
Q(2n, q) PG(2n, q) parabolic quadric DQ(2n, q)

Q−(2n+ 1, q) PG(2n+ 1, q) elliptic quadric DQ−(2n+ 1, q)

Table 1: The finite thick (dual) polar spaces

convex subspace of diameter d(x1, x2) containing x1 and x2. Such convex subspaces are
called quads if d(x1, x2) = 2, hexes if d(x1, x2) = 3 and maxes if d(x1, x2) = n− 1.

If F is a nonempty convex subspace, then we denote by F̃ the point-line geometry
induced on F by those points and lines that are contained in F . If the diameter δ of F
is at most 1, then F̃ is either a point or a line. If δ ≥ 2, then F̃ is a dual polar space of
rank δ of the same type as ∆ (e.g., if ∆ ∼= DQ−(2n+ 1, q), then F̃ ∼= DQ−(2δ + 1, q)).

A hyperplane of a point-line geometry S is a set of points, distinct from the whole
point set, intersecting each line in either a singleton or the whole line. An ovoid of a
point-line geometry is a set of points meeting each line in a singleton. So, ovoids are
special cases of hyperplanes. If e : S → Σ′ is a full embedding of S into the projective
space Σ′ and γ is a hyperplane of Σ′, then the set of all points of S that are mapped by
e into γ is a hyperplane of S. Any hyperplane of S which can be obtained in this way
is said to arise from e. A hyperplane of S is called classical if it arises from some full
projective embedding of S. The point-line geometry S is said to be fully embeddable if
it admits at least one full projective embedding. The dual polar spaces DW (2n − 1, q),
DH(2n−1, q2), DQ(2n, q) and DQ−(2n+1, q) are all fully embeddable, while DH(2n, q2)
is not. So, all hyperplanes of DH(2n, q2) are non-classical.

Consider again the dual polar space ∆ of rank n ≥ 2. The set of points of ∆ at
distance at most n − 1 from a distinguished point x is a hyperplane of ∆, called the
singular hyperplane with center x. Suppose ∆ is a dual polar space of rank 3, and X
is a set of points of ∆ at distance 3 from a distinguished point x such that every line
at distance 2 from x has a unique point in common with X. Then X ∪ x⊥, where x⊥

denotes the set of points at distance at most 1 from x, is a hyperplane of ∆, a so-called
semi-singular hyperplane (with center x).

Suppose F is a convex subspace of diameter δ ≥ 0 of ∆. If H is a hyperplane of ∆,
then H ∩ F is either F or a hyperplane of F̃ . The maximal distance from a point of ∆
to F is equal to n − δ. If HF is a hyperplane of F̃ , then the points of ∆ at distance at
most n − δ − 1 from F together with those points at distance n − δ from F which lie
at distance n − δ from a (necessarily unique) point of HF constitute a hyperplane of ∆,
called the extension of HF . Notice that if δ = n, then the extension of HF coincides with
HF itself. If δ = 0, namely F is a singleton {x} and HF = ∅, then the extension of HF is

the singular hyperplane with center x. If HF is a non-classical hyperplane of F̃ , then its
extension necessarily is a non-classical hyperplane of ∆.
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All hyperplanes of the dual polar spaces DQ(2n, q) (q odd) and DH(2n − 1, q2) are
classical, see [4, Corollary 1.6] and [27, Main Theorem]. All known hyperplanes of the dual
polar spaces DW (2n− 1, q) and DQ−(2n+ 1, q) are either classical or extensions of non-
classical ovoids of quads, and all known hyperplanes of the dual polar space DH(2n, q2)
are singular hyperplanes. None of these hyperplanes can intersect a given hex F in a
semi-singular hyperplane or an ovoid of F̃ . In the present paper, we prove the following.

Theorem 1.1 (1) Suppose H is a hyperplane of DW (2n − 1, q), n ≥ 3, such that for
no hex F of DW (2n− 1, q), the intersection H ∩F is a semi-singular hyperplane of

F̃ . Then H is either classical or the extension of a non-classical ovoid of a quad.

(2) Suppose H is a hyperplane of DQ−(2n + 1, q), n ≥ 3, such that for no hex F of
DQ−(2n + 1, q), the intersection H ∩ F is an ovoid or a semi-singular hyperplane

of F̃ . Then H is either classical or the extension of a non-classical ovoid of a quad.

(3) Suppose H is a hyperplane of DH(2n, q2), n ≥ 3, such that for no hex F of
DH(2n, q2), the intersection H ∩ F is an ovoid or a semi-singular hyperplane of

F̃ . Then H is either a singular hyperplane or the extension of an ovoid of a quad.

In view of the absence of known examples of semi-singular hyperplanes and ovoids in any
finite thick dual polar space of rank 3, the assumption on the nonexistence of semi-singular
and ovoidal hex intersections could be regarded as not very restrictive.

It is known that the dual polar space DW (5, q) does not have semi-singular hyperplanes if
q is even or if q is a prime, see [11, Corollary 3.10 & Theorem 3.11]. For q prime however,
it is already known that every hyperplane of DW (2n−1, q) is classical, see [10, Corollary,
p. 1385]. These facts and Theorem 1.1(1) thus imply the following.

Corollary 1.2 Let q be a prime power for which the dual polar space DW (5, q) has no
semi-singular hyperplanes. Then every hyperplane of DW (2n − 1, q), n ≥ 2, is either
classical or the extension of a non-classical ovoid of a quad. In particular, this holds if q
is even.

There exists a complete classification of all ovoids of the generalized quadrangle Q(4, q) ∼=
DW (3, q) if q ∈ {2, 4, 8, 16, 32}, see [1, 13, 14, 15, 16, 17, 21]. If q ∈ {2, 4, 16} then
every ovoid of Q(4, q) is classical, but for these values of q it is already known that
every hyperplane of DW (2n − 1, q), n ≥ 2, is classical, see [10, Corollary, p. 1385]. If
q ∈ {8, 32}, then every ovoid of Q(4, q) is either a classical ovoid or a so-called Tits ovoid.
So, Corollary 1.2 implies the following.

Corollary 1.3 Let q ∈ {8, 32} and n ≥ 2. Then every non-classical hyperplane of
DW (2n− 1, q) is the extension of a Tits ovoid of a quad of DW (2n− 1, q).
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The author is only aware of one nonexistence result regarding ovoids and semi-singular
hyperplanes in elliptic dual polar spaces of rank 3, namely the dual polar space DQ−(7, 2)
cannot have ovoids. The nonexistence of these ovoids is a consequence of the fact that
the collinearity graph of the O−(8, 2) quadric is not geometrisable, see [18] and [29, p.
160]. As far as the author knows, the existence of ovoids and semi-singular hyperplanes
has been ruled out for only one Hermitian dual polar space of type DH(6, q2), namely
the dual polar space DH(6, 4). The nonexistence of these ovoids and semi-singular hy-
perplanes is a consequence of the nonexistence of ovoids in the generalized quadrangle
DH(4, 4), or equivalently, the nonexistence of spreads in H(4, 4) (computer result of
Andries Brouwer from the early 80’s). By Theorem 1.1(3), we then know that every hy-
perplane of DH(2n, 4), n ≥ 3, is singular. But the latter fact was basically already known
(it is an immediate consequence of [3, Theorem 1.1]).

2 SDPS-sets and SDPS-hyperplanes

With every (thick) polar space Π of rank n ≥ 1, there is associated a (thick) dual polar
space ∆ of rank n. A dual polar space of rank 2 is a generalized quadrangle and a dual
polar space of rank 1 is a line. By convention, a dual polar space of rank 0 is a point (no
lines).

Suppose ∆ is a dual polar space of rank n. If x is a point of ∆, then the convex
subspaces through x, ordered by ordinary inclusion, define a projective space Res(x) of
dimension n− 1. If x is a point of ∆ and i ∈ N, then ∆i(x) denotes the set of points at
distance i from x. If F is a nonempty convex subspace of ∆, then for every point x of ∆,
there exists a unique point πF (x) ∈ F such that d(x, y) = d(x, πF (x)) + d(πF (x), y) for
every y ∈ F . So, for every point x and every line L, there exists a unique point (namely
πL(x)) on L nearest to x (implying that ∆ is a so-called near polygon).

Suppose ∆ is a thick dual polar space of rank 2n, n ∈ N. A nonempty set X of points of
∆ is called an SDPS-set if it satisfies the following properties.

• No two distinct points of X are on the same line.

• If a quad Q contains two distinct points of X then it intersects X in an ovoid of Q̃.

• The partial linear space ∆′ whose points are the elements of X and whose lines are
the quad intersections of size at least two (natural incidence) is a dual polar space
of rank n.

• If x1 and x2 are two points of X, then the distance between x1 and x2 in the geometry
∆ is twice the distance between these points in the geometry ∆′.

• Every line of ∆ meeting X is contained in a (necessarily unique) quad that intersects
X in at least two points.
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An SDPS-set of a dual polar space of rank 0 consists of the unique point of that geometry,
while an SDPS-set of a thick generalized quadrangle is just an ovoid of that geometry.
The word SDPS is an abbreviation of Sub Dual Polar Space and refers to the fact that ∆′

can be regarded as a sub dual polar space of ∆. SDPS-sets were introduced in [12]. In
[12] (finite case) and [6, Chapter 5] (general case), it was shown that if X is an SDPS-set
of a thick dual polar space ∆ of rank 2n, then the maximal distance from a point of ∆ to
X is equal to n. Moreover, the set of points of ∆ at distance at most n− 1 from X is a
hyperplane of ∆. Any hyperplane of a thick dual polar space that can be obtained in this
way is called an SDPS-hyperplane. The following proposition is the main result of [7].

Proposition 2.1 ([7]) The following statements are equivalent for a hyperplane H of a
thick dual polar space ∆ of rank at least 3.

• H is the extension of an SDPS-hyperplane of a convex subspace of even diameter of
∆.

• For every hex F of ∆, the intersection H ∩ F is either F , a singular hyperplane of
F̃ or the extension of an ovoid of a quad of F̃ .

The following proposition is taken from [6, Theorem 5.31], but its proof heavily relies on
results of [23].

Proposition 2.2 ([6, 23]) (1) Let ∆ be one of the dual polar spaces DW (4n − 1, q),
DQ−(4n+ 1, q) where n ≥ 2, and let X be an SDPS-set of ∆. Then for every quad

Q of ∆ containing at least two points of X, the ovoid Q ∩X of Q̃ is classical.

(2) The dual polar space DH(4n, q2) does not have SDPS-sets if n ≥ 2.

In the following two propositions, two ovoids O and O′ of the respective generalized
quadrangles Q̃ and Q̃′ are called isomorphic if there exists an isomorphism from Q̃ to Q̃′

mapping O to O′.

Proposition 2.3 Let X be an SDPS-set of a thick dual polar space ∆ of rank 2n ≥ 2.
Let H be the SDPS-hyperplane of ∆ associated to X. Suppose Q is a quad of ∆ such that
Q ∩H is an ovoid of Q̃. Then there exists a quad Q′ of ∆ intersecting X in at least two
points such that the ovoid Q ∩H of Q̃ is isomorphic to the ovoid Q′ ∩X of Q̃′.

Proof. We will prove the proposition by induction on n. Clearly, the proposition holds
if n = 1 (take Q′ = Q). So, suppose n > 1. Let F denote a max of ∆ containing Q. Then
by [6, Lemmas 5.42 and 5.44], the set X1 := F ∩X is an SDPS-set of a convex subspace

F1 of diameter 2n− 2 of F̃ . Moreover, by [6, Lemma 5.45] the hyperplane F ∩H of F̃ is

the extension of the SDPS-hyperplane H1 of F̃1 associated with the SDPS-set X1. As Q
is ovoidal, it cannot meet F1. Every point x of Q is collinear with the point πF1(x) of F1.

The set Q1 := πF1(Q) = {πF1(x) |x ∈ Q} is a quad of F̃1 and πF1 realizes an isomorphism
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between Q̃ and Q̃1. So, the ovoid Q ∩ H of Q̃ is isomorphic to the ovoid Q1 ∩ H1 of
Q̃1. By the induction hypothesis, there exists a quad Q′ intersecting X1 (and hence also

X) in at least two points such that the ovoid Q1 ∩ H1 of Q̃1 is isomorphic to the ovoid

Q′ ∩X1 = Q′ ∩X of Q̃′. 2

Proposition 2.4 Let ∆ be a thick dual polar space, F a convex subspace of even diameter
of ∆, X an SDPS-set in F̃ and HF the SDPS-hyperplane of F̃ associated with X. Let H
denote the hyperplane of ∆ which arises by extending HF . If Q is a quad of ∆ such that
Q ∩H is an ovoid of Q̃, then there exists a quad Q′ of F̃ intersecting X in at least two
points such that the ovoid Q ∩H of Q̃ is isomorphic to the ovoid Q′ ∩X of Q̃′.

Proof. Let n denote the rank of ∆ and 2δ the rank of F̃ . Then the maximal distance
from a point of ∆ to F is equal to n−2δ. Every point at distance at most n−2δ−1 from
F lies in H. Suppose Q contains a point x at distance at most n− 2δ − 1 from F . Then
there exists a max M of ∆ containing x and F . Every point of M lies at distance at most
n−2δ−1 from F and hence belongs to H. If we look at the projective space Res(x), then
we see that Q∩M ⊆ H is either Q or a line, in contradiction with the fact that Q∩H is
an ovoid of Q̃. Hence, every point of Q lies at distance n− 2δ from F . Let y ∈ Q. Then
πF (y) and Q are contained in a unique convex subspace F ′ of diameter n− 2δ + 2. Since
〈y, πF (y)〉 ∩ F = {πF (y)} and 〈y, πF (y)〉 has diameter n − 2δ, the intersection of F ′ and
F is a quad Q1 (look at the projective space Res(πF (y))). The map z 7→ πF (z) defines

an isomorphism between Q̃ and Q̃1. The intersection Q1 ∩HF is equal to πF (Q∩H) and

hence is an ovoid of Q̃1 isomorphic to the ovoid Q ∩ H of Q̃. By Proposition 2.3, there
exists a quad Q′ of F̃ intersecting X in at least two points such that the ovoid Q1 ∩HF

of Q̃1 is isomorphic to the ovoid Q′ ∩X of Q̃′. 2

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. So, let ∆ be one of the dual polar spaces
DW (2n− 1, q), DQ−(2n+ 1, q), DH(2n, q2) of rank n ≥ 3, and let H be a hyperplane of
∆. We make the following assumptions.

(I) For no hex F of ∆, the intersection F ∩H is a semi-singular hyperplane of F̃ .

(II) If ∆ ∈ {DQ−(2n+1, q), DH(2n, q2)}, then for no hex F of ∆, the intersection F ∩H
is an ovoid of F̃ .

The dual polar space DW (5, q) has no ovoids, see [5], [19, Proposition 2.8] and [28,
Theorem 3.2]. So, also if ∆ = DW (2n − 1, q) there will be no hexes F for which F ∩H
is an ovoid of F̃ . We will also make the following assumption.

(III) H is non-classical.

In view of what we need to prove, it then suffices to prove that H is the extension of a
non-classical ovoid of a quad or (only if ∆ = DH(2n, q2)) a singular hyperplane.
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Suppose Q is a quad of ∆. Then Q ∩H is either Q or a hyperplane of Q̃. So, one of the
following possibilities must then occur: (1) Q ⊆ H; (2) Q ∩ H consists of all points of
Q collinear with or equal to a distinguished point; (3) Q ∩H is a proper subquadrangle

of Q̃; (4) Q ∩ H is an ovoid of Q̃. The quad Q is called deep, singular, subquadrangular
or ovoidal (with respect to H) depending on whether case (1), (2), (3) or (4) occurs. A
quad Q of ∆ is called bad ovoidal (with respect to H) if Q ∩ H is a non-classical ovoid

of Q̃. If ∆ ∈ {DQ−(2n + 1, q), DH(2n, q2)}, then every quad of ∆ has order (s, t) with
t < s and hence ∆ cannot have proper full subquadrangles by [20, 2.2.2(i)]. So, in this
case, there cannot exist quads that are subquadrangular with respect to the hyperplane.
Pralle [22] obtained a classification of hyperplanes of thick dual polar spaces of rank 3 that
do not have subquadrangular quads. The following result follows from this classification
and a few other results on uniform hyperplanes obtained in [19, 25]. (With a uniform
hyperplane, we mean a hyperplane which admits, besides deep quads, only one other type
of quad.)

Proposition 3.1 ([19, 22, 25]) Let ∆1 ∈ {DW (5, q), DQ−(7, q), DH(6, q2)} and let H1

be a hyperplane of ∆1 not admitting subquadrangular quads. Then H1 is one of the fol-
lowing:

(i) a singular hyperplane;
(ii) an ovoid;
(iii) a semi-singular hyperplane;
(iv) the extension of an ovoid of a quad;
(v) (only if q is even) a hexagonal hyperplane of DW (5, q);
(vi) a hexagonal hyperplane of DQ−(7, q).

The dual polar space DQ(6, q) (which is isomorphic to DW (5, q) if q is even) admits
so-called hexagonal hyperplanes ([25]). If H is a hexagonal hyperplane of DQ(6, q), then
the points and lines contained in H define a so-called split-Cayley generalized hexagon.
A hexagonal hyperplane of DQ(6, q) only admits singular quads. In fact, every point
x of a hexagonal hyperplane H is contained in a unique (singular) quad Qx such that
Qx ∩H = x⊥ ∩Qx. All hexagonal hyperplanes of DQ(6, q) are classical by [8, 27].

The polar space Q−(7, q) has hyperplane sections of type Q(6, q) on which a dual polar
space of type DQ(6, q) can be defined. By [22, Theorem 3], every hexagonal hyperplane
of DQ(6, q) gives rise to a hyperplane of the dual polar space DQ−(7, q) associated with
Q−(7, q). Every hyperplane of DQ−(7, q) that can be obtained is this way is called a
hexagonal hyperplane of DQ−(7, q). If H is a hexagonal hyperplane of DQ−(7, q), then
there are no points x for which x⊥ ⊆ H and every quad is singular or ovoidal with respect
to H. All hexagonal hyperplanes of DQ−(7, q) are classical, see [8, Proposition 4.6].

By relying on Proposition 3.1, we can prove the following.

Lemma 3.2 If ∆ = DH(2n, q2), then every hex F intersects H in either F , a singular

hyperplane of F̃ or the extension of an ovoid of a quad of F̃ .
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Proof. Obviously, F ∩ H is either F or a hyperplane of F̃ . Suppose the latter occurs.
As F̃ ∼= DH(6, q2), no quad of F̃ has proper subquadrangles and so no quad of F̃ is
subquadrangular with respect to F∩H. One of the cases (i), (ii), (iii) or (iv) of Proposition
3.1 should therefore occur for the hyperplane F ∩ H of H. But the cases (ii) and (iii)
cannot occur by Assumptions (I) and (II). 2

Our aim will be to prove a similar result for the dual polar spaces DW (2n − 1, q) and
DQ−(2n+ 1, q). This will ultimately be realized in Corollary 3.14.

Lemma 3.3 (1) If ∆ = DW (2n− 1, q), then q 6= 2.

(2) If there exists no bad ovoidal quad, then ∆ = DH(2n, q2) and H is a singular
hyperplane of ∆.

Proof. (1) Since the dual polar spaceDW (2n−1, 2) is fully embeddable, every hyperplane
of DW (2n − 1, 2) must be classical by [24, Corollary 2, p. 180]. As H is non-classical
(Assumption (III)), we must have that q 6= 2 if ∆ = DW (2n− 1, q).

(2) If ∆ = {DW (2n− 1, q), DQ−(2n+ 1, q)}, then the fact that there are no bad ovoidal
quads implies that the hyperplane is classical by [8, Theorem 1.4] and [10, Main Theorem].
So, we may suppose that ∆ = DH(2n, q2). As the generalized quadrangle DH(4, q2) is
nonembeddable, the nonexistence of bad ovoidal quads implies that there are no ovoidal
quads at all. As there are also no subquadrangular quads, every quad is either deep
or singular, that means that H is locally singular using the terminology of [19]. By [3,
Theorem 1.1], this implies that the hyperplane H must be singular. 2

So, in the sequel, we may also assume the following.

(IV) There exists at least one bad ovoidal quad.

In view of what we need to prove, it will then suffice to prove that H is the extension of
a non-classical ovoid of a quad.

The following proposition was shown in [11, Corollary 1.3].

Proposition 3.4 ([11]) Suppose n = 3 and q 6= 2. Let H1 be a hyperplane of DW (5, q),
let x be a point of H1 and let L be the set of lines through x contained in H1. Then L,
regarded as a set of points of Res(x) ∼= PG(2, q), is one of the following: (1) the empty
set; (2) a point; (3) a line; (4) the union of two distinct lines; (5) a nonsingular conic;
(6) the whole set of points. If H1 is not a semi-singular hyperplane of DW (5, q), then
possibility (1) cannot occur.

Proposition 3.5 Let H1 be a hyperplane of DQ−(7, q), x a point of H1 and L the set of
lines through x contained in H1. Then L, regarded as a set of points of Res(x) ∼= PG(2, q),
is one of the following: (1) the empty set; (2) a point; (3) a line; (4) the whole set of points.
If H1 is not an ovoid nor a semi-singular hyperplane of DQ−(7, q), then possibility (1)
cannot occur.
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Proof. We first show that L is a subspace of Res(x). To that end, consider two distinct
lines L1 and L2 of L and denote by Q the unique quad through L1 and L2. We need to
show that every line of Q through x belongs to L. Since Q is not subquadrangular, it is
either singular or deep. So, as L1 ∪L2 ⊆ H, every line of Q through x must be contained
in H, as we needed to prove.

Suppose now that H1 is not an ovoid nor a semi-singular hyperplane. Then H1 is either
a singular hyperplane, the extension of an ovoid of a quad or a hexagonal hyperplane by
Proposition 3.1. For each of these three possibilities, one can verify that possibility (1)
cannot occur. This is obvious for singular hyperplanes and extensions of ovoids of quads.
For hexagonal hyperplanes, this follows for instance from [9, Lemma 2.6]. 2

Lemma 3.6 Let ∆ ∈ {DW (2n − 1, q), DQ−(2n + 1, q)}. Let Q be a bad ovoidal quad

and let F be a hex through Q. Then the hyperplane F ∩ H of F̃ is the extension of a
non-classical ovoid of a quad of F̃ .

Proof. Suppose first that ∆ = DW (2n− 1, q). Since Q∩H is a non-classical ovoid of Q̃,

the hyperplane F ∩ H of F̃ cannot be a classical hyperplane of F̃ ∼= DW (5, q). By [11,

Theorem 1.1], we then know that the hyperplane F ∩ H of F̃ is either the extension of

a non-classical ovoid of a quad or a semi-singular hyperplane of F̃ . The latter possibility
cannot occur by Assumption (I).

Suppose next that ∆ = DQ−(2n + 1, q). Again we must have that F ∩ H is a non-

classical hyperplane of F̃ . As singular hyperplanes of DQ−(7, q) do not admit ovoidal
quads and hexagonal hyperplanes are classical, there is only one remaining possibility by
Proposition 3.1 and Assumptions (I) and (II), namely F ∩H should be the extension of
a (necessarily non-classical) ovoid of a quad. 2

Lemma 3.7 Suppose ∆ ∈ {DW (7, q), DQ−(9, q)} (so, n = 4) and Q is a bad ovoidal
quad. Let x be an arbitrary point of Q ∩H. Then there exists a unique quad Qx through
x such that the lines through x contained in H are precisely the lines through x contained
in Qx. The quad Qx is moreover deep.

Proof. Let L denote the set of lines through x contained in H. If F is a hex through Q,
then by Lemma 3.6 F ∩ H is the extension of an ovoid of a quad of F̃ and hence there
exists a unique line through x contained in F ∩H. Since there are q + 1 hexes through
Q, we have |L| = q + 1.

We prove that L is a line of Res(x) ∼= PG(3, q). Suppose that this is not the case.
Then there are three lines L1, L2, L3 ∈ L that are not contained in a common quad.
Consider the hex F = 〈L1, L2, L3〉. The hex F defines a subplane α of Res(x) isomorphic

to PG(2, q). By Proposition 3.5 applied to the hyperplane H ∩ F of F̃ , we see that the
case ∆ = DQ−(9, q) is not possible. So, we should have ∆ = DW (7, q). By Proposition
3.4, the q + 1 lines through x contained in H must then define a nonsingular conic in the
subplane α of Res(x). The hex F does not contain Q and hence intersects Q in a line
L. Suppose that either q is odd or (q is even and L is not the nucleus of the nonsingular
conic L). Then there exists a quad Q1 ⊆ F through L that does not contain any line
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of the set L. If we choose Q1 in such a way, then the hex 〈Q,Q1〉 through Q does not
contain any line of L which is impossible. We must therefore have that q is even and L
is the nucleus of L. Let L′ ⊆ F be a line through x not contained in L ∪ {L}, let Q′ be
the quad 〈L,L′〉 and let F ′ be the hex 〈Q,Q′〉. Then F ∩ F ′ = Q′. By Lemma 3.6, the

hyperplane F ′∩H of F̃ ′ is the extension of a non-classical ovoid of a quad of F̃ ′ and hence
there exists a bad ovoidal quad Q′′ through L′ contained in F ′. Since L is the nucleus of
L, the intersection x⊥ ∩ Q′ ∩ H is a line and hence Q′ must be a singular quad. Hence
Q′′ 6= Q′ and Q′′∩F = L′ (as F ∩F ′ = Q′). We can now repeat the above arguments with
Q replaced by Q′′. A contradiction is then easily obtained, taking into account that L′ is
this time not the nucleus of the conic L. So, we can conclude that L is a line of Res(x).
This means that there exists a quad Qx through x such that L coincides with the set of
lines through x contained in Qx.

Next, we show that the quad Qx is deep. Suppose to the contrary that Qx is not deep.
Let L be an arbitrary line through x contained in Qx. By Lemma 3.6, the hex 〈Q,L〉
intersects H in the extension of an ovoid of a quad Q′. So, if we put L ∩Q′ = {x′}, then
we see that every point of L \ {x′} is contained in a bad ovoidal quad. By the previous
paragraph, we then know that through every point of L \ {x, x′} there are precisely q+ 1
lines that are contained in H. Since Qx is not deep, only one of these q + 1 lines, namely
L, is contained in Qx. Now, there are q2 + q quads through L distinct from Qx. If R
is one of these quads, then x⊥ ∩ R ∩ H is the line L and hence the quad R must be
singular. So, the q2 + q quads through L distinct from Qx define q3 + q2 lines that are
contained in H and meet L\{x} in a singleton. As each of the q−1 points of L\{x, x′} is
contained in q lines that meet L \ {x} in a singleton, the point x′ is contained in precisely
q3 + q2 − (q − 1)q + 1 = q3 + q + 1 lines that are contained in H (including L) and
precisely q2 lines that are not contained in H. Let K be a line through x′ not contained
in H. As there are q2 + q + 1 quads through K, there must exist a quad S through K
with the property that every line through x′ contained in S and distinct from K must be
contained in H. This is only possible when S is a subquadrangular quad. As DQ−(5, q)
does not have proper subquadrangles, we should have ∆ = DW (7, q) and S ∩ H is a

(q+ 1)× (q+ 1)-grid of S̃ ∼= DW (3, q) ∼= Q(4, q). The fact that every line of S through x′

distinct from K is contained in H then implies that q = 2, in contradiction with Lemma
3.3(1). 2

Lemma 3.8 Suppose ∆ ∈ {DW (2n − 1, q), DQ−(2n + 1, q)}. Then every point x of ∆
not contained in H is contained in a bad ovoidal quad.

Proof. Let Q be a bad ovoidal quad. Let y1 be an arbitrary point of Q \H. Since the
complement of H is connected ([2, Theorem 7.3], [26, Lemma 6.1]), there exists a path
y1, y2, . . . , yk = x of k ≥ 1 points in the complement of H. We prove by induction on
i ∈ {1, 2, . . . , k} that the point yi is contained in some bad ovoidal quad Qi. Obviously,
this holds if i = 1 (take Q1 = Q). Suppose now that the claim holds for a certain
i ∈ {1, 2, . . . , k − 1}, and let Qi be a bad ovoidal quad through yi. If yi+1 is contained in
Qi, then the claim holds for i + 1 (just take Qi+1 = Qi). Suppose therefore that yi+1 is
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not contained in Qi and consider the hex F = 〈yi+1, Qi〉. By Lemma 3.6, the intersection

F ∩H is the extension of a non-classical ovoid of a quad of F̃ . This implies that yi+1 is
contained in some bad ovoidal quad Qi+1. 2

Lemma 3.9 Suppose ∆ = DW (2n − 1, q). Then there cannot exist a subquadrangular
quad Q1 and a bad ovoidal quad Q2 that intersect in a line.

Proof. Suppose the contrary and consider the hex F = 〈Q1, Q2〉. Since Q2 is a bad
ovoidal quad, the intersection F ∩H must be the extension of a non-classical ovoid of a
quad of F̃ by Lemma 3.6. The latter however implies that no subquadrangular quad can
be contained in F . 2

Lemma 3.10 Suppose ∆ = DW (2n − 1, q). Then there cannot exist subquadrangular
quads.

Proof. Suppose Q is a subquadrangular quad. By Lemmas 3.8 and 3.9, there should
exist a bad ovoidal quad intersecting Q \ H in a singleton and so we should have that
n ≥ 4. We will now derive a contradiction. It suffices to deal with the case n = 4.
Indeed, if n > 4 then the reasoning below applied to any convex subspace of diameter 4
containing Q and a bad ovoidal quad meeting Q\H in a singleton would yield the desired
contradiction.

Step 1. If R is a quad intersecting Q in a singleton {x} not contained in H, then R is
bad ovoidal.
Proof. By Lemmas 3.8 and 3.9, there exists a bad ovoidal quad R1 meeting Q in the
singleton {x}. Now, consider Res(x) ∼= PG(3, q). The quads Q, R and R1 define lines α,
β and β1 in Res(x). The graph whose vertices are the lines of Res(x) ∼= PG(3, q) disjoint
from α, with two vertices adjacent whenever the corresponding lines meet in a point is
connected. So, when proving the above-mentioned claim, it suffices to consider the case
where the lines β and β1 meet in a singleton, that means, the case where the quads R and
R1 meet in a line. Consider the hex F := 〈R,R1〉. This hex meets Q in a line M through
x. Let y denote the unique point of H on this line. Since R1 is a bad ovoidal quad, the
hyperplane F ∩ H of F̃ is the extension of a non-classical ovoid of a quad R2 of F̃ (see
Lemma 3.6). Since the line M is not contained in a bad ovoidal quad (Lemma 3.9), the
quad R2 should contain the point y. So, the quads R and R2 are disjoint, implying that
R ∩H is the extension of a non-classical ovoid of R̃, i.e. R is bad ovoidal. (qed)

Step 2. Let F be a hex meeting Q in a line L not contained in H, and let x be the unique
point in L ∩H. Then F ∩H is the extension of a non-classical ovoid of a quad R of F̃ .
This quad R intersects Q in the singleton {x}, and the lines through x contained in H∩F
are precisely the lines through x contained in R.
Proof. By Step 1, there exists a bad ovoidal quad in F meeting Q in a singleton
belonging to L\{x}. So, by Lemma 3.6, F ∩H is the extension of a non-classical ovoid O

of a quad R of F̃ . By Lemma 3.9, F̃ cannot have bad ovoidal quads through the line L.
So, the line L should meet R and R should contain the point x. Since L is not contained
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in H, R ∩Q = {x} and x 6∈ O. Since x 6∈ O, the lines through x contained in H ∩ F are
precisely the lines through x contained in R. (qed)

Now, let x∗ be a fixed point of Q ∩H. By considering a hex through x∗ meeting Q in a
line not contained in H, we see by Step 2 that there should exist a deep quad Qx∗ through
x∗ for which Qx∗ ∩ Q = {x∗}. Let L1 and L2 be the two lines through x∗ contained in
Q ∩H.

Step 3. If L is a line through x∗ contained in H, then L is contained in either 〈Qx∗ , L1〉
or 〈Qx∗ , L2〉.
Proof. Suppose L is not contained in 〈Qx∗ , L1〉 nor in 〈Qx∗ , L2〉. Then consider the
hex F = 〈Qx∗ , L〉. This hex intersects Q in a line M through x∗ that is not contained in
H. By Step 2, all lines through x∗ contained in F ∩ H are contained in a certain quad
through x∗. But that is impossible. All lines through x∗ contained in Qx∗ are contained
in H and the line L itself is also contained in H. (qed)

Now, let M be a line of Q through x∗ distinct from L1 and L2. Let F be a hex through
M not containing Q and distinct from 〈M,Qx∗〉. Then Qx∗ ∩ F is a line contained in H.
By Step 2, there exists a quad R through x∗ contained in F such that the lines through
x∗ contained in F ∩H are precisely the lines through x∗ contained in R. Observe that the
line Qx∗ ∩ F is contained in R. By Step 3, the quad R is contained in either 〈Qx∗ , L1〉 or
〈Qx∗ , L2〉. Without loss of generality, we may suppose that R is contained in 〈Qx∗ , L1〉.
Observe now the following: (i) Qx∗ and R are two distinct quads through x∗ contained
in the hex 〈Qx∗ , L1〉 and none of these quads contains the line L1; (ii) every line of Qx∗

through x∗ is contained in H; (iii) every line of R through x∗ is contained in H; (iv) the
line L1 is contained in H. By Lemma 3.3(1) and Proposition 3.4, this implies that every
line of 〈Qx∗ , L1〉 through x∗ is contained in H. Also, by Proposition 3.4, there exists a
line L′2 6= L2 of 〈Qx∗ , L2〉 through x∗ that is contained in H, but not in Qx∗ . Now, let F ′

be a hex through 〈M,L′2〉 not containing Q. Then by Step 2, there exists a quad R′ of

F̃ ′ through x∗ such that the lines through x∗ contained in F ′ ∩H are precisely the lines
through x∗ contained in R′. But that is impossible. Every line through x∗ contained in
the quad 〈Qx∗ , L1〉 ∩ F ′ is contained in H, and the line L′2 as well is also contained in H.
So, we have our desired contradiction. 2

Lemma 3.11 Suppose ∆ ∈ {DW (2n − 1, q), DQ−(2n + 1, q)}. Let x be a point of H
and let L denote the set of lines through x contained in H. Then L is a subspace of
co-dimension at most 2 of Res(x) ∼= PG(n− 1, q).

Proof. We first show that L is a subspace of Res(x). Let L1 and L2 be two arbitrary
distinct lines of L and let Q denote the unique quad through these lines. The quad Q
cannot be ovoidal nor subquadrangular and hence has to be deep or singular. In any case,
all lines of Q through x are contained in H and hence belong to L. So, L should be a
subspace of Res(x).

We show that the co-dimension of L as a subspace of Res(x) is at most 2. If this
would not be the case then there would exist a hex F through x such that no line of L is
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contained in F . But then the hyperplane H ∩ F of F̃ would violate Propositions 3.4 and
3.5. 2

Lemma 3.12 Suppose that either ∆ = DW (2n−1, q) with q even or ∆ = DQ−(2n+1, q).
Then there cannot exist a quad Q and a hex F for which the following hold:
• F ∩H is a hexagonal hyperplane of F̃ ;
• Q ∩H is a non-classical ovoid of Q̃;
• Q ∩ F is a line.

Proof. Consider the convex subspace F ′ := 〈Q,F 〉 of diameter 4. Then F ′ ∩ H is a

non-classical hyperplane of F̃ ′. Let x be the unique point of Q ∩ F ∩H. By Lemma 3.7,
there exists a unique quad Qx through x such that the lines through x contained in F ′∩H
are precisely the lines through x contained in Qx.

Suppose first that Qx is contained in F . As H ∩ F is a hexagonal hyperplane of F̃ ,
the quad Qx must be singular, but that is not possible by Lemma 3.7 which implies that
the quad Qx is deep.

Suppose next that Qx is not contained in F . Then ∆ = DQ−(2n + 1, q) and F̃ =
DQ−(7, q). Let Q′ be a quad through x contained in F intersecting Qx in {x} and Q in
the line Q ∩ F . Then Q′ is an ovoidal quad and as the hexagonal hyperplane F ∩ H of
F̃ ∼= DQ−(7, q) is classical, the ovoid Q′ ∩ H of Q̃′ is also classical. Now, consider the

hex F ′ = 〈Q,Q′〉. By Lemma 3.6, the hyperplane F ′ ∩H of F̃ ′ must be the extension of

a non-classical ovoid of a quad of F̃ ′. That is not possible as the hex F ′ contains ovoidal
quads that are not bad (namely the quad Q′). 2

Lemma 3.13 Suppose that either ∆ = DW (2n−1, q) with q even or ∆ = DQ−(2n+1, q).

Then there cannot exist a hex F such that F ∩H is a hexagonal hyperplane of F̃ .

Proof. Suppose F is a hex such that F ∩H is a hexagonal hyperplane of F̃ . By Lemmas
3.8 and 3.12, there should exist a bad ovoidal quad intersecting F \H in a singleton and
so we should have n ≥ 5. We will now derive a contradiction. It suffices to deal with the
case n = 5. Indeed, if n > 5, then the reasoning below applied to any convex subspace
of diameter 5 containing F and a bad ovoidal quad meeting F \H in a singleton would
yield the desired contradiction.

Step 1. If R is a quad intersecting F in a singleton {x} not contained in H, then R is
bad ovoidal.
Proof. By Lemmas 3.8 and 3.12, there exists a bad ovoidal quad R1 meeting F in
the singleton {x}. Now, consider Res(x) ∼= PG(4, q). The hex F determines a plane α
of Res(x) and the quads R and R1 define lines β and β1 in Res(x). The graph whose
vertices are the lines of Res(x) ∼= PG(4, q) disjoint from α, with two vertices adjacent
whenever the corresponding lines meet in a point is connected. So, when proving the
above-mentioned claim, it suffices to consider the case where the lines β and β1 meet in
a singleton, that means, the case where the quads R and R1 meet in a line. Consider the
hex F ′ := 〈R,R1〉. This hex meets F in a line M through x. Let y denote the unique

point of H on M . Since R1 is a bad ovoidal quad, the hyperplane F ′ ∩ H of F̃ ′ is the
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extension of a non-classical ovoid of a quad R2 of F̃ . Since the line M is not contained in
a bad ovoidal quad (Lemma 3.12), the quad R2 should contain the point y. So, the quads
R and R2 are disjoint, implying that R is a bad ovoidal quad. (qed)

Step 2. Let x ∈ F ∩H and let L denote the set of lines through x contained in H. Then
L is a hyperplane of Res(x).
Proof. Suppose that this is not the case. Then by Lemma 3.11, L is a subspace of
co-dimension 2 of Res(x). That implies that there exists a quad Q1 through x such that
Q1 ∩ F = {x} and no line of Q1 through x is contained in H. Now, let M be a line of F
through x not contained in H and consider the hex F ′ := 〈Q1,M〉. Then F ′ ∩ F = M .
By Step 1, there exist bad ovoidal quads that are contained in F ′. So, F ′ ∩ H must be
the extension of a non-classical ovoid of a quad Q2 of F̃ ′. Since M is not contained in a
bad ovoidal quad, the quad Q2 contains the point x. The quad Q2 is deep with respect
to H implying that the intersection Q1 ∩Q2 (which is at least a line) is also contained in
H. This is in contradiction with the fact that no line through x is contained in Q1 ∩H.
(qed)

Let x∗ be an arbitrary point of F ∩H, let L∗ denote the set of lines through x∗ contained
in H. Then L∗ is a hyperplane of Res(x∗). Let G∗ denote the unique convex subspace of
diameter 4 through x∗ containing all lines of L∗. Then G∗ cannot contain F as (x∗)⊥ ∩F
is not contained in the hexagonal hyperplane H ∩ F of F̃ . So, G∗ ∩ F is a quad.

Step 3. Let R be a quad of G̃∗ through x∗ such that R ∩ F = {x∗}. Then R is deep with
respect to H.
Proof. Let M be a line of F through x∗ not contained in H and consider the hex
F ′ := 〈R,M〉. Then F ′ ∩ F = M . By Step 1, there exist bad ovoidal quads that are
contained in F ′. So, F ′ ∩H must be the extension of a non-classical ovoid of a quad Q2

of F̃ ′. Since M is not contained in a bad ovoidal quad, the quad Q2 must contain x∗ and
hence must coincide with R. This implies that R is deep. (qed)

Step 4. Let R be a quad of G̃∗ through x∗ meeting F in a line L. Then R is deep with
respect to H.
Proof. Suppose R is not deep with respect to H. Then R must be singular and
R ∩ H = (x∗)⊥ ∩ R. Consider a hex F ′ of G̃∗ through R for which F ′ ∩ F = L. Then

F ′ ∩ H is a hyperplane of F̃ ′. If K is a line of F ′ meeting ∆3(x
∗) and R, then K ∩ H

is a singleton {u∗} contained in ∆3(x
∗). Let R′ be the unique quad through u∗ meeting

L. Every quad of F̃ ′ through x∗ not containing L is deep by Step 3, implying that every
line of F ′ through u∗ not contained in R′ is contained in H. Propositions 3.4, 3.5 and
the fact that q 6= 2 if ∆ = DW (2n− 1, q) then imply that every line of F ′ through u∗ is
contained in H. In particular, this holds for the unique line through u∗ meeting R. This
is not compatible with the fact that R is singular. (qed)

Let Qx∗ denote the quad G∗∩F . As H ∩F is a hexagonal hyperplane of F̃ , the quad Qx∗

cannot be deep and hence has to be singular. So, Qx∗ ∩H = (x∗)⊥ ∩Qx∗ . Let F ′ denote

a hex through Qx∗ contained in G∗. Let K be a line of F̃ ′ meeting Qx∗ and ∆3(x
∗). Then
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K ∩ H is a singleton {u∗} contained in ∆3(x
∗). Every quad of F̃ ′ through x∗ distinct

from Qx∗ is deep, implying that K is the unique line of F̃ ′ through u∗ not contained in
H. This is impossible by Propositions 3.4 and 3.5. 2

The following is an immediate consequence of Proposition 3.1 and Lemmas 3.10 and 3.13.

Corollary 3.14 Let ∆ ∈ {DW (2n− 1, q), DQ−(2n+ 1, q)}. Then every hex of ∆ inter-

sects H in either F , a singular hyperplane of F̃ or the extension of an ovoid of a quad of
F̃ .

The following proposition finishes the proof of Theorem 1.1.

Proposition 3.15 The hyperplane H is the extension of a non-classical ovoid of a quad
of ∆.

Proof. By Proposition 2.1, Lemma 3.2 and Corollary 3.14, H must be the extension
of an SDPS-hyperplane HF of a convex subspace F of even diameter 2δ. Let X be the
SDPS-set of F̃ associated with HF . By Assumption (IV), there exists a bad ovoidal quad

Q. By Proposition 2.4, there exists a quad Q′ of F̃ such that Q′ ∩ X is a non-classical
ovoid of Q̃′. By Proposition 2.2, this is only possible when F is a quad. So, HF = X is a
non-classical ovoid of F̃ and H is the extension of this non-classical ovoid. 2
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